Lee, Eunsol; Goo, Hyun Woo; Lee, Jae-Yeong
2015-08-01
It is necessary to develop a mechanism to estimate and analyze cumulative radiation risks from multiple CT exams in various clinical scenarios in children. To identify major contributors to high cumulative CT dose estimates using actual dose-length product values collected for 5 years in children. Between August 2006 and July 2011 we reviewed 26,937 CT exams in 13,803 children. Among them, we included 931 children (median age 3.5 years, age range 0 days-15 years; M:F = 533:398) who had 5,339 CT exams. Each child underwent at least three CT scans and had accessible radiation dose reports. Dose-length product values were automatically extracted from DICOM files and we used recently updated conversion factors for age, gender, anatomical region and tube voltage to estimate CT radiation dose. We tracked the calculated CT dose estimates to obtain a 5-year cumulative value for each child. The study population was divided into three groups according to the cumulative CT dose estimates: high, ≥30 mSv; moderate, 10-30 mSv; and low, <10 mSv. We reviewed clinical data and CT protocols to identify major contributors to high and moderate cumulative CT dose estimates. Median cumulative CT dose estimate was 5.4 mSv (range 0.5-71.1 mSv), and median number of CT scans was 4 (range 3-36). High cumulative CT dose estimates were most common in children with malignant tumors (57.9%, 11/19). High frequency of CT scans was attributed to high cumulative CT dose estimates in children with ventriculoperitoneal shunt (35 in 1 child) and malignant tumors (range 18-49). Moreover, high-dose CT protocols, such as multiphase abdomen CT (median 4.7 mSv) contributed to high cumulative CT dose estimates even in children with a low number of CT scans. Disease group, number of CT scans, and high-dose CT protocols are major contributors to higher cumulative CT dose estimates in children.
DSC studies on gamma irradiated poly(vinylidene fluoride) applied to high gamma dose dosimetry
NASA Astrophysics Data System (ADS)
Batista, Adriana S. M.; Faria, Luiz O.
2017-11-01
Poly(vinylidene fluoride) homopolymer (PVDF) was investigated for use on high gamma dose dosimetry. Samples were irradiated with gamma doses ranging from 100 kGy to 3000 kGy. Differential scanning calorimetry (DSC) was used to construct an unambiguous relationship between the melting transition latent heat (LM) and the absorbed dose (D). DSC thermograms were taken immediately, 1, 2 and 8 months after the irradiation process revealing that the LMx D relationship presented no change for doses ranging from 100 to 2750 kGy. FTIR and UV-Vis spectroscopy data revealed the radio-induction of C˭O and C˭C bonds. These radio-induced bonds were responsible by the chain stiffening and chain oxidation, respectively. SEM microscopy demonstrates that the spherulitic large crystalline structures present in pristine PVDF are destroyed with doses as low as 100 kGy. The DRX analysis revealed that the main effect of high gamma doses in the crystalline structure of PVDF is to provoke a change from the pristine PVDF α-phase to the γ-phase. Both the ability to detect gamma doses in a large dose range and the low fading features make PVDF homopolymers good candidates to be investigated as high gamma dose dosimeters.
Analysis of lomustine drug content in FDA-approved and compounded lomustine capsules.
KuKanich, Butch; Warner, Matt; Hahn, Kevin
2017-02-01
OBJECTIVE To determine the lomustine content (potency) in compounded and FDA-approved lomustine capsules. DESIGN Evaluation study. SAMPLE 2 formulations of lomustine capsules (low dose [7 to 11 mg] and high dose [40 to 48 mg]; 5 capsules/dose/source) from 3 compounders and from 1 manufacturer of FDA-approved capsules. PROCEDURES Lomustine content was measured by use of a validated high-pressure liquid chromatography method. An a priori acceptable range of 90% to 110% of the stated lomustine content was selected on the basis of US Pharmacopeia guidelines. RESULTS The measured amount of lomustine in all compounded capsules was less than the stated content (range, 59% to 95%) and was frequently outside the acceptable range (failure rate, 2/5 to 5/5). Coefficients of variation for lomustine content ranged from 4.1% to 16.7% for compounded low-dose capsules and from 1.1% to 10.8% for compounded high-dose capsules. The measured amount of lomustine in all FDA-approved capsules was slightly above the stated content (range, 104% to 110%) and consistently within the acceptable range. Coefficients of variation for lomustine content were 0.5% for low-dose and 2.3% for high-dose FDA-approved capsules. CONCLUSIONS AND CLINICAL RELEVANCE Compounded lomustine frequently did not contain the stated content of active drug and had a wider range of lomustine content variability than did the FDA-approved product. The sample size was small, and larger studies are needed to confirm these findings; however, we recommend that compounded veterinary formulations of lomustine not be used when appropriate doses can be achieved with FDA-approved capsules or combinations of FDA-approved capsules.
Thermoluminescence glow-curve characteristics of LiF phosphors at high doses of gamma radiation
NASA Astrophysics Data System (ADS)
Benny, P. G.; Khader, S. A.; Sarma, K. S. S.
2013-05-01
High doses of ionising radiation are becoming increasingly common for radiation-processing applications of various medical, agricultural and polymer products using gamma and electron beams. The objective of this work was to study thermoluminescence (TL) glow-curve characteristics of commonly used commercial LiF TL phosphors at high doses of radiation with a view to use them in dosimetry of radiation-processing applications. The TL properties of TLD 100 and 700 phosphors, procured from the Thermo-Scientific (previously Harshaw) company, have been studied in the dose range of 1-60 kGy. The shift in glow peaks was observed in this dose range. Integral TL responses of TLD 100 and TLD 700 were found to decrease as a linear function of dose in the range of 5-50 kGy. The paper describes initial results related to the glow-curve characteristics of these phosphors.
Yoshida, Ken; Yamazaki, Hideya; Takenaka, Tadashi; Kotsuma, Tadayuki; Yoshida, Mineo; Furuya, Seiichi; Tanaka, Eiichi; Uegaki, Tadaaki; Kuriyama, Keiko; Matsumoto, Hisanobu; Yamada, Shigetoshi; Ban, Chiaki
2010-07-01
To investigate the feasibility of our novel image-based high-dose-rate interstitial brachytherapy (HDR-ISBT) for uterine cervical cancer, we evaluated the dose-volume histogram (DVH) according to the recommendations of the Gynecological GEC-ESTRO Working Group for image-based intracavitary brachytherapy (ICBT). Between June 2005 and June 2007, 18 previously untreated cervical cancer patients were enrolled. We implanted magnetic resonance imaging (MRI)-available plastic applicators by our unique ambulatory technique. Total treatment doses were 30-36 Gy (6 Gy per fraction) combined with external beam radiotherapy (EBRT). Treatment plans were created based on planning computed tomography with MRI as a reference. DVHs of the high-risk clinical target volume (HR CTV), intermediate-risk CTV (IR CTV), and the bladder and rectum were calculated. Dose values were biologically normalized to equivalent doses in 2-Gy fractions (EQD(2)). The median D90 (HR CTV) and D90 (IR CTV) per fraction were 6.8 Gy (range, 5.5-7.5) and 5.4 Gy (range, 4.2-6.3), respectively. The median V100 (HR CTV) and V100 (IR CTV) were 98.4% (range, 83-100) and 81.8% (range, 64-93.8), respectively. When the dose of EBRT was added, the median D90 and D100 of HR CTV were 80.6 Gy (range, 65.5-96.6) and 62.4 Gy (range, 49-83.2). The D(2cc) of the bladder was 62 Gy (range, 51.4-89) and of the rectum was 65.9 Gy (range, 48.9-76). Although the targets were advanced and difficult to treat effectively by ICBT, MRI-aided image-based ISBT showed favorable results for CTV and organs at risk compared with previously reported image-based ICBT results. (c) 2010 Elsevier Inc. All rights reserved.
Zelefsky, Michael J; Greco, Carlo; Motzer, Robert; Magsanoc, Juan Martin; Pei, Xin; Lovelock, Michael; Mechalakos, Jim; Zatcky, Joan; Fuks, Zvi; Yamada, Yoshiya
2014-01-01
Purpose To report tumor local progression-free outcomes following treatment with single-dose image-guided intensity-modulated radiotherapy (SD-IGRT) and hypofractionated regimens for extracranial metastases from renal cell primary tumors. Methods and Materials Between 2004 and 2010, a total of 105 lesions from renal cell carcinomas were treated with either SD-IGRT to prescription doses of 18–24 Gy (median, 24 Gy) or hypofractionation (3 or 5 fractions) with prescription doses ranging between 20 and 30 Gy. The median follow-up was 12 months (range, 1–48 months). Results The overall 3-year actuarial local progression-free survival (LPFS) for all lesions was 44%. The 3-year LPFS for those who received high single-dose (24 Gy; n = 45), low single-dose (< 24 Gy; n = 14), and hypofractionation regimens (n = 46) were 88%, 21%, and 17%, respectively (high single dose versus low single dose, p = 0.001; high single dose versus hypofractionation, p < 0.001). Multivariate analysis revealed the following variables as significant predictors of improved LPFS: dose of 24 Gy compared with lower dose (p = 0.009), and single dose versus hypofractionation (p = 0.008). Conclusion High-dose SD-IGRT is a non-invasive procedure resulting in high probability of local tumor control for metastatic renal cell cancers, generally considered radioresistant according to classical radiobiological ranking. PMID:21596489
Non-Malignant Thyroid Diseases Following a Wide Range of Radiation Exposures
Ron, Elaine; Brenner, Alina
2013-01-01
Background The thyroid gland is one of the most radiosensitive human organs. While it is well known that radiation exposure increases the risk of thyroid cancer, less is known about its effects in relation to non-malignant thyroid diseases. Objectives The aim of this review is to evaluate the effects of high and low dose radiation on benign structural and functional diseases of the thyroid. Methods We examined the results of major studies from cancer patients treated with high-dose radiotherapy or thyrotoxicosis patients treated with high doses of iodine-131, patients treated with moderate to high dose radiotherapy for benign diseases, persons exposed to low doses from environmental radiation and survivors of the atomic bombings who were exposed to a range of doses. We evaluated radiation effects on structural (tumors, nodules), functional (hyper- and hypothyroidism), and autoimmune thyroid diseases. Results Following a wide range of doses of ionizing radiation, an increased risk of thyroid adenomas and nodules was observed in a variety of populations and settings. The dose response appeared to be linear at low to moderate doses, but in one study there was some suggestion of a reduction in risk above 5 Gy. The elevated risk for benign tumors continues for decades following exposure. Considerably less consistent findings are available regarding functional thyroid diseases including autoimmune diseases. In general, associations for these outcomes were fairly weak and significant radiation effects were most often observed following high doses, particularly for hypothyroidism. Conclusions A significant radiation dose-response relation was demonstrated for benign nodules and follicular adenomas. The effects of radiation on functional thyroid diseases are less clear, partly due to the greater difficulties studying these diseases. PMID:21128812
NASA Astrophysics Data System (ADS)
Piroonpan, Thananchai; Katemake, Pichayada; Panritdam, Eagkapong; Pasanphan, Wanvimol
2017-12-01
Chitosan biopolymer is proposed as an alternative EPR dosimeter. Its ability to be EPR dosimeter was studied in comparison with the conventional alanine, sugars (i.e., glucose and sucrose), formate derivatives (i.e., lithium (Li), magnesium (Mg), and calcium (Ca) formate). Ethylene vinyl acetate (EVA) and paraffin were used as binder for the preparation of composite EPR dosimeter. Dose responses of all materials were investigated in a wide dose range of radiation doses, i.e., low-level (0-1 kGy), medium-level (1-10 kGy) and high-level (10-100 kGy). The EPR dosimeter properties were studied under different parameters, i.e., microwave power, materials contents, absorbed doses, storage conditions and post-irradiation effects. Li-formate showed a simple EPR spectrum and exhibited superior radiation response for low-dose range; whereas chitosan and sucrose exhibited linear dose response in all studied dose ranges. The EPR signals of chitosan exhibited similar stability as glucose, Li-formate and alanine at ambient temperature after irradiation as long as a year. All EPR signals of the studied materials were affected post-irradiation temperature and humidity after gamma irradiation. The EPR signal of chitosan exhibited long-term stability and it was not sensitive to high storage temperatures and humidity values after irradiation. Chitosan has a good merit as the alternative bio-based material for a stable EPR dosimeter in a wide range of radiation-absorbed doses.
Limoges, D; Dieterich, H A; Yeh, C-M; Vaidyanathan, S; Howard, D; Dole, W P
2008-05-01
To evaluate the dose-proportionality of the pharmacokinetics of aliskiren, the first in a new class of orally active direct renin inhibitors approved for the treatment of hypertension. This was an open-label, single-center, single-dose, randomized, 4-period crossover study. Following a 21-day screening period, 32 healthy male or female subjects (ages 18 - 45 years) were randomized to 1 of 4 aliskiren dosing sequence groups (8 subjects per group): 75, 150, 300 and 600 mg. Blood samples were obtained for determination of plasma aliskiren concentrations (HPLC/MS/MS) for 96 h post dose. Log-transformed pharmacokinetic parameters AUC and C(max) were analyzed to determine dose-proportionality using the power model, parameter = A*(Dose)(beta), where A = intercept and beta = dose-proportionality coefficient. The predefined dose-proportionality criteria over the dose range 75 â 600 mg were 90% confidence intervals (CI) for beta contained within the range 0.89 - 1.11. AUC and Cmax values increased with increasing doses of aliskiren. Both AUC and C(max) were associated with high variability (coefficient of variation 55 - 64% for AUC and 59 - 117% for C(max)). The estimated proportionality coefficients (beta) for AUC(0-infiniti), AUC(0-t) and C(max) were 1.18 (90% CI 1.10, 1.25), 1.29 (90% CI 1.22, 1.36) and 1.42 (90% CI 1.31, 1.52), respectively. Dose-proportionality was, therefore, not demonstrated across the entire 8-fold dose range. For the clinical dose range of 150 â 300 mg, increases of 2.3- and 2.6-fold were observed for AUC and C(max), respectively. All doses of aliskiren were well tolerated. Exposure to aliskiren was greater than proportional over the dose range of 75 - 600 mg. Over the therapeutic dose range of 150 â 300 mg approved for the treatment of hypertension, AUC and Cmax increased by 2.3- and 2.6-fold, respectively. The pharmacokinetics of aliskiren show relatively high intersubject variability.
Gafchromic EBT-XD film: Dosimetry characterization in high-dose, volumetric-modulated arc therapy.
Miura, Hideharu; Ozawa, Shuichi; Hosono, Fumika; Sumida, Naoki; Okazue, Toshiya; Yamada, Kiyoshi; Nagata, Yasushi
2016-11-08
Radiochromic films are important tools for assessing complex dose distributions. Gafchromic EBT-XD films have been designed for optimal performance in the 40-4,000 cGy dose range. We investigated the dosimetric characteristics of these films, including their dose-response, postexposure density growth, and dependence on scanner orientation, beam energy, and dose rate with applications to high-dose volumetric-modulated arc therapy (VMAT) verification. A 10 MV beam from a TrueBeam STx linear accelerator was used to irradiate the films with doses in the 0-4,000 cGy range. Postexposure coloration was analyzed at postirradiation times ranging from several minutes to 48 h. The films were also irradiated with 6 MV (dose rate (DR): 600 MU/min), 6 MV flattening filter-free (FFF) (DR: 1,400 MU/ min), and 10 MV FFF (DR: 2,400 MU/min) beams to determine the energy and dose-rate dependence. For clinical examinations, we compared the dose distribu-tion measured with EBT-XD films and calculated by the planning system for four VMAT cases. The red channel of the EBT-XD film exhibited a wider dynamic range than the green and blue channels. Scanner orientation yielded a variation of ~ 3% in the net optical density (OD). The difference between the film front and back scan orientations was negligible, with variation of ~ 1.3% in the net OD. The net OD increased sharply within the first 6 hrs after irradiation and gradually afterwards. No significant difference was observed for the beam energy and dose rate, with a variation of ~ 1.5% in the net OD. The gamma passing rates (at 3%, 3 mm) between the film- measured and treatment planning system (TPS)-calculated dose distributions under a high dose VMAT plan in the absolute dose mode were more than 98.9%. © 2016 The Authors.
Karlsson, Kristin; Nyman, Jan; Baumann, Pia; Wersäll, Peter; Drugge, Ninni; Gagliardi, Giovanna; Johansson, Karl-Axel; Persson, Jan-Olov; Rutkowska, Eva; Tullgren, Owe; Lax, Ingmar
2013-11-01
To evaluate the dose-response relationship between radiation-induced atelectasis after stereotactic body radiation therapy (SBRT) and bronchial dose. Seventy-four patients treated with SBRT for tumors close to main, lobar, or segmental bronchi were selected. The association between incidence of atelectasis and bronchial dose parameters (maximum point-dose and minimum dose to the high-dose bronchial volume [ranging from 0.1 cm(3) up to 2.0 cm(3)]) was statistically evaluated with survival analysis models. Prescribed doses varied between 4 and 20 Gy per fraction in 2-5 fractions. Eighteen patients (24.3%) developed atelectasis considered to be radiation-induced. Statistical analysis showed a significant correlation between the incidence of radiation-induced atelectasis and minimum dose to the high-dose bronchial volumes, of which 0.1 cm(3) (D(0.1cm3)) was used for further analysis. The median value of D(0.1cm3) (α/β = 3 Gy) was EQD(2,LQ) = 147 Gy3 (range, 20-293 Gy3). For patients who developed atelectasis the median value was EQD(2,LQ) = 210 Gy3, and for patients who did not develop atelectasis, EQD(2,LQ) = 105 Gy3. Median time from treatment to development of atelectasis was 8.0 months (range, 1.1-30.1 months). In this retrospective study a significant dose-response relationship between the incidence of atelectasis and the dose to the high-dose volume of the bronchi is shown. Copyright © 2013 Elsevier Inc. All rights reserved.
Quantities for assessing high photon doses to the body: a calculational approach.
Eakins, Jonathan S; Ainsbury, Elizabeth A
2018-06-01
Tissue reactions are the most clinically significant consequences of high-dose exposures to ionising radiation. However, currently there is no universally recognized dose quantity that can be used to assess and report generalised risks to individuals following whole body exposures in the high-dose range. In this work, a number of potential dose quantities are presented and discussed, with mathematical modelling techniques employed to compare them and explore when their differences are most or least manifest. The results are interpreted to propose the average (D GRB ) of the absorbed doses to the stomach, small intestine, red bone marrow, and brain as the optimum quantity for informing assessments of risk. A second, maximally conservative dose quantity (D Max ) is also suggested, which places limits on any under-estimates resulting from the adoption of D GRB . The primary aim of this work is to spark debate, with further work required to refine the final choice of quantity or quantities most appropriate for the full range of different potential exposure scenarios.
Dose density in adjuvant chemotherapy for breast cancer.
Citron, Marc L
2004-01-01
Dose-dense chemotherapy increases the dose intensity of the regimen by delivering standard-dose chemotherapy with shorter intervals between the cycles. This article discusses the rationale for dose-dense therapy and reviews the results with dose-dense adjuvant regimens in recent clinical trials in breast cancer. The papers for this review covered evidence of a dose-response relation in cancer chemotherapy; the rationale for dose-intense (and specifically dose-dense) therapy; and clinical experience with dose-dense regimens in adjuvant chemotherapy for breast cancer, with particular attention to outcomes and toxicity. Evidence supports maintaining the dose intensity of adjuvant chemotherapy within the conventional dose range. Disease-free and overall survival with combination cyclophosphamide, methotrexate, and fluorouracil are significantly improved when patients receive within 85% of the planned dose. Moderate and high dose cyclophosphamide, doxorubicin, and fluorouracil within the standard range results in greater disease-free and overall survival than the low dose regimen. The sequential addition of paclitaxel after concurrent doxorubicin and cyclophosphamide also significantly improves survival. Disease-free and overall survival with dose-dense sequential or concurrent doxorubicin, cyclophosphamide, and paclitaxel with filgrastim (rhG-CSF; NEUPOGEN) support are significantly greater than with conventional schedules (q21d). The delivered dose intensity of adjuvant chemotherapy within the standard dose range is an important predictor of the clinical outcome. Prospective trials of high-dose chemotherapy have shown no improvement over standard regimens, and toxicity was greater. Dose-dense adjuvant chemotherapy improves the clinical outcomes with doxorubicin-containing regimens. Filgrastim support enables the delivery of dose-dense chemotherapy and reduces the risk of neutropenia and its complications.
IMRT and RapidArc commissioning of a TrueBeam linear accelerator using TG-119 protocol cases.
Wen, Ning; Zhao, Bo; Kim, Jinkoo; Chin-Snyder, Karen; Bellon, Maria; Glide-Hurst, Carri; Barton, Kenneth; Chen, Daiquan; Chetty, Indrin J
2014-09-08
The purpose of this study is to evaluate the overall accuracy of intensity-modulated radiation therapy (IMRT) and RapidArc delivery using both flattening filter (FF) and flattening filter-free (FFF) modalities based on test cases developed by AAPM Task Group 119. Institutional confidence limits (CLs) were established as the baseline for patient specific treatment plan quality assurance (QA). The effects of gantry range, gantry speed, leaf speed, dose rate, as well as the capability to capture intentional errors, were evaluated by measuring a series of Picket Fence (PF) tests using the electronic portal imaging device (EPID) and EBT3 films. Both IMRT and RapidArc plans were created in a Solid Water phantom (30 × 30 × 15 cm3) for the TG-119 test cases representative of normal clinical treatment sites for all five photon energies (6X, 10X, 15X, 6X-FFF, 10X-FFF) and the Exact IGRT couch was included in the dose calculation. One high-dose point in the PTV and one low-dose point in the avoidance structure were measured with an ion chamber in each case for each energy. Similarly, two GAFCHROMIC EBT3 films were placed in the coronal planes to measure planar dose distributions in both high- and low-dose regions. The confidence limit was set to have 95% of the measured data fall within the tolerance. The mean of the absolute dose deviation for variable dose rate and gantry speed during RapidArc delivery was within 0.5% for all energies. The corresponding results for leaf speed tests were all within 0.4%. The combinations of dynamic leaf gap (DLG) and MLC transmission factor were optimized based on the ion chamber measurement results of RapidArc delivery for each energy. The average 95% CLs for the high-dose point in the PTV were 0.030 ± 0.007 (range, 0.022-0.038) for the IMRT plans and 0.029 ± 0.011 (range, 0.016-0.043) for the RapidArc plans. For low-point dose in the avoidance structures, the CLs were 0.029 ± 0.006 (range, 0.024-0.039) for the IMRT plans and 0.027 ± 0.013 (range, 0.017-0.047) for the RapidArc plans. The average 95% CLs using 3%/3 mm gamma criteria in the high-dose region were 5.9 ± 2.7 (range, 1.4-8.6) and 3.9 ± 2.9 (range, 1.5-8.8) for IMRT and RapidArc plans, respectively. The average 95% CLs in the low-dose region were 5.3 ± 2.6 (range, 1.2-7.4) and 3.7 ± 2.8 (range, 1.8-8.3) for IMRT and RapidArc plans, respectively. Based on ion chamber, as well as film measurements, we have established CLs values to ensure the high precision of IMRT and RapidArc delivery for both FF and FFF modalities.
SU-F-BRD-05: Robustness of Dose Painting by Numbers in Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montero, A Barragan; Sterpin, E; Lee, J
Purpose: Proton range uncertainties may cause important dose perturbations within the target volume, especially when steep dose gradients are present as in dose painting. The aim of this study is to assess the robustness against setup and range errors for high heterogeneous dose prescriptions (i.e., dose painting by numbers), delivered by proton pencil beam scanning. Methods: An automatic workflow, based on MATLAB functions, was implemented through scripting in RayStation (RaySearch Laboratories). It performs a gradient-based segmentation of the dose painting volume from 18FDG-PET images (GTVPET), and calculates the dose prescription as a linear function of the FDG-uptake value on eachmore » voxel. The workflow was applied to two patients with head and neck cancer. Robustness against setup and range errors of the conventional PTV margin strategy (prescription dilated by 2.5 mm) versus CTV-based (minimax) robust optimization (2.5 mm setup, 3% range error) was assessed by comparing the prescription with the planned dose for a set of error scenarios. Results: In order to ensure dose coverage above 95% of the prescribed dose in more than 95% of the GTVPET voxels while compensating for the uncertainties, the plans with a PTV generated a high overdose. For the nominal case, up to 35% of the GTVPET received doses 5% beyond prescription. For the worst of the evaluated error scenarios, the volume with 5% overdose increased to 50%. In contrast, for CTV-based plans this 5% overdose was present only in a small fraction of the GTVPET, which ranged from 7% in the nominal case to 15% in the worst of the evaluated scenarios. Conclusion: The use of a PTV leads to non-robust dose distributions with excessive overdose in the painted volume. In contrast, robust optimization yields robust dose distributions with limited overdose. RaySearch Laboratories is sincerely acknowledged for providing us with RayStation treatment planning system and for the support provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Kino, A; Newman, B
2014-06-01
Purpose: To investigate the radiation dose for pediatric high pitch cardiac CTA Methods: A total of 14 cases were included in this study, with mean age of 6.2 years (ranges from 2 months to 15 years). Cardiac CTA was performed using a dual-source CT system (Definition Flash, Siemens). Tube voltage (70, 80 and 100kV) was chosen based on patient weight. All patients were scanned using a high-pitch spiral mode (pitch ranges from 2.5 to 3) with tube current modulation technique (CareDose4D, Siemens). For each case, the three dimensional dose distributions were calculated using a Monte Carlo software package (IMPACT-MC, CTmore » Image GmbH). Scanning parameters of each exam, including tube voltage, tube current, beamshaping filters, beam collimation, were defined in the Monte Carlo calculation. Tube current profile along projection angles was obtained from projection data of each tube, which included data within the over-scanning range along z direction. The volume of lungs was segmented out with CT images (3DSlicer). Lung doses of all patients were calculated and compared with CTDIvol, DLP, and SSDE. Results: The average (range) of CTDIvol, DLP and SSDE of all patients was 1.19 mGy (0.58 to 3.12mGy), 31.54 mGy*cm (12.56 to 99 mGy*cm), 2.26 mGy (1.19 to 6.24 mGy), respectively. Radiation dose to the lungs ranged from 0.83 to 4.18 mGy. Lung doses correlated with CTDIvol, DLP and SSDE with correlation coefficients(k) at 0.98, 0.93, and 0.99. However, for the cases with CTDIvol less than 1mGy, only SSDE preserved a strong correlation with lung doses (k=0.83), while much weaker correlations were found for CTDIvol (k=0.29) and DLP (k=-0.47). Conclusion: Lung doses to pediatric patients during Cardiac CTA were estimated. SSDE showed the most robust correlation with lung doses in contrast to CTDIvol and DLP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greco, Carlo; Zelefsky, Michael J., E-mail: zelefskm@mskcc.or; Lovelock, Michael
2011-03-15
Purpose: To report tumor local control after treatment with single-dose image-guided intensity-modulated radiotherapy (SD-IGRT) to extracranial metastatic sites. Methods and Materials: A total of 126 metastases in 103 patients were treated with SD-IGRT to prescription doses of 18-24 Gy (median, 24 Gy) between 2004 and 2007. Results: The overall actuarial local relapse-free survival (LRFS) rate was 64% at a median follow-up of 18 months (range, 2-45 months). The median time to failure was 9.6 months (range, 1-23 months). On univariate analysis, LRFS was significantly correlated with prescription dose (p = 0.029). Stratification by dose into high (23 to 24 Gy),more » intermediate (21 to 22 Gy), and low (18 to 20 Gy) dose levels revealed highly significant differences in LRFS between high (82%) and low doses (25%) (p < 0.0001). Overall, histology had no significant effect on LRFS (p = 0.16). Renal cell histology displayed a profound dose-response effect, with 80% LRFS at the high dose level (23 to 24 Gy) vs. 37% with low doses ({<=}22 Gy) (p = 0.04). However, for patients who received the high dose level, histology was not a statistically significant predictor of LRFS (p = 0.90). Target organ (bone vs. lymph node vs. soft tissues) (p = 0.5) and planning target volume size (p = 0.55) were not found to be associated with long-term LRFS probability. Multivariate Cox regression analysis confirmed prescription dose to be a significant predictor of LRFS (p = 0.003). Conclusion: High-dose SD-IGRT is a noninvasive procedure resulting in high probability of local tumor control. Single-dose IGRT may be effectively used to locally control metastatic deposits regardless of histology and target organ, provided sufficiently high doses (> 22 Gy) of radiation are delivered.« less
Ketelsen, Dominik; Buchgeister, Markus; Korn, Andreas; Fenchel, Michael; Schmidt, Bernhard; Flohr, Thomas G; Thomas, Christoph; Schabel, Christoph; Tsiflikas, Ilias; Syha, Roland; Claussen, Claus D; Heuschmid, Martin
2012-01-01
Purpose. To estimate effective dose and organ equivalent doses of prospective ECG-triggered high-pitch CTCA. Materials and Methods. For dose measurements, an Alderson-Rando phantom equipped with thermoluminescent dosimeters was used. The effective dose was calculated according to ICRP 103. Exposure was performed on a second-generation dual-source scanner (SOMATOM Definition Flash, Siemens Medical Solutions, Germany). The following scan parameters were used: 320 mAs per rotation, 100 and 120 kV, pitch 3.4 for prospectively ECG-triggered high-pitch CTCA, scan range of 13.5 cm, collimation 64 × 2 × 0.6 mm with z-flying focal spot, gantry rotation time 280 ms, and simulated heart rate of 60 beats per minute. Results. Depending on the applied tube potential, the effective whole-body dose of the cardiac scan ranged from 1.1 mSv to 1.6 mSv and from 1.2 to 1.8 mSv for males and females, respectively. The radiosensitive breast tissue in the range of the primary beam caused an increased female-specific effective dose of 8.6%±0.3% compared to males. Decreasing the tube potential, a significant reduction of the effective dose of 35.8% and 36.0% can be achieved for males and females, respectively (P < 0.001). Conclusion. The radiologist and the CT technician should be aware of this new dose-saving strategy to keep the radiation exposure as low as reasonablly achievable.
Investigation of time-resolved proton radiography using x-ray flat-panel imaging system
NASA Astrophysics Data System (ADS)
Jee, K.-W.; Zhang, R.; Bentefour, E. H.; Doolan, P. J.; Cascio, E.; Sharp, G.; Flanz, J.; Lu, H.-M.
2017-03-01
Proton beam therapy benefits from the Bragg peak and delivers highly conformal dose distributions. However, the location of the end-of-range is subject to uncertainties related to the accuracy of the relative proton stopping power estimates and thereby the water-equivalent path length (WEPL) along the beam. To remedy the range uncertainty, an in vivo measurement of the WEPL through the patient, i.e. a proton-range radiograph, is highly desirable. Towards that goal, we have explored a novel method of proton radiography based on the time-resolved dose measured by a flat panel imager (FPI). A 226 MeV pencil beam and a custom-designed range modulator wheel (MW) were used to create a time-varying broad beam. The proton imaging technique used exploits this time dependency by looking at the dose rate at the imager as a function of time. This dose rate function (DRF) has a unique time-varying dose pattern at each depth of penetration. A relatively slow rotation of the MW (0.2 revolutions per second) and a fast image acquisition (30 frames per second, ~33 ms sampling) provided a sufficient temporal resolution for each DRF. Along with the high output of the CsI:Tl scintillator, imaging with pixel binning (2 × 2) generated high signal-to-noise data at a very low radiation dose (~0.1 cGy). Proton radiographs of a head phantom and a Gammex CT calibration phantom were taken with various configurations. The results of the phantom measurements show that the FPI can generate low noise and high spatial resolution proton radiographs. The WEPL values of the CT tissue surrogate inserts show that the measured relative stopping powers are accurate to ~2%. The panel did not show any noticeable radiation damage after the accumulative dose of approximately 3831 cGy. In summary, we have successfully demonstrated a highly practical method of generating proton radiography using an x-ray flat panel imager.
Investigation of time-resolved proton radiography using x-ray flat-panel imaging system.
Jee, K-W; Zhang, R; Bentefour, E H; Doolan, P J; Cascio, E; Sharp, G; Flanz, J; Lu, H-M
2017-03-07
Proton beam therapy benefits from the Bragg peak and delivers highly conformal dose distributions. However, the location of the end-of-range is subject to uncertainties related to the accuracy of the relative proton stopping power estimates and thereby the water-equivalent path length (WEPL) along the beam. To remedy the range uncertainty, an in vivo measurement of the WEPL through the patient, i.e. a proton-range radiograph, is highly desirable. Towards that goal, we have explored a novel method of proton radiography based on the time-resolved dose measured by a flat panel imager (FPI). A 226 MeV pencil beam and a custom-designed range modulator wheel (MW) were used to create a time-varying broad beam. The proton imaging technique used exploits this time dependency by looking at the dose rate at the imager as a function of time. This dose rate function (DRF) has a unique time-varying dose pattern at each depth of penetration. A relatively slow rotation of the MW (0.2 revolutions per second) and a fast image acquisition (30 frames per second, ~33 ms sampling) provided a sufficient temporal resolution for each DRF. Along with the high output of the CsI:Tl scintillator, imaging with pixel binning (2 × 2) generated high signal-to-noise data at a very low radiation dose (~0.1 cGy). Proton radiographs of a head phantom and a Gammex CT calibration phantom were taken with various configurations. The results of the phantom measurements show that the FPI can generate low noise and high spatial resolution proton radiographs. The WEPL values of the CT tissue surrogate inserts show that the measured relative stopping powers are accurate to ~2%. The panel did not show any noticeable radiation damage after the accumulative dose of approximately 3831 cGy. In summary, we have successfully demonstrated a highly practical method of generating proton radiography using an x-ray flat panel imager.
Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.
Madas, Balázs G
2016-07-01
Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses.
Feasibility of online IMPT adaptation using fast, automatic and robust dose restoration
NASA Astrophysics Data System (ADS)
Bernatowicz, Kinga; Geets, Xavier; Barragan, Ana; Janssens, Guillaume; Souris, Kevin; Sterpin, Edmond
2018-04-01
Intensity-modulated proton therapy (IMPT) offers excellent dose conformity and healthy tissue sparing, but it can be substantially compromised in the presence of anatomical changes. A major dosimetric effect is caused by density changes, which alter the planned proton range in the patient. Three different methods, which automatically restore an IMPT plan dose on a daily CT image were implemented and compared: (1) simple dose restoration (DR) using optimization objectives of the initial plan, (2) voxel-wise dose restoration (vDR), and (3) isodose volume dose restoration (iDR). Dose restorations were calculated for three different clinical cases, selected to test different capabilities of the restoration methods: large range adaptation, complex dose distributions and robust re-optimization. All dose restorations were obtained in less than 5 min, without manual adjustments of the optimization settings. The evaluation of initial plans on repeated CTs showed large dose distortions, which were substantially reduced after restoration. In general, all dose restoration methods improved DVH-based scores in propagated target volumes and OARs. Analysis of local dose differences showed that, although all dose restorations performed similarly in high dose regions, iDR restored the initial dose with higher precision and accuracy in the whole patient anatomy. Median dose errors decreased from 13.55 Gy in distorted plan to 9.75 Gy (vDR), 6.2 Gy (DR) and 4.3 Gy (iDR). High quality dose restoration is essential to minimize or eventually by-pass the physician approval of the restored plan, as long as dose stability can be assumed. Motion (as well as setup and range uncertainties) can be taken into account by including robust optimization in the dose restoration. Restoring clinically-approved dose distribution on repeated CTs does not require new ROI segmentation and is compatible with an online adaptive workflow.
NASA Astrophysics Data System (ADS)
Feng, Yiwei; Tiedje, Henry F.; Gagnon, Katherine; Fedosejevs, Robert
2018-04-01
Radiochromic film is used extensively in many medical, industrial, and scientific applications. In particular, the film is used in analysis of proton generation and in high intensity laser-plasma experiments where very high dose levels can be obtained. The present study reports calibration of the dose response of Gafchromic EBT3 and HD-V2 radiochromic films up to high exposure densities. A 2D scanning confocal densitometer system is employed to carry out accurate optical density measurements up to optical density 5 on the exposed films at the peak spectral absorption wavelengths. Various wavelengths from 400 to 740 nm are also scanned to extend the practical dose range of such films by measuring the response at wavelengths removed from the peak response wavelengths. Calibration curves for the optical density versus exposure dose are determined and can be used for quantitative evaluation of measured doses based on the measured optical densities. It was found that blue and UV wavelengths allowed the largest dynamic range though at some trade-off with overall accuracy.
Marincek, Nicolas; Jörg, Ann-Catherine; Brunner, Philippe; Schindler, Christian; Koller, Michael T; Rochlitz, Christoph; Müller-Brand, Jan; Maecke, Helmut R; Briel, Matthias; Walter, Martin A
2013-01-15
We describe the long-term outcome after clinical introduction and dose escalation of somatostatin receptor targeted therapy with [90Y-DOTA]-TOC in patients with metastasized neuroendocrine tumors. In a clinical phase I dose escalation study we treated patients with increasing [90Y-DOTA]-TOC activities. Multivariable Cox regression and competing risk regression were used to compare efficacy and toxicities of the different dosage protocols. Overall, 359 patients were recruited; 60 patients were enrolled for low dose (median: 2.4 GBq/cycle, range 0.9-7.8 GBq/cycle), 77 patients were enrolled for intermediate dose (median: 3.3 GBq/cycle, range: 2.0-7.4 GBq/cycle) and 222 patients were enrolled for high dose (median: 6.7 GBq/cycle, range: 3.7-8.1 GBq/cycle) [90Y-DOTA]-TOC treatment. The incidences of hematotoxicities grade 1-4 were 65.0%, 64.9% and 74.8%; the incidences of grade 4/5 kidney toxicities were 8.4%, 6.5% and 14.0%, and the median survival was 39 (range: 1-158) months, 34 (range: 1-118) months and 29 (range: 1-113) months. The high dose protocol was associated with an increased risk of kidney toxicity (Hazard Ratio: 3.12 (1.13-8.59) vs. intermediate dose, p = 0.03) and a shorter overall survival (Hazard Ratio: 2.50 (1.08-5.79) vs. low dose, p = 0.03). Increasing [90Y-DOTA]-TOC activities may be associated with increasing hematological toxicities. The dose related hematotoxicity profile of [90Y-DOTA]-TOC could facilitate tailoring [90Y-DOTA]-TOC in patients with preexisting hematotoxicities. The results of the long-term outcome suggest that fractionated [90Y-DOTA]-TOC treatment might allow to reduce renal toxicity and to improve overall survival. (ClinicalTrials.gov number NCT00978211).
2013-01-01
Background We describe the long-term outcome after clinical introduction and dose escalation of somatostatin receptor targeted therapy with [90Y-DOTA]-TOC in patients with metastasized neuroendocrine tumors. Methods In a clinical phase I dose escalation study we treated patients with increasing [90Y-DOTA]-TOC activities. Multivariable Cox regression and competing risk regression were used to compare efficacy and toxicities of the different dosage protocols. Results Overall, 359 patients were recruited; 60 patients were enrolled for low dose (median: 2.4 GBq/cycle, range 0.9-7.8 GBq/cycle), 77 patients were enrolled for intermediate dose (median: 3.3 GBq/cycle, range: 2.0-7.4 GBq/cycle) and 222 patients were enrolled for high dose (median: 6.7 GBq/cycle, range: 3.7-8.1 GBq/cycle) [90Y-DOTA]-TOC treatment. The incidences of hematotoxicities grade 1–4 were 65.0%, 64.9% and 74.8%; the incidences of grade 4/5 kidney toxicities were 8.4%, 6.5% and 14.0%, and the median survival was 39 (range: 1–158) months, 34 (range: 1–118) months and 29 (range: 1–113) months. The high dose protocol was associated with an increased risk of kidney toxicity (Hazard Ratio: 3.12 (1.13-8.59) vs. intermediate dose, p = 0.03) and a shorter overall survival (Hazard Ratio: 2.50 (1.08-5.79) vs. low dose, p = 0.03). Conclusions Increasing [90Y-DOTA]-TOC activities may be associated with increasing hematological toxicities. The dose related hematotoxicity profile of [90Y-DOTA]-TOC could facilitate tailoring [90Y-DOTA]-TOC in patients with preexisting hematotoxicities. The results of the long-term outcome suggest that fractionated [90Y-DOTA]-TOC treatment might allow to reduce renal toxicity and to improve overall survival. Trial registration ClinicalTrials.gov number:NCT00978211 PMID:23320604
High dynamic range CMOS-based mammography detector for FFDM and DBT
NASA Astrophysics Data System (ADS)
Peters, Inge M.; Smit, Chiel; Miller, James J.; Lomako, Andrey
2016-03-01
Digital Breast Tomosynthesis (DBT) requires excellent image quality in a dynamic mode at very low dose levels while Full Field Digital Mammography (FFDM) is a static imaging modality that requires high saturation dose levels. These opposing requirements can only be met by a dynamic detector with a high dynamic range. This paper will discuss a wafer-scale CMOS-based mammography detector with 49.5 μm pixels and a CsI scintillator. Excellent image quality is obtained for FFDM as well as DBT applications, comparing favorably with a-Se detectors that dominate the X-ray mammography market today. The typical dynamic range of a mammography detector is not high enough to accommodate both the low noise and the high saturation dose requirements for DBT and FFDM applications, respectively. An approach based on gain switching does not provide the signal-to-noise benefits in the low-dose DBT conditions. The solution to this is to add frame summing functionality to the detector. In one X-ray pulse several image frames will be acquired and summed. The requirements to implement this into a detector are low noise levels, high frame rates and low lag performance, all of which are unique characteristics of CMOS detectors. Results are presented to prove that excellent image quality is achieved, using a single detector for both DBT as well as FFDM dose conditions. This method of frame summing gave the opportunity to optimize the detector noise and saturation level for DBT applications, to achieve high DQE level at low dose, without compromising the FFDM performance.
Sohrabi, Mehdi; Hakimi, Amir
2018-02-01
Photoneutron (PN) dosimetry in fast, epithermal and thermal energy ranges originated from the beam and albedo neutrons in high-energy X-ray medical accelerators is highly important from scientific, technical, radiation protection and medical physics points of view. Detailed dose equivalents in the fast, epithermal and thermal PN energy ranges in air up to 2m as well as at 35 positions from the central axis of 12 cross sections of the phantom at different depths were determined in 18MV X-ray beams of a Siemens ONCOR accelerator. A novel dosimetry method based on polycarbonate track dosimeters (PCTD)/ 10 B (with/without cadmium cover) was used to determine and separate different PN dose equivalents in air and in a multilayer polyethylene phantom. Dose equivalent distributions of PNs, as originated from the main beam and/or albedo PNs, on cross-plane, in-plane and diagonal axes in 10cm×10cm fields are reported. PN dose equivalent distributions on the 3 axes have their maxima at the isocenter. Epithermal and thermal PN depth dose equivalent distributions in the phantom for different positions studied peak at ∼3cm depth. The neutron dosimeters used for the first time in such studies are highly effective for separating dose equivalents of PNs in the studied energy ranges (beam and/or albedo). The PN dose equivalent data matrix made available in this paper is highly essential for detailed patient dosimetry in general and for estimating secondary cancer risks in particular. Copyright © 2017. Published by Elsevier GmbH.
Suh, Yang-Gun; Lee, Ik Jae; Koom, Wong Sub; Cha, Jihye; Lee, Jong Young; Kim, Soo Kon; Lee, Chang Geol
2014-06-01
In this study, we investigated the effects of radiotherapy ≥60 Gy in the setting of concurrent chemo-radiotherapy for treating patients with Stages II-III esophageal cancer. A total of 126 patients treated with 5-fluorouracilbased concurrent chemo-radiotherapy between January 1998 and February 2008 were retrospectively reviewed. Among these patients, 49 received a total radiation dose of <60 Gy (standard-dose group), while 77 received a total radiation dose of ≥60 Gy (high-dose group). The median doses in the standard- and high-dose groups were 54 Gy (range, 45-59.4 Gy) and 63 Gy (range, 60-81 Gy), respectively. The high-dose group showed significantly improved locoregional control (2-year locoregional control rate, 69 versus 32%, P < 0.01) and progression-free survival (2-year progression-free survival, 47 versus 20%, P = 0.01) than the standard-dose group. Median overall survival in the high- and the standard-dose groups was 28 and 18 months, respectively (P = 0.26). In multivariate analysis, 60 Gy or higher radiotherapy was a significant prognostic factor for improved locoregional control, progression-free survival and overall survival. No significant differences were found in frequencies of late radiation pneumonitis, post-treatment esophageal stricture or treatment-related mortality between the two groups. High-dose radiotherapy of 60 Gy or higher with concurrent chemotherapy improved locoregional control and progression-free survival without a significant increase of in treatment-related toxicity in patients with Stages II-III esophageal cancer. Our study could provide the basis for future randomized clinical trials. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; ...
2014-11-11
This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaO x) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×10 7 rad(Si)/s to 4.7 ×10 8 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×10 8 rad(Si)/s. This is the first dose rate study on any type ofmore » memristive memory technology. In addition to assessing the tolerance of TaO x memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.« less
Methods for Probabilistic Radiological Dose Assessment at a High-Level Radioactive Waste Repository.
NASA Astrophysics Data System (ADS)
Maheras, Steven James
Methods were developed to assess and evaluate the uncertainty in offsite and onsite radiological dose at a high-level radioactive waste repository to show reasonable assurance that compliance with applicable regulatory requirements will be achieved. Uncertainty in offsite dose was assessed by employing a stochastic precode in conjunction with Monte Carlo simulation using an offsite radiological dose assessment code. Uncertainty in onsite dose was assessed by employing a discrete-event simulation model of repository operations in conjunction with an occupational radiological dose assessment model. Complementary cumulative distribution functions of offsite and onsite dose were used to illustrate reasonable assurance. Offsite dose analyses were performed for iodine -129, cesium-137, strontium-90, and plutonium-239. Complementary cumulative distribution functions of offsite dose were constructed; offsite dose was lognormally distributed with a two order of magnitude range. However, plutonium-239 results were not lognormally distributed and exhibited less than one order of magnitude range. Onsite dose analyses were performed for the preliminary inspection, receiving and handling, and the underground areas of the repository. Complementary cumulative distribution functions of onsite dose were constructed and exhibited less than one order of magnitude range. A preliminary sensitivity analysis of the receiving and handling areas was conducted using a regression metamodel. Sensitivity coefficients and partial correlation coefficients were used as measures of sensitivity. Model output was most sensitive to parameters related to cask handling operations. Model output showed little sensitivity to parameters related to cask inspections.
SU-E-T-638: Evaluation and Comparison of Landauer Microstar (OSLD) Readers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souri, S; Ahmed, Y; Cao, Y
2014-06-15
Purpose: To evaluate and compare characteristic performance of a new Landauer nanodot Reader with the previous model. Methods: In order to calibrate and test the reader, a set of nanodots were irradiated using a Varian Truebeam Linac. Solid water slabs and bolus were used in the process of irradiation. Calibration sets of nanodots were irradiated for radiation dose ranges: 0 to 10 and 20 to 1000 cGy, using 6MV photons. Additionally, three sets of nanodots were each irradiated using 6MV, 10MV and 15MV beams. For each beam energy, and selected dose in the range of 3 to 1000 cGy, amore » pair of nanodots was irradiated and three readings were obtained with both readers. Results: The analysis shows that for 3 photon beam energies and selected ranges of dose, the calculated absorbed dose agrees well with the expected value. The results illustrate that the new Microstar II reader is a highly consistent system and that the repeated readings provide results with a reasonably small standard deviation. For all practical purposes, the response of system is linear for all radiation beam energies. Conclusion: The Microstar II nanodot reader is consistent, accurate, and reliable. The new hardware design and corresponding software contain several advantages over the previous model. The automatic repeat reading mechanism, that helps improve reproducibility and reduce processing time, and the smaller unit size that renders ease of transport, are two of such features. Present study shows that for high dose ranges a polynomial calibration equation provides more consistent results. A 3rd order polynomial calibration curve was used to analyze the readings of dosimeters exposed to high dose range radiation. It was observed that the results show less error compared to those calculated by using linear calibration curves, as provided by Landauer system software for all dose ranges.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karlsson, Kristin, E-mail: kristin.karlsson@karolinska.se; Department of Oncology-Pathology, Karolinska Institute, Stockholm; Nyman, Jan
2013-11-01
Purpose: To evaluate the dose–response relationship between radiation-induced atelectasis after stereotactic body radiation therapy (SBRT) and bronchial dose. Methods and Materials: Seventy-four patients treated with SBRT for tumors close to main, lobar, or segmental bronchi were selected. The association between incidence of atelectasis and bronchial dose parameters (maximum point-dose and minimum dose to the high-dose bronchial volume [ranging from 0.1 cm{sup 3} up to 2.0 cm{sup 3}]) was statistically evaluated with survival analysis models. Results: Prescribed doses varied between 4 and 20 Gy per fraction in 2-5 fractions. Eighteen patients (24.3%) developed atelectasis considered to be radiation-induced. Statistical analysis showedmore » a significant correlation between the incidence of radiation-induced atelectasis and minimum dose to the high-dose bronchial volumes, of which 0.1 cm{sup 3} (D{sub 0.1cm3}) was used for further analysis. The median value of D{sub 0.1cm3} (α/β = 3 Gy) was EQD{sub 2,LQ} = 147 Gy{sub 3} (range, 20-293 Gy{sub 3}). For patients who developed atelectasis the median value was EQD{sub 2,LQ} = 210 Gy{sub 3}, and for patients who did not develop atelectasis, EQD{sub 2,LQ} = 105 Gy{sub 3}. Median time from treatment to development of atelectasis was 8.0 months (range, 1.1-30.1 months). Conclusion: In this retrospective study a significant dose–response relationship between the incidence of atelectasis and the dose to the high-dose volume of the bronchi is shown.« less
Haikarainen, Jussi; Rytilä, Paula; Roos, Sirkku; Metsärinne, Sirpa; Happonen, Anita
2017-01-01
Budesonide Easyhaler® multidose dry powder inhaler is approved for the treatment of asthma. Objectives were to determine the delivered dose (DD) uniformity of budesonide Easyhaler® in simulated real-world conditions and with different inspiration flow rates (IFRs). Three dose delivery studies were performed using 100, 200, and 400 µg/dose strengths of budesonide. Dose uniformity was assessed during in-use periods of 4-6 months after exposure to high temperature (30°C) and humidity (60% relative humidity) and after dropping and vibration testing. The influence of various IFRs (31, 43, and 54 L/min) on the DD was also investigated. Acceptable dose uniformity was declared when mean DD were within 80-120% of expected dose; all data reported descriptively. DD was constant (range: 93-109% of expected dose) at all in-use periods and after exposure to high temperature and humidity for a duration of up to 6 months. DD post-dropping and -vibration were unaffected (range 98-105% of expected dose). Similarly, DD was constant and within 10% of expected dose across all IFRs. Results indicate that budesonide Easyhaler® delivers consistently accurate doses in various real-life conditions. Budesonide Easyhaler® can be expected to consistently deliver a uniform dose and improve asthma control regardless of high temperature and humidity or varying IFR.
NASA Technical Reports Server (NTRS)
Hada, M.; George, Kerry; Cucinotta, Francis A.
2011-01-01
The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivors with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (1-20 cGy) of 170 MeV/u Si-28- ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving greater than 2 breaks in 2 or more chromosomes). The curves for doses above 10 cGy were fitted with linear or linear-quadratic functions. For Si-28- ions no dose response was observed in the 2-10 cGy dose range, suggesting a non-target effect in this range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshpande, S; Dhote, D; Kumar, R
Purpose: To measure actual patient eye lens dose for different cone beam computed tomography (CBCT) acquisition protocol of Varian’s On Board Imagining (OBI) system using Optically Stimulated Luminescence (OSL) dosimeter and study the eye lens dose with patient geometry and distance of isocenter to the eye lens Methods: OSL dosimeter was used to measure eye lens dose of patient. OSL dosimeter was placed on patient forehead center during CBCT image acquisition to measure eye lens dose. For three different cone beam acquisition protocol (standard dose head, low dose head and high quality head) of Varian On-Board Imaging, eye lens dosesmore » were measured. Measured doses were correlated with patient geometry and distance between isocenter to eye lens. Results: Measured eye lens dose for standard dose head was in the range of 1.8 mGy to 3.2 mGy, for high quality head protocol dose was in range of 4.5mGy to 9.9 mGy whereas for low dose head was in the range of 0.3mGy to 0.7mGy. Dose to eye lens is depends upon position of isocenter. For posterioraly located tumor eye lens dose is less. Conclusion: From measured doses it can be concluded that by proper selection of imagining protocol and frequency of imaging, it is possible to restrict the eye lens dose below the new limit set by ICRP. However, undoubted advantages of imaging system should be counter balanced by careful consideration of imaging protocol especially for very intense imaging sequences for Adoptive Radiotherapy or IMRT.« less
Jaccard, Maud; Petersson, Kristoffer; Buchillier, Thierry; Germond, Jean-François; Durán, Maria Teresa; Vozenin, Marie-Catherine; Bourhis, Jean; Bochud, François O; Bailat, Claude
2017-02-01
The aim of this study was to assess the suitability of Gafchromic EBT3 films for reference dose measurements in the beam of a prototype high dose-per-pulse linear accelerator (linac), capable of delivering electron beams with a mean dose-rate (Ḋ m ) ranging from 0.07 to 3000 Gy/s and a dose-rate in pulse (Ḋ p ) of up to 8 × 10 6 Gy/s. To do this, we evaluated the overall uncertainties in EBT3 film dosimetry as well as the energy and dose-rate dependence of their response. Our dosimetric system was composed of EBT3 Gafchromic films in combination with a flatbed scanner and was calibrated against an ionization chamber traceable to primary standard. All sources of uncertainties in EBT3 dosimetry were carefully analyzed using irradiations at a clinical radiotherapy linac. Energy dependence was investigated with the same machine by acquiring and comparing calibration curves for three different beam energies (4, 8 and 12 MeV), for doses between 0.25 and 30 Gy. Ḋ m dependence was studied at the clinical linac by changing the pulse repetition frequency (f) of the beam in order to vary Ḋ m between 0.55 and 4.40 Gy/min, while Ḋ p dependence was probed at the prototype machine for Ḋ p ranging from 7 × 10 3 to 8 × 10 6 Gy/s. Ḋ p dependence was first determined by studying the correlation between the dose measured by films and the charge of electrons measured at the exit of the machine by an induction torus. Furthermore, we compared doses from the films to independently calibrated thermo-luminescent dosimeters (TLD) that have been reported as being dose-rate independent up to such high dose-rates. We report that uncertainty below 4% (k = 2) can be achieved in the dose range between 3 and 17 Gy. Results also demonstrated that EBT3 films did not display any detectable energy dependence for electron beam energies between 4 and 12 MeV. No Ḋ m dependence was found either. In addition, we obtained excellent consistency between films and TLDs over the entire Ḋ p range attainable at the prototype linac confirming the absence of any dose-rate dependence within the investigated range (7 × 10 3 to 8 × 10 6 Gy/s). This aspect was further corroborated by the linear relationship between the dose-per-pulse (D p ) measured by films and the charge per pulse (C p ) measured at the prototype linac exit. Our study shows that the use of EBT3 Gafchromic films can be extended to reference dosimetry in pulsed electron beams with a very high dose rate. The measurement results are associated with an overall uncertainty below 4% (k = 2) and are dose-rate and energy independent. © 2016 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simeonov, Y; Penchev, P; Ringbaek, T Printz
2016-06-15
Purpose: Active raster scanning in particle therapy results in highly conformal dose distributions. Treatment time, however, is relatively high due to the large number of different iso-energy layers used. By using only one energy and the so called 3D range-modulator irradiation times of a few seconds only can be achieved, thus making delivery of homogeneous dose to moving targets (e.g. lung cancer) more reliable. Methods: A 3D range-modulator consisting of many pins with base area of 2.25 mm2 and different lengths was developed and manufactured with rapid prototyping technique. The form of the 3D range-modulator was optimised for a sphericalmore » target volume with 5 cm diameter placed at 25 cm in a water phantom. Monte Carlo simulations using the FLUKA package were carried out to evaluate the modulating effect of the 3D range-modulator and simulate the resulting dose distribution. The fine and complicated contour form of the 3D range-modulator was taken into account by a specially programmed user routine. Additionally FLUKA was extended with the capability of intensity modulated scanning. To verify the simulation results dose measurements were carried out at the Heidelberg Ion Therapy Center (HIT) with a 400.41 MeV 12C beam. Results: The high resolution measurements show that the 3D range-modulator is capable of producing homogeneous 3D conformal dose distributions, simultaneously reducing significantly irradiation time. Measured dose is in very good agreement with the previously conducted FLUKA simulations, where slight differences were traced back to minor manufacturing deviations from the perfect optimised form. Conclusion: Combined with the advantages of very short treatment time the 3D range-modulator could be an alternative to treat small to medium sized tumours (e.g. lung metastasis) with the same conformity as full raster-scanning treatment. Further simulations and measurements of more complex cases will be conducted to investigate the full potential of the 3D range-modulator.« less
NASA Astrophysics Data System (ADS)
Surdo, A. I.; Milman, I. I.; Abashev, R. M.; Vlasov, M. I.
2014-12-01
Results of studies of the thermoluminescence (TL) of anion-deficient alumina (α-Al2O3 - δ) single crystals and based on them TLD-500 detectors exposed to pulsed X-ray and electron radiation in a wide range of doses D, pulsed dose rates P p , and temperatures are described. The TL responses of α-Al2O3 - δ for continuous and pulsed X-ray irradiation at D = 0.05-150 Gy are compared. Unlike continuous irradiation, in the case of pulsed irradiation at P p ≥ 6 × 106 Gy/s, a linear increase in the TL response as a function of D is registered in the main and "chromium" peaks at 450 and 580 K, respectively, with a decrease in the slope of the dose dependence at D > 2 Gy for the peak at 450 K. It is found that high-dose irradiation (>60 Gy) leads to the formation of a new TL peak at 830 K and the preferential redistribution of the stored light sums into this peak. The dose dependence for the TL peak at 830 K is studied. It is established that it is linear in a super-high dose range of 104 to 6 × 106 Gy at P p = 2.6 × 1011 Gy/s.
Selby, P. J.; Lopes, N.; Mundy, J.; Crofts, M.; Millar, J. L.; McElwain, T. J.
1987-01-01
A small pre-treatment 'priming' dose of cyclophosphamide will reduce gut damage due to high dose i.v. melphalan in mice and sheep but efforts to demonstrate this effect in man have been hampered by difficulty in the measurement of gut damage. We have evaluated the 51CR EDTA absorption test, a new method for measuring intestinal permeability, as a means of assessing damage due to high dose melphalan. The test was reliable, with a narrow normal range, easy to use and well tolerated. It detected an increase in intestinal permeability after high dose melphalan with a maximum occurring between 9 and 15 days after treatment and subsequently returning to normal. It was shown in 19 patients that a pre-treatment dose of cyclophosphamide was capable of significantly reducing the abnormalities in intestinal permeability which resulted from high dose melphalan. PMID:3111515
Phillips, Katherine W; Ansell, Jack
2008-01-01
Oral anticoagulation therapy with warfarin is the mainstay of prevention and treatment of thromboembolic disease. However, it remains one of the leading causes of harmful medication errors and medication-related adverse events. The beneficial outcomes of oral anticoagulation therapy are directly dependent upon the quality of dose and anticoagulation management, but the literature is not robust with regards to what constitutes such management. This review focuses on, and attempts to define, the parameters of high-quality anticoagulation management and identifies the appropriate outcome measures constituting high-quality management. Elements discussed include the most fundamental measure, time in therapeutic range, along with other parameters including therapy initiation, time to therapeutic range, dosing management when patients are not in therapeutic range, perioperative dosing management, patient education, and other important outcome measures. Healthcare providers who manage oral anticoagulation therapy should utilize these parameters as a measure of their performance in an effort to achieve high-quality anticoagulation management.
Ahn, Shihyun; Kim, Byung -Jae; Lin, Yi -Hsuan; ...
2016-07-26
The effects of proton irradiation on the dc performance of InAlN/GaN metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs) with Al 2O 3 as the gate oxide were investigated. The InAlN/GaN MOSHEMTs were irradiated with doses ranging from 1×10 13 to 1×10 15cm –2 at a fixed energy of 5MeV. There was minimal damage induced in the two dimensional electron gas at the lowest irradiation dose with no measurable increase in sheet resistance, whereas a 9.7% increase of the sheet resistance was observed at the highest irradiation dose. By sharp contrast, all irradiation doses created more severe degradation in the Ohmic metalmore » contacts, with increases of specific contact resistance from 54% to 114% over the range of doses investigated. These resulted in source-drain current–voltage decreases ranging from 96 to 242 mA/mm over this dose range. The trap density determined from temperature dependent drain current subthreshold swing measurements increased from 1.6 × 10 13 cm –2 V –1 for the reference MOSHEMTs to 6.7 × 10 13 cm –2 V –1 for devices irradiated with the highest dose. In conclusion, the carrier removal rate was 1287 ± 64 cm –1, higher than the authors previously observed in AlGaN/GaN MOSHEMTs for the same proton energy and consistent with the lower average bond energy of the InAlN.« less
Characterization of Thymol blue Radiochromic dosimeters for high dose applications
NASA Astrophysics Data System (ADS)
Aldweri, Feras M.; Abuzayed, Manar H.; Al-Ajaleen, Musab S.; Rabaeh, Khalid A.
2018-03-01
Thymol blue (TB) solutions and Thymol blue Polyvinyl Alcohol (TB-PVA) films have been introduced as Radiochromic dosimeter for high dose applications. The dosimeters were irradiated with gamma ray (60Co source) from 5 to 30 kGy for film, and from 0.150 kGy to 4 kGy for solution. The optical density of unirradiated and irradiated TB solution as well as TB-PVA film dosimeters were studied in terms of absorbance at 434 nm using UV/VIS spectrophotometer. The effects of scan temperature, light pre-gamma irradiation, dose rate, relative humidity and stability of the absorbance of solutions and films after irradiation were investigated. We found the dose sensitivity of TB solution and TB-PVA film dosimeters increases significantly with increases of the absorbed dose as well as with the increases of TB dye concentrations. The useful dose range of developed TB solutions and TB-PVA films dosimeters is in the range 0.125-1 kGy and of 5-20 kGy, respectively.
Modern dosimetric tools for 60Co irradiation at high containment laboratories
Twardoski, Barri; Feldmann, Heinz; Bloom, Marshall E.; Ward, Joe
2011-01-01
Purpose To evaluate an innovative photo-fluorescent film as a routine dosimetric tool during 60Co irradiations at a high containment biological research laboratory, and to investigate whether manufacturer-provided chamber exposure rates can be used to accurately administer a prescribed dose to biological specimens. Materials and methods Photo-fluorescent, lithium fluoride film dosimeters and National Institutes of Standards and Technology (NIST) transfer dosimeters were co-located in a self-shielded 60Co irradiator and exposed to γ-radiation with doses ranging from 5–85 kGy. Film dose-response relationships were developed for varying temperatures simulating conditions present when irradiating infectious biological specimens. Dose measurement results from NIST transfer dosimeters were compared to doses predicted using manufacturer-provided irradiator chamber exposure rates. Results The film dosimeter exhibited a photo-fluorescent response signal that was consistent and nearly linear in relationship to γ-radiation exposure over a wide dose range. The dosimeter response also showed negligible effects from dose fractionization and humidity. Significant disparities existed between manufacturer-provided chamber exposure rates and actual doses administered. Conclusion This study demonstrates the merit of utilizing dosimetric tools to validate the process of exposing dangerous and exotic biological agents to γ-radiation at high containment laboratories. The film dosimeter used in this study can be utilized to eliminate potential for improperly administering γ-radiation doses. PMID:21961968
The space radiation environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, D E
There are three primary sources of space radiation: galactic cosmic rays (GCR), trapped belt radiation, and solar particle events (SPE). All are composed of ions, the nuclei of atoms. Their energies range from a few MeV u{sup -1} to over a GeV u{sup -1}. These ions can fragment when they interact with spacecraft materials and produce energetic neutrons and ions of lower atomic mass. Absorbed dose rates inside a typical spacecraft (like the Space Shuttle) in a low inclination (28.5 degrees) orbit range between 0.05 and 2 mGy d{sup -1} depending on the altitude and flight inclination (angle of orbitmore » with the equator). The quality factor of radiation in orbit depends on the relative contributions of trapped belt radiation and GCR, and the dose rate varies both with orbital altitude and inclination. The corresponding equivalent dose rate ranges between 0.1 and 4 mSv d{sup -1}. In high inclination orbits, like that of the Mir Space Station and as is planned for the International Space Station, blood-forming organ (BFO) equivalent dose rates as high as 1.5 mSv d{sup -1}. Thus, on a 1 y mission, a crew member could obtain a total dose of 0.55 Sv. Maximum equivalent dose rates measured in high altitude passes through the South Atlantic Anomaly (SAA) were 10 mSv h{sup -1}. For an interplanetary space mission (e.g., to Mars) annual doses from GCR alone range between 150 mSv y{sup -1} at solar maximum and 580 mSv y{sup -1} at solar minimum. Large SPE, like the October 1989 series, are more apt to occur in the years around solar maximum. In free space, such an event could contribute another 300 mSv, assuming that a warning system and safe haven can be effectively used with operational procedures to minimize crew exposures. Thus, the total dose for a 3 y mission to Mars could exceed 2 Sv.« less
Liu, Dongyang; Jiang, Ji; Zhang, Li; Tan, Fenlai; Wang, Yingxiang; Zhang, Don; Hu, Pei
2014-04-01
Icotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, has proved effectiveness in xenografted nude mice. Purpose of the present studies was to investigate tolerability and pharmacokinetics of Icotinib in healthy subjects for the first time, including dose proportionality, food effect, and tolerability. Two studies were conducted in total of 22 healthy subjects: a randomized, two-Latin-square crossover, dose proportional study (n = 12) and a randomized two-way crossover food-effect study (n = 10). Plasma concentration of Icotinib reached peak at a median Tmax of 0.75-3.5 h after single dose and then declined with a mean t1/2β of 6.02-7.83 h. Over the dose range of 100-600 mg, AUC values were proportional to dose and Cmax showed a slight saturation when dose increases. Only 0.2 % of the dose was excreted through kidney in unchanged Icotinib. After dosing 400 mg of Icotinib with high-fat and high-calorie meal, mean Cmax and AUC were significantly increased by 59 and 79 %, respectively. Three subjects experienced four adverse events (rash, increase in AST and ALT, and external injury). Rash and increased levels of AST and ALT were considered as drug-related. No serious adverse events were reported. The current work demonstrated that Icotinib was well tolerated in healthy male subjects (n = 22) over the dose range of 100-600 mg with or without food. Icotinib exposure, expressed in AUC, was proportionally increased with dose over the above dose range. Food intake significantly increased the absorption and exposure of Icotinib in healthy subjects.
Direct Measurement of Perchlorate Exposure Biomarkers in a Highly Exposed Population: A Pilot Study
Wong, Michelle; Copan, Lori; Olmedo, Luis; Patton, Sharyle; Haas, Robert; Atencio, Ryan; Xu, Juhua; Valentin-Blasini, Liza
2011-01-01
Exposure to perchlorate is ubiquitous in the United States and has been found to be widespread in food and drinking water. People living in the lower Colorado River region may have perchlorate exposure because of perchlorate in ground water and locally-grown produce. Relatively high doses of perchlorate can inhibit iodine uptake and impair thyroid function, and thus could impair neurological development in utero. We examined human exposures to perchlorate in the Imperial Valley among individuals consuming locally grown produce and compared perchlorate exposure doses to state and federal reference doses. We collected 24-hour urine specimen from a convenience sample of 31 individuals and measured urinary excretion rates of perchlorate, thiocyanate, nitrate, and iodide. In addition, drinking water and local produce were also sampled for perchlorate. All but two of the water samples tested negative for perchlorate. Perchlorate levels in 79 produce samples ranged from non-detect to 1816 ppb. Estimated perchlorate doses ranged from 0.02 to 0.51 µg/kg of body weight/day. Perchlorate dose increased with the number of servings of dairy products consumed and with estimated perchlorate levels in produce consumed. The geometric mean perchlorate dose was 70% higher than for the NHANES reference population. Our sample of 31 Imperial Valley residents had higher perchlorate dose levels compared with national reference ranges. Although none of our exposure estimates exceeded the U. S. EPA reference dose, three participants exceeded the acceptable daily dose as defined by bench mark dose methods used by the California Office of Environmental Health Hazard Assessment. PMID:21394205
Evaluation of LiF:Mg,Ti (TLD-100) for Intraoperative Electron Radiation Therapy Quality Assurance
Liuzzi, Raffaele; Savino, Federica; D’Avino, Vittoria; Pugliese, Mariagabriella; Cella, Laura
2015-01-01
Background Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs) response to intraoperative electron radiation therapy (IOERT) beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2–12 cGy/pulse) during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters. Methods LiF:Mg,Ti dosimeters (TLD-100) were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV) and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0–10 Gy in step of 2Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy. Results The TLD-100 dose-response curves were obtained. In the dose range of 0–10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05). Conclusions This study demonstrates that the TLD dose response, for doses ≤10Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided. PMID:26427065
Evaluation of LiF:Mg,Ti (TLD-100) for Intraoperative Electron Radiation Therapy Quality Assurance.
Liuzzi, Raffaele; Savino, Federica; D'Avino, Vittoria; Pugliese, Mariagabriella; Cella, Laura
2015-01-01
Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs) response to intraoperative electron radiation therapy (IOERT) beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2-12 cGy/pulse) during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters. LiF:Mg,Ti dosimeters (TLD-100) were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV) and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0-10 Gy in step of 2 Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy. The TLD-100 dose-response curves were obtained. In the dose range of 0-10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05). This study demonstrates that the TLD dose response, for doses ≤10 Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided.
Jensen, Rikke Beck; Thankamony, Ajay; O'Connell, Susan M; Kirk, Jeremy; Donaldson, Malcolm; Ivarsson, Sten-A; Söder, Olle; Roche, Edna; Hoey, Hilary; Dunger, David B; Juul, Anders
2014-10-01
Short children born small for gestational age (SGA) are treated with a GH dose based on body size, but treatment may lead to high levels of IGF1. The objective was to evaluate IGF1 titration of GH dose in contrast to current dosing strategies. In the North European Small-for-Gestational-Age Study (NESGAS), 92 short pre-pubertal children born SGA were randomised after 1 year of high-dose GH treatment (67 μg/kg per day) to three different regimens: high dose (67 μg/kg per day), low dose (35 μg/kg per day) or IGF1 titration. The average dose during the second year of the randomised trial did not differ between the IGF1 titration group (38 μg/kg per day, s.d. 0.019) and the low-dose group (35 μg/kg per day, s.d. 0.002; P=0.46), but there was a wide variation in the IGF1 titration group (range 10-80 μg/kg per day). The IGF1 titration group had significantly lower height gain (0.17 SDS, s.d. 0.18) during the second year of the randomised trial compared with the high-dose group (0.46 SDS, s.d. 0.25), but not significantly lower than the low-dose group (0.23 SDS, s.d. 0.15; P=0.17). The IGF1 titration group had lower IGF1 levels after 2 years of the trial (mean 1.16, s.d. 1.24) compared with both the low-dose (mean 1.76, s.d. 1.48) and the high-dose (mean 2.97, s.d. 1.63) groups. IGF1 titration of GH dose in SGA children proved less effective than current dosing strategies. IGF1 titration resulted in physiological IGF1 levels with a wide range of GH dose and a poorer growth response, which indicates the role of IGF1 resistance and highlights the heterogeneity of short SGA children. © 2014 European Society of Endocrinology.
Cumulative doses analysis in young trauma patients: a single-centre experience.
Salerno, Sergio; Marrale, Maurizio; Geraci, Claudia; Caruso, Giuseppe; Lo Re, Giuseppe; Lo Casto, Antonio; Midiri, Massimo
2016-02-01
Multidetector computed tomography (MDCT) represents the main source of radiation exposure in trauma patients. The radiation exposure of young patients is a matter of considerable medical concern due to possible long-term effects. Multiple MDCT studies have been observed in the young trauma population with an increase in radiation exposure. We have identified 249 young adult patients (178 men and 71 women; age range 14-40 years) who had received more than one MDCT study between June 2010 and June 2014. According to the International Commission on Radiological Protection publication, we have calculated the cumulative organ dose tissue-weighting factors by using CT-EXPO software(®). We have observed a mean cumulative dose of about 27 mSv (range from 3 to 297 mSv). The distribution analysis is characterised by low effective dose, below 20 mSv, in the majority of the patients. However, in 29 patients, the effective dose was found to be higher than 20 mSv. Dose distribution for the various organs analysed (breasts, ovaries, testicles, heart and eye lenses) shows an intense peak for lower doses, but in some cases high doses were recorded. Even though cumulative doses may have long-term effects, which are still under debate, high doses are observed in this specific group of young patients.
Lee, K W; Sheu, R J
2015-04-01
High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with (252)Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing (252)Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6_8 extended-range sphere versus the 6″ standard sphere). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dosimetric properties of a proton beamline dedicated to the treatment of ocular disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slopsema, R. L., E-mail: rslopsema@floridaproton.org; Mamalui, M.; Yeung, D.
2014-01-15
Purpose: A commercial proton eyeline has been developed to treat ocular disease. Radiotherapy of intraocular lesions (e.g., uveal melanoma, age-related macular degeneration) requires sharp dose gradients to avoid critical structures like the macula and optic disc. A high dose rate is needed to limit patient gazing times during delivery of large fractional dose. Dose delivery needs to be accurate and predictable, not in the least because current treatment planning algorithms have limited dose modeling capabilities. The purpose of this paper is to determine the dosimetric properties of a new proton eyeline. These properties are compared to those of existing systemsmore » and evaluated in the context of the specific clinical requirements of ocular treatments. Methods: The eyeline is part of a high-energy, cyclotron-based proton therapy system. The energy at the entrance of the eyeline is 105 MeV. A range modulator (RM) wheel generates the spread-out Bragg peak, while a variable range shifter system adjusts the range and spreads the beam laterally. The range can be adjusted from 0.5 up to 3.4 g/cm{sup 2}; the modulation width can be varied in steps of 0.3 g/cm{sup 2} or less. Maximum field diameter is 2.5 cm. All fields can be delivered with a dose rate of 30 Gy/min or more. The eyeline is calibrated according to the IAEA TRS-398 protocol using a cylindrical ionization chamber. Depth dose distributions and dose/MU are measured with a parallel-plate ionization chamber; lateral profiles with radiochromic film. The dose/MU is modeled as a function of range, modulation width, and instantaneous MU rate with fit parameters determined per option (RM wheel). Results: The distal fall-off of the spread-out Bragg peak is 0.3 g/cm{sup 2}, larger than for most existing systems. The lateral penumbra varies between 0.9 and 1.4 mm, except for fully modulated fields that have a larger penumbra at skin. The source-to-axis distance is found to be 169 cm. The dose/MU shows a strong dependence on range (up to 4%/mm). A linear increase in dose/MU as a function of instantaneous MU rate is observed. The dose/MU model describes the measurements with an accuracy of ±2%. Neutron dose is found to be 146 ± 102 μSv/Gy at the contralateral eye and 19 ± 13 μSv/Gy at the chest. Conclusions: Measurements show the proton eyeline meets the requirements to effectively treat ocular disease.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slopsema, R. L., E-mail: rslopsema@floridaproton.org; Mamalui, M.; Yeung, D.
Purpose: A commercial proton eyeline has been developed to treat ocular disease. Radiotherapy of intraocular lesions (e.g., uveal melanoma, age-related macular degeneration) requires sharp dose gradients to avoid critical structures like the macula and optic disc. A high dose rate is needed to limit patient gazing times during delivery of large fractional dose. Dose delivery needs to be accurate and predictable, not in the least because current treatment planning algorithms have limited dose modeling capabilities. The purpose of this paper is to determine the dosimetric properties of a new proton eyeline. These properties are compared to those of existing systemsmore » and evaluated in the context of the specific clinical requirements of ocular treatments. Methods: The eyeline is part of a high-energy, cyclotron-based proton therapy system. The energy at the entrance of the eyeline is 105 MeV. A range modulator (RM) wheel generates the spread-out Bragg peak, while a variable range shifter system adjusts the range and spreads the beam laterally. The range can be adjusted from 0.5 up to 3.4 g/cm{sup 2}; the modulation width can be varied in steps of 0.3 g/cm{sup 2} or less. Maximum field diameter is 2.5 cm. All fields can be delivered with a dose rate of 30 Gy/min or more. The eyeline is calibrated according to the IAEA TRS-398 protocol using a cylindrical ionization chamber. Depth dose distributions and dose/MU are measured with a parallel-plate ionization chamber; lateral profiles with radiochromic film. The dose/MU is modeled as a function of range, modulation width, and instantaneous MU rate with fit parameters determined per option (RM wheel). Results: The distal fall-off of the spread-out Bragg peak is 0.3 g/cm{sup 2}, larger than for most existing systems. The lateral penumbra varies between 0.9 and 1.4 mm, except for fully modulated fields that have a larger penumbra at skin. The source-to-axis distance is found to be 169 cm. The dose/MU shows a strong dependence on range (up to 4%/mm). A linear increase in dose/MU as a function of instantaneous MU rate is observed. The dose/MU model describes the measurements with an accuracy of ±2%. Neutron dose is found to be 146 ± 102 μSv/Gy at the contralateral eye and 19 ± 13 μSv/Gy at the chest. Conclusions: Measurements show the proton eyeline meets the requirements to effectively treat ocular disease.« less
Zara, Janette N; Siu, Ronald K; Zhang, Xinli; Shen, Jia; Ngo, Richard; Lee, Min; Li, Weiming; Chiang, Michael; Chung, Jonguk; Kwak, Jinny; Wu, Benjamin M; Ting, Kang; Soo, Chia
2011-05-01
The major Food and Drug Association-approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL.
Zara, Janette N.; Siu, Ronald K.; Zhang, Xinli; Shen, Jia; Ngo, Richard; Lee, Min; Li, Weiming; Chiang, Michael; Chung, Jonguk; Kwak, Jinny; Wu, Benjamin M.; Ting, Kang
2011-01-01
The major Food and Drug Association–approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL. PMID:21247344
Geller, David E.; Flume, Patrick A.; Griffith, David C.; Morgan, Elizabeth; White, Dan; Loutit, Jeffery S.; Dudley, Michael N.
2011-01-01
The pharmacokinetics and tolerability of nebulized MP-376 (levofloxacin inhalation solution [Aeroquin]) were determined in cystic fibrosis (CF) subjects. Ten CF subjects received single 180-mg doses of two formulations of MP-376, followed by a multiple-dose phase of 240 mg once daily for 7 days. Serum and expectorated-sputum samples were assayed for levofloxacin content. Safety was evaluated following the single- and multiple-dose study phases. Nebulized MP-376 produced high concentrations of levofloxacin in sputum. The mean maximum plasma concentration (Cmax) ranged between 2,563 and 2,932 mg/liter for 180-mg doses of the 50- and 100-mg/ml formulations, respectively. After 7 days of dosing, the mean Cmax for the 240-mg dose was 4,691 mg/liter. The mean serum levofloxacin Cmax ranged between 0.95 and 1.28 for the 180-mg doses and was 1.71 for the 240-mg dose. MP-376 was well tolerated. Nebulized MP-376 produces high sputum and low serum levofloxacin concentrations. The pharmacokinetics, safety, and tolerability were similar for the two formulations. MP-376 240 mg (100 mg/ml) is being advanced into late-stage clinical development. PMID:21444699
Flat Ge-doped optical fibres for food irradiation dosimetry
NASA Astrophysics Data System (ADS)
Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull; Alawiah, A.; Bradley, D. A.
2015-04-01
Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.
Kent, Justine M; Kushner, Stuart; Ning, Xiaoping; Karcher, Keith; Ness, Seth; Aman, Michael; Singh, Jaskaran; Hough, David
2013-08-01
Efficacy and safety of 2 risperidone doses were evaluated in children and adolescents with autism. Patients (N = 96; 5-17 years), received risperidone (low-dose: 0.125 mg/day [20 to <45 kg], 0.175 mg/day [>45 kg] or high-dose: 1.25 mg/day [20 to <45 kg], 1.75 mg/day [>45 kg]) or placebo. Mean baseline (range 27-29) to endpoint change in Aberrant Behavior Checklist-Irritability (primary endpoint) was significantly greater in the high-dose-(-12.4 [6.5]; p < 0.001), but not low-dose (-7.4 [8.1]; p = 0.164) group, versus placebo (-3.5 [10.7]). Clinical Global Impressions-Severity and Children's Yale-Brown Obsessive Compulsive Scale scores improved significantly only in the high-dose group, consistent with ABC-I results. Somnolence, sedation and increased appetite occurred more frequently in high-versus low-dose groups. Overall, increased appetite occurred most frequently.
Efficacy and tolerability of high-dose phenobarbital in children with focal seizures.
Okumura, Akihisa; Nakahara, Eri; Ikeno, Mitsuru; Abe, Shinpei; Igarashi, Ayuko; Nakazawa, Mika; Takasu, Michihiko; Shimizu, Toshiaki
2016-04-01
We retrospectively reviewed the outcomes of children with focal epilepsy treated with oral high-dose phenobarbital. We reviewed data on children (aged<15 years) with focal seizures treated with high-dose phenobarbital (>5 mg/kg/day to maintain a target serum level >40 μg/mL) for at least 6 months. Seizure frequency was evaluated after phenobarbital titration, and 1 and 2 years after high-dose phenobarbital treatment commenced. Treatment was judged effective when seizure frequencies fell by ⩾75%. Seven boys and eight girls were treated. The median age at commencement of high-dose phenobarbital therapy was 30 months. The maximal serum phenobarbital level ranged from 36.5 to 62.9 μg/mL. High-dose PB was effective in seven. In two patients, treatment was transiently effective, but seizure frequency later returned to the baseline. High-dose PB was ineffective in six. No significant association between effectiveness and any clinical variable was evident. Drowsiness was recorded in nine patients, but no patient developed a behavioral problem or hypersensitivity. Oral high-dose phenobarbital was effective in 7 of 15 patients with focal epilepsy and well tolerated. High-dose PB may be useful when surgical treatment is difficult. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Czaplewski, David A; Holt, Martin V; Ocola, Leonidas E
2013-08-02
We present a set of universal curves that predict the range and intensity of backscattered electrons which can be used in conjunction with electron beam lithography to create high fidelity nanoscale patterns. The experimental method combines direct write dose, backscattered dose, and a self-reinforcing pattern geometry to measure the dose provided by backscattered electrons to a nanoscale volume on the substrate surface at various distances from the electron source. Electron beam lithography is used to precisely control the number and position of incident electrons on the surface of the material. Atomic force microscopy is used to measure the height of the negative electron beam lithography resist. Our data shows that the range and the intensity of backscattered electrons can be predicted using the density and the atomic number of any solid material, respectively. The data agrees with two independent Monte Carlo simulations without any fitting parameters. These measurements are the most accurate electron range measurements to date.
Micronucleus induction in Vicia faba roots. Part 2. Biological effects of neutrons below 1 cGy.
Marshall, I; Bianchi, M
1983-08-01
A dose-effect relationship has been established for high-energy neutrons (maximum energy 600 MeV) within a dose range of 0.2 to 80 cGy and for low-energy neutrons produced by a 252Cf source (mean energy 2.35 MeV) for doses between 0.2 and 5 cGy. The frequency of micronuclei was found to increase linearly with dose. The relative biological effectiveness (r.b.e) values calculated using 60Co radiation as a reference were, in the high-dose region, 4.7 +/- 0.4 and 11.8 +/- 1.3 for the high- and low-energy neutrons, respectively. At doses below 1 cGy constant values of 25.4 +/- 4.4 and 63.7 +/- 12 were reached for the respective neutron energies.
Verdijk, Pauline; Rots, Nynke Y; van Oijen, Monique G C T; Weldon, William C; Oberste, M Steven; Okayasu, Hiromasa; Sutter, Roland W; Bakker, Wilfried A M
2014-09-03
An inactivated poliovirus vaccine (IPV) based on attenuated poliovirus strains (Sabin-1, -2 and -3) was developed for technology transfer to manufacturers in low- and middle-income countries in the context of the global polio eradication initiative. Safety and immunogenicity of Sabin-IPV (sIPV) was evaluated in a double-blind, randomized, controlled, dose-escalation trial in the target population. Healthy infants (n=20/group) aged 56-63 days, received a primary series of three intramuscular injections with low-, middle- or high-dose sIPV with or without aluminum hydroxide or with the conventional IPV based on wild poliovirus strains (wIPV). Virus-neutralizing titers against both Sabin and wild poliovirus strains were determined before and 28 days after three vaccinations. The incidence of local and systemic reactions was comparable with the wIPV. Seroconversion rates after three vaccinations were 100% for type 2 and type 3 polioviruses (both Sabin and wild strains) and 95-100% for type 1 polioviruses. Median titers were high in all groups. Titers were well above the log2(titer) correlated with protection (=3) for all groups. Median titers for Sabin-2 were 9.3 (range 6.8-11.5) in the low-dose sIPV group, 9.2 (range 6.8-10.2) in the low-dose adjuvanted sIPV group and 9.8 (range 5.5-15.0) in the wIPV group, Median titers against MEF-1 (wild poliovirus type 2) were 8.2 (range 4.8-10.8) in the low-dose sIPV group, 7.3 (range 4.5-10.2) in the low-dose adjuvanted Sabin-IPV group and 10.3 (range 8.5-17.0) in the wIPV group. For all poliovirus types the median titers increased with increasing dose levels. sIPV and sIPV adjuvanted with aluminum hydroxide were immunogenic and safe at all dose levels, and comparable with the wIPV. EudraCTnr: 2011-003792-11, NCT01709071. Copyright © 2014. Published by Elsevier Ltd.
Environmental standards for ionizing radiation: theoretical basis for dose-response curves.
Upton, A C
1983-01-01
The types of injury attributable to ionizing radiation are subdivided, for purposes of risk assessment and radiological protection, into two broad categories: stochastic effects and nonstochastic effects. Stochastic effects are viewed as probablistic phenomena, varying in frequency but not severity as a function of the dose, without any threshold; nonstochastic effects are viewed as deterministic phenomena, varying in both frequency and severity as a function of the dose, with clinical thresholds. Included among stochastic effects are heritable effects (mutations and chromosome aberrations) and carcinogenic effects. Both types of effects are envisioned as unicellular phenomena which can result from nonlethal injury of individual cells, without the necessity of damage to other cells. For the induction of mutations and chromosome aberrations in the low-to-intermediate dose range, the dose-response curve with high-linear energy transfer (LET) radiation generally conforms to a linear nonthreshold relationship and varies relatively little with the dose rate. In contrast, the curve with low-LET radiation generally conforms to a linear-quadratic relationship, rising less steeply than the curve with high-LET radiation and increasing in slope with increasing dose and dose rate. The dose-response curve for carcinogenic effects varies widely from one type of neoplasm to another in the intermediate-to-high dose range, in part because of differences in the way large doses of radiation can affect the promotion and progression of different neoplasms. Information about dose-response relations for low-level irradiation is fragmentary but consistent, in general, with the hypothesis that the neoplastic transformation may result from mutation, chromosome aberration or genetic recombination in a single susceptible cell. PMID:6653536
Paranjpe, Madhav G; Denton, Melissa D; Vidmar, Tom J; Elbekai, Reem H
2015-07-01
High doses in Tg.rasH2 carcinogenicity studies are usually set at the maximum tolerated dose (MTD), although this dose selection strategy has not been critically evaluated. We analyzed the body weight gains (BWGs), mortality, and tumor response in control and treated groups of 29 Tg.rasH2 studies conducted at BioReliance. Based on our analysis, it is evident that the MTD was exceeded at the high and/or mid-doses in several studies. The incidence of tumors in high doses was lower when compared to the low and mid-doses of both sexes. Thus, we recommend that the high dose in male mice should not exceed one-half of the estimated MTD (EMTD), as it is currently chosen, and the next dose should be one-fourth of the EMTD. Because females were less sensitive to decrements in BWG, the high dose in female mice should not exceed two-third of EMTD and the next dose group should be one-third of EMTD. If needed, a third dose group should be set at one-eighth EMTD in males and one-sixth EMTD in females. In addition, for compounds that do not show toxicity in the range finding studies, a limit dose should be applied for the 26-week carcinogenicity studies. © 2014 by The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, W.G.
2001-08-16
The offsite radiological effects from high velocity straight winds, tornadoes, and earthquakes have been estimated for a proposed facility for manufacturing enriched uranium fuel cores by powder metallurgy. Projected doses range up to 30 mrem/event to the maximum offsite individual for high winds and up to 85 mrem/event for very severe earthquakes. Even under conservative assumptions on meteorological conditions, the maximum offsite dose would be about 20 per cent of the DOE limit for accidents involving enriched uranium storage facilities. The total dose risk is low and is dominated by the risk from earthquakes. This report discusses this test.
Dolton, Michael J; Perera, Vidya; Pont, Lisa G; McLachlan, Andrew J
2014-01-01
Terbinafine is increasingly used in combination with other antifungal agents to treat resistant or refractory mycoses due to synergistic in vitro antifungal activity; high doses are commonly used, but limited data are available on systemic exposure, and no assessment of pharmacodynamic target attainment has been made. Using a physiologically based pharmacokinetic (PBPK) model for terbinafine, this study aimed to predict total and unbound terbinafine concentrations in plasma with a range of high-dose regimens and also calculate predicted pharmacodynamic parameters for terbinafine. Predicted terbinafine concentrations accumulated significantly during the first 28 days of treatment; the area under the concentration-time curve (AUC)/MIC ratios and AUC for the free, unbound fraction (fAUC)/MIC ratios increased by 54 to 62% on day 7 of treatment and by 80 to 92% on day 28 compared to day 1, depending on the dose regimen. Of the high-dose regimens investigated, 500 mg of terbinafine taken every 12 h provided the highest systemic exposure; on day 7 of treatment, the predicted AUC, maximum concentration (Cmax), and minimum concentration (Cmin) were approximately 4-fold, 1.9-fold, and 4.4-fold higher than with a standard-dose regimen of 250 mg once daily. Close agreement was seen between the concentrations predicted by the PBPK model and the observed concentrations, indicating good predictive performance. This study provides the first report of predicted terbinafine exposure in plasma with a range of high-dose regimens.
Analytical probabilistic proton dose calculation and range uncertainties
NASA Astrophysics Data System (ADS)
Bangert, M.; Hennig, P.; Oelfke, U.
2014-03-01
We introduce the concept of analytical probabilistic modeling (APM) to calculate the mean and the standard deviation of intensity-modulated proton dose distributions under the influence of range uncertainties in closed form. For APM, range uncertainties are modeled with a multivariate Normal distribution p(z) over the radiological depths z. A pencil beam algorithm that parameterizes the proton depth dose d(z) with a weighted superposition of ten Gaussians is used. Hence, the integrals ∫ dz p(z) d(z) and ∫ dz p(z) d(z)2 required for the calculation of the expected value and standard deviation of the dose remain analytically tractable and can be efficiently evaluated. The means μk, widths δk, and weights ωk of the Gaussian components parameterizing the depth dose curves are found with least squares fits for all available proton ranges. We observe less than 0.3% average deviation of the Gaussian parameterizations from the original proton depth dose curves. Consequently, APM yields high accuracy estimates for the expected value and standard deviation of intensity-modulated proton dose distributions for two dimensional test cases. APM can accommodate arbitrary correlation models and account for the different nature of random and systematic errors in fractionated radiation therapy. Beneficial applications of APM in robust planning are feasible.
X-ray emission as a potential hazard during ultrashort pulse laser material processing
NASA Astrophysics Data System (ADS)
Legall, Herbert; Schwanke, Christoph; Pentzien, Simone; Dittmar, Günter; Bonse, Jörn; Krüger, Jörg
2018-06-01
In laser machining with ultrashort laser pulses unwanted X-ray radiation in the keV range can be generated when a critical laser intensity is exceeded. Even if the emitted X-ray dose per pulse is low, high laser repetition rates can lead to an accumulation of X-ray doses beyond exposure safety limits. For 925 fs pulse duration at a center wavelength of 1030 nm, the X-ray emission was investigated up to an intensity of 2.6 × 1014 W/cm2. The experiments were performed in air with a thin disk laser at a repetition rate of 400 kHz. X-ray spectra and doses were measured for various planar target materials covering a wide range of the periodic table from aluminum to tungsten. Without radiation shielding, the measured radiation doses at this high repetition rate clearly exceed the regulatory limits. Estimations for an adequate radiation shielding are provided.
Determination of output factors for small proton therapy fields.
Fontenot, Jonas D; Newhauser, Wayne D; Bloch, Charles; White, R Allen; Titt, Uwe; Starkschall, George
2007-02-01
Current protocols for the measurement of proton dose focus on measurements under reference conditions; methods for measuring dose under patient-specific conditions have not been standardized. In particular, it is unclear whether dose in patient-specific fields can be determined more reliably with or without the presence of the patient-specific range compensator. The aim of this study was to quantitatively assess the reliability of two methods for measuring dose per monitor unit (DIMU) values for small-field treatment portals: one with the range compensator and one without the range compensator. A Monte Carlo model of the Proton Therapy Center-Houston double-scattering nozzle was created, and estimates of D/MU values were obtained from 14 simulated treatments of a simple geometric patient model. Field-specific D/MU calibration measurements were simulated with a dosimeter in a water phantom with and without the range compensator. D/MU values from the simulated calibration measurements were compared with D/MU values from the corresponding treatment simulation in the patient model. To evaluate the reliability of the calibration measurements, six metrics and four figures of merit were defined to characterize accuracy, uncertainty, the standard deviations of accuracy and uncertainty, worst agreement, and maximum uncertainty. Measuring D/MU without the range compensator provided superior results for five of the six metrics and for all four figures of merit. The two techniques yielded different results primarily because of high-dose gradient regions introduced into the water phantom when the range compensator was present. Estimated uncertainties (approximately 1 mm) in the position of the dosimeter in these regions resulted in large uncertainties and high variability in D/MU values. When the range compensator was absent, these gradients were minimized and D/MU values were less sensitive to dosimeter positioning errors. We conclude that measuring D/MU without the range compensator present provides more reliable results than measuring it with the range compensator in place.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, Martin A., E-mail: Martin.Ebert@health.wa.gov.au; School of Physics, University of Western Australia, Perth, Western Australia; Foo, Kerwyn
Purpose: To use a high-quality multicenter trial dataset to determine dose-volume effects for gastrointestinal (GI) toxicity following radiation therapy for prostate carcinoma. Influential dose-volume histogram regions were to be determined as functions of dose, anatomical location, toxicity, and clinical endpoint. Methods and Materials: Planning datasets for 754 participants in the TROG 03.04 RADAR trial were available, with Late Effects of Normal Tissues (LENT) Subjective, Objective, Management, and Analytic (SOMA) toxicity assessment to a median of 72 months. A rank sum method was used to define dose-volume cut-points as near-continuous functions of dose to 3 GI anatomical regions, together with amore » comprehensive assessment of significance. Univariate and multivariate ordinal regression was used to assess the importance of cut-points at each dose. Results: Dose ranges providing significant cut-points tended to be consistent with those showing significant univariate regression odds-ratios (representing the probability of a unitary increase in toxicity grade per percent relative volume). Ranges of significant cut-points for rectal bleeding validated previously published results. Separation of the lower GI anatomy into complete anorectum, rectum, and anal canal showed the impact of mid-low doses to the anal canal on urgency and tenesmus, completeness of evacuation and stool frequency, and mid-high doses to the anorectum on bleeding and stool frequency. Derived multivariate models emphasized the importance of the high-dose region of the anorectum and rectum for rectal bleeding and mid- to low-dose regions for diarrhea and urgency and tenesmus, and low-to-mid doses to the anal canal for stool frequency, diarrhea, evacuation, and bleeding. Conclusions: Results confirm anatomical dependence of specific GI toxicities. They provide an atlas summarizing dose-histogram effects and derived constraints as functions of anatomical region, dose, toxicity, and endpoint for informing future radiation therapy planning.« less
Kamran, Sophia C; Harshman, Lauren C; Bhagwat, Mandar S; Muralidhar, Vinayak; Nguyen, Paul L; Martin, Neil E; La Follette, Stephanie; Faso, Sarah; Viswanathan, Akila N; Efstathiou, Jason A; Beard, Clair J
2017-01-01
The use of large-field external beam reirradiation (re-RT) after pelvic radiation therapy (RT) for genitourinary (GU) cancers has not been reported. We report the results of such treatment in patients with either symptomatic GU second malignant neoplasms or locally recurrent pelvic tumors after initial RT for whom surgery or further systemic therapy was not an option. The records of 28 consecutive patients with advanced, bulky GU malignancies treated with high-dose, large-field re-RT with palliative intent between 2008 and 2014 were retrospectively reviewed. Descriptive outcome analyses focused on toxicities and symptom control, and responses were evaluated by 2 independent observers. Twenty-seven male patients (96%) were included. Median initial external beam RT dose was 64 Gy (range, 30-75.6 Gy). The median time between initial RT and re-RT was 9.5 years (range, 0.2-32 years). At the time of re-RT, there were 16 local recurrences and 12 second malignant neoplasms together comprising 16 bladder, 10 prostate, 1 ureteral, and 1 penile cancer. Indications for re-RT were pain and bleeding/hemorrhage. The median equivalent sphere diameter planning target volume for re-RT was 8.6 cm (range, 4.7-16.3 cm). Given the severity of the symptoms and the bulk of the disease at the time of re-RT, a higher dose of RT was administered. The median re-RT dose was 50 Gy (range, 27.5-66 Gy). For patients who received <60 Gy, hypofractionation of 250 cGy was used. The median cumulative dose was 113.9 Gy (range, 81.5-132.8 Gy). Re-RT was well tolerated with no Radiation Therapy Oncology Group grade 3-4 toxicities. Twenty-four patients (92%) had complete resolution of symptoms, and relief was durable in 67% of patients. The median overall survival was 5.8 months (range, 0.3-38.9 months). Of those patients who are still alive, 100% remain free of initial symptoms. This small series suggests that aggressive re-RT of inoperable and symptomatic GU malignancies that is undertaken with meticulous treatment planning is well tolerated and provides excellent, durable relief without undue short-term toxicity. Validation in a larger prospective cohort is required.
Khazaal, Yasser; Preisig, Martin; Chatton, Anne; Kaufmann, Nadine; Bilancioni, Romain; Eap, Chin B
2013-09-01
The use of quetiapine for treatment of bipolar disorders at a higher dosage than the licensed range is not unusual in clinical practice. Quetiapine is predominantly metabolised by cytochrome P450 3A4 (CYP3A4) and to a lesser extent by CYP2D6. The large interindividual variability of those isozyme activities could contribute to the variability observed in quetiapine dosage. The aim of the present study is to evaluate if the use of high dosages of quetiapine in some patients, as compared to patients treated with a dosage in the licensed range (up to 800 mg/day), could be explained by a high activity of CYP3A4 and/or of CYP2D6. CYP3A4 activities were determined using the midazolam metabolic ratio in 21 bipolar and schizoaffective bipolar patients genotyped for CYP2D6. 9 patients were treated with a high quetiapine dosage (mean ± SD, median; range: 1467 ± 625, 1200; 1000-3000 mg/day) and 11 with a normal quetiapine dosage (433 ± 274, 350; 100-800 mg/day). One patient in the high dose and one patient in the normal dose groups were genotyped as CYP2D6 ultrarapid metabolizers. CYP3A4 activities were not significantly different between the two groups (midazolam metabolic ratio: 9.4 ± 8.2; 6.2; 1.7-26.8 vs 3.9 ± 2.3; 3.8; 1.5-7.6, in the normal dose group as compared to the high dose group, respectively, NS). The use of high quetiapine dosage for the patients included in the present study cannot be explained by variations in pharmacokinetics parameters such as a high activity of CYP3A4 and/or of CYP2D6.
Falco, Maria Daniela; D'Andrea, Marco; Strigari, Lidia; D'Alessio, Daniela; Quagliani, Francesco; Santoni, Riccardo; Bosco, Alessia Lo
2012-08-01
During radiological interventional procedures (RIP) the skin of a patient under examination may undergo a prolonged x-ray exposure, receiving a dose as high as 5 Gy in a single session. This paper describes the use of the OneDose(TM) cable-free system based on p-type MOSFET detectors to determine the entrance skin dose (ESD) at selected points during RIP. At first, some dosimetric characteristics of the detector, such as reproducibility, linearity, and fading, have been investigated using a C-arc as a source of radiation. The reference setting (RS) was: 80 kV energy, 40 cm × 40 cm field of view (FOV), current-time product of 50 mAs and source to skin distance (SSD) of 50 cm. A calibrated PMX III solid state detector was used as the reference detector and Gafchromic(®) films have been used as an independent dosimetric system to test the entire procedure. A calibration factor for the RS and correction factors as functions of tube voltage and FOV size have been determined. Reproducibility ranged from 4% at low doses (around 10 cGy as measured by the reference detector) to about 1% for high doses (around 2 Gy). The system response was found to be linear with respect to both dose measured with the PMX III and tube voltage. The fading test has shown that the maximum deviation from the optimal reading conditions (3 min after a single irradiation) was 9.1% corresponding to four irradiations in one hour read 3 min after the last exposure. The calibration factor in the RS has shown that the system response at the kV energy range is about four times larger than in the MV energy range. A fifth order and fourth order polynomial functions were found to provide correction factors for tube voltage and FOV size, respectively, in measurement settings different than the RS. ESDs measured with the system after applying the proper correction factors agreed within one standard deviation (SD) with the corresponding ESDs measured with the reference detector. The ESDs measured with Gafchromic(®) films were in agreement within one SD compared to the ESDs measured using the OneDose(TM) system, as well. The global uncertainty associated to the OneDose(TM) system established in our experiments, ranged from 7% to 10%, depending on the duration of the RIP due to fading. These values are much lower than the uncertainty commonly accepted for general diagnostic practices (20%) and of about the same size of the uncertainty recommended for practices with high risk of deterministic side effects (7%). The OneDose(TM) system has shown a high sensitivity in the kV energy range and has been found capable of measuring the entrance skin dose in RIP.
Hormesis as a biological hypothesis.
Calabrese, E J; Baldwin, L A
1998-01-01
A comprehensive effort was undertaken to identify articles demonstrating chemical hormesis. Nearly 4000 potentially relevant articles were retrieved from preliminary computer database searches by using various key word descriptors and extensive cross-referencing. A priori evaluation criteria were established including study design features (e.g., number of doses, dose range), statistical analysis, and reproducibility of results. Evidence of chemical hormesis was judged to have occurred in approximately 350 of the 4000 studies evaluated. Chemical hormesis was observed in a wide range of taxonomic groups and involved agents representing highly diverse chemical classes, many of potential environmental relevance. Numerous biological end points were assessed; growth responses were the most prevalent, followed by metabolic effects, longevity, reproductive responses, and survival. Hormetic responses were generally observed to be of limited magnitude. The average low-dose maximum stimulation was approximately 50% greater than controls. The hormetic dose-response range was generally limited to about one order of magnitude, with the upper end of the hormetic curve approaching the estimated no observable effect level for the particular end point. Based on the evaluation criteria, high to moderate evidence of hormesis was observed in studies comprised of > 6 doses; with > 3 doses in the hormetic zone. The present analysis suggests that chemical hormesis is a reproducible and relatively common biological phenomenon. A quantitative scheme is presented for future application to the database. PMID:9539030
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, YC; Lu, SH; Chen, LH
2016-06-15
Purpose: Patient-specific quality assurance (QA) is necessary to accurately deliver high dose radiation to the target, especially for stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT). Unlike previous 2 dimensional (D) array QA devices, Delta{sup 4} can verify the dose delivery in 3D. In this study, the difference between calculated and measured dose distribution was compared with two QA devices (MATRIXX and Delta{sup 4}) to evaluate the delivery accuracy. Methods: Twenty-seven SRS/SBRT plans with VMAT were verified with point-dose and dose-map analysis. We use an ion chamber (A1SL, 0.053cc) for point-dose measurement. For verification of the dose map, themore » differences between the calculated and measured doses were analyzed with a gamma index using MATRIXX and Delta{sup 4} devices. The passing criteria for gamma evaluation were set at 3 mm for distance-to-agreement (DTA) and 3% for dose-difference. A gamma index less than 1 was defined as the verification passing the criteria and satisfying at least 95% of the points. Results: The mean prescribed dose and fraction was 40 ± 14.41 Gy (range: 16–60) and 10 ± 2.35 fractions (range: 1–8), respectively. In point dose analysis, the differences between the calculated and measured doses were all less than 5% (mean: 2.12 ± 1.13%; range: −0.55% to 4.45%). In dose-map analysis, the average passing rates were 99.38 ± 0.96% (range: 95.31–100%) and 100 ± 0.12% (range: 99.5%–100%) for MATRIXX and Delta{sup 4}, respectively. Even using criteria of 2%/2 mm, the passing rate of Delta{sup 4} was still more than 95% (mean: 99 ± 1.08%; range: 95.6%–100%). Conclusion: Both MATRIXX and Delta{sup 4} offer accurate and efficient verification for SRS/SBRT plans. The results measured by MATRIXX and Delta{sup 4} dosimetry systems are similar for SRS/SBRT performed with the VMAT technique.« less
Schwartz, Jill L.; Rountree, Wes; Kashuba, Angela D. M.; Brache, Vivian; Creinin, Mitchell D.; Poindexter, Alfred; Kearney, Brian P.
2011-01-01
Background Tenofovir (TFV) gel is being evaluated as a microbicide with pericoital and daily regimens. To inhibit viral replication locally, an adequate concentration in the genital tract is critical. Methods and Findings Forty-nine participants entered a two-phase study: single-dose (SD) and multi-dose (MD), were randomized to collection of genital tract samples (endocervical cells [ECC], cervicovaginal aspirate and vaginal biopsies) at one of seven time points [0.5, 1, 2, 4, 6, 8, or 24 hr(s)] post-dose following SD exposure of 4 mL 1% TFV gel and received a single dose. Forty-seven were randomized to once (QD) or twice daily (BID) dosing for 2 weeks and to collection of genital tract samples at 4, 8 or 24 hrs after the final dose, but two discontinued prior to gel application. Blood was collected during both phases at the seven times post-dose. TFV exposure was low in blood plasma for SD and MD; median Cmax was 4.0 and 3.4 ng/mL, respectively (C≤29 ng/mL). TFV concentrations were high in aspirates and tissue after SD and MD, ranging from 1.2×104 to 9.9×106 ng/mL and 2.1×102 to 1.4×106 ng/mL, respectively, and did not noticeably differ between proximal and distal tissue. TFV diphosphate (TFV-DP), the intracellular active metabolite, was high in ECC, ranging from 7.1×103 to 8.8×106 ng/mL. TFV-DP was detectable in approximately 40% of the tissue samples, ranging from 1.8×102 to 3.5×104 ng/mL. AUC for tissue TFV-DP was two logs higher after MD compared to SD, with no noticeable differences when comparing QD and BID. Conclusions Single-dose and multiple-dose TFV gel exposure resulted in high genital tract concentrations for at least 24 hours post-dose with minimal systemic absorption. These results support further study of TFV gel for HIV prevention. Trial registration ClinicalTrials.gov NCT00561496 PMID:22039430
NASA Technical Reports Server (NTRS)
Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.
2006-01-01
Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose-rate dose to the bone marrow (mean = 2.5 Gy) was consistent with the measured ERR (0.62, 95% Cl =-0.2 to 1.9). Conclusions: An extended, biologically based model for leukemia that includes HSC initiation, inactivation, proliferation, and, uniquely for leukemia, long-range HSC migration predicts, %Kith reasonable accuracy, risks for radiationinduced leukemia associated with exposure to therapeutic doses of radiation.
Dose Response Data for Hormonally Active Chemicals ...
The shape of the dose response curve in the low dose region has been debated since the late 1940s. The debate originally focused on linear no threshold (LNT) vs threshold responses in the low dose range for cancer and noncancer related effects. For noncancer effects the default assumption is that noncancer effects generally display threshold rather than LNT responses. More recently, claims have arisen that the chemicals, like endocrine disrupters (EDS), which act via high affinity, low capacity nuclear receptors, may display LNT or nonmonotonic low dose responses: responses that could be missed in multigenerational guideline toxicity testing. This presentation will discuss LNT, threshold and nonmonotonic dose response relationships from case studies of chemicals that disrupt reproductive development and function via the ER, AR and AhR pathways and will include in vitro and in vivo multigenerational data. The in vivo studies in this discussion include only robust, well designed, comprehensive studies that administered the chemical via a relevant route(s) of exposure over a broad dose response range, including low dose(s) in the microgram/kg/d range. The chemicals include ethinyl estradiol, estradiol, genistein, bisphenol a, trenbolone, finasteride, flutamide, phthalate esters and 2,3,7,8 TCDD. The objective is to critically evaluate the data from well done studies in this field to address concerns that current multigenerational reproductive test gui
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, J; Strauss, D; Langner, U
Purpose: To establish patient surface dose dosimetry for scanning proton beam therapy (SPBT) for breast cancer using optically stimulated luminescence dosimeters (OSLD). Methods: OSLDs were calibrated with SPB under the similar conditions as the treatments for breast cancer. A range shifter (RS) of 5 cm water equivalent thickness (WET) was used. The air gap from the surface of the range shifter to the surface of the phantom was 15 cm. A uniform planar dose generated by nominal energy of 118 MeV was delivered. The range of 118 MeV proton beam after the 5cm RS is approximately 5 cm in water,more » which is the common range for breast treatments. The OSLDs were placed on the surface of high density polyethylene slabs, and a bolus of 1.06 cm WET was used for buildup. A variety of dose levels in the range of 0.5 to 8 Gy were delivered. Under the same condition, an ADCL calibrated parallel plate (PP) chamber was used to measure the reference dose. The correlation between the output signals of OSLDs and the reference doses was established. The calibration of OSLD was verified against the PP chamber measurements for two SPBT breast plans calculated for two patients. Results: the least squares fitting for the OSLD calibration curve was a polynomial function to the order of 2 in the range of 0.5 to 8 Gy (RBE). The differences between the dose measured with OSLDs and PP chamber were within 3% for the two breast proton plans. Conclusion: the calibrated OSLDs under the similar conditions as the treatments can be used for patient surface dose measurements.« less
SU-E-T-577: Obliquity Factor and Surface Dose in Proton Beam Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, I; Andersen, A; Coutinho, L
2015-06-15
Purpose: The advantage of lower skin dose in proton beam may be diminished creating radiation related sequalae usually seen with photon and electron beams. This study evaluates the surface dose as a complex function of beam parameters but more importantly the effect of beam angle. Methods: Surface dose in proton beam depends on the beam energy, source to surface distance, the air gap between snout and surface, field size, material thickness in front of surface, atomic number of the medium, beam angle and type of nozzle (ie double scattering, (DS), uniform scanning (US) or pencil beam scanning (PBS). Obliquity factormore » (OF) is defined as ratio of surface dose in 0° to beam angle Θ. Measurements were made in water phantom at various beam angles using very small microdiamond that has shown favorable beam characteristics for high, medium and low proton energy. Depth dose measurements were performed in the central axis of the beam in each respective gantry angle. Results: It is observed that surface dose is energy dependent but more predominantly on the SOBP. It is found that as SSD increases, surface dose decreases. In general, SSD, and air gap has limited impact in clinical proton range. High energy has higher surface dose and so the beam angle. The OF rises with beam angle. Compared to OF of 1.0 at 0° beam angle, the value is 1.5, 1.6, 1,7 for small, medium and large range respectively for 60 degree angle. Conclusion: It is advised that just like range and SOBP, surface dose should be clearly understood and a method to reduce the surface dose should be employed. Obliquity factor is a critical parameter that should be accounted in proton beam therapy and a perpendicular beam should be used to reduce surface dose.« less
The dose-response of Harshaw TLD-700H.
Velbeck, K J; Luo, L Z; Ramlo, M J; Rotunda, J E
2006-01-01
Harshaw TLD-700H (7LiF:Mg,Cu,P) was previously characterised for low- to high-dose ranges from 1 microGy to 20 Gy. This paper describes the studies and results of dose-response and linearity at much higher doses. TLD-700H is a near perfect dosimetric material with near tissue equivalence, flat energy response, and the ability to measure beta, gamma and X rays. These new results extend the applicability of Harshaw TLD-700H into more dosimetric measurement environments. The simple glow curve structure provides insignificant fade, eliminating special oven preparation methods experienced by other materials. The work presented in this paper quantifies the performance of Harshaw TLD-700H in extended ranges.
Krösser, S; Tillner, J; Fluck, M; Ungethüm, W; Wolna, P; Kovar, A
2007-05-01
Sarizotan is a 5-HTIA receptor agonist with high affinity for D3 and D4 receptors. Here we report the pharmacokinetic and tolerability results from four Phase 1 studies. Two single-dose (5 -25 mg, n = 25, 0.5 - 5 mg, n = 16) and two multiple-dose (10 and 20 mg b.i.d., n = 30, 5 mg b.i.d., n = 12) studies with orally administered sarizotan HCl were carried out in healthy subjects. Plasma sarizotan HCl concentrations were measured using a validated HPLC method and fluorescence or MS/MS detection. Pharmacokinetic parameters were obtained using standard non-compartmental methods. Sarizotan was rapidly absorbed, group-median times to reach maximum concentration (tmax) ranged from 0.5 -2.25 h after single doses and during steady state. Maximum plasma concentration (Cmax) and tmax were slightly dependent on formulation and food intake, whereas area under the curve (AUC) was unaffected by these factors. AUC and Cmax increased dose-proportionally over the tested dose range. Independently of dose and time, sarizotan HCl plasma concentrations declined polyexponentially with a terminal elimination half-life (t1/2) of 5 - 7 h. Accumulation factors corresponded to t1/2 values, and steady state was reached within 24 h. Plasma metabolite concentrations were considerably lower than those of the parent drug. The ratio metabolite AUC : parent drug AUC was time- and dose-independent for all three metabolites suggesting that the metabolism of sarizotan is non-saturable in the tested dose range. The pharmacokinetics of sarizotan were dose-proportional and time-independent for the dose range 0.5 -25 mg). The drug was well-tolerated by healthy subjects up to a single dose of 20 mg.
Lim, Adeline Yl; Segarra, Ignacio; Chakravarthi, Srikumar; Akram, Sufyan; Judson, John P
2010-10-15
Sunitinib, a tyrosine kinase inhibitor to treat GIST and mRCC may interact with paracetamol as both undergo P450 mediated biotransformation and P-glycoprotein transport. This study evaluates the effects of sunitinib-paracetamol coadministration on liver and renal function biomarkers and liver, kidney, brain, heart and spleen histopathology. ICR male mice (n = 6 per group/dose) were administered saline (group-A) or paracetamol 500 mg/kg IP (group-B), or sunitinib at 25, 50, 80, 100, 140 mg/kg PO (group-C) or coadministered sunitinib at 25, 50, 80, 100, 140 mg/kg PO and paracetamol IP at fixed dose 500 mg/kg (group-D). Paracetamol was administered 15 min before sunitinib. Mice were sacrificed 4 h post sunitinib administration. Group-A serum ALT and AST levels were 14.29 ± 2.31 U/L and 160.37 ± 24.74 U/L respectively and increased to 249.6 ± 222.7 U/L and 377.1 ± 173.6 U/L respectively in group-B; group-C ALT and AST ranged 36.75-75.02 U/L and 204.4-290.3 U/L respectively. After paracetamol coadministration with low sunitinib doses (group-D), ALT and AST concentrations ranged 182.79-221.03 U/L and 259.7-264.4 U/L respectively, lower than group-B. Paracetamol coadministration with high sunitinib doses showed higher ALT and AST values (range 269.6-349.2 U/L and 430.2-540.3 U/L respectively), p < 0.05. Hepatic histopathology showed vascular congestion in group-B; mild congestion in group-C (but lesser than in group-B and D). In group-D, at low doses of sunitinib, lesser damage than in group-B occurred but larger changes including congestion were observed at high sunitinib doses. BUN levels were higher (p < 0.05) for group-B (33.81 ± 5.68 mg/dL) and group-D (range 35.01 ± 6.95 U/L to 52.85 ± 12.53 U/L) compared to group-A (15.60 ± 2.17 mg/dL) and group-C (range 17.50 ± 1.25 U/L to 26.68 ± 6.05 U/L). Creatinine remained unchanged. Renal congestion and necrosis was lower in group-C than group-B but was higher in group-D (p > 0.05). Mild cardiotoxicity occurred in groups B, C and D. Brain vascular congestion occurred at high doses of sunitinib administered alone or with paracetamol. Hepatic and renal biomarkers correlated with histopathology signs. Paracetamol and sunitinib coadministration may lead to dose dependent outcomes exhibiting mild hepatoprotective effect or increased hepatotoxicity. Sunitinib at high doses show renal, cardiac and brain toxicity. Liver and renal function monitoring is recommended.
2010-01-01
Background Sunitinib, a tyrosine kinase inhibitor to treat GIST and mRCC may interact with paracetamol as both undergo P450 mediated biotransformation and P-glycoprotein transport. This study evaluates the effects of sunitinib-paracetamol coadministration on liver and renal function biomarkers and liver, kidney, brain, heart and spleen histopathology. ICR male mice (n = 6 per group/dose) were administered saline (group-A) or paracetamol 500 mg/kg IP (group-B), or sunitinib at 25, 50, 80, 100, 140 mg/kg PO (group-C) or coadministered sunitinib at 25, 50, 80, 100, 140 mg/kg PO and paracetamol IP at fixed dose 500 mg/kg (group-D). Paracetamol was administered 15 min before sunitinib. Mice were sacrificed 4 h post sunitinib administration. Results Group-A serum ALT and AST levels were 14.29 ± 2.31 U/L and 160.37 ± 24.74 U/L respectively and increased to 249.6 ± 222.7 U/L and 377.1 ± 173.6 U/L respectively in group-B; group-C ALT and AST ranged 36.75-75.02 U/L and 204.4-290.3 U/L respectively. After paracetamol coadministration with low sunitinib doses (group-D), ALT and AST concentrations ranged 182.79-221.03 U/L and 259.7-264.4 U/L respectively, lower than group-B. Paracetamol coadministration with high sunitinib doses showed higher ALT and AST values (range 269.6-349.2 U/L and 430.2-540.3 U/L respectively), p < 0.05. Hepatic histopathology showed vascular congestion in group-B; mild congestion in group-C (but lesser than in group-B and D). In group-D, at low doses of sunitinib, lesser damage than in group-B occurred but larger changes including congestion were observed at high sunitinib doses. BUN levels were higher (p < 0.05) for group-B (33.81 ± 5.68 mg/dL) and group-D (range 35.01 ± 6.95 U/L to 52.85 ± 12.53 U/L) compared to group-A (15.60 ± 2.17 mg/dL) and group-C (range 17.50 ± 1.25 U/L to 26.68 ± 6.05 U/L). Creatinine remained unchanged. Renal congestion and necrosis was lower in group-C than group-B but was higher in group-D (p > 0.05). Mild cardiotoxicity occurred in groups B, C and D. Brain vascular congestion occurred at high doses of sunitinib administered alone or with paracetamol. Hepatic and renal biomarkers correlated with histopathology signs. Conclusions Paracetamol and sunitinib coadministration may lead to dose dependent outcomes exhibiting mild hepatoprotective effect or increased hepatotoxicity. Sunitinib at high doses show renal, cardiac and brain toxicity. Liver and renal function monitoring is recommended. PMID:20950441
Calorimetry of electron beams and the calibration of dosimeters at high doses
NASA Astrophysics Data System (ADS)
Humphreys, J. C.; McLaughlin, W. L.
Graphite or metal calorimeters are used to make absolute dosimetric measurements of high-energy electron beams. These calibrated beams are then used to calibrate several types of dosimeters for high-dose applications such as medical-product sterilization, polymer modification, food processing, or electronic-device hardness testing. The electron beams are produced either as continuous high-power beams at approximately 4.5 MeV by d.c. type accelerators or in the energy range of approximately 8 to 50 MeV using pulsed microwave linear accelerators (linacs). The continuous beams are generally magnetically scanned to produce a broad, uniform radiation environment for the processing of materials of extended lateral dimensions. The higher-energy pulsed beams may also be scanned for processing applications or may be used in an unscanned, tightly-focused mode to produce maximum absorbed dose rates such as may be required for electronic-device radiation hardness testing. The calorimeters are used over an absorbed dose range of 10 2 to 10 4 Gy. Intercomparison studies are reported between National Institute of Standards and Technology (NIST) and UK National Physical Laboratory (NPL) graphite disk calorimeters at high doses, using the NPL 10-MeV linac, and agreement was found within 1.5%. It was also shown that the electron-beam responses of radiochromic film dosimeters and alanine pellet dosimeters can be accurately calibrated by comparison with calorimeter readings.
Older adults and high-risk medication administration in the emergency department.
Kim, Mitchell; Mitchell, Steven H; Gatewood, Medley; Bennett, Katherine A; Sutton, Paul R; Crawford, Carol A; Bentov, Itay; Damodarasamy, Mamatha; Kaplan, Stephen J; Reed, May J
2017-01-01
Older adults are susceptible to adverse effects from opioids, nonsteroidal anti-inflammatory drugs (NSAIDs), and benzodiazepines (BZDs). We investigated factors associated with the administration of elevated doses of these medications of interest to older adults (≥65 years old) in the emergency department (ED). ED records were queried for the administration of medications of interest to older adults at two academic medical center EDs over a 6-month period. Frequency of recommended versus elevated ("High doses" were defined as doses that ranged between 1.5 and 3 times higher than the recommended starting doses; "very high doses" were defined as higher than high doses) starting doses of medications, as determined by geriatric pharmacy/medicine guidelines and expert consensus, was compared by age groups (65-69, 70-74, 75-79, 80-84, and ≥85 years), gender, and hospital. There were 17896 visits representing 11374 unique patients >65 years of age (55.3% men, 44.7% women). A total of 3394 doses of medications of interest including 1678 high doses and 684 very high doses were administered to 1364 different patients. Administration of elevated doses of medications was more common than that of recommended doses. Focusing on opioids and BZDs, the 65-69-year age group was much more likely to receive very high doses (1481 and 412 doses, respectively) than the ≥85-year age groups (relative risk [RR] 5.52, 95% CI 2.56-11.90), mainly reflecting elevated opioid dosing (RR 8.28, 95% CI 3.69-18.57). Men were more likely than women to receive very high doses (RR 1.47, 95% CI 1.26-1.72), primarily due to BZDs (RR 2.12, 95% CI 2.07-2.16). Administration of elevated doses of opioids and BZDs in the older population occurs frequently in the ED, especially to the 65-69-year age group and men. Further attention to potentially unsafe dosing of high-risk medications to older adults in the ED is warranted.
Inaniwa, Taku; Kohno, Toshiyuki; Tomitani, Takehiro; Urakabe, Eriko; Sato, Shinji; Kanazawa, Mitsutaka; Kanai, Tatsuaki
2006-09-07
In radiation therapy with highly energetic heavy ions, the conformal irradiation of a tumour can be achieved by using their advantageous features such as the good dose localization and the high relative biological effectiveness around their mean range. For effective utilization of such properties, it is necessary to evaluate the range of incident ions and the deposited dose distribution in a patient's body. Several methods have been proposed to derive such physical quantities; one of them uses positron emitters generated through projectile fragmentation reactions of incident ions with target nuclei. We have proposed the application of the maximum likelihood estimation (MLE) method to a detected annihilation gamma-ray distribution for determination of the range of incident ions in a target and we have demonstrated the effectiveness of the method with computer simulations. In this paper, a water, a polyethylene and a polymethyl methacrylate target were each irradiated with stable (12)C, (14)N, (16)O and (20)Ne beams. Except for a few combinations of incident beams and targets, the MLE method could determine the range of incident ions R(MLE) with a difference between R(MLE) and the experimental range of less than 2.0 mm under the circumstance that the measurement of annihilation gamma rays was started just after the irradiation of 61.4 s and lasted for 500 s. In the process of evaluating the range of incident ions with the MLE method, we must calculate many physical quantities such as the fluence and the energy of both primary ions and fragments as a function of depth in a target. Consequently, by using them we can obtain the dose distribution. Thus, when the mean range of incident ions is determined with the MLE method, the annihilation gamma-ray distribution and the deposited dose distribution can be derived simultaneously. The derived dose distributions in water for the mono-energetic heavy-ion beams of four species were compared with those measured with an ionization chamber. The good agreement between the derived and the measured distributions implies that the deposited dose distribution in a target can be estimated from the detected annihilation gamma-ray distribution with a positron camera.
Population dose commitments due to radioactive releases from nuclear-power-plant sites in 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peloquin, R.A.; Schwab, J.D.; Baker, D.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1978. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving variousmore » average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 200 person-rem to a low of 0.0004 person-rem with an arithmetic mean of 14 person-rem. The total population dose for allsites was estimated at 660 person-rem for the 93 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 3 x 10/sup -6/ mrem to a high of 0.08 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less
Population dose commitments due to radioactive releases from Nuclear-Power-Plant Sites in 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.; Peloquin, R.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1979. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving variousmore » average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 1300 person-rem to a low of 0.0002 person-rem with an arithmetic mean of 38 person-rem. The total population dose for all sites was estimated at 1800 person-rem for the 94 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 2 x 10/sup -6/ mrem to a high of 0.7 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less
Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D. A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1977. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ, Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving variousmore » average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 220 person-rem to a low of 0.003 person-rem with an arithmetic mean of 16 person-rem. The total population dose for all sites was estimated at 700 person-rem for the 92 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 2 x 10{sup -5} mrem to a high of 0.1 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less
Potential High Resolution Dosimeters For MRT
NASA Astrophysics Data System (ADS)
Bräuer-Krisch, E.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Brochard, T.; Kamlowski, A.; Cellere, G.; Paccagnella, A.; Siegbahn, E. A.; Prezado, Y.; Martinez-Rovira, I.; Bravin, A.; Dusseau, L.; Berkvens, P.
2010-07-01
Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow (˜25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 μm microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy/s, micron resolution and a dose range over several orders of magnitude. This paper will give an overview of all dosimeters tested in the past at the ESRF with their advantages and drawbacks. These detectors comprise: Ionization chambers, Alanine Dosimeters, MOSFET detectors, Gafchromic® films, Radiochromic polymers, TLDs, Polymer gels, Fluorescent Nuclear Track Detectors (Al2O3:C, Mg single crystal detectors), OSL detectors and Floating Gate-based dosimetry system. The aim of such a comparison shall help with a decision on which of these approaches is most suitable for high resolution dose measurements in MRT. The principle of these detectors will be presented including a comparison for some dosimeters exposed with the same irradiation geometry, namely a 1×1 cm5 field size with microbeam exposures at the surface, 0.1 cm and 1 cm in depth of a PMMA phantom. For these test exposures, the most relevant irradiation parameters for future clinical trials have been chosen: 50 micron FWHM and 400 micron c-t-c distance. The experimental data are compared with Monte Carlo calculations.
Mandapaka, A K; Ghebremedhin, A; Patyal, B; Marinelli, Marco; Prestopino, G; Verona, C; Verona-Rinati, G
2013-12-01
To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams. The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up∕stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated. A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy∕min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters. The observed dosimetric properties of the synthetic single crystal diamond detector indicate that its behavior is proton energy independent and dose rate independent in the investigated energy and dose rate range and it is suitable for accurate relative dosimetric measurements in large as well as in small field high energy clinical proton beams.
ERIC Educational Resources Information Center
Kent, Justine M.; Kushner, Stuart; Ning, Xiaoping; Karcher, Keith; Ness, Seth; Aman, Michael; Singh, Jaskaran; Hough, David
2013-01-01
Efficacy and safety of 2 risperidone doses were evaluated in children and adolescents with autism. Patients (N = 96; 5-17 years), received risperidone (low-dose: 0.125 mg/day [20 to <45 kg], 0.175 mg/day [>45 kg] or high-dose: 1.25 mg/day [20 to <45 kg], 1.75 mg/day [>45 kg]) or placebo. Mean baseline (range 27-29) to endpoint change…
NASA Astrophysics Data System (ADS)
González-López, Antonio; Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen
2017-11-01
The influence of the various sources of noise on the uncertainty in radiochromic film (RCF) dosimetry using single channel and multichannel methods is investigated in this work. These sources of noise are extracted from pixel value (PV) readings and dose maps. Pieces of an RCF were each irradiated to different uniform doses, ranging from 0 to 1092 cGy. Then, the pieces were read at two resolutions (72 and 150 ppp) with two flatbed scanners: Epson 10000XL and Epson V800, representing two states of technology. Noise was extracted as described in ISO 15739 (2013), separating its distinct constituents: random noise and fixed pattern (FP) noise. Regarding the PV maps, FP noise is the main source of noise for both models of digitizer. Also, the standard deviation of the random noise in the 10000XL model is almost twice that of the V800 model. In the dose maps, the FP noise is smaller in the multichannel method than in the single channel ones. However, random noise is higher in this method, throughout the dose range. In the multichannel method, FP noise is reduced, as a consequence of this method’s ability to eliminate channel independent perturbations. However, the random noise increases, because the dose is calculated as a linear combination of the doses obtained by the single channel methods. The values of the coefficients of this linear combination are obtained in the present study, and the root of the sum of their squares is shown to range between 0.9 and 1.9 over the dose range studied. These results indicate the random noise to play a fundamental role in the uncertainty of RCF dosimetry: low levels of random noise are required in the digitizer to fully exploit the advantages of the multichannel dosimetry method. This is particularly important for measuring high doses at high spatial resolutions.
Flat Ge-doped optical fibres for food irradiation dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull
Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dosemore » response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.« less
Dolton, Michael J.; Perera, Vidya; Pont, Lisa G.
2014-01-01
Terbinafine is increasingly used in combination with other antifungal agents to treat resistant or refractory mycoses due to synergistic in vitro antifungal activity; high doses are commonly used, but limited data are available on systemic exposure, and no assessment of pharmacodynamic target attainment has been made. Using a physiologically based pharmacokinetic (PBPK) model for terbinafine, this study aimed to predict total and unbound terbinafine concentrations in plasma with a range of high-dose regimens and also calculate predicted pharmacodynamic parameters for terbinafine. Predicted terbinafine concentrations accumulated significantly during the first 28 days of treatment; the area under the concentration-time curve (AUC)/MIC ratios and AUC for the free, unbound fraction (fAUC)/MIC ratios increased by 54 to 62% on day 7 of treatment and by 80 to 92% on day 28 compared to day 1, depending on the dose regimen. Of the high-dose regimens investigated, 500 mg of terbinafine taken every 12 h provided the highest systemic exposure; on day 7 of treatment, the predicted AUC, maximum concentration (Cmax), and minimum concentration (Cmin) were approximately 4-fold, 1.9-fold, and 4.4-fold higher than with a standard-dose regimen of 250 mg once daily. Close agreement was seen between the concentrations predicted by the PBPK model and the observed concentrations, indicating good predictive performance. This study provides the first report of predicted terbinafine exposure in plasma with a range of high-dose regimens. PMID:24126579
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utsunomiya, S; Kushima, N; Katsura, K
Purpose: To establish a simple relation of backscatter dose enhancement around a high-Z dental alloy in head and neck radiation therapy to its average atomic number based on Monte Carlo calculations. Methods: The PHITS Monte Carlo code was used to calculate dose enhancement, which is quantified by the backscatter dose factor (BSDF). The accuracy of the beam modeling with PHITS was verified by comparing with basic measured data namely PDDs and dose profiles. In the simulation, a high-Z alloy of 1 cm cube was embedded into a tough water phantom irradiated by a 6-MV (nominal) X-ray beam of 10 cmmore » × 10 cm field size of Novalis TX (Brainlab). The ten different materials of high-Z alloys (Al, Ti, Cu, Ag, Au-Pd-Ag, I, Ba, W, Au, Pb) were considered. The accuracy of calculated BSDF was verified by comparing with measured data by Gafchromic EBT3 films placed at from 0 to 10 mm away from a high-Z alloy (Au-Pd-Ag). We derived an approximate equation to determine the relation of BSDF and range of backscatter to average atomic number of high-Z alloy. Results: The calculated BSDF showed excellent agreement with measured one by Gafchromic EBT3 films at from 0 to 10 mm away from the high-Z alloy. We found the simple linear relation of BSDF and range of backscatter to average atomic number of dental alloys. The latter relation was proven by the fact that energy spectrum of backscatter electrons strongly depend on average atomic number. Conclusion: We found a simple relation of backscatter dose enhancement around high-Z alloys to its average atomic number based on Monte Carlo calculations. This work provides a simple and useful method to estimate backscatter dose enhancement from dental alloys and corresponding optimal thickness of dental spacer to prevent mucositis effectively.« less
Preventing and Managing Toxicities of High-Dose Methotrexate.
Howard, Scott C; McCormick, John; Pui, Ching-Hon; Buddington, Randall K; Harvey, R Donald
2016-12-01
: High-dose methotrexate (HDMTX), defined as a dose higher than 500 mg/m 2 , is used to treat a range of adult and childhood cancers. Although HDMTX is safely administered to most patients, it can cause significant toxicity, including acute kidney injury (AKI) in 2%-12% of patients. Nephrotoxicity results from crystallization of methotrexate in the renal tubular lumen, leading to tubular toxicity. AKI and other toxicities of high-dose methotrexate can lead to significant morbidity, treatment delays, and diminished renal function. Risk factors for methotrexate-associated toxicity include a history of renal dysfunction, volume depletion, acidic urine, and drug interactions. Renal toxicity leads to impaired methotrexate clearance and prolonged exposure to toxic concentrations, which further worsen renal function and exacerbate nonrenal adverse events, including myelosuppression, mucositis, dermatologic toxicity, and hepatotoxicity. Serum creatinine, urine output, and serum methotrexate concentration are monitored to assess renal clearance, with concurrent hydration, urinary alkalinization, and leucovorin rescue to prevent and mitigate AKI and subsequent toxicity. When delayed methotrexate excretion or AKI occurs despite preventive strategies, increased hydration, high-dose leucovorin, and glucarpidase are usually sufficient to allow renal recovery without the need for dialysis. Prompt recognition and effective treatment of AKI and associated toxicities mitigate further toxicity, facilitate renal recovery, and permit patients to receive other chemotherapy or resume HDMTX therapy when additional courses are indicated. High-dose methotrexate (HDMTX), defined as a dose higher than 500 mg/m 2 , is used for a range of cancers. Although HDMTX is safely administered to most patients, it can cause significant toxicity, including acute kidney injury (AKI), attributable to crystallization of methotrexate in the renal tubular lumen, leading to tubular toxicity. When AKI occurs despite preventive strategies, increased hydration, high-dose leucovorin, and glucarpidase allow renal recovery without the need for dialysis. This article, based on a review of the current associated literature, provides comprehensive recommendations for prevention of toxicity and, when necessary, detailed treatment guidance to mitigate AKI and subsequent toxicity. ©AlphaMed Press.
Preventing and Managing Toxicities of High-Dose Methotrexate
McCormick, John; Pui, Ching-Hon; Buddington, Randall K.; Harvey, R. Donald
2016-01-01
High-dose methotrexate (HDMTX), defined as a dose higher than 500 mg/m2, is used to treat a range of adult and childhood cancers. Although HDMTX is safely administered to most patients, it can cause significant toxicity, including acute kidney injury (AKI) in 2%–12% of patients. Nephrotoxicity results from crystallization of methotrexate in the renal tubular lumen, leading to tubular toxicity. AKI and other toxicities of high-dose methotrexate can lead to significant morbidity, treatment delays, and diminished renal function. Risk factors for methotrexate-associated toxicity include a history of renal dysfunction, volume depletion, acidic urine, and drug interactions. Renal toxicity leads to impaired methotrexate clearance and prolonged exposure to toxic concentrations, which further worsen renal function and exacerbate nonrenal adverse events, including myelosuppression, mucositis, dermatologic toxicity, and hepatotoxicity. Serum creatinine, urine output, and serum methotrexate concentration are monitored to assess renal clearance, with concurrent hydration, urinary alkalinization, and leucovorin rescue to prevent and mitigate AKI and subsequent toxicity. When delayed methotrexate excretion or AKI occurs despite preventive strategies, increased hydration, high-dose leucovorin, and glucarpidase are usually sufficient to allow renal recovery without the need for dialysis. Prompt recognition and effective treatment of AKI and associated toxicities mitigate further toxicity, facilitate renal recovery, and permit patients to receive other chemotherapy or resume HDMTX therapy when additional courses are indicated. Implications for Practice: High-dose methotrexate (HDMTX), defined as a dose higher than 500 mg/m2, is used for a range of cancers. Although HDMTX is safely administered to most patients, it can cause significant toxicity, including acute kidney injury (AKI), attributable to crystallization of methotrexate in the renal tubular lumen, leading to tubular toxicity. When AKI occurs despite preventive strategies, increased hydration, high-dose leucovorin, and glucarpidase allow renal recovery without the need for dialysis. This article, based on a review of the current associated literature, provides comprehensive recommendations for prevention of toxicity and, when necessary, detailed treatment guidance to mitigate AKI and subsequent toxicity. PMID:27496039
Gemishev, Orlin; Zapryanov, Stanislav; Blagoev, Alexander; Markova, Maya; Savov, Valentin
2014-09-03
Bioconversion of cellulose-containing substrate to glucose represents an important area of modern biotechnology. Enzymes for the degradation of the polysaccharide part of biomass have been produced, mostly by fungi belonging to genus Trichoderma . Studies were carried out with the mutant strain Trichoderma reesei- M7, a cellulase producer. Spores of the enzyme producer were irradiated with different doses of characteristic X-ray radiation from metallic tungsten (mainly the W Kα1 and Kα2 lines) with a high dose rate. The latter is a specific property of the dense plasma focus (DPF) device, which has pulsed operation and thus gives short and highly energetic pulses of multiple types of rays and particles. In this case, we focused our study on the influence of hard X-rays. The doses of X-rays absorbed by the spores varied in the range of approximately 5-11,000 mSv measured with thermoluminescent dosimeters (TLD). The influence of the applied doses in combination with exceptionally high dose rates (in the order of tens of millisieverts per microsecond) on the activity of the produced endoglucanase, amount of biomass and extra-cellular protein, was studied in batch cultivation conditions. In the dose range of 200-1200 mSv, some enhancement of endoglucanase activity was obtained: around 18%-32%, despite the drop of the biomass amount, compared with the untreated material.
Gemishev, Orlin; Zapryanov, Stanislav; Blagoev, Alexander; Markova, Maya; Savov, Valentin
2014-01-01
Bioconversion of cellulose-containing substrate to glucose represents an important area of modern biotechnology. Enzymes for the degradation of the polysaccharide part of biomass have been produced, mostly by fungi belonging to genus Trichoderma. Studies were carried out with the mutant strain Trichoderma reesei-M7, a cellulase producer. Spores of the enzyme producer were irradiated with different doses of characteristic X-ray radiation from metallic tungsten (mainly the W Kα1 and Kα2 lines) with a high dose rate. The latter is a specific property of the dense plasma focus (DPF) device, which has pulsed operation and thus gives short and highly energetic pulses of multiple types of rays and particles. In this case, we focused our study on the influence of hard X-rays. The doses of X-rays absorbed by the spores varied in the range of approximately 5–11,000 mSv measured with thermoluminescent dosimeters (TLD). The influence of the applied doses in combination with exceptionally high dose rates (in the order of tens of millisieverts per microsecond) on the activity of the produced endoglucanase, amount of biomass and extra-cellular protein, was studied in batch cultivation conditions. In the dose range of 200–1200 mSv, some enhancement of endoglucanase activity was obtained: around 18%–32%, despite the drop of the biomass amount, compared with the untreated material. PMID:26019569
Mennenga, Sarah E; Gerson, Julia E; Koebele, Stephanie V; Kingston, Melissa L; Tsang, Candy W S; Engler-Chiurazzi, Elizabeth B; Baxter, Leslie C; Bimonte-Nelson, Heather A
2015-04-01
Ethinyl Estradiol (EE), a synthetic, orally bio-available estrogen, is the most commonly prescribed form of estrogen in oral contraceptives, and is found in at least 30 different contraceptive formulations currently prescribed to women as well as hormone therapies prescribed to menopausal women. Thus, EE is prescribed clinically to women at ages ranging from puberty to reproductive senescence. Here, in two separate studies, the cognitive effects of cyclic or tonic EE administration following ovariectomy (Ovx) were evaluated in young female rats. Study I assessed the cognitive effects of low and high doses of EE, delivered tonically via a subcutaneous osmotic pump. Study II evaluated the cognitive effects of low, medium, and high doses of EE administered via a daily subcutaneous injection, modeling the daily rise and fall of serum EE levels with oral regimens. Study II also investigated the impact of low, medium and high doses of EE on the basal forebrain cholinergic system. The low and medium doses utilized here correspond to the range of doses currently used in clinical formulations, and the high dose corresponds to doses prescribed to a generation of women between 1960 and 1970, when oral contraceptives first became available. We evaluate cognition using a battery of maze tasks tapping several domains of spatial learning and memory as well as basal forebrain cholinergic integrity using immunohistochemistry and unbiased stereology to estimate the number of choline acetyltransferase (ChAT)-producing cells in the medial septum and vertical/diagonal bands. At the highest dose, EE treatment impaired multiple domains of spatial memory relative to vehicle treatment, regardless of administration method. When given cyclically at the low and medium doses, EE did not impact working memory, but transiently impaired reference memory during the learning phase of testing. Of the doses and regimens tested here, only EE at the highest dose impaired several domains of memory; tonic delivery of low EE, a dose that corresponds to the most popular doses used in the clinic today, did not impact cognition on any measure. Both medium and high injection doses of EE reduced the number of ChAt-immunoreactive cells in the basal forebrain, and cell population estimates in the vertical/diagonal bands negatively correlated with working memory errors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of supplementation with higher levels of manganese and magnesium on immune function.
Son, Eun-Wha; Lee, Sung-Ryul; Choi, Hye-Sook; Koo, Hyun-Jung; Huh, Jung-Eun; Kim, Mi-Hyun; Pyo, Suhkneung
2007-06-01
The magnesium (Mg) and manganese (Mn) were evaluated for its effectiveness as an immunomodulator in rats. The treatments were as follows: Group 1, AIN-93M diet (0.05% Mg, 0.001% Mn); Group 2, high-dose Mg (0.1% Mg, 0.001% Mn); and Group 3, high dose Mn (0.05% Mg, 0.01% Mn) (n-12/group). After 12 weeks of supplementation, rats were sacrificed to assess the effect on a range of innate responses (tumoricidal activity, oxidative burst and nitric oxide) and the mitogen-stimulated lymphoproliferative response. Immune function was significantly affected in both the high dose Mg and the Mn group. Lymphocyte proliferative responses and NK cell activity were measured in pooled spleen from each group. The mitogen response of lymphocytes to LPS in the spleen was significantly reduced in high dose Mg-treated groups, whereas the response to ConA was not affected in both high dose minerals-treated groups. The reactive oxygen species level of macrophages was decreased in both groups. These effects were more pronounced in high dose Mg-treated group. Nitric oxide production was also decreased in high dose minerals-treated group. In addition, tumoricidal activities of splenic NK cell and peritoneal macrophage in mineral exposed rats were significantly increased. Moreover, percent death of macrophage was reduced in two groups receiving high dose mineral supplements. Taken together, the present data suggest that high dose trace min erals exert a differential effect on the function of immune cells.
Poster - Thur Eve - 03: LDR to HDR: RADPOS applications in brachytherapy.
Cherpak, A J; Cygler, J E; Kertzscher, G; E, C; Perry, G
2012-07-01
The RADPOS in vivo dosimetry system combines an electromagnetic positioning sensor and either one or five MOSFET dosimeters. The feasibility of using the system for quality control has been explored for a range of radiotherapy treatment techniques including most recently transperineal interstitial permanent prostate brachytherapy and high dose rate (HDR) treatments. Dose and position information was collected by a RADPOS array detector inside a Foley catheter within patients' urethra during permanent seed implantation. Ten patients were studied, and average displacement during implantation was Δr = (1.4-5.1) mm, with movements up to 9.7 mm due to the removal of the transrectal ultrasound probe. Maximum integral dose in the prostatic urethra ranged from 110-195 Gy, and it was found that the dose can change up to 63 cGy (62.0%) depending on whether the rectal probe is in place. For HDR, a RADPOS detector was first calibrated with an Ir-192 source. A treatment was then simulated using a total of 50 dwell positions in 5 catheters in an acrylic phantom. Dwell positions ranged from 1 to 10 cm away from the RADPOS detector and dose was measured for each source position. An average calibration coefficient of 0.74±0.11 cGy/mV was calculated for the detector and the average absolute difference between measured values and expected dose was 0.7±5.4 cGy (5±20%). The demonstrated accuracy of RADPOS dose measurements along with its ability to simultaneously measure displacement makes it a powerful tool for brachytherapy treatments, where high dose gradients can present unique in vivo dosimetry challenges. © 2012 American Association of Physicists in Medicine.
Real-Time Patient and Staff Radiation Dose Monitoring in IR Practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sailer, Anna M., E-mail: karmanna@stanford.edu; Paulis, Leonie, E-mail: leonie.paulis@mumc.nl; Vergoossen, Laura
PurposeKnowledge of medical radiation exposure permits application of radiation protection principles. In our center, the first dedicated real-time, automated patient and staff dose monitoring system (DoseWise Portal, Philips Healthcare) was installed. Aim of this study was to obtain insight in the procedural and occupational doses.Materials and MethodsAll interventional radiologists, vascular surgeons, and technicians wore personal dose meters (PDMs, DoseAware, Philips Healthcare). The dose monitoring system simultaneously registered for each procedure dose-related data as the dose area product (DAP) and effective staff dose (E) from PDMs. Use and type of shielding were recorded separately. All procedures were analyzed according to proceduremore » type; these included among others cerebral interventions (n = 112), iliac and/or caval venous recanalization procedures (n = 68), endovascular aortic repair procedures (n = 63), biliary duct interventions (n = 58), and percutaneous gastrostomy procedure (n = 28).ResultsMedian (±IQR) DAP doses ranged from 2.0 (0.8–3.1) (percutaneous gastrostomy) to 84 (53–147) Gy cm{sup 2} (aortic repair procedures). Median (±IQR) first operator doses ranged from 1.6 (1.1–5.0) μSv to 33.4 (12.1–125.0) for these procedures, respectively. The relative exposure, determined as first operator dose normalized to procedural DAP, ranged from 1.9 in biliary interventions to 0.1 μSv/Gy cm{sup 2} in cerebral interventions, indicating large variation in staff dose per unit DAP among the procedure types.ConclusionReal-time dose monitoring was able to identify the types of interventions with either an absolute or relatively high staff dose, and may allow for specific optimization of radiation protection.« less
Moderate- vs high-dose methadone in the treatment of opioid dependence: a randomized trial.
Strain, E C; Bigelow, G E; Liebson, I A; Stitzer, M L
1999-03-17
Methadone hydrochloride treatment is the most common pharmacological intervention for opioid dependence, and recent interest has focused on expanding methadone treatment availability beyond traditional specially licensed clinics. However, despite recommendations regarding effective dosing of methadone, controlled clinical trials of higher-dose methadone have not been conducted. To compare the relative clinical efficacy of moderate- vs high-dose methadone in the treatment of opioid dependence. A 40-week randomized, double-blind clinical trial starting in June 1992 and ending in October 1995. Outpatient substance abuse treatment research clinic at the Johns Hopkins University Bayview Campus, Baltimore, Md. One hundred ninety-two eligible clinic patients. Daily oral methadone hydrochloride in the dose range of 40 to 50 mg (n = 97) or 80 to 100 mg (n = 95), with concurrent substance abuse counseling. Opioid-positive urinalysis results and retention in treatment. By intent-to-treat analysis through week 30 patients in the high-dose group had significantly lower rates of opioid-positive urine samples compared with patients in the moderate-dose group (53.0% [95% confidence interval [CI], 46.9%-59.2%] vs 61.9% [95% CI, 55.9%-68.0%]; P = .047. These differences persisted during withdrawal from methadone. Through day 210 no significant difference was evident between dose groups in treatment retention (high-dose group mean retention, 159 days; moderate-dose group mean retention, 157 days). Nineteen (33%) of 57 patients in the high-dose group and 11 (20%) of 54 patients in the moderate-dose group completed detoxification. Both moderate- and high-dose methadone treatment resulted in decreased illicit opioid use during methadone maintenance and detoxification. The high-dose group had significantly greater decreases in illicit opioid use.
High dose vitamin K3 infusion in advanced hepatocellular carcinoma.
Sarin, Shiv K; Kumar, Manoj; Garg, Sanjay; Hissar, Syed; Pandey, Chandana; Sharma, Barjesh C
2006-09-01
The survival of patients with unresectable advanced hepatocellular carcinoma (HCC) with portal vein thrombosis is dismal. Current therapeutic options have limited efficacy. Vitamin K has been shown to have antitumor effect on HCC cells both in cell lines and patients with advanced HCC. The aim of this study was to assess the clinical efficacy of high dose vitamin K3 in the treatment of advanced HCC with portal vein thrombosis. Forty-two consecutive patients with advanced HCC (Stage C according to BCLC staging system) with portal vein thrombosis were randomized into two groups: (i) high dose vitamin K3 (n = 23); and (ii) placebo (n = 19). The vitamin K3 was administered by i.v. infusion of 50 mg/day with daily increase of dose by 50 mg for 6 days, followed by 20 mg i.m. twice daily for 2 weeks. Of the 23 patients treated with vitamin K, one (4.3%) achieved complete response and three (13%) partial response, for a total of four (17.4%) objective responders overall. The overall mean survival was 8.9 +/- 8.8 months (median: 6; range 1-37 months) in the vitamin K group and 6.8 +/- 5.3 months (median: 5; range 1.5-21 months) in the placebo group (P = 0.552). The mean duration of survival was longer in patients in the vitamin K group who achieved objective response (22.5 +/- 12.2; median: 21; range 11-37 months) as compared to patients not achieving objective response (6.1 +/- 4.6; median: 5; range 1-16 months) (P = 0.0.002). Portal vein thrombosis resolved with complete patency in one (4.35%) patient. Treatment with high dose vitamin K produces objective response in 17% patients with improved survival in patients achieving objective response; however, it does not affect the overall survival.
NASA Astrophysics Data System (ADS)
Yan, Hao; Cervino, Laura; Jia, Xun; Jiang, Steve B.
2012-04-01
While compressed sensing (CS)-based algorithms have been developed for the low-dose cone beam CT (CBCT) reconstruction, a clear understanding of the relationship between the image quality and imaging dose at low-dose levels is needed. In this paper, we qualitatively investigate this subject in a comprehensive manner with extensive experimental and simulation studies. The basic idea is to plot both the image quality and imaging dose together as functions of the number of projections and mAs per projection over the whole clinically relevant range. On this basis, a clear understanding of the tradeoff between the image quality and imaging dose can be achieved and optimal low-dose CBCT scan protocols can be developed to maximize the dose reduction while minimizing the image quality loss for various imaging tasks in image-guided radiation therapy (IGRT). Main findings of this work include (1) under the CS-based reconstruction framework, image quality has little degradation over a large range of dose variation. Image quality degradation becomes evident when the imaging dose (approximated with the x-ray tube load) is decreased below 100 total mAs. An imaging dose lower than 40 total mAs leads to a dramatic image degradation, and thus should be used cautiously. Optimal low-dose CBCT scan protocols likely fall in the dose range of 40-100 total mAs, depending on the specific IGRT applications. (2) Among different scan protocols at a constant low-dose level, the super sparse-view reconstruction with the projection number less than 50 is the most challenging case, even with strong regularization. Better image quality can be acquired with low mAs protocols. (3) The optimal scan protocol is the combination of a medium number of projections and a medium level of mAs/view. This is more evident when the dose is around 72.8 total mAs or below and when the ROI is a low-contrast or high-resolution object. Based on our results, the optimal number of projections is around 90 to 120. (4) The clinically acceptable lowest imaging dose level is task dependent. In our study, 72.8 mAs is a safe dose level for visualizing low-contrast objects, while 12.2 total mAs is sufficient for detecting high-contrast objects of diameter greater than 3 mm.
A system for electron therapy dosimetry surveys with thermoluminescence dosimeters.
Soares, C G; Ehrlich, M; Padikal, T N; Gromadzki, Z C
1982-11-01
Radiation-therapy dosimetry surveys employing thermoluminescence dosimeters (TLDs) are now being considered for high-energy electron beams. Using a system of individually calibrated pressed LiF TLDs in a water and a polystyrene phantom, we established that the distortions of depth-dose distributions in non-conducting materials previously observed at high absorbed doses and high dose rates were not detectable in the present geometry at doses and dose rates as much as 40 times higher than those employed in radiation therapy. The system was then used to measure TLD response in water and in polystyrene in the nominal electron-energy range from 7 to 18 MeV. In the water phantom, the well-known trend for TLD response to decrease with increasing electron energy was observed. In the polystyrene phantom, TLD response was found to be independent of electron energy.
Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure.
Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene; Flood, Ann B; Swartz, Harold M; Ali, Arif N
2016-04-01
Current radiation disaster manuals list the time-to-emesis (TE) as the key triage indicator of radiation dose. The data used to support TE recommendations were derived primarily from nearly instantaneous, high dose-rate exposures as part of variable condition accident databases. To date, there has not been a systematic differentiation between triage dose estimates associated with high and low dose rate (LDR) exposures, even though it is likely that after a nuclear detonation or radiologic disaster, many surviving casualties would have received a significant portion of their total exposure from fallout (LDR exposure) rather than from the initial nuclear detonation or criticality event (high dose rate exposure). This commentary discusses the issues surrounding the use of emesis as a screening diagnostic for radiation dose after LDR exposure. As part of this discussion, previously published clinical data on emesis after LDR total body irradiation (TBI) is statistically re-analyzed as an illustration of the complexity of the issue and confounding factors. This previously published data includes 107 patients who underwent TBI up to 10.5 Gy in a single fraction delivered over several hours at 0.02 to 0.04 Gy min. Estimates based on these data for the sensitivity of emesis as a screening diagnostic for the low dose rate radiation exposure range from 57.1% to 76.6%, and the estimates for specificity range from 87.5% to 99.4%. Though the original data contain multiple confounding factors, the evidence regarding sensitivity suggests that emesis appears to be quite poor as a medical screening diagnostic for LDR exposures.
Nielsen, Torben K; Højgaard, Martin; Andersen, Jon T; Poulsen, Henrik E; Lykkesfeldt, Jens; Mikines, Kári J
2015-04-01
Treatment with high-dose intravenous (IV) ascorbic acid (AA) is used in complementary and alternative medicine for various conditions including cancer. Cytotoxicity to cancer cell lines has been observed with millimolar concentrations of AA. Little is known about the pharmacokinetics of high-dose IV AA. The purpose of this study was to assess the basic kinetic variables in human beings over a relevant AA dosing interval for proper design of future clinical trials. Ten patients with metastatic prostate cancer were treated for 4 weeks with fixed AA doses of 5, 30 and 60 g. AA was measured consecutively in plasma and indicated first-order elimination kinetics throughout the dosing range with supra-physiological concentrations. The target dose of 60 g AA IV produced a peak plasma AA concentration of 20.3 mM. Elimination half-life was 1.87 hr (mean, S.D. ± 0.40), volume of distribution 0.19 L/kg (S.D. ±0.05) and clearance rate 6.02 L/hr (100 mL/min). No differences in pharmacokinetic parameters were observed between weeks/doses. A relatively fast first-order elimination with half-life of about 2 hr makes it impossible to maintain AA concentrations in the potential cytotoxic range after infusion stop in prostate cancer patients with normal kidney function. We propose a regimen with a bolus loading followed by a maintenance infusion based on the calculated clearance. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Genetic effects on heavy ions in drosophila
NASA Technical Reports Server (NTRS)
Kale, P. G.
1986-01-01
Drosophila sex-linked recessive lethal mutation test was used to study the dose response relation and relative biological effectiveness of heavy ions. The experiments were performed using the heavy ion beams at BEVALAC of Lawrence Berkeley Laboratory. These experiments were undertaken according to the proposed milestones and included Ne-20, A-40 and Fe-65 ions with respective energies of 600 MeV, 840 MeV and 850 MeV. At these energies several doses of these radiations ranging from 20 to 1280 R were used. Space radiation exposure to astronauts is supposed to be quite low and therefore very low dose experiments i.e., 20 R, were also performed for the three ions. The mutation response was measured in all germ cell types i.e., spermatozoa, spermatids, spermatocytes and spermatogonia of treated Drosophila males. A linear dose frequency relation was observed for most of the range except at high doses where the saturation effect was observed. Also, a very significant difference was observed among the sensitivity of the four germ cell stages where spermatozoa and spermatids were more sensitive. At the higher doses of this range, most of the spermatogonia and spermatocytes were killed. Although comparative and identical experiments with X-rays or neutrons have not been performed, the compassion of our data with the ones available in literature suggest that the heavy ions have a high rbe and that they are several times more effective than low LET X-rays. The rbe compared to neutrons however appears to be only slightly higher.
Joerger, Markus; Ferreri, Andrés J M; Krähenbühl, Stephan; Schellens, Jan H M; Cerny, Thomas; Zucca, Emanuele; Huitema, Alwin D R
2012-02-01
There is no consensus regarding optimal dosing of high dose methotrexate (HDMTX) in patients with primary CNS lymphoma. Our aim was to develop a convenient dosing algorithm to target AUC(MTX) in the range between 1000 and 1100 µmol l(-1) h. A population covariate model from a pooled dataset of 131 patients receiving HDMTX was used to simulate concentration-time curves of 10,000 patients and test the efficacy of a dosing algorithm based on 24 h MTX plasma concentrations to target the prespecified AUC(MTX) . These data simulations included interindividual, interoccasion and residual unidentified variability. Patients received a total of four simulated cycles of HDMTX and adjusted MTX dosages were given for cycles two to four. The dosing algorithm proposes MTX dose adaptations ranging from +75% in patients with MTX C(24) < 0.5 µmol l(-1) up to -35% in patients with MTX C(24) > 12 µmol l(-1). The proposed dosing algorithm resulted in a marked improvement of the proportion of patients within the AUC(MTX) target between 1000 and 1100 µmol l(-1) h (11% with standard MTX dose, 35% with the adjusted dose) and a marked reduction of the interindividual variability of MTX exposure. A simple and practical dosing algorithm for HDMTX has been developed based on MTX 24 h plasma concentrations, and its potential efficacy in improving the proportion of patients within a prespecified target AUC(MTX) and reducing the interindividual variability of MTX exposure has been shown by data simulations. The clinical benefit of this dosing algorithm should be assessed in patients with primary central nervous system lymphoma (PCNSL). © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.
A Radiobiological Analysis of Multicenter Data for Postoperative Keloid Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flickinger, John C., E-mail: flickingerjc@upmc.ed
2011-03-15
Purpose: To identify factors significantly affecting recurrence rates after postoperative external beam radiotherapy (XRT) of keloids, and to delineate any radiation dose response and effects of radiation dose per fraction. Methods and Materials: A comprehensive literature review was performed to compile a database of 2,515 resected keloids (36.9% earlobe). Postoperative XRT was 45- to 100-kV X-rays in 27.0% or 120- to 250-kV X-rays in 11.1%, Co-60 in 1.9%, Sr-90 in 4.7%, 1.5- to 9-MeV electrons in 26.5%, and no XRT in 28.8%. In the 1,791 irradiated patients, the median radiation parameters were as follows: total dose, 15 Gy (range, 6-30more » Gy); dose per fraction, 5.0 Gy (range, 2-15 Gy); fractions, 3 (range, 1-10); and time, 7 days (range, 0-33 days). Results: Multivariate stepwise logistic regression correlated decreased keloid recurrence with earlobe location (p = 1.98E-10; odds ratio, 0.34), biologically effective dose (p = 1.01E-27), and treatment with electron beam or Co-60 vs. other techniques (p = 0.0014; odds ratio, 0.72). Different radiobiological models calculated values of {alpha}/{beta} = 1.12 to 2.86 (mean, 2.08) and time (repopulation) correction factors for biologically effective dose from 0.98 to 2.13 Gy per day (mean, 1.34) starting 10 days after surgery. Different models (with {alpha}/{beta} = 2.08) predicted that doses needed for 90% and 95% control with 3 fractions of postoperative electron beam were 16.0 to 16.2 Gy and 18.3 to 19.2 Gy, respectively, in less than 10 days for earlobe keloids and 21.5 to 22.2 Gy and 23.4 to 24.8 Gy, respectively, in less than 10 days for other sites. Conclusions: Postoperative keloid radiotherapy requires moderately high doses and optimal technique to be effective. The relatively low {alpha}/{beta} ratio indicates that radiotherapy with a limited number of fractions and high doses per fraction is the best strategy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liebl, Jakob, E-mail: jakob.liebl@medaustron.at; Francis H. Burr Proton Therapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; Department of Therapeutic Radiology and Oncology, Medical University of Graz, 8036 Graz
2014-09-15
Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patientmore » positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions in the human brain as well as target and OAR dosimetry were studied. Observed range uncertainties were correlated with HIs. The clinical practice of using multiple fields with smeared compensators while avoiding distal OAR sparing is considered to be safe.« less
Liebl, Jakob; Paganetti, Harald; Zhu, Mingyao; Winey, Brian A.
2014-01-01
Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R2 < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions in the human brain as well as target and OAR dosimetry were studied. Observed range uncertainties were correlated with HIs. The clinical practice of using multiple fields with smeared compensators while avoiding distal OAR sparing is considered to be safe. PMID:25186386
Population dose commitments due to radioactive releases from nuclear power plant sites in 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commericial power reactors operating during 1985. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 61 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km aroundmore » each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 73 person-rem to a low of 0.011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 200 person-rem for the 110 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 5 /times/ 10/sup /minus/6/ mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less
Population dose commitments due to radioactive releases from nuclear power plant sites in 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1984. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 56 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km aroundmore » each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 110 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 5 person-rem. The total population dose for all sites was estimated at 280 person-rem for the 100 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 6 x 10/sup -6/ mrem to a high of 0.04 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less
Population dose commitments due to radioactive releases from nuclear power plant sites in 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1986. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 66 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 kmmore » around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 31 person-rem to a low of 0.0007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.7 person-rem. The total population dose for all sites was estimated at 110 person-rem for the 140 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 2 {times} 10{sup -6} mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. 12 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.; Peloquin, R.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1982. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 51 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each sitemore » receiving various average dose commitments from the airborne pathways. The total dose commitments from both liquid and airborne pathways ranged from a high of 30 person-rem to a low of 0.007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 130 person-rem for the 100 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 6 x 10/sup -7/ mrem to a high of 0.06 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.« less
Introducing iron isomaltoside 1000 (Monofer®)-development rationale and clinical experience.
Kalra, Philip A
2011-06-01
Patients with chronic kidney disease (CKD) often suffer from iron deficiency anaemia necessitating treatment with intravenous (IV) iron. Several studies demonstrate that oral iron is insufficient in these patients and that IV supplementation is a more effective treatment. Until now, use of available parenteral iron preparations has been limited by dosing schedules and the need, in some cases, for a test dose, and despite the availability of a range of different IV iron compounds, there is still a need for improved compounds. The new IV iron, iron isomaltoside 1000 Monofer®, is composed of iron and chemically modified isomalto-oligosaccharides which have a mean molecular weight of 1000 Da and consist predominantly of 3-5 glucose units. In contrast to dextrans, the carbohydrate isomaltoside 1000 is a linear and unbranched structure with theoretically a low immunological potential. Hence, a test dose is not necessary. Iron isomaltoside 1000 contains strongly bound iron within the iron-isomaltoside formulation, which enables a controlled slow release of bioavailable iron to the iron-binding proteins, with potentially a reduced risk of free iron toxicity. This allows flexible dosing including high and rapid dosing securing convenient iron therapy for a wide range of patients. The development of Monofer® has been enthusiastically acknowledged by clinicians, and in 2009, there has been fast approval by European authorities via a decentralized registration procedure. This new IV iron is currently being marketed in several European countries. This article describes the development rationale and summarizes the clinical data assessing the use of iron isomaltoside 1000 administered without a test dose by either repeated bolus injections or fast high single iron infusions [defined as total dose infusion (TDI)] to patients suffering from CKD. Since CKD is associated with a high prevalence of cardiovascular disease, data from a small trial applying high single doses of iron isomatoside 1000 in patients with chronic heart failure (CHF) are also reviewed. Collectively, the available data demonstrate adequate efficacy and a good safety profile of iron isomaltoside 1000 in CKD and CHF patients even when administered without a test dose and as single rapid high-dose infusions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelefsky, Michael J., E-mail: zelefskm@mskcc.org; Greco, Carlo; Motzer, Robert
2012-04-01
Purpose: To report tumor local progression-free outcomes after treatment with single-dose, image-guided, intensity-modulated radiotherapy and hypofractionated regimens for extracranial metastases from renal cell primary tumors. Patients and Methods: Between 2004 and 2010, 105 lesions from renal cell carcinoma were treated with either single-dose, image-guided, intensity-modulated radiotherapy to a prescription dose of 18-24 Gy (median, 24) or hypofractionation (three or five fractions) with a prescription dose of 20-30 Gy. The median follow-up was 12 months (range, 1-48). Results: The overall 3-year actuarial local progression-free survival for all lesions was 44%. The 3-year local progression-free survival for those who received a highmore » single-dose (24 Gy; n = 45), a low single-dose (<24 Gy; n = 14), or hypofractionation regimens (n = 46) was 88%, 21%, and 17%, respectively (high single dose vs. low single dose, p = .001; high single dose vs. hypofractionation, p < .001). Multivariate analysis revealed the following variables were significant predictors of improved local progression-free survival: 24 Gy dose compared with a lower dose (p = .009) and a single dose vs. hypofractionation (p = .008). Conclusion: High single-dose, image-guided, intensity-modulated radiotherapy is a noninvasive procedure resulting in high probability of local tumor control for metastatic renal cell cancer generally considered radioresistant according to the classic radiobiologic ranking.« less
Schultze-Mosgau, Marcus-Hillert; Schuett, Barbara; Hafner, Frank-Thorsten; Zollmann, Frank; Kaiser, Andreas; Hoechel, Joachim; Rohde, Beate
2017-01-01
Vilaprisan is a novel, potent, and highly selective progesterone receptor modulator, which might offer a promising option for the treatment of uterine fibroids. In this randomized, placebo-controlled, parallel-group phase 1 study, the pharmacokinetics and safety of vilaprisan were investigated in healthy postmenopausal women. Subjects received a single oral dose of vilaprisan (1, 5, 15, or 30 mg) or placebo and - after a wash-out period - daily doses of the same strength over 28 days. Safety assessments included vital signs, ECGs, clinical laboratory tests, and adverse events. Blood samples for pharmacokinetic (PK) profiles were collected over 14 days after single dose (sd) and multiple dose (md; day 28). Vilaprisan was well tolerated. Mild to moderate adverse events occurred with similar frequency at all dose levels. Following single dose, maximum vilaprisan concentrations were observed 1 - 2 hours post-dose. Terminal half-lives ranged from 31 to 38 hours. Maximum concentrations of vilaprisan (Cmax) and exposure to vilaprisan (AUC) increased roughly dose-proportionally from 3.74 µg/L (1 mg) to 68.6 µg/L (30 mg) and 58.5 µg×h/L to 1,590 µg×h/L, respectively. With daily dosing, accumulation consistent with the long terminal half-life was observed (AUC(0-24)md/AUC(0-24)sd ratios: 1.9 to 3.2). The ratio AUC(0-24)md/AUCsd increased with dose from ~ 1 (1 mg) to 1.5 (30 mg). Exposure to vilaprisan increased roughly dose-proportionally in the dose range studied and accumulated after multiple dosing as expected based on t1/2, indicating linear pharmacokinetics of vilaprisan in the expected therapeutic dose range. .
NASA Astrophysics Data System (ADS)
Jha, Pradeep K.; Jha, Rakhi; Gupta, B. L.; Guha, Sujoy K.
2010-05-01
Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG ® (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG ®. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.
Dosimetric characteristics of a MOSFET dosimeter for clinical electron beams.
Manigandan, D; Bharanidharan, G; Aruna, P; Devan, K; Elangovan, D; Patil, Vikram; Tamilarasan, R; Vasanthan, S; Ganesan, S
2009-09-01
The fundamental dosimetric characteristics of commercially available metal oxide semiconductor field effect transistor (MOSFET) detectors were studied for clinical electron beam irradiations. MOSFET showed excellent linearity against doses measured using an ion chamber in the dose range of 20-630cGy. MOSFET reproducibility is better at high doses compared to low doses. The output factors measured with the MOSFET were within +/-3% when compared with those measured with a parallel plate chamber. From 4 to 12MeV, MOSFETs showed a large angular dependence in the tilt directions and less in the axial directions. MOSFETs do not show any dose-rate dependence between 100 and 600MU/min. However, MOSFETs have shown under-response when the dose per pulse of the beam is decreased. No measurable effect in MOSFET response was observed in the temperature range of 23-40 degrees C. The energy dependence of a MOSFET dosimeter was within +/-3.0% for 6-18MeV electron beams and 5.5% for 4MeV ones. This study shows that MOSFET detectors are suitable for dosimetry of electron beams in the energy range of 4-18MeV.
High level gamma radiation effects on Cernox™ cryogenic temperature sensors
NASA Astrophysics Data System (ADS)
Courts, S. S.
2017-12-01
Cryogenic temperature sensors are used in high energy particle colliders to monitor the temperatures of superconducting magnets, superconducting RF cavities, and cryogen infrastructure. While not intentional, these components are irradiated by leakage radiation during operation of the collider. A common type of cryogenic thermometer used in these applications is the Cernox™ resistance thermometer (CxRT) manufactured by Lake Shore Cryotronics, Inc. This work examines the radiation-induced calibration offsets on CxRT models CX-1050-SD-HT and CX-1080-SD-HT resulting from exposure to very high levels of gamma radiation. Samples from two different wafers of each of the two models tested were subjected to a gamma radiation dose ranging from 10 kGy to 5 MGy. Data were analysed in terms of the temperature-equivalent resistance change between pre- and post-irradiation calibrations. The data show that the resistance of these devices decreased following irradiation resulting in positive temperature offsets across the 1.4 K to 330 K temperature range. Variations in response were observed between wafers of the same CxRT model. Overall, the offsets increased with increasing temperature and increasing gamma radiation dose. At 1.8 K, the average offset increased from 0 mK to +13 mK as total dose increased from 10 kGy to 5 MGy. At 4.2 K, the average offset increased from +4 mK to +33 mK as total dose increased from 10 kGy to 5 MGy. Equivalent temperature offset data are presented over the 1.4 K to 330 K temperature range by CxRT model, wafer, and total gamma dose.
Scharf, Valery F; Farese, James P; Coomer, Alastair R; Milner, Rowan J; Taylor, David P; Salute, Marc E; Chang, Myron N; Neal, Dan; Siemann, Dietmar W
2013-05-01
Objective-To investigate the effects of bevacizumab, a human monoclonal antibody against vascular endothelial growth factor, on the angiogenesis and growth of canine osteosarcoma cells xenografted in mice. Animals-27 athymic nude mice. Procedures-To each mouse, highly metastasizing parent osteosarcoma cells of canine origin were injected into the left gastrocnemius muscle. Each mouse was then randomly allocated to 1 of 3 treatment groups: high-dose bevacizumab (4 mg/kg, IP), low-dose bevacizumab (2 mg/kg, IP), or control (no treatment). Tumor growth (the number of days required for the tumor to grow from 8 to 13 mm), vasculature, histomorphology, necrosis, and pulmonary metastasis were evaluated. Results-Mice in the high-dose bevacizumab group had significantly delayed tumor growth (mean ± SD, 13.4 ± 3.8 days; range, 9 to 21 days), compared with that for mice in the low-dose bevacizumab group (mean ± SD, 9.4 ± 1.5 days; range, 7 to 11 days) or control group (mean ± SD, 7. 2 ± 1.5 days; range, 4 to 9 days). Mice in the low-dose bevacizumab group also had significantly delayed tumor growth, compared with that for mice in the control group. Conclusions and Clinical Relevance-Results indicated that bevacizumab inhibited growth of canine osteosarcoma cells xenografted in mice, which suggested that vascular endothelial growth factor inhibitors may be clinically useful for the treatment of osteosarcoma in dogs. Impact for Human Medicine-Canine osteosarcoma is used as a research model for human osteosarcoma; therefore, bevacizumab may be clinically beneficial for the treatment of osteosarcoma in humans.
Yamada, Yoshiya; Katsoulakis, Evangelia; Laufer, Ilya; Lovelock, Michael; Barzilai, Ori; McLaughlin, Lily A; Zhang, Zhigang; Schmitt, Adam M; Higginson, Daniel S; Lis, Eric; Zelefsky, Michael J; Mechalakos, James; Bilsky, Mark H
2017-01-01
OBJECTIVE An analysis of factors contributing to durable radiographic control of spinal metastases was undertaken, drawing from a large single-institution database in an attempt to elucidate indications and dose requirements for successful treatment. METHODS All patients treated at a single institution with stereotactic radiosurgery (SRS) of the spine as first-line therapy were assessed for local progression of the treated site, defined as radiographic enlargement of the treated tumor and/or biopsy-proven evidence of active tumor cells. All patients were followed with CT, PET, or MR imaging every 3-6 months until death. Treatment decisions were made by a multidisciplinary team of radiation oncologists, neurosurgeons, and neuroradiologists. Target volumes were defined according to the international consensus guidelines and were reviewed in a multidisciplinary conference. Image-guided techniques and intensity modulation were used for every case. The tumor's histological type, gross tumor volume (GTV), dose that covers 95% of the GTV (GTV D95), percentage of GTV covered by 95% of the prescribed dose (GTV V95), planning target volume (PTV), dose that covers 95% of the PTV (PTV D95), and percentage of PTV covered by 95% of the prescribed dose (PTV V95) were analyzed for significance in relation to local control, based on time to local progression. RESULTS A total of 811 lesions were treated in 657 patients between 2003 and 2015 at a single institution. The mean follow-up and overall survival for the entire cohort was 26.9 months (range 2-141 months). A total of 28 lesions progressed and the mean time to failure was 26 months (range 9.7-57 months). The median prescribed dose was 2400 cGy (range 1600-2600 cGy). Both GTV D95 and PTV D95 were highly significantly associated with local failure in univariate analysis, but GTV and PTV and histological type did not reach statistical significance. The median GTV D95 for the cohort equal to or above the GTV D95 1830 cGy cut point (high dose) was 2356 cGy, and it was 1709 cGy for the cohort of patients who received less than 1830 cGy (low dose). In terms of PTV D95, the median dose for those equal to or above the cut point of 1740 cGy (high dose) was 2233 cGy, versus 1644 cGy for those lesions below the PTV D95 cut point of 1740 cGy (low dose). CONCLUSIONS High-dose single-session SRS provides durable long-term control, regardless of the histological findings or tumor size. In this analysis, the only significant factors predictive of local control were related to the actual dose of radiation given. Although the target volumes were well treated with the intended dose, those lesions irradiated to higher doses (median GTV D95 2356 cGy, minimum 1830 cGy) had a significantly higher probability of durable local control than those treated with lower doses (median PTV D95 2232 cGy, minimum of 1740 cGy) (p < 0.001). Patients in the high-dose cohort had a 2% cumulative rate of local failure. Histological findings were not associated with local failure, suggesting that radioresistant histological types benefit in particular from radiosurgery. For patients with a favorable prognosis, a higher dose of SRS is important for long-term outcomes.
Yamada, Yoshiya; Katsoulakis, Evangelia; Laufer, Ilya; Lovelock, Michael; Barzilai, Ori; McLaughlin, Lily A.; Zhang, Zhigang; Schmitt, Adam M.; Higginson, Daniel S.; Lis, Eric; Zelefsky, Michael J.; Mechalakos, James; Bilsky, Mark H.
2017-01-01
Objective An analysis of factors contributing to durable radiographic control of spinal metastases was undertaken, drawing from a large single-institution database in an attempt to elucidate indications and dose requirements for successful treatment. Methods All patients treated at a single institution with stereotactic radiosurgery (SRS) of the spine as first-line therapy were assessed for local progression of the treated site, defined as radiographic enlargement of the treated tumor and/or biopsy-proven evidence of active tumor cells. All patients were followed with CT, PET, or MR imaging every 3–6 months until death. Treatment decisions were made by a multidisciplinary team of radiation oncologists, neurosurgeons, and neuroradiologists. Target volumes were defined according to the international consensus guidelines and were reviewed in a multidisciplinary conference. Image-guided techniques and intensity modulation were used for every case. The tumor’s histological type, gross tumor volume (GTV), dose that covers 95% of the GTV (GTV D95), percentage of GTV covered by 95% of the prescribed dose (GTV V95), planning target volume (PTV), dose that covers 95% of the PTV (PTV D95), and percentage of PTV covered by 95% of the prescribed dose (PTV V95) were analyzed for significance in relation to local control, based on time to local progression. Results A total of 811 lesions were treated in 657 patients between 2003 and 2015 at a single institution. The mean follow-up and overall survival for the entire cohort was 26.9 months (range 2–141 months). A total of 28 lesions progressed and the mean time to failure was 26 months (range 9.7–57 months). The median prescribed dose was 2400 cGy (range 1600–2600 cGy). Both GTV D95 and PTV D95 were highly significantly associated with local failure in univariate analysis, but GTV and PTV and histological type did not reach statistical significance. The median GTV D95 for the cohort equal to or above the GTV D95 1830 cGy cut point (high dose) was 2356 cGy, and it was 1709 cGy for the cohort of patients who received less than 1830 cGy (low dose). In terms of PTV D95, the median dose for those equal to or above the cut point of 1740 cGy (high dose) was 2233 cGy, versus 1644 cGy for those lesions below the PTV D95 cut point of 1740 cGy (low dose). Conclusions High-dose single-session SRS provides durable long-term control, regardless of the histological findings or tumor size. In this analysis, the only significant factors predictive of local control were related to the actual dose of radiation given. Although the target volumes were well treated with the intended dose, those lesions irradiated to higher doses (median GTV D95 2356 cGy, minimum 1830 cGy) had a significantly higher probability of durable local control than those treated with lower doses (median PTV D95 2232 cGy, minimum of 1740 cGy) (p < 0.001). Patients in the high-dose cohort had a 2% cumulative rate of local failure. Histological findings were not associated with local failure, suggesting that radioresistant histological types benefit in particular from radiosurgery. For patients with a favorable prognosis, a higher dose of SRS is important for long-term outcomes. PMID:28041329
SU-F-J-197: A Novel Intra-Beam Range Detection and Adaptation Strategy for Particle Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, M; Jiang, S; Shao, Y
2016-06-15
Purpose: In-vivo range detection/verification is crucial in particle therapy for effective and safe delivery. The state-of-art techniques are not sufficient for in-vivo on-line range verification due to conflicts among patient dose, signal statistics and imaging time. We propose a novel intra-beam range detection and adaptation strategy for particle therapy. Methods: This strategy uses the planned mid-range spots as probing beams without adding extra radiation to patients. Such choice of probing beams ensures the Bragg peaks to remain inside the tumor even with significant range variation from the plan. It offers sufficient signal statistics for in-beam positron emission tomography (PET) duemore » to high positron activity of therapeutic dose. The probing beam signal can be acquired and reconstructed using in-beam PET that allows for delineation of the Bragg peaks and detection of range shift with ease of detection enabled by single-layered spots. If the detected range shift is within a pre-defined tolerance, the remaining spots will be delivered as the original plan. Otherwise, a fast re-optimization using range-shifted beamlets and accounting for the probing beam dose is applied to consider the tradeoffs posed by the online anatomy. Simulated planning and delivery studies were used to demonstrate the effectiveness of the proposed techniques. Results: Simulations with online range variations due to shifts of various foreign objects into the beam path showed successful delineation of the Bragg peaks as a result of delivering probing beams. Without on-line delivery adaptation, dose distribution was significantly distorted. In contrast, delivery adaptation incorporating detected range shift recovered well the planned dose. Conclusion: The proposed intra-beam range detection and adaptation utilizing the planned mid-range spots as probing beams, which illuminate the beam range with strong and accurate PET signals, is a safe, practical, yet effective approach to address range uncertainty issues in particle therapy.« less
Di Venanzio, C; Marinelli, Marco; Tonnetti, A; Verona-Rinati, G; Falco, M D; Pimpinella, M; Ciccotelli, A; De Stefano, S; Felici, G; Marangoni, F
2015-12-01
To characterize a synthetic diamond dosimeter (PTW Freiburg microDiamond 60019) in high dose-per-pulse electron beams produced by an Intra Operative Radiation Therapy (IORT) dedicated accelerator. The dosimetric properties of the microDiamond were assessed under 6, 8 and 9 MeV electron beams by a NOVAC11 mobile accelerator (Sordina IORT Technologies S.p.A.). The characterization was carried out with dose-per-pulse ranging from 26 to 105 mGy per pulse. The microDiamond performance was compared with an Advanced Markus ionization chamber and a PTW silicon diode E in terms of dose linearity, percentage depth dose (PDD) curves, beam profiles and output factors. A good linearity of the microDiamond response was verified in the dose range from 0.2 Gy to 28 Gy. A sensitivity of 1.29 nC/Gy was measured under IORT electron beams, resulting within 1% with respect to the one obtained in reference condition under (60)Co gamma irradiation. PDD measurements were found in agreement with the ones by the reference dosimeters, with differences in R50 values below 0.3 mm. Profile measurements evidenced a high spatial resolution of the microDiamond, slightly worse than the one of the silicon diode. The penumbra widths measured by the microDiamond resulted approximately 0.5 mm larger than the ones by the Silicon diode. Output factors measured by the microDiamond were found within 2% with those obtained by the Advanced Markus down to 3 cm diameter field sizes. The microDiamond dosimeter was demonstrated to be suitable for precise dosimetry in IORT applications under high dose-per-pulse conditions. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Study of Dose Perturbation at Bone-Tissue Interfaces in Megavoltage Photon Beam Therapy.
NASA Astrophysics Data System (ADS)
Das, Indra Jeet
Dose perturbations during photon beam irradiation occur at interfaces between two dissimilar media due to the loss of electronic equilibrium. The human body contains many different types of interfaces between soft tissue and other media such as, air cavities, lungs, bones, and high atomic number (Z) materials. The dose to critical organs in the vicinity of high Z interfaces, is what leads to this project. This work describes the dose perturbation at high Z (from bone to lead) interfaces with soft tissue for clinically used megavoltage photon beams in the range of CO-60 gamma rays to 24 MV X-rays. It is divided into three main sections: (1) the dose outside the inhomogeneity in the direction of backscatter, (2) the dose inside the inhomogeneity, and (3) the dose on the photon transmission side of the inhomogeneity. Using different types of parallel plate ion chambers, TLD (powder and chip), and film as dosimeters, the dose perturbation is studied as a function of photon energy, thickness, width, and depth of inhomogeneity, distance from the interface and radiation field size. The concept of Bragg-Gray cavity theory is applied and verified for dose determination inside the inhomogeneity. A significant dose enhancement has been observed on the backscatter side for all photon energies. It is strongly dependent on the atomic number of the inhomogeneity and less dependent on the photon energy, thickness, depth, width, and field size. In the forward direction, a dose reduction occurs at the interface at beam energies lower than 10 MV, whereas a dose enhancement occurs for higher photon energies. The interface effect persists up to a few millimeters on the backscatter side but a distance equivalent to the secondary electron range for the particular photon beams in the forward direction. The dose perturbation is explained on the basis of production and transport of secondary electrons. Empirical functions are derived from the experimental data to predict the dose distribution in the vicinity of an inhomogeneity. These equations could form the basis of a treatment planning system that would accurately represent the dose both at the interface and surrounding tissue.
Oseltamivir Pharmacokinetics, Dosing, and Resistance Among Children Aged <2 Years With Influenza
Kimberlin, David W.; Acosta, Edward P.; Prichard, Mark N.; Sánchez, Pablo J.; Ampofo, Krow; Lang, David; Ashouri, Negar; Vanchiere, John A.; Abzug, Mark J.; Abughali, Nazha; Caserta, Mary T.; Englund, Janet A.; Sood, Sunil K.; Spigarelli, Michael G.; Bradley, John S.; Lew, Judy; Michaels, Marian G.; Wan, Wen; Cloud, Gretchen; Jester, Penelope; Lakeman, Fred D.; Whitley, Richard J.; Giles, Dusty; Cotton, Bari; Judy, Sharon; Cowie, Margaret; Francis, Jeanne; Evans, Candice; O'Donnell, Nan; Shiraishi, Ofelia Vargas; Latiolais, Lisa; Aymami, Valeri; Dole, Ken; Gaultier, Julie; Lofthus, Gerry; Kinnunen, Diane; Lacombe, Kirsten; Stellato, Nancy; Denlinger, Julie; Hingtgen, Sara; Mason, Christina; Jeffrey, Noreen
2013-01-01
Background. Children <2 years of age are at high risk of influenza-related mortality and morbidity. However, the appropriate dose of oseltamivir for children <2 years of age is unknown. Methods. The National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group evaluated oseltamivir in infants aged <2 years in an age–de-escalation, adaptive design with a targeted systemic exposure. Results. From 2006 to 2010, 87 subjects enrolled. An oseltamivir dose of 3.0 mg/kg produced drug exposures within the target range in subjects 0–8 months of age, although there was a greater degree of variability in infants <3 months of age. In subjects 9–11 months of age, a dose of 3.5 mg/kg produced drug exposures within the target range. Six of 10 subjects aged 12–23 months receiving the Food and Drug Administration–approved unit dose for this age group (ie, 30 mg) had oseltamivir carboxylate exposures below the target range. Virus from 3 subjects developed oseltamivir resistance during antiviral treatment. Conclusions. The appropriate twice-daily oral oseltamivir dose for infants ≤8 months of age is 3.0 mg/kg, while the dose for infants 9–11 months old is 3.5 mg/kg. Clinical Trials Registration. NCT00391768. PMID:23230059
Diabetes Prevention and Treatment Programs for Western PA FY04 and FY05
2009-05-01
LDL > 130 mg/dl. First line Rx is HMG CoA reductase inhibitor montotherapy. Initial treatment and dose: Atorvastatin (dose range 10-80 mg) with...necessary. Attempts to decrease higher doses if goals are reached may also be necessary.) High atorvastatin or simvastatin dose (80 mg) may be needed...100mg/dl, add or switch to atorvastatin or simvastatin 10 mg with evening meal. If LDL-C still remains >100 mg/dl after above addition, up-titrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heintz, P; Heintz, B; Sandoval, D
Purpose: Computerized radiation therapy treatment planning is performed on almost all patients today. However it is seldom used for laboratory irradiations. The first objective is to assess whether modern radiation therapy treatment planning (RTP) systems accurately predict the subject dose by comparing in vivo and decedent dose measurements to calculated doses. The other objective is determine the importance of using a RTP system for laboratory irradiations. Methods: 5 MOSFET radiation dosimeters were placed enterically in each subject (2 sedated Rhesus Macaques) to measure the absorbed dose at 5 levels (carina, lung, heart, liver and rectum) during whole body irradiation. Themore » subjects were treated with large opposed lateral fields and extended distances to cover the entire subject using a Varian 600C linac. CT simulation was performed ante-mortem (AM) and post-mortem (PM). To compare AM and PM doses, calculation points were placed at the location of each dosimeter in the treatment plan. The measured results were compared to the results using Varian Eclipse and Prowess Panther RTP systems. Results: The Varian and Prowess treatment planning system agreed to within in +1.5% for both subjects. However there were significant differences between the measured and calculated doses. For both animals the calculated central axis dose was higher than prescribed by 3–5%. This was caused in part by inaccurate measurement of animal thickness at the time of irradiation. For one subject the doses ranged from 4% to 7% high and the other subject the doses ranged 7% to 14% high when compared to the RTP doses. Conclusions: Our results suggest that using proper CT RTP system can more accurately deliver the prescribed dose to laboratory subjects. It also shows that there is significant dose variation in such subjects when inhomogeneities are not considered in the planning process.« less
High-dose octreotide acetate for management of gastroenteropancreatic neuroendocrine tumors.
Chadha, Manpreet K; Lombardo, Jeffrey; Mashtare, Terry; Wilding, Gregory E; Litwin, Alan; Raczyk, Cheryl; Gibbs, John F; Kuvshinoff, Boris; Javle, Milind M; Iyer, Renuka V
2009-10-01
Long-acting sandostatin (S-LAR; octreotide acetate) is well tolerated and effective for symptom control and possibly disease control in gastroenteropancreatic neuroendocrine tumors (GEP-NETs). We undertook a retrospective analysis to study the efficacy and tolerability of higher doses (more than 20-30 mg/month) of S-LAR in GEP-NETs. With IRB approval, charts of all patients with GEP-NET who received S-LAR between June 2002 to September 2007 at Roswell Park Cancer Institute were reviewed and their data analyzed. Fifty-four patients with GEP-NET received S-LAR; thirty required dose escalation. Patients received a median of 5 doses of S-LAR at conventional dose followed by up-titration of the dose for symptom control (20) and radiological progression (17). Median high dose of S-LAR was 40 mg (range: 40-90 mg) with a median of 8.5 high doses received. No treatment related toxicities were seen. The estimated 1-year survival for patients on conventional dose alone was 0.77 (95% CI of 0.50 to 0.91) and those on high-dose was 0.88 (95% CI of 0.68 to 0.96) (p=0.4777) while median time to any other intervention was 2.9 months versus 17.7 months (p=0.12). Dose escalation of S-LAR is well tolerated and may provide longer disease control.
Gafchromic EBT‐XD film: Dosimetry characterization in high‐dose, volumetric‐modulated arc therapy
Ozawa, Shuichi; Hosono, Fumika; Sumida, Naoki; Okazue, Toshiya; Yamada, Kiyoshi; Nagata, Yasushi
2016-01-01
Radiochromic films are important tools for assessing complex dose distributions. Gafchromic EBT‐XD films have been designed for optimal performance in the 40–4,000 cGy dose range. We investigated the dosimetric characteristics of these films, including their dose‐response, postexposure density growth, and dependence on scanner orientation, beam energy, and dose rate with applications to high‐dose volumetric‐modulated arc therapy (VMAT) verification. A 10 MV beam from a TrueBeam STx linear accelerator was used to irradiate the films with doses in the 0–4,000 cGy range. Postexposure coloration was analyzed at postirradiation times ranging from several minutes to 48 h. The films were also irradiated with 6 MV (dose rate (DR): 600 MU/min), 6 MV flattening filter‐free (FFF) (DR: 1,400 MU/ min), and 10 MV FFF (DR: 2,400 MU/min) beams to determine the energy and dose‐rate dependence. For clinical examinations, we compared the dose distribution measured with EBT‐XD films and calculated by the planning system for four VMAT cases. The red channel of the EBT‐XD film exhibited a wider dynamic range than the green and blue channels. Scanner orientation yielded a variation of ∼3% in the net optical density (OD). The difference between the film front and back scan orientations was negligible, with variation of ∼1.3% in the net OD. The net OD increased sharply within the first 6 hrs after irradiation and gradually afterwards. No significant difference was observed for the beam energy and dose rate, with a variation of ∼1.5% in the net OD. The gamma passing rates (at 3%, 3 mm) between the film‐ measured and treatment planning system (TPS)‐calculated dose distributions under a high dose VMAT plan in the absolute dose mode were more than 98.9%. PACS number(s): 87.56 Fc PMID:27929504
SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chibani, O; Price, R; Ma, C
Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375–425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows thatmore » the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375–425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.« less
Wide-range radiation dose monitor
Kopp, Manfred K.
1986-01-01
A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.
Wide-range radiation dose monitor
Kopp, M.K.
1984-09-20
A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.
Schumann, A; Priegnitz, M; Schoene, S; Enghardt, W; Rohling, H; Fiedler, F
2016-10-07
Range verification and dose monitoring in proton therapy is considered as highly desirable. Different methods have been developed worldwide, like particle therapy positron emission tomography (PT-PET) and prompt gamma imaging (PGI). In general, these methods allow for a verification of the proton range. However, quantification of the dose from these measurements remains challenging. For the first time, we present an approach for estimating the dose from prompt γ-ray emission profiles. It combines a filtering procedure based on Gaussian-powerlaw convolution with an evolutionary algorithm. By means of convolving depth dose profiles with an appropriate filter kernel, prompt γ-ray depth profiles are obtained. In order to reverse this step, the evolutionary algorithm is applied. The feasibility of this approach is demonstrated for a spread-out Bragg-peak in a water target.
Ahuja, Sumedha; Singh, Bhupinder; Gupta, Vijay Kumar; Singhal, R K; Venu Babu, P
2014-02-01
An experiment was carried out to determine the effect of low dose gamma radiation on germination, plant growth, nitrogen and carbon fixation and carbon flow and release characteristics of groundnut. Dry seeds of groundnut variety Trombay groundnut 37A (TG 37A), a radio mutant type developed by Bhabha Atomic Research Centre (BARC), Mumbai, India, were subjected to the pre-sowing treatment of gamma radiation within low to high dose physiological range, i.e., 0.0, 0.0082, 0.0164. 0.0328, 0.0656, 0.1312, 5, 25, 100, 500 Gray (Gy) from a cobalt source ((60)Co). Observations were recorded for the radiation effect on percentage germination, vigour, gas exchange attributes such as photosynthetic rate, stomatal conductance and transpiration rate, chlorophyll content, root exudation in terms of (14)C release, vascular sap flow rate and activities of rate defining carbon and nitrogen assimilating enzymes such as ribulose-1,5-bisphosphate carboxylase (rubisco) and nitrate reductase (NR). Seed germination was increased by 10-25% at the lower doses up to 5 Gy while the improvement in plant vigour in the same dose range was much higher (22-84%) than the unirradiated control. For radiation exposure above 5 Gy, a dose-dependent decline in germination and plant vigour was measured. No significant effect was observed on the photosynthesis at radiation exposure below 5 Gy but above 5 Gy dose there was a decline in the photosynthetic rate. Stomatal conductance and transpiration rate, however, were only inhibited at a high dose of 500 Gy. Leaf rubisco activity and NR activities remained unaffected at all the investigated doses of gamma irradiation. Mean root exudation and sap flow rate of the irradiated plants, irrespective of the dose, was reduced over the unirradiated control more so in a dose-dependent manner. Results indicated that a very low dose of gamma radiation, in centigray to gray range, did not pose any threat and in fact stimulated metabolic functions in such a way to aid growth and development of groundnut plants. It further showed that the radiation threshold for the gas exchange traits and rubisco activity, which ultimately determine the plant health and yield, were higher than compared to the other metabolic attributes and were well beyond 500 Gy and that the dose range above 500 Gy should be targeted to measure lethal effects of radiation on carbon assimilation attributes in leguminous crops, in general, and groundnut in particular.
TH-E-209-00: Radiation Dose Monitoring and Protocol Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilitiesmore » over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, B.
2016-06-15
Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilitiesmore » over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.« less
TH-E-209-02: Dose Monitoring and Protocol Optimization: The Pediatric Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDougall, R.
Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilitiesmore » over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.« less
Acute changes in the central nervous system of monkeys exposed to protons.
NASA Technical Reports Server (NTRS)
Haymaker, W.; Ibrahim, M. Z. M.; Miquel, J.; Call, N.; Noden, P.; Ashley, W.; Ballinger, E. R.; Ghidoni, J.; Lindsay, I. R.; Behar, A. J.
1972-01-01
Study of the changes occurring in simian brain exposed to protons of varied energy, given in wide dose and dose-rate ranges. Results show that inflammatory reaction and glycogen accumulation in astrocytes occurred practically in all animals. Cerebral cortical necrosis, granule cell pyknosis, and inflammatory reaction occurred at doses far lower than effective for high-energy gamma radiation given other series of monkeys at comparable dose rates. Metallic impregnation, carried out in virtually all the animals tested, revealed a wide variation in glial response even at equal doses and dose rates in the same proton energy series. Proton energy effect, dose effect, dose-time effect, and dose-rate effect were evident in the various morphological categories investigated, but inconsistencies were encountered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugano, Yasutaka; Mizuta, Masahiro; Takao, Seishin
Purpose: Radiotherapy of solid tumors has been performed with various fractionation regimens such as multi- and hypofractionations. However, the ability to optimize the fractionation regimen considering the physical dose distribution remains insufficient. This study aims to optimize the fractionation regimen, in which the authors propose a graphical method for selecting the optimal number of fractions (n) and dose per fraction (d) based on dose–volume histograms for tumor and normal tissues of organs around the tumor. Methods: Modified linear-quadratic models were employed to estimate the radiation effects on the tumor and an organ at risk (OAR), where the repopulation of themore » tumor cells and the linearity of the dose-response curve in the high dose range of the surviving fraction were considered. The minimization problem for the damage effect on the OAR was solved under the constraint that the radiation effect on the tumor is fixed by a graphical method. Here, the damage effect on the OAR was estimated based on the dose–volume histogram. Results: It was found that the optimization of fractionation scheme incorporating the dose–volume histogram is possible by employing appropriate cell surviving models. The graphical method considering the repopulation of tumor cells and a rectilinear response in the high dose range enables them to derive the optimal number of fractions and dose per fraction. For example, in the treatment of prostate cancer, the optimal fractionation was suggested to lie in the range of 8–32 fractions with a daily dose of 2.2–6.3 Gy. Conclusions: It is possible to optimize the number of fractions and dose per fraction based on the physical dose distribution (i.e., dose–volume histogram) by the graphical method considering the effects on tumor and OARs around the tumor. This method may stipulate a new guideline to optimize the fractionation regimen for physics-guided fractionation.« less
LiF TLD-100 as a Dosimeter in High Energy Proton Beam Therapy-Can It Yield Accurate Results?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zullo, John R.; Kudchadker, Rajat J.; Zhu, X. Ronald
In the region of high-dose gradients at the end of the proton range, the stopping power ratio of the protons undergoes significant changes, allowing for a broad spectrum of proton energies to be deposited within a relatively small volume. Because of the potential linear energy transfer dependence of LiF TLD-100 (thermolumescent dosimeter), dose measurements made in the distal fall-off region of a proton beam may be less accurate than those made in regions of low-dose gradients. The purpose of this study is to determine the accuracy and precision of dose measured using TLD-100 for a pristine Bragg peak, particularly inmore » the distal fall-off region. All measurements were made along the central axis of an unmodulated 200-MeV proton beam from a Probeat passive beam-scattering proton accelerator (Hitachi, Ltd., Tokyo, Japan) at varying depths along the Bragg peak. Measurements were made using TLD-100 powder flat packs, placed in a virtual water slab phantom. The measurements were repeated using a parallel plate ionization chamber. The dose measurements using TLD-100 in a proton beam were accurate to within {+-}5.0% of the expected dose, previously seen in our past photon and electron measurements. The ionization chamber and the TLD relative dose measurements agreed well with each other. Absolute dose measurements using TLD agreed with ionization chamber measurements to within {+-} 3.0 cGy, for an exposure of 100 cGy. In our study, the differences in the dose measured by the ionization chamber and those measured by TLD-100 were minimal, indicating that the accuracy and precision of measurements made in the distal fall-off region of a pristine Bragg peak is within the expected range. Thus, the rapid change in stopping power ratios at the end of the range should not affect such measurements, and TLD-100 may be used with confidence as an in vivo dosimeter for proton beam therapy.« less
Psychopharmacology of theobromine in healthy volunteers.
Baggott, Matthew J; Childs, Emma; Hart, Amy B; de Bruin, Eveline; Palmer, Abraham A; Wilkinson, Joy E; de Wit, Harriet
2013-07-01
Theobromine, a methylxanthine related to caffeine and present in high levels in cocoa, may contribute to the appeal of chocolate. However, current evidence for this is limited. We conducted a within-subjects placebo-controlled study of a wide range of oral theobromine doses (250, 500, and 1,000 mg) using an active control dose of caffeine (200 mg) in 80 healthy participants. Caffeine had the expected effects on mood including feelings of alertness and cardiovascular parameters. Theobromine responses differed according to dose; it showed limited subjective effects at 250 mg and negative mood effects at higher doses. It also dose-dependently increased heart rate. In secondary analyses, we also examined individual differences in the drug's effects in relation to genes related to their target receptors, but few associations were detected. This study represents the highest dose of theobromine studied in humans. We conclude that theobromine at normal intake ranges may contribute to the positive effects of chocolate, but at higher intakes, effects become negative.
Psychopharmacology of theobromine in healthy volunteers
Baggott, Matthew J.; Childs, Emma; Hart, Amy B.; de Bruin, Eveline; Palmer, Abraham A.; Wilkinson, Joy E.; de Wit, Harriet
2013-01-01
Background Theobromine, a methylxanthine related to caffeine and present in high levels in cocoa, may contribute to the appeal of chocolate. However, currently evidence for this is limited. Objectives We conducted a within-subjects placebo-controlled study of a wide range of oral theobromine doses (250, 500, and 1000 mg) using an active control dose of caffeine (200 mg) in 80 healthy participants. Results Caffeine had the expected effects on mood including feelings of alertness, and cardiovascular parameters. Theobromine responses differed according to dose: it showed limited subjective effects at 250 mg and negative mood effects at higher doses. It also dose-dependently increased heart rate. In secondary analyses we also examined individual differences in the drugs' effects in relation to genes related to their target receptors, but few associations were detected. Conclusions This study represents the highest dose of theobromine studied in humans. We conclude that theobromine at normal intake ranges may contribute to the positive effects of chocolate, but at higher intakes effects become negative. PMID:23420115
Howell, Rebecca M; Burgett, Eric A; Isaacs, Daniel; Price Hedrick, Samantha G; Reilly, Michael P; Rankine, Leith J; Grantham, Kevin K; Perkins, Stephanie; Klein, Eric E
2016-05-01
To measure, in the setting of typical passively scattered proton craniospinal irradiation (CSI) treatment, the secondary neutron spectra, and use these spectra to calculate dose equivalents for both internal and external neutrons delivered via a Mevion single-room compact proton system. Secondary neutron spectra were measured using extended-range Bonner spheres for whole brain, upper spine, and lower spine proton fields. The detector used can discriminate neutrons over the entire range of the energy spectrum encountered in proton therapy. To separately assess internally and externally generated neutrons, each of the fields was delivered with and without a phantom. Average neutron energy, total neutron fluence, and ambient dose equivalent [H* (10)] were calculated for each spectrum. Neutron dose equivalents as a function of depth were estimated by applying published neutron depth-dose data to in-air H* (10) values. For CSI fields, neutron spectra were similar, with a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate continuum between the evaporation and thermal peaks. Neutrons in the evaporation peak made the largest contribution to dose equivalent. Internal neutrons had a very low to negligible contribution to dose equivalent compared with external neutrons, largely attributed to the measurement location being far outside the primary proton beam. Average energies ranged from 8.6 to 14.5 MeV, whereas fluences ranged from 6.91 × 10(6) to 1.04 × 10(7) n/cm(2)/Gy, and H* (10) ranged from 2.27 to 3.92 mSv/Gy. For CSI treatments delivered with a Mevion single-gantry proton therapy system, we found measured neutron dose was consistent with dose equivalents reported for CSI with other proton beamlines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Radiation dose and image quality for paediatric interventional cardiology
NASA Astrophysics Data System (ADS)
Vano, E.; Ubeda, C.; Leyton, F.; Miranda, P.
2008-08-01
Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 µGy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 µGy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.
Methamphetamine blood concentrations in human abusers: application to pharmacokinetic modeling.
Melega, William P; Cho, Arthur K; Harvey, Dennis; Laćan, Goran
2007-04-01
Characterization of methamphetamine's (METH) dose-dependent effects on brain neurochemistry may represent a critical component for better understanding the range of resultant behavioral pathologies. Most human studies, however, have assessed only the effects of long term, high dose METH abuse (e.g., greater than 1000 mg/day) in individuals meeting DSM-IV criteria for METH dependence. Yet, for the majority of METH abusers, their patterns of METH exposure that consist of lower doses remain less well-characterized. In this study, blood samples were obtained from 105 individuals detained by police for possible criminal activity and testing positive for stimulants by EMIT assay. METH blood concentrations were subsequently quantified by GC-MS and were predominantly in the low micromolar range (0.1-11.1 microM), with median and mean values of 1.3 microM (0.19 mg/l) and 2 microM (0.3 mg/l), respectively. Pharmacokinetic calculations based on these measured values were used to estimate initial METH body burdens, the median value being 52 mg. Modeling a 52 mg dose for a 4 day-METH maintenance exposure pattern of 4 doses/day at 4 h intervals showed that blood concentrations remained between 1 and 4 microM during this period. Collectively, these data present evidence for a METH exposure pattern distinct from high dose-METH abuse and provide the rationale for assessing potential brain pathology associated with such lower dose-METH exposure.
Gamma-radiation effects on luminescence properties of Eu3+ activated LaPO4 phosphor
NASA Astrophysics Data System (ADS)
Vujčić, Ivica; Gavrilović, Tamara; Sekulić, Milica; Mašić, Slobodan; Putić, Slaviša; Papan, Jelena; Dramićanin, Miroslav D.
2018-05-01
Eu3+ activated LaPO4 phosphors were prepared by a high-temperature solid-state method and irradiated to different high-doses gamma-radiation in the 0-4 MGy range. No effects of high-doses of high-energy radiation on phosphor's morphology and structure were observed, as documented by electron microscopy and X-ray diffraction measurements. On the other hand, photoluminescence measurements showed that emission properties of phosphor were affected by gamma-radiation; changes in radiative properties being prominent for absorbed radiation doses up to 250 kGy after which no additional changes are observed. Judd-Ofelt analysis of emission spectra is performed to thoroughly investigate radiative properties of phosphors. Analysis showed that radiative transition probability of Eu3+ emission decreases while non-radiative probability increases upon gamma-irradiation. Quantum efficiency of emission is decreased from about 46% to 35% when Eu3+ doped LaPO4 powders are exposed to gamma-radiation of 250 kGy dose, showing no additional decrease for higher gamma-radiation doses.
Chen, Buyun; Lu, Pingping; Freeman, Dugan; Gao, Yang; Choo, Edna; DeMent, Kevin; Savage, Scott; Zhang, Kelly; Milanwoski, Dennis; Liu, Lichuan; Dean, Brian; Deng, Yuzhong
2018-05-30
The pH labile metabolite, hydrophobicity, high oral dose and systematic exposure of GDC-0810 posed tremendous challenges to develop a LC-MS method for a stable isotope labeled aBA study. In this study, we explored practical solutions to balance stability and sensitivity and to cope with the impact of high C p.o. to C i.v. ratio on the labeling selection and assay dynamic range. A [ 13 C 9 ] GDC-0810 was synthesized to minimize the isotopic interference between PO dose, internal standard and I.V. microtracer. A highly sensitive LC-MS assay was validated for quantitation of [ 13 C 9 ] GDC-0810 from 5 to 1250 pg/mL. The optimized method was applied to a proof of concept cynomolgus monkey aBA study and the bioavailability calculated using microtracer dosing and regular dosing were similar to each other. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Rong; Li, Xi; Zhang, Wei; Zhou, Hong-Hao
2015-01-01
Objective Multiple linear regression (MLR) and machine learning techniques in pharmacogenetic algorithm-based warfarin dosing have been reported. However, performances of these algorithms in racially diverse group have never been objectively evaluated and compared. In this literature-based study, we compared the performances of eight machine learning techniques with those of MLR in a large, racially-diverse cohort. Methods MLR, artificial neural network (ANN), regression tree (RT), multivariate adaptive regression splines (MARS), boosted regression tree (BRT), support vector regression (SVR), random forest regression (RFR), lasso regression (LAR) and Bayesian additive regression trees (BART) were applied in warfarin dose algorithms in a cohort from the International Warfarin Pharmacogenetics Consortium database. Covariates obtained by stepwise regression from 80% of randomly selected patients were used to develop algorithms. To compare the performances of these algorithms, the mean percentage of patients whose predicted dose fell within 20% of the actual dose (mean percentage within 20%) and the mean absolute error (MAE) were calculated in the remaining 20% of patients. The performances of these techniques in different races, as well as the dose ranges of therapeutic warfarin were compared. Robust results were obtained after 100 rounds of resampling. Results BART, MARS and SVR were statistically indistinguishable and significantly out performed all the other approaches in the whole cohort (MAE: 8.84–8.96 mg/week, mean percentage within 20%: 45.88%–46.35%). In the White population, MARS and BART showed higher mean percentage within 20% and lower mean MAE than those of MLR (all p values < 0.05). In the Asian population, SVR, BART, MARS and LAR performed the same as MLR. MLR and LAR optimally performed among the Black population. When patients were grouped in terms of warfarin dose range, all machine learning techniques except ANN and LAR showed significantly higher mean percentage within 20%, and lower MAE (all p values < 0.05) than MLR in the low- and high- dose ranges. Conclusion Overall, machine learning-based techniques, BART, MARS and SVR performed superior than MLR in warfarin pharmacogenetic dosing. Differences of algorithms’ performances exist among the races. Moreover, machine learning-based algorithms tended to perform better in the low- and high- dose ranges than MLR. PMID:26305568
Older adults and high-risk medication administration in the emergency department
Kim, Mitchell; Mitchell, Steven H; Gatewood, Medley; Bennett, Katherine A; Sutton, Paul R; Crawford, Carol A; Bentov, Itay; Damodarasamy, Mamatha; Kaplan, Stephen J; Reed, May J
2017-01-01
Background Older adults are susceptible to adverse effects from opioids, nonsteroidal anti-inflammatory drugs (NSAIDs), and benzodiazepines (BZDs). We investigated factors associated with the administration of elevated doses of these medications of interest to older adults (≥65 years old) in the emergency department (ED). Patients and methods ED records were queried for the administration of medications of interest to older adults at two academic medical center EDs over a 6-month period. Frequency of recommended versus elevated (“High doses” were defined as doses that ranged between 1.5 and 3 times higher than the recommended starting doses; “very high doses” were defined as higher than high doses) starting doses of medications, as determined by geriatric pharmacy/medicine guidelines and expert consensus, was compared by age groups (65–69, 70–74, 75–79, 80–84, and ≥85 years), gender, and hospital. Results There were 17896 visits representing 11374 unique patients >65 years of age (55.3% men, 44.7% women). A total of 3394 doses of medications of interest including 1678 high doses and 684 very high doses were administered to 1364 different patients. Administration of elevated doses of medications was more common than that of recommended doses. Focusing on opioids and BZDs, the 65–69-year age group was much more likely to receive very high doses (1481 and 412 doses, respectively) than the ≥85-year age groups (relative risk [RR] 5.52, 95% CI 2.56–11.90), mainly reflecting elevated opioid dosing (RR 8.28, 95% CI 3.69–18.57). Men were more likely than women to receive very high doses (RR 1.47, 95% CI 1.26–1.72), primarily due to BZDs (RR 2.12, 95% CI 2.07–2.16). Conclusion Administration of elevated doses of opioids and BZDs in the older population occurs frequently in the ED, especially to the 65–69-year age group and men. Further attention to potentially unsafe dosing of high-risk medications to older adults in the ED is warranted. PMID:29184448
Reference dosimetry using radiochromic film
Girard, Frédéric; Bouchard, Hugo
2012-01-01
The objectives of this study are to identify and quantify factors that influence radiochromic film dose response and to determine whether such films are suitable for reference dosimetry. The influence of several parameters that may introduce systematic dose errors when performing reference dose measurements were investigated. The effect of the film storage temperature was determined by comparing the performance of three lots of GAFCHROMIC EBT2 films stored at either 4°C or room temperature. The effect of high (>80%) or low (<20%) relative humidity was also determined. Doses measured in optimal conditions with EBT and EBT2 films were then compared with an A12 ionization chamber measurement. Intensity‐modulated radiation therapy quality controls using EBT2 films were also performed in reference dose. The results obtained using reference dose measurements were compared with those obtained using relative dose measurements. Storing the film at 4°C improves the stability of the film over time, but does not eliminate the noncatalytic film development, seen as a rise in optical density over time in the absence of radiation. Relative humidity variations ranging from 80% to 20% have a strong impact on the optical density and could introduce dose errors of up to 15% if the humidity were not controlled during the film storage period. During the scanning procedure, the film temperature influences the optical density that is measured. When controlling for these three parameters, the dose differences between EBT or EBT2 and the A12 chamber are found to be within ±4% (2σ level) over a dose range of 20–350 cGy. Our results also demonstrate the limitation of the Anisotropic Analytical Algorithm for dose calculation of highly modulated treatment plans. PACS numbers: 87.55.Qr; 87.56.Fc PMID:23149793
Krishna, Sanjeev; Planche, Tim; Agbenyega, Tsiri; Woodrow, Charles; Agranoff, Dan; Bedu-Addo, George; Owusu-Ofori, Alex K.; Appiah, John Adabie; Ramanathan, Surash; Mansor, Sharif M.; Navaratnam, Visweswaran
2001-01-01
We report the first detailed pharmacokinetic assessment of intrarectal (i.r.) artesunate (ARS) in African children. Artesunate was given intravenously (i.v.; 2.4 mg/kg of body weight) and i.r. (10 or 20 mg/kg formulated as 50- or 200-mg suppositories [Rectocaps]) in a crossover study design to 34 Ghanaian children with moderate falciparum malaria. The median relative bioavailability of dihydroartemisinin (DHA), the active antimalarial metabolite of ARS, was higher in the low-dose i.r. group (10 mg/kg) than in the high-dose i.r. group (20 mg/kg) (58 versus 23%; P = 0.018). There was wide interpatient variation in the area under the concentration-time curve after i.r. ARS administration (up to 9-fold in the high-dose group and 20-fold in the low-dose group). i.r. administered ARS was more rapidly absorbed in the low-dose group than the high-dose group (median [range] absorption half-lives, 0.7 h [0.3 to 1.24 h] versus 1.1 h [0.6 to 2.7 h] [P = 0.023]. i.r. administered ARS was eliminated with a median (range) half-life of 0.8 h (0.4 to 2.7 h) (low-dose group and 0.9 h (0.1 to 2.5 h) (high-dose group) (P = 1). The fractional clearances of DHA were 3.9, 2.6, and 1.5 liters/kg/h for the 20-mg/kg, 10-mg/kg and i.v. groups, respectively (P = 0.001 and P = 0.06 for the high-and low-dose i.r. groups compared with the i.v. groups, respectively). The median volumes of distribution for DHA were 1.5 liters kg (20 mg/kg, i.r. group), 1.8 liters/kg (10 mg/kg, i.r. group), and 0.6 liters/kg (i.v. group) (P < 0.05 for both i.r. groups compared with the i.v. group). Parasite clearance kinetics were comparable in all treatment groups. i.r. administered ARS may be a useful alternative to parenterally administered ARS in the management of moderate childhood malaria and should be studied further. PMID:11158748
NASA Astrophysics Data System (ADS)
Alkhorayef, M.; Mansour, A.; Sulieman, A.; Alnaaimi, M.; Alduaij, M.; Babikir, E.; Bradley, D. A.
2017-12-01
Butylatedhydroxytoluene (BHT) rods represent a potential dosimeter in radiation processing, with readout via electron paramagnetic resonance (EPR) spectroscopy. Among the possible sources of uncertainty are those associated with the performance of the dosimetric medium and the conditions under which measurements are made, including sampling and environmental conditions. Present study makes estimate of the uncertainties, investigating physical response in different resonance regions. BHT, a white crystalline solid with a melting point of between 70-73 °C, was investigated using 60Co gamma irradiation over the dose range 0.1-100 kGy. The intensity of the EPR signal increases linearly in the range 0.1-35 kGy, the uncertainty budget for high doses being 3.3% at the 2σ confidence level. The rod form represents an excellent alternative dosimeter for high level dosimetry, of small uncertainty compared to powder form.
Castberg, Ingrid; Spigset, Olav
2008-10-01
The aim of this study was to investigate the use of psychotropic medication and therapeutic drug monitoring in a high-security psychiatric unit and to compare the doses and serum concentrations both with the recommended intervals and with the doses and serum concentrations in a control group. One hundred thirty-two patients were admitted in the period from January 2000 to December 2005. All available samples were used when comparing serum concentrations and doses with the recommended ranges. For the comparison of doses and serum concentration-to-dose (C:D) ratios with the control group only 1 sample from each patient was used. A total of 459 analyses of 27 different drugs in samples from 8 women and 73 men were included. The median number of therapeutic drug monitoring analyses per patient was 4 (range 1-29). Thirty-seven of the 81 patients (46%) used 2 or more antipsychotics at the same time. Clozapine, lamotrigine, olanzapine, quetiapine, ziprasidone, and zuclopenthixol were often given in doses above the recommended. The serum levels were frequently above those recommended for clozapine, olanzapine, quetiapine, risperidone, ziprasidone, and zuclopenthixol. The serum levels were significantly higher in the study group than in the control group for clozapine, lamotrigine, quetiapine, and zuclopenthixol. The given dose was significantly higher in the study group than in the control group for clozapine, lamotrigine and zuclopenthixol. The C:D ratio was significantly lower in the study group than in the control group for olanzapine but higher for quetiapine. The non-evidence based practice of high-dose polypharmacy with several antipsychotics is widely used in this unit. The use of higher doses in the study group than in the control group was not due to differences in metabolism or adherence to treatment between the 2 groups. The frequent use of therapeutic drug monitoring did not seem to have a great impact on the prescribed doses.
Microfluidic Thrombosis under Multiple Shear Rates and Antiplatelet Therapy Doses
Ku, David N.; Forest, Craig R.
2014-01-01
The mainstay of treatment for thrombosis, the formation of occlusive platelet aggregates that often lead to heart attack and stroke, is antiplatelet therapy. Antiplatelet therapy dosing and resistance are poorly understood, leading to potential incorrect and ineffective dosing. Shear rate is also suspected to play a major role in thrombosis, but instrumentation to measure its influence has been limited by flow conditions, agonist use, and non-systematic and/or non-quantitative studies. In this work we measured occlusion times and thrombus detachment for a range of initial shear rates (500, 1500, 4000, and 10000 s−1) and therapy concentrations (0–2.4 µM for eptifibatide, 0–2 mM for acetyl-salicylic acid (ASA), 3.5–40 Units/L for heparin) using a microfluidic device. We also measured complete blood counts (CBC) and platelet activity using whole blood impedance aggregometry. Effects of shear rate and dose were analyzed using general linear models, logistic regressions, and Cox proportional hazards models. Shear rates have significant effects on thrombosis/dose-response curves for all tested therapies. ASA has little effect on high shear occlusion times, even at very high doses (up to 20 times the recommended dose). Under ASA therapy, thrombi formed at high shear rates were 4 times more prone to detachment compared to those formed under control conditions. Eptifibatide reduced occlusion when controlling for shear rate and its efficacy increased with dose concentration. In contrast, the hazard of occlusion from ASA was several orders of magnitude higher than that of eptifibatide. Our results show similar dose efficacy to our low shear measurements using whole blood aggregometry. This quantitative and statistically validated study of the effects of a wide range of shear rate and antiplatelet therapy doses on occlusive thrombosis contributes to more accurate understanding of thrombosis and to models for optimizing patient treatment. PMID:24404131
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Kuan-Kan; Woon, Wei Yen; Chang, Ruey-Dar
We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.
NASA Astrophysics Data System (ADS)
Hu, Kuan-Kan; Chang, Ruey-Dar; Woon, Wei Yen
2015-10-01
We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, Damodar, E-mail: damodar.pokhrel@uky.edu; Sood, Sumit; McClinton, Christopher
To retrospectively evaluate quality, efficiency, and delivery accuracy of volumetric-modulated arc therapy (VMAT) plans for single-fraction treatment of thoracic vertebral metastases using image-guided stereotactic body radiosurgery (SBRS) after RTOG 0631 dosimetric compliance criteria. After obtaining credentialing for MD Anderson spine phantom irradiation validation, 10 previously treated patients with thoracic vertebral metastases with noncoplanar hybrid arcs using 1 to 2 3D-conformal partial arcs plus 7 to 9 intensity-modulated radiation therapy beams were retrospectively re-optimized with VMAT using 3 full coplanar arcs. Tumors were located between T2 and T12. Contrast-enhanced T1/T2-weighted magnetic resonance images were coregistered with planning computed tomography and planningmore » target volumes (PTV) were between 14.4 and 230.1 cc (median = 38.0 cc). Prescription dose was 16 Gy in 1 fraction with 6 MV beams at Novalis-TX linear accelerator consisting of micro multileaf collimators. Each plan was assessed for target coverage using conformality index, the conformation number, the ratio of the volume receiving 50% of the prescription dose over PTV, R50%, homogeneity index (HI), and PTV-1600 coverage per RTOG 0631 requirements. Organs-at-risk doses were evaluated for maximum doses to spinal cord (D{sub 0.03} {sub cc}, D{sub 0.35} {sub cc}), partial spinal cord (D{sub 10%}), esophagus (D{sub 0.03} {sub cc} and D{sub 5} {sub cc}), heart (D{sub 0.03} {sub cc} and D{sub 15} {sub cc}), and lung (V{sub 5}, V{sub 10}, and maximum dose to 1000 cc of lung). Dose delivery efficiency and accuracy of each VMAT-SBRS plan were assessed using quality assurance (QA) plan on MapCHECK device. Total beam-on time was recorded during QA procedure, and a clinical gamma index (2%/2 mm and 3%/3 mm) was used to compare agreement between planned and measured doses. All 10 VMAT-SBRS plans met RTOG 0631 dosimetric requirements for PTV coverage. The plans demonstrated highly conformal and homogenous coverage of the vertebral PTV with mean HI, conformality index, conformation number, and R{sub 50%} values of 0.13 ± 0.03 (range: 0.09 to 0.18), 1.03 ± 0.04 (range: 0.98 to 1.09), 0.81 ± 0.06 (range: 0.72 to 0.89), and 4.2 ± 0.94 (range: 2.7 to 5.4), respectively. All 10 patients met protocol guidelines with maximum dose to spinal cord (average: 8.83 ± 1.9 Gy, range: 5.9 to 10.9 Gy); dose to 0.35 cc of spinal cord (average: 7.62 ± 1.7 Gy, range: 5.4 to 9.6 Gy); and dose to 10% of partial spinal cord (average 6.31 ± 1.5 Gy, range: 3.5 to 8.5 Gy) less than 14, 10, and 10 Gy, respectively. For all 10 patients, the maximum dose to esophagus (average: 9.41 ± 4.3 Gy, range: 1.5 to 14.9 Gy) and dose to 5 cc of esophagus (average: 7.43 ± 3.8 Gy, range: 1.1 to 11.8 Gy) were kept less than protocol requirements 16 Gy and 11.9 Gy, respectively. In a similar manner, all 10 patients met protocol compliance criteria with maximum dose to heart (average: 4.62 ± 3.5 Gy, range: 1.3 to 10.2 Gy) and dose to 15 cc of heart (average: 2.23 ± 1.8 Gy, range: 0.3 to 5.6 Gy) less than 22 and 16 Gy, respectively. The dose to the lung was retained much lower than protocol guidelines for all 10 patients. The total number of monitor units was, on average, 6919 ± 1187. The average beam-on time was 11.5 ± 2.0 minutes. The VMAT plans demonstrated dose delivery accuracy of 95.8 ± 0.7%, on average, for clinical gamma passing rate with 2%/2 mm criteria and 98.3 ± 0.8%, on average, with 3%/3 mm criteria. All VMAT-SBRS plans were considered clinically acceptable per RTOG 0631 dosimetric compliance criteria. VMAT planning provided highly conformal and homogenous dose distributions for the lower-dose vertebral PTV and the spinal cord as well as organs-at-risk such as esophagus, heart, and lung. Higher QA pass rates and shorter beam-on time suggest that VMAT-SBRS is a clinically feasible, fast, and effective treatment option for patients with thoracic vertebral metastases.« less
Pape, B E; Cary, P L; Clay, L C; Godolphin, W
1983-01-01
Pentobarbital serum concentrations associated with a high-dose therapeutic regimen were determined using EMIT immunoassay reagents. Replicate analyses of serum controls resulted in a within-assay coefficient of variation of 5.0% and a between-assay coefficient of variation of 10%. Regression analysis of 44 serum samples analyzed by this technique (y) and a reference procedure (x) were y = 0.98x + 3.6 (r = 0.98; x = ultraviolet spectroscopy) and y = 1.04x + 2.4 (r = 0.96; x = high-performance liquid chromatography). Clinical evaluation of the results indicates the immunoassay is sufficiently sensitive and selective for pentobarbital to allow accurate quantitation within the therapeutic range associated with high-dose therapy.
NASA Astrophysics Data System (ADS)
Khan, Muzafar; Heilemann, Gerd; Kuess, Peter; Georg, Dietmar; Berg, Andreas
2018-03-01
Recent developments in radiation therapy aimed at more precise dose delivery along with higher dose gradients (dose painting) and more efficient dose delivery with higher dose rates e.g. flattening filter free (FFF) irradiation. Magnetic-resonance-imaging based polymer gel dosimetry offers 3D information for precise dose delivery techniques. Many of the proposed polymer gels have been reported to exhibit a dose response, measured as relaxation rate ΔR2(D), which is dose rate dependent. A lack of or a reduced dose-rate sensitivity is very important for dosimetric accuracy, especially with regard to the increasing clinical use of FFF irradiation protocols with LINACs at high dose rates. Some commonly used polymer gels are based on Methacrylic-Acid-Gel-Initiated-by-Copper (MAGIC). Here, we report on the dose sensitivity (ΔR2/ΔD) of MAGIC-type gels with different oxygen scavenger concentration for their specific dependence on the applied dose rate in order to improve the dosimetric performance, especially for high dose rates. A preclinical x-ray machine (‘Yxlon’, E = 200 kV) was used for irradiation to cover a range of dose rates from low \\dot{D} min = 0.6 Gy min-1 to high \\dot{D} max = 18 Gy min-1. The dose response was evaluated using R2-imaging of the gel on a human high-field (7T) MR-scanner. The results indicate that all of the investigated dose rates had an impact on the dose response in polymer gel dosimeters, being strongest in the high dose region and less effective for low dose levels. The absolute dose rate dependence \\frac{(Δ R2/Δ D)}{Δ \\dot{D}} of the dose response in MAGIC-type gel is significantly reduced using higher concentrations of oxygen scavenger at the expense of reduced dose sensitivity. For quantitative dose evaluations the relative dose rate dependence of a polymer gel, normalized to its sensitivity is important. Based on this normalized sensitivity the dose rate sensitivity was reduced distinctly using an increased oxygen scavenger concentration with reference to standard MAGIC-type gel formulation at high dose rate levels. The proposed gel composition with high oxygen scavenger concentration exhibits a larger linear active dose response and might be used especially in FFF-radiation applications and preclinical dosimetry at high dose rates. We propose in general to use high dose rates for calibration and evaluation as the change in relative dose sensitivity is reduced at higher dose rates in all of the investigated gel types.
Broome, E J; Brown, D L; Mitchel, R E J
2002-08-01
The dose response for adaption to radiation at low doses was compared in normal human fibroblasts (AG1522) exposed to either (60)Co gamma rays or (3)H beta particles. Cells were grown in culture to confluence and exposed at either 37 degrees C or 0 degrees C to (3)H beta-particle or (60)Co gamma-ray adapting doses ranging from 0.1 mGy to 500 mGy. These cells, and unexposed control cells, were allowed to adapt during a fixed 3-h, 37 degrees C incubation prior to a 4-Gy challenge dose of (60)Co gamma rays. Adaption was assessed by measuring micronucleus frequency in cytokinesis-blocked, binucleate cells. No adaption was detected in cells exposed to (60)Co gamma radiation at 37 degrees C after a dose of 0.1 mGy given at a low dose rate or to 500 mGy given at a high dose rate. However, low-dose-rate exposure (1-3 mGy/min) to any dose between 1 and 500 mGy from either radiation, delivered at either temperature, caused cells to adapt and reduced the micronucleus frequency that resulted from the subsequent 4-Gy exposure. Within this dose range, the magnitude of the reduction was the same, regardless of the dose or radiation type. These results demonstrate that doses as low as (on average) about one track per cell (1 mGy) produce the same maximum adaptive response as do doses that deposit many tracks per cell, and that the two radiations were not different in this regard. Exposure at a temperature where metabolic processes, including DNA repair, were inactive (0 degrees C) did not alter the result, indicating that the adaptive response is not sensitive to changes in the accumulation of DNA damage within this range. The results also show that the RBE for low doses of tritium beta-particle radiation is 1, using adaption as the end point.
Proposed linear energy transfer areal detector for protons using radiochromic film.
Mayer, Rulon; Lin, Liyong; Fager, Marcus; Douglas, Dan; McDonough, James; Carabe, Alejandro
2015-04-01
Radiation therapy depends on predictably and reliably delivering dose to tumors and sparing normal tissues. Protons with kinetic energy of a few hundred MeV can selectively deposit dose to deep seated tumors without an exit dose, unlike x-rays. The better dose distribution is attributed to a phenomenon known as the Bragg peak. The Bragg peak is due to relatively high energy deposition within a given distance or high Linear Energy Transfer (LET). In addition, biological response to radiation depends on the dose, dose rate, and localized energy deposition patterns or LET. At present, the LET can only be measured at a given fixed point and the LET spatial distribution can only be inferred from calculations. The goal of this study is to develop and test a method to measure LET over extended areas. Traditionally, radiochromic films are used to measure dose distribution but not for LET distribution. We report the first use of these films for measuring the spatial distribution of the LET deposited by protons. The radiochromic film sensitivity diminishes for large LET. A mathematical model correlating the film sensitivity and LET is presented to justify relating LET and radiochromic film relative sensitivity. Protons were directed parallel to radiochromic film sandwiched between solid water slabs. This study proposes the scaled-normalized difference (SND) between the Treatment Planning system (TPS) and measured dose as the metric describing the LET. The SND is correlated with a Monte Carlo (MC) calculation of the LET spatial distribution for a large range of SNDs. A polynomial fit between the SND and MC LET is generated for protons having a single range of 20 cm with narrow Bragg peak. Coefficients from these fitted polynomial fits were applied to measured proton dose distributions with a variety of ranges. An identical procedure was applied to the protons deposited from Spread Out Bragg Peak and modulated by 5 cm. Gamma analysis is a method for comparing the calculated LET with the LET measured using radiochromic film at the pixel level over extended areas. Failure rates using gamma analysis are calculated for areas in the dose distribution using parameters of 25% of MC LET and 3 mm. The processed dose distributions find 5%-10% failure rates for the narrow 12.5 and 15 cm proton ranges and 10%-15% for proton ranges of 15, 17.5, and 20 cm and modulated by 5 cm. It is found through gamma analysis that the measured proton energy deposition in radiochromic film and TPS can be used to determine LET. This modified film dosimetry provides an experimental areal LET measurement that can verify MC calculations, support LET point measurements, possibly enhance biologically based proton treatment planning, and determine the polymerization process within the radiochromic film.
NASA Astrophysics Data System (ADS)
Camarlinghi, N.; Sportelli, G.; Battistoni, G.; Belcari, N.; Cecchetti, M.; Cirrone, G. A. P.; Cuttone, G.; Ferretti, S.; Kraan, A.; Retico, A.; Romano, F.; Sala, P.; Straub, K.; Tramontana, A.; Del Guerra, A.; Rosso, V.
2014-04-01
Ion therapy allows the delivery of highly conformal dose taking advantage of the sharp depth-dose distribution at the Bragg-peak. However, patient positioning errors and anatomical uncertainties can cause dose distortions. To exploit the full potential of ion therapy, an accurate monitoring system of the ion range is needed. Among the proposed methods to monitor the ion range, Positron Emission Tomography (PET) has proven to be the most mature technique, allowing to reconstruct the β+ activity generated in the patient by the nuclear interaction of the ions, that can be acquired during or after the treatment. Taking advantages of the spatial correlation between positron emitters created along the ions path and the dose distribution, it is possible to reconstruct the ion range. Due to the high single rates generated during the beam extraction, the acquisition of the β+ activity is typically performed after the irradiation (cyclotron) or in between the synchrotron spills. Indeed the single photon rate can be one or more orders of magnitude higher than normal for cyclotron. Therefore, acquiring the activity during the beam irradiation requires a detector with a very short dead time. In this work, the DoPET detector, capable of sustaining the high event rate generated during the cyclotron irradiation, is presented. The capability of the system to acquire data during and after the irradiation will be demonstrated by showing the reconstructed activity for different PMMA irradiations performed using clinical dose rates and the 62 MeV proton beam at the CATANA-LNS-INFN. The reconstructed activity widths will be compared with the results obtained by simulating the proton beam interaction with the FLUKA Monte Carlo. The presented data are in good agreement with the FLUKA Monte Carlo.
Port, M; Pieper, B; Dörr, H D; Hübsch, A; Majewski, M; Abend, M
2018-05-01
The degree of severity of hematologic acute radiation syndrome (HARS) may vary across the range of radiation doses, such that dose alone may be a less reliable predictor of clinical course. We sought to elucidate the relationship between absorbed dose and risk of clinically relevant HARS in humans. We used the database SEARCH (System for Evaluation and Archiving of Radiation Accidents based on Case Histories), which contains the histories of radiation accident victims. From 153 cases we extracted data on dose estimates using the dicentric assay to measure individual biological dosimetry. The data were analyzed according to the corresponding hematological response categories of clinical significance (H1-4). These categories are derived from the medical treatment protocols for radiation accident victims (METREPOL) and represent the clinical outcome of HARS based on severity categories ranging from 1-4. In addition, the category H0 represents a post-exposure hematological response that is within the normal range for nonexposed individuals. Age at exposure, gender and ethnicity were considered as potential confounders in unconditional cumulative logistic regression analysis. In most cases, victims were Caucasian (82.4%) and male (92.8%), who originated from either the Chernobyl (69.3%) or Goiânia (10.5%) accident, and nearly 60% were aged 20-40 years at time of exposure. All individuals were whole-body exposed (mean 3.8 Gy, stdev ±3.1), and single exposures were predominantly reported (79%). Seventy percent of victims in category H0 were exposed to ≤1 Gy, with rapidly decreasing proportions of H0 seen at doses up to 5 Gy. There were few HARS H4 cases reported at exposed dose of 1-2 Gy, while 82% of H4 cases received doses of >5 Gy. HARS H1-3 cases varied among dose ranges from 1-5 Gy. In summary, single whole-body radiation doses <1 Gy and >5 Gy corresponded in general with H0 and H3-4, respectively, and this was consistent with medical expectations. This underlines the usefulness of dose estimates for HARS prediction. However, whole-body doses between 1-5 Gy poorly corresponded to HARS H1-3. The dose range of 1-5 Gy was of limited value for medical decision-making regarding, e.g., hospitalization for H2-3, but not H1 and treatment decisions that differ between H1-3. Also, there were some H0 cases at high doses and H2-4 cases at low doses, thereby challenging an individual recommendation based solely on dose.
Chamberlain, Marc C; Johnston, Sandra K
2010-07-01
We conducted a prospective Phase II study of high-dose methotrexate (HD-MTX) and rituximab with deferred whole brain radiotherapy in patients with newly diagnosed B-cell primary central nervous system lymphoma with a primary objective of evaluating progression-free survival (PFS). Forty patients (25 men; 15 women), ages 18-93 years (median 61.5), were treated. All patients received biweekly HD-MTX/rituximab (8 g/m(2)/dose; 375 mg/m(2)/dose) for 4-6 cycles (induction) and following best radiographic response, with every 4 weeks HD-MTX (8 g/m(2)/dose) for 4 cycles (maintenance). Neurological and neuroradiographic evaluation were performed every 4 weeks during induction therapy and every 8 weeks during maintenance therapy. All patients were evaluable. A total of 303 cycles of HD-MTX (median 8 cycles; range 4-10) was administered. HD-MTX/rituximab-related toxicity included 16 grade 3 adverse events in 13 patients (32.5%). Following induction, 8 patients (20%) demonstrated progressive disease and discontinued therapy; 32 patients (80%) demonstrated a partial (8/40; 20%) or complete (24/40; 60%) radiographic response. At the conclusion of maintenance therapy (6-10 months of total therapy), 28 patients (70%) demonstrated either a partial (1/28) or complete (27/28) response. Overall, survival of these 28 patients ranged from 11 to 80 months (median 33.5). Survival in the entire cohort ranged from 6 to 80 months with an estimated median of 29 months. Overall, PFS ranged from 2 to 80 months (median 21.0). HD-MTX/rituximab and deferred radiotherapy demonstrated similar or better efficacy similar to other HD-MTX-only regimens and reduced time on therapy on average to 6 months.
Chamberlain, Marc C.; Johnston, Sandra K.
2010-01-01
We conducted a prospective Phase II study of high-dose methotrexate (HD-MTX) and rituximab with deferred whole brain radiotherapy in patients with newly diagnosed B-cell primary central nervous system lymphoma with a primary objective of evaluating progression-free survival (PFS). Forty patients (25 men; 15 women), ages 18–93 years (median 61.5), were treated. All patients received biweekly HD-MTX/rituximab (8 g/m2/dose; 375 mg/m2/dose) for 4–6 cycles (induction) and following best radiographic response, with every 4 weeks HD-MTX (8 g/m2/dose) for 4 cycles (maintenance). Neurological and neuroradiographic evaluation were performed every 4 weeks during induction therapy and every 8 weeks during maintenance therapy. All patients were evaluable. A total of 303 cycles of HD-MTX (median 8 cycles; range 4–10) was administered. HD-MTX/rituximab-related toxicity included 16 grade 3 adverse events in 13 patients (32.5%). Following induction, 8 patients (20%) demonstrated progressive disease and discontinued therapy; 32 patients (80%) demonstrated a partial (8/40; 20%) or complete (24/40; 60%) radiographic response. At the conclusion of maintenance therapy (6–10 months of total therapy), 28 patients (70%) demonstrated either a partial (1/28) or complete (27/28) response. Overall, survival of these 28 patients ranged from 11 to 80 months (median 33.5). Survival in the entire cohort ranged from 6 to 80 months with an estimated median of 29 months. Overall, PFS ranged from 2 to 80 months (median 21.0). HD-MTX/rituximab and deferred radiotherapy demonstrated similar or better efficacy similar to other HD-MTX-only regimens and reduced time on therapy on average to 6 months. PMID:20511181
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giantsoudi, D; Adams, J; MacDonald, S
Purpose: In proton radiation therapy of posterior fossa tumors, to spare other sensitive structures, the preferred beam geometry results in placing the treatment field distal edge within or just beyond the brainstem, including in at least partially in the treatment volume. Concerns for brainstem toxicity are increased and a controversy exists as to weather the beam’s distal edge should be placed within the brainstem or beyond it, to avoid elevated linear energy transfer (LET) and relative biological effectiveness (RBE) within the brainstem. The dosimetric efficacy of these techniques was examined, accounting for LET- and dose-dependent variable RBE distributions. Methods: Threemore » treatment planning techniques were applied in six ependymoma cases: (a) three-field dose-sparing, with beams’ distal edge within the brainstem; (b) three-field LET-sparing, using same beam directions as (a) but extended field ranges beyond the brainstem; (c) two-posterior-oblique LET-sparing, with extended ranges as (b). Monte Carlo calculated dose, LET and RBE-weighted dose distributions were compared. Results: Lower LET values in the brainstem were accompanied by higher median dose: 53.7 Gy[RBE] and 54.3 Gy[RBE] for techniques (b) and (c) versus 52.1 Gy[RBE] for (a). Accounting for variable RBE, a 15% increase of the brainstem volume receiving at least 60 Gy[RBE] was observed for technique (c) versus (a). Maximum variable-RBE-weighted brainstem dose was comparable for all techniques. Conclusion: Extending the treatment beam range beyond the brainstem, significantly increased its volume receiving high dose radiation, even when accounting for the decreased LET values. The dosimetric benefits of techniques limiting the brainstem dose may outweigh the impact of LET reduction achieved through this technique, especially since clinical consequences of increased LET at the end of range have not been proven yet.« less
Lintzeris, Nicholas; Monds, Lauren A; Rivas, Consuelo; Leung, Stefanie; Dunlop, Adrian; Newcombe, David; Walters, Carina; Galea, Susanna; White, Nancy; Montebello, Mark; Demirkol, Apo; Swanson, Nicola; Ali, Robert
Transfer from methadone to buprenorphine is problematic for many opioid-dependent patients, with limited documented evidence or practical clinical guidance, particularly for the range of methadone doses routinely prescribed for most patients (>50 mg). This study aimed to implement and evaluate recent national Australian guidelines for transferring patients from methadone to buprenorphine. A multisite prospective cohort study. Participants were patients who transferred from methadone to buprenorphine-naloxone at 1 of 4 specialist addiction centers in Australia and New Zealand. Clinicians were trained in the guidelines, and medical records were reviewed to examine process (eg, transfer setting, doses, and guideline adherence) and safety (precipitated withdrawal) measures. Participants completed research interviews before and after transfer-assessing changes in substance use, health outcomes, and side effects. In all, 33 participants underwent transfer, 9 from low methadone doses (<30 mg), 9 from medium doses (30-50 mg), and 15 from high doses (>50 mg). The majority of high-dose transfers occurred in inpatient settings. There was reasonable guideline adherence, and no complications identified in the low and medium-dose transfers. Three high-dose transfers (20%) experienced precipitated withdrawal, and 7/33 participants (21%) returned to methadone within 1 week of attempted transfer. Transfer is feasible in outpatient settings for those transferring from methadone doses below 50 mg; however, inpatient settings and specialist supervision is recommended for higher-dose transfers. The Australian clinical guidelines appear safe and feasible, although further research is required to optimize high-dose transfer procedures.
External doses of residents near Semipalatinsk nuclear test site.
Takada, J; Hoshi, M; Nagatomo, T; Yamamoto, M; Endo, S; Takatsuji, T; Yoshikawa, I; Gusev, B I; Sakerbaev, A K; Tchaijunusova, N J
1999-12-01
Accumulated external radiation doses of residents near the Semipalatinsk nuclear test site of the former USSR are presented as a results of study by the thermoluminescence technique for bricks sampled at several settlements in 1995 and 1996. The external doses that we evaluated from exposed bricks were up to about 100 cGy for resident. The external doses at several points in the center of Semipalatinsk City ranged from a background level to 60 cGy, which was remarkably high compared with the previously reported values based on military data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harpool, K; De La Fuente Herman, T; Ahmad, S
Purpose: To investigate quantitatively the accuracy of dose distributions for the Ir-192 high-dose-rate (HDR) brachytherapy source calculated by the Brachytherapy-Planning system (BPS) and measured using a multiple-array-diode-detector in a heterogeneous medium. Methods: A two-dimensional diode-array-detector system (MapCheck2) was scanned with a catheter and the CT-images were loaded into the Varian-Brachytherapy-Planning which uses TG-43-formalism for dose calculation. Treatment plans were calculated for different combinations of one dwell-position and varying irradiation times and different-dwell positions and fixed irradiation time with the source placed 12mm from the diode-array plane. The calculated dose distributions were compared to the measured doses with MapCheck2 delivered bymore » an Ir-192-source from a Nucletron-Microselectron-V2-remote-after-loader. The linearity of MapCheck2 was tested for a range of dwell-times (2–600 seconds). The angular effect was tested with 30 seconds irradiation delivered to the central-diode and then moving the source away in increments of 10mm. Results: Large differences were found between calculated and measured dose distributions. These differences are mainly due to absence of heterogeneity in the dose calculation and diode-artifacts in the measurements. The dose differences between measured and calculated due to heterogeneity ranged from 5%–12% depending on the position of the source relative to the diodes in MapCheck2 and different heterogeneities in the beam path. The linearity test of the diode-detector showed 3.98%, 2.61%, and 2.27% over-response at short irradiation times of 2, 5, and 10 seconds, respectively, and within 2% for 20 to 600 seconds (p-value=0.05) which depends strongly on MapCheck2 noise. The angular dependency was more pronounced at acute angles ranging up to 34% at 5.7 degrees. Conclusion: Large deviations between measured and calculated dose distributions for HDR-brachytherapy with Ir-192 may be improved when considering medium heterogeneity and dose-artifact of the diodes. This study demonstrates that multiple-array-diode-detectors provide practical and accurate dosimeter to verify doses delivered from the brachytherapy Ir-192-source.« less
Degradation of the Bragg peak due to inhomogeneities.
Urie, M; Goitein, M; Holley, W R; Chen, G T
1986-01-01
The rapid fall-off of dose at the end of range of heavy charged particle beams has the potential in therapeutic applications of sparing critical structures just distal to the target volume. Here we explored the effects of highly inhomogeneous regions on this desirable depth-dose characteristic. The proton depth-dose distribution behind a lucite-air interface parallel to the beam was bimodal, indicating the presence of two groups of protons with different residual ranges, creating a step-like depth-dose distribution at the end of range. The residual ranges became more spread out as the interface was angled at 3 degrees, and still more at 6 degrees, to the direction of the beam. A second experiment showed little significant effect on the distal depth-dose of protons having passed through a mosaic of teflon and lucite. Anatomic studies demonstrated significant effects of complex fine inhomogeneities on the end of range characteristics. Monoenergetic protons passing through the petrous ridges and mastoid air cells in the base of skull showed a dramatic degradation of the distal Bragg peak. In beams with spread out Bragg peaks passing through regions of the base of skull, the distal fall-off from 90 to 20% dose was increased from its nominal 6 to well over 32 mm. Heavy ions showed a corresponding degradation in their ends of range. In the worst case in the base of skull region, a monoenergetic neon beam showed a broadening of the full width at half maximum of the Bragg peak to over 15 mm (compared with 4 mm in a homogeneous unit density medium). A similar effect was found with carbon ions in the abdomen, where the full width at half maximum of the Bragg peak (nominally 5.5 mm) was found to be greater than 25 mm behind gas-soft-tissue interfaces. We address the implications of these data for dose computation with heavy charged particles.
Population dose commitments due to radioactive releases from nuclear power plant sites in 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1988. Fifty-year commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 71 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km aroundmore » each site receiving various average dose commitments from the airborne pathways. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 16 person-rem to a low of 0.0011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.1 person-rem. The total population dose for all sites was estimated at 75 person-rem for the 150 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 3 {times} 10{sup {minus}7} mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. However, licensee calculation of doses to the maximally exposed individual at some sites indicated values of up to approximately 100 times average individual doses (on the order of a few millirem per year).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.
Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1988. Fifty-year commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 71 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km aroundmore » each site receiving various average dose commitments from the airborne pathways. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 16 person-rem to a low of 0.0011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.1 person-rem. The total population dose for all sites was estimated at 75 person-rem for the 150 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 3 {times} 10{sup {minus}7} mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. However, licensee calculation of doses to the maximally exposed individual at some sites indicated values of up to approximately 100 times average individual doses (on the order of a few millirem per year).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, D.
Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilitiesmore » over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, J.J.; Friedman, R.; Orr, K.
1990-05-01
Pentobarbital reduces cerebral radiation toxicity; however, the mechanism of this phenomenon remains unknown. As an anesthetic and depressant of cerebral metabolism, pentobarbital induces its effects on the central nervous system by stimulating the binding of gamma-aminobutyric acid (GABA) to its receptor and by inhibiting postsynaptic excitatory amino acid activity. The purpose of this study is to investigate the role of these actions as well as other aspects of the radioprotective activity of pentobarbital. Fischer 344 rats were separated into multiple groups and underwent two dose-response evaluations. In one set of experiments to examine the relationship of radioprotection to pentobarbital dose,more » a range of pentobarbital doses (0 to 75 mg/kg) were given intraperitoneally prior to a constant-level radiation dose (70 Gy). In a second series of experiments to determine the dose-response relationship of radiation protection to radiation dose, a range of radiation doses (10 to 90 Gy) were given with a single pentobarbital dose. Further groups of animals were used to evaluate the importance of the timing of pentobarbital administration, the function of the (+) and (-) isomers of pentobarbital, and the role of an alternative GABA agonist (diazepam). In addition, the potential protective effects of alternative methods of anesthesia (ketamine) and induction of cerebral hypometabolism (hypothermia) were examined. Enhancement of survival time from acute radiation injury due to high-dose single-fraction whole-brain irradiation was maximal with 60 mg/kg of pentobarbital, and occurred over the range of all doses examined between 30 to 90 Gy. Protection was seen only in animals that received the pentobarbital before irradiation. Administration of other compounds that enhance GABA binding (Saffan and diazepam) also significantly enhanced survival time.« less
Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y
2011-05-01
The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.
Tolerance of the Brachial Plexus to High-Dose Reirradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Allen M., E-mail: achen5@kumc.edu; Yoshizaki, Taeko; Velez, Maria A.
Purpose: To study the tolerance of the brachial plexus to high doses of radiation exceeding historically accepted limits by analyzing human subjects treated with reirradiation for recurrent tumors of the head and neck. Methods and Materials: Data from 43 patients who were confirmed to have received overlapping dose to the brachial plexus after review of radiation treatment plans from the initial and reirradiation courses were used to model the tolerance of this normal tissue structure. A standardized instrument for symptoms of neuropathy believed to be related to brachial plexus injury was utilized to screen for toxicity. Cumulative dose was calculatedmore » by fusing the initial dose distributions onto the reirradiation plan, thereby creating a composite plan via deformable image registration. The median elapsed time from the initial course of radiation therapy to reirradiation was 24 months (range, 3-144 months). Results: The dominant complaints among patients with symptoms were ipsilateral pain (54%), numbness/tingling (31%), and motor weakness and/or difficulty with manual dexterity (15%). The cumulative maximum dose (Dmax) received by the brachial plexus ranged from 60.5 Gy to 150.1 Gy (median, 95.0 Gy). The cumulative mean (Dmean) dose ranged from 20.2 Gy to 111.5 Gy (median, 63.8 Gy). The 1-year freedom from brachial plexus–related neuropathy was 67% and 86% for subjects with a cumulative Dmax greater than and less than 95.0 Gy, respectively (P=.05). The 1-year complication-free rate was 66% and 87%, for those reirradiated within and after 2 years from the initial course, respectively (P=.06). Conclusion: The development of brachial plexus–related symptoms was less than expected owing to repair kinetics and to the relatively short survival of the subject population. Time-dose factors were demonstrated to be predictive of complications.« less
Neutron dosimetry in low-earth orbit using passive detectors
NASA Technical Reports Server (NTRS)
Benton, E. R.; Benton, E. V.; Frank, A. L.
2001-01-01
This paper summarizes neutron dosimetry measurements made by the USF Physics Research Laboratory aboard US and Russian LEO spacecraft over the past 20 years using two types of passive detector. Thermal/resonance neutron detectors exploiting the 6Li(n,T) alpha reaction were used to measure neutrons of energies <1 MeV. Fission foil neutron detectors were used to measure neutrons of energies above 1 MeV. While originally analysed in terms of dose equivalent using the NCRP-38 definition of quality factor, for the purposes of this paper the measured neutron data have been reanalyzed and are presented in terms of ambient dose equivalent. Dose equivalent rate for neutrons <1 MeV ranged from 0.80 microSv/d on the low altitude, low inclination STS-41B mission to 22.0 microSv/d measured in the Shuttle's cargo bay on the highly inclined STS-51F Spacelab-2 mission. In one particular instance a detector embedded within a large hydrogenous mass on STS-61 (in the ECT experiment) measured 34.6 microSv/d. Dose equivalent rate measurements of neutrons >1 MeV ranged from 4.5 microSv/d on the low altitude STS-3 mission to 172 microSv/d on the 6 year LDEF mission. Thermal neutrons (<0.3 eV) were observed to make a negligible contribution to neutron dose equivalent in all cases. The major fraction of neutron dose equivalent was found to be from neutrons >1 MeV and, on LDEF, neutrons >1 MeV are responsible for over 98% of the total neutron dose equivalent. Estimates of the neutron contribution to the total dose equivalent are somewhat lower than model estimates, ranging from 5.7% at a location under low shielding on LDEF to 18.4% on the highly inclined (82.3 degrees) Biocosmos-2044 mission. c2001 Elsevier Science Ltd. All rights reserved.
Dosimetry investigation of MOSFET for clinical IMRT dose verification.
Deshpande, Sudesh; Kumar, Rajesh; Ghadi, Yogesh; Neharu, R M; Kannan, V
2013-06-01
In IMRT, patient-specific dose verification is followed regularly at each centre. Simple and efficient dosimetry techniques play a very important role in routine clinical dosimetry QA. The MOSFET dosimeter offers several advantages over the conventional dosimeters such as its small detector size, immediate readout, immediate reuse, multiple point dose measurements. To use the MOSFET as routine clinical dosimetry system for pre-treatment dose verification in IMRT, a comprehensive set of experiments has been conducted, to investigate its linearity, reproducibility, dose rate effect and angular dependence for 6 MV x-ray beam. The MOSFETs shows a linear response with linearity coefficient of 0.992 for a dose range of 35 cGy to 427 cGy. The reproducibility of the MOSFET was measured by irradiating the MOSFET for ten consecutive irradiations in the dose range of 35 cGy to 427 cGy. The measured reproducibility of MOSFET was found to be within 4% up to 70 cGy and within 1.4% above 70 cGy. The dose rate effect on the MOSFET was investigated in the dose rate range 100 MU/min to 600 MU/min. The response of the MOSFET varies from -1.7% to 2.1%. The angular responses of the MOSFETs were measured at 10 degrees intervals from 90 to 270 degrees in an anticlockwise direction and normalized at gantry angle zero and it was found to be in the range of 0.98 ± 0.014 to 1.01 ± 0.014. The MOSFETs were calibrated in a phantom which was later used for IMRT verification. The measured calibration coefficients were found to be 1 mV/cGy and 2.995 mV/cGy in standard and high sensitivity mode respectively. The MOSFETs were used for pre-treatment dose verification in IMRT. Nine dosimeters were used for each patient to measure the dose in different plane. The average variation between calculated and measured dose at any location was within 3%. Dose verification using MOSFET and IMRT phantom was found to quick and efficient and well suited for a busy radiotherapy department.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zapatero, Almudena, E-mail: azapatero.hlpr@salud.madrid.org; Garcia-Vicente, Feliciano; Martin de Vidales, Carmen
Purpose: To analyze long-term outcome and prognostic factors for high-risk prostate cancer defined by National Comprehensive Cancer Network criteria treated with high-dose radiotherapy and androgen deprivation in a single institution. Methods and Materials: A total of 306 patients treated between 1995 and 2007 in a radiation dose-escalation program fulfilled the National Comprehensive Cancer Network high-risk criteria. Median International Commission on Radiation Units and Measurements radiation dose was 78 Gy (range, 66.0-84.1 Gy). Long-term androgen deprivation (LTAD) was administered in 231 patients, short-term androgen deprivation (STAD) in 59 patients, and no hormones in 16 patients. The Phoenix (nadir plus 2 ng/mL)more » consensus definition was used for biochemical control. Multivariate analysis was performed to determine the independent prognostic impact of clinical and treatment factors. Median follow-up time was 64 months (range, 24-171 months). Results: The actuarial overall survival at 5 and 10 years was 95.7% and 89.8%, respectively, and the corresponding biochemical disease-free survival (bDFS) was 89.5% and 67.2%, respectively. Fourteen patients (4.6%) developed distant metastasis. Multivariate analysis showed that Gleason score >7 (p = 0.001), pretreatment prostate-specific antigen (PSA) level >20 ng/mL (p = 0.037), higher radiation dose (p = 0.005), and the use of adjuvant LTAD vs. STAD (p = 0.011) were independent prognostic factors affecting bDFS in high-risk disease. The 5-year bDFS for patients treated with LTAD plus radiotherapy dose >78 Gy was 97%. Conclusions: For high-risk patients the present series showed that the use of LTAD in conjunction with higher doses (>78 Gy) of radiotherapy was associated with improved biochemical tumor control. We observed that the presence of Gleason sum >7 and pretreatment PSA level >20 ng/mL in the same patient represents a 6.8 times higher risk of PSA failure. These men could be considered for clinical trials with addition of novel agents.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paik, Nam Chull, E-mail: pncspine@gmail.com
2016-07-15
PurposeA technique for computed tomography fluoroscopy (CTF)-guided intraarticular (IA) sacroiliac joint (SIJ) injection was devised to limit procedural time and radiation dose.MethodsOur Institutional Review Board approved this retrospective analysis and waived the requirement for informed consent. Overall, 36 consecutive diagnostic or therapeutic IA SIJ injections (unilateral, 20; bilateral, 16) performed in 34 patients (female, 18; male, 16) with a mean age of 45.5 years (range 20–76 years) under CTF guidance were analyzed, assessing technical success (i.e., IA contrast spread), procedural time, and radiation dose.ResultsAll injections were successful from a technical perspective and were free of serious complications. Respective median proceduralmore » times and effective doses of SIJ injection were as follows: unilateral, 5.28 min (range 3.58–8.00 min) and 0.11 millisievert (mSv; range 0.07–0.24 mSv); and bilateral, 6.72 min (range 4.17–21.17 min) and 0.11 mSv (range 0.09–0.51 mSv).ConclusionsGiven the high rate of technical success achieved in limited time duration and with little radiation exposure, CTF-guided IA SIJ injection is a practical and low-risk procedure.« less
Genetic effects of radiotherapy for childhood cancer: gonadal dose reconstruction.
Stovall, Marilyn; Donaldson, Sarah S; Weathers, Rita E; Robison, Leslie L; Mertens, Ann C; Winther, Jeanette Falck; Olsen, Jorgen H; Boice, John D
2004-10-01
To estimate the doses of radiation to organs of interest during treatment of childhood cancer for use in an epidemiologic study of possible heritable diseases, including birth defects, chromosomal abnormalities, cancer, stillbirth, and neonatal and premature death. The study population was composed of more than 25,000 patients with cancer in Denmark and the United States who were survivors of childhood cancer and subsequently had nearly 6,500 children of their own. Radiation therapy records were sought for the survivors who parented offspring who had adverse pregnancy outcomes (>300 offspring), and for a sample of all survivors in a case-cohort design. The records were imaged and centrally abstracted. Water phantom measurements were made to estimate doses for a wide range of treatments. Mathematical phantoms were used to apply measured results to estimate doses to ovaries, uterus, testes, and pituitary for patients ranging in age from newborn to 25 years. Gonadal shielding, ovarian pinning (oophoropexy), and field blocking were taken into account. Testicular radiation doses ranged from <1 to 700 cGy (median, 7 cGy) and ovarian doses from <1 to >2,500 cGy (median, 13 cGy). Ten percent of the records were incomplete, but sufficient data were available for broad characterizations of gonadal dose. More than 49% of the gonadal doses were >10 cGy and 16% were >100 cGy. Sufficient radiation therapy data exist as far back as 1943 to enable computation of gonadal doses administered for curative therapy for childhood cancer. The range of gonadal doses is broad, and for many cancer survivors, is high and just below the threshold for infertility. Accordingly, the epidemiologic study has >90% power to detect a 1.3-fold risk of an adverse pregnancy outcome associated with radiation exposure to the gonads. This study should provide important information on the genetic consequences of radiation exposure to humans.
Sachdev, Sean; Refaat, Tamer; Bacchus, Ian D; Sathiaseelan, Vythialinga; Mittal, Bharat B
2017-08-01
Radiation-induced hypothyroidism affects a significant number of patients with head-and-neck squamous cell cancer (HNSCC). We examined detailed dosimetric and clinical parameters to better determine the risk of hypothyroidism in euthyroid HNSCC patients treated with intensity-modulated radiation therapy (IMRT). From 2006 to 2010, 75 clinically euthyroid patients with HNSCC were treated with sequential IMRT. The cohort included 59 men and 16 females with a median age of 55 years (range, 30 to 89 y) who were treated to a median dose of 70 Gy (range, 60 to 75 Gy) with concurrent chemotherapy in nearly all (95%) cases. Detailed thyroid dosimetric parameters including maximum dose, mean dose, and other parameters (eg, V50-percent volume receiving at least 50 Gy) were obtained. Freedom from hypothyroidism was evaluated using the Kaplan-Meier method. Univariate and multivariate analyses were conducted using Cox regression. After a median follow-up period of 50 months, 25 patients (33%) became hypothyroid. On univariate analysis, thyroid V50 was highly correlated with developing hypothyroidism (P=0.035). Other dosimetric paramaters including mean thyroid dose (P=0.11) and maximum thyroid dose (P=0.39) did not reach statistical significance. On multivariate analysis incorporating patient, tumor, and treatment variables, V50 remained highly statistically significant (P=0.037). Regardless of other factors, for V50>60%, the odds ratio of developing hypothyroidism was 6.76 (P=0.002). In HNSCC patients treated with IMRT, thyroid V50 highly predicts the risk of developing hypothyroidism. V50>60% puts patients at a significantly higher risk of becoming hypothyroid. This can be a useful dose constraint to consider during treatment planning.
Tjessem, Kristin Holm; Bosse, Gerhard; Fosså, Kristian; Reinertsen, Kristin V; Fosså, Sophie D; Johansen, Safora; Fosså, Alexander
2015-03-01
We explored the relation between coronary artery calcium (CAC) and cardiac radiation doses in breast cancer survivors (BCS) treated with radiotherapy (RT). Additionally, we examined the impact of other risk factors and biomarkers of coronary artery disease (CAD). 236 BCS (median age 51years [range 30-70], median observation time 12years [9.2-15.7]), treated with 4-field RT of 50GY, were included and examined in 2004 (T1), 2007 (T2) and 2011 (T3) with clinical examination, blood tests and questionnaires. At T3, cardiac computed tomography was performed with quantification of CAC using Agatston score (AS). For 106 patients cardiac dose volume histograms were available. The cohort-based median of the mean cardiac dose was 2.5 (range 0.5-7.0) Gy. There was no correlation between measures of cardiac dose and AS. AS was correlated with high cholesterol at T1/T2 (p=0.022), high proBNP at T1/T2 (p<0.022) and T3 (p<0.022) and high HbA1c at T3 (p=0.022). In addition, a high AS was significantly associated with hypertension (p=0.022). Age (p<0.001) and cholesterol at T1/T2 (p=0.001) retained significant associations in multivariate analysis. Traditional, modifiable risk factors of CAD correlate with CAC and may be important for the long term risk of CAD after RT. With low to moderate cardiac radiation exposure, a contribution of radiation dose to CAC could not be demonstrated. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Comparison in vivo Study of Genotoxic Action of High- Versus Very Low Dose-Rate γ-Irradiation
Osipov, A. N.; Klokov, D. Y.; Elakov, A. L.; Rozanova, O. M.; Zaichkina, S. I.; Aptikaeva, G. F.; Akhmadieva, A. Kh.
2004-01-01
The aim of the present study was to compare genotoxicity induced by high- versus very low dose-rate exposure of mice to γ-radiation within a dose range of 5 to 61 cGy using the single-cell gel electrophoresis (comet) assay and the micronucleus test. CBA/lac male mice were irradiated at a dose rate of 28.2 Gy/h (high dose rate) or 0.07 mGy/h (very low dose rate). The comet assay study on spleen lymphocytes showed that very low dose-rate irradiation resulted in a statistically significant increase in nucleoid relaxation (DNA breaks), starting from a dose of 20 cGy. Further prolongation of exposure time and, hence, increase of a total dose did not, however, lead to further increase in the extent of nucleoid relaxation. Doses of 20 and 61 cGy were equal in inducing DNA breaks in mouse spleen lymphocytes as assayed by the comet assay. Of note, the level of DNA damage by 20–61 cGy doses of chronic irradiation (0.07 mGy/h) was similar to that an induced by an acute (28.2 Gy/h) dose of 14 cGy. The bone marrow micronucleus test revealed that an increase in polychromatic erythrocytes with micronuclei over a background level was induced by very low-level γ-irradiation with a dose of 61 cGy only, with the extent of the cytogenetic effect being similar to that of 10 cGy high-dose-rate exposure. In summary, presented results support the hypothesis of the nonlinear threshold nature of mutagenic action of chronic low dose-rate irradiation. PMID:19330145
Livingstone, Jayde; Stevenson, Andrew W; Butler, Duncan J; Häusermann, Daniel; Adam, Jean-François
2016-07-01
Modern radiotherapy modalities often use small or nonstandard fields to ensure highly localized and precise dose delivery, challenging conventional clinical dosimetry protocols. The emergence of preclinical spatially fractionated synchrotron radiotherapies with high dose-rate, sub-millimetric parallel kilovoltage x-ray beams, has pushed clinical dosimetry to its limit. A commercially available synthetic single crystal diamond detector designed for small field dosimetry has been characterized to assess its potential as a dosimeter for synchrotron microbeam and minibeam radiotherapy. Experiments were carried out using a synthetic diamond detector on the imaging and medical beamline (IMBL) at the Australian Synchrotron. The energy dependence of the detector was characterized by cross-referencing with a calibrated ionization chamber in monoenergetic beams in the energy range 30-120 keV. The dose-rate dependence was measured in the range 1-700 Gy/s. Dosimetric quantities were measured in filtered white beams, with a weighted mean energy of 95 keV, in broadbeam and spatially fractionated geometries, and compared to reference dosimeters. The detector exhibits an energy dependence; however, beam quality correction factors (kQ) have been measured for energies in the range 30-120 keV. The kQ factor for the weighted mean energy of the IMBL radiotherapy spectrum, 95 keV, is 1.05 ± 0.09. The detector response is independent of dose-rate in the range 1-700 Gy/s. The percentage depth dose curves measured by the diamond detector were compared to ionization chambers and agreed to within 2%. Profile measurements of microbeam and minibeam arrays were performed. The beams are well resolved and the full width at halfmaximum agrees with the nominal width of the beams. The peak to valley dose ratio (PVDR) calculated from the profiles at various depths in water agrees within experimental error with PVDR calculations from Gafchromic film data. The synthetic diamond detector is now well characterized and will be used to develop an experimental dosimetry protocol for spatially fractionated synchrotron radiotherapy.
Vral, A; Thierens, H; Baeyens, A; De Ridder, L
2002-04-01
To determine by means of the G2 assay the number of chromatid breaks induced by low-LET gamma-rays and high-LET neutrons, and to compare the kinetics of chromatid break rejoining for radiations of different quality. The G2 assay was performed on blood samples of four healthy donors who were irradiated with low-LET gamma-rays and high-LET neutrons. In a first set of experiments a dose-response curve for the formation of chromatid breaks was carried out for gamma-rays and neutrons with doses ranging between 0.1 and 0.5 Gy. In a second set of experiments, the kinetics of chromatid break formation and disappearance were investigated after a dose of 0.5 Gy using post-irradiation times ranging between 0.5 and 3.5 h. For the highest dose of 0.5 Gy, the number of isochromatid breaks was also scored. No significant differences in the number of chromatid breaks were observed between low-LET gamma-rays and high-LET neutrons for the four donors at any of the doses given. The dose-response curves for the formation of chromatid breaks are linear for both radiation qualities and RBEs = 1 were obtained. Scoring of isochromatid breaks at the highest dose of 0.5 Gy revealed that high-LET neutrons were, however, more effective at inducing isochromatid breaks (RBE = 6.2). The rejoining experiments further showed that the kinetics of disappearance of chromatid breaks following irradiation with low-LET gamma-rays or high-LET neutrons were not significantly different. Half-times of 0.92 h for gamma-rays and 0.84 h for neutrons were obtained. Applying the G2 assay, the results demonstrate that at low doses of irradiation, the induction as well as the disappearance of chromatid breaks is independent of the LET of the radiation qualities used (0.24 keV x microm(-1) 60Co gamma-rays and 20 keV x microm(-1) fast neutrons). As these radiation qualities produce the same initial number of double-strand breaks, the results support the signal model that proposes that chromatid breaks are the result of an exchange process which is triggered by a single double-strand break.
Environmental radioactivity in the UK: the airborne geophysical view of dose rate estimates.
Beamish, David
2014-12-01
This study considers UK airborne gamma-ray data obtained through a series of high spatial resolution, low altitude surveys over the past decade. The ground concentrations of the naturally occurring radionuclides Potassium, Thorium and Uranium are converted to air absorbed dose rates and these are used to assess terrestrial exposure levels from both natural and technologically enhanced sources. The high resolution airborne information is also assessed alongside existing knowledge from soil sampling and ground-based measurements of exposure levels. The surveys have sampled an extensive number of the UK lithological bedrock formations and the statistical information provides examples of low dose rate lithologies (the formations that characterise much of southern England) to the highest sustained values associated with granitic terrains. The maximum dose rates (e.g. >300 nGy h(-1)) encountered across the sampled granitic terrains are found to vary by a factor of 2. Excluding granitic terrains, the most spatially extensive dose rates (>50 nGy h(-1)) are found in association with the Mercia Mudstone Group (Triassic argillaceous mudstones) of eastern England. Geological associations between high dose rate and high radon values are also noted. Recent studies of the datasets have revealed the extent of source rock (i.e. bedrock) flux attenuation by soil moisture in conjunction with the density and porosity of the temperate latitude soils found in the UK. The presence or absence of soil cover (and associated presence or absence of attenuation) appears to account for a range of localised variations in the exposure levels encountered. The hypothesis is supported by a study of an extensive combined data set of dose rates obtained from soil sampling and by airborne geophysical survey. With no attenuation factors applied, except those intrinsic to the airborne estimates, a bias to high values of between 10 and 15 nGy h(-1) is observed in the soil data. A wide range of technologically enhanced, localised contributions to dose rate values are also apparent in the data sets. Two detailed examples are provided that reveal the detectability of site-scale environmental impacts due to former industrial activities and the high dose values (>500 nGy h(-1)) that are associated with former, small-scale Uranium mining operations. Copyright © 2014. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Moteabbed, M.; Trofimov, A.; Sharp, G. C.; Wang, Y.; Zietman, A. L.; Efstathiou, J. A.; Lu, H.-M.
2017-03-01
Proton therapy of prostate by anterior beams could offer an attractive option for treating patients with hip prosthesis and limiting the high-dose exposure to the rectum. We investigated the impact of setup and anatomy variations on the anterior-oblique (AO) proton plan dose, and strategies to manage these effects via range verification and adaptive delivery. Ten patients treated by bilateral (BL) passive-scattering proton therapy (79.2 Gy in 44 fractions) who underwent weekly verification CT scans were selected. Plans with AO beams were additionally created. To isolate the effect of daily variations, initial AO plans did not include range uncertainty margins. The use of fixed planning margins and adaptive range adjustments to manage these effects was investigated. For each case, the planned dose was recalculated on weekly CTs, and accumulated on the simulation CT using deformable registration to approximate the delivered dose. Planned and accumulated doses were compared for each scenario to quantify dose deviations induced by variations. The possibility of estimating the necessary range adjustments before each treatment was explored by simulating the procedure of a diode-based in vivo range verification technique, which would potentially be used clinically. The average planned rectum, penile bulb and femoral heads mean doses were smaller for initial AO compared to BL plans (by 8.3, 16.1 and 25.9 Gy, respectively). After considering interfractional variations in AO plans, the target coverage was substantially reduced. The maximum reduction of V 79.2/D 95/D mean/EUD for AO (without distal margins) (25.3%/10.7/1.6/4.9 Gy, respectively) was considerably larger than BL plans. The loss of coverage was mainly related to changes in water equivalent path length of the prostate after fiducial-based setup, caused by discrepancies in patient anterior surface and bony-anatomy alignment. Target coverage was recovered partially when using fixed planning margins, and fully when applying adaptive range adjustments. The accumulated organs-at-risk dose for AO beams after range adjustment demonstrated full sparing of femoral heads and superior sparing of penile bulb and rectum compared to the conventional BL cases. Our study indicates that using AO beams makes prostate treatment more susceptible to target underdose induced by interfractional variations. Adaptive range verification/adjustment may facilitate the use of anterior beam approaches, and ensure adequate target coverage in every fraction of the treatment.
Cottu, P H; Extra, J M; Espie, M; Marolleau, J P; Roquancourt, A de; Makke, J; Miclea, J M; Laurence, V; Mayeur, D; Lerebours, F; Cuvier, C; Marty, M
2001-01-01
The aim of this study was to evaluate the feasibility of a high-dose intensity and high-dose density multicycle epirubicin and cyclophosphamide regimen with peripheral blood stem cells (PBSC) and haematopoietic growth factor (G-CSF) support in advanced breast cancer patients. From August 1994 to September 1999, 56 breast cancer patients (8 stage IIIB and 48 stage IV) received 205 courses of cyclophosphamide 3 g m−2and epirubicin 100 mg m−2every 14 days. G-CSF 5 μg kg−1day−1was administered from day 3 to neutrophil recovery. 4 courses were planned. PBSC were collected after course 1, and reinfused after courses 3 and 4, with ≥ 2 × 106CD34+ PBSC kg−1required for each reinfusion. 48 patients (86%) received all 4 planned courses. Early withdrawal was consecutive to infectious complications (n= 4), severe asthenia (n= 3), haemorrhagic cystitis (n= 1). A median number of 10.8 × 106CD34+ PBSC kg−1(range, 3–80) was harvested with 1 or 2 apheresis in 48 patients (94%). Median relative dose intensity was 91.3% (range, 72–102%). Grade 4 neutrophil toxicity was observed in 100% of patients. Febrile neutropenia was observed in 40% of courses (median duration 2 days). Red blood cells and platelets had to be transfused in 54% and 27% of courses, respectively. There were no toxic deaths. Objective response rate was 69% in stage IV patients (31/45 evaluable pts), with a 16% complete response rate. Their median progression-free and overall survivals were 22.5 and 37 months, respectively. This epirubicine-containing high-dose regimen appeared feasible, albeit with high toxicity. Time-related progression parameters exceed commonly reported ones. Controlled studies of upfront sequential high-dose chemotherapy are still needed to evaluate its real benefit. © 2001 Cancer Research Campaign PMID:11720455
Spitzer, Thomas R.; Ambinder, Richard F.; Lee, Jeannette Y.; Kaplan, Lawrence D.; Wachsman, William; Straus, David J.; Aboulafia, David M.; Scadden, David T.
2013-01-01
Intensive chemotherapy for human immunodeficiency virus (HIV)-associated non-Hodgkin lymphoma (NHL) and Hodgkin lymphoma (HL) has resulted in durable remissions in a substantial proportion of patients. High-dose chemotherapy and autologous stem cell transplantation (AuSCT), moreover, has resulted in sustained complete remissions in selected patients with recurrent chemosensitive disease. Based on a favorable experience with dose-reduced high-dose busulfan, cyclophosphamide, and AuSCT for older patients with non-HIV–associated aggressive lymphomas, an AIDS Malignancy Consortium multicenter trial was undertaken using the same dose-reduced busulfan and cyclophosphamide preparative regimen with AuSCT for recurrent HIV-associated NHL and HL. Of the 27 patients in the study, 20 received an AuSCT. The median time to achievement of an absolute neutrophil count (ANC) of ≥ 0.5 × 109/L was 11 days (range, 9-16 days). The median time to achievement of an unsupported platelet count of ≥ 20 × 109/L was 13 days (range, 6-57 days). One patient died on day +33 posttransplantation from hepatic veno-occlusive disease (VOD) and multiorgan failure. No other fatal regimen-related toxicity occurred. Ten of 19 patients (53%) were in complete remission at the time of their day +100 post-AuSCT evaluation. Of the 20 patients, 10 were alive and event-free at a median of 23 weeks post-AuSCT. Median overall survival (OS) was not reached by 13 of the 20 patients alive at the time of last follow-up. This multi-institutional trial demonstrates that a regimen of dose-reduced high-dose busulfan, cyclophosphamide, and AuSCT is well tolerated and is associated with favorable disease-free survival (DFS) and OS probabilities for selected patients with HIV-associated NHL and HL. PMID:18158962
High-intensity corneal collagen crosslinking with riboflavin and UVA in rat cornea.
Zhu, Yirui; Reinach, Peter S; Zhu, Hanlei; Tan, Qiufan; Zheng, Qinxiang; Qu, Jia; Chen, Wei
2017-01-01
Corneal collagen cross-linking (CXL) halts human corneal ectasias progression by increasing stromal mechanical stiffness. Although some reports describe that this procedure is effective in dealing with some infectious and immunologic corneal thinning diseases, there is a need for more animal models whose corneal thickness more closely resemble those occurring in these patients. To meet this need, we describe here high-intensity protocols that are safe and effective for obtaining CXL in rat corneas. Initially, a range of potentially effective UVA doses were evaluated based on their effectiveness in increasing tissue enzymatic resistance to dissolution. At UVA doses higher than a threshold level of 0.54 J/cm2, resistance to enzymatic digestion increased relative to that in non-irradiated corneas. Based on the theoretical threshold CXL dose, a CXL regimen was established in which the UVA tissue irradiance was 9 mW/cm2, which was delivered at doses of either 2.16, 2.7 or 3.24 J/cm2. Their dose dependent effects were evaluated on ocular surface morphological integrity, keratocyte apoptotic frequency, tissue thickness and endothelial cell layer density. Doses of 2.16 and 2.7 J/cm2 transiently decreased normal corneal transparency and increased thickness. These effects were fully reversed after 14 days. In contrast, 3.24 J/cm2 had more irreversible side effects. Three days after treatment, apoptotic frequency in the CXL-2.16 group was lower than that at higher doses. Endothelial cell losses remained evident only in the CXL-3.24 group at 42 days posttreatment. Stromal fiber thickening was evident in all the CXL-treated groups. We determined both the threshold UVA dose using the high-intensity CXL procedure and identified an effective dose range that provides optimal CXL with minimal transient side effects in the rat cornea. These results may help to provide insight into how to improve the CXL outcome in patients afflicted with a severe corneal thinning disease.
Acute cognitive effects of high doses of dextromethorphan relative to triazolam in humans
Carter, Lawrence P.; Reissig, Chad J.; Johnson, Matthew W.; Klinedinst, Margaret A.; Griffiths, Roland R.
2012-01-01
BACKGROUND Although concerns surrounding high-dose dextromethorphan (DXM) abuse have recently increased, few studies have examined the acute cognitive effects of high doses of DXM. The aim of this study was to compare the cognitive effects of DXM with those of triazolam and placebo. METHODS Single, acute, oral doses of DXM (100, 200, 300, 400, 500, 600, 700, 800 mg/70 kg), triazolam (0.25, 0.5 mg /70 kg), and placebo were administered p.o. to twelve healthy volunteers with histories of hallucinogen use, under double-blind conditions, using an ascending dose run-up design. Effects on cognitive performance were examined at baseline and after drug administration for up to 6 hours. RESULTS Both triazolam and DXM produced acute impairments in attention, working memory, episodic memory, and metacognition. Impairments observed following doses of 100-300 mg/70 kg DXM were generally smaller in magnitude than those observed after 0.5 mg/70 kg triazolam. Doses of DXM that impaired performance to the same extent as triazolam were in excess of 10-30 times the therapeutic dose of DXM. CONCLUSION The magnitude of the doses required for these effects and the absence of effects on some tasks within the 100-300 mg/70 kg dose range of DXM, speak to the relatively broad therapeutic window of over-the-counter DXM preparations when used appropriately. However, the administration of supratherapeutic doses of DXM resulted in acute cognitive impairments on all tasks that were examined. These findings are likely relevant to cases of high-dose DXM abuse. PMID:22989498
Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses
Colborn, Theo; Hayes, Tyrone B.; Heindel, Jerrold J.; Jacobs, David R.; Lee, Duk-Hee; Shioda, Toshi; Soto, Ana M.; vom Saal, Frederick S.; Welshons, Wade V.; Zoeller, R. Thomas
2012-01-01
For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of “the dose makes the poison,” because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health. PMID:22419778
Nieto, Yago; Valdez, Benigno C; Thall, Peter F; Ahmed, Sairah; Jones, Roy B; Hosing, Chitra; Popat, Uday; Shpall, Elizabeth J; Qazilbash, Muzaffar; Gulbis, Alison; Anderlini, Paolo; Alousi, Amin; Shah, Nina; Bashir, Qaiser; Liu, Yan; Oki, Yasuhiro; Hagemeister, Frederick; Fanale, Michelle; Dabaja, Bouthaina; Pinnix, Chelsea; Champlin, Richard; Andersson, Borje S
2015-11-01
More active high-dose regimens are needed for refractory/poor-risk relapsed lymphomas. We previously developed a regimen of infusional gemcitabine/busulfan/melphalan, exploiting the synergistic interaction. Its encouraging activity in refractory lymphomas led us to further enhance its use as a platform for epigenetic modulation. We previously observed increased cytotoxicity in refractory lymphoma cell lines when the histone deacetylase inhibitor vorinostat was added to gemcitabine/busulfan/melphalan, which prompted us to clinically study this four-drug combination. Patients ages 12 to 65 with refractory diffuse large B cell lymphoma (DLCL), Hodgkin (HL), or T lymphoma were eligible. Vorinostat was given at 200 mg/day to 1000 mg/day (days -8 to -3). Gemcitabine was infused continuously at 10 mg/m(2)/minute over 4.5 hours (days -8 and -3). Busulfan dosing targeted 4000 μM-minute/day (days -8 to -5). Melphalan was infused at 60 mg/m(2)/day (days -3 and -2). Patients with CD20(+) tumors received rituximab (375 mg/m(2), days +1 and +8). We enrolled 78 patients: 52 DLCL, 20 HL, and 6 T lymphoma; median age 44 years (range, 15 to 65); median 3 prior chemotherapy lines (range, 2 to 7); and 48% of patients had positron emission tomography-positive tumors at high-dose chemotherapy (29% unresponsive). The vorinostat dose was safely escalated up to 1000 mg/day, with no treatment-related deaths. Toxicities included mucositis and dermatitis. Neutrophils and platelets engrafted promptly. At median follow-up of 25 (range, 16 to 41) months, event-free and overall survival were 61.5% and 73%, respectively (DLCL) and 45% and 80%, respectively (HL). In conclusion, vorinostat/gemcitabine/busulfan/melphalan is safe and highly active in refractory/poor-risk relapsed lymphomas, warranting further evaluation. This trial was registered at ClinicalTrials.gov (NCI-2011-02891). Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Laguda, Edcer Jerecho
Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient's medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method. Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three approaches were applied in this research for dosimetric evaluation on CT images with severe metal artefacts. The first part of the research used a water phantom with four iodine syringes. Two sets of plans, multi-arc plans and single-arc plans, using the Volumetric Modulated Arc therapy (VMAT) technique were designed to avoid or minimize influences from high-density objects. The second part of the research used projection-based MAR Algorithm and the Dual-Energy Method. Calculated Doses (Mean, Minimum, and Maximum Doses) to the planning treatment volume (PTV) were compared and homogeneity index (HI) calculated. Results: (1) Without the GSI-based MAR application, a percent error between mean dose and the absolute dose ranging from 3.4-5.7% per fraction was observed. In contrast, the error was decreased to a range of 0.09-2.3% per fraction with the GSI-based MAR algorithm. There was a percent difference ranging from 1.7-4.2% per fraction between with and without using the GSI-based MAR algorithm. (2) A range of 0.1-3.2% difference was observed for the maximum dose values, 1.5-10.4% for minimum dose difference, and 1.4-1.7% difference on the mean doses. Homogeneity indexes (HI) ranging from 0.068-0.065 for dual-energy method and 0.063-0.141 with projection-based MAR algorithm were also calculated. Conclusion: (1) Percent error without using the GSI-based MAR algorithm may deviate as high as 5.7%. This error invalidates the goal of Radiation Therapy to provide a more precise treatment. Thus, GSI-based MAR algorithm was desirable due to its better dose calculation accuracy. (2) Based on direct numerical observation, there was no apparent deviation between the mean doses of different techniques but deviation was evident on the maximum and minimum doses. The HI for the dual-energy method almost achieved the desirable null values. In conclusion, the Dual-Energy method gave better dose calculation accuracy to the planning treatment volume (PTV) for images with metal artefacts than with or without GE MAR Algorithm.
Characterization of commercial MOSFET detectors and their feasibility for in-vivo HDR brachytherapy.
Phurailatpam, Reena; Upreti, Rituraj; Nojin Paul, Siji; Jamema, Swamidas V; Deshpande, Deepak D
2016-01-01
The present study was to investigate the use of MOSFET as an vivo dosimeter for the application of Ir-192 HDR brachytherapy treatments. MOSFET was characterized for dose linearity in the range of 50-1000 cGy, depth dose dependence from 2 to 7 cm, angular dependence. Signal fading was checked for two weeks. Dose linearity was found to be within 2% in the dose range (50-1000 cGy). The response varied within 8.07% for detector-source distance of 2-7 cm. The response of MOSFET with the epoxy side facing the source (0 degree) is the highest and the lowest response was observed at 90 and 270 degrees. Signal was stable during the study period. The detector showed high dose linearity and insignificant fading. But due to angular and depth dependence, care should be taken and corrections must be applied for clinical dosimetry. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Elias, A D; Ayash, L; Anderson, K C; Hunt, M; Wheeler, C; Schwartz, G; Tepler, I; Mazanet, R; Lynch, C; Pap, S
1992-06-01
High-dose therapy with autologous marrow support results in durable complete remissions in selected patients with relapsed lymphoma and leukemia who cannot be cured with conventional dose therapy. However, substantial morbidity and mortality result from the 3- to 6-week period of marrow aplasia until the reinfused marrow recovers adequate hematopoietic function. Hematopoietic growth factors, particularly used after chemotherapy, can increase the number of peripheral blood progenitor cells (PBPCs) present in systemic circulation. The reinfusion of PBPCs with marrow has recently been reported to reduce the time to recovery of adequate marrow function. This study was designed to determine whether granulocyte-macrophage colony-stimulating factor (GM-CSF)-mobilized PBPCs alone (without marrow) would result in rapid and reliable hematopoietic reconstitution. Sixteen patients with metastatic breast cancer were treated with four cycles of doxorubicin, 5-fluorouracil, and methotrexate (AFM induction). Patients responding after the first two cycles were administered GM-CSF after the third and fourth cycles to recruit PBPCs for collection by two leukapheresis per cycle. These PBPCs were reinfused as the sole source of hematopoietic support after high doses of cyclophosphamide, thiotepa, and carboplatin. No marrow or hematopoietic cytokines were used after progenitor cell reinfusion. Granulocytes greater than or equal to 500/microL was observed on a median of day 14 (range, 8 to 57). Transfusion independence of platelets greater than or equal to 20,000/microL occurred on a median day of 12 (range, 8 to 134). However, three patients required the use of a reserve marrow for slow platelet engraftment. In retrospect, these patients were characterized by poor baseline bone marrow cellularity and poor platelet recovery after AFM induction therapy. When compared with 29 historical control patients who had received the same high-dose intensification chemotherapy using autologous marrow support, time to engraftment, antibiotic days, transfusion requirements, and lengths of hospital stay were all significantly improved for the patients receiving PBPCs. Thus, autologous PBPCs can be efficiently collected during mobilization by chemotherapy and GM-CSF and are an attractive alternative to marrow for hematopoietic support after high-dose therapy. The enhanced speed of recovery may reduce the morbidity, mortality, and cost of high-dose treatment. Furthermore, PBPC support may enhance the effectiveness of high-dose therapy by facilitating multiple courses of therapy.
Khot, Amit; Dickinson, Michael; Stokes, Kerrie; Harrison, Simon; Burbury, Kate; Fleming, Shaun; Wall, Dominic; Gambell, Peter; Prince, H Miles; Seymour, John F; Ritchie, David
2013-02-01
The routine use of recombinant human granulocyte-colony stimulating factor (rhG-CSF) after high-dose chemotherapy and autologous stem cell transplantation (auto-SCT) is associated with increased costs. We prospectively explored a strategy that used prophylactic delayed filgrastim only in patients with risk factors. This sequential cohort analysis compared the outcomes of consecutive patients, treated on the risk-adapted protocol (RAP) (risk factors: prior febrile neutropenia; age >60 years; and CD34+ cell infused dose of <2 × 10(6/)/kg), who received filgrastim from day +6 after auto-SCT with a historical cohort (historical day-1 cohort [HD1]), who received filgrastim from day +1. Eighty-two patients were treated in the RAP cohort and compared with 115 patients in the HD1 cohort. There were no differences in median age (55 years) or median CD34+ cell dose (5.21 × 10(6)/kg [range, 2-62.2 × 10(6)/kg] vs. 5.24 × 10(6)/kg [range, 2.4-29.8 × 10(6)/kg]). Filgrastim was used for 6 fewer days in the RAP cohort (median 5 days [range, 0-11 days] vs. 11 days [range, 9-47 days]). There was a small absolute but significant difference in median time to neutrophil recovery in the HD1 cohort for the whole group, 10 days (range, 8-46 days) vs. 11 days (range, 9-22 days) (P = .03) and in patients with myeloma; 10 days (range, 9-14 days) vs. 11 days (range, 9-18 days) (P < .0001) as compared to the RAP cohort. There was no difference in median inpatient duration, 13 days (range, 10-26 days) vs. 12 days (range, 1-38 days) (P = .22) and 3-year survival (79% vs. 83% [P = .43]) between HD1 and RAP cohorts respectively. The use of a RAP to identify patients likely to benefit from prophylactic filgrastim is safe and results in cost savings. Patients with myeloma benefit from earlier introduction of filgrastim in terms of neutrophil recovery; this disease-specific observation is an important consideration for future studies. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Ponomarev, A. L.; Cucinotta, F. A.; Sachs, R. K.; Brenner, D. J.; Peterson, L. E.
2001-01-01
The patterns of DSBs induced in the genome are different for sparsely and densely ionizing radiations: In the former case, the patterns are well described by a random-breakage model; in the latter, a more sophisticated tool is needed. We used a Monte Carlo algorithm with a random-walk geometry of chromatin, and a track structure defined by the radial distribution of energy deposition from an incident ion, to fit the PFGE data for fragment-size distribution after high-dose irradiation. These fits determined the unknown parameters of the model, enabling the extrapolation of data for high-dose irradiation to the low doses that are relevant for NASA space radiation research. The randomly-located-clusters formalism was used to speed the simulations. It was shown that only one adjustable parameter, Q, the track efficiency parameter, was necessary to predict DNA fragment sizes for wide ranges of doses. This parameter was determined for a variety of radiations and LETs and was used to predict the DSB patterns at the HPRT locus of the human X chromosome after low-dose irradiation. It was found that high-LET radiation would be more likely than low-LET radiation to induce additional DSBs within the HPRT gene if this gene already contained one DSB.
Martinez, Alvaro A; Gustafson, Gary; Gonzalez, José; Armour, Elwood; Mitchell, Chris; Edmundson, Gregory; Spencer, William; Stromberg, Jannifer; Huang, Raywin; Vicini, Frank
2002-06-01
To overcome radioresistance for patients with unfavorable prostate cancer, a prospective trial of pelvic external beam irradiation (EBRT) interdigitated with dose-escalating conformal high-dose-rate (HDR) prostate brachytherapy was performed. Between November 1991 and August 2000, 207 patients were treated with 46 Gy pelvic EBRT and increasing HDR brachytherapy boost doses (5.50-11.5 Gy/fraction) during 5 weeks. The eligibility criteria were pretreatment prostate-specific antigen level >or=10.0 ng/mL, Gleason score >or=7, or clinical Stage T2b or higher. Patients were divided into 2 dose levels, low-dose biologically effective dose <93 Gy (58 patients) and high-dose biologically effective dose >93 Gy (149 patients). No patient received hormones. We used the American Society for Therapeutic Radiology and Oncology definition for biochemical failure. The median age was 69 years. The mean follow-up for the group was 4.4 years, and for the low and high-dose levels, it was 7.0 and 3.4 years, respectively. The actuarial 5-year biochemical control rate was 74%, and the overall, cause-specific, and disease-free survival rate was 92%, 98%, and 68%, respectively. The 5-year biochemical control rate for the low-dose group was 52%; the rate for the high-dose group was 87% (p <0.001). Improvement occurred in the cause-specific survival in favor of the brachytherapy high-dose level (p = 0.014). On multivariate analysis, a low-dose level, higher Gleason score, and higher nadir value were associated with increased biochemical failure. The Radiation Therapy Oncology Group Grade 3 gastrointestinal/genitourinary complications ranged from 0.5% to 9%. The actuarial 5-year impotency rate was 51%. Pelvic EBRT interdigitated with transrectal ultrasound-guided real-time conformal HDR prostate brachytherapy boost is both a precise dose delivery system and a very effective treatment for unfavorable prostate cancer. We demonstrated an incremental beneficial effect on biochemical control and cause-specific survival with higher doses. These results, coupled with the low risk of complications, the advantage of not being radioactive after implantation, and the real-time interactive planning, define a new standard for treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battum, LJ van; Heukelom, S
Purpose This study investigates the origin of lateral optical density (OD) variation for Gafchromic film (EBT and EBT2) scanned in transmission mode with Epson flatbed scanners (1680 Expression Pro and 10000XL). Effects investigated are: cross talk, optical path length and polarization. Methods Cross talk has been examined with triangular shaped light-transmission sheets with OD ranging from 0 to opaque. Optical path length has been studied with absorptive and reflective OD-filters (OD range 0.2 to 2.0). Dependency on light-polarization on the scanner read out has been investigated using linear polarizer sheets. All experiments have been performed at centre scanner position (normmore » point) and at several lateral scan positions, without and with (un)irradiated EBT-film. Dose values used ranged between 0.2 to 9 Gy, yielding an OD-range between 0.25 to 1.1. Results The lateral OD variation is dose dependent and increases up to 14% at most lateral position for dose up to 9 Gy. Cross talk effect contributes to 0.5% in clinical used OD ranges but equals 2% for extreme high dose gradients. Film induced optical path length will effect the lateral OD variation up to 3% at most lateral points. Light polarization is inherent present in these scanners due to multiple reflection on mirrors. In addition film induced polarization is the most important effect generating the observed lateral OD variation. Both Gafchromic film base and sensitive layer have polarizing capabilities; for the sensitive layer its influence is dose dependent. Conclusions Lateral OD variation origins from optical physics (i.e. polarization and reflection) related to scanner and film construction. Cross talk can be ignored in film dosimetry for clinical used dose values and gradients. Therefore it is recommended to determine the lateral OD variation per film type and scanner.« less
In vivo verification of particle therapy: how Compton camera configurations affect 3D image quality
NASA Astrophysics Data System (ADS)
Mackin, D.; Draeger, E.; Peterson, S.; Polf, J.; Beddar, S.
2017-05-01
The steep dose gradients enabled by the Bragg peaks of particle therapy beams are a double edged sword. They enable highly conformal dose distributions, but even small deviations from the planned beam range can cause overdosing of healthy tissue or under-dosing of the tumour. To reduce this risk, particle therapy treatment plans include margins large enough to account for all the sources of range uncertainty, which include patient setup errors, patient anatomy changes, and CT number to stopping power ratios. Any system that could verify the beam range in vivo, would allow reduced margins and more conformal dose distributions. Toward our goal developing such a system based on Compton camera (CC) imaging, we studied how three configurations (single camera, parallel opposed, and orthogonal) affect the quality of the 3D images. We found that single CC and parallel opposed configurations produced superior images in 2D. The increase in parallax produced by an orthogonal CC configuration was shown to be beneficial in producing artefact free 3D images.
SU-F-I-32: Organ Doses from Pediatric Head CT Scan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Liu, Q; Qiu, J
Purpose: To evaluate the organ doses of pediatric patients who undergoing head CT scan using Monte Carlo (MC) simulation and compare it with measurements in anthropomorphic child phantom.. Methods: A ten years old children voxel phantom was developed from CT images, the voxel size of the phantom was 2mm*2mm*2mm. Organ doses from head CT scan were simulated using MCNPX software, 180 detectors were placed in the voxel phantom to tally the doses of the represented tissues or organs. When performing the simulation, 120 kVp and 88 mA were selected as the scan parameters. The scan range covered from the topmore » of the head to the end of the chain, this protocol was used at CT simulator for radiotherapy. To validate the simulated results, organ doses were measured with radiophotoluminescence (RPL) detectors, placed in the 28 organs of the 10 years old CIRS ATOM phantom. Results: The organ doses results matched well between MC simulation and phantom measurements. The eyes dose was showed to be as expected the highest organ dose: 28.11 mGy by simulation and 27.34 mGy by measurement respectively. Doses for organs not included in the scan volume were much lower than those included in the scan volume, thymus doses were observed more than 10 mGy due the CT protocol for radiotherapy covered more body part than routine head CT scan. Conclusion: As the eyes are superficial organs, they may receive the highest radiation dose during the CT scan. Considering the relatively high radio sensitivity, using shielding material or organ based tube current modulation technique should be encouraged to reduce the eye radiation risks. Scan range was one of the most important factors that affects the organ doses during the CT scan. Use as short as reasonably possible scan range should be helpful to reduce the patient radiation dose. This work was supported by the National Natural Science Foundation of China(11475047)« less
Andratschke, N; Alheid, H; Allgäuer, M; Becker, G; Blanck, O; Boda-Heggemann, J; Brunner, T; Duma, M; Gerum, S; Guckenberger, M; Hildebrandt, G; Klement, R J; Lewitzki, V; Ostheimer, C; Papachristofilou, A; Petersen, C; Schneider, T; Semrau, R; Wachter, S; Habermehl, D
2018-03-13
The intent of this pooled analysis as part of the German society for radiation oncology (DEGRO) stereotactic body radiotherapy (SBRT) initiative was to analyze the patterns of care of SBRT for liver oligometastases and to derive factors influencing treated metastases control and overall survival in a large patient cohort. From 17 German and Swiss centers, data on all patients treated for liver oligometastases with SBRT since its introduction in 1997 has been collected and entered into a centralized database. In addition to patient and tumor characteristics, data on immobilization, image guidance and motion management as well as dose prescription and fractionation has been gathered. Besides dose response and survival statistics, time trends of the aforementioned variables have been investigated. In total, 474 patients with 623 liver oligometastases (median 1 lesion/patient; range 1–4) have been collected from 1997 until 2015. Predominant histologies were colorectal cancer (n = 213 pts.; 300 lesions) and breast cancer (n = 57; 81 lesions). All centers employed an SBRT specific setup. Initially, stereotactic coordinates and CT simulation were used for treatment set-up (55%), but eventually were replaced by CBCT guidance (28%) or more recently robotic tracking (17%). High variance in fraction (fx) number (median 1 fx; range 1–13) and dose per fraction (median: 18.5 Gy; range 3–37.5 Gy) was observed, although median BED remained consistently high after an initial learning curve. Median follow-up time was 15 months; median overall survival after SBRT was 24 months. One- and 2-year treated metastases control rate of treated lesions was 77% and 64%; if maximum isocenter biological equivalent dose (BED) was greater than 150 Gy EQD2Gy, it increased to 83% and 70%, respectively. Besides radiation dose colorectal and breast histology and motion management methods were associated with improved treated metastases control. After an initial learning curve with regards to total cumulative doses, consistently high biologically effective doses have been employed translating into high local tumor control at 1 and 2 years. The true impact of histology and motion management method on treated metastases control deserve deeper analysis. Overall survival is mainly influenced by histology and metastatic tumor burden.
Characteristics of an OSLD in the diagnostic energy range.
Al-Senan, Rani M; Hatab, Mustapha R
2011-07-01
Optically stimulated luminescence (OSL) dosimetry has been recently introduced in radiation therapy as a potential alternative to the thermoluminescent dosimeter (TLD) system. The aim of this study was to investigate the feasibility of using OSL point dosimeters in the energy range used in diagnostic imaging. NanoDot OSL dosimeters (OSLDs) were used in this study, which started with testing the homogeneity of a new packet of nanoDots. Reproducibility and the effect of optical treatment (bleaching) were then examined, followed by an investigation of the effect of accumulated dose on the OSLD indicated doses. OSLD linearity, angular dependence, and energy dependence were also studied. Furthermore, comparison with LiF:Mg,Ti TLD chips using standard CT dose phantoms at 80 and 120 kVp settings was performed. Batch homogeneity showed a coefficient of variation of <5%. Single-irradiation measurements with bleaching after each OSL readout was found to be associated with a 3.3% reproducibility (one standard deviation measured with a 8 mGy test dose), and no systematic change in OSLDs sensitivity could be noted from measurement to measurement. In contrast, the multiple-irradiation readout without bleaching in between measurements was found to be associated with an uncertainty (using a 6 mGy test dose) that systematically increased with accumulated dose, reaching 42% at 82 mGy. Good linearity was shown by nanoDots under general x-ray, CT, and mammography units with an R2 > 0.99. The angular dependence test showed a drop of approximately 70% in the OSLD response at 90 degrees in mammography (25 kVp). With the general radiography unit, the maximum drop was 40% at 80 kVp and 20% at 120 kVp, and it was only 10% with CT at both 80 and 120 kVp. The energy dependence study showed a range of ion chamber-to-OSLDs ratios between 0.81 and 1.56, at the energies investigated (29-62 keV). A paired t-test for comparing the OSLDs and TLDs showed no significant variation (p > 0.1). OSLDs exhibited good batch homogeneity (<5%) and reproducibility (3.3%), as well as a linear response. In addition, they showed no statistically significant difference with TLDs in CT measurements (p > 0.1). However, high uncertainty (42%) in the dose estimate was found as a result of relatively high accumulated dose. Furthermore, nanoDots showed high angular dependence (up to 70%) in low kVp techniques. Energy dependence of about 60% was found, and correction factors were suggested for the range of energies investigated. Therefore, if angular and energy dependences are taken into consideration and the uncertainty associated with accumulated dose is avoided, OSLDs (nanoDots) can be suitable for use as point dosimeters in diagnostic settings.
LiF TLD-100 as a dosimeter in high energy proton beam therapy--can it yield accurate results?
Zullo, John R; Kudchadker, Rajat J; Zhu, X Ronald; Sahoo, Narayan; Gillin, Michael T
2010-01-01
In the region of high-dose gradients at the end of the proton range, the stopping power ratio of the protons undergoes significant changes, allowing for a broad spectrum of proton energies to be deposited within a relatively small volume. Because of the potential linear energy transfer dependence of LiF TLD-100 (thermolumescent dosimeter), dose measurements made in the distal fall-off region of a proton beam may be less accurate than those made in regions of low-dose gradients. The purpose of this study is to determine the accuracy and precision of dose measured using TLD-100 for a pristine Bragg peak, particularly in the distal fall-off region. All measurements were made along the central axis of an unmodulated 200-MeV proton beam from a Probeat passive beam-scattering proton accelerator (Hitachi, Ltd., Tokyo, Japan) at varying depths along the Bragg peak. Measurements were made using TLD-100 powder flat packs, placed in a virtual water slab phantom. The measurements were repeated using a parallel plate ionization chamber. The dose measurements using TLD-100 in a proton beam were accurate to within +/-5.0% of the expected dose, previously seen in our past photon and electron measurements. The ionization chamber and the TLD relative dose measurements agreed well with each other. Absolute dose measurements using TLD agreed with ionization chamber measurements to within +/- 3.0 cGy, for an exposure of 100 cGy. In our study, the differences in the dose measured by the ionization chamber and those measured by TLD-100 were minimal, indicating that the accuracy and precision of measurements made in the distal fall-off region of a pristine Bragg peak is within the expected range. Thus, the rapid change in stopping power ratios at the end of the range should not affect such measurements, and TLD-100 may be used with confidence as an in vivo dosimeter for proton beam therapy. Copyright 2010 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Senden, R. J.; DeJean, P.; McAuley, K. B.; Schreiner, L. J.
2006-07-01
In this work, three new polymer gel dosimeter recipes were investigated that may be more suitable for widespread applications than polyacrylamide gel dosimeters, since the extremely toxic acrylamide has been replaced with the less harmful monomers N-isopropylacrylamide (NIPAM), diacetone acrylamide and N-vinylformamide. The new gel dosimeters studied contained gelatin (5 wt%), monomer (3 wt%), N,N'-methylene-bis-acrylamide crosslinker (3 wt%) and tetrakis (hydroxymethyl) phosphonium chloride antioxidant (10 mM). The NMR response (R2) of the dosimeters was analysed for conditions of varying dose, dose rate, time post-irradiation, and temperature during irradiation and scanning. It was shown that the dose-response behaviour of the NIPAM/Bis gel dosimeter is comparable to that of normoxic polyacrylamide gel (PAGAT) in terms of high dose-sensitivity and low dependence on dose rate and irradiation temperature, within the ranges considered. The dose-response (R2) of NIPAM/Bis appears to be linear over a greater dose range than the PAGAT gel dosimeter. The effects of time post-irradiation (temporal instability) and temperature during NMR scanning on the R2 response were more significant for NIPAM/Bis dosimeters. Diacetone acrylamide and N-vinylformamide gel dosimeters possessed considerably lower dose-sensitivities. The optical dose-response, measured in terms of the attenuation coefficient for each polymer gel dosimeter, showed potential for the use of optical imaging techniques in future studies.
GONADAL AND BONE MARROW DOSE IN MEDICAL DIAGNOSTIC RADIOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmoud, K.A.; Mahfouz, M.M.; Mahmoud, M.E.
1961-08-01
Measurements were made of the active mean bone marrow, integral bone marrow, gonadal, and maximum skin doses from diagnostic x-ray procedures used in Cairo University Hospitals. The active mean marrow dose in cervical, dorsal, and lumbar spine diagnostic exposures were: found to be somewhat smaller than those reported by some western couatries. One of the most striking results of the survey was the relatively high values of the urinary tract cases investigated diagnostically; owing to the high incidence of urinary tract Schistosomiasis. The gonadal dose delivered to males and females was found to be almosi negligible for all diagnostic investigationsmore » of the spine, except for the lumbo-dorsal region which was within the range 50 to 500 mrads. It was also found that the gonadal dose was significant in investigations of the lower gastrointestinal tract, gall bladder, and urinary tract. (P.C.H.)« less
First clinical implementation of the Capri applicator
2014-01-01
This study was to assess the Capri applicator for patients with endometrial cancer undergoing high‐radiation dose treatments following external‐beam radiation therapy. The Capri applicator is an inflatable vaginal cylinder with multiple channels. It is used to tailor the dose distribution to an asymmetric vaginal disease, and better spare organs at risk. Five patients with high‐risk endometrial cancer were selected for this study. The patients were treated with a high dose of radiation using the Capri applicator: daily fraction of 7 Gy was prescribed for a total dose of 21 Gy. The treatment plans included radiobiological parameters such as equivalent uniform dose (EUD), normal tissue complication probability (NTCP), and tumor control probability (TCP). Based on the dose‐volume histograms (DVH), we also calculated four quality factors: conformity index (CI), dose homogeneity index (DHI), dose nonuniformity index (DNR), and overdose index (OI). The TCP values range from 82.26% to 95.92%. Very low values of NTCP were observed for the bladder and rectum. The EUDs to organs at risk ranged from 4.65 Gy to 18.22 Gy for the bladder, and from 3.41 Gy from to 6.56 Gy for the rectum. The mean CI was 1.05(SD=0.0008). The mean DNR was 0.10(range0.0−0.295,SD=0.100). The mean OI was 0.019(SD=0.028). The DHIs were in the range of 1.0−0.754(mean0.886,SD=0.116). The use of a multichannel vaginal cylinder may not only help cover extensive vaginal disease, but also reduce the dose to the rectum. This dosimetric analysis shows that rectal doses could be reduced using a multichannel cylinder. However, the dose delivered to the bladder based on EUD calculation may be higher than that obtained with other methods. Each patient must be evaluated independently to determine if a multichannel treatment is appropriate. Clinical followup will show whether this rectal dose sparing translates into a real toxicity improvement. PACS number: 3.6.96.0 PMID:24423857
Head and neck tumors after energetic proton irradiation in rats
NASA Astrophysics Data System (ADS)
Wood, D.; Cox, A.; Hardy, K.; Salmon, Y.; Trotter, R.
1994-10-01
This is a two-year progress report on a life span dose-response study of brain tumor risk at moderate to high doses of energetic protons. It was initiated because a joint NASA/USAF life span study of rhesus monkeys that were irradiated with 55-MeV protons (average surface dose, 3.5 Gy) indicated that the incidence of brain tumors per unit surface absorbed dose was over 19 times that of the human tinea capitis patients whose heads were exposed to 100 kv x-rays. Examination of those rats that died in the two-year interval after irradiation of the head revealed a linear dose-response for total head and neck tumor incidence in the dose range of 0-8.5 Gy. The exposed rats had a greater incidence of pituitary chromophobe adenomas, epithelial and mesothelial cell tumors than the unexposed controls but the excessive occurrence of malignant gliomas that was observed in the monkeys was absent in the rats. The estimated dose required to double the number of all types of head and neck tumors was 5.2 Gy. The highest dose, 18 Gy, resulted in high mortality due to obstructive squamous metaplasia at less than 50 weeks, prompting a new study of the relative bological effectiveness of high energy protons in producing this lesion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tilton, Susan C.; Markillie, Lye Meng; Hays, Spencer
Our goal here was to identify dose and temporal dependent radiation responses in a complex tissue, reconstituted human skin. Direct sequencing of RNA (RNA-seq) was used to quantify altered transcripts following exposure to 0.1, 2 and 10 Gy of ionizing radiation at 3 and 8 hours. These doses include a low dose in the range of some medical diagnostic procedures (0.1 Gy), a dose typically received during radiotherapy (2.0 Gy) and a lethal dose (10 Gy). These doses could be received after an intentional or accidental radiation exposure and biomarkers are needed to rapidly and accurately triage exposed individuals. Amore » total of 1701 genes were deemed to be significantly affected by high dose radiation exposure with the majority of genes affected at 10 Gy. A group of 29 genes including GDF15, BBC3, PPM1D, FDXR, GADD45A, MDM2, CDKN1A, TP53INP1, CYCSP27, SESN1, SESN2, PCNA, and AEN were similarly altered at both 2 and 10 Gy, but not 0.1 Gy, at multiple time points. A much larger group of up regulated genes, including those involved in inflammatory responses, was significantly altered only after a 10 Gy exposure. At high doses, down regulated genes were associated with cell cycle regulation and exhibited an apparent linear response between 2 and 10 Gy. While only a handful of genes were significantly affected by 0.1 Gy exposure using stringent statistical filters, groups of related genes regulating cell cycle progression and inflammatory responses consistently exhibited opposite trends in their regulation compared to the high dose exposures. Differential regulation of PLK1 signaling at low and high doses was confirmed using qRT-PCR. These results indicate that some alterations in gene expression are qualitatively different at low and high doses of radiation in this model system.« less
Nava, Hector R; Allamaneni, Shyam S; Dougherty, Thomas J; Cooper, Michele T; Tan, Wei; Wilding, Gregory; Henderson, Barbara W
2011-01-01
Background and Objectives Photodynamic therapy (PDT) with porfimer sodium, FDA approved to treat premalignant lesions in Barrett’s esophagus, causes photosensitivity for 6-8 weeks. HPPH (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a) shows minimal photosensitization of short duration and promising efficacy in preclinical studies. Here we explore toxicity and optimal drug and light dose with endoscopic HPPH-PDT. We also want to know the efficacy of one time treatment with HPPH-PDT. Study Design/Materials and Methods Two nonrandomized dose escalation studies were performed (18 patients each) with biopsy-proven high grade dysplasia or early intramucosal adenocarcinoma of esophagus. HPPH doses ranged from 3 to 6 mg/m2. At 24 or 48 hours after HPPH administration the lesions received one endoscopic exposure to 150, 175 or 200 J/cm of 665 nm light. Results Most patients experienced mild to moderate chest pain requiring symptomatic treatment only. Six patients experienced Grade 3 & 4 adverse events (16.6%). Three esophageal strictures were treated with dilatation. No clear pattern of dose dependence of toxicities emerged. In the drug dose ranging study (light dose of 150 J/cm at 48 h), 3 and 4 mg/m2 of HPPH emerged as most effective. In the light dose ranging study (3 or 4 mg/m2 HPPH, light at 24 h), complete response rates (disappearance of high grade dysplasia and early carcinoma) of 72% were achieved at 1 year, with all patients treated with 3 mg/m2 HPPH plus 175 J/cm and 4 mg/m2 HPPH plus 150 J/cm showing complete responses at 1 year. Conclusions HPPH-PDT for precancerous lesions in Barrett’s esophagus appears to be safe and showing promising efficacy. Further clinical studies are required to establish the use of HPPH-PDT. PMID:22057498
NASA Astrophysics Data System (ADS)
Tessonnier, T.; Mairani, A.; Brons, S.; Sala, P.; Cerutti, F.; Ferrari, A.; Haberer, T.; Debus, J.; Parodi, K.
2017-08-01
In the field of particle therapy helium ion beams could offer an alternative for radiotherapy treatments, owing to their interesting physical and biological properties intermediate between protons and carbon ions. We present in this work the comparisons and validations of the Monte Carlo FLUKA code against in-depth dosimetric measurements acquired at the Heidelberg Ion Beam Therapy Center (HIT). Depth dose distributions in water with and without ripple filter, lateral profiles at different depths in water and a spread-out Bragg peak were investigated. After experimentally-driven tuning of the less known initial beam characteristics in vacuum (beam lateral size and momentum spread) and simulation parameters (water ionization potential), comparisons of depth dose distributions were performed between simulations and measurements, which showed overall good agreement with range differences below 0.1 mm and dose-weighted average dose-differences below 2.3% throughout the entire energy range. Comparisons of lateral dose profiles showed differences in full-width-half-maximum lower than 0.7 mm. Measurements of the spread-out Bragg peak indicated differences with simulations below 1% in the high dose regions and 3% in all other regions, with a range difference less than 0.5 mm. Despite the promising results, some discrepancies between simulations and measurements were observed, particularly at high energies. These differences were attributed to an underestimation of dose contributions from secondary particles at large angles, as seen in a triple Gaussian parametrization of the lateral profiles along the depth. However, the results allowed us to validate FLUKA simulations against measurements, confirming its suitability for 4He ion beam modeling in preparation of clinical establishment at HIT. Future activities building on this work will include treatment plan comparisons using validated biological models between proton and helium ions, either within a Monte Carlo treatment planning engine based on the same FLUKA code, or an independent analytical planning system fed with a validated database of inputs calculated with FLUKA.
Tessonnier, T; Mairani, A; Brons, S; Sala, P; Cerutti, F; Ferrari, A; Haberer, T; Debus, J; Parodi, K
2017-08-01
In the field of particle therapy helium ion beams could offer an alternative for radiotherapy treatments, owing to their interesting physical and biological properties intermediate between protons and carbon ions. We present in this work the comparisons and validations of the Monte Carlo FLUKA code against in-depth dosimetric measurements acquired at the Heidelberg Ion Beam Therapy Center (HIT). Depth dose distributions in water with and without ripple filter, lateral profiles at different depths in water and a spread-out Bragg peak were investigated. After experimentally-driven tuning of the less known initial beam characteristics in vacuum (beam lateral size and momentum spread) and simulation parameters (water ionization potential), comparisons of depth dose distributions were performed between simulations and measurements, which showed overall good agreement with range differences below 0.1 mm and dose-weighted average dose-differences below 2.3% throughout the entire energy range. Comparisons of lateral dose profiles showed differences in full-width-half-maximum lower than 0.7 mm. Measurements of the spread-out Bragg peak indicated differences with simulations below 1% in the high dose regions and 3% in all other regions, with a range difference less than 0.5 mm. Despite the promising results, some discrepancies between simulations and measurements were observed, particularly at high energies. These differences were attributed to an underestimation of dose contributions from secondary particles at large angles, as seen in a triple Gaussian parametrization of the lateral profiles along the depth. However, the results allowed us to validate FLUKA simulations against measurements, confirming its suitability for 4 He ion beam modeling in preparation of clinical establishment at HIT. Future activities building on this work will include treatment plan comparisons using validated biological models between proton and helium ions, either within a Monte Carlo treatment planning engine based on the same FLUKA code, or an independent analytical planning system fed with a validated database of inputs calculated with FLUKA.
Proposed linear energy transfer areal detector for protons using radiochromic film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Rulon; Lin, Liyong; Fager, Marcus
2015-04-15
Radiation therapy depends on predictably and reliably delivering dose to tumors and sparing normal tissues. Protons with kinetic energy of a few hundred MeV can selectively deposit dose to deep seated tumors without an exit dose, unlike x-rays. The better dose distribution is attributed to a phenomenon known as the Bragg peak. The Bragg peak is due to relatively high energy deposition within a given distance or high Linear Energy Transfer (LET). In addition, biological response to radiation depends on the dose, dose rate, and localized energy deposition patterns or LET. At present, the LET can only be measured atmore » a given fixed point and the LET spatial distribution can only be inferred from calculations. The goal of this study is to develop and test a method to measure LET over extended areas. Traditionally, radiochromic films are used to measure dose distribution but not for LET distribution. We report the first use of these films for measuring the spatial distribution of the LET deposited by protons. The radiochromic film sensitivity diminishes for large LET. A mathematical model correlating the film sensitivity and LET is presented to justify relating LET and radiochromic film relative sensitivity. Protons were directed parallel to radiochromic film sandwiched between solid water slabs. This study proposes the scaled-normalized difference (SND) between the Treatment Planning system (TPS) and measured dose as the metric describing the LET. The SND is correlated with a Monte Carlo (MC) calculation of the LET spatial distribution for a large range of SNDs. A polynomial fit between the SND and MC LET is generated for protons having a single range of 20 cm with narrow Bragg peak. Coefficients from these fitted polynomial fits were applied to measured proton dose distributions with a variety of ranges. An identical procedure was applied to the protons deposited from Spread Out Bragg Peak and modulated by 5 cm. Gamma analysis is a method for comparing the calculated LET with the LET measured using radiochromic film at the pixel level over extended areas. Failure rates using gamma analysis are calculated for areas in the dose distribution using parameters of 25% of MC LET and 3 mm. The processed dose distributions find 5%–10% failure rates for the narrow 12.5 and 15 cm proton ranges and 10%–15% for proton ranges of 15, 17.5, and 20 cm and modulated by 5 cm. It is found through gamma analysis that the measured proton energy deposition in radiochromic film and TPS can be used to determine LET. This modified film dosimetry provides an experimental areal LET measurement that can verify MC calculations, support LET point measurements, possibly enhance biologically based proton treatment planning, and determine the polymerization process within the radiochromic film.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, R; Zhu, X; Li, S
Purpose: High Dose Rate (HDR) brachytherapy forward planning is principally an iterative process; hence, plan quality is affected by planners’ experiences and limited planning time. Thus, this may lead to sporadic errors and inconsistencies in planning. A statistical tool based on previous approved clinical treatment plans would help to maintain the consistency of planning quality and improve the efficiency of second checking. Methods: An independent dose calculation tool was developed from commercial software. Thirty-three previously approved cervical HDR plans with the same prescription dose (550cGy), applicator type, and treatment protocol were examined, and ICRU defined reference point doses (bladder, vaginalmore » mucosa, rectum, and points A/B) along with dwell times were collected. Dose calculation tool then calculated appropriate range with a 95% confidence interval for each parameter obtained, which would be used as the benchmark for evaluation of those parameters in future HDR treatment plans. Model quality was verified using five randomly selected approved plans from the same dataset. Results: Dose variations appears to be larger at the reference point of bladder and mucosa as compared with rectum. Most reference point doses from verification plans fell between the predicted range, except the doses of two points of rectum and two points of reference position A (owing to rectal anatomical variations & clinical adjustment in prescription points, respectively). Similar results were obtained for tandem and ring dwell times despite relatively larger uncertainties. Conclusion: This statistical tool provides an insight into clinically acceptable range of cervical HDR plans, which could be useful in plan checking and identifying potential planning errors, thus improving the consistency of plan quality.« less
NASA Astrophysics Data System (ADS)
Lim, Sara N.; Pradhan, Anil K.; Nahar, Sultana N.; Barth, Rolf F.; Yang, Weilian; Nakkula, Robin J.; Palmer, Alycia; Turro, Claudia
2013-06-01
High energy X-rays in the MeV range are generally employed in conventional radiation therapy from linear accelerators (LINAC) to ensure sufficient penetration depths. However, lower energy X-rays in the keV range may be more effective when coupled with heavy element (high-Z or HZ) radiosensitizers. Numerical simulations of X-ray energy deposition for tumor phantoms sensitized with HZ radiosensitizers were performed using the Monte Carlo code Geant4. The results showed enhancement in energy deposition to radiosensitized phantoms relative to unsensitized phantoms for low energy X-rays in the keV range. In contrast, minimal enhancement was seen using high energy X-rays in the MeV range. Dose enhancement factors (DEFs) were computed and showed radiosensitization only in the low energy range < 200 keV, far lower than the energy of the majority of photons in the LINAC energy range. In vitro studies were carried to demonstrate the tumoricidal effects of HZ sensitized F98 rat glioma cells following irradiation with both low energy 160 kV and high energy 6 MV X-ray sources. The platinum compound, pyridine terpyridine Pt(II) nitrate, was initially used because it was 7x less toxic that an equivalent amount of carboplatin in vitro studies. This would allow us to separate the radiotoxic and the chemotoxic effects of HZ sensitizers. Results from this study showed a 10-fold dose dependent reduction in surviving fractions (SF) of radiosensitized cells treated with low energy 160 kV X-rays compared to those treated with 6 MV X-rays. This is in agreement with our simulations that show an increase in dose deposition in radiosensitized tumors for low energy X-rays. Due to unforeen in vivo toxicity, however, another in vitro study was performed using the commonly used, Pt-based chemotherapeutic drug carboplatin which confirmed earlier results. This lays the ground work for a planned in vivo study using F98 glioma bearing rats. This study demonstrates that while high energy X-rays are commonly used in cancer radiotherapy, low energy keV X-rays might be much more effective with HZ radiosensitization.
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Hajnal, Ferenc; Wilson, John W.
1990-01-01
The transport of nuclear fragmentation recoils produced by high-energy nucleons in the region of the bone-tissue interface is considered. Results for the different flux and absorbed dose for recoils produced by 1 GeV protons are presented in a bidirectional transport model. The energy deposition in marrow cavities is seen to be enhanced by recoils produced in bone. Approximate analytic formulae for absorbed dose near the interface region are also presented for a simplified range-energy model.
False-positive buprenorphine EIA urine toxicology results due to high dose morphine: a case report.
Tenore, Peter L
2012-01-01
In monitoring a patient with chronic pain who was taking high-dose morphine and oxycodone with weekly urine enzymatic immunoassay (EIA) toxicology testing, the authors noted consistent positives for buprenorphine. The patient was not taking buprenorphine, and gas chromatography/mass spectroscopy (GCMS) testing on multiple samples revealed no buprenorphine, indicating a case of false-positive buprenorphine EIAs in a high-dose opiate case. The authors discontinued oxycodone for a period of time and then discontinued morphine. Urine monitoring with EIAs and GCMS revealed false-positive buprenorphine EIAs, which remained only when the patient was taking morphine. When taking only oxycodone and no morphine, urine samples became buprenorphine negative. When morphine was reintroduced, false-positive buprenorphine results resumed. Medical practitioners should be aware that high-dose morphine (with morphine urine levels turning positive within the 15,000 to 28,000 mg/mL range) may produce false-positive buprenorphine EIAs with standard urine EIA toxicology testing.
NASA Astrophysics Data System (ADS)
Ueno, Katsunori; Tominaga, Kazuo; Tadokoro, Takahiro; Ishizawa, Koji; Takahashi, Yoshinori; Kuwabara, Hitoshi
2016-08-01
The investigation of air dose rates at locations in the Fukushima Dai-ichi Nuclear Power Station is necessary for safe removal of the molten nuclear fuel. The target performance for the investigation is to analyze a dose rate in the range of 10-3 Gy/h to 102 Gy/h with a measurement precision of ±4.0% full scale (F.S.) at a measurement interval of 60 s. In order to achieve this target, the authors proposed an optically stimulated luminescence (OSL) analysis method using prompt OSL for a wide dynamic range of dose rates; the OSL is generated using BaFBr:Eu with a fast decay time constant. The luminescence intensity by prompt OSL was formulated by the electron concentration of the trapping state during gamma ray and stimulation light irradiations. The prototype OSL monitor using BaFBr:Eu was manufactured for investigation of prompt OSL and evaluation of the measurement precision. The time dependence of the luminescence intensity by prompt OSL was analyzed by irradiating the OSL sensor in a 60Co irradiation facility. The measured dose rates were obtained in a prompt mode and an accumulating mode with a precision of ±3.3% F.S. for the dose rate range of 9.5 ×10-4 Gy/h to 1.2 ×102 Gy/h.
Radiation dose-reduction strategies in thoracic CT.
Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I
2017-05-01
Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Sahoo, G S; Paul, S; Tripathy, S P; Sharma, S C; Jena, S; Rout, S; Joshi, D S; Bandyopadhyay, T
2014-12-01
Effects of high-dose neutron irradiation on chemical and optical properties of CR-39 were studied using FTIR (Fourier Transform Infrared) and UV-vis (Ultraviolet-Visible) spectroscopy. The primary goal was to find a correlation between the neutron dose and the corresponding changes in the optical and chemical properties of CR-39 resulted from the neutron irradiation. The neutrons were produced by bombarding a thick Be target with 22-MeV protons. In the FTIR spectra, prominent absorbance peaks were observed at 1735cm(-1) (C=O stretching), 1230cm(-1)(C-O-C stretching), and 783cm(-1)(=C-H bending), the intensities of which decreased with increasing neutron dose. The optical absorbance in the visible range increased linearly with the neutron dose. Empirical relations were established to estimate neutron doses from these optical properties. This technique is particularly useful in measuring high doses, where track analysis with an optical microscope is difficult because of track overlapping. Copyright © 2014 Elsevier Ltd. All rights reserved.
Christensen, Anthony M.; Pauley, Jennifer L.; Molinelli, Alejandro R.; Panetta, John C.; Ward, Deborah A.; Stewart, Clinton F.; Hoffman, James M.; Howard, Scott C.; Pui, Ching-Hon; Pappo, Alberto S.; Relling, Mary V.; Crews, Kristine R.
2013-01-01
Background High-dose methotrexate (HDMTX)-induced acute kidney injury is a rare but life-threatening complication. The methotrexate rescue agent glucarpidase rapidly hydrolyzes methotrexate to inactive metabolites. We retrospectively reviewed glucarpidase use in pediatric cancer patients at our institution and evaluated whether subsequent resumption of HDMTX was tolerated. Methods Clinical data and outcomes of all patients who received glucarpidase after HDMTX administration were reviewed. Results Of 1,141 patients treated with 4,909 courses of HDMTX, 20 patients (1.8% of patients, 0.4% of courses) received 22 doses of glucarpidase. The median glucarpidase dosage was 51.6 units/kg (range, 13 – 65.6 units/kg). At the time of administration, the median plasma methotrexate concentration was 29.1 µM (range, 1.3 – 590.6 µM). Thirteen of the 20 patients received a total of 39 courses of HDMTX therapy after glucarpidase. The median time to complete methotrexate excretion was 355 hours (range, 244 – 763 hours) for the HDMTX course during which glucarpidase was administered, 90 hours (range, 66 – 268 hours) for the next HDMTX course, and 72 hours (range, 42 – 116 hours) for subsequent courses. The median peak serum creatinine during these HDMTX courses was 2.2 mg/dL (range, 0.8 – 9.6 mg/dL), 0.8 mg/dL (range, 0.4 – 1.6 mg/dL), and 0.6 mg/dL (range, 0.4 – 0.9 mg/dL), respectively. One patient experienced nephrotoxicity upon rechallenge with HDMTX. Renal function eventually returned to baseline in all patients and no patient died as a result of methotrexate toxicity. Conclusion It is possible to safely resume HDMTX therapy after glucarpidase treatment for HDMTX-induced acute kidney injury. PMID:22252903
Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia
2015-01-01
Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize. PMID:26437425
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saini, Amarjit S.; Zhang, Geoffrey G., E-mail: geoffrey.zhang@moffitt.org; Finkelstein, Steven E.
2011-07-15
Purpose: Vaginal balloon packing is a means to displace organs at risk during high dose rate brachytherapy of the uterine cervix. We tested the hypothesis that contrast-filled vaginal balloon packing reduces radiation dose to organs at risk, such as the bladder and rectum, in comparison to water- or air-filled balloons. Methods and Materials: In a phantom study, semispherical vaginal packing balloons were filled with air, saline solution, and contrast agents. A high dose rate iridium-192 source was placed on the anterior surface of the balloon, and the diode detector was placed on the posterior surface. Dose ratios were taken withmore » each material in the balloon. Monte Carlo (MC) simulations, by use of the MC computer program DOSXYZnrc, were performed to study dose reduction vs. balloon size and contrast material, including commercially available iodine- and gadolinium-based contrast agents. Results: Measured dose ratios on the phantom with the balloon radius of 3.4 cm were 0.922 {+-} 0.002 for contrast/saline solution and 0.808 {+-} 0.001 for contrast/air. The corresponding ratios by MC simulations were 0.895 {+-} 0.010 and 0.781 {+-} 0.010. The iodine concentration in the contrast was 23.3% by weight. The dose reduction of contrast-filled balloon ranges from 6% to 15% compared with water-filled balloon and 11% to 26% compared with air-filled balloon, with a balloon size range between 1.4 and 3.8 cm, and iodine concentration in contrast of 24.9%. The dose reduction was proportional to the contrast agent concentration. The gadolinium-based contrast agents showed less dose reduction because of much lower concentrations in their solutions. Conclusions: The dose to the posterior wall of the bladder and the anterior wall of the rectum can be reduced if the vaginal balloon is filled with contrast agent in comparison to vaginal balloons filled with saline solution or air.« less
Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia
2015-09-30
Determining ionizing radiation in a geographic area serves to assess its effects on a population's health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h(-1). At the same sites, 48 soil samples were taken to obtain the activity concentrations of (226)Ra, (232)Th and (40)K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h(-1). Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg(-1), for (226)Ra, (232)Th and (40)K, respectively. From the analysis, the spatial distribution of (232)Th, (226)Ra and (40)K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, J.T.; Bova, F.J.; Million, R.R.
1994-11-15
To investigate the risk of radiation-induced optic neuropathy according to total radiotherapy dose and fraction size, based on both retrospective and prospectively collected data. Between October 1964 and May 1989, 215 optic nerves in 131 patients received fractionated external-beam irradiation during the treatment of primary extracranial head and neck tumors. All patients had a minimum of 3 years of ophthalmologic follow-up (range, 3 to 21 years). The clinical end point was visual acuity of 20/100 or worse as a result of optic nerve injury. Anterior ischemic optic neuropathy developed in five nerves (at mean and median times of 32 andmore » 30 months, respectively, and a range of 2-4 years). Retrobulbar optic neuropathy developed in 12 nerves (at mean and median times of 47 and 28 months, respectively, and a range of 1-14 years). No injuries were observed in 106 optic nerves that received a total dose of <59 Gy. Among nerves that received doses of {ge} 60 Gy, the dose per fraction was more important than the total dose in producing optic neuropathy. The 15-year actuarial risk of optic compared with 47% when given in fraction sizes {ge}1.9 Gy. The data also suggest an increased risk of optic nerve injury with increasing age. As there is no effective treatment of radiation-induced optic neuropathy, efforts should be directed at its prevention by minimizing the total dose, paying attention to the dose per fraction to the nerve, and using reduced field techniques where appropriate to limit the volume of tissues that receive high-dose irradiation. 32 refs., 5 figs., 5 tabs.« less
Sirisena, Imali
2017-01-01
Type B insulin resistance is a rare syndrome characterized by fluctuating glucose levels (ranging from hyperglycemia with extreme insulin resistance to intractable hypoglycemia without exogenous insulin administration), high serum insulin levels, and insulin receptor autoantibodies. Most cases occur in the African American population in association with other underlying autoimmune systemic diseases. Treatments with high-dose steroids, immunosuppressants, and plasmapheresis have been used, with variable outcomes, in patients without spontaneous remission. We report the case of a 60-year-old African American woman with history of systemic lupus erythematosus presenting with extreme fluctuations in glucose levels, ranging from severe hyperglycemia to refractory hypoglycemia, with high serum concentration of insulin in both phases. Her presentation and phenotype were very similar to those seen in known cases of type B insulin resistance associated with insulin receptor antibodies. Treatment in other reported cases used a combination of high-dose steroids and immunosuppressants. We tried high-dose steroids, azathioprine, and intravenous immunoglobulins, which resulted in improvement and barely detectable insulin receptor antibody. We present a case of type B insulin resistance with abnormally low titers of insulin receptor antibodies despite a typical clinical course and response. Future research is needed to improve diagnosis and treatment in this rare disease. PMID:29264467
The Thermoluminescence Response of Ge-Doped Flat Fibers to Gamma Radiation
Mat Nawi, Siti Nurasiah Binti; Wahib, Nor Fadira Binti; Zulkepely, Nurul Najua Binti; Amin, Yusoff Bin Mohd; Min, Ung Ngie; Bradley, David Andrew; Md Nor, Roslan Bin; Maah, Mohd Jamil
2015-01-01
Study has been undertaken of the thermoluminescence (TL) yield of various tailor-made flat cross-section 6 mol% Ge-doped silica fibers, differing only in respect of external dimensions. Key TL dosimetric characteristics have been investigated, including glow curves, dose response, sensitivity, fading and reproducibility. Using a 60Co source, the samples were irradiated to doses within the range 1 to 10 Gy. Prior to irradiation, the flat fibers were sectioned into 6 mm lengths, weighed, and annealed at 400 °C for 1 h. TL readout was by means of a Harshaw Model 3500 TLD reader, with TLD-100 chips (LiF:Mg, Ti) used as a reference dosimeter to allow the relative response of the fibers to be evaluated. The fibers have been found to provide highly linear dose response and excellent reproducibility over the range of doses investigated, demonstrating high potential as TL-mode detectors in radiation medicine applications. Mass for mass, the results show the greatest TL yield to be provided by fibers of the smallest cross-section, analysis indicating this to be due to minimal light loss in transport of the TL through the bulk of the silica medium. PMID:26307987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unkelbach, Jan, E-mail: junkelbach@mgh.harvard.edu; Botas, Pablo; Faculty of Physics, Ruprecht-Karls-Universität Heidelberg, Heidelberg
Purpose: We describe a treatment plan optimization method for intensity modulated proton therapy (IMPT) that avoids high values of linear energy transfer (LET) in critical structures located within or near the target volume while limiting degradation of the best possible physical dose distribution. Methods and Materials: To allow fast optimization based on dose and LET, a GPU-based Monte Carlo code was extended to provide dose-averaged LET in addition to dose for all pencil beams. After optimizing an initial IMPT plan based on physical dose, a prioritized optimization scheme is used to modify the LET distribution while constraining the physical dosemore » objectives to values close to the initial plan. The LET optimization step is performed based on objective functions evaluated for the product of LET and physical dose (LET×D). To first approximation, LET×D represents a measure of the additional biological dose that is caused by high LET. Results: The method is effective for treatments where serial critical structures with maximum dose constraints are located within or near the target. We report on 5 patients with intracranial tumors (high-grade meningiomas, base-of-skull chordomas, ependymomas) in whom the target volume overlaps with the brainstem and optic structures. In all cases, high LET×D in critical structures could be avoided while minimally compromising physical dose planning objectives. Conclusion: LET-based reoptimization of IMPT plans represents a pragmatic approach to bridge the gap between purely physical dose-based and relative biological effectiveness (RBE)-based planning. The method makes IMPT treatments safer by mitigating a potentially increased risk of side effects resulting from elevated RBE of proton beams near the end of range.« less
López-Cruz, Laura; Pardo, Marta; Salamone, John D; Correa, Mercè
2014-08-15
Caffeine and theophylline are methylxanthines that are broadly consumed, sometimes at high doses, and act as minor psychostimulants. Both are nonselective adenosine antagonists for A1 and A2A receptors, which are colocalized with dopamine D1 and D2 receptors in striatal areas. Adenosine antagonists generally have opposite actions to those of dopamine antagonists. Although the effects of caffeine are widely known, theophylline has been much less well characterized, especially at high doses. Adult male CD1 mice were used to study the effect of a broad range of doses (25.0, 50.0 or 100.0mg/kg) of caffeine and theophylline on measures of spontaneous locomotion and coordination, as well as the pattern of c-Fos immunoreactivity in brain areas rich in adenosine and dopamine receptors. In addition, we evaluated possible anxiety and stress effects of these doses. Caffeine, at these doses, impaired or suppressed locomotion in several paradigms. However, theophylline was less potent than caffeine at suppressing motor parameters, and even stimulated locomotion. Both drugs induced corticosterone release, however caffeine was more efficacious at intermediate doses. While caffeine showed an anxiogenic profile at all doses, theophylline only did so at the highest dose used (50mg/kg). Only theophylline increased c-Fos immunoreactivity in cortical areas. Theophylline has fewer disruptive effects than caffeine on motor parameters and produces less stress and anxiety effects. These results are relevant for understanding the potential side effects of methylxanthines when consumed at high doses. Copyright © 2014 Elsevier B.V. All rights reserved.
Ortiz-Morales, A; López-González, E; Rueda-Morales, G; Ortega-Cervantez, G; Ortiz-Lopez, J
2018-06-06
Graphite powder (GP) subjected to microwave radiation (MWG) results in exfoliation of graphite particles into few-layered graphene flakes (GF) intermixed with partially exfoliated graphite particles (PEG). Characterization of MWG by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Raman spectroscopy reveal few-layer GF with sizes ranging from 0.2 to 5 µm. Raman D, G, and 2D (G') bands characteristic of graphitic structures include evidence of the presence of bilayered graphene. The thermoluminescent (TL) dosimetric properties of MWG are evaluated and can be characterized as a gamma-ray sensitive and dose-resistant material with kinetic parameters (activation energy for the main peak located at 400 and 408 K is 0.69 and 0.72 eV) and threshold dose (~1 kGy and 5 kGy respectively). MWG is a low-Z material (Z eff = 6) with a wide linear range of TL dose-response (0.170-2.5 kGy) tested at doses in the 1-20 kGy range with promising results for applications in gamma-ray dosimetry. Results obtained in gamma irradiated MWG are compared with those obtained in graphite powder samples (GP) without microwave treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Evans, Erika E; Emery, Lee C; Cox, Sherry K; Souza, Marcy J
2013-06-01
To determine pharmacokinetics after oral administration of a single dose of terbinafine hydrochloride to Hispaniolan Amazon parrots (Amazona ventralis). 6 healthy adult Hispaniolan Amazon parrots. A single dose of terbinafine hydrochloride (60 mg/kg) was administered orally to each bird, which was followed immediately by administration of a commercially available gavage feeding formula. Blood samples were collected at the time of drug administration (time 0) and 0.25, 0.5, 1, 2, 4, 8, 12, and 24 hours after drug administration. Plasma concentrations of terbinafine were determined via high-performance liquid chromatography. Data from 1 bird were discarded because of a possible error in the dose of drug administered. After oral administration of terbinafine, the maximum concentration for the remaining 5 fed birds ranged from 109 to 671 ng/mL, half-life ranged from 6 to 13.5 hours, and time to the maximum concentration ranged from 2 to 8 hours. No adverse effects were observed. Analysis of the results indicated that oral administration of terbinafine at a dose of 60 mg/kg to Amazon parrots did not result in adverse effects and may be potentially of use in the treatment of aspergillosis. Additional studies are needed to determine treatment efficacy and safety.
Cancer and non-cancer brain and eye effects of chronic low-dose ionizing radiation exposure
2012-01-01
Background According to a fundamental law of radiobiology (“Law of Bergonié and Tribondeau”, 1906), the brain is a paradigm of a highly differentiated organ with low mitotic activity, and is thus radio-resistant. This assumption has been challenged by recent evidence discussed in the present review. Results Ionizing radiation is an established environmental cause of brain cancer. Although direct evidence is lacking in contemporary fluoroscopy due to obvious sample size limitation, limited follow-up time and lack of focused research, anecdotal reports of clusters have appeared in the literature, raising the suspicion that brain cancer may be a professional disease of interventional cardiologists. In addition, although terminally differentiated neurons have reduced or mild proliferative capacity, and are therefore not regarded as critical radiation targets, adult neurogenesis occurs in the dentate gyrus of the hippocampus and the olfactory bulb, and is important for mood, learning/memory and normal olfactory function, whose impairment is a recognized early biomarker of neurodegenerative diseases. The head doses involved in radiotherapy are high, usually above 2 Sv, whereas the low-dose range of professional exposure typically involves lifetime cumulative whole-body exposure in the low-dose range of < 200 mSv, but with head exposure which may (in absence of protection) arrive at a head equivalent dose of 1 to 3 Sv after a professional lifetime (corresponding to a brain equivalent dose around 500 mSv). Conclusions At this point, a systematic assessment of brain (cancer and non-cancer) effects of chronic low-dose radiation exposure in interventional cardiologists and staff is needed. PMID:22540409
Acinetobacter Prosthetic Joint Infection Treated with Debridement and High-Dose Tigecycline.
Vila, Andrea; Pagella, Hugo; Amadio, Claudio; Leiva, Alejandro
2016-12-01
Prosthesis retention is not recommended for multidrug-resistant Acinetobacter prosthetic joint infection due to its high failure rate. Nevertheless, replacing the prosthesis implies high morbidity and prolonged hospitalization. Although tigecycline is not approved for the treatment of prosthetic joint infection due to multidrug resistant Acinetobacter baumannii, its appropriate use may preclude prosthesis exchange. Since the area under the curve divided by the minimum inhibitory concentration is the best pharmacodynamic predictor of its efficacy, we used tigecycline at high dose, in order to optimize its efficacy and achieve implant retention in 3 patients who refused prosthesis exchange. All patients with prosthetic joint infections treated at our Institution are prospectively registered in a database. Three patients with early prosthetic joint infection of total hip arthroplasty due to multidrug resistant A. baumannii were treated with debridement, antibiotics and implant retention, using a high maintenance dose of tigecycline (100 mg every 12 hours). The cases were retrospectively reviewed. All patients signed informed consent for receiving off-label use of tigecycline. Tigecycline was well tolerated, allowing its administration at high maintenance dose for a median of 40 days (range 30-60). Two patients were then switched to minocycline at standard doses for a median of 3.3 months in order to complete treatment. Currently, none of the patients showed relapse. Increasing the dose of tigecycline could be considered as a means to better attain pharmacodynamic targets in patients with severe or difficult-to-treat infections. Tigecycline at high maintenance dose might be useful when retention of the implant is attempted for treatment for prosthetic joint infections due to multidrug resistant Acinetobacter. Although this approach might be promising, off-label use of tigecycline should be interpreted cautiously until prospective data are available. Tigecycline is probably under-dosed for the treatment of implant and biofilm associated infections.
Cini, Michela; Legnani, Cristina; Cosmi, Benilde; Guazzaloca, Giuliana; Valdrè, Lelia; Frascaro, Mirella; Palareti, Gualtiero
2012-08-01
Warfarin dosing is affected by clinical and genetic variants, but the contribution of the genotype associated with warfarin resistance in pharmacogenetic algorithms has not been well assessed yet. We developed a new dosing algorithm including polymorphisms associated both with warfarin sensitivity and resistance in the Italian population, and its performance was compared with those of eight previously published algorithms. Clinical and genetic data (CYP2C9*2, CYP2C9*3, VKORC1 -1639 G > A, and VKORC1 3730 G > A) were used to elaborate the new algorithm. Derivation and validation groups comprised 55 (58.2% men, mean age 69 years) and 40 (57.5% men, mean age 70 years) patients, respectively, who were on stable anticoagulation therapy for at least 3 months with different oral anticoagulation therapy (OAT) indications. Performance of the new algorithm, evaluated with mean absolute error (MAE) defined as the absolute value of the difference between observed daily maintenance dose and predicted daily dose, correlation with the observed dose and R(2) value, was comparable with or slightly lower than that obtained using the other algorithms. The new algorithm could correctly assign 53.3%, 50.0%, and 57.1% of patients to the low (≤25 mg/week), intermediate (26-44 mg/week) and high (≥ 45 mg/week) dosing range, respectively. Our data showed a significant increase in predictive accuracy among patients requiring high warfarin dose compared with the other algorithms (ranging from 0% to 28.6%). The algorithm including VKORC1 3730 G > A, associated with warfarin resistance, allowed a more accurate identification of resistant patients who require higher warfarin dosage.
Limitations of analytical dose calculations for small field proton radiosurgery.
Geng, Changran; Daartz, Juliane; Lam-Tin-Cheung, Kimberley; Bussiere, Marc; Shih, Helen A; Paganetti, Harald; Schuemann, Jan
2017-01-07
The purpose of the work was to evaluate the dosimetric uncertainties of an analytical dose calculation engine and the impact on treatment plans using small fields in intracranial proton stereotactic radiosurgery (PSRS) for a gantry based double scattering system. 50 patients were evaluated including 10 patients for each of 5 diagnostic indications of: arteriovenous malformation (AVM), acoustic neuroma (AN), meningioma (MGM), metastasis (METS), and pituitary adenoma (PIT). Treatment plans followed standard prescription and optimization procedures for PSRS. We performed comparisons between delivered dose distributions, determined by Monte Carlo (MC) simulations, and those calculated with the analytical dose calculation algorithm (ADC) used in our current treatment planning system in terms of dose volume histogram parameters and beam range distributions. Results show that the difference in the dose to 95% of the target (D95) is within 6% when applying measured field size output corrections for AN, MGM, and PIT. However, for AVM and METS, the differences can be as great as 10% and 12%, respectively. Normalizing the MC dose to the ADC dose based on the dose of voxels in a central area of the target reduces the difference of the D95 to within 6% for all sites. The generally applied margin to cover uncertainties in range (3.5% of the prescribed range + 1 mm) is not sufficient to cover the range uncertainty for ADC in all cases, especially for patients with high tissue heterogeneity. The root mean square of the R90 difference, the difference in the position of distal falloff to 90% of the prescribed dose, is affected by several factors, especially the patient geometry heterogeneity, modulation and field diameter. In conclusion, implementation of Monte Carlo dose calculation techniques into the clinic can reduce the uncertainty of the target dose for proton stereotactic radiosurgery. If MC is not available for treatment planning, using MC dose distributions to adjust the delivered doses level can also reduce uncertainties below 3% for mean target dose and 6% for the D95.
Kazakauskaite, Egle; Husmann, Lars; Stehli, Julia; Fuchs, Tobias; Fiechter, Michael; Klaeser, Bernd; Ghadri, Jelena R; Gebhard, Catherine; Gaemperli, Oliver; Kaufmann, Philipp A
2013-02-01
A new generation of high definition computed tomography (HDCT) 64-slice devices complemented by a new iterative image reconstruction algorithm-adaptive statistical iterative reconstruction, offer substantially higher resolution compared to standard definition CT (SDCT) scanners. As high resolution confers higher noise we have compared image quality and radiation dose of coronary computed tomography angiography (CCTA) from HDCT versus SDCT. Consecutive patients (n = 93) underwent HDCT, and were compared to 93 patients who had previously undergone CCTA with SDCT matched for heart rate (HR), HR variability and body mass index (BMI). Tube voltage and current were adapted to the patient's BMI, using identical protocols in both groups. The image quality of all CCTA scans was evaluated by two independent readers in all coronary segments using a 4-point scale (1, excellent image quality; 2, blurring of the vessel wall; 3, image with artefacts but evaluative; 4, non-evaluative). Effective radiation dose was calculated from DLP multiplied by a conversion factor (0.014 mSv/mGy × cm). The mean image quality score from HDCT versus SDCT was comparable (2.02 ± 0.68 vs. 2.00 ± 0.76). Mean effective radiation dose did not significantly differ between HDCT (1.7 ± 0.6 mSv, range 1.0-3.7 mSv) and SDCT (1.9 ± 0.8 mSv, range 0.8-5.5 mSv; P = n.s.). HDCT scanners allow low-dose 64-slice CCTA scanning with higher resolution than SDCT but maintained image quality and equally low radiation dose. Whether this will translate into higher accuracy of HDCT for CAD detection remains to be evaluated.
Simulated space radiation-induced mutants in the mouse kidney display widespread genomic change
Grygoryev, Dmytro; Lasarev, Michael; Ohlrich, Anna; Rwatambuga, Furaha A.; Johnson, Sorrel; Dan, Cristian; Eckelmann, Bradley; Hryciw, Gwen; Mao, Jian-Hua; Snijders, Antoine M.; Gauny, Stacey; Kronenberg, Amy
2017-01-01
Exposure to a small number of high-energy heavy charged particles (HZE ions), as found in the deep space environment, could significantly affect astronaut health following prolonged periods of space travel if these ions induce mutations and related cancers. In this study, we used an in vivo mutagenesis assay to define the mutagenic effects of accelerated 56Fe ions (1 GeV/amu, 151 keV/μm) in the mouse kidney epithelium exposed to doses ranging from 0.25 to 2.0 Gy. These doses represent fluences ranging from 1 to 8 particle traversals per cell nucleus. The Aprt locus, located on chromosome 8, was used to select induced and spontaneous mutants. To fully define the mutagenic effects, we used multiple endpoints including mutant frequencies, mutation spectrum for chromosome 8, translocations involving chromosome 8, and mutations affecting non-selected chromosomes. The results demonstrate mutagenic effects that often affect multiple chromosomes for all Fe ion doses tested. For comparison with the most abundant sparsely ionizing particle found in space, we also examined the mutagenic effects of high-energy protons (1 GeV, 0.24 keV/μm) at 0.5 and 1.0 Gy. Similar doses of protons were not as mutagenic as Fe ions for many assays, though genomic effects were detected in Aprt mutants at these doses. Considered as a whole, the data demonstrate that Fe ions are highly mutagenic at the low doses and fluences of relevance to human spaceflight, and that cells with considerable genomic mutations are readily induced by these exposures and persist in the kidney epithelium. The level of genomic change produced by low fluence exposure to heavy ions is reminiscent of the extensive rearrangements seen in tumor genomes suggesting a potential initiation step in radiation carcinogenesis. PMID:28683078
Simulated space radiation-induced mutants in the mouse kidney display widespread genomic change.
Turker, Mitchell S; Grygoryev, Dmytro; Lasarev, Michael; Ohlrich, Anna; Rwatambuga, Furaha A; Johnson, Sorrel; Dan, Cristian; Eckelmann, Bradley; Hryciw, Gwen; Mao, Jian-Hua; Snijders, Antoine M; Gauny, Stacey; Kronenberg, Amy
2017-01-01
Exposure to a small number of high-energy heavy charged particles (HZE ions), as found in the deep space environment, could significantly affect astronaut health following prolonged periods of space travel if these ions induce mutations and related cancers. In this study, we used an in vivo mutagenesis assay to define the mutagenic effects of accelerated 56Fe ions (1 GeV/amu, 151 keV/μm) in the mouse kidney epithelium exposed to doses ranging from 0.25 to 2.0 Gy. These doses represent fluences ranging from 1 to 8 particle traversals per cell nucleus. The Aprt locus, located on chromosome 8, was used to select induced and spontaneous mutants. To fully define the mutagenic effects, we used multiple endpoints including mutant frequencies, mutation spectrum for chromosome 8, translocations involving chromosome 8, and mutations affecting non-selected chromosomes. The results demonstrate mutagenic effects that often affect multiple chromosomes for all Fe ion doses tested. For comparison with the most abundant sparsely ionizing particle found in space, we also examined the mutagenic effects of high-energy protons (1 GeV, 0.24 keV/μm) at 0.5 and 1.0 Gy. Similar doses of protons were not as mutagenic as Fe ions for many assays, though genomic effects were detected in Aprt mutants at these doses. Considered as a whole, the data demonstrate that Fe ions are highly mutagenic at the low doses and fluences of relevance to human spaceflight, and that cells with considerable genomic mutations are readily induced by these exposures and persist in the kidney epithelium. The level of genomic change produced by low fluence exposure to heavy ions is reminiscent of the extensive rearrangements seen in tumor genomes suggesting a potential initiation step in radiation carcinogenesis.
Ivannikov, Alexander; Zhumadilov, Kassym; Tieliewuhan, Eldana; Jiao, Ling; Zharlyganova, Dinara; Apsalikov, Kazbek N; Berekenova, Gulnara; Zhumadilov, Zhaxybay; Toyoda, Shin; Miyazawa, Chuzou; Skvortsov, Valeriy; Stepanenko, Valeriy; Endo, Satoru; Tanaka, Kenichi; Hoshi, Masaharu
2006-02-01
The method of electron paramagnetic resonance (EPR) spectroscopy for tooth enamel is applied to individual radiation dose determination to residents of two villages (Dolon and Mostik) in the vicinity of the Semipalatinsk nuclear test site in Kazakhstan. These villages are located near the central axis of the radioactive fallout trace of the most contaminating surface nuclear test conducted in 1949. It is found that excess doses obtained by subtraction of natural background dose from dose absorbed in enamel range up to 440 mGy to residents of Dolon, whose enamel was formed before 1949, and do not exceed 120 mGy to younger residents. To residents of Mostik, excess doses do not exceed 100 mGy regardless of age except for one resident with an extremely high dose of 1.25 Gy. These results are in agreement with the pattern of radioactive contamination of the territory after the nuclear test of 1949 except one case of extremely high dose, which should be additionally investigated.
Proteomic and Epigenetic Analysis of Rice after Seed Spaceflight and Ground-Base Ion Radiations
NASA Astrophysics Data System (ADS)
Wang, Wei; Sun, Yeqing; Peng, Yuming; Zhao, Qian; Wen, Bin; Yang, Jun
Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to plant seeds. In previous work, we compared the proteomic profiles of rice plants growing after seed spaceflights to ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) with mass spectrometry and found that the protein expression profiles were changed and differentially expressed proteins participated in most of the biological processes of rice. To further evaluate the dosage effects of space radiation and compare between low- and high-dose ion effects, we carried out three independent ground-base ionizing radiation experiments with different cumulative doses (low-dose range: 2~1000mGy, high-dose range: 2000~20000mGy) to rice seeds and performed proteomic analysis of seedlings. We found that protein expression profiles showed obvious boundaries between low- and high-dose radiation groups. Rates of differentially expressed proteins presented a dose-dependent effect, it reached the highest value at 2000mGy dosage point in all three radiation experiments coincidently; while proteins responded to low-dose radiations preferred to change their expressions at the minimum dosage (2mGy). Proteins participating in rice biological processes also responded differently between low- and high-dose radiations: proteins involved in energy metabolism and photosynthesis tended to be regulated after low-dose radiations while stress responding, protein folding and cell redox homeostasis related proteins preferred to change their expressions after high-dose radiations. By comparing the proteomic profiles between ground-base radiations and spaceflights, it was worth noting that ground-base low-dose ion radiation effects shared similar biological effects as space environment. In addition, we discovered that protein nucleoside diphosphate kinase 1 (NDPK1) showed obvious increased regulation after spaceflights and ion radiations. NDPK1 catalyzes nucleotide metabolism and is reported to be involved in DNA repair process. Its expression sensitivity and specificity were confirmed by RT-PCR and western blot analysis, indicating its potential to be used as space radiation biomarker. Space radiations might induce epigenetic effects on rice plants, especially changes of DNA methylation. Early results suggested that there were correlations between DNA methylation polymorphic and genomic mutation rates. In addition, the 5-methylcytosine located in coding gene’s promoter and exon regions could regulate gene expressions thus influence protein expressions. So whether there is correlation between genome DNA methylation changes and protein expression profile alterations caused by space radiation is worth for further investigation. Therefore we used the same rice samples treated by carbon ion radiation with different doses (0, 10, 20,100, 200, 1000, 2000, 5000, 20000mGy) and applied methylation sensitive amplification polymorphism (MSAP) for scanning genome DNA methylation changes. Interestingly, DNA methylation polymorphism rates also presented a dose-dependent effect and showed the same changing trend as rates of differentially expressed proteins. Whether there are correlations between epigenetic and proteomic effects of space radiation is worth for further investigation.
Surface dose measurements for highly oblique electron beams.
Ostwald, P M; Kron, T
1996-08-01
Clinical applications of electrons may involve oblique incidence of beams, and although dose variations for angles up to 60 degrees from normal incidence are well documented, no results are available for highly oblique beams. Surface dose measurements in highly oblique beams were made using parallel-plate ion chambers and both standard LiF:Mg, Ti and carbon-loaded LiF Thermoluminescent Dosimeters (TLD). Obliquity factors (OBF) or surface dose at an oblique angle divided by the surface dose at perpendicular incidence, were obtained for electron energies between 4 and 20 MeV. Measurements were performed on a flat solid water phantom without a collimator at 100 cm SSD. Comparisons were also made to collimated beams. The OBFs of surface doses plotted against the angle of incidence increased to a maximum dose followed by a rapid dropoff in dose. The increase in OBF was more rapid for higher energies. The maximum OBF occurred at larger angles for higher-energy beams and ranged from 73 degrees for 4 MeV to 84 degrees for 20 MeV. At the dose maximum, OBFs were between 130% and 160% of direct beam doses, yielding surface doses of up to 150% of Dmax for the 20 MeV beam. At 2 mm depth the dose ratio was found to increase initially with angle and then decrease as Dmax moved closer to the surface. A higher maximum dose was measured at 2 mm depth than at the surface. A comparison of ion chamber types showed that a chamber with a small electrode spacing and large guard ring is required for oblique dose measurement. A semiempirical equation was used to model the dose increase at the surface with different energy electron beams.
Werumeus Buning, Jorien; Brummelman, Pauline; Koerts, Janneke; Dullaart, Robin P F; van den Berg, Gerrit; van der Klauw, Melanie M; Tucha, Oliver; Wolffenbuttel, Bruce H R; van Beek, André P
2015-05-01
A wide variety in hydrocortisone (HC) substitution dose-regimens are considered physiological for patients with secondary adrenal insufficiency (SAI). However, it is likely that cognition is negatively influenced by higher cortisol exposure to the brain. To examine the effects of a high physiological HC dose in comparison to a low physiological HC dose on cognition. This study was a randomized double blind cross-over study at the University Medical Center Groningen. This study is registered with ClinicalTrials.gov, number NCT01546922. Forty-seven patients (29 males, 18 females; mean [SD] age, 51 [14] years, range 19-73) with SAI participated. Patients randomly received first a low dose of HC (0.2-0.3 mg/kg body weight/day) during 10 weeks followed by a high dose (0.4-0.6 mg/kg body weight/day) for another 10 weeks, or vice versa. HC substitution was given in three divided doses with the highest dose in the morning. Cognitive performance (memory, attention, executive functioning and social cognition) of patients was measured at baseline and after each treatment period using a battery of 12 standardized cognitive tests. The higher dose of HC resulted in significantly higher systemic cortisol exposure for example measured at 1h after first dose ingestion (mean [SD], low dose: 653 [281] nmol/L; high dose: 930 [148] nmol/L; P<0.001). No differences in cognitive performance were found between the two dose regimens. No negative influence on memory, attention, executive functioning and social cognition was observed after 10 weeks of treatment with a higher physiological dose of HC in patients with SAI when compared to a lower dose. Copyright © 2015 Elsevier Ltd. All rights reserved.
TLD postal dose intercomparison for megavoltage units in Poland.
Izewska, J; Gajewski, R; Gwiazdowska, B; Kania, M; Rostkowska, J
1995-08-01
The aim of the TLD pilot study was to investigate and to reduce the uncertainties involved in the measurements of absorbed dose and to improve the consistency in dose determination in the regional radiotherapy centres in Poland. The intercomparison was organized by the SSDL. It covered absorbed dose measurements under reference conditions for Co-60, high energy X-rays and electron beams. LiF powder type MT-N was used for the irradiations and read with the Harshaw TLD reader model 2000B/2000C. The TLD system was set up and an analysis of the factors influencing the accuracy of absorbed dose measurements with TL-detectors was performed to evaluate and minimize the measurement uncertainty. A fading not exceeding 2% in 12 weeks was found. The relative energy correction factor did not exceed 3% for X-rays in the range 4-15 MV, and 4% for electron beams between 6 and 20 MeV. A total of 34 beams was checked. Deviation of +/- 3.5% stated and evaluated dose was considered acceptable for photons and +/- 5% for electron beams. The results for Co-60, high energy X-rays and electron beams showed that there were two, three and no centres, respectively, beyond acceptance levels. The sources of errors for all deviations out of this range were thoroughly investigated, discussed and corrected, however two deviations remained unexplained. The pilot study resulted in an improvement of the accuracy and consistency of dosimetry in Poland.
Improvement of attention with amphetamine in low- and high-performing rats.
Turner, Karly M; Burne, Thomas H J
2016-09-01
Attentional deficits occur in a range of neuropsychiatric disorders, such as schizophrenia and attention deficit hyperactivity disorder. Psychostimulants are one of the main treatments for attentional deficits, yet there are limited reports of procognitive effects of amphetamine in preclinical studies. Therefore, task development may be needed to improve predictive validity when measuring attention in rodents. This study aimed to use a modified signal detection task (SDT) to determine if and at what doses amphetamine could improve attention in rats. Sprague-Dawley rats were trained on the SDT prior to amphetamine challenge (0.1, 0.25, 0.75 and 1.25 mg/kg). This dose range was predicted to enhance and disrupt cognition with the effect differing between individuals depending on baseline performance. Acute low dose amphetamine (0.1 and 0.25 mg/kg) improved accuracy, while the highest dose (1.25 mg/kg) significantly disrupted performance. The effects differed for low- and high-performing groups across these doses. The effect of amphetamine on accuracy was found to significantly correlate with baseline performance in rats. This study demonstrates that improvement in attentional performance with systemic amphetamine is dependent on baseline accuracy in rats. Indicative of the inverted U-shaped relationship between dopamine and cognition, there was a baseline-dependent shift in performance with increasing doses of amphetamine. The SDT may be a useful tool for investigating individual differences in attention and response to psychostimulants in rodents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraishi, Satomi; Moore, Kevin L., E-mail: kevinmoore@ucsd.edu
Purpose: To demonstrate knowledge-based 3D dose prediction for external beam radiotherapy. Methods: Using previously treated plans as training data, an artificial neural network (ANN) was trained to predict a dose matrix based on patient-specific geometric and planning parameters, such as the closest distance (r) to planning target volume (PTV) and organ-at-risks (OARs). Twenty-three prostate and 43 stereotactic radiosurgery/radiotherapy (SRS/SRT) cases with at least one nearby OAR were studied. All were planned with volumetric-modulated arc therapy to prescription doses of 81 Gy for prostate and 12–30 Gy for SRS. Using these clinically approved plans, ANNs were trained to predict dose matrixmore » and the predictive accuracy was evaluated using the dose difference between the clinical plan and prediction, δD = D{sub clin} − D{sub pred}. The mean (〈δD{sub r}〉), standard deviation (σ{sub δD{sub r}}), and their interquartile range (IQR) for the training plans were evaluated at a 2–3 mm interval from the PTV boundary (r{sub PTV}) to assess prediction bias and precision. Initially, unfiltered models which were trained using all plans in the cohorts were created for each treatment site. The models predict approximately the average quality of OAR sparing. Emphasizing a subset of plans that exhibited superior to the average OAR sparing during training, refined models were created to predict high-quality rectum sparing for prostate and brainstem sparing for SRS. Using the refined model, potentially suboptimal plans were identified where the model predicted further sparing of the OARs was achievable. Replans were performed to test if the OAR sparing could be improved as predicted by the model. Results: The refined models demonstrated highly accurate dose distribution prediction. For prostate cases, the average prediction bias for all voxels irrespective of organ delineation ranged from −1% to 0% with maximum IQR of 3% over r{sub PTV} ∈ [ − 6, 30] mm. The average prediction error was less than 10% for the same r{sub PTV} range. For SRS cases, the average prediction bias ranged from −0.7% to 1.5% with maximum IQR of 5% over r{sub PTV} ∈ [ − 4, 32] mm. The average prediction error was less than 8%. Four potentially suboptimal plans were identified for each site and subsequent replanning demonstrated improved sparing of rectum and brainstem. Conclusions: The study demonstrates highly accurate knowledge-based 3D dose predictions for radiotherapy plans.« less
Review of Session 6: Medical Physics
Fukuda, Shigekazu
2014-01-01
Medical physics is very important in carbon ion radiotherapy, as it is in conventional radiotherapy using X-rays and in estimation of exposed dose in the space environment. High-energy ion beams such as carbon beams have physical characteristics such as the Bragg curve, high LET, and nuclear reactions producing fragmentations. Therefore, understanding these properties well is essential for further development of carbon radiotherapy and manned space activity. We invited, therefore, the following six presentations relevant to issues ranging from the measurement of fragmentations, lineal energy distributions using the microdosimetric approach, and neutron dose with active beam delivery of carbon-ion therapy, to the depth–dose distribution of various ions inside a human head phantom.
Putrescine as indicator of manganese neurotoxicity: Dose-response study in human SH-SY5Y cells.
Fernandes, Jolyn; Chandler, Joshua D; Liu, Ken H; Uppal, Karan; Go, Young-Mi; Jones, Dean P
2018-06-01
Disrupted polyamine metabolism with elevated putrescine is associated with neuronal dysfunction. Manganese (Mn) is an essential nutrient that causes neurotoxicity in excess, but methods to evaluate biochemical responses to high Mn are limited. No information is available on dose-response effects of Mn on putrescine abundance and related polyamine metabolism. The present research was to test the hypothesis that Mn causes putrescine accumulation over a physiologically adequate to toxic concentration range in a neuronal cell line. We used human SH-SY5Y neuroblastoma cells treated with MnCl 2 under conditions that resulted in cell death or no cell death after 48 h. Putrescine and other metabolites were analyzed by liquid chromatography-ultra high-resolution mass spectrometry. Putrescine-related pathway changes were identified with metabolome-wide association study (MWAS). Results show that Mn caused a dose-dependent increase in putrescine over a non-toxic to toxic concentration range. MWAS of putrescine showed positive correlations with the polyamine metabolite N8-acetylspermidine, methionine-related precursors, and arginine-associated urea cycle metabolites, while putrescine was negatively correlated with γ-aminobutyric acid (GABA)-related and succinate-related metabolites (P < 0.001, FDR < 0.01). These data suggest that measurement of putrescine and correlated metabolites may be useful to study effects of Mn intake in the high adequate to UL range. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Carroll, Lewis
2014-02-01
We are developing a new dose calibrator for nuclear pharmacies that can measure radioactivity in a vial or syringe without handling it directly or removing it from its transport shield “pig”. The calibrator's detector comprises twin opposing scintillating crystals coupled to Si photodiodes and current-amplifying trans-resistance amplifiers. Such a scheme is inherently linear with respect to dose rate over a wide range of radiation intensities, but accuracy at low activity levels may be impaired, beyond the effects of meager photon statistics, by baseline fluctuation and drift inevitably present in high-gain, current-mode photodiode amplifiers. The work described here is motivated by our desire to enhance accuracy at low excitations while maintaining linearity at high excitations. Thus, we are also evaluating a novel “pulse-mode” analog signal processing scheme that employs a linear threshold discriminator to virtually eliminate baseline fluctuation and drift. We will show the results of a side-by-side comparison of current-mode versus pulse-mode signal processing schemes, including perturbing factors affecting linearity and accuracy at very low and very high excitations. Bench testing over a wide range of excitations is done using a Poisson random pulse generator plus an LED light source to simulate excitations up to ˜106 detected counts per second without the need to handle and store large amounts of radioactive material.
Balanced propofol sedation administered by nonanesthesiologists: The first Italian experience
Repici, Alessandro; Pagano, Nico; Hassan, Cesare; Carlino, Alessandra; Rando, Giacomo; Strangio, Giuseppe; Romeo, Fabio; Zullo, Angelo; Ferrara, Elisa; Vitetta, Eva; Ferreira, Daniel de Paula Pessoa; Danese, Silvio; Arosio, Massimo; Malesci, Alberto
2011-01-01
AIM: To assess the efficacy and safety of a balanced approach using midazolam in combination with propofol, administered by non-anesthesiologists, in a large series of diagnostic colonoscopies. METHODS: Consecutive patients undergoing diagnostic colonoscopy were sedated with a single dose of midazolam (0.05 mg/kg) and low-dose propofol (starter bolus of 0.5 mg/kg and repeated boluses of 10 to 20 mg). Induction time and deepest level of sedation, adverse and serious adverse events, as well as recovery times, were prospectively assessed. Cecal intubation and adenoma detection rates were also collected. RESULTS: Overall, 1593 eligible patients were included. The median dose of propofol administered was 70 mg (range: 40-120 mg), and the median dose of midazolam was 2.3 mg (range: 2-4 mg). Median induction time of sedation was 3 min (range: 1-4 min), and median recovery time was 23 min (range: 10-40 min). A moderate level of sedation was achieved in 1561 (98%) patients, whilst a deep sedation occurred in 32 (2%) cases. Transient oxygen desaturation requiring further oxygen supplementation occurred in 8 (0.46%; 95% CI: 0.2%-0.8%) patients. No serious adverse event was observed. Cecal intubation and adenoma detection rates were 93.5% and 23.4% (27.8% for male and 18.5% for female, subjects), respectively. CONCLUSION: A balanced sedation protocol provided a minimalization of the dose of propofol needed to target a moderate sedation for colonoscopy, resulting in a high safety profile for non-anesthesiologist propofol sedation. PMID:21987624
Feldman, Jon; Appelbaum, Limor; Sela, Mordechay; Voskoboinik, Ninel; Kadouri, Sarit; Weinberger, Jeffrey; Orion, Itzhak; Meirovitz, Amichay
2014-12-23
The purpose of this study is to describe a novel brachytherapy technique for lip Squamous Cell Carcinoma, utilizing a customized mold with embedded brachytherapy sleeves, which separates the lip from the mandible, and improves dose homogeneity. Seven patients with T2 lip cancer treated with a "sandwich" technique of High Dose Rate (HDR) brachytherapy to the lip, consisting of interstitial catheters and a customized mold with embedded catheters, were reviewed for dosimetry and outcome using 3D planning. Dosimetric comparison was made between the "sandwich" technique to "classic" - interstitial catheters only plan. We compared dose volume histograms for Clinical Tumor Volume (CTV), normal tissue "hot spots" and mandible dose. We are reporting according to the ICRU 58 and calculated the Conformal Index (COIN) to show the advantage of our technique. The seven patients (ages 36-81 years, male) had median follow-up of 47 months. Four patients received Brachytherapy and External Beam Radiation Therapy, 3 patients received brachytherapy alone. All achieved local control, with excellent esthetic and functional results. All patients are disease free. The Customized Mold Sandwich technique (CMS) reduced the high dose region receiving 150% (V150) by an average of 20% (range 1-47%), The low dose region (les then 90% of the prescribed dose) improved by 73% in average by using the CMS technique. The COIN value for the CMS was in average 0.92 as opposed to 0.88 for the interstitial catheter only. All differences (excluding the low dose region) were statistically significant. The CMS technique significantly reduces the high dose volume and increases treatment homogeneity. This may reduce the potential toxicity to the lip and adjacent mandible, and results in excellent tumor control, cosmetic and functionality.
Roumie, Christianne L; Arbogast, Patrick G; Mitchel, Edward F; Griffin, Marie R
2005-10-01
To describe the use of coxibs outside of licensed indications and recommended dosing ranges including rofecoxib 50 mg, valdecoxib 20 to 40 mg, and celecoxib 400 mg. Cross-sectional study of coxib utilization in 2002 and 2003 and retrospective cohort analysis of new users. Patients with known age and sex enrolled in Tennessee's Medicaid program. The prevalence of coxib use by dose and duration, and the proportion of persons initially prescribed a high-dose coxib and indications for such use. The estimated daily prevalence of nonaspirin prescription nonsteroidal anti-inflammatory drugs (NSAIDs) was 8.7% in 2002 to 2003 (45.7% coxibs). NSAID use peaked at age 65 to 74 with a prevalence of 19.8% (56.3% coxibs). Doses above the recommended daily dose for osteoarthritis accounted for 33.2% (95% confidence intervals [CIs] 32.4%, 33.9%) of celecoxib use, 14.9% (95% CI 14.4%, 15.5%) of rofecoxib use, and 52.2% (95% CI 50.6%, 53.8%) of valdecoxib use. Most of these prescriptions were for a month's supply. For new coxib users, 13.5% were given a month's supply for the highest dose category, and 28% refilled their prescriptions within 7 days of the end of the original prescription. Of these new chronic high-dose users, 17.2% had ischemic heart disease and 7.1% had heart failure. A substantial portion of coxib prescriptions were for a month's supply at doses above those recommended for most chronic indications. New users were also prescribed high doses despite evidence for cardiovascular comorbidity. These prescribing patterns at doses outside licensed indications are both inappropriate and potentially dangerous.
Roumie, Christianne L; Arbogast, Patrick G; Mitchel, Edward F; Griffin, Marie R
2005-01-01
Objective To describe the use of coxibs outside of licensed indications and recommended dosing ranges including rofecoxib 50 mg, valdecoxib 20 to 40 mg, and celecoxib 400 mg. Design Cross-sectional study of coxib utilization in 2002 and 2003 and retrospective cohort analysis of new users. Participants Patients with known age and sex enrolled in Tennessee's Medicaid program. Measurements The prevalence of coxib use by dose and duration, and the proportion of persons initially prescribed a high-dose coxib and indications for such use. Results The estimated daily prevalence of nonaspirin prescription nonsteroidal anti-inflammatory drugs (NSAIDs) was 8.7% in 2002 to 2003 (45.7% coxibs). NSAID use peaked at age 65 to 74 with a prevalence of 19.8% (56.3% coxibs). Doses above the recommended daily dose for osteoarthritis accounted for 33.2% (95% confidence intervals [CIs] 32.4%, 33.9%) of celecoxib use, 14.9% (95% CI 14.4%, 15.5%) of rofecoxib use, and 52.2% (95% CI 50.6%, 53.8%) of valdecoxib use. Most of these prescriptions were for a month's supply. For new coxib users, 13.5% were given a month's supply for the highest dose category, and 28% refilled their prescriptions within 7 days of the end of the original prescription. Of these new chronic high-dose users, 17.2% had ischemic heart disease and 7.1% had heart failure. Conclusions A substantial portion of coxib prescriptions were for a month's supply at doses above those recommended for most chronic indications. New users were also prescribed high doses despite evidence for cardiovascular comorbidity. These prescribing patterns at doses outside licensed indications are both inappropriate and potentially dangerous. PMID:16191131
Takam, R; Bezak, E; Marcu, L G; Yeoh, E
2011-10-01
Determination and understanding of out-of-field neutron and photon doses in accelerator-based radiotherapy is an important issue since linear accelerators operating at high energies (>10 MV) produce secondary radiations that irradiate parts of the patient's anatomy distal to the target region, potentially resulting in detrimental health effects. This paper provides a compilation of data (technical and clinical) reported in the literature on the measurement and Monte Carlo simulations of peripheral neutron and photon doses produced from high-energy medical linear accelerators and the reported risk and/or incidence of second primary cancer of tissues distal to the target volume. Information in the tables facilitates easier identification of (1) the various methods and measurement techniques used to determine the out-of-field neutron and photon radiations, (2) reported linac-dependent out-of-field doses, and (3) the risk/incidence of second cancers after radiotherapy due to classic and modern treatment methods. Regardless of the measurement technique and type of accelerator, the neutron dose equivalent per unit photon dose ranges from as low as 0.1 mSv/Gy to as high as 20.4 mSv/Gy. This radiation dose potentially contributes to the induction of second primary cancer in normal tissues outside the treated area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, Damodar, E-mail: dpokhrel@kumc.edu; Sood, Sumit; McClinton, Christopher
Purpose: To retrospectively evaluate the accuracy, plan quality and efficiency of intensity-modulated arc therapy (IMAT) for hippocampal sparing whole-brain radiotherapy (HS-WBRT) with simultaneous integrated boost (SIB) in patients with multiple brain metastases (m-BM). Materials and methods: A total of 5 patients with m-BM were retrospectively replanned for HS-WBRT with SIB using IMAT treatment planning. The hippocampus was contoured on diagnostic T1-weighted magnetic resonance imaging (MRI) which had been fused with the planning CT image set. The hippocampal avoidance zone (HAZ) was generated using a 5-mm uniform margin around the paired hippocampi. The m-BM planning target volumes (PTVs) were contoured onmore » T1/T2-weighted MRI registered with the 3D planning computed tomography (CT). The whole-brain planning target volume (WB-PTV) was defined as the whole-brain tissue volume minus HAZ and m-BM PTVs. Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis-TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5-mm leaf width at isocenter) and 6-MV beam. Prescription dose was 30 Gy for WB-PTV and 45 Gy for each m-BM in 10 fractions. Three full coplanar arcs with orbit avoidance sectors were used. Treatment plans were evaluated using homogeneity (HI) and conformity indices (CI) for target coverage and dose to organs at risk (OAR). Dose delivery efficiency and accuracy of each IMAT plan was assessed via quality assurance (QA) with a MapCHECK device. Actual beam-on time was recorded and a gamma index was used to compare dose agreement between the planned and measured doses. Results: All 5 HS-WBRT with SIB plans met WB-PTV D{sub 2%}, D{sub 98%}, and V{sub 30} {sub Gy} NRG-CC001 requirements. The plans demonstrated highly conformal and homogenous coverage of the WB-PTV with mean HI and CI values of 0.33 ± 0.04 (range: 0.27 to 0.36), and 0.96 ± 0.01 (range: 0.95 to 0.97), respectively. All 5 hippocampal sparing patients met protocol guidelines with maximum dose and dose to 100% of hippocampus (D{sub 100%}) less than 16 and 9 Gy, respectively. The dose to the optic apparatus was kept below protocol guidelines for all 5 patients. Highly conformal and homogenous radiosurgical dose distributions were achieved for all 5 patients with a total of 33 brain metastases. The m-BM PTVs had a mean HI = 0.09 ± 0.02 (range: 0.07 to 0.19) and a mean CI = 1.02 ± 0.06 (range: 0.93 to 1.2). The total number of monitor units (MU) was, on average, 1677 ± 166. The average beam-on time was 4.1 ± 0.4 minute . The IMAT plans demonstrated accurate dose delivery of 95.2 ± 0.6%, on average, for clinical gamma passing rate with 2%/2-mm criteria and 98.5 ± 0.9%, on average, with 3%/3-mm criteria. Conclusions: All hippocampal sparing plans were considered clinically acceptable per NRG-CC001 dosimetric compliance criteria. IMAT planning provided highly conformal and homogenous dose distributions for the WB-PTV and m-BM PTVs with lower doses to OAR such as the hippocampus. These results suggest that HS-WBRT with SIB is a clinically feasible, fast, and effective treatment option for patients with a relatively large numbers of m-BM lesions.« less
SU-F-T-322: A Comparison of Two Si Detectors for in Vivo Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talarico, O; Krylova, T; Lebedenko, I
Purpose: To compare two types of semiconductor detectors for in vivo dosimetry by their dependence from various parameters in different conditions. Methods: QED yellow (Sun Nuclear) and EDP (Scanditronix) Si detectors were radiated by a Varian Clinac 2300 ix with 6 and 18 MV energies. 10 cm thickness water equivalent phantom consisted of 30×30 cm{sup 2} squared plates was used for experiments. Dose dependencies for different beam angles (0 – 180°), field size (3–40 cm), dose (50 – 300 MU), and dose rates (50 – 300 MU/min) were obtained and calibrated with Standard Farmer chamber (PTW). Results: Reproducibility, linearity, dosemore » rate, angular dependence, and field size dependence were obtained for QED and EDP. They show no dose-rate dependence in available clinical dose rate range (100–600 MU/min). Both diodes have linear dependence with increasing the dose. Therefore even in case of high radiation therapy (including total body irradiation) it is not necessary to apply an additional correction during in vivo dosimetry. The diodes have different behavior for angular and field size dependencies. QED diode showed that dose value is stable for beam angles from 0 to 60°, for 60–180° correction factor has to be applied for each beam angle during in vivo measurements. For EDP diode dose value is sensitive to beam angle in whole range of angles. Conclusion: The study shows that QED diode is more suitable for in vivo dosimetry due to dose value independence from incident beam angle in the range 0–60°. There is no need in correction factors for increasing of dose and dose rate for both diodes. The next step will be to carry out measurements in non-standard conditions of total body irradiation. After this modeling of these experiments with Monte Carlo simulation for comparison calculated and obtained data is planned.« less
NASA Astrophysics Data System (ADS)
Choi, Eun-Jin; Jeong, Moon-Taeg; Jang, Seong-Joo; Choi, Nam-Gil; Han, Jae-Bok; Yang, Nam-Hee; Dong, Kyung-Rae; Chung, Woon-Kwan; Lee, Yun-Jong; Ryu, Young-Hwan; Choi, Sung-Hyun; Seong, Kyeong-Jeong
2014-01-01
This study examined whether scanning could be performed with minimum dose and minimum exposure to the patient after an attenuation correction. A Hoffman 3D Brain Phantom was used in BIO_40 and D_690 PET/CT scanners, and the CT dose for the equipment was classified as a low dose (minimum dose), medium dose (general dose for scanning) and high dose (dose with use of contrast medium) before obtaining the image at a fixed kilo-voltage-peak (kVp) and milliampere (mA) that were adjusted gradually in 17-20 stages. A PET image was then obtained to perform an attenuation correction based on an attenuation map before analyzing the dose difference. Depending on tube current in the range of 33-190 milliampere-second (mAs) when BIO_40 was used, a significant difference in the effective dose was observed between the minimum and the maximum mAs (p < 0.05). According to a Scheffe post-hoc test, the ratio of the minimum to the maximum of the effective dose was increased by approximately 5.26-fold. Depending on the change in the tube current in the range of 10-200 mA when D_690 was used, a significant difference in the effective dose was observed between the minimum and the maximum of mA (p < 0.05). The Scheffe posthoc test revealed a 20.5-fold difference. In conclusion, because effective exposure dose increases with increasing operating current, it is possible to reduce the exposure limit in a brain scan can be reduced if the CT dose can be minimized for a transmission scan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H
Purpose: To evaluate the dosimetric metrics of HDR Ring and Tandem applicator Brachytherapy for primary cervical cancers. Methods: The dosimetric metrics of high-risk clinical target volumes (HDR-CTV) of 12 patients (in total 60 fractions/plans) treated with the HDR ring and tandem applicators were retrospectively analyzed. Ring diameter is from 2.6 to 3.4 cm, tandem length is from 4 to 6 cm, and the angle is either 45 or 60 degrees. The first fraction plan was MR guided, the MR images were then used as a reference for contouring the HR-CTV in CT images of following 4 fractions. The nominal prescriptionmore » dose was between 5.2 and 5.8 Gy at the point A. The plans were adjusted to cover at least 90% of the HR-CTV by 90% of the prescription dose and to reduce the doses to the bladder, rectum and bowel-bag. Minimum target dose of D100 and D90 were converted into the biologically equivalent EBRT dose D90-iso and D100-iso (using α/β=10 Gy, 2 Gy/fx). Equivalent uniform doses (EUD) based on the average cancer killing across the target volume were calculated by the modified linear quadratic model (MLQ) from the differential dose volume histogram (DVH) tables. Results: The average D90iso of all plans is 8.1 Gy (ranging from 6.2 to 15 Gy, median 7.8 Gy); the average D100iso is just 4.1 Gy (ranging from 1.8 to 7.8 Gy; median 3.9 Gy). The average EUD is 7.0 Gy (ranging from 6.1 to 9.6 Gy, median 6.9 Gy), which is 87% of the D90iso, and 170% of the D100iso. Conclusion: The EUDs is smaller than D90iso but greater than D100iso. Because the EUD takes into account the intensive cancer cell killing in the high dose zone of HR-CTV, MLQ calculated EUD apparently is more relevant than D90 and D100 to describe the HDR brachytherapy treatment quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, C; Nanjing University of Aeronautics and Astronautics, Nanjing; Daartz, J
Purpose: To evaluate the accuracy of dose calculations by analytical dose calculation methods (ADC) for small field proton therapy in a gantry based passive scattering facility. Methods: 50 patients with intra-cranial disease were evaluated in the study. Treatment plans followed standard prescription and optimization procedures of proton stereotactic radiosurgery. Dose distributions calculated with the Monte Carlo (MC) toolkit TOPAS were used to represent delivered treatments. The MC dose was first adjusted using the output factor (OF) applied clinically. This factor is determined from the field size and the prescribed range. We then introduced a normalization factor to measure the differencemore » in mean dose between the delivered dose (MC dose with OF) and the dose calculated by ADC for each beam. The normalization was determined by the mean dose of the center voxels of the target area. We compared delivered dose distributions and those calculated by ADC in terms of dose volume histogram parameters and beam range distributions. Results: The mean target dose for a whole treatment is generally within 5% comparing delivered dose (MC dose with OF) and ADC dose. However, the differences can be as great as 11% for shallow and small target treated with a thick range compensator. Applying the normalization factor to the MC dose with OF can reduce the mean dose difference to less than 3%. Considering range uncertainties, the generally applied margins (3.5% of the prescribed range + 1mm) to cover uncertainties in range might not be sufficient to guarantee tumor coverage. The range difference for R90 (90% distal dose falloff) is affected by multiple factors, such as the heterogeneity index. Conclusion: This study indicates insufficient accuracy calculating proton doses using ADC. Our results suggest that uncertainties of target doses are reduced using MC techniques, improving the dosimetric accuracy for proton stereotactic radiosurgery. The work was supported by NIH/NCI under CA U19 021239. CG was partially supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087).« less
Kim, Steven B; Kodell, Ralph L; Moon, Hojin
2014-03-01
In chemical and microbial risk assessments, risk assessors fit dose-response models to high-dose data and extrapolate downward to risk levels in the range of 1-10%. Although multiple dose-response models may be able to fit the data adequately in the experimental range, the estimated effective dose (ED) corresponding to an extremely small risk can be substantially different from model to model. In this respect, model averaging (MA) provides more robustness than a single dose-response model in the point and interval estimation of an ED. In MA, accounting for both data uncertainty and model uncertainty is crucial, but addressing model uncertainty is not achieved simply by increasing the number of models in a model space. A plausible set of models for MA can be characterized by goodness of fit and diversity surrounding the truth. We propose a diversity index (DI) to balance between these two characteristics in model space selection. It addresses a collective property of a model space rather than individual performance of each model. Tuning parameters in the DI control the size of the model space for MA. © 2013 Society for Risk Analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wernicke, A. Gabriella; Valicenti, Richard; DiEva, Kelly
2004-12-01
Purpose/objective: In this study, we evaluated in a serial manner whether radiation dose to the bulb of the penis is predictive of erectile dysfunction, ejaculatory difficulty (EJ), and overall satisfaction with sex life (quality of life) by using serial validated self-administered questionnaires. Methods and materials: Twenty-nine potent men with AJCC Stage II prostate cancer treated with three-dimensional conformal radiation therapy alone to a median dose 72.0 Gy (range: 66.6-79.2 Gy) were evaluated by determining the doses received by the penile bulb. The penile bulb was delineated volumetrically, and the dose-volume histogram was obtained on each patient. Results: The median follow-upmore » time was 35 months (range, 16-43 months). We found that for D{sub 30}, D{sub 45}, D{sub 60}, and D{sub 75} (doses to a percent volume of PB: 30%, 45%, 60%, and 75%), higher than the corresponding median dose (defined as high-dose group) correlated with an increased risk of impotence (erectile dysfunction firmness score = 0) (odds ratio [OR] = 7.5, p = 0.02; OR = 7.5, p = 0.02; OR = 8.6, p = 0.008; and OR = 6.9, p = 0.015, respectively). Similarly, for EJD D{sub 30}, D{sub 45}, D{sub 60}, and D{sub 75}, doses higher than the corresponding median ones correlated with worsening ejaculatory function score (EJ = 0 or 1) (OR = 8, p = 0.013; OR = 8, p 0.013; OR = 9.2, p = 0.015; and OR = 8, p = 0.026, respectively). For quality of life, low ({<=}median dose) dose groups of patients improve over time, whereas high-dose groups of patients worsen. Conclusions: This study supports the existence of a penile bulb dose-volume relationship underlying the development of radiation-induced erectile dysfunction. Our data may guide the use of inverse treatment planning to maximize the probability of maintaining sexual potency after radiation therapy.« less
Deshpande, Sudesh; Dhote, Deepak; Thakur, Kalpna; Pawar, Amol; Kumar, Rajesh; Kumar, Munish; Kulkarni, M. S.; Sharma, S. D.; Kannan, V.
2016-01-01
The objective of this work was to measure patient eye lens dose for different cone-beam computed tomography (CBCT) acquisition protocols of Varian's On-Board Imaging (OBI) system using optically stimulated luminescence dosimeter (OSLD) and to study the variation in eye lens dose with patient geometry and distance of isocenter to the eye lens. During the experimental measurements, OSLD was placed on the patient between the eyebrows of both eyes in line of nose during CBCT image acquisition to measure eye lens doses. The eye lens dose measurements were carried out for three different cone-beam acquisition protocols (standard dose head, low-dose head [LDH], and high-quality head [HQH]) of Varian OBI. Measured doses were correlated with patient geometry and distance between isocenter and eye lens. Measured eye lens doses for standard head and HQH protocols were in the range of 1.8–3.2 mGy and 4.5–9.9 mGy, respectively. However, the measured eye lens dose for the LDH protocol was in the range of 0.3–0.7 mGy. The measured data indicate that eye lens dose to patient depends on the selected imaging protocol. It was also observed that eye lens dose does not depend on patient geometry but strongly depends on distance between eye lens and treatment field isocenter. However, undoubted advantages of imaging system should not be counterbalanced by inappropriate selection of imaging protocol, especially for very intense imaging protocol. PMID:27651564
Herman, Ann E; Chinn, Leslie W; Kotwal, Shweta G; Murray, Elaine R; Zhao, Rui; Florero, Marilyn; Lin, Alyse; Moein, Anita; Wang, Rena; Bremer, Meire; Kokubu, Serika; Serone, Adrian P; Hanze, Eva L; Viberg, Anders; Morimoto, Alyssa M; Winter, Helen R; Katsumoto, Tamiko R
2018-06-01
GDC-0853 is a small molecule inhibitor of Bruton's tyrosine kinase (BTK) that is highly selective and noncovalent, leading to reversible binding. In double-blind, randomized, and placebo-controlled phase I healthy volunteer studies, GDC-0853 was well tolerated, with no dose-limiting adverse events (AEs) or serious AEs. The maximum tolerated dose was not reached during dose escalation (≤600 mg, single ascending dose (SAD) study; ≤250 mg twice daily (b.i.d.) and ≤500 mg once daily, 14-day multiple ascending dose (MAD) study). Plasma concentrations peaked 1-3 hours after oral administration and declined thereafter, with a steady-state half-life ranging from 4.2-9.9 hours. Independent assays demonstrated dose-dependent BTK target engagement. Based on pharmacokinetic/pharmacodynamic (PK/PD) simulations, a once-daily dosing regimen (e.g., 100 mg, q.d.) is expected to maintain a high level of BTK inhibition over the dosing interval. Taken together, the safety and PK/PD data support GDC-0853 evaluation in rheumatoid arthritis, lupus, and other autoimmune or inflammatory indications. © 2018 American Society for Clinical Pharmacology and Therapeutics.
Object Kinetic Monte Carlo Simulations of Radiation Damage In Bulk Tungsten
NASA Astrophysics Data System (ADS)
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard; Roche, Kenneth; Kurtz, Richard; Wirth, Brian
2015-11-01
Results are presented for the evolution of radiation damage in bulk tungsten investigated using the object KMC simulation tool, KSOME, as a function of dose, dose rate and primary knock-on atom (PKA) energies in the range of 10 to 100 keV, at temperatures of 300, 1025 and 2050 K. At 300 K, the number density of vacancies changes minimally with dose rate while the number density of vacancy clusters slightly decreases with dose rate indicating that larger clusters are formed at higher dose rates. Although the average vacancy cluster size increases slightly, the vast majority exists as mono-vacancies. At 1025 K void lattice formation was observed at all dose rates for cascades below 60 keV and at lower dose rates for higher PKA energies. After the appearance of initial features of the void lattice, vacancy cluster density increased minimally while the average vacancy cluster size increases rapidly with dose. At 2050 K, no accumulation of defects was observed over a broad range of dose rates for all PKA energies studied in this work. Further comparisons of results of irradiation simulations at various dose rates and PKA spectra, representative of the High Flux Isotope Reactor and future fusion relevant irradiation facilities will be discussed. The U.S. Department of Energy, Office of Fusion Energy Sciences (FES) and Office of Advanced Scientific Computing Research (ASCR) has supported this study through the SciDAC-3 program.
USDA-ARS?s Scientific Manuscript database
We agree that high dose monthly vitamin D is not necessarily harmful among seniors with vitamin D deficiency. However, everyone treated with 24'000 IU vitamin D per month (equivalent to 800 IU / day) achieved the replete range of above 20 ng/ml 25(OH)D, with none reaching a 25(OH)D level above 45 ng...
On the need for quality assurance in superficial kilovoltage radiotherapy.
Austerlitz, C; Mota, H; Gay, H; Campos, D; Allison, R; Sibata, C
2008-01-01
External auditing of beam output and energy qualities of four therapeutic X-ray machines were performed in three radiation oncology centres in northeastern Brazil. The output and half-value layers (HVLs) were determined using a parallel-plate ionisation chamber and high-purity aluminium foils, respectively. The obtained values of absorbed dose to water and energy qualities were compared with those obtained by the respective institutions. The impact on the prescribed dose was analysed by determining the half-value depth (D(1/2)). The beam outputs presented percent differences ranging from -13 to +25%. The ratio between the HVL in use by the institution and the measurements obtained in this study ranged from 0.75 to 2.33. Such deviations in HVL result in percent differences in dose at D(1/2) ranging from -52 to +8%. It was concluded that dosimetric quality audit programmes in radiation therapy should be expanded to include dermatological radiation therapy and such audits should include HVL verification.
Adra, N; Einhorn, L H; Althouse, S K; Ammakkanavar, N R; Musapatika, D; Albany, C; Vaughn, D; Hanna, N H
2018-01-01
Despite remarkable results with salvage standard-dose or high-dose chemotherapy ∼15% of patients with relapsed germ-cell tumors (GCT) are incurable. Immune checkpoint inhibitors have produced significant remission in multiple tumor types. We report the first study of immunotherapy in patients with GCT. Single arm phase II trial investigating pembrolizumab 200 mg i.v. Q3weeks until disease progression in patients with relapsed GCT and no curable options. Patients age ≥18 with GCT who progressed after first-line cisplatin-based chemotherapy and after at least one salvage regimen (high-dose or standard-dose chemotherapy) were eligible. Centrally assessed programmed death-ligand 1 (PD-L1) on tumor and infiltrating immune cells was scored. Primary end point was overall response rate using immune-related response criteria. Simon two-stage design with type I error 20% and power 80% was utilized. Twelve male patients were enrolled. Median age was 38 years. All patients had nonseminoma. Primary site was testis (11) or mediastinum (1). Median AFP 615 (range 1-32, 760) and hCG 4 (range 0.6-37, 096). Six patients had late relapse (>2 years). Median number of previous chemotherapy regimens was 3. Six patients received prior high-dose chemotherapy. Two patients had positive PD-L1 staining (H-score 90 and 170). Median number of pembrolizumab doses was 2 (range 1-8). There were six grade 3 adverse events. No immune-related adverse events were reported. No partial or complete responses were observed. Two patients achieved radiographic stable disease for 28 and 19 weeks, respectively; both had continued rising AFP level despite radiographic stability and had negative PD-L1 staining. This is the first reported trial evaluating immune checkpoint inhibitors in GCT. Pembrolizumab is well tolerated but does not appear to have clinically meaningful single-agent activity in refractory GCT. NCT02499952. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingstone, Jayde, E-mail: Jayde.Livingstone@sync
Purpose: Modern radiotherapy modalities often use small or nonstandard fields to ensure highly localized and precise dose delivery, challenging conventional clinical dosimetry protocols. The emergence of preclinical spatially fractionated synchrotron radiotherapies with high dose-rate, sub-millimetric parallel kilovoltage x-ray beams, has pushed clinical dosimetry to its limit. A commercially available synthetic single crystal diamond detector designed for small field dosimetry has been characterized to assess its potential as a dosimeter for synchrotron microbeam and minibeam radiotherapy. Methods: Experiments were carried out using a synthetic diamond detector on the imaging and medical beamline (IMBL) at the Australian Synchrotron. The energy dependence ofmore » the detector was characterized by cross-referencing with a calibrated ionization chamber in monoenergetic beams in the energy range 30–120 keV. The dose-rate dependence was measured in the range 1–700 Gy/s. Dosimetric quantities were measured in filtered white beams, with a weighted mean energy of 95 keV, in broadbeam and spatially fractionated geometries, and compared to reference dosimeters. Results: The detector exhibits an energy dependence; however, beam quality correction factors (k{sub Q}) have been measured for energies in the range 30–120 keV. The k{sub Q} factor for the weighted mean energy of the IMBL radiotherapy spectrum, 95 keV, is 1.05 ± 0.09. The detector response is independent of dose-rate in the range 1–700 Gy/s. The percentage depth dose curves measured by the diamond detector were compared to ionization chambers and agreed to within 2%. Profile measurements of microbeam and minibeam arrays were performed. The beams are well resolved and the full width at halfmaximum agrees with the nominal width of the beams. The peak to valley dose ratio (PVDR) calculated from the profiles at various depths in water agrees within experimental error with PVDR calculations from Gafchromic film data. Conclusions: The synthetic diamond detector is now well characterized and will be used to develop an experimental dosimetry protocol for spatially fractionated synchrotron radiotherapy.« less
Faessel, Helene; Ravva, Patanjali; Williams, Kathryn
2009-01-01
Varenicline is approved as an aid to smoking cessation in adults aged > or =18 years. The goal of this study was to characterize the multiple-dose pharmacokinetics, safety, and tolerability of varenicline in adolescent smokers. This multicenter, randomized, double-blind, placebo-controlled, parallel-group study enrolled healthy 12- to 16-year-old smokers (> or =3 cigarettes daily) into high-body-weight (>55 kg) and low-body-weight (< or =55 kg) groups. Subjects were randomized to receive 14 days of treatment with a high dose of varenicline, a low dose of varenicline, or placebo. The varenicline doses in the high-body-weight group were 1 mg BID and 0.5 mg BID; the varenicline doses in the low-body-weight group were 0.5 mg BID and 0.5 mg once daily. The apparent renal clearance (CL/F) and volume of distribution (V/F) of varenicline and the effect of body weight on these parameters were estimated using nonlinear mixed-effects modeling. The high-body-weight group consisted of 35 subjects (65.7% male; 77.1% white; mean age, 15.2 years). The low-body-weight group consisted of 37 subjects (37.8% male; 48.6% white; mean age, 14.3 years). The pharmacokinetic parameters of varenicline were dose proportional over the dose range from 0.5 to 2 mg/d. The CL/F for a 70-kg adolescent was 10.4 L/h, comparable to that in a 70-kg adult. The estimated varenicline V/F was decreased in individuals of small body size, thus predicting a varenicline C(max) approximately 30% greater in low-body-weight subjects than in high-body-weight subjects. In high-body-weight subjects, steady-state varenicline exposure, as represented by the AUC(0-24), was 197.0 ng . h/mL for varenicline 1 mg BID and 95.7 ng . h/mL for varenicline 0.5 mg BID, consistent with values reported previously in adult smokers at the equivalent doses. In low-body-weight subjects, varenicline exposure was 126.3 ng . h/mL for varenicline 0.5 mg BID and 60.1 ng . h/mL for varenicline 0.5 mg once daily, values at the lower end of the range observed previously in adults at doses of 1 mg BID and 0.5 mg BID, respectively. Among high-body-weight subjects, adverse events (AEs) were reported by 57.1% of subjects in both the high- and low-dose varenicline groups and by 14.3% of subjects in the placebo group; among low-body-weight subjects, AEs were reported by 64.3%, 73.3%, and 12.5% of subjects in the high-dose varenicline, low-dose varenicline, and placebo groups, respectively. The most common AEs were nausea, headache, vomiting, and dizziness. Psychiatric AEs that were considered treatment related included abnormal dreams in 2 subjects and mild, transient anger in 1 subject. Of the AEs reported by > or =1 subject in any treatment group, > or =92% were mild in intensity. No subject discontinued the study because of an AE. Varenicline steady-state exposure in study subjects weighing >55 kg was similar to that observed previously in adults. The body-weight effect on varenicline pharmacokinetics, which resulted in higher exposure in individuals of smaller body size (< or =55 kg), was adequately offset by administration of half the varenicline dose recommended in adults. Varenicline was generally well tolerated during the 14-day treatment period. Clinical Trials Identification Number: NCT00463918.
Bassler, Niels; Kantemiris, Ioannis; Karaiskos, Pantelis; Engelke, Julia; Holzscheiter, Michael H; Petersen, Jørgen B
2010-04-01
Antiprotons have been suggested as a possibly superior modality for radiotherapy, due to the energy released when antiprotons annihilate, which enhances the Bragg peak and introduces a high-LET component to the dose. However, concerns are expressed about the inferior lateral dose distribution caused by the annihilation products. We use the Monte Carlo code FLUKA to generate depth-dose kernels for protons, antiprotons, and carbon ions. Using these we then build virtual treatment plans optimized according to ICRU recommendations for the different beam modalities, which then are recalculated with FLUKA. Dose-volume histograms generated from these plans can be used to compare the different irradiations. The enhancement in physical and possibly biological dose from annihilating antiprotons can significantly lower the dose in the entrance channel; but only at the expense of a diffuse low dose background from long-range secondary particles. Lateral dose distributions are improved using active beam delivery methods, instead of flat fields. Dose-volume histograms for different treatment scenarios show that antiprotons have the potential to reduce the volume of normal tissue receiving medium to high dose, however, in the low dose region antiprotons are inferior to both protons and carbon ions. This limits the potential usage to situations where dose to normal tissue must be reduced as much as possible. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Myers, Kasiani C.; Lawrence, Julia; Marsh, Rebecca A.; Davies, Stella M.; Jodele, Sonata
2017-01-01
Veno-occlusive disease (VOD) of the liver is a well-recognized serious complication of hematopoietic stem cell transplantation (HSCT), with few successful treatment modalities available for severe disease. Some reports have demonstrated success in adults with the use of high-dose steroid therapy, but experience in the pediatric population is lacking. We retrospectively reviewed HSCT patients treated at our institution since 2003 and identified 15 (2.4%) who developed VOD. Of these, nine (60%) were treated with intravenous high-dose methylprednisolone (500 mg/m2 per dose every 12 hours for six doses). Steroid therapy was initiated at or before first ultrasound evidence of reversal of portal venous flow and before meeting criteria for initiation of defibrotide therapy. Four patients were also treated with defibrotide starting 2 to 5 days after initiation of steroids. Eight of nine patients (88%) with VOD were diagnosed with multiorgan failure. Response to high-dose steroid therapy as defined by decrease in bilirubin by 50% in 10 days from therapy initiation was noted in six of nine patients (67%), occurring within 3 to 6 days of steroid therapy. Two patients died from multiorgan failure due to VOD. Seven survivors of VOD recovered at the median 6 days (range, 5 to 38) from VOD diagnosis. Overall, VOD survival as a group was 78%; however, survival among responders was 100%. No serious toxicities related to high-dose steroid therapy were observed. We conclude that high-dose steroid therapy if initiated early may reverse VOD of the liver in pediatric HSCT patients, abrogating the need for defibrotide therapy with its associated toxicities and regulatory difficulties. PMID:23211838
Trotman, Melissa; Vermehren, Philipp; Gibson, Claire L; Fern, Robert
2015-01-01
Excitotoxicity is a major contributor to cell death during the acute phase of ischemic stroke but aggressive pharmacological targeting of excitotoxicity has failed clinically. Here we investigated whether pretreatment with low doses of memantine, within the range currently used and well tolerated for the treatment of Alzheimer's disease, produce a protective effect in stroke. A coculture preparation exposed to modeled ischemia showed cell death associated with rapid glutamate rises and cytotoxic Ca2+ influx. Cell death was significantly enhanced in the presence of high memantine concentrations. However, low memantine concentrations significantly protected neurons and glia via excitotoxic cascade interruption. Mice were systemically administered a range of memantine doses (0.02, 0.2, 2, 10, and 20 mg/kg/day) starting 24 hours before 60 minutes reversible focal cerebral ischemia and continuing for a 48-hour recovery period. Low dose (0.2 mg/kg/day) memantine treatment significantly reduced lesion volume (by 30% to 50%) and improved behavioral outcomes in stroke lesions that had been separated into either small/striatal or large/striatocortical infarcts. However, higher doses of memantine (20 mg/kg/day) significantly increased injury. These results show that clinically established low doses of memantine should be considered for patients ‘at risk' of stroke, while higher doses are contraindicated. PMID:25407270
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rydberg, Bjorn; Cooper, Brian; Cooper, Priscilla K.
2004-11-18
Misrejoining of DNA double-strand breaks (DSBs) was measured in human primary fibroblasts after exposure to X-rays and high LET particles (He, N and Fe) in the dose range 10-80 Gy. To measure joining of wrong DNA ends, the integrity of a 3.2 Mbp restriction fragment was analyzed directly after exposure and after 16 hr of repair incubation. It was found that the misrejoining frequency for X-rays was non-linearly related to dose, with less probability of misrejoining at low doses than at high doses. The dose dependence for the high LET particles, on the other hand, was closer to being linear,more » with misrejoining frequencies higher than for X-rays particularly at the lower doses. These experimental results were simulated with a Monte-Carlo approach that includes a cell nucleus model with all 46 chromosomes present, combined with realistic track structure simulations to calculate the geometrical positions of all DSBs induced for each dose. The model assumes that the main determinant for misrejoining probability is the distance between two simultaneously present DSBs. With a Gaussian interaction probability function with distance, it was found that both the low and high LET data could be fitted with an interaction distance (sigma of the Gaussian curve) of 0.25 {micro}m. This is half the distance previously found to best fit chromosomal aberration data in human lymphocytes using the same methods (Holley et al. Radiat. Res . 158, 568-580 (2002)). The discrepancy may indicate inadequacies in the chromosome model, for example insufficient chromosomal overlap, but may also partly be due to differences between fibroblasts and lymphocytes. Although the experimental data was obtained at high doses, the Monte Carlo calculations could be extended to lower doses. It was found that a linear component of misrejoining versus dose dominated for doses below 1 Gy for all radiations, including X-rays. The calculated relative biological efficiency (RBE) for misrejoining at this low dose region was 31 for the He-ions, 28 for the N-ions and 19 for Fe-ions.« less
Cumulative radiation exposure and cancer risk estimation in children with heart disease.
Johnson, Jason N; Hornik, Christoph P; Li, Jennifer S; Benjamin, Daniel K; Yoshizumi, Terry T; Reiman, Robert E; Frush, Donald P; Hill, Kevin D
2014-07-08
Children with heart disease are frequently exposed to imaging examinations that use ionizing radiation. Although radiation exposure is potentially carcinogenic, there are limited data on cumulative exposure and the associated cancer risk. We evaluated the cumulative effective dose of radiation from all radiation examinations to estimate the lifetime attributable risk of cancer in children with heart disease. Children ≤6 years of age who had previously undergone 1 of 7 primary surgical procedures for heart disease at a single institution between 2005 and 2010 were eligible for the study. Exposure to radiation-producing examinations was tabulated, and cumulative effective dose was calculated in millisieverts. These data were used to estimate lifetime attributable risk of cancer above baseline using the approach of the Committee on Biological Effects of Ionizing Radiation VII. The cohort included 337 children exposed to 13 932 radiation examinations. Conventional radiographs represented 92% of examinations, whereas cardiac catheterization and computed tomography accounted for 81% of cumulative exposure. Overall median cumulative effective dose was 2.7 mSv (range, 0.1-76.9 mSv), and the associated lifetime attributable risk of cancer was 0.07% (range, 0.001%-6.5%). Median lifetime attributable risk of cancer ranged widely depending on surgical complexity (0.006%-1.6% for the 7 surgical cohorts) and was twice as high in females per unit exposure (0.04% versus 0.02% per 1-mSv effective dose for females versus males, respectively; P<0.001). Overall radiation exposures in children with heart disease are relatively low; however, select cohorts receive significant exposure. Cancer risk estimation highlights the need to limit radiation dose, particularly for high-exposure modalities. © 2014 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iuchi, Toshihiko, E-mail: tiuchi@chiba-c.jp; Hatano, Kazuo; Kodama, Takashi
Purpose/Objectives: To assess the effect and toxicity of hypofractionated high-dose intensity modulated radiation therapy (IMRT) with concurrent and adjuvant temozolomide (TMZ) in 46 patients with newly diagnosed glioblastoma multiforme (GBM). Methods and Materials: All patients underwent postsurgical hypofractionated high-dose IMRT. Three layered planning target volumes (PTVs) were contoured. PTV1 was the surgical cavity and residual tumor on T1-weighted magnetic resonance images with 5-mm margins, PTV2 was the area with 15-mm margins surrounding the PTV1, and PTV3 was the high-intensity area on fluid-attenuated inversion recovery images. Irradiation was performed in 8 fractions at total doses of 68, 40, and 32 Gy formore » PTV1, PTV2, and PTV3, respectively. Concurrent TMZ was given at 75 mg/m{sup 2}/day for 42 consecutive days. Adjuvant TMZ was given at 150 to 200 mg/m{sup 2}/day for 5 days every 28 days. Overall and progression-free survivals were evaluated. Results: No acute IMRT-related toxicity was observed. The dominant posttreatment failure pattern was dissemination. During a median follow-up time of 16.3 months (range, 4.3-80.8 months) for all patients and 23.7 months (range, 12.4-80.8 months) for living patients, the median overall survival was 20.0 months after treatment. Radiation necrosis was diagnosed in 20 patients and was observed not only in the high-dose field but also in the subventricular zone (SVZ). Necrosis in the SVZ was significantly correlated with prolonged survival (hazard ratio, 4.08; P=.007) but caused deterioration in the performance status of long-term survivors. Conclusions: Hypofractionated high-dose IMRT with concurrent and adjuvant TMZ altered the dominant failure pattern from localized to disseminated and prolonged the survival of patients with GBM. Necrosis in the SVZ was associated with better patient survival, but the benefit of radiation to this area remains controversial.« less
Ogbuanu, Ikechukwu U.; Adegoke, Oluwasegun J.; Scobie, Heather M.; Uba, Belinda V.; Wannemuehler, Kathleen A.; Ruiz, Alicia; Elmousaad, Hashim; Ohuabunwo, Chima J.; Mustafa, Mahmud; Nguku, Patrick; Waziri, Ndadilnasiya Endie; Vertefeuille, John F.
2016-01-01
Background Despite recent success towards controlling poliovirus transmission, Nigeria has struggled to achieve uniformly high routine vaccination coverage. A lack of reliable vaccination coverage data at the operational level makes it challenging to target program improvement. To reliably estimate vaccination coverage, we conducted district-level vaccine coverage surveys using a pre-existing infrastructure of polio technical staff in northern Nigeria. Methods Household-level cluster surveys were conducted in 40 polio high risk districts of Nigeria during 2014–2015. Global positioning system technology and intensive supervision by a pool of qualified technical staff were used to ensure high survey quality. Vaccination status of children aged 12–23 months was documented based on vaccination card or caretaker’s recall. District-level coverage estimates were calculated using survey methods. Results Data from 7,815 children across 40 districts were analyzed. District-level coverage with the third dose of diphtheria-pertussis-tetanus vaccine (DPT3) ranged widely from 1–63%, with all districts having DPT3 coverage below the target of 80%. Median coverage across all districts for each of eight vaccine doses (1 Bacille Calmette-Guérin dose, 3 DPT doses, 3 oral poliovirus vaccine doses, and 1 measles vaccine dose) was <50%. DPT3 coverage by survey was substantially lower (range: 28%–139%) than the 2013 administrative coverage reported among children aged <12 months. Common reported reasons for non-vaccination included lack of knowledge about vaccines and vaccination services (50%) and factors related to access to routine immunization services (15%). Conclusions Survey results highlighted vaccine coverage gaps that were systematically underestimated by administrative reporting across 40 polio high risk districts in northern Nigeria. Given the limitations of administrative coverage data, our approach to conducting quality district-level coverage surveys and providing data to assess and remediate issues contributing to poor vaccination coverage could serve as an example in countries with sub-optimal vaccination coverage, similar to Nigeria. PMID:27936077
Gunnala, Rajni; Ogbuanu, Ikechukwu U; Adegoke, Oluwasegun J; Scobie, Heather M; Uba, Belinda V; Wannemuehler, Kathleen A; Ruiz, Alicia; Elmousaad, Hashim; Ohuabunwo, Chima J; Mustafa, Mahmud; Nguku, Patrick; Waziri, Ndadilnasiya Endie; Vertefeuille, John F
2016-01-01
Despite recent success towards controlling poliovirus transmission, Nigeria has struggled to achieve uniformly high routine vaccination coverage. A lack of reliable vaccination coverage data at the operational level makes it challenging to target program improvement. To reliably estimate vaccination coverage, we conducted district-level vaccine coverage surveys using a pre-existing infrastructure of polio technical staff in northern Nigeria. Household-level cluster surveys were conducted in 40 polio high risk districts of Nigeria during 2014-2015. Global positioning system technology and intensive supervision by a pool of qualified technical staff were used to ensure high survey quality. Vaccination status of children aged 12-23 months was documented based on vaccination card or caretaker's recall. District-level coverage estimates were calculated using survey methods. Data from 7,815 children across 40 districts were analyzed. District-level coverage with the third dose of diphtheria-pertussis-tetanus vaccine (DPT3) ranged widely from 1-63%, with all districts having DPT3 coverage below the target of 80%. Median coverage across all districts for each of eight vaccine doses (1 Bacille Calmette-Guérin dose, 3 DPT doses, 3 oral poliovirus vaccine doses, and 1 measles vaccine dose) was <50%. DPT3 coverage by survey was substantially lower (range: 28%-139%) than the 2013 administrative coverage reported among children aged <12 months. Common reported reasons for non-vaccination included lack of knowledge about vaccines and vaccination services (50%) and factors related to access to routine immunization services (15%). Survey results highlighted vaccine coverage gaps that were systematically underestimated by administrative reporting across 40 polio high risk districts in northern Nigeria. Given the limitations of administrative coverage data, our approach to conducting quality district-level coverage surveys and providing data to assess and remediate issues contributing to poor vaccination coverage could serve as an example in countries with sub-optimal vaccination coverage, similar to Nigeria.
Dosimetric Effects of Air Pockets Around High-Dose Rate Brachytherapy Vaginal Cylinders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Susan, E-mail: srichardson@radonc.wustl.ed; Palaniswaamy, Geethpriya; Grigsby, Perry W.
2010-09-01
Purpose: Most physicians use a single-channel vaginal cylinder for postoperative endometrial cancer brachytherapy. Recent published data have identified air pockets between the vaginal cylinders and the vaginal mucosa. The purpose of this research was to evaluate the incidence, size, and dosimetric effects of these air pockets. Methods and Materials: 25 patients receiving postoperative vaginal cuff brachytherapy with a high-dose rate vaginal cylinders were enrolled in this prospective data collection study. Patients were treated with 6 fractions of 200 to 400 cGy per fraction prescribed at 5 mm depth. Computed tomography simulation for brachytherapy treatment planning was performed for each fraction.more » The quantity, volume, and dosimetric impact of the air pockets surrounding the cylinder were quantified. Results: In 25 patients, a total of 90 air pockets were present in 150 procedures (60%). Five patients had no air pockets present during any of their treatments. The average number of air pockets per patient was 3.6, with the average total air pocket volume being 0.34 cm{sup 3} (range, 0.01-1.32 cm{sup 3}). The average dose reduction to the vaginal mucosa at the air pocket was 27% (range, 9-58%). Ten patients had no air pockets on their first fraction but air pockets occurred in subsequent fractions. Conclusion: Air pockets between high-dose rate vaginal cylinder applicators and the vaginal mucosa are present in the majority of fractions of therapy, and their presence varies from patient to patient and fraction to fraction. The existence of air pockets results in reduced radiation dose to the vaginal mucosa.« less
Yang, Mina; Choi, Rihwa; Kim, June Soo; On, Young Keun; Bang, Oh Young; Cho, Hyun-Jung; Lee, Soo-Youn
2016-12-01
The purpose of this study was to evaluate the performance of 16 previously published warfarin dosing algorithms in Korean patients. The 16 algorithms were selected through a literature search and evaluated using a cohort of 310 Korean patients with atrial fibrillation or cerebral infarction who were receiving warfarin therapy. A large interindividual variation (up to 11-fold) in warfarin dose was observed (median, 25 mg/wk; range, 7-77 mg/wk). Estimated dose and actual maintenance dose correlated well overall (r range, 0.52-0.73). Mean absolute error (MAE) of the 16 algorithms ranged from -1.2 to -20.1 mg/wk. The percentage of patients whose estimated dose fell within 20% of the actual dose ranged from 1.0% to 49%. All algorithms showed poor accuracy with increased MAE in a higher dose range. Performance of the dosing algorithms was worse in patients with VKORC1 1173TC or CC than in total (r range, 0.38-0.61 vs 0.52-0.73; MAE range, -2.6 to -28.0 mg/wk vs -1.2 to -20.1 mg/wk). The algorithms had comparable prediction abilities but showed limited accuracy depending on ethnicity, warfarin dose, and VKORC1 genotype. Further studies are needed to develop genotype-guided warfarin dosing algorithms with greater accuracy in the Korean population. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.
Spectral distribution of UV range diffuse reflectivity for Si+ ion implanted polymers
NASA Astrophysics Data System (ADS)
Balabanov, S.; Tsvetkova, T.; Borisova, E.; Avramov, L.; Bischoff, L.
2008-05-01
The analysis of the UV range spectral characteristics can supply additional information on the formed sub-surface buried layer with implanted dopants. The near-surface layer (50÷150 nm) of bulk polymer samples have been implanted with silicon (Si+) ions at low energies (E = 30 keV) and a wide range of ion doses (D = 1.1013 ÷ 1, 2.1017 cm-2). The studied polymer materials were: ultra-high-molecular-weight polyethylene (UHMWPE), poly-methyl-metacrylate (PMMA) and poly-tetra-fluor-ethylene (PTFE). The diffuse optical reflectivity spectra Rd = f(λ) of the ion implanted samples have been measured in the UV range (λ = 220÷350 nm). In this paper the dose dependences of the size and sign of the diffuse optical reflectivity changes λRd = f(D) have been analysed.
NASA Astrophysics Data System (ADS)
Shin, Wook-Geun; Testa, Mauro; Kim, Hak Soo; Jeong, Jong Hwi; Byeong Lee, Se; Kim, Yeon-Joo; Min, Chul Hee
2017-10-01
For the independent validation of treatment plans, we developed a fully automated Monte Carlo (MC)-based patient dose calculation system with the tool for particle simulation (TOPAS) and proton therapy machine installed at the National Cancer Center in Korea to enable routine and automatic dose recalculation for each patient. The proton beam nozzle was modeled with TOPAS to simulate the therapeutic beam, and MC commissioning was performed by comparing percent depth dose with the measurement. The beam set-up based on the prescribed beam range and modulation width was automated by modifying the vendor-specific method. The CT phantom was modeled based on the DICOM CT files with TOPAS-built-in function, and an in-house-developed C++ code directly imports the CT files for positioning the CT phantom, RT-plan file for simulating the treatment plan, and RT-structure file for applying the Hounsfield unit (HU) assignment, respectively. The developed system was validated by comparing the dose distributions with those calculated by the treatment planning system (TPS) for a lung phantom and two patient cases of abdomen and internal mammary node. The results of the beam commissioning were in good agreement of up to 0.8 mm2 g-1 for B8 option in both of the beam range and the modulation width of the spread-out Bragg peaks. The beam set-up technique can predict the range and modulation width with an accuracy of 0.06% and 0.51%, respectively, with respect to the prescribed range and modulation in arbitrary points of B5 option (128.3, 132.0, and 141.2 mm2 g-1 of range). The dose distributions showed higher than 99% passing rate for the 3D gamma index (3 mm distance to agreement and 3% dose difference) between the MC simulations and the clinical TPS in the target volume. However, in the normal tissues, less favorable agreements were obtained for the radiation treatment planning with the lung phantom and internal mammary node cases. The discrepancies might come from the limitations of the clinical TPS, which is the inaccurate dose calculation algorithm for the scattering effect, in the range compensator and inhomogeneous material. Moreover, the steep slope of the compensator, conversion of the HU values to the human phantom, and the dose calculation algorithm for the HU assignment also could be reasons of the discrepancies. The current study could be used for the independent dose validation of treatment plans including high inhomogeneities, the steep compensator, and riskiness such as lung, head & neck cases. According to the treatment policy, the dose discrepancies predicted with MC could be used for the acceptance decision of the original treatment plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutzhas, M.F.; Holzle, E.; Hofmann, C.
1981-01-01
A new apparatus (UVASUN 5000) is presented with high radiation energy between 320 to 460 nm. The radiator is a specially developed source for high uv-A intensity, housing a quartz bulb with a mixture of argon, mercury and metal-halides. The uv-A energy in the range of 320 to 400 nm is about 84% of the total radiation energy. Effects of very high doses of uv-A on human skin were studied. Following single uv-A applications the minimal tanning dose uv-A (MTD) and the immediate pigment darkening (IPD) dose of uv-A were established. Repeated exposure to this uv-A delivering system yields longmore » lasting dark brown skin pigmentation without any clinical or histological signs of sunburn (uv-B) damage, epidermal hyperplasia or thickening of the stratum corneum. Minimal therapeutic results were seen in the phototherapy of vitiligo and inflammatory acne.« less
Radiation exposure assessment for portsmouth naval shipyard health studies.
Daniels, R D; Taulbee, T D; Chen, P
2004-01-01
Occupational radiation exposures of 13,475 civilian nuclear shipyard workers were investigated as part of a retrospective mortality study. Estimates of annual, cumulative and collective doses were tabulated for future dose-response analysis. Record sets were assembled and amended through range checks, examination of distributions and inspection. Methods were developed to adjust for administrative overestimates and dose from previous employment. Uncertainties from doses below the recording threshold were estimated. Low-dose protracted radiation exposures from submarine overhaul and repair predominated. Cumulative doses are best approximated by a hybrid log-normal distribution with arithmetic mean and median values of 20.59 and 3.24 mSv, respectively. The distribution is highly skewed with more than half the workers having cumulative doses <10 mSv and >95% having doses <100 mSv. The maximum cumulative dose is estimated at 649.39 mSv from 15 person-years of exposure. The collective dose was 277.42 person-Sv with 96.8% attributed to employment at Portsmouth Naval Shipyard.
Characteristics of an OSLD in the diagnostic energy range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Senan, Rani M.; Hatab, Mustapha R.
2011-07-15
Purpose: Optically stimulated luminescence (OSL) dosimetry has been recently introduced in radiation therapy as a potential alternative to the thermoluminescent dosimeter (TLD) system. The aim of this study was to investigate the feasibility of using OSL point dosimeters in the energy range used in diagnostic imaging. Methods: NanoDot OSL dosimeters (OSLDs) were used in this study, which started with testing the homogeneity of a new packet of nanoDots. Reproducibility and the effect of optical treatment (bleaching) were then examined, followed by an investigation of the effect of accumulated dose on the OSLD indicated doses. OSLD linearity, angular dependence, and energymore » dependence were also studied. Furthermore, comparison with LiF:Mg,Ti TLD chips using standard CT dose phantoms at 80 and 120 kVp settings was performed. Results: Batch homogeneity showed a coefficient of variation of <5%. Single-irradiation measurements with bleaching after each OSL readout was found to be associated with a 3.3% reproducibility (one standard deviation measured with a 8 mGy test dose), and no systematic change in OSLDs sensitivity could be noted from measurement to measurement. In contrast, the multiple-irradiation readout without bleaching in between measurements was found to be associated with an uncertainty (using a 6 mGy test dose) that systematically increased with accumulated dose, reaching 42% at 82 mGy. Good linearity was shown by nanoDots under general x-ray, CT, and mammography units with an R{sup 2} > 0.99. The angular dependence test showed a drop of approximately 70% in the OSLD response at 90 deg. in mammography (25 kVp). With the general radiography unit, the maximum drop was 40% at 80 kVp and 20% at 120 kVp, and it was only 10% with CT at both 80 and 120 kVp. The energy dependence study showed a range of ion chamber-to-OSLDs ratios between 0.81 and 1.56, at the energies investigated (29-62 keV). A paired t-test for comparing the OSLDs and TLDs showed no significant variation (p > 0.1). Conclusions: OSLDs exhibited good batch homogeneity (<5%) and reproducibility (3.3%), as well as a linear response. In addition, they showed no statistically significant difference with TLDs in CT measurements (p > 0.1). However, high uncertainty (42%) in the dose estimate was found as a result of relatively high accumulated dose. Furthermore, nanoDots showed high angular dependence (up to 70%) in low kVp techniques. Energy dependence of about 60% was found, and correction factors were suggested for the range of energies investigated. Therefore, if angular and energy dependences are taken into consideration and the uncertainty associated with accumulated dose is avoided, OSLDs (nanoDots) can be suitable for use as point dosimeters in diagnostic settings.« less
Digital holographic interferometry: a novel optical calorimetry technique for radiation dosimetry.
Cavan, Alicia; Meyer, Juergen
2014-02-01
To develop and demonstrate the proof-of-principle of a novel optical calorimetry method to determine radiation absorbed dose in a transparent medium. The calorimetric property of water is measured during irradiation by means of an interferometer, which detects temperature-induced changes in the refractive index that can be mathematically related to absorbed dose. The proposed method uses a technique called digital holographic interferometry (DHI), which comprises an optical laser interferometer setup and consecutive physical reconstruction of the recorded wave fronts by means of the Fresnel transform. This paper describes the conceptual framework and provides the mathematical basis for DHI dosimetry. Dose distributions from a high dose rate Brachytherapy source were measured by a prototype optical setup to demonstrate the feasibility of the approach. The developed DHI dosimeter successfully determined absorbed dose distributions in water in the region adjacent to a high dose rate Brachytherapy source. A temperature change of 0.0381 K across a distance of 6.8 mm near the source was measured, corresponding to a dose of 159.3 Gy. The standard deviation in a typical measurement set was ± 3.45 Gy (corresponding to an uncertainty in the temperature value of ± 8.3 × 10(-4) K). The relative dose fall off was in agreement with treatment planning system modeled data. First results with a prototype optical setup and a Brachytherapy source demonstrate the proof-of-principle of the approach. The prototype achieves high spatial resolution of approximately 3 × 10(-4) m. The general approach is fundamentally independent of the radiation type and energy. The sensitivity range determined indicates that the method is predominantly suitable for high dose rate applications. Further work is required to determine absolute dose in all three dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levegrün, Sabine, E-mail: sabine.levegruen@uni-due.de; Pöttgen, Christoph; Wittig, Andrea
2013-07-15
Purpose: To quantitatively evaluate dose distribution characteristics achieved with helical tomotherapy (HT) for whole-brain irradiation (WBRT) with integrated boost (IB) to multiple brain metastases in comparison with alternative techniques. Methods and Materials: Dose distributions for 23 patients with 81 metastases treated with WBRT (30 Gy/10 fractions) and IB (50 Gy) were analyzed. The median number of metastases per patient (N{sub mets}) was 3 (range, 2-8). Mean values of the composite planning target volume of all metastases per patient (PTV{sub mets}) and of the individual metastasis planning target volume (PTV{sub ind} {sub met}) were 8.7 ± 8.9 cm{sup 3} (range, 1.3-35.5more » cm{sup 3}) and 2.5 ± 4.5 cm{sup 3} (range, 0.19-24.7 cm{sup 3}), respectively. Dose distributions in PTV{sub mets} and PTV{sub ind} {sub met} were evaluated with respect to dose conformity (conformation number [CN], RTOG conformity index [PITV]), target coverage (TC), and homogeneity (homogeneity index [HI], ratio of maximum dose to prescription dose [MDPD]). The dependence of dose conformity on target size and N{sub mets} was investigated. The dose distribution characteristics were benchmarked against alternative irradiation techniques identified in a systematic literature review. Results: Mean ± standard deviation of dose distribution characteristics derived for PTV{sub mets} amounted to CN = 0.790 ± 0.101, PITV = 1.161 ± 0.154, TC = 0.95 ± 0.01, HI = 0.142 ± 0.022, and MDPD = 1.147 ± 0.029, respectively, demonstrating high dose conformity with acceptable homogeneity. Corresponding numbers for PTV{sub ind} {sub met} were CN = 0.708 ± 0.128, PITV = 1.174 ± 0.237, TC = 0.90 ± 0.10, HI = 0.140 ± 0.027, and MDPD = 1.129 ± 0.030, respectively. The target size had a statistically significant influence on dose conformity to PTV{sub mets} (CN = 0.737 for PTV{sub mets} ≤4.32 cm{sup 3} vs CN = 0.848 for PTV{sub mets} >4.32 cm{sup 3}, P=.006), in contrast to N{sub mets}. The achieved dose conformity to PTV{sub mets}, assessed by both CN and PITV, was in all investigated volume strata well within the best quartile of the values reported for alternative irradiation techniques. Conclusions: HT is a well-suited technique to deliver WBRT with IB to multiple brain metastases, yielding high-quality dose distributions. A multi-institutional prospective randomized phase 2 clinical trial to exploit efficacy and safety of the treatment concept is currently under way.« less
Characterization and application of two kinds of ESR dosimeters
NASA Astrophysics Data System (ADS)
Marchioni, Eric; Pabst, Jean-Yves; Kuntz, Florent
2002-09-01
Many previous papers described the use of low-concentration alanine pellets, powder or films for industrial high-dose application, but very few authors presented applications of such dosimeters to the low-dose range used for wastewater, flowers or radiotherapy treatment. The present paper describes the large-scale manufacturing process of high-concentration alanine pellets used for radiotherapy dose control in some French hospitals. The fading process due to sunlight exposure has been evaluated by means of direct UV light irradiation. The major disadvantage of alanine is its strong solubility in water (the pellets are completely dissolved when immersed for 10 min in pure water). The use of barium sulphate, not soluble in water, made it possible to carry out dosimetric measurements even when the dosimeter is completely immersed in water or stored after irradiation in high humidity levels. The paper presents manufacturing process of barium sulphate pellets, their dosimetric characteristics and one application of this dosimeter for the control of the absorbed doses during wastewater treatments.
High-speed large angle mammography tomosynthesis system
NASA Astrophysics Data System (ADS)
Eberhard, Jeffrey W.; Staudinger, Paul; Smolenski, Joe; Ding, Jason; Schmitz, Andrea; McCoy, Julie; Rumsey, Michael; Al-Khalidy, Abdulrahman; Ross, William; Landberg, Cynthia E.; Claus, Bernhard E. H.; Carson, Paul; Goodsitt, Mitchell; Chan, Heang-Ping; Roubidoux, Marilyn; Thomas, Jerry A.; Osland, Jacqueline
2006-03-01
A new mammography tomosynthesis prototype system that acquires 21 projection images over a 60 degree angular range in approximately 8 seconds has been developed and characterized. Fast imaging sequences are facilitated by a high power tube and generator for faster delivery of the x-ray exposure and a high speed detector read-out. An enhanced a-Si/CsI flat panel digital detector provides greater DQE at low exposure, enabling tomo image sequence acquisitions at total patient dose levels between 150% and 200% of the dose of a standard mammographic view. For clinical scenarios where a single MLO tomographic acquisition per breast may replace the standard CC and MLO views, total tomosynthesis breast dose is comparable to or below the dose in standard mammography. The system supports co-registered acquisition of x-ray tomosynthesis and 3-D ultrasound data sets by incorporating an ultrasound transducer scanning system that flips into position above the compression paddle for the ultrasound exam. Initial images acquired with the system are presented.
DeZern, Amy E.; Petri, Michelle; Drachman, Daniel B.; Kerr, Doug; Hammond, Edward R.; Kowalski, Jeanne; Tsai, Hua-Ling; Loeb, David M.; Anhalt, Grant; Wigley, Fredrick; Jones, Richard J.; Brodsky, Robert A.
2011-01-01
High-dose cyclophosphamide has long been used an anticancer agent, a conditioning regimen for hematopoietic stem cell transplantation and as potent immunosuppressive agent in autoimmune diseases including aplastic anemia. High-dose cyclophosphamide is highly toxic to lymphocytes but spares hematopoietic stem cells because of their abundant levels of aldehyde dehydrogenase, the major mechanism of cyclophosphamide inactivation. High dose cyclophosphamide therapy induces durable remissions in most patients with acquired aplastic anemia. Moreover, high-dose cyclophosphamide without hematopoietic stem cell rescue has shown activity in a variety of other severe autoimmune diseases. Here we review the history of cyclophosphamide as is applies to aplastic anemia (AA) and other autoimmune diseases. Included here are the historical data from early patients treated for AA as well as an observational retrospective study in a single tertiary care hospital. This latter component was designed to assess the safety and efficacy of high-dose cyclophosphamide therapy without stem cell rescue in patients with refractory autoimmune diseases. We analyzed fully the 140 patients with severe, progressive autoimmune diseases treated. All patients discussed here received cyclophosphamide, 50 mg/kg per day for 4 consecutive days. Response, relapse and overall survival were measured. Response was defined as a decrease in disease activity in conjunction with a decrease or elimination of immune modulating drugs. Relapse was defined as worsening disease activity and/or a requirement of an increase in dose of, or administration of new, immunosuppressive medications. Hematologic recovery occurred in all patients. The overall response rate of the was 95%, and 44% of those patients remain progression-free with a median follow up time of 36 (range 1–120) months for the 140 patients analyzed together. The overall actuarial and event free survival across all diseases at 60 months is 90.7% and 20.6%, respectively. High- dose cyclophosphamide without stem cell rescue is well-tolerated and induces a high rate of remissions in severe autoimmune diseases. PMID:21358440
Improvements in opti-chromic dosimeters for radiation processing
NASA Astrophysics Data System (ADS)
Humpherys, K. C.; Kantz, A. D.
"Opti-Chromic" dosimeters consisting of radiachromic dye in flourinated polymer tubing have been introduced as a dosimetry system in the range from 10 1 to 5 × 10 4 Gy. Batches of "Opti-Chromic" dosimeters have been produced to evaluate performance under large scale industrial conditions. A systematic study was undertaken to determine the effect of various dosimeter parameters on radiation sensitivity, shelf life, and response characteristics at the higher absorbed doses. These parameters were (A) Type of flourinated polymer tubing; (B) Organic solvent used to activate the radiachromic dye; (C) Concentration of radiachromic dye; (D) Additives to provide proper viscosity, color stability, and high-dose response. Prototype batches were produced and experimental dosimeters exposed to a range of absorbed doses and the response measured as a function of shelf life and dose. The results of the study are presented, and an improved formulation recommended for application to Food Processing. Other formulations may be of value in specific requirements of sensitivity or temperature.
Adams, Matthew T; Wang, Qi; Cleveland, Robin O; Roy, Ronald A
2014-07-07
This study examines the effectiveness of the thermal dose model in accurately predicting thermally induced optical property changes of ex vivo chicken breast between 500-1100 nm. The absorption coefficient, μa, and the reduced scattering coefficient, μ's, of samples are measured as a function of thermal dose over the range 50 °C-70 °C. Additionally, the maximum observable changes in μa and μ's are measured as a function of temperature in the range 50 °C-90 °C. Results show that the standard thermal dose model used in the majority of high-intensity focused ultrasound (HIFU) treatments is insufficient for modeling optical property changes, but that the isodose constant may be modified in order to better predict thermally induced changes. Additionally, results are presented that show a temperature dependence on changes in the two coefficients, with an apparent threshold effect occurring between 65 °C-70 °C.
Howell, Rebecca M; Burgett, E A
2014-09-01
Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire energy range being measured, i.e., thermal to 250 MeV. The authors used the neutron fluence spectrum to demonstrate experimentally the contribution of neutrons with different energies to the total dose equivalent and in particular the contribution of high-energy neutrons (≥20 MeV). These are valuable reference data that can be directly compared with Monte Carlo and experimental data in the literature.
Howell, Rebecca M.; Burgett, E. A.
2014-01-01
Purpose: Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. Methods: The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. Results: The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. Conclusions: The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire energy range being measured, i.e., thermal to 250 MeV. The authors used the neutron fluence spectrum to demonstrate experimentally the contribution of neutrons with different energies to the total dose equivalent and in particular the contribution of high-energy neutrons (≥20 MeV). These are valuable reference data that can be directly compared with Monte Carlo and experimental data in the literature. PMID:25186404
NASA Astrophysics Data System (ADS)
Paiva Fonseca, Gabriel; Carlsson Tedgren, Åsa; Reniers, Brigitte; Nilsson, Josef; Persson, Maria; Yoriyaz, Hélio; Verhaegen, Frank
2015-06-01
Dose calculation in high dose rate brachytherapy with 192Ir is usually based on the TG-43U1 protocol where all media are considered to be water. Several dose calculation algorithms have been developed that are capable of handling heterogeneities with two possibilities to report dose: dose-to-medium-in-medium (Dm,m) and dose-to-water-in-medium (Dw,m). The relation between Dm,m and Dw,m for 192Ir is the main goal of this study, in particular the dependence of Dw,m on the dose calculation approach using either large cavity theory (LCT) or small cavity theory (SCT). A head and neck case was selected due to the presence of media with a large range of atomic numbers relevant to tissues and mass densities such as air, soft tissues and bone interfaces. This case was simulated using a Monte Carlo (MC) code to score: Dm,m, Dw,m (LCT), mean photon energy and photon fluence. Dw,m (SCT) was derived from MC simulations using the ratio between the unrestricted collisional stopping power of the actual medium and water. Differences between Dm,m and Dw,m (SCT or LCT) can be negligible (<1%) for some tissues e.g. muscle and significant for other tissues with differences of up to 14% for bone. Using SCT or LCT approaches leads to differences between Dw,m (SCT) and Dw,m (LCT) up to 29% for bone and 36% for teeth. The mean photon energy distribution ranges from 222 keV up to 356 keV. However, results obtained using mean photon energies are not equivalent to the ones obtained using the full, local photon spectrum. This work concludes that it is essential that brachytherapy studies clearly report the dose quantity. It further shows that while differences between Dm,m and Dw,m (SCT) mainly depend on tissue type, differences between Dm,m and Dw,m (LCT) are, in addition, significantly dependent on the local photon energy fluence spectrum which varies with distance to implanted sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dellamonica, D.; Luo, G.; Ding, G.
Purpose: Setup errors on the order of millimeters may cause under-dosing of targets and significant changes in dose to critical structures especially when planning with tight margins in stereotactic radiosurgery. This study evaluates the effects of these types of patient positioning uncertainties on planning target volume (PTV) coverage and cochlear dose for stereotactic treatments of acoustic neuromas. Methods: Twelve acoustic neuroma patient treatment plans were retrospectively evaluated in Brainlab iPlan RT Dose 4.1.3. All treatment beams were shaped by HDMLC from a Varian TX machine. Seven patients had planning margins of 2mm, five had 1–1.5mm. Six treatment plans were createdmore » for each patient simulating a 1mm setup error in six possible directions: anterior-posterior, lateral, and superiorinferior. The arcs and HDMLC shapes were kept the same for each plan. Change in PTV coverage and mean dose to the cochlea was evaluated for each plan. Results: The average change in PTV coverage for the 72 simulated plans was −1.7% (range: −5 to +1.1%). The largest average change in coverage was observed for shifts in the patient's superior direction (−2.9%). The change in mean cochlear dose was highly dependent upon the direction of the shift. Shifts in the anterior and superior direction resulted in an average increase in dose of 13.5 and 3.8%, respectively, while shifts in the posterior and inferior direction resulted in an average decrease in dose of 17.9 and 10.2%. The average change in dose to the cochlea was 13.9% (range: 1.4 to 48.6%). No difference was observed based on the size of the planning margin. Conclusion: This study indicates that if the positioning uncertainty is kept within 1mm the setup errors may not result in significant under-dosing of the acoustic neuroma target volumes. However, the change in mean cochlear dose is highly dependent upon the direction of the shift.« less
Dose-response relationship in the treatment of gastrointestinal disorders.
Weihrauch, T R; Demol, P
1989-08-01
Numerous clinical studies have been performed to establish efficacy and safety of drugs in gastroenterological disorders. Only in a few if any of these studies, however, the rationale for the optimal dose and the dose regimens, respectively, have been addressed. Adequate and well-controlled dose finding studies play a key role in the clinical assessment of new drugs and in the evaluation of new indications. Hereby the range from the minimal effective dose to the maximal effective and well tolerated dose can be assessed and thus the optimal dose-range and dosage regimen be determined. Meaningful pharmacodynamic studies can be performed in the gastrointestinal tract also in healthy volunteers provided that a method with a high predictability for the desired therapeutic effect is available such as measurement of gastric acid secretion and its inhibition by a drug. Dose finding studies in gastroenterology can be carried out under two main aspects: First, to assess the pharmacodynamic and therapeutic effect of a compound on the gastrointestinal tract (e.g. anti-ulcer drug). Second, to evaluate the side effects of a drug on the gastrointestinal tract (e.g. gastric mucosal damage by non-steroidal anti-inflammatory drugs). For the evaluation of new drugs in gastrointestinal therapy a number of methods are available which yield accurate and reproducible data. While careful clinical-pharmacological dose-response studies using these methods have been carried out already more than a decade ago, it is surprising that therapeutic dose finding studies have become available only during the past few years. For scientific as well as for ethical reasons more trials which determine the optimal therapeutic dose are warranted.
Barrett, A; Depledge, M H; Powles, R L
1983-07-01
Idiopathic and infective interstitial pneumonitis (IPn) is a common complication after bone marrow transplantation (BMT) in many centers and carries a high mortality. We report here a series of 107 patients with acute leukemia grafted at the Royal Marsden Hospital in which only 11 (10.3%) developed IPn and only 5 died (5%). Only one case of idiopathic IPn was seen. Factors which may account for this low incidence are discussed. Sixty of 107 patients were transplanted in first remission of acute myeloid leukemia (AML) and were therefore in good general condition. Lung radiation doses were carefully monitored and doses of 10.5 Gy were not exceeded except in a group of 16 patients in whom a study of escalating doses of TBI (up to 13 Gy) was undertaken. The dose rate used for total body irradiation (TBI) was lower than that used in other centers and as demonstrated elsewhere by ourselves and others, reduction of dose rate to less than 0.05 Gy/min may be expected to lead to substantial reduction in lung damage. Threshold doses of approximately 8 Gy for IPn have been reported, but within the dose range of 8 to 10.5 Gy we suggest that dose rate may significantly affect the incidence. Data so far available suggest a true improvement in therapeutic ratio for low dose rate single fraction TBI compared with high dose rate.
Othman, Ahmed A; Haig, George; Florian, Hana; Locke, Charles; Zhang, Jun; Dutta, Sandeep
2013-01-01
Aim The objective of this work was to characterize the safety, tolerability and pharmacokinetics of ABT-288, a highly selective histamine H3 receptor antagonist, in healthy young adults and elderly subjects following single and multiple dosing in a phase 1 setting. Methods Single doses (0.1, 0.3, 1, 3, 10, 20 and 40 mg ABT-288) and multiple doses (0.5, 1.5, 3 and 6 mg ABT-288 once-daily for 14 days) were evaluated in young adults and multiple doses (0.5, 1.5, 3 and 5 mg ABT-288 once-daily for 12 days) were evaluated in elderly subjects using randomized, double-blind, placebo-controlled, dose-escalating study designs. The effect of food on ABT-288 pharmacokinetics (5 mg single dose) was evaluated using an open label, randomized, crossover design. Results ABT-288 safety, tolerability and pharmacokinetics were comparable in young and elderly subjects. Single doses up to 40 mg and multiple doses up to 3 mg once-daily were generally safe and well tolerated. The most frequently reported adverse events were hot flush, headache, abnormal dreams, insomnia, nausea and dizziness. ABT-288 exposure (AUC) was dose-proportional over the evaluated dose ranges. The mean elimination half-life ranged from 40 to 61 h across dose groups. Steady state was achieved by day 10 of once-daily dosing with 3.4- to 4.2-fold accumulation. Food did not have a clinically meaningful effect on ABT-288 exposure. Conclusions Based on the above results, 1 and 3 mg once-daily doses of ABT-288 were advanced to phase 2 evaluation in Alzheimer's patients. PMID:23016924
Othman, Ahmed A; Haig, George; Florian, Hana; Locke, Charles; Zhang, Jun; Dutta, Sandeep
2013-05-01
The objective of this work was to characterize the safety, tolerability and pharmacokinetics of ABT-288, a highly selective histamine H3 receptor antagonist, in healthy young adults and elderly subjects following single and multiple dosing in a phase 1 setting. Single doses (0.1, 0.3, 1, 3, 10, 20 and 40 mg ABT-288) and multiple doses (0.5, 1.5, 3 and 6 mg ABT-288 once-daily for 14 days) were evaluated in young adults and multiple doses (0.5, 1.5, 3 and 5 mg ABT-288 once-daily for 12 days) were evaluated in elderly subjects using randomized, double-blind, placebo-controlled, dose-escalating study designs. The effect of food on ABT-288 pharmacokinetics (5 mg single dose) was evaluated using an open label, randomized, crossover design. ABT-288 safety, tolerability and pharmacokinetics were comparable in young and elderly subjects. Single doses up to 40 mg and multiple doses up to 3 mg once-daily were generally safe and well tolerated. The most frequently reported adverse events were hot flush, headache, abnormal dreams, insomnia, nausea and dizziness. ABT-288 exposure (AUC) was dose-proportional over the evaluated dose ranges. The mean elimination half-life ranged from 40 to 61 h across dose groups. Steady state was achieved by day 10 of once-daily dosing with 3.4- to 4.2-fold accumulation. Food did not have a clinically meaningful effect on ABT-288 exposure. Based on the above results, 1 and 3 mg once-daily doses of ABT-288 were advanced to phase 2 evaluation in Alzheimer's patients. © 2012 Abbott Laboratories. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.
Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi
2011-04-04
We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors.
Antman, Karen
2002-01-01
High dose therapy for breast cancer remains controversial. Of the 15 randomized trials of high dose therapy in breast cancer reported to date, two South African studies have been discredited leaving 13 remaining studies. Mortality was consistently low, in the 0 to 2.5% range, except for the BCNU containing American Intergroup study, which had a 7.4% toxic mortality rate. Seven of the remaining 13 studies randomized fewer than 200 patients. Three of these small studies have significant differences in disease free survival, and a fourth study has a trend in favor of high dose therapy. The other three small studies cannot exclude a survival difference of 20%. Of the 6 remaining moderately large trials of 219 to 885 randomized patients, 5 are adjuvant studies and one included patients with metastatic disease. Of the five adjuvant trials, four have significant differences in relapse rate favoring the high dose arm, and the remaining study has a trend (with a high dose sequential single agent design rather than combination therapy as in the other studies). A planned subset analysis of the first 284 patients in the largest study funded by the Dutch insurance industry showed a significant advantage for high dose therapy. Given the 2-year median time to relapse and an addition 2-year median to death after relapse, the follow up for survival of 3-5 years on these studies is still short. In the only moderately sized metastatic trial from the National Cancer Institute of Canada with a very short median follow-up of 19 months, a significant difference in disease free survival has emerged, with no difference in survival. PMID:12053718
Antman, Karen
2002-01-01
High dose therapy for breast cancer remains controversial. Of the 15 randomized trials of high dose therapy in breast cancer reported to date, two South African studies have been discredited leaving 13 remaining studies. Mortality was consistently low, in the 0 to 2.5% range, except for the BCNU containing American Intergroup study, which had a 7.4% toxic mortality rate. Seven of the remaining 13 studies randomized fewer than 200 patients. Three of these small studies have significant differences in disease free survival, and a fourth study has a trend in favor of high dose therapy. The other three small studies cannot exclude a survival difference of 20%. Of the 6 remaining moderately large trials of 219 to 885 randomized patients, 5 are adjuvant studies and one included patients with metastatic disease. Of the five adjuvant trials, four have significant differences in relapse rate favoring the high dose arm, and the remaining study has a trend (with a high dose sequential single agent design rather than combination therapy as in the other studies). A planned subset analysis of the first 284 patients in the largest study funded by the Dutch insurance industry showed a significant advantage for high dose therapy. Given the 2-year median time to relapse and an addition 2-year median to death after relapse, the follow up for survival of 3-5 years on these studies is still short. In the only moderately sized metastatic trial from the National Cancer Institute of Canada with a very short median follow-up of 19 months, a significant difference in disease free survival has emerged, with no difference in survival.
The small-animal radiation research platform (SARRP): dosimetry of a focused lens system.
Deng, Hua; Kennedy, Christopher W; Armour, Elwood; Tryggestad, Erik; Ford, Eric; McNutt, Todd; Jiang, Licai; Wong, John
2007-05-21
A small animal radiation platform equipped with on-board cone-beam CT and conformal irradiation capabilities is being constructed for translational research. To achieve highly localized dose delivery, an x-ray lens is used to focus the broad beam from a 225 kVp x-ray tube down to a beam with a full width half maximum (FWHM) of approximately 1.5 mm in the energy range 40-80 keV. Here, we report on the dosimetric characteristics of the focused beam from the x-ray lens subsystem for high-resolution dose delivery. Using the metric of the average dose within a 1.5 mm diameter area, the dose rates at a source-to-surface distance (SSD) of 34 cm are 259 and 172 cGy min(-1) at 6 mm and 2 cm depths, respectively, with an estimated uncertainty of +/-5%. The per cent depth dose is approximately 56% at 2 cm depth for a beam at 34 cm SSD.
Determination of the efficiency of commercially available dose calibrators for beta-emitters.
Valley, Jean-François; Bulling, Shelley; Leresche, Michel; Wastiel, Claude
2003-03-01
The goals of this investigation are to determine whether commercially available dose calibrators can be used to measure the activity of beta-emitting radionuclides used in pain palliation and to establish whether manufacturer-supplied calibration factors are appropriate for this purpose. Six types of commercially available dose calibrators were studied. Dose calibrator response was controlled for 5 gamma-emitters used for calibration or typically encountered in routine use. For the 4 most commonly used beta-emitters ((32)P, (90)Sr, (90)Y, and (169)Er) dose calibrator efficiency was determined in the syringe geometry used for clinical applications. Efficiency of the calibrators was also measured for (153)Sm and (186)Re, 2 beta-emitters with significant gamma-contributions. Source activities were traceable to national standards. All calibrators measured gamma-emitters with a precision of +/-10%, in compliance with Swiss regulatory requirements. For beta-emitters, dose calibrator intrinsic efficiency depends strongly on the maximal energy of the beta-spectrum and is notably low for (169)Er. Manufacturer-supplied calibration factors give accurate results for beta-emitters with maximal beta-energy in the middle-energy range (1 MeV) but are not appropriate for use with low-energy ((169)Er) or high-energy ((90)Y) beta-emitters. beta-emitters with significant gamma-contributions behave like gamma-emitters. Commercially available dose calibrators have an intrinsic efficiency that is sufficient for the measurement of beta-emitters, including beta-emitters with a low maximum beta-energy. Manufacturer-supplied calibration factors are reliable for gamma-emitters and beta-emitters in the middle-energy range. For low- and high-energy beta-emitters, the use of manufacturer-supplied calibration factors introduces significant measurement inaccuracy.
Hashim, S; Al-Ahbabi, S; Bradley, D A; Webb, M; Jeynes, C; Ramli, A T; Wagiran, H
2009-03-01
Modern linear accelerators, the predominant teletherapy machine in major radiotherapy centres worldwide, provide multiple electron and photon beam energies. To obtain reasonable treatment times, intense electron beam currents are achievable. In association with this capability, there is considerable demand to validate patient dose using systems of dosimetry offering characteristics that include good spatial resolution, high precision and accuracy. Present interest is in the thermoluminescence response and dosimetric utility of commercially available doped optical fibres. The important parameter for obtaining the highest TL yield during this study is to know the dopant concentration of the SiO2 fibre because during the production of the optical fibres, the dopants tend to diffuse. To achieve this aim, proton-induced X-ray emission (PIXE), which has no depth resolution but can unambiguously identify elements and analyse for trace elements with detection limits approaching microg/g, was used. For Al-doped fibres, the dopant concentration in the range 0.98-2.93 mol% have been estimated, with equivalent range for Ge-doped fibres being 0.53-0.71 mol%. In making central-axis irradiation measurements a solid water phantom was used. For 6-MV photons and electron energies in the range 6, 9 and 12 MeV, a source to surface distance of 100 cm was used, with a dose rate of 400 cGy/min for photons and electrons. The TL measurements show a linear dose-response over the delivered range of absorbed dose from 1 to 4 Gy. Fading was found to be minimal, less than 10% over five days subsequent to irradiation. The minimum detectable dose for 6-MV photons was found to be 4, 30 and 900 microGy for TLD-100 chips, Ge- and Al-doped fibres, respectively. For 6-, 9- and 12-MeV electron energies, the minimum detectable dose were in the range 3-5, 30-50 and 800-1400 microGy for TLD-100 chip, Ge-doped and Al-doped fibres, respectively.
SU-F-T-22: Clinical Implications When Using TG-186 (ACE) Heterogeneity Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Likhacheva, A; Grade, E; Sadeghi, A
Purpose: The purpose of this study is to compare dosimetric calculations using traditional TG-43 formalism and Oncentra Brachy Advanced Collapsed cone Engine (ACE) TG-186 calculation algorithm in clinical setting. Methods: We analyzed dosimetry of four patients treated with accelerated partial breast irradiation using a multi-channel intracavitary device (SAVI). All patients were treated to 34 Gy in 10 fractions using a high-dose-rate (192) Ir source. The plans were designed and treated using the TG-43 model. ACE was used to assess the effect heterogeneity correction on various dosimetric parameters. Mass density was estimated using Hounsfield units. Results: Compared to TG-43 formalism, ACEmore » estimated lower doses to targets and organs at risk. The mean difference was 19.8% (range 15.3–24.1%) for PTV-eval V200, 12.0% (range 9.7–17.7%) for PTV-eval V150, 4.3% (range 3.3–6.5%) for PTV-eval D95, 3.3% (range 1.4–5.4%) for PTV-eval D90, 5.4% (range 2.9–9.9%) for maximum rib dose, and 5.7% (2.4–7.4%) for maximum skin dose. There was no correlation between the magnitude of the difference and the PTV-eval volume, air volume, or tissue-applicator conformance. Conclusion: Based on our preliminary study, the TG-43 algorithm appears to overestimate the dose to targets and organs at risk when compared to the ACE TG-186 software. We hypothesize that air adjacent to the SAVI struts contributes to lack of scatter thereby contributing a significant difference in dose calculation when using ACE. We believe that ACE calculation provides a more realistic isodose distribution than TG-43. We plan to further investigate the impact of heterogeneity correction on brachytherapy planning for a wide variety of clinical scenarios, include skin, cervix/uterus, prostate, and lung.« less
Mice and the A-Bomb: Irradiation Systems for Realistic Exposure Scenarios.
Garty, Guy; Xu, Yanping; Elliston, Carl; Marino, Stephen A; Randers-Pehrson, Gerhard; Brenner, David J
2017-04-01
Validation of biodosimetry assays is normally performed with acute exposures to uniform external photon fields. Realistically, exposure to a radiological dispersal device or reactor leak will include exposure to low dose rates and likely exposure to ingested radionuclides. An improvised nuclear device will likely include a significant neutron component in addition to a mixture of high- and low-dose-rate photons and ingested radionuclides. We present here several novel irradiation systems developed at the Center for High Throughput Minimally Invasive Radiation Biodosimetry to provide more realistic exposures for testing of novel biodosimetric assays. These irradiators provide a wide range of dose rates (from Gy/s to Gy/week) as well as mixed neutron/photon fields mimicking an improvised nuclear device.
Mice and the A-Bomb: Irradiation Systems for Realistic Exposure Scenarios
Garty, Guy; Xu, Yanping; Elliston, Carl; Marino, Stephen A.; Randers-Pehrson, Gerhard; Brenner, David J.
2017-01-01
Validation of biodosimetry assays is normally performed with acute exposures to uniform external photon fields. Realistically, exposure to a radiological dispersal device or reactor leak will include exposure to low dose rates and likely exposure to ingested radionuclides. An improvised nuclear device will likely include a significant neutron component in addition to a mixture of high- and low-dose-rate photons and ingested radionuclides. We present here several novel irradiation systems developed at the Center for High Throughput Minimally Invasive Radiation Biodosimetry to provide more realistic exposures for testing of novel biodosimetric assays. These irradiators provide a wide range of dose rates (from Gy/s to Gy/week) as well as mixed neutron/photon fields mimicking an improvised nuclear device. PMID:28211757
Ehrlich, Allison K; Pennington, Jamie M; Bisson, William H; Kolluri, Siva K; Kerkvliet, Nancy I
2018-02-01
FICZ and TCDD, two high-affinity AhR ligands, are reported to have opposite effects on T cell differentiation with TCDD inducing regulatory T cells and FICZ inducing Th17 cells. This dichotomy has been attributed to ligand-intrinsic differences in AhR activation, although differences in sensitivity to metabolism complicate the issue. TCDD is resistant to AhR-induced metabolism and produces sustained AhR activation following a single dose in the μg/kg range, whereas FICZ is rapidly metabolized and AhR activation is transient. Nonetheless, prior studies comparing FICZ with TCDD have generally used the same 10-50 μg/kg dose range, and thus the two ligands would not equivalently activate AhR. We hypothesized that high-affinity AhR ligands can promote CD4+ T cell differentiation into both Th17 cells and Tregs, with fate depending on the extent and duration of AhR activation. We compared the immunosuppressive effects of TCDD and FICZ, along with two other rapidly metabolized ligands (ITE and 11-Cl-BBQ) in an acute alloresponse mouse model. The dose and timing of administration of each ligand was optimized for TCDD-equivalent Cyp1a1 induction. When optimized, all of the ligands suppressed the alloresponse in conjunction with the induction of Foxp3- Tr1 cells on day 2 and the expansion of natural Foxp3+ Tregs on day 10. In contrast, a low dose of FICZ induced transient expression of Cyp1a1 and did not induce Tregs or suppress the alloresponse but enhanced IL-17 production. Interestingly, low doses of the other ligands, including TCDD, also increased IL-17 production on day 10. These findings support the conclusion that the dose and the duration of AhR activation by high-affinity AhR ligands are the primary factors driving the fate of T cell differentiation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Long-Term Safety and Efficacy of Factor IX Gene Therapy in Hemophilia B
Nathwani, A.C.; Reiss, U.M.; Tuddenham, E.G.D.; Rosales, C.; Chowdary, P.; McIntosh, J.; Della Peruta, M.; Lheriteau, E.; Patel, N.; Raj, D.; Riddell, A.; Pie, J.; Rangarajan, S.; Bevan, D.; Recht, M.; Shen, Y.-M.; Halka, K.G.; Basner-Tschakarjan, E.; Mingozzi, F.; High, K.A.; Allay, J.; Kay, M.A.; Ng, C.Y.C.; Zhou, J.; Cancio, M.; Morton, C.L.; Gray, J.T.; Srivastava, D.; Nienhuis, A.W.; Davidoff, A.M.
2014-01-01
BACKGROUND In patients with severe hemophilia B, gene therapy that is mediated by a novel self-complementary adeno-associated virus serotype 8 (AAV8) vector has been shown to raise factor IX levels for periods of up to 16 months. We wanted to determine the durability of transgene expression, the vector dose–response relationship, and the level of persistent or late toxicity. METHODS We evaluated the stability of transgene expression and long-term safety in 10 patients with severe hemophilia B: 6 patients who had been enrolled in an initial phase 1 dose-escalation trial, with 2 patients each receiving a low, intermediate, or high dose, and 4 additional patients who received the high dose (2×1012 vector genomes per kilogram of body weight). The patients subsequently underwent extensive clinical and laboratory monitoring. RESULTS A single intravenous infusion of vector in all 10 patients with severe hemophilia B resulted in a dose-dependent increase in circulating factor IX to a level that was 1 to 6% of the normal value over a median period of 3.2 years, with observation ongoing. In the high-dose group, a consistent increase in the factor IX level to a mean (±SD) of 5.1±1.7% was observed in all 6 patients, which resulted in a reduction of more than 90% in both bleeding episodes and the use of prophylactic factor IX concentrate. A transient increase in the mean alanine aminotransferase level to 86 IU per liter (range, 36 to 202) occurred between week 7 and week 10 in 4 of the 6 patients in the high-dose group but resolved over a median of 5 days (range, 2 to 35) after prednisolone treatment. CONCLUSIONS In 10 patients with severe hemophilia B, the infusion of a single dose of AAV8 vector resulted in long-term therapeutic factor IX expression associated with clinical improvement. With a follow-up period of up to 3 years, no late toxic effects from the therapy were reported. (Funded by the National Heart, Lung, and Blood Institute and others; ClinicalTrials.gov number, NCT00979238.) PMID:25409372
TTC-Pluronic 3D radiochromic gel dosimetry of ionizing radiation
NASA Astrophysics Data System (ADS)
Kozicki, Marek; Kwiatos, Klaudia; Kadlubowski, Slawomir; Dudek, Mariusz
2017-07-01
This work reports the first results obtained using a new 3D radiochromic gel dosimeter. The dosimeter is an aqueous physical gel matrix made of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F-127, PEO-PPO-PEO) doped with a representative of tetrazolium salts, 2, 3, 5-triphenyltetrazolium chloride (TTC). There were several reasons for the choice of Pluronic as a gel forming substrate: (i) the high degree of transparency and colourlessness; (ii) the possibility of gel dosimeter preparation at both high and low temperatures due to the phase behaviour of Pluronic; (iii) the broad temperature range over which the TTC-Pluronic dosimeter is stable; and (iv) the non-toxicity of Pluronic. A reason for the choice of TTC was its ionising radiation-induced transformation to water-insoluble formazan, which was assumed to impact beneficially on the spatial stability of the dose distribution. If irradiated, the TTC-Pluronic gels become red but transparent in the irradiated part, while the non-irradiated part remains crystal clear. The best obtained composition is characterised by <4 Gy dose threshold, a dose sensitivity of 0.002 31 (Gy × cm)-1, a large linear dose range of >500 Gy and a dynamic dose response much greater than 500 Gy (7.5% TTC, 25% Pluronic F-127, 50 mmol dm-3 tetrakis). Temporal and spatial stability studies revealed that the TTC-Pluronic gels (7.5% TTC, 25% Pluronic F-127) were stable for more than one week. The addition of compounds boosting the gels’ dose performance caused deterioration of the gels’ temporal stability but did not impact the stability of the 3D dose distribution. The proposed method of preparation allows for the repeatable manufacture of the gels. There were no differences observed between gels irradiated fractionally and non-fractionally. The TTC-Pluronic dose response might be affected by the radiation source dose rate—this, however, requires further examination.
Paranjpe, Madhav G; Belich, Jessica; Vidmar, Tom J; Elbekai, Reem H; McKeon, Marie; Brown, Caren
Our recent retrospective analysis of data, collected from 29 Tg.rasH2 mouse carcinogenicity studies, determined how successful the strategy of choosing the high dose for the 26-week studies was based on the estimated maximum tolerated dose (EMTD) derived from earlier 28-day dose range finding (DRF) studies conducted in CByB6F1 mice. Our analysis demonstrated that the high doses applied at EMTD in the 26-week Tg.rasH2 studies failed to detect carcinogenic effects. To investigate why the dose selection process failed in the 26-week carcinogenicity studies, the initial body weights, terminal body weights, body weight gains, food consumption, and mortality from the first 4 weeks of 26-week studies with Tg.rasH2 mice were compared with 28-day DRF studies conducted with CByB6F1 mice. Both the 26-week and the earlier respective 28-day studies were conducted with the exact same vehicle, test article, and similar dose levels. The analysis of our results further emphasizes that the EMTD and subsequent lower doses, determined on the basis of the 28-day studies in CByB6F1 mice, may not be an accurate strategy for selecting appropriate dose levels for the 26-week carcinogenicity studies in Tg.rasH2 mice. Based on the analysis presented in this article, we propose that the Tg.rasH2 mice and not the CByB6F1 mice should be used in future DRF studies. The Tg.rasH2 mice demonstrate more toxicity than the CByB6F1 mice, possibly because of their smaller size compared to CByB6F1 mice. Also, the Tg.rasH2 males appear to be more sensitive than the female Tg.rasH2 mice.
Chytiri, S D; Badeka, A V; Riganakos, K A; Kontominas, M G
2010-04-01
The aim was to study the effect of electron-beam irradiation on the production of radiolysis products and sensory changes in experimental high-barrier packaging films composed of polyamide (PA), ethylene-vinyl alcohol (EVOH) and low-density polyethylene (LDPE). Films contained a middle buried layer of recycled LDPE, while films containing 100% virgin LDPE as the middle buried layer were taken as controls. Irradiation doses ranged between zero and 60 kGy. Generally, a large number of radiolysis products were produced during electron-beam irradiation, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food 'cold pasteurization'). The quantity of radiolysis products increased with irradiation dose. There were no significant differences in radiolysis products identified between samples containing a recycled layer of LDPE and those containing virgin LDPE (all absorbed doses), indicating the 'functional barrier' properties of external virgin polymer layers. Sensory properties (mainly taste) of potable water were affected after contact with irradiated as low as 5 kGy packaging films. This effect increased with increasing irradiation dose.
Radiation Dose to the Lens of the Eye from Computed Tomography Scans of the Head
NASA Astrophysics Data System (ADS)
Januzis, Natalie Ann
While it is well known that exposure to radiation can result in cataract formation, questions still remain about the presence of a dose threshold in radiation cataractogenesis. Since the exposure history from diagnostic CT exams is well documented in a patient's medical record, the population of patients chronically exposed to radiation from head CT exams may be an interesting area to explore for further research in this area. However, there are some challenges in estimating lens dose from head CT exams. An accurate lens dosimetry model would have to account for differences in imaging protocols, differences in head size, and the use of any dose reduction methods. The overall objective of this dissertation was to develop a comprehensive method to estimate radiation dose to the lens of the eye for patients receiving CT scans of the head. This research is comprised of a physics component, in which a lens dosimetry model was derived for head CT, and a clinical component, which involved the application of that dosimetry model to patient data. The physics component includes experiments related to the physical measurement of the radiation dose to the lens by various types of dosimeters placed within anthropomorphic phantoms. These dosimeters include high-sensitivity MOSFETs, TLDs, and radiochromic film. The six anthropomorphic phantoms used in these experiments range in age from newborn to adult. First, the lens dose from five clinically relevant head CT protocols was measured in the anthropomorphic phantoms with MOSFET dosimeters on two state-of-the-art CT scanners. The volume CT dose index (CTDIvol), which is a standard CT output index, was compared to the measured lens doses. Phantom age-specific CTDIvol-to-lens dose conversion factors were derived using linear regression analysis. Since head size can vary among individuals of the same age, a method was derived to estimate the CTDIvol-to-lens dose conversion factor using the effective head diameter. These conversion factors were derived for each scanner individually, but also were derived with the combined data from the two scanners as a means to investigate the feasibility of a scanner-independent method. Using the scanner-independent method to derive the CTDIvol-to-lens dose conversion factor from the effective head diameter, most of the fitted lens dose values fell within 10-15% of the measured values from the phantom study, suggesting that this is a fairly accurate method of estimating lens dose from the CTDIvol with knowledge of the patient's head size. Second, the dose reduction potential of organ-based tube current modulation (OB-TCM) and its effect on the CTDIvol-to-lens dose estimation method was investigated. The lens dose was measured with MOSFET dosimeters placed within the same six anthropomorphic phantoms. The phantoms were scanned with the five clinical head CT protocols with OB-TCM enabled on the one scanner model at our institution equipped with this software. The average decrease in lens dose with OB-TCM ranged from 13.5 to 26.0%. Using the size-specific method to derive the CTDIvol-to-lens dose conversion factor from the effective head diameter for protocols with OB-TCM, the majority of the fitted lens dose values fell within 15-18% of the measured values from the phantom study. Third, the effect of gantry angulation on lens dose was investigated by measuring the lens dose with TLDs placed within the six anthropomorphic phantoms. The 2-dimensional spatial distribution of dose within the areas of the phantoms containing the orbit was measured with radiochromic film. A method was derived to determine the CTDIvol-to-lens dose conversion factor based upon distance from the primary beam scan range to the lens. The average dose to the lens region decreased substantially for almost all the phantoms (ranging from 67 to 92%) when the orbit was exposed to scattered radiation compared to the primary beam. The effectiveness of this method to reduce lens dose is highly dependent upon the shape and size of the head, which influences whether or not the angled scan range coverage can include the entire brain volume and still avoid the orbit. The clinical component of this dissertation involved performing retrospective patient studies in the pediatric and adult populations, and reconstructing the lens doses from head CT examinations with the methods derived in the physics component. The cumulative lens doses in the patients selected for the retrospective study ranged from 40 to 1020 mGy in the pediatric group, and 53 to 2900 mGy in the adult group. This dissertation represents a comprehensive approach to lens of the eye dosimetry in CT imaging of the head. The collected data and derived formulas can be used in future studies on radiation-induced cataracts from repeated CT imaging of the head. Additionally, it can be used in the areas of personalized patient dose management, and protocol optimization and clinician training.
KEARBEY, J. D.; WU, D.; GAO, W.; MILLER, D. D.; DALTON, J. T.
2007-01-01
1. S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide (also known as S-4) is a non-steroidal selective androgen receptor modulator demonstrating tissue-selective androgenic and anabolic effects. The purpose of the present study was to examine the systemic pharmacokinetics, elimination and oral bioavailability of S-4 in rats. 2. Thirty-five male Sprague–Dawley rats weighing approximately 250 g were randomly assigned to one of seven treatment groups. Intravenous doses of 0.5, 1, 10, and 30 mg kg−1 were given via a jugular catheter. Oral doses of 1, 10 and 30 mg kg−1 were administered via gavage. Plasma concentrations were determined using a validated high-performance liquid chromatography or by a high-performance liquid chromatography/mass spectrometry method. 3. Clearances ranged between 1.0 and 2.1 ml min−1 kg−1 and varied with dose. The volume of distribution was approximately 0.448 l kg−1 in all treatment groups. Oral bioavailability was also dose dependent, with the lower doses showing complete oral bioavailability. The half-life of S-4 over the dose range tested was between 2.6 and 5.3 h. 4. It was demonstrated that S-4 is rapidly absorbed, slowly cleared, and has a moderate volume of distribution in rats. The pharmacokinetics and oral bioavailability of S-4 indicate that it is an excellent candidate for clinical development. PMID:15204699
NASA Astrophysics Data System (ADS)
Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Shigyo, Nobuhiro; Watanabe, Fusao; Sakurai, Hiroki; Arai, Yoichi
2011-05-01
A dose and spectrum monitoring system applicable to neutrons, photons and muons over wide ranges of energy, designated as DARWIN, has been developed for radiological protection in high-energy accelerator facilities. DARWIN consists of a phoswitch-type scintillation detector, a data-acquisition (DAQ) module for digital waveform analysis, and a personal computer equipped with a graphical-user-interface (GUI) program for controlling the system. The system was recently upgraded by introducing an original DAQ module based on a field programmable gate array, FPGA, and also by adding a function for estimating neutron and photon spectra based on an unfolding technique without requiring any specific scientific background of the user. The performance of the upgraded DARWIN was examined in various radiation fields, including an operational field in J-PARC. The experiments revealed that the dose rates and spectra measured by the upgraded DARWIN are quite reasonable, even in radiation fields with peak structures in terms of both spectrum and time variation. These results clearly demonstrate the usefulness of DARWIN for improving radiation safety in high-energy accelerator facilities.
Chłopecka, Magdalena; Mendel, Marta; Dziekan, Natalia; Karlik, Wojciech
2017-01-01
The study was aimed at evaluating the effect of Roundup, polyoxyethylene tallow amine (POEA) and mixture of glyphosate and POEA in different levels on the motoric activity of jejunum strips. The incubation in the Roundup solutions caused a significant, mostly miorelaxant, reversible reaction of smooth muscle; only in the highest tested dose which is equivalent to the agricultural concentration (1% corresponding to 1.7g glyphosate/L) there was an irreversible disturbance of the spontaneous contractility and reactivity. The incubation in POEA solutions in the range of low doses (0.256; 1.28; 6.4mg/L) resulted in a biphasic muscle reaction (relaxation and contraction); whereas in the range of high doses, i.e. 32; 160 and 800mg/L (agricultural spray concentrations) induced only a miorelaxant, irreversible response. The results indicate very high toxicity of POEA which exceeds the toxicity of the commercial formulations. Besides, it is postulated that glyphosate and POEA may display antagonistic interaction towards the motoric activity of gastrointestinal tract. Copyright © 2016 Elsevier B.V. All rights reserved.
Taylor, Carolyn W; Wang, Zhe; Macaulay, Elizabeth; Jagsi, Reshma; Duane, Frances; Darby, Sarah C
2015-11-15
Breast cancer radiation therapy cures many women, but where the heart is exposed, it can cause heart disease. We report a systematic review of heart doses from breast cancer radiation therapy that were published during 2003 to 2013. Eligible studies were those reporting whole-heart dose (ie, dose averaged over the whole heart). Analyses considered the arithmetic mean of the whole-heart doses for the CT plans for each regimen in each study. We termed this "mean heart dose." In left-sided breast cancer, mean heart dose averaged over all 398 regimens reported in 149 studies from 28 countries was 5.4 Gy (range, <0.1-28.6 Gy). In regimens that did not include the internal mammary chain (IMC), average mean heart dose was 4.2 Gy and varied with the target tissues irradiated. The lowest average mean heart doses were from tangential radiation therapy with either breathing control (1.3 Gy; range, 0.4-2.5 Gy) or treatment in the lateral decubitus position (1.2 Gy; range, 0.8-1.7 Gy), or from proton radiation therapy (0.5 Gy; range, 0.1-0.8 Gy). For intensity modulated radiation therapy mean heart dose was 5.6 Gy (range, <0.1-23.0 Gy). Where the IMC was irradiated, average mean heart dose was around 8 Gy and varied little according to which other targets were irradiated. Proton radiation therapy delivered the lowest average mean heart dose (2.6 Gy, range, 1.0-6.0 Gy), and tangential radiation therapy with a separate IMC field the highest (9.2 Gy, range, 1.9-21.0 Gy). In right-sided breast cancer, the average mean heart dose was 3.3 Gy based on 45 regimens in 23 studies. Recent estimates of typical heart doses from left breast cancer radiation therapy vary widely between studies, even for apparently similar regimens. Maneuvers to reduce heart dose in left tangential radiation therapy were successful. Proton radiation therapy delivered the lowest doses. Inclusion of the IMC doubled typical heart dose. Copyright © 2015 Elsevier Inc. All rights reserved.
Comparison of lacosamide concentrations in cerebrospinal fluid and serum in patients with epilepsy.
May, Theodor W; Brandt, Christian; Helmer, Renate; Bien, Christian G; Cawello, Willi
2015-07-01
This study was carried out to estimate the exposure of the central nervous system (CNS) to the antiepileptic drug (AED) lacosamide, under steady state conditions, in patients with epilepsy who take oral lacosamide alongside up to three other AEDs. Twenty-seven serum and cerebral spinal fluid (CSF) samples were collected from 21 patients receiving lacosamide for the treatment of epilepsy (50-600 mg/day over two or three doses). This included 23 time-matched pairs of serum and CSF samples from 19 patients. The concentration of lacosamide in each sample was determined using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). Linear regression was used to characterize the relationship between the CSF-to-serum ratio of lacosamide concentration and the time since dosing, the daily lacosamide dose, or the daily dose normalized by volume of distribution (Vd , approximated to total body water), and between the drug concentrations in each compartment (CSF vs. serum). Concentrations of lacosamide in CSF (mean ± standard deviation [SD] 7.37 ± 3.73 μg/ml, range 1.24-14.95, n = 27) and serum (mean ± SD 8.16 ± 3.82 μg/ml, range 2.29-15.45, n = 27) samples showed a good correlation over the dose range investigated. The mean CSF-to-serum ratio of lacosamide concentrations was 0.897 ± 0.193 (range 0.492-1.254, n = 23 time-matched pairs) and was independent of lacosamide dose. Drug concentrations in the CSF are often used to indicate those in the brain interstitial fluid. In patients with epilepsy who follow a stable oral AED dosing regimen, lacosamide concentration in CSF is approximately 85% of that found in serum, suggesting that serum may be a valuable indicator of lacosamide concentration in the CNS. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Rituximab in highly sensitized kidney transplant recipients.
Munoz, A S; Rioveros, A A; Cabanayan-Casasola, C B; Danguilan, R A; Ona, E T
2008-09-01
Rituximab, an anti-CD20 monoclonal antibody therapy, depletes B cells and suppresses antibody production. This study sought to describe the efficacy and safety of rituximab among seven highly sensitized kidney transplant patients. A highly sensitized patient was defined as panel-reactive antibody (PRA) >30%, more than three pregnancies, or history of positive tissue crossmatch. Demographics, immunological risk profile, and immunosuppression were collected on all highly sensitized patients transplanted from March to July 2007 and given rituximab. We noted graft function as well as clinical events posttransplantation. The seven patients included in the study showed a mean age of 39 years (range = 17-60) and a mean follow-up of 3 months (range = 1.5-5). Their average PRA was 62% with mean HLA mismatches of three. Five patients (71%) were retransplantations; one had a history of a positive crossmatch, and two had multiple pregnancies. Two had donor-specific antibody, but negative tissue crossmatches. All had living donors. Six patients received a single dose of rituximab (375 mg/m2) 1 day prior to transplantation and one received two doses after 19 sessions of plasmapheresis. All were given tacrolimus, mycophenolate, and steroids combined with induction therapy using 30 mg alemtuzumab in 33%; two doses of 20 mg basiliximab in 33%; and seven doses of 1 mg/kg/dose of daclizumab in 14%. Mean shown creatinine levels were 1.1 and 1.2 mg/dL at 1 and 6 months posttransplantation. Two recipients experienced acute humoral rejections within 1 month after transplantation. Both were given steroid pulsing, one of whom was steroid-resistant necessitating alemtuzumab therapy and plasmapheresis. Graft function of both improved with creatinine values of 1.3 mg/dL on discharge. No episodes of infection were noted. Rituximab can be safely administered and may be effective to improve outcomes among highly sensitized kidney transplant patients.
TH-AB-207A-06: The Use of Realistic Phantoms to Predict CT Dose to Pediatric Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carver, D; Kost, S; Fraser, N
Purpose: To predict pediatric patient dose from diagnostic CT scans using Monte Carlo simulation of realistic reference phantoms of various ages, weights, and heights. Methods: A series of deformable pediatric reference phantoms using Non-Uniform Rational B-Splines (NURBS) was developed for a large range of ages, percentiles, and reference anatomy. Individual bones were modeled using age-dependent factors, and red marrow was modeled as functions of age and spatial distribution based on Cristy1. Organ and effective doses for the phantom series were calculated using Monte Carlo simulation of chest, abdominopelvic, and chest-abdomen-pelvis CT exams. Non-linear regression was performed to determine the relationshipmore » between dose-length-product (DLP)-normalized organ and effective doses and phantom diameter. Patient-specific voxel computational phantoms were also created by manual segmentation of previously acquired CT images for 40 pediatric patients (0.7 to 17 years). Organ and effective doses were determined by Monte Carlo simulation of these patient-specific phantoms. Each patient was matched to the closest pediatric reference phantom based primarily on age and diameter for all major organs within the torso. Results: A total of 80 NURBS phantoms were created ranging from newborn to 15 years with height/weight percentiles from 10 to 90%. Organ and effective dose normalized by DLP correlated strongly with exponentially decreasing average phantom diameter (R{sup 2} > 0.95 for most organs). A similar relationship was determined for the patient-specific voxel phantoms. Differences between patient-phantom matched organ-dose values ranged from 0.37 to 2.39 mGy (2.87% to 22.1%). Conclusion: Dose estimation using NURBS-based pediatric reference phantoms offers the ability to predict patient dose before and after CT examinations, and physicians and scientists can use this information in their analysis of dose prescriptions for particular subjects and study types. This may lead to practices that minimize radiation dose while still achieving high quality images and, ultimately, improved patient care. NIH/NCI 1 R01 CA155400-01A1.« less
Radiological characterization of the pressure vessel internals of the BNL High Flux Beam Reactor.
Holden, Norman E; Reciniello, Richard N; Hu, Jih-Perng
2004-08-01
In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, measurements and calculations of the decay gamma-ray dose-rate were performed in the reactor pressure vessel and on vessel internal structures such as the upper and lower thermal shields, the Transition Plate, and the Control Rod blades. Measurements of gamma-ray dose rates were made using Red Perspex polymethyl methacrylate high-dose film, a Radcal "peanut" ion chamber, and Eberline's RO-7 high-range ion chamber. As a comparison, the Monte Carlo MCNP code and MicroShield code were used to model the gamma-ray transport and dose buildup. The gamma-ray dose rate at 8 cm above the center of the Transition Plate was measured to be 160 Gy h (using an RO-7) and 88 Gy h at 8 cm above and about 5 cm lateral to the Transition Plate (using Red Perspex film). This compares with a calculated dose rate of 172 Gy h using Micro-Shield. The gamma-ray dose rate was 16.2 Gy h measured at 76 cm from the reactor core (using the "peanut" ion chamber) and 16.3 Gy h at 87 cm from the core (using Red Perspex film). The similarity of dose rates measured with different instruments indicates that using different methods and instruments is acceptable if the measurement (and calculation) parameters are well defined. Different measurement techniques may be necessary due to constraints such as size restrictions.
Multiorgan insulin sensitivity in lean and obese subjects.
Conte, Caterina; Fabbrini, Elisa; Kars, Marleen; Mittendorfer, Bettina; Patterson, Bruce W; Klein, Samuel
2012-06-01
To provide a comprehensive assessment of multiorgan insulin sensitivity in lean and obese subjects with normal glucose tolerance. The hyperinsulinemic-euglycemic clamp procedure with stable isotopically labeled tracer infusions was performed in 40 obese (BMI 36.2 ± 0.6 kg/m(2), mean ± SEM) and 26 lean (22.5 ± 0.3 kg/m(2)) subjects with normal glucose tolerance. Insulin was infused at different rates to achieve low, medium, and high physiological plasma concentrations. In obese subjects, palmitate and glucose R(a) in plasma decreased with increasing plasma insulin concentrations. The decrease in endogenous glucose R(a) was greater during low-, medium-, and high-dose insulin infusions (69 ± 2, 74 ± 2, and 90 ± 2%) than the suppression of palmitate R(a) (52 ± 4, 68 ± 1, and 79 ± 1%). Insulin-mediated increase in glucose disposal ranged from 24 ± 5% at low to 253 ± 19% at high physiological insulin concentrations. The suppression of palmitate R(a) and glucose R(a) were greater in lean than obese subjects during low-dose insulin infusion but were the same in both groups during high-dose insulin infusion, whereas stimulation of glucose R(d) was greater in lean than obese subjects across the entire physiological range of plasma insulin. Endogenous glucose production and adipose tissue lipolytic rate are both very sensitive to small increases in circulating insulin, whereas stimulation of muscle glucose uptake is minimal until high physiological plasma insulin concentrations are reached. Hyperinsulinemia within the normal physiological range can compensate for both liver and adipose tissue insulin resistance, but not skeletal muscle insulin resistance, in obese people who have normal glucose tolerance.
Sun, Haoyu; Calabrese, Edward J; Zheng, Min; Wang, Dali; Pan, Yongzheng; Lin, Zhifen; Liu, Ying
2018-08-01
Hormesis occurs frequently in broadly ranging biological areas (e.g. plant biology, microbiology, biogerontology), toxicology, pharmacology and medicine. While numerous mechanisms (e.g. receptor and pathway mediated pathway responses) account for stimulatory and inhibitory features of hormetic dose responses, the vast majority emphasizes the inclusion of many doses but only one timepoint or use of a single optimized dose that is assessed over a broad range of timepoints. In this paper, a toxicity study was designed using a large number of properly spaced doses with responses determined over a large number of timepoints, which could help us reveal the underlying mechanism of hormesis. We present the results of a dose-time-response study on hormesis using five antibacterial chemicals on the bioluminescence of Aliivibrio fischeri, measuring expression of protein mRNA based on quorum sensing, simulating bioluminescent reaction and analyzing toxic actions of test chemicals. The findings show dose-time-dependent responses conforming to the hormetic dose-response model, while revealing unique response dynamics between agent induced stimulatory and inhibitory effects within bacterial growth phase dynamics. These dynamic dose-time features reveal a type of biological seesaw model that integrates stimulatory and inhibitory responses within unique growth phase, dose and time features, which has faultlessly explained the time-dependent hormetic phenomenon induced by five antibacterial chemicals (characterized by low-dose stimulation and high-dose inhibition). This study offers advances in understanding cellular dynamics, the biological integration of diverse and opposing responses and their role in evolutionary adaptive strategies to chemicals, which can provide new insight into the mechanistic investigation of hormesis. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirey, R; Wu, H
2016-06-15
Purpose: Treatment planning systems (TPS) may not accurately model superficial dose distributions of range shifted proton pencil beam scanning (PBS) treatments. Numerous patient-specific QA tests performed on superficially treated PBS plans have shown a consistent overestimate of dose by the TPS. This study quantifies variations between TPS planned dose and measured dose as a function of range shifter air gap and treatment depths up to 5 cm. Methods: PBS treatment plans were created in the TPS to uniformly irradiate a volume of solid water. One plan was created for each range shifter position analyzed, and all plans utilized identical dosemore » optimization parameters. Each optimized plan was analyzed in the TPS to determine the planned dose at varying depths. A PBS proton therapy system with a 3.5 cm lucite range shifter delivered the treatment plans, and a parallel plate chamber embedded in RW3 solid water measured dose at shallow depths for each air gap. Differences between measured and planned doses were plotted and analyzed. Results: The data show that the TPS more accurately models superficial dose as the air gap between the range shifter and patient surface decreases. Air gaps less than 10 cm have an average dose difference of only 1.6%, whereas air gaps between 10 and 20 cm differ by 3.0% and gaps greater than 20 cm differ by 4.4%. Conclusion: This study has shown that the TPS is unable to accurately model superficial dose with a large range shifter air gap. Dose differences greater than 3% will likely cause QA failure, as many institutions analyze patient QA with a 3%/3mm gamma analysis. For superficial PBS therapy, range shifter positions should be chosen to keep the air gap less then 10 cm when patient setup and gantry geometry allow.« less
Tran, Van; Little, Mark P
2017-11-01
Murine experiments were conducted at the JANUS reactor in Argonne National Laboratory from 1970 to 1992 to study the effect of acute and protracted radiation dose from gamma rays and fission neutron whole body exposure. The present study reports the reanalysis of the JANUS data on 36,718 mice, of which 16,973 mice were irradiated with neutrons, 13,638 were irradiated with gamma rays, and 6107 were controls. Mice were mostly Mus musculus, but one experiment used Peromyscus leucopus. For both types of radiation exposure, a Cox proportional hazards model was used, using age as timescale, and stratifying on sex and experiment. The optimal model was one with linear and quadratic terms in cumulative lagged dose, with adjustments to both linear and quadratic dose terms for low-dose rate irradiation (<5 mGy/h) and with adjustments to the dose for age at exposure and sex. After gamma ray exposure there is significant non-linearity (generally with upward curvature) for all tumours, lymphoreticular, respiratory, connective tissue and gastrointestinal tumours, also for all non-tumour, other non-tumour, non-malignant pulmonary and non-malignant renal diseases (p < 0.001). Associated with this the low-dose extrapolation factor, measuring the overestimation in low-dose risk resulting from linear extrapolation is significantly elevated for lymphoreticular tumours 1.16 (95% CI 1.06, 1.31), elevated also for a number of non-malignant endpoints, specifically all non-tumour diseases, 1.63 (95% CI 1.43, 2.00), non-malignant pulmonary disease, 1.70 (95% CI 1.17, 2.76) and other non-tumour diseases, 1.47 (95% CI 1.29, 1.82). However, for a rather larger group of malignant endpoints the low-dose extrapolation factor is significantly less than 1 (implying downward curvature), with central estimates generally ranging from 0.2 to 0.8, in particular for tumours of the respiratory system, vasculature, ovary, kidney/urinary bladder and testis. For neutron exposure most endpoints, malignant and non-malignant, show downward curvature in the dose response, and for most endpoints this is statistically significant (p < 0.05). Associated with this, the low-dose extrapolation factor associated with neutron exposure is generally statistically significantly less than 1 for most malignant and non-malignant endpoints, with central estimates mostly in the range 0.1-0.9. In contrast to the situation at higher dose rates, there are statistically non-significant decreases of risk per unit dose at gamma dose rates of less than or equal to 5 mGy/h for most malignant endpoints, and generally non-significant increases in risk per unit dose at gamma dose rates ≤5 mGy/h for most non-malignant endpoints. Associated with this, the dose-rate extrapolation factor, the ratio of high dose-rate to low dose-rate (≤5 mGy/h) gamma dose response slopes, for many tumour sites is in the range 1.2-2.3, albeit not statistically significantly elevated from 1, while for most non-malignant endpoints the gamma dose-rate extrapolation factor is less than 1, with most estimates in the range 0.2-0.8. After neutron exposure there are non-significant indications of lower risk per unit dose at dose rates ≤5 mGy/h compared to higher dose rates for most malignant endpoints, and for all tumours (p = 0.001), and respiratory tumours (p = 0.007) this reduction is conventionally statistically significant; for most non-malignant outcomes risks per unit dose non-significantly increase at lower dose rates. Associated with this, the neutron dose-rate extrapolation factor is less than 1 for most malignant and non-malignant endpoints, in many cases statistically significantly so, with central estimates mostly in the range 0.0-0.2.
Sankar, A; Ayyangar, Komanduri M; Nehru, R Mothilal; Kurup, P G Gopalakrishna; Murali, V; Enke, Charles A; Velmurugan, J
2006-01-01
The quantitative dose validation of intensity-modulated radiation therapy (IMRT) plans require 2-dimensional (2D) high-resolution dosimetry systems with uniform response over its sensitive region. The present work deals with clinical use of commercially available self-developing Radio Chromic Film, Gafchromic EBT film, for IMRT dose verification. Dose response curves were generated for the films using a VXR-16 film scanner. The results obtained with EBT films were compared with the results of Kodak extended dose range 2 (EDR2) films. The EBT film had a linear response between the dose range of 0 to 600 cGy. The dose-related characteristics of the EBT film, such as post irradiation color growth with time, film uniformity, and effect of scanning orientation, were studied. There was up to 8.6% increase in the color density between 2 to 40 hours after irradiation. There was a considerable variation, up to 8.5%, in the film uniformity over its sensitive region. The quantitative differences between calculated and measured dose distributions were analyzed using DTA and Gamma index with the tolerance of 3% dose difference and 3-mm distance agreement. The EDR2 films showed consistent results with the calculated dose distributions, whereas the results obtained using EBT were inconsistent. The variation in the film uniformity limits the use of EBT film for conventional large-field IMRT verification. For IMRT of smaller field sizes (4.5 x 4.5 cm), the results obtained with EBT were comparable with results of EDR2 films.
High-dose short-term administration of naringin did not alter talinolol pharmacokinetics in humans.
Nguyen, M A; Staubach, P; Tamai, I; Langguth, P
2015-02-20
Naringin is considered the major causative ingredient of the inhibition of intestinal drug uptake by grapefruit juice. Moreover, it is contained in highly dosed nutraceuticals available on the market. A controlled, open, randomized, crossover study was performed in 10 healthy volunteers to investigate the effect of high-dose naringin on the bioavailability of talinolol, a substrate of intestinal organic anion-transporting polypeptide (OATP)-mediated uptake. Following 6-day supplementation with 3 capsules of 350 mg naringin daily, 100mg talinolol were administered orally with 3 capsules of the same dietary supplement (1050 mg naringin) on the seventh day. This test treatment was compared to 100mg talinolol only (control). The results showed that short-term high-dose naringin supplementation did not significantly affect talinolol pharmacokinetics. Geometric mean ratios of test versus control ranged between 0.90 and 0.98 for talinolol c(max), AUC(0-48 h), AUC(0-∞), t(1/2) and A(e(0-48 h)). The high dose may provoke inhibition of the efflux transporter P-glycoprotein (P-gp) which counteracts the uptake inhibition. As disintegration and dissolution processes are required for the solid dosage form, dissolved naringin may arrive at the site of interaction after talinolol is already absorbed. In conclusion, the effect of nutraceuticals on drug pharmacokinetics can deviate from that observed when administered as food component due to the different dose and dosage form. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorissen, BL; Giantsoudi, D; Unkelbach, J
Purpose: Cell survival experiments suggest that the relative biological effectiveness (RBE) of proton beams depends on linear energy transfer (LET), leading to higher RBE near the end of range. With intensity-modulated proton therapy (IMPT), multiple treatment plans that differ in the dose contribution per field may yield a similar physical dose distribution, but the RBE-weighted dose distribution may be disparate. RBE models currently do not have the required predictive power to be included in an optimization model due to the variations in experimental data. We propose an LET-based planning method that guides IMPT optimization models towards plans with reduced RBE-weightedmore » dose in surrounding organs at risk (OARs) compared to inverse planning based on physical dose alone. Methods: Optimization models for physical dose are extended with a term for dose times LET (doseLET). Monte Carlo code is used to generate the physical dose and doseLET distribution of each individual pencil beam. The method is demonstrated for an atypical meningioma patient where the target volume abuts the brainstem and partially overlaps with the optic nerve. Results: A reference plan optimized based on physical dose alone yields high doseLET values in parts of the brainstem and optic nerve. Minimizing doseLET in these critical structures as an additional planning goal reduces the risk of high RBE-weighted dose. The resulting treatment plan avoids the distal fall-off of the Bragg peaks for shaping the dose distribution in front of critical stuctures. The maximum dose in the OARs evaluated with RBE models from literature is reduced by 8–14\\% with our method compared to conventional planning. Conclusion: LET-based inverse planning for IMPT offers the ability to reduce the RBE-weighted dose in OARs without sacrificing target dose. This project was in part supported by NCI - U19 CA 21239.« less
Staff Radiation Doses in a Real-Time Display Inside the Angiography Room
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Roberto, E-mail: rmsanchez.hcsc@salud.madrid.org; Vano, E.; Fernandez, J. M.
MethodsThe evaluation of a new occupational Dose Aware System (DAS) showing staff radiation doses in real time has been carried out in several angiography rooms in our hospital. The system uses electronic solid-state detectors with high-capacity memory storage. Every second, it archives the dose and dose rate measured and is wirelessly linked to a base-station screen mounted close to the diagnostic monitors. An easy transfer of the values to a data sheet permits further analysis of the scatter dose profile measured during the procedure, compares it with patient doses, and seeks to find the most effective actions to reduce operatormore » exposure to radiation.ResultsThe cumulative occupational doses measured per procedure (shoulder-over lead apron) ranged from 0.6 to 350 {mu}Sv when the ceiling-suspended screen was used, and DSA (Digital Subtraction Acquisition) runs were acquired while the personnel left the angiography room. When the suspended screen was not used and radiologists remained inside the angiography room during DSA acquisitions, the dose rates registered at the operator's position reached up to 1-5 mSv/h during fluoroscopy and 12-235 mSv/h during DSA acquisitions. In such case, the cumulative scatter dose could be more than 3 mSv per procedure.ConclusionReal-time display of doses to staff members warns interventionists whenever the scatter dose rates are too high or the radiation protection tools are not being properly used, providing an opportunity to improve personal protection accordingly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viel, Francis; Duzenli, Cheryl; British Columbia Cancer Agency, Department of Medical Physics, Vancouver Centre
2014-08-15
Introduction: Radiation detector responses can be affected by dose rate. Due to higher dose per pulse and wider range of mu rates in FFF beams, detector responses should be characterized prior to implementation of QA protocols for FFF beams. During VMAT delivery, the MU rate may also vary dramatically within a treatment fraction. This study looks at the dose per pulse variation throughout a 3D volume for typical VMAT plans and the response characteristics for a variety of detectors, and makes recommendations on the design of QA protocols for FFF VMAT QA. Materials and Methods: Linac log file data andmore » a simplified dose calculation algorithm are used to calculate dose per pulse for a variety of clinical VMAT plans, on a voxel by voxel basis, as a function of time in a cylindrical phantom. Diode and ion chamber array responses are characterized over the relevant range of dose per pulse and dose rate. Results: Dose per pulse ranges from <0.1 mGy/pulse to 1.5 mGy/pulse in a typical VMAT treatment delivery using the 10XFFF beam. Diode detector arrays demonstrate increased sensitivity to dose (+./− 3%) with increasing dose per pulse over this range. Ion chamber arrays demonstrate decreased sensitivity to dose (+/− 1%) with increasing dose rate over this range. Conclusions: QA protocols should be designed taking into consideration inherent changes in detector sensitivity with dose rate. Neglecting to account for changes in detector response with dose per pulse can lead to skewed QA results.« less
Proschek, Dirk; Kafchitsas, K.; Rauschmann, M. A.; Kurth, A. A.; Vogl, T. J.
2008-01-01
Interventional procedures are associated with high radiation doses for both patients and surgeons. To reduce the risk from ionizing radiation, it is essential to minimize radiation dose. This prospective study was performed to evaluate the effectiveness in reducing radiation dose during facet joint injection in the lumbar spine and to evaluate the feasibility and possibilities of the new real time image guidance system SabreSource™. A total of 60 patients, treated with a standardized injection therapy of the facet joints L4–L5 or L5–S1, were included in this study. A total of 30 patients were treated by fluoroscopy guidance alone, the following 30 patients were treated using the new SabreSource™ system. Thus a total of 120 injections to the facet joints were performed. Pain, according to the visual analogue scale (VAS), was documented before and 6 h after the intervention. Radiation dose, time of radiation and the number of exposures needed to place the needle were recorded. No significant differences concerning age (mean age 60.5 years, range 51–69), body mass index (mean BMI 26.2, range 22.2–29.9) and preoperative pain (VAS 7.9, range 6–10) were found between the two groups. There was no difference in pain reduction between the two groups (60 vs. 61.5%; P = 0.001) but the radiation dose was significantly smaller with the new SabreSource™ system (reduction of radiation dose 32.7%, P = 0.01; reduction of mean entrance surface dose 32.3%, P = 0.01). The SabreSource™ System significantly reduced the radiation dose received during the injection therapy of the lumbar facet joints. With minimal effort for the setup at the beginning of a session, the system is easy to handle and can be helpful for other injection therapies (e.g. nerve root block therapies). PMID:19082641
2016-01-01
Background: Abundant evidence at the anatomical, electrophysiological, and molecular levels implicates metabotropic glutamate receptor subtype 5 (mGluR5) in addiction. Consistently, the effects of a wide range of doses of different mGluR5 negative allosteric modulators (NAMs) have been tested in various animal models of addiction. Here, these studies were subjected to a systematic review to find out if mGluR5 NAMs have a therapeutic potential that can be translated to the clinic. Methods: Literature on consumption/self-administration and reinstatement of drug seeking as outcomes of interest published up to April 2015 was retrieved via PubMed. The review focused on the effects of systemic (i.p., i.v., s.c.) administration of the mGluR5 NAMs 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP) and 2-Methyl-6-(phenylethynyl)pyridine (MPEP) on paradigms with cocaine, ethanol, nicotine, and food in rats. Results: MTEP and MPEP were found to reduce self-administration of cocaine, ethanol, and nicotine at doses ≥1mg/kg and 2.5mg/kg, respectively. Dose-response relationship resembled a sigmoidal curve, with low doses not reaching statistical significance and high doses reliably inhibiting self-administration of drugs of abuse. Importantly, self-administration of cocaine, ethanol, and nicotine, but not food, was reduced by MTEP and MPEP in the dose range of 1 to 2mg/kg and 2.5 to 3.2mg/kg, respectively. This dose range corresponds to approximately 50% to 80% mGluR5 occupancy. Interestingly, the limited data found in mice and monkeys showed a similar therapeutic window. Conclusion: Altogether, this review suggests a therapeutic window for mGluR5 NAMs that can be translated to the treatment of substance-related and addictive disorders. PMID:26802568
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ik Jae; Koom, Woong Sub; Lee, Chang Geol, E-mail: cglee1023@yuhs.a
2009-11-15
Purpose: To analyze risk factors and the dose-effect relationship for osteoradionecrosis (ORN) of the mandible after radiotherapy of oral and oropharyngeal cancers. Materials and Methods: One-hundred ninety-eight patients with oral (45%) and oropharyngeal cancer (55%) who had received external radiotherapy between 1990 and 2000 were retrospectively reviewed. All patients had a dental evaluation before radiotherapy. The median radiation dose was 60 Gy (range, 16-75 Gy), and the median biologically effective dose for late effects (BED{sub late}) in bone was 114 Gy{sub 2} (range, 30-167 Gy{sub 2}). Results: The frequency of ORN was 13 patients (6.6%). Among patients with mandibular surgery,more » eight had ORN at the surgical site. Among patients without mandibular surgery, five patients had ORN on the molar area of the mandible. The median time to ORN was 22 months (range, 1-69 months). Univariate analysis revealed that mandibular surgery and Co-60 were significant risk factors for ORN (p = 0.01 and 0.04, respectively). In multivariate analysis, mandibular surgery was the most important factor (p = 0.001). High radiation doses over BED 102.6 Gy{sub 2} (conventional dose of 54 Gy at 1.8 Gy/fraction) were also a significant factor for ORN (p = 0.008) and showed a positive dose-effect relationship in logistic regression (p = 0.04) for patients who had undergone mandibular surgery. Conclusions: Mandibular surgery was the most significant risk factor for ORN of mandible in oral and oropharyngeal cancers patients. A BED of 102.6 Gy{sub 2} or higher to the mandible also significantly increases the risk of ORN.« less
SU-E-CAMPUS-J-06: The Impact of CT-Scan Energy On Range Uncertainty in Proton Therapy Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grantham, K; Li, H; Zhao, T
2014-06-15
Purpose: To investigate the impact of tube potential (kVp) on the CTnumber (HU) to proton stopping power ratio (PSPR) conversion table; the range uncertainty and the dosimetric change introduced by a mismatch in kVp between the CT and the HU to PSPR table used to calculate dose are analyzed. Methods: A CIRS CT-ED phantom was scanned with a Philips Brilliance 64-slice scanner under 90kVp and 120kVp tube potentials. Two HU to PSPR curves were then created. Using Eclipse (Varian) a treatment plan was created for a single beam in a water phantom (HU=0) passing through a wedge-shaped heterogeneity (HU=1488). Themore » dose was recalculated by changing only the HU to PSPR table used in the dose calculation. The change in range (the distal 90% isodose line) relative to a distal structure was recorded as a function of heterogeneity thickness in the beam. To show the dosimetric impact of a mismatch in kVp between the CT and the HU to PSPR table, we repeated this procedure using a clinical plan comparing DVH data. Results: The HU to PSPR tables diverge for low-density bone and higher density structures. In the phantom plan, the divergence of the tables results in a change in range of ~1mm per cm of bone in the beam path for the HU used. For the clinical plan, a mismatch in kVp showed a 28% increase in mean dose to the brainstem along with a 10% increase in maximum dose to the brainstem center. Conclusion: A mismatch in kVp between the CT and the HU to PSPR table can introduce significant uncertainty in the proton beam range. For dense bone, the measured range uncertainty is about 1mm per cm of bone in the beam. CT-scan energy verification should be employed, particularly when high-density media is in the proton beam path.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dynan, William S.
The goal of the project was to determine whether high linear energy transfer (LET) space radiation produces the same or different effects as low doses of terrestrial (low-LET) radiation. The work used the Japanese medaka fish (Oryzias latipes) as a vertebrate model organism that can be maintained in large numbers at low cost for lifetime studies. To determine whether simulated space radiation produced the same or different effects as low doses of low-LET radiation, medaka embryos were irradiated at doses ranging from 0.1 to 9 Gray (Gy) of high-LET charged particle radiation (1000 MeV/nucleon 56-Fe ions) or 0.1 Gy tomore » 27 Gy of low-LET gamma-rays. To examine the effect of irradiation on potential biomarkers, the population was sampled at intervals from 8 to 28 months post-irradiation and liver tissue was subjected to histological and molecular analysis. Charged particle radiation and aging contributed synergistically to accumulation of lipid oxidation products, which are a marker of chronic oxidative stress. This was mirrored by a decline in mRNA encoding the transcriptional activator PPARGC1A, which is required for mitochondrial maintenance and for defense against oxidative stress. Additionally, mitochondria had an elongated and enlarged ultrastructure. Depending on the endpoint, effects of gamma-rays in the same dose range were either lesser or not detected. Together, results indicate that a single exposure to high-LET, but not low-LET radiation, early in life, leads to increased oxidative stress throughout the normal lifespan of the individual.« less
Balásházy, Imre; Farkas, Arpád; Madas, Balázs Gergely; Hofmann, Werner
2009-06-01
Cellular hit probabilities of alpha particles emitted by inhaled radon progenies in sensitive bronchial epithelial cell nuclei were simulated at low exposure levels to obtain useful data for the rejection or support of the linear-non-threshold (LNT) hypothesis. In this study, local distributions of deposited inhaled radon progenies in airway bifurcation models were computed at exposure conditions characteristic of homes and uranium mines. Then, maximum local deposition enhancement factors at bronchial airway bifurcations, expressed as the ratio of local to average deposition densities, were determined to characterise the inhomogeneity of deposition and to elucidate their effect on resulting hit probabilities. The results obtained suggest that in the vicinity of the carinal regions of the central airways the probability of multiple hits can be quite high, even at low average doses. Assuming a uniform distribution of activity there are practically no multiple hits and the hit probability as a function of dose exhibits a linear shape in the low dose range. The results are quite the opposite in the case of hot spots revealed by realistic deposition calculations, where practically all cells receive multiple hits and the hit probability as a function of dose is non-linear in the average dose range of 10-100 mGy.
Sookpeng, S; Martin, C J; Gentle, D J; Lopez-Gonzalez, M R
2014-03-01
Automatic tube current modulation (ATCM) systems are now used for the majority of CT scans. The principles of ATCM operation are different in CT scanners from different manufacturers. Toshiba and GE scanners base the current modulation on a target noise setting, while Philips and Siemens scanners use reference image and reference mAs concepts respectively. Knowledge of the relationships between patient size, dose and image noise are important for CT patient dose optimisation. In this study, the CT patient doses were surveyed for 14 CT scanners from four different CT scanner manufacturers. The patient cross sectional area, the tube current modulation and the image noise from the CT images were analysed using in-house software. The Toshiba and GE scanner results showed that noise levels are relatively constant but tube currents are dependent on patient size. As a result of this there is a wide range in tube current values across different patient sizes, and doses for large patients are significantly higher in these scanners. In contrast, in the Philips and Siemens scanners, tube currents are less dependent on patient size, the range in tube current is narrower, and the doses for larger patients are not as high. Image noise is more dependent on the patient size.
Ban, Nobuhiko; Takahashi, Fumiaki; Ono, Koji; Hasegawa, Takayuki; Yoshitake, Takayasu; Katsunuma, Yasushi; Sato, Kaoru; Endo, Akira; Kai, Michiaki
2011-07-01
A web-based dose computation system, WAZA-ARI, is being developed for patients undergoing X-ray CT examinations. The system is implemented in Java on a Linux server running Apache Tomcat. Users choose scanning options and input parameters via a web browser over the Internet. Dose coefficients, which were calculated in a Japanese adult male phantom (JM phantom) are called upon user request and are summed over the scan range specified by the user to estimate a normalised dose. Tissue doses are finally computed based on the radiographic exposure (mA s) and the pitch factor. While dose coefficients are currently available only for limited CT scanner models, the system has achieved a high degree of flexibility and scalability without the use of commercial software.
Polettini, Aldo; Cone, Edward J.; Gorelick, David A.; Huestis, Marilyn A.
2012-01-01
Background Although hair testing is well established for the assessment of past drug exposure, uncertainties persist about mechanisms of drug incorporation into hair and interpretation of results. The aim of this study was to administer methamphetamine (MAMP) under controlled conditions as a model drug to investigate drug incorporation into human hair. Material and Methods Seven volunteers with a history of stimulant use received 4×10 mg (low) doses of sustained release S-(+)-MAMP HCl within one week, with weekly head hair samples collected by shaving. 3 weeks later, 4 of them received 4×20 mg (high) doses. After extensive isopropanol/phosphate buffer washing of the hair, MAMP and its metabolite amphetamine (AMP) concentrations were determined in all weekly hair samples by LC-MS-MS in selected reaction monitoring mode with the undeca- and deca-deuterated drugs, respectively, as internal standards (LLOQ, 0.005 ng/mg). Results MAMP Tmax occurred from 1 to 2 weeks after both doses, with Cmax ranging from 0.6–3.5 ng/mg after the low and 1.2–5.3 ng/mg after the high MAMP doses. AMP Cmax in hair was 0.1–0.3 ng/mg and 0.2–0.5 ng/mg, respectively, for low and high doses. Highly dose–related concentrations within subjects, but large variability between subjects were observed. MAMP concentrations were above the 0.2 ng/mg cutoff for at least two weeks following administration of both low and high doses. The overall AMP/MAMP ratio ranged from 0.07 to 0.37 with a mean value of 0.15±0.07, and a median of 0.13. The percentage of MAMP and AMP removed with the washing procedure decreased with time after administration. A strong correlation was found between area under the curve of MAMP (r2=0.90, p=0.00) and AMP (r2=0.94, p=0.00) concentrations calculated for the 3-week period following administration and the total melanin concentration in hair. Significant correlations were observed also between Cmax and melanin. Conclusions This study demonstrated that despite large inter-individual differences, the incorporation of MAMP and AMP into hair is dose-related with much of the observed scatter of MAMP and AMP concentrations explained by melanin concentration in hair. PMID:22541011
Huh, Seung Jae; Lim, Do Hoon; Ahn, Yong Chan; Lee, Jeong Eun; Kang, Min Kyu; Shin, Seong Soo; Shin, Kyung Hwan; Kim, Bokyung; Park, Won; Han, Youngyih
2003-03-01
To investigate the correlation between late rectal complications and rectal dose in cervix cancer patients treated with high-dose-rate intracavitary radiotherapy (HDR ICR) and to analyze factors reducing rectal complications. A total of 136 patients with cervix cancer who were treated with external beam radiotherapy (EBRT) and HDR ICR from 1995 to 1999 were retrospectively analyzed. Radiotherapy (RT) consisted of EBRT plus HDR ICR. The median EBRT dose was 50.4 Gy, and midline block was done after 30-50 Gy of EBRT. A total of six fractions of HDR ICR with 4 Gy fraction size each were applied twice per week to the A point. The rectal dose was calculated at the rectal reference point using the barium contrast criteria. In vivo measurement of the rectal dose was performed with thermoluminescent dosimeter (TLD) during HDR ICR. The median follow-up period was 26 months (range 6-60 months). A total of 16 patients (12%) experienced rectal bleeding, which occurred 4-33 months (median 11 months) after the completion of RT. The calculated rectal doses did not differ in patients with rectal bleeding and those without, but the measured rectal doses were higher in affected patients. The differences of the measured ICR fractional rectal dose, ICR total rectal dose, and total rectal biologically equivalent dose (BED) were statistically significant. When the measured ICR total rectal dose exceeded 16 Gy, the ratio of the measured rectal dose to A point dose was > 70%; when the measured rectal BED exceeded 110 Gy(3), a high possibility of late rectal complications could be found. In vivo dosimetry using TLD during HDR ICR was a good predictor of late rectal complications. Hence, if data from in vivo dosimetry shows any possibility of rectal bleeding, efforts should be made to reduce the rectal dose.
Shirasaka, Takashi; Funama, Yoshinori; Hayashi, Mutsukazu; Awamoto, Shinichi; Kondo, Masatoshi; Nakamura, Yasuhiko; Hatakenaka, Masamitsu; Honda, Hiroshi
2012-01-01
Our purpose in this study was to assess the radiation dose reduction and the actual exposed scan length of over-range areas using a spiral dynamic z-collimator at different beam pitches and detector coverage. Using glass rod dosimeters, we measured the unilateral over-range scan dose between the beginning of the planned scan range and the beginning of the actual exposed scan range. Scanning was performed at detector coverage of 80.0 and 40.0 mm, with and without the spiral dynamic z-collimator. The dose-saving ratio was calculated as the ratio of the unnecessary over-range dose, with and without the spiral dynamic z-collimator. In 80.0 mm detector coverage without the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 108, 120, and 126 mm, corresponding to a beam pitch of 0.60, 0.80, and 0.99, respectively. With the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 48, 66, and 84 mm with a beam pitch of 0.60, 0.80, and 0.99, respectively. The dose-saving ratios with and without the spiral dynamic z-collimator for a beam pitch of 0.60, 0.80, and 0.99 were 35.07, 24.76, and 13.51%, respectively. With 40.0 mm detector coverage, the dose-saving ratios with and without the spiral dynamic z-collimator had the highest value of 27.23% with a low beam pitch of 0.60. The spiral dynamic z-collimator is important for a reduction in the unnecessary over-range dose and makes it possible to reduce the unnecessary dose by means of a lower beam pitch.
Radiation Dose Testing on Juno High Voltage Cables
NASA Technical Reports Server (NTRS)
Green, Nelson W.; Kirkham, Harold; Kim, Wousik; McAlpine, Bill
2008-01-01
The Juno mission to Jupiter will have a highly elliptical orbit taking the spacecraft through the radiation belts surrounding the planet. During these passes through the radiation belts, the spacecraft will be subject to high doses of radiation from energetic electrons and protons with energies ranging from 10 keV to 1 GeV. While shielding within the spacecraft main body will reduce the total absorbed dose to much of the spacecraft electronics, instruments and cables on the outside of the spacecraft will receive much higher levels of absorbed dose. In order to estimate the amount of degradation to two such cables, testing has been performed on two coaxial cables intended to provide high voltages to three of the instruments on Juno. Both cables were placed in a vacuum of 5x10(exp -6) torr and cooled to -50(deg)C prior to exposure to the radiation sources. Measurements of the coaxial capacitance per unit length and partial discharge noise floor indicate that increasing levels of radiation make measurable but acceptably small changes to the F EP Teflon utilized in the construction of these cables. In addition to the radiation dose testing, observations were made on the internal electrostatic charging characteristics of these cables and multiple discharges were recorded.
Radiation Dose Testing on Juno High Voltage Cables
NASA Technical Reports Server (NTRS)
Green, Nelson W.; Kirkham, Harold; Kim, Wousik; McAlpine, Bill
2008-01-01
The Juno mission to Jupiter will have a highly elliptical orbit taking the spacecraft through the radiation belts surrounding the planet. During these passes through the radiation belts, the spacecraft will be subject to high doses of radiation from energetic electrons and protons with energies ranging from 10 keV to 1 GeV. While shielding within the spacecraft main body will reduce the total absorbed dose to much of the spacecraft electronics, instruments and cables on the outside of the spacecraft will receive much higher levels of absorbed dose. In order to estimate the amount of degradation to two such cables, testing has been performed on two coaxial cables intended to provide high voltages to three of the instruments on Juno. Both cables were placed in a vacuum of 5x10-6 torr and cooled to -50 C prior to exposure to the radiation sources. Measurements of the coaxial capacitance per unit length and partial discharge noise floor indicate that increasing levels of radiation make measurable but acceptably small changes to the F EP Teflon utilized in the construction of these cables. In addition to the radiation dose testing, observations were made on the internal electrostatic charging characteristics of these cables and multiple discharges were recorded.
Radiation dose in the high background radiation area in Kerala, India.
Christa, E P; Jojo, P J; Vaidyan, V K; Anilkumar, S; Eappen, K P
2012-03-01
A systematic radiological survey has been carried out in the region of high-background radiation area in Kollam district of Kerala to define the natural gamma-radiation levels. One hundred and forty seven soil samples from high-background radiation areas and five samples from normal background region were collected as per standard sampling procedures and were analysed for (238)U, (232)Th and (40)K by gamma-ray spectroscopy. External gamma dose rates at all sampling locations were also measured using a survey meter. The activities of (238)U, (232)Th and (40)K was found to vary from 17 to 3081 Bq kg(-1), 54 to 11976 Bq kg(-1) and BDL (67.4 Bq kg(-1)) to 216 Bq kg(-1), respectively, in the study area. Such heterogeneous distribution of radionuclides in the region may be attributed to the deposition phenomenon of beach sand soil in the region. Radium equivalent activities were found high in several locations. External gamma dose rates estimated from the levels of radionuclides in soil had a range from 49 to 9244 nGy h(-1). The result of gamma dose rate measured at the sampling sites using survey meter showed an excellent correlation with dose rates computed from the natural radionuclides estimated from the soil samples.
Koulchitsky, Stanislav; Delairesse, Charlotte; Beeken, Thom; Monteforte, Alexandre; Dethier, Julie; Quertemont, Etienne; Findeisen, Rolf; Bullinger, Eric; Seutin, Vincent
2016-09-01
Psychoactive substances affecting the dopaminergic system induce locomotor activation and, in high doses, stereotypies. Network mechanisms underlying the shift from an active goal-directed behavior to a "seemingly purposeless" stereotypic locomotion remain unclear. In the present study we sought to determine the relationships between the behavioral effects of dopaminergic drugs and their effects on local field potentials (LFPs), which were telemetrically recorded within the ventral tegmental area (VTA) of freely moving rats. We used the D2/D3 agonist quinpirole in a low, autoreceptor-selective (0.1 mg/kg, i.p.) and in a high (0.5 mg/kg, i.p.) dose, and a moderate dose of cocaine (10 mg/kg, i.p.). In the control group, power spectrum analysis revealed a prominent peak of LFP power in the theta frequency range during active exploration. Cocaine alone stimulated locomotion, but had no significant effect on the peak of the LFP power. In contrast, co-administration of low dose quinpirole with cocaine markedly altered the pattern of locomotion, from goal-directed exploratory behavior to recurrent motion resembling locomotor stereotypy. This behavioral effect was accompanied by a shift of the dominant theta power toward a significantly lower (by ∼15%) frequency. High dose quinpirole also provoked an increased locomotor activity with signs of behavioral stereotypies, and also induced a shift of the dominant oscillation frequency toward the lower range. These results demonstrate a correlation between the LFP oscillation frequency within the VTA and a qualitative aspect of locomotor behavior, perhaps due to a variable level of coherence of this region with its input or output areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Able, Charles M., E-mail: cable@wfubmc.edu; Bright, Megan; Frizzell, Bart
Purpose: Statistical process control (SPC) is a quality control method used to ensure that a process is well controlled and operates with little variation. This study determined whether SPC was a viable technique for evaluating the proper operation of a high-dose-rate (HDR) brachytherapy treatment delivery system. Methods and Materials: A surrogate prostate patient was developed using Vyse ordnance gelatin. A total of 10 metal oxide semiconductor field-effect transistors (MOSFETs) were placed from prostate base to apex. Computed tomography guidance was used to accurately position the first detector in each train at the base. The plan consisted of 12 needles withmore » 129 dwell positions delivering a prescribed peripheral dose of 200 cGy. Sixteen accurate treatment trials were delivered as planned. Subsequently, a number of treatments were delivered with errors introduced, including wrong patient, wrong source calibration, wrong connection sequence, single needle displaced inferiorly 5 mm, and entire implant displaced 2 mm and 4 mm inferiorly. Two process behavior charts (PBC), an individual and a moving range chart, were developed for each dosimeter location. Results: There were 4 false positives resulting from 160 measurements from 16 accurately delivered treatments. For the inaccurately delivered treatments, the PBC indicated that measurements made at the periphery and apex (regions of high-dose gradient) were much more sensitive to treatment delivery errors. All errors introduced were correctly identified by either the individual or the moving range PBC in the apex region. Measurements at the urethra and base were less sensitive to errors. Conclusions: SPC is a viable method for assessing the quality of HDR treatment delivery. Further development is necessary to determine the most effective dose sampling, to ensure reproducible evaluation of treatment delivery accuracy.« less
Butterworth, K T; Coulter, J A; Jain, S; Forker, J; McMahon, S J; Schettino, G; Prise, K M; Currell, F J; Hirst, D G
2010-01-01
High atomic number (Z) materials such as gold preferentially absorb kilovoltage x-rays compared to soft tissue and may be used to achieve local dose enhancement in tumours during treatment with ionizing radiation. Gold nanoparticles have been demonstrated as radiation dose enhancing agents in vivo and in vitro. In the present study, we used multiple endpoints to characterize the cellular cytotoxic response of a range of cell lines to 1.9 nm gold particles and measured dose modifying effects following transient exposure at low concentrations. Gold nanoparticles caused significant levels of cell type specific cytotoxicity, apoptosis and increased oxidative stress. When used as dose modifying agents, dose enhancement factors varied between the cell lines investigated with the highest enhancement being 1.9 in AGO-1522B cells at a nanoparticle concentration of 100 μg ml−1. This study shows exposure to 1.9 nm gold particles to induce a range of cell line specific responses including decreased clonogenic survival, increased apoptosis and induction of DNA damage which may be mediated through the production of reactive oxygen species. This is the first study involving 1.9 nm nanometre sized particles to report multiple cellular responses which impact on the radiation dose modifying effect. The findings highlight the need for extensive characterization of responses to gold nanoparticles when assessing dose enhancing potential in cancer therapy. PMID:20601762
Hohaus, S; Funk, L; Martin, S; Schlenk, R F; Abdallah, A; Hahn, U; Egerer, G; Goldschmidt, H; Schneeweiß, A; Fersis, N; Kaul, S; Wallwiener, D; Bastert, G; Haas, R
1999-01-01
We report on the efficacy and toxicity of a sequential high-dose therapy with peripheral blood stem cell (PBSC) support in 85 patients with high-risk stage II/III breast cancer. There were 71 patients with more than nine tumour-positive axillary lymph nodes. An induction therapy of two cycles of ifosfamide (total dose, 7.5 g m−2) and epirubicin (120 mg m−2) was given, and PBSC were harvested during G-CSF-supported leucocyte recovery following the second cycle. The PBSC-supported high-dose chemotherapy consisted of two cycles of ifosfamide (total dose, 12 000 mg m−2), carboplatin (900 mg m−2) and epirubicin (180 mg m−2). Patients were autografted with a median number of 3.7 × 106 CD34+ cells kg−1 (range, 1.9–26.5 × 106) resulting in haematological reconstitution within approximately 2 weeks following high-dose therapy. The toxicity was moderate in general, and there was no treatment-related toxic death. Twenty-one patients relapsed between 3 and 30 months following the last cycle of high-dose therapy (median, 11 months). The probability of disease-free and overall survival at 4 years were 60% and 83%, respectively. According to a multivariate analysis, patients with stage II disease had a significantly better probability of disease-free survival (74%) in comparison to patients with stage III disease (36%). The probability of disease-free survival was also significantly better for patients with oestrogen receptor-positive tumours (70%) compared to patients with receptor-negative ones (40%). Bone marrow samples collected from 52 patients after high-dose therapy were examined to evaluate the prognostic relevance of isolated tumour cells. The proportion of patients presenting with tumour cell-positive samples did not change in comparison to that observed before high-dose therapy (65% vs 71%), but a decrease in the incidence and concentration of tumour cells was observed over time after high-dose therapy. This finding was true for patients with relapse and for those in remission, which argues against a prognostic significance of isolated tumour cells in bone marrow. In conclusion, sequential high-dose chemotherapy with PBSC support can be safely administered to patients with high-risk stage II/III breast cancer. Further intensification of the therapy, including the addition of non-cross resistant drugs or immunological approaches such as the use of antibodies against HER-2/NEU, may be envisaged for patients with stage III disease and hormone receptor-negative tumours. © 1999 Cancer Research Campaign PMID:10188897
Lopes, Nilva P; Collins, Kenneth E; Jardim, Isabel C S F
2003-02-14
Polybutadiene (PBD) has been immobilized on HPLC silica by gamma radiation doses in the range from 5 to 180 kGy. Columns prepared from these reversed-phase materials, as well as from similar non-irradiated materials, were tested with standard sample mixtures and characterized by elemental analysis (% C) and infrared spectroscopy. A low dose of 5 kGy is sufficient to produce a layer of immobilized PBD which functions as an efficient and stable stationary phase. Higher doses give thicker immobilized layers having less favorable chromatographic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massager, Nicolas, E-mail: nmassage@ulb.ac.be; Neurosurgery-Department, Hospital Erasme, Brussels; Lonneville, Sarah
2011-11-15
Objectives: We investigated variations in the distribution of radiation dose inside (dose inhomogeneity) and outside (dose falloff) the target volume during Gamma Knife (GK) irradiation of vestibular schwannoma (VS). We analyzed the relationship between some parameters of dose distribution and the clinical and radiological outcome of patients. Methods and Materials: Data from dose plans of 203 patients treated for a vestibular schwannoma by GK C using same prescription dose (12 Gy at the 50% isodose) were collected. Four different dosimetric indexes were defined and calculated retrospectively in all plannings on the basis of dose-volume histograms: Paddick conformity index (PI), gradientmore » index (GI), homogeneity index (HI), and unit isocenter (UI). The different measures related to distribution of the radiation dose were compared with hearing and tumor outcome of 203 patients with clinical and radiological follow-up of minimum 2 years. Results: Mean, median, SD, and ranges of the four indexes of dose distribution analyzed were calculated; large variations were found between dose plans. We found a high correlation between the target volume and PI, GI, and UI. No significant association was found between the indexes of dose distribution calculated in this study and tumor control, tumor volume shrinkage, hearing worsening, loss of functional hearing, or complete hearing loss at last follow-up. Conclusions: Parameters of distribution of the radiation dose during GK radiosurgery for VS can be highly variable between dose plans. The tumor and hearing outcome of patients treated is not significantly related to these global indexes of dose distribution inside and around target volume. In GK radiosurgery for VS, the outcome seems more to be influenced by local radiation dose delivered to specific structures or volumes than by global dose gradients.« less
Kobayashi, Kazuyoshi; Ando, Kei; Ito, Kenyu; Tsushima, Mikito; Morozumi, Masayoshi; Tanaka, Satoshi; Machino, Masaaki; Ota, Kyotaro; Ishiguro, Naoki; Imagama, Shiro
2018-05-01
The O-arm ® navigation system allows intraoperative CT imaging that can facilitate highly accurate instrumentation surgery, but radiation exposure is higher than with X-ray radiography. This is a particular concern in pediatric surgery. The purpose of this study is to examine intraoperative radiation exposure in pediatric spinal scoliosis surgery using O-arm. The subjects were 38 consecutive patients (mean age 12.9 years, range 10-17) with scoliosis who underwent spinal surgery with posterior instrumentation using O-arm. The mean number of fused vertebral levels was 11.0 (6-15). O-arm was performed before and after screw insertion, using an original protocol for the cervical, thoracic, and lumbar spine doses. The average scanning range was 6.9 (5-9) intervertebral levels per scan, with 2-7 scans per patient (mean 4.0 scans). Using O-arm, the dose per scan was 92.5 (44-130) mGy, and the mean total dose was 401 (170-826) mGy. This dose was 80.2% of the mean preoperative CT dose of 460 (231-736) mGy (P = 0.11). The total exposure dose and number of scans using intraoperative O-arm correlated strongly and significantly with the number of fused levels; however, there was no correlation with the patient's height. As the fused range became wider, several scans were required for O-arm, and the total radiation exposure became roughly the same as that in preoperative CT. Use of O-arm in our original protocol can contribute to reduction in radiation exposure.
Radiation dosimetry measurements during U.S. Space Shuttle missions with the RME-III.
Golightly, M J; Hardy, K; Quam, W
1994-01-01
Time-resolved radiation dosimetry measurements inside the crew compartment have been made during recent Shuttle missions with the U.S. Air Force Radiation Monitoring Equipment-III (RME-III), a portable battery-powered four-channel tissue equivalent proportional counter. Results from the first six missions are presented and discussed. Half of the missions had orbital inclinations of 28.5 degrees with the remainder at inclinations of 57 degrees or greater; altitudes ranged from 300 to 600 km. The determined dose equivalent rates ranged from 70 to 5300 microSv/day. The RME-III measurements are in good agreement with other dosimetry measurements made aboard the vehicles. Measurements indicate that medium- and high-LET particles contribute less than 2% of the particle fluence for all missions, but up to 50% of the dose equivalent, depending on the spacecraft's altitude and orbital inclination. Isocontours of fluence, dose and dose equivalent rate have been developed from measurements made during the STS-28 mission. The drift rate of the South Atlantic Anomaly is estimated to be 0.49 degrees W/yr and 0.12 degrees N/yr. The calculated trapped proton and GCR dose for the STS-28 mission was significantly lower than the measured values.
Jacob, Sophie; Donadille, Laurent; Maccia, Carlo; Bar, Olivier; Boveda, Serge; Laurier, Dominique; Bernier, Marie-Odile
2013-03-01
Radiation dose to the eye lens is a crucial issue for interventional cardiologists (ICs) who are exposed during the procedures they perform. This paper presents a retrospective assessment of the cumulative eye lens doses of ICs enrolled in the O'CLOC study for Occupational Cataracts and Lens Opacities in interventional Cardiology. Information on the workload in the catheterisation laboratory, radiation protection equipment, eye lens dose per procedure and dose reduction factors associated with eye-protective equipment were considered. For the 129 ICs at an average age of 51 who had worked for an average period of 22 years, the estimated cumulative eye lens dose ranged from 25 mSv to more than 1600 mSv; the mean ± SD was 423 ± 359 mSv. After several years of practice, without eye protection, ICs may exceed the new ICRP lifetime eye dose threshold of 500 mSv and be at high risk of developing early radiation-induced cataracts. Radiation protection equipment can reduce these doses and should be used routinely.
Deme, S; Apathy, I; Hejja, I; Lang, E; Feher, I
1999-01-01
A microprocessor-controlled on-board TLD system, 'Pille'96', was used during the NASA4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the extra dose to two astronauts in the course of their extravehicular activity (EVA). For the EVA dose measurements, CaSO4:Dy bulb dosemeters were located in specially designed pockets of the ORLAN spacesuits. During an EVA lasting 6 h, the dose ratio inside and outside Mir was measured. During the EVA, Mir crossed the South Atlantic Anomaly (SAA) three times. Taking into account the influence of these three crossings the mean EVA/internal dose rate ratio was 3.2. Internal dose mapping using CaSO4:Dy dosemeters gave mean dose rates ranging from 9.3 to 18.3 microGy h-1 at locations where the shielding effect was not the same. Evaluation results of the high temperature region of LiF dosemeters are given to estimate the mean LET.
Boucher, Bradley A; Hudson, Joanna Q; Hill, David M; Swanson, Joseph M; Wood, G Christopher; Laizure, S Casey; Arnold-Ross, Angela; Hu, Zhe-Yi; Hickerson, William L
2016-12-01
High-dose continuous venovenous hemofiltration (CVVH) is a continuous renal replacement therapy (CRRT) used frequently in patients with burns. However, antibiotic dosing is based on inference from studies assessing substantially different methods of CRRT. To address this knowledge gap for imipenem/cilastatin (I/C), we evaluated the systemic and extracorporeal clearances (CLs) of I/C in patients with burns undergoing high-dose CVVH. Prospective clinical pharmacokinetic study. Ten adult patients with burns receiving I/C for a documented infection and requiring high-dose CVVH were studied. Blood and effluent samples for analysis of I/C concentrations were collected for up to 6 hours after the I/C infusion for calculation of I/C total CL (CL T otal ), CL by CVVH (CL HF ), half-life during CVVH, volume of distribution at steady state (Vd ss ), and the percentage of drug eliminated by CVVH. In this patient sample, the mean age was 50 ± 17 years, total body surface area burns was 23 ± 27%, and 80% were male. Nine patients were treated with high-dose CVVH for acute kidney injury and one patient for sepsis. The mean delivered CVVH dose was 52 ± 14 ml/kg/hour (range 32-74 ml/kg/hr). The imipenem CL HF was 3.27 ± 0.48 L/hour, which accounted for 23 ± 4% of the CL T otal (14.74 ± 4.75 L/hr). Cilastatin CL HF was 1.98 ± 0.56 L/hour, which accounted for 45 ± 19% of the CL T otal (5.16 + 2.44 L/hr). The imipenem and cilastatin half-lives were 1.77 ± 0.38 hours and 4.21 ± 2.31 hours, respectively. Imipenem and cilastatin Vd ss were 35.1 ± 10.3 and 32.8 ± 13.8 L, respectively. Efficient removal of I/C by high-dose CVVH, a high overall clearance, and a high volume of distribution in burn intensive care unit patients undergoing this CRRT method warrant aggressive dosing to treat serious infections effectively depending on the infection site and/or pathogen. © 2016 Pharmacotherapy Publications, Inc.
Anticoagulation and high dose liver radiation. A preliminary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lightdale, C.J.; Wasser, J.; Coleman, M.
Two groups of patients were observed for evidence of acute radiation hepatitis during high dose radiation to the liver. The first group of 18 patients with metastatic liver disease received an average of 4,050 rad to the whole liver. Half received anticoagulation with warfarin. One patient on anticoagulation developed evidence of acute radiation hepatitis while 2 patients did so without anticoagulation. Eleven patients with Hodgkin's disease received 4,000 rad to the left lobe of the liver during extended field radiation. Four of these 11 patients were anticoagulated to therapeutic range. Only one of the fully anticoagulated patients showed changes onmore » liver scan consistent with radiation hepatitis whereas three did so without anticoagulation. No serious sequelae from anticoagulation occurred in either group. These preliminary data suggest that anticoagulation may be safely administered with high dose hepatic radiation and that further trials with anticoagulation are warranted.« less
Technical Note: Initial characterization of the new EBT-XD Gafchromic film.
Grams, Michael P; Gustafson, Jon M; Long, Kenneth M; de los Santos, Luis E Fong
2015-10-01
To assess the dosimetric accuracy and energy dependence of the new EBT-eXtended Dose (XD) Gafchromic film and to compare the lateral response artifact (LRA) between EBT-XD and EBT3 film. EBT3 and EBT-XD calibration curves were created by exposing films to known doses from 0 to 3000 cGy using a 6 MV beam. To assess the accuracy and dynamic range of EBT-XD, a 60° enhanced dynamic wedge (EDW) was used to deliver a dose range of approximately 200-2900 cGy. Comparison to treatment planning system (TPS) calculation was made using a gamma analysis with 2%/2 mm passing criteria. To assess and compare the LRA between EBT3 and EBT-XD, 21 × 21 cm(2) open fields delivered doses of 1000, 2000, and 3000 cGy to both types of film. Films were placed at the center of the scanner, and ratios of measured to TPS predicted doses were calculated at 50 and 80 mm lateral from the scanner center in order to quantitatively assess the LRA. To evaluate the energy dependence of EBT-XD film, seven known doses ranging from 400 to 3000 cGy were delivered using both 6 and 18 MV beams and the resulting optical densities (ODs) compared. The gamma passing rate was 99.1% for the 6 MV EDW delivery. EBT-XD film exhibited minimal LRA (<1%) up to 3000 cGy. In contrast, EBT3 demonstrated an under-response of 11.3% and 22.7% at lateral positions of 50 and 80 mm, respectively, for the 3000 cGy exposure. Differences between ODs of the EBT-XD films exposed to known doses from 6 to 18 MV beams were <0.8% suggesting minimal energy dependence throughout this energy range. The LRA of EBT-XD is greatly reduced when compared to EBT3. This in combination with its accuracy from 0 to 3000 cGy and minimal energy dependence from 6 to 18 MV makes EBT-XD film well suited for dosimetric measurements in high dose SRS/SBRT applications.
Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Makhdoumi, Yasha; Taheri, Mojtaba; Homaee Shandiz, Fatemeh; Zahed Anaraki, Siavash; Soleimani Meigooni, Ali
2012-01-01
The aim of this work is to evaluate rectal and bladder dose for the patients treated for gynecological cancers. The GZP6 high dose rate brachytherapy system has been recently introduced to a number of radiation therapy departments in Iran, for treatment of various tumor sites such as cervix and vagina. Our analysis was based on dose measurements for 40 insertions in 28 patients, treated by a GZP6 unit between June 2009 and November 2010. Treatments consisted of combined teletherapy and intracavitary brachytherapy. In vivo dosimetry was performed with TLD-400 chips and TLD-100 microcubes in the rectum and bladder. The average of maximum rectal and bladder dose values were found to be 7.62 Gy (range 1.72-18.55 Gy) and 5.17 Gy (range 0.72-15.85 Gy), respectively. It has been recommended by the ICRU that the maximum dose to the rectum and bladder in intracavitary treatment of vaginal or cervical cancer should be lower than 80% of the prescribed dose to point A in the Manchester system. In this study, of the total number of 40 insertions, maximum rectal dose in 29 insertions (72.5% of treatment sessions) and maximum bladder dose in 18 insertions (45% of treatments sessions) were higher than 80% of the prescribed dose to the point of dose prescription. In vivo dosimetry for patients undergoing treatment by GZP6 brachytherapy system can be used for evaluation of the quality of brachytherapy treatments by this system. This information could be used as a base for developing the strategy for treatment of patients treated with GZP6 system.
Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Makhdoumi, Yasha; Taheri, Mojtaba; Homaee Shandiz, Fatemeh; Zahed Anaraki, Siavash; Soleimani Meigooni, Ali
2012-01-01
Aim The aim of this work is to evaluate rectal and bladder dose for the patients treated for gynecological cancers. Background The GZP6 high dose rate brachytherapy system has been recently introduced to a number of radiation therapy departments in Iran, for treatment of various tumor sites such as cervix and vagina. Materials and methods Our analysis was based on dose measurements for 40 insertions in 28 patients, treated by a GZP6 unit between June 2009 and November 2010. Treatments consisted of combined teletherapy and intracavitary brachytherapy. In vivo dosimetry was performed with TLD-400 chips and TLD-100 microcubes in the rectum and bladder. Results The average of maximum rectal and bladder dose values were found to be 7.62 Gy (range 1.72–18.55 Gy) and 5.17 Gy (range 0.72–15.85 Gy), respectively. It has been recommended by the ICRU that the maximum dose to the rectum and bladder in intracavitary treatment of vaginal or cervical cancer should be lower than 80% of the prescribed dose to point A in the Manchester system. In this study, of the total number of 40 insertions, maximum rectal dose in 29 insertions (72.5% of treatment sessions) and maximum bladder dose in 18 insertions (45% of treatments sessions) were higher than 80% of the prescribed dose to the point of dose prescription. Conclusion In vivo dosimetry for patients undergoing treatment by GZP6 brachytherapy system can be used for evaluation of the quality of brachytherapy treatments by this system. This information could be used as a base for developing the strategy for treatment of patients treated with GZP6 system. PMID:24377037
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattori, Naoya; Gopal, Ajay K.; Shields, Andrew T.
Purpose: To investigate radiation doses to the testes delivered by a radiolabeled anti-CD20 antibody and its effects on male sex hormone levels. Materials and methods: Testicular uptake and retention of 131I-tositumomab were measured, and testicular absorbed doses were calculated for 67 male patients (54+/-11 years of age) with non-Hodgkin's lymphoma who had undergone myeloablative radioimmunotherapy (RIT) using 131I-tositumomab. Time-activity curves for the major organs, testes, and whole body were generated from planar imaging studies. In a subset of patients, male sex hormones were measured before and 1 year after the therapy. Results: The absorbed dose to the testes showed considerablemore » variability (range=4.4-70.2 Gy). Pretherapy levels of total testosterone were below the lower limit of the reference range, and post-therapy evaluation demonstrated further reduction [4.6+/-1.8 nmol/l (pre-RIT) vs. 3.8+/-2.9 nmol/l (post-RIT), P<0.05]. Patients receiving higher radiation doses to the testes (>=25 Gy) showed a greater reduction [4.7+/-1.6 nmol/l (pre-RIT) vs. 3.3+/-2.7 nmol/l (post-RIT), P<0.05] compared with patients receiving lower doses (<25 Gy), who showed no significant change in total testosterone levels. Conclusion: The testicular radiation absorbed dose varied highly among individual patients. Finally, patients receiving higher doses to the testes were more likely to show post-RIT suppression of testosterone levels.« less
Lung damage following bone marrow transplantation. II. The contribution of cyclophosphamide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varekamp, A.E.; de Vries, A.J.; Zurcher, C.
1987-10-01
The effect of high-dose cyclophosphamide (Cy), either alone or in combination with irradiation, upon the development of interstitial pneumonitis (IP) after bone marrow transplantation (BMT) was investigated in a Brown Norway rat model. The parameters that were examined included ventilation rate, mortality, and histopathology. No damage to the lungs was observed in rats given Cy alone in supralethal dosages plus BMT, and mortality resulted from severe aplasia of hemopoietic and lymphoid tissues with multifocal hemorrhages, secondary infections, and sepsis. Two separate periods of mortality were observed within the first 180 days following whole thorax irradiation with a high dose ratemore » (HDR; 0.8 Gy/min) or a low dose rate (LDR; 0.05 Gy/min). The addition of Cy prior to irradiation resulted in an increased mortality in the first period (before day 100) in all experimental groups. The influence of Cy on mortality at 180 days however, was different for the HDR and LDR experiments. The LD50-180 after HDR irradiation, dose range 8 to 18 Gy, was not significantly altered by the addition of Cy (100 mg/kg) 1 day prior to irradiation, whereas Cy (100 mg/kg) 1 day prior to LDR irradiation, dose range: 16 to 24 Gy, caused an enhancement of radiation damage with a decrease of the LD50-180 by 1.33 Gy. The dose modification factor (DMF) was 1.07. This enhancement was no longer significant after splitting up the dose of Cy in two dosages of 50 mg/kg given on 2 consecutive days prior to irradiation with a LDR. The extrapolation of the data in this rat model to available dose-response curves on IP after BMT and radiation pneumonitis in humans, implied that non-infectious IP is a radiation pneumonitis that is only slightly enhanced by Cy.« less
Lenka, Pradyumna; Sahoo, S K; Mohapatra, S; Patra, A C; Dubey, J S; Vidyasagar, D; Tripathi, R M; Puranik, V D
2013-03-01
A natural high background radiation area is located in Chhatrapur, Odisha in the eastern part of India. The inhabitants of this area are exposed to external radiation levels higher than the global average background values, due to the presence of uranium, thorium and its decay products in the monazite sands bearing placer deposits in its beaches. The concentrations of (232)Th, (238)U, (226)Ra, (40)K and (137)Cs were determined in cereals (rice and wheat), pulses and drinking water consumed by the population residing around this region and the corresponding annual ingestion dose was calculated. The annual ingestion doses from cereals, pulses and drinking water varied in the range of 109.4-936.8, 10.2-307.5 and 0.5-2.8 µSv y(-1), respectively. The estimated total annual average effective dose due to the ingestion of these radionuclides in cereals, pulses and drinking water was 530 µSv y(-1). The ingestion dose from cereals was the highest mainly due to a high consumption rate. The highest contribution of dose was found to be from (226)Ra for cereals and drinking water and (40)K was the major dose contributor from the intake of pulses. The contribution of man-made radionuclide (137)Cs to the total dose was found to be minimum. (226)Ra was found to be the largest contributor to ingestion dose from all sources.
Induction of chromosomal aberrations at fluences of less than one HZE particle per cell nucleus.
Hada, Megumi; Chappell, Lori J; Wang, Minli; George, Kerry A; Cucinotta, Francis A
2014-10-01
The assumption of a linear dose response used to describe the biological effects of high-LET radiation is fundamental in radiation protection methodologies. We investigated the dose response for chromosomal aberrations for exposures corresponding to less than one particle traversal per cell nucleus by high-energy charged (HZE) nuclei. Human fibroblast and lymphocyte cells were irradiated with several low doses of <0.1 Gy, and several higher doses of up to 1 Gy with oxygen (77 keV/μm), silicon (99 keV/μm) or Fe (175 keV/μm), Fe (195 keV/μm) or Fe (240 keV/μm) particles. Chromosomal aberrations at first mitosis were scored using fluorescence in situ hybridization (FISH) with chromosome specific paints for chromosomes 1, 2 and 4 and DAPI staining of background chromosomes. Nonlinear regression models were used to evaluate possible linear and nonlinear dose-response models based on these data. Dose responses for simple exchanges for human fibroblasts irradiated under confluent culture conditions were best fit by nonlinear models motivated by a nontargeted effect (NTE). The best fits for dose response data for human lymphocytes irradiated in blood tubes were a linear response model for all particles. Our results suggest that simple exchanges in normal human fibroblasts have an important NTE contribution at low-particle fluence. The current and prior experimental studies provide important evidence against the linear dose response assumption used in radiation protection for HZE particles and other high-LET radiation at the relevant range of low doses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magallanes, L., E-mail: lorena.magallanes@med.uni-heidelberg.de; Rinaldi, I., E-mail: ilaria.rinaldi@med.uni-heidelberg.de; Brons, S., E-mail: stephan.brons@med.uni-heidelberg.de
External beam radiotherapy techniques have the common aim to maximize the radiation dose to the target while sparing the surrounding healthy tissues. The inverted and finite depth-dose profile of ion beams (Bragg peak) allows for precise dose delivery and conformai dose distribution. Furthermore, increased radiobiological effectiveness of ions enhances the capability to battle radioresistant tumors. Ion beam therapy requires a precise determination of the ion range, which is particularly sensitive to range uncertainties. Therefore, novel imaging techniques are currently investigated as a tool to improve the quality of ion beam treatments. Approaches already clinically available or under development are basedmore » on the detection of secondary particles emitted as a result of nuclear reactions (e.g., positron-annihilation or prompt gammas, charged particles) or transmitted high energy primary ion beams. Transmission imaging techniques make use of the beams exiting the patient, which have higher initial energy and lower fluence than the therapeutic ones. At the Heidelberg Ion Beam Therapy Center, actively scanned energetic proton and carbon ion beams provide an ideal environment for the investigation of ion-based radiography and tomography. This contribution presents the rationale of ion beam therapy, focusing on the role of ion-based transmission imaging methods towards the reduction of range uncertainties and potential improvement of treatment planning.« less
NASA Technical Reports Server (NTRS)
George, Kerry; Durante, Marco; Willingham, Veronica; Wu, Honglu; Yang, Tracy C.; Cucinotta, Francis A.
2003-01-01
Chromosome aberrations were investigated in human lymphocytes after in vitro exposure to 1H-, 3He-, 12C-, 40Ar-, 28Si-, 56Fe-, or 197Au-ion beams, with LET ranging from approximately 0.4-1393 keV/microm in the dose range of 0.075-3 Gy. Dose-response curves for chromosome exchanges, measured at the first mitosis postirradiation using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosomal damage with respect to low- or high-dose-rate gamma rays. Estimates of RBEmax values for mitotic spreads, which ranged from near 0.7 to 11.1 for total exchanges, increased with LET, reaching a maximum at about 150 keV/microm, and decreased with further increase in LET. RBEs for complex aberrations are undefined due to the lack of an initial slope for gamma rays. Additionally, the effect of mitotic delay on RBE values was investigated by measuring chromosome aberrations in interphase after chemically induced premature chromosome condensation (PCC), and values were up to threefold higher than for metaphase analysis.
Luminescence imaging of water during proton-beam irradiation for range estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Okumura, Satoshi; Komori, Masataka
Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantomsmore » of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy.« less
SU-F-I-40: Impact of Scan Length On Patient Dose in Abdomen/pelvis CT Diagnosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, I; Song, J; Kim, K
Purpose: To analysis the impact of scan length on patient doses in abdomen/pelvis CT diagnosis of each hospital. Methods: Scan length of 7 hospitals from abdomen/pelvis CT diagnosis was surveyed in Korea. Surveyed scan lengths were additional distance above diaphragm and distance below pubic symphysis except for standard scan range between diaphragm and pubic symphysis. Patient dose was estimated for adult male and female according to scan length of each hospital. CT-Expo was used to estimate the patient dose under identical equipment settings (120 kVp, 100 mAs, 10 mm collimation width, etc.) except scan length. Effective dose was calculated bymore » using tissue weighting factor of ICRP 103 recommendation. Increase rate of effective dose was calculated comparing with effective dose of standard scan range Results: Scan lengths of abdomen/pelvis CT diagnosis of each hospital were different. Also effective dose was increased with increasing the scan length. Generally increasing the distance above diaphragm caused increase of effective dose of male and female, but increasing the distance below pubic symphysis caused increase of effective dose of male. Conclusion: We estimated the patient dose according to scan length of each hospital in abdomen/pelvis CT diagnosis. Effective dose was increased by increasing the scan length because dose of organs with high tissue weighting factor such as lung, breast, testis were increased. Scan length is important factor on patient dose in CT diagnosis. If radiologic technologist interested in patient dose, decreasing the unnecessary scan length will decrease the risk of patients from radiation. This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI13C0004).« less
Temporal Lobe Toxicity Analysis After Proton Radiation Therapy for Skull Base Tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pehlivan, Berrin; Ares, Carmen, E-mail: carmen.ares@psi.ch; Lomax, Antony J.
2012-08-01
Purpose: Temporal lobe (TL) parenchyma toxicity constitutes one of the most frequent late adverse event in high-dose proton therapy (PT) for tumors of the skull base. We analyzed clinical events with dosimetric parameters in our patients treated for skull base tumors with spot-scanning PT. Methods and Materials: Between 1998 and 2005, a total of 62 patients received PT to a median dose of 71.7 Gy (relative biologic effectiveness [RBE]) (range, 63-74 Gy). The dose-volume histogram of each TL and the entire brain parenchyma (BP) were analyzed according to maximum, mean, and minimum dose as well as doses to 0.5, 1,more » 2, and 3 cc of brain volume (D{sub 0.5}, D{sub 1}, D{sub 2}, D{sub 3}) and correlated with clinical events. Generalized equivalent uniform dose (gEUD) values were calculated. Results: At a mean follow-up of 38 months (range, 14-92 months), 2 patients had developed symptomatic Grade 3 and 5 patients asymptomatic Grade 1 TL toxicity. Mean doses to a 2-cc volume of BP increased from 71 {+-} 5 Gy (RBE) for no toxicity to 74 {+-} 5 Gy (RBE) for Grade 1 and to 76 {+-} 2 Gy (RBE) for Grade 3 toxicity. TL events occurred in 6 of 7 patients (86%) at or above dose levels of {>=}64 Gy (RBE) D{sub 3}, {>=}68 Gy (RBE) D{sub 2}, {>=}72 Gy (RBE) D{sub 1}, and {>=}73 Gy (RBE) D{sub 0.5}, respectively (p = NS). No statistically significant dose/volume threshold was detected between patients experiencing no toxicity vs. Grade 1 or Grade 3. A strong trend for Grade 1 and 3 events was observed, when the gEUD was 60 Gy. Conclusions: A statistically significant normal tissue threshold dose for BP has not been successfully defined. However, our data suggest that tolerance of TL and BP to fractionated radiotherapy appears to be correlated with tissue volume included in high-dose regions. Additional follow-up time and patient accrual is likely needed to achieve clinical significance for these dose-volume parameters investigated. Our findings support the importance of establishing an organ-at-risk maximally permissible dose for BP.« less
Evaluation Of Shielding Efficacy Of A Ferrite Containing Ceramic Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verst, C.
2015-10-12
The shielding evaluation of the ferrite based Mitsuishi ceramic material has produced for several radiation sources and possible shielding sizes comparative dose attenuation measurements and simulated projections. High resolution gamma spectroscopy provided uncollided and scattered photon spectra at three energies, confirming theoretical estimates of the ceramic’s mass attenuation coefficient, μ/ρ. High level irradiation experiments were performed using Co-60, Cs-137, and Cf-252 sources to measure penetrating dose rates through steel, lead, concrete, and the provided ceramic slabs. The results were used to validate the radiation transport code MCNP6 which was then used to generate dose rate attenuation curves as a functionmore » of shielding material, thickness, and mass for photons and neutrons ranging in energy from 200 keV to 2 MeV.« less
Radiation measurements aboard Spacelab 1
NASA Technical Reports Server (NTRS)
Benton, E. V.; Almasi, J.; Cassou, R.; Frank, A.; Henke, R. P.; Rowe, V.; Parnell, T. A.; Schopper, E.
1984-01-01
The radiation environment inside Spacelab 1 was measured by a set of passive radiation detectors distributed throughout the volume inside the module, in the access tunnel, and outside on the pallet. Measurements of the low linear energy transfer (LET) component obtained from the thermoluminescence detectors ranged from 102 to 190 millirads, yielding an average low LET dose rate of 11.2 millirads/day inside the module, about twice the low LET dose rate measured on previous flights of the Space Shuttle. Because of the higher inclination of the orbit (57 versus 28.5 deg for previous Shuttle flights), substantial fluxes of highly ionizing high charge and energy galactic cosmic ray particles were observed, yielding an overall average mission dose-equivalent of about 150 millirems, more than three times higher than that measured on previous Shuttle missions.
Summary Points and Consensus Recommendations From the International Protein Summit.
Hurt, Ryan T; McClave, Stephen A; Martindale, Robert G; Ochoa Gautier, Juan B; Coss-Bu, Jorge A; Dickerson, Roland N; Heyland, Daren K; Hoffer, L John; Moore, Frederick A; Morris, Claudia R; Paddon-Jones, Douglas; Patel, Jayshil J; Phillips, Stuart M; Rugeles, Saúl J; Sarav Md, Menaka; Weijs, Peter J M; Wernerman, Jan; Hamilton-Reeves, Jill; McClain, Craig J; Taylor, Beth
2017-04-01
The International Protein Summit in 2016 brought experts in clinical nutrition and protein metabolism together from around the globe to determine the impact of high-dose protein administration on clinical outcomes and address barriers to its delivery in the critically ill patient. It has been suggested that high doses of protein in the range of 1.2-2.5 g/kg/d may be required in the setting of the intensive care unit (ICU) to optimize nutrition therapy and reduce mortality. While incapable of blunting the catabolic response, protein doses in this range may be needed to best stimulate new protein synthesis and preserve muscle mass. Quality of protein (determined by source, content and ratio of amino acids, and digestibility) affects nutrient sensing pathways such as the mammalian target of rapamycin. Achieving protein goals the first week following admission to the ICU should take precedence over meeting energy goals. High-protein hypocaloric (providing 80%-90% of caloric requirements) feeding may evolve as the best strategy during the initial phase of critical illness to avoid overfeeding, improve insulin sensitivity, and maintain body protein homeostasis, especially in the patient at high nutrition risk. This article provides a set of recommendations based on assessment of the current literature to guide healthcare professionals in clinical practice at this time, as well as a list of potential topics to guide investigators for purposes of research in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Carolyn W., E-mail: carolyn.taylor@ctsu.ox.ac.uk; Wang, Zhe; Macaulay, Elizabeth
Purpose: Breast cancer radiation therapy cures many women, but where the heart is exposed, it can cause heart disease. We report a systematic review of heart doses from breast cancer radiation therapy that were published during 2003 to 2013. Methods and Materials: Eligible studies were those reporting whole-heart dose (ie, dose averaged over the whole heart). Analyses considered the arithmetic mean of the whole-heart doses for the CT plans for each regimen in each study. We termed this “mean heart dose.” Results: In left-sided breast cancer, mean heart dose averaged over all 398 regimens reported in 149 studies from 28more » countries was 5.4 Gy (range, <0.1-28.6 Gy). In regimens that did not include the internal mammary chain (IMC), average mean heart dose was 4.2 Gy and varied with the target tissues irradiated. The lowest average mean heart doses were from tangential radiation therapy with either breathing control (1.3 Gy; range, 0.4-2.5 Gy) or treatment in the lateral decubitus position (1.2 Gy; range, 0.8-1.7 Gy), or from proton radiation therapy (0.5 Gy; range, 0.1-0.8 Gy). For intensity modulated radiation therapy mean heart dose was 5.6 Gy (range, <0.1-23.0 Gy). Where the IMC was irradiated, average mean heart dose was around 8 Gy and varied little according to which other targets were irradiated. Proton radiation therapy delivered the lowest average mean heart dose (2.6 Gy, range, 1.0-6.0 Gy), and tangential radiation therapy with a separate IMC field the highest (9.2 Gy, range, 1.9-21.0 Gy). In right-sided breast cancer, the average mean heart dose was 3.3 Gy based on 45 regimens in 23 studies. Conclusions: Recent estimates of typical heart doses from left breast cancer radiation therapy vary widely between studies, even for apparently similar regimens. Maneuvers to reduce heart dose in left tangential radiation therapy were successful. Proton radiation therapy delivered the lowest doses. Inclusion of the IMC doubled typical heart dose.« less
Dose rate mapping of VMAT treatments
NASA Astrophysics Data System (ADS)
Podesta, Mark; Antoniu Popescu, I.; Verhaegen, Frank
2016-06-01
Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min-1 and 12 Gy min-1 but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates <1 Gy min-1. Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E; Yuan, F; Templeton, A
Purpose: The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor-control-probability(TCP) with an acceptable normal-tissue-complication probability(NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. We design treatment plans that optimize TCP directly and contrast them with the clinical dose-based plans. PET image is incorporated to evaluate gain in TCP for dose escalation. Methods: We build a nonlinear mixed integer programming optimization model that maximizes TCP directly while satisfying the dose requirements on themore » targeted organ and healthy tissues. The solution strategy first fits the TCP function with a piecewise-linear approximation, then solves the problem that maximizes the piecewise linear approximation of TCP, and finally performs a local neighborhood search to improve the TCP value. To gauge the feasibility, characteristics, and potential benefit of PET-image guided dose escalation, initial validation consists of fifteen cervical cancer HDR patient cases. These patients have all received prior 45Gy of external radiation dose. For both escalated strategies, we consider 35Gy PTV-dose, and two variations (37Gy-boost to BTV vs 40Gy-boost) to PET-image-pockets. Results: TCP for standard clinical plans range from 59.4% - 63.6%. TCP for dose-based PET-guided escalated-dose-plan ranges from 63.8%–98.6% for all patients; whereas TCP-optimized plans achieves over 91% for all patients. There is marginal difference in TCP among those with 37Gy-boosted vs 40Gy-boosted. There is no increase in rectum and bladder dose among all plans. Conclusion: Optimizing TCP directly results in highly conformed treatment plans. The TCP-optimized plan is individualized based on the biological PET-image of the patients. The TCP-optimization framework is generalizable and has been applied successfully to other external-beam delivery modalities. A clinical trial is on-going to gauge the clinical significance. Partially supported by the National Science Foundation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey
2015-04-15
Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dosemore » distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.« less
Safety aspects of incobotulinumtoxinA high-dose therapy.
Dressler, Dirk; Saberi, Fereshte Adib; Kollewe, Katja; Schrader, Christoph
2015-02-01
Botulinum toxin (BT) used for dystonia and spasticity is dosed according to the number of target muscles and the severity of their muscle hyperactivities. With this no other drug is used in a broader dose range than BT. The upper end of this range, however, still needs to be explored. We wanted to do this by a prospective non-interventional study comparing a randomly selected group of dystonia and spasticity patients receiving incobotulinumtoxinA (Xeomin(®)) high-dose therapy (HD group, n = 100, single dose ≥400 MU) to a control group receiving incobotulinumtoxinA regular-dose therapy (RD group, n = 30, single dose ≤200 MU). At the measurement point all patients were evaluated for systemic BT toxicity, i.e. systemic motor impairment or systemic autonomic dysfunction. HD group patients (56.1 ± 13.8 years, 46 dystonia, 54 spasticity) were treated with Xeomin(®) 570.1 ± 158.9 (min 400, max 1,200) MU during 10.2 ± 7.0 (min 4, max 37) injection series. In dystonia patients the number of target muscles was 46 and the dose per target muscle 56.4 ± 19.1 MU, in spasticity patients 35 and 114.9 ± 67.1 MU. HD and RD group patients reported 58 occurrences of items on the systemic toxicity questionnaire. Generalised weakness, being bedridden, feeling of residual urine and constipation were caused by the underlying tetra- or paraparesis, blurred vision by presbyopia. Dysphagia and dryness of eye were local BT adverse effects. Neurologic examination, serum chemistry and full blood count did not indicate any systemic adverse effects. Elevated serum levels for creatine kinase/MB, creatine kinase and lactate dehydrogenase were most likely iatrogenic artefacts. None of the patients developed antibody-induced therapy failure. Xeomin(®) can be used safely in doses ≥400 MU and up to 1,200 MU without detectable systemic toxicity. This allows expanding the use of BT therapy to patients with more widespread and more severe muscle hyperactivity conditions. Further studies-carefully designed and rigorously monitored-are necessary to explore the threshold dose for clinically detectable systemic toxicity.
Cumulative or delayed nephrotoxicity after cisplatin (DDP) treatment.
Pinnarò, P; Ruggeri, E M; Carlini, P; Giovannelli, M; Cognetti, F
1986-04-30
The present retrospective study reports data regarding renal toxicity in 115 patients (63 males, 52 females; median age, 56 years) who received cumulative doses of cisplatin (DDP) greater than or equal to 200 mg/m2. DDP was administered alone or in combination at a dose of 50-70 mg/m2 in 91 patients, and at a dose of 100 mg/m2 in 22 patients. Two patients after progression of ovarian carcinoma treated with conventional doses of DDP received 4 and 2 courses, respectively, of high-dose DDP (40 mg/m2 for 5 days) in hypertonic saline. The median number of DDP courses was 6 (range 2-14), and the median cumulative dose was 350 mg/m2 (range, 200-1200). Serum creatinine and urea nitrogen were determined before initiating the treatment and again 13-16 days after each administration. The incidence of azotemia (creatinina levels that exceeded 1.5 mg/dl) was similar before (7.8%) and after (6.1%) DDP doses of 200 mg/m2. Azotemia appears to be related to the association of DDP with other potentially nephrotoxic antineoplastic drugs (methotrexate) more than to the dose per course of DDP. Of 59 patients followed for 2 months or more after discontinuing the DDP treatment, 3 (5.1%) presented creatinine values higher than 1.5 mg/dl. The data deny that the incidence of nephrotoxicity is higher in patients receiving higher cumulative doses of DDP and confirm that increases in serum creatinine levels may occur some time after discontinuation of the drug.
Tran, Van; Zablotska, Lydia B; Brenner, Alina V; Little, Mark P
2017-03-13
High-dose ionising radiation is associated with circulatory disease. Risks associated with lower-dose (<0.5 Gy) exposures remain unclear, with little information on risk modification by age at exposure, years since exposure or dose-rate. Tuberculosis patients in Canada and Massachusetts received multiple diagnostic x-ray fluoroscopic exposures, over a wide range of ages, many at doses <0.5 Gy. We evaluated risks of circulatory-disease mortality associated with <0.5 Gy radiation exposure in a pooled cohort of 63,707 patients in Canada and 13,568 patients in Massachusetts. Under 0.5 Gy there are increasing trends for all circulatory disease (n = 10,209; excess relative risk/Gy = 0.246; 95% CI 0.036, 0.469; p = 0.021) and for ischaemic heart disease (n = 6410; excess relative risk/Gy = 0.267; 95% CI 0.003, 0.552; p = 0.048). All circulatory-disease and ischaemic-heart-disease risk reduces with increasing time since exposure (p < 0.005). Over the entire dose range, there are negative mortality dose trends for all circulatory disease (p = 0.014) and ischaemic heart disease (p = 0.003), possibly due to competing causes of death over this dose interval.These results confirm and extend earlier findings and strengthen the evidence for circulatory-disease mortality radiation risk at doses <0.5 Gy. The limited information on well-known lifestyle/medical risk factors for circulatory disease implies that confounding of the dose trend cannot be entirely excluded.
Acute effects of THC on time perception in frequent and infrequent cannabis users.
Sewell, R Andrew; Schnakenberg, Ashley; Elander, Jacqueline; Radhakrishnan, Rajiv; Williams, Ashley; Skosnik, Patrick D; Pittman, Brian; Ranganathan, Mohini; D'Souza, D Cyril
2013-03-01
Cannabinoids have been shown to alter time perception, but existing literature has several limitations. Few studies have included both time estimation and production tasks, few control for subvocal counting, most had small sample sizes, some did not record subjects' cannabis use, many tested only one dose, and used either oral or inhaled administration of Δ⁹-tetrahydrocannabinol (THC), leading to variable pharmacokinetics, and some used whole-plant cannabis containing cannabinoids other than THC. Our study attempted to address these limitations. This study aims to characterize the acute effects of THC and frequent cannabis use on seconds-range time perception. THC was hypothesized to produce transient, dose-related time overestimation and underproduction. Frequent cannabis smokers were hypothesized to show blunted responses to these alterations. IV THC was administered at doses from 0.015 to 0.05 mg/kg to 44 subjects who participated in several double-blind, randomized, counterbalanced, crossover, placebo-controlled studies. Visual time estimation and production tasks in the seconds range were presented to subjects three times on each test day. All doses induced time overestimation and underproduction. Chronic cannabis use had no effect on baseline time perception. While infrequent/nonsmokers showed temporal overestimation at medium and high doses and temporal underproduction at all doses, frequent cannabis users showed no differences. THC effects on time perception were not dose related. A psychoactive dose of THC increases internal clock speed as indicated by time overestimation and underproduction. This effect is not dose related and is blunted in chronic cannabis smokers who did not otherwise have altered baseline time perception.
Lead in teeth from lead-dosed goats: Microdistribution and relationship to the cumulative lead dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellis, David J.; Hetter, Katherine M.; Jones, Joseph
2008-01-15
Teeth are commonly used as a biomarker of long-term lead exposure. There appear to be few data, however, on the content or distribution of lead in teeth where data on specific lead intake (dose) are also available. This study describes the analysis of a convenience sample of teeth from animals that were dosed with lead for other purposes, i.e., a proficiency testing program for blood lead. Lead concentration of whole teeth obtained from 23 animals, as determined by atomic absorption spectrometry, varied from 0.6 to 80 {mu}g g{sup -1}. Linear regression of whole tooth lead ({mu}g g{sup -1}) on themore » cumulative lead dose received by the animal (g) yielded a slope of 1.2, with r{sup 2}=0.647 (p<0.0001). Laser ablation inductively coupled plasma mass spectrometry was employed to determine lead content at micrometer scale spatial resolution in the teeth of seven goats representing the dosing range. Highly localized concentrations of lead, ranging from about 10 to 2000 {mu}g g{sup -1}, were found in circumpulpal dentine. Linear regression of circumpulpal lead ({mu}g g{sup -1}) on cumulative lead dose (g) yielded a slope of 23 with r{sup 2}=0.961 (p=0.0001). The data indicated that whole tooth lead, and especially circumpulpal lead, of dosed goats increased linearly with cumulative lead exposure. These data suggest that circumpulpal dentine is a better biomarker of cumulative lead exposure than is whole tooth lead, at least for lead-dosed goats.« less
Shirey, Robert J; Wu, Hsinshun Terry
2018-01-01
This study quantifies the dosimetric accuracy of a commercial treatment planning system as functions of treatment depth, air gap, and range shifter thickness for superficial pencil beam scanning proton therapy treatments. The RayStation 6 pencil beam and Monte Carlo dose engines were each used to calculate the dose distributions for a single treatment plan with varying range shifter air gaps. Central axis dose values extracted from each of the calculated plans were compared to dose values measured with a calibrated PTW Markus chamber at various depths in RW3 solid water. Dose was measured at 12 depths, ranging from the surface to 5 cm, for each of the 18 different air gaps, which ranged from 0.5 to 28 cm. TPS dosimetric accuracy, defined as the ratio of calculated dose relative to the measured dose, was plotted as functions of depth and air gap for the pencil beam and Monte Carlo dose algorithms. The accuracy of the TPS pencil beam dose algorithm was found to be clinically unacceptable at depths shallower than 3 cm with air gaps wider than 10 cm, and increased range shifter thickness only added to the dosimetric inaccuracy of the pencil beam algorithm. Each configuration calculated with Monte Carlo was determined to be clinically acceptable. Further comparisons of the Monte Carlo dose algorithm to the measured spread-out Bragg Peaks of multiple fields used during machine commissioning verified the dosimetric accuracy of Monte Carlo in a variety of beam energies and field sizes. Discrepancies between measured and TPS calculated dose values can mainly be attributed to the ability (or lack thereof) of the TPS pencil beam dose algorithm to properly model secondary proton scatter generated in the range shifter. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Morel, Katherine L; Ormsby, Rebecca J; Bezak, Eva; Sweeney, Christopher J; Sykes, Pamela J
2017-05-01
Radiotherapy is widely used in cancer treatment, however the benefits can be limited by radiation-induced damage to neighboring normal tissues. Parthenolide (PTL) exhibits anti-inflammatory and anti-tumor properties and selectively induces radiosensitivity in prostate cancer cell lines, while protecting primary prostate epithelial cell lines from radiation-induced damage. Low doses of radiation have also been shown to protect from subsequent high-dose-radiation-induced apoptosis as well as DNA damage. These properties of PTL and low-dose radiation could be used to improve radiotherapy by killing more tumor cells and less normal cells. Sixteen-week-old male Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) and C57BL/6J mice were treated with PTL (40 mg/kg), dimethylaminoparthenolide (DMAPT, a PTL analogue with increased bioavailability) (100 mg/kg), or vehicle control three times over one week prior to combinations of low (10 mGy) and high (6 Gy) doses of whole-body X-irradiation. Tissues were analyzed for apoptosis at a range of time points up to 72 h postirradiation. Both PTL and DMAPT protected normal tissues, but not prostate tumor tissues, from a significant proportion of high-dose-radiation-induced apoptosis. DMAPT provided superior protection compared to PTL in normal dorsolateral prostate (71.7% reduction, P = 0.026), spleen (48.2% reduction, P = 0.0001) and colorectal tissue (38.0% reduction, P = 0.0002), and doubled radiation-induced apoptosis in TRAMP prostate tumor tissue (101.3% increase, P = 0.039). Both drugs induced the greatest radiosensitivity in TRAMP prostate tissue in areas with higher grade prostatic intraepithelial neoplasia (PIN) lesions. A 10 mGy dose delivered 3 h prior to a 6 Gy dose induced a radioadaptive apoptosis response in normal C57Bl/6J prostate (28.4% reduction, P = 0.045) and normal TRAMP spleen (13.6% reduction, P = 0.047), however the low-dose-adaptive radioprotection did not significantly add to the PTL/DMAPT-induced protection in normal tissues, nor did it affect tumor kill. These results support the use of the more bioavailable DMAPT and low-dose radiation, alone or in combination as useful radioprotectors of normal tissues to alleviate radiotherapy-induced side-effects in patients. The enhanced radiosensitisation in prostate tissues displaying high-grade PIN suggests that DMAPT also holds promise for targeted therapy of advanced prostate cancer, which may go on to become metastatic. The redox mechanisms involved in the differential radioprotection observed here suggest that increased radiotherapy efficacy by DMAPT is more broadly applicable to a range of cancer types.
Ormsby, Rebecca J; Lawrence, Mark D; Blyth, Benjamin J; Bexis, Katrina; Bezak, Eva; Murley, Jeffrey S; Grdina, David J; Sykes, Pamela J
2014-02-01
The radioprotective agent amifostine is a free radical scavenger that can protect cells from the damaging effects of ionising radiation when administered prior to radiation exposure. However, amifostine has also been shown to protect cells from chromosomal mutations when administered after radiation exposure. As apoptosis is a common mechanism by which cells with mutations are removed from the cell population, we investigated whether amifostine stimulates apoptosis when administered after radiation exposure. We chose to study a relatively low dose which is the maximum radiation dose for radiation emergency workers (0.25 Gy) and a high dose relevant to radiotherapy exposures (6 Gy). Mice were administered 400 mg/kg amifostine 30 min before, or 3 h after, whole-body irradiation with 0.25 or 6 Gy X-rays and apoptosis was analysed 3 or 7 h later in spleen and bone marrow. We observed a significant increase in radiation-induced apoptosis in the spleen of mice when amifostine was administered before or after 0.25 Gy X-rays. In contrast, when a high dose of radiation was used (6 Gy), amifostine caused a reduction in radiation-induced apoptosis 3 h post-irradiation in spleen and bone marrow similar to previously published studies. This is the first study to investigate the effect of amifostine on radiation-induced apoptosis at a relatively low radiation dose and the first to demonstrate that while amifostine can reduce apoptosis from high doses of radiation, it does not mediate the same effect in response to low-dose exposures. These results suggest that there may be a dose threshold at which amifostine protects from radiation-induced apoptosis and highlight the importance of examining a range of radiation doses and timepoints.
Cost effectiveness of high-dose intravenous esomeprazole for peptic ulcer bleeding.
Barkun, Alan N; Adam, Viviane; Sung, Joseph J Y; Kuipers, Ernst J; Mössner, Joachim; Jensen, Dennis; Stuart, Robert; Lau, James Y; Nauclér, Emma; Kilhamn, Jan; Granstedt, Helena; Liljas, Bengt; Lind, Tore
2010-01-01
Peptic ulcer bleeding (PUB) is a serious and sometimes fatal condition. The outcome of PUB strongly depends on the risk of rebleeding. A recent multinational placebo-controlled clinical trial (ClinicalTrials.gov identifier: NCT00251979) showed that high-dose intravenous (IV) esomeprazole, when administered after successful endoscopic haemostasis in patients with PUB, is effective in preventing rebleeding. From a policy perspective it is important to assess the cost efficacy of this benefit so as to enable clinicians and payers to make an informed decision regarding the management of PUB. Using a decision-tree model, we compared the cost efficacy of high-dose IV esomeprazole versus an approach of no-IV proton pump inhibitor for prevention of rebleeding in patients with PUB. The model adopted a 30-day time horizon and the perspective of third-party payers in the USA and Europe. The main efficacy variable was the number of averted rebleedings. Healthcare resource utilization costs (physician fees, hospitalizations, surgeries, pharmacotherapies) relevant for the management of PUB were also determined. Data for unit costs (prices) were primarily taken from official governmental sources, and data for other model assumptions were retrieved from the original clinical trial and the literature. After successful endoscopic haemostasis, patients received either high-dose IV esomeprazole (80 mg infusion over 30 min, then 8 mg/hour for 71.5 hours) or no-IV esomeprazole treatment, with both groups receiving oral esomeprazole 40 mg once daily from days 4 to 30. Rebleed rates at 30 days were 7.7% and 13.6%, respectively, for the high-dose IV esomeprazole and no-IV esomeprazole treatment groups (equating to a number needed to treat of 17 in order to prevent one additional patient from rebleeding). In the US setting, the average cost per patient for the high-dose IV esomeprazole strategy was $US14 290 compared with $US14 239 for the no-IV esomeprazole strategy (year 2007 values). For the European setting, Sweden and Spain were used as examples. In the Swedish setting the corresponding respective figures were Swedish kronor (SEK)67 862 ($US9220 at average 2006 interbank exchange rates) and SEK67 807 ($US9212) [year 2006 values]. Incremental cost-effectiveness ratios were $US866 and SEK938 ($US127), respectively, per averted rebleed when using IV esomeprazole. For the Spanish setting, the high-dose IV esomeprazole strategy was dominant (more effective and less costly than the no-IV esomeprazole strategy) [year 2008 values]. All results appeared robust to univariate/threshold sensitivity analysis, with high-dose IV esomeprazole becoming dominant with small variations in assumptions in the US and Swedish settings, while remaining a dominant approach in the Spanish scenario across a broad range of values. Sensitivity variables with prespecified ranges included lengths of stay and per diem assumptions, rebleeding rates and, in some cases, professional fees. In patients with PUB, high-dose IV esomeprazole after successful endoscopic haemostasis appears to improve outcomes at a modest increase in costs relative to a no-IV esomeprazole strategy from the US and Swedish third-party payer perspective. Whereas, in the Spanish setting, the high-dose IV esomeprazole strategy appeared dominant, being more effective and less costly.
Dosimetric Factors and Toxicity in Highly Conformal Thoracic Reirradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binkley, Michael S.; Hiniker, Susan M.; Chaudhuri, Aadel
Purpose: We determined cumulative dose to critical structures, rates of toxicity, and outcomes following thoracic reirradiation. Methods and Materials: We retrospectively reviewed our institutional database for patients treated between 2008 and 2014, who received thoracic reirradiation with overlap of 25% prescribed isodose lines. Patients received courses of hyperfractionated (n=5), hypofractionated (n=5), conventionally fractionated (n=21), or stereotactic ablative radiation therapy (n=51). Doses to critical structures were converted to biologically effective dose, expressed as 2 Gy per fraction equivalent dose (EQD2; α/β = 2 for spinal cord; α/β = 3 for other critical structures). Results: We identified 82 courses (44 for retreatment) in 38 patients reirradiated atmore » a median 16 months (range: 1-71 months) following initial RT. Median follow-up was 17 months (range: 3-57 months). Twelve- and 24-month overall survival rates were 79.6% and 57.3%, respectively. Eighteen patients received reirradiation for locoregionally recurrent non-small cell lung cancer with 12-month rates of local failure and regional recurrence and distant metastases rates of 13.5%, 8.1%, and 15.6%, respectively. Critical structures receiving ≥75 Gy EQD2 included spinal cord (1 cm{sup 3}; n=1), esophagus (1 cm{sup 3}; n=10), trachea (1 cm{sup 3}; n=11), heart (1 cm{sup 3}; n=9), aorta (1 cm{sup 3}; n=16), superior vena cava (1 cm{sup 3}; n=12), brachial plexus (0.2 cm{sup 3}; n=2), vagus nerve (0.2 cm{sup 3}; n=7), sympathetic trunk (0.2 cm{sup 3}; n=4), chest wall (30 cm{sup 3}; n=12), and proximal bronchial tree (1 cm{sup 3}; n=17). Cumulative dose-volume (D cm{sup 3}) toxicity following reirradiation data included esophagitis grade ≥2 (n=3, D1 cm{sup 3} range: 41.0-100.6 Gy), chest wall grade ≥2 (n=4; D30 cm{sup 3} range: 35.0-117.2 Gy), lung grade 2 (n=7; V20{sub combined-lung} range: 4.7%-21.7%), vocal cord paralysis (n=2; vagus nerve D0.2 cm{sup 3} range: 207.5-302.2 Gy), brachial plexopathy (n=1; D0.2 cm{sup 3} = 242.5 Gy), and Horner's syndrome (n=1; sympathetic trunk D0.2 cm{sup 3} = 130.8 Gy). No grade ≥4 toxicity was observed. Conclusions: Overlapping courses of reirradiation can be safely delivered with acceptable toxicity. Some toxicities occurred acutely at doses considered safe for a single course of therapy (esophagus). We observed rib fracture, brachial plexopathy, and Horner's syndrome for patients receiving high cumulative doses to corresponding critical structures.« less
Salem, Ahmed Hamed; Agarwal, Suresh K; Dunbar, Martin; Enschede, Sari L Heitner; Humerickhouse, Rod A; Wong, Shekman L
2017-04-01
Venetoclax is a selective BCL-2 inhibitor that is approved in the United States for the treatment of patients with chronic lymphocytic leukemia (CLL) with 17p deletion who have received at least 1 prior therapy. The aim of this analysis was to characterize venetoclax pharmacokinetics in the plasma and urine of patients with hematological malignancies and evaluate the effect of dose proportionality, accumulation, weak and moderate CYP3A inhibitors, as well as low- and high-fat meals on venetoclax pharmacokinetics. Patients received a once-daily venetoclax dose of 20 to 1200 mg. Pharmacokinetic parameters were estimated using noncompartmental methods. Venetoclax peak exposures were achieved at 5 to 8 hours under low-fat conditions, and the mean terminal-phase elimination half-life ranged between 14.1 and 18.2 hours at different doses. Venetoclax steady-state exposures showed minimal accumulation and increased proportionally over the dose range of 300 to 900 mg. Low-fat and high-fat meals increased venetoclax exposures by approximately 4-fold relative to the fasting state. Moderate CYP3A inhibitors increased venetoclax exposures by 40% to 60%, whereas weak CYP3A inhibitors had no effect. A negligible amount of venetoclax was excreted in the urine. In summary, venetoclax exhibits a pharmacokinetic profile that is compatible with once-daily dosing with food regardless of fat content. Concomitant use of venetoclax with moderate CYP3A inhibitors should be avoided or venetoclax dose should be reduced during the venetoclax initiation and ramp-up phase in CLL patients. Renal excretion plays a minimal role in the elimination of venetoclax. © 2016, The American College of Clinical Pharmacology.
Isbister, Geoffrey K; Ang, Karyn; Gorman, Kieron; Cooper, Joyce; Mostafa, Ahmed; Roberts, Michael S
2016-11-01
Acute beta-blocker overdose can cause severe cardiac dysfunction. Chronic toxicity is rare but potentially severe. We report therapeutic dosing of metoprolol resulting in unusual pharmacokinetics and toxicity, given high-dose insulin therapy for treatment. A 90-year-old female presented with hypotension, tachycardia and severe cardiac dysfunction after commencing a rapidly increasing metoprolol dose of 250 mg split daily. She was admitted to intensive care and given high-dose insulin therapy (10 U/kg/h), noradrenaline, adrenaline and dobutamine for severe cardiac dysfunction (cardiac index, 0.76 L/min/m 2 ). She developed acute renal failure, ischaemic hepatitis and disseminated intravascular coagulopathy. Inotropes and high-dose insulin were weaned over four days with complete recovery. Metoprolol was quantified with liquid chromatography-tandem mass spectrometry and concentration-time data were analysed using MONOLIX ® vs 4.3 ( www.lixoft.com ). Admission metoprolol concentration was 2.39 μg/mL (therapeutic reference range: 0.035-0.5 μg/mL). Data best fitted a one compartmental model with Michaelis-Menten kinetics and zero order elimination at high concentrations. Final parameter estimates were V, 63.4 L, maximum rate [V m ], 9.57 mg h -1 , Michaelis constant [K m ], 1.97 mg L -1 . Predicted elimination half-life decreased from 20 h over time until there was first order elimination with a half-life 9 h. The time course of cardiac dysfunction was longer than acute overdose but consistent with prolonged zero order elimination of metoprolol, suggesting the patient was a poor CYP2D6 metaboliser. High-dose insulin euglycaemia appeared to be effective in combination with vasoconstrictors/inotropes.
NASA Astrophysics Data System (ADS)
Marinelli, Marco; Pompili, F.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Cirrone, G. A. P.; Cuttone, G.; La Rosa, R. M.; Raffaele, L.; Romano, F.; Tuvè, C.
2014-12-01
A synthetic single crystal diamond based Schottky photodiode was tested at INFN-LNS on the proton beam line (62 MeV) dedicated to the radiation treatment of ocular disease. The diamond detector response was studied in terms of pre-irradiation dose, linearity with dose and dose rate, and angular dependence. Depth dose curves were measured for the 62 MeV pristine proton beam and for three unmodulated range-shifted proton beams; furthermore, the spread-out Bragg peak was measured for a modulated therapeutic proton beam. Beam parameters, recommended by the ICRU report 78, were evaluated to analyze depth-dose curves from diamond detector. Measured dose distributions were compared with the corresponding dose distributions acquired with reference plane-parallel ionization chambers. Field size dependence of the output factor (dose per monitor unit) in a therapeutic modulated proton beam was measured with the diamond detector over the range of ocular proton therapy collimator diameters (5-30 mm). Output factors measured with the diamond detector were compared to the ones by a Markus ionization chamber, a Scanditronix Hi-p Si stereotactic diode and a radiochromic EBT2 film. Signal stability within 0.5% was demonstrated for the diamond detector with no need of any pre-irradiation dose. Dose and dose rate dependence of the diamond response was measured: deviations from linearity resulted to be within ±0.5% over the investigated ranges of 0.5-40.0 Gy and 0.3-30.0 Gy/min respectively. Output factors from diamond detector measured with the smallest collimator (5 mm in diameter) showed a maximum deviation of about 3% with respect to the high resolution radiochromic EBT2 film. Depth-dose curves measured by diamond for unmodulated and modulated beams were in good agreement with those from the reference plane-parallel Markus chamber, with relative differences lower than ±1% in peak-to-plateau ratios, well within experimental uncertainties. A 2.5% variation in diamond detector response was observed in angular dependence measurements carried-out by varying the proton beam incidence angle in the polar direction. The dosimetric characterization of the tested synthetic single crystal diamond detector clearly indicates its suitability for relative dosimetry in ocular therapy proton beams, with no need of any correction factors accounting for dose rate and linear energy transfer dependence.
2011-01-01
Background Many countries, such as Niger, are considering changing their vaccine vial size presentation and may want to evaluate the subsequent impact on their supply chains, the series of steps required to get vaccines from their manufacturers to patients. The measles vaccine is particularly important in Niger, a country prone to measles outbreaks. Methods We developed a detailed discrete event simulation model of the vaccine supply chain representing every vaccine, storage location, refrigerator, freezer, and transport device (e.g., cold trucks, 4 × 4 trucks, and vaccine carriers) in the Niger Expanded Programme on Immunization (EPI). Experiments simulated the impact of replacing the 10-dose measles vial size with 5-dose, 2-dose and 1-dose vial sizes. Results Switching from the 10-dose to the 5-dose, 2-dose and 1-dose vial sizes decreased the average availability of EPI vaccines for arriving patients from 83% to 82%, 81% and 78%, respectively for a 100% target population size. The switches also changed transport vehicle's utilization from a mean of 58% (range: 4-164%) to means of 59% (range: 4-164%), 62% (range: 4-175%), and 67% (range: 5-192%), respectively, between the regional and district stores, and from a mean of 160% (range: 83-300%) to means of 161% (range: 82-322%), 175% (range: 78-344%), and 198% (range: 88-402%), respectively, between the district to integrated health centres (IHC). The switch also changed district level storage utilization from a mean of 65% to means of 64%, 66% and 68% (range for all scenarios: 3-100%). Finally, accounting for vaccine administration, wastage, and disposal, replacing the 10-dose vial with the 5 or 1-dose vials would increase the cost per immunized patient from $0.47US to $0.71US and $1.26US, respectively. Conclusions The switch from the 10-dose measles vaccines to smaller vial sizes could overwhelm the capacities of many storage facilities and transport vehicles as well as increase the cost per vaccinated child. PMID:21635774
Comparing Geant4 hadronic models for the WENDI-II rem meter response function.
Vanaudenhove, T; Dubus, A; Pauly, N
2013-01-01
The WENDI-II rem meter is one of the most popular neutron dosemeters used to assess a useful quantity of radiation protection, namely the ambient dose equivalent. This is due to its high sensitivity and its energy response that approximately follows the conversion function between neutron fluence and ambient dose equivalent in the range of thermal to 5 GeV. The simulation of the WENDI-II response function with the Geant4 toolkit is then perfectly suited to compare low- and high-energy hadronic models provided by this Monte Carlo code. The results showed that the thermal treatment of hydrogen in polyethylene for neutron <4 eV has a great influence over the whole detector range. Above 19 MeV, both Bertini Cascade and Binary Cascade models show a good correlation with the results found in the literature, while low-energy parameterised models are not suitable for this application.
COBALT-60 Gamma Irradiation of Shrimp.
NASA Astrophysics Data System (ADS)
Sullivan, Nancy L. B.
Meta- and ortho-tyrosine were measured using high performance liquid chromatography (HPLC) in conjunction with electrochemical detection in shrimp irradiated using cobalt-60 gamma radiation in the absorbed dose range 0.8 to 6.0 kGy, in nonirradiated shrimp, and in bovine serum albumin (BSA) irradiated in dilute aqueous solution at 25.0 kGy. Ortho-tyrosine was measured in nonirradiated BSA. Para-, meta-, and ortho-tyrosine were measured using HPLC in conjunction with uv-absorption detection in dilute aqueous solutions of phenylalanine irradiated in the absorbed dose range 16.0 to 195.0 kGy. The measured yields of tyrosine isomers were approximately linear as a function of absorbed dose in shrimp, and in irradiated solutions of phenylalanine up to 37.0 kGy. The occurrence of meta- and ortho-tyrosine, which had formerly been considered unique radiolytic products, has not previously been reported in nonirradiated shrimp or BSA. The conventional hydrolyzation and analytical techniques used in the present study to measure meta- and ortho-tyrosine may provide the basis for a method to detect and determine the dose used in food irradiation.
Background radiation dose of dumpsites in Ota and Environs
NASA Astrophysics Data System (ADS)
Usikalu, M. R.; Ola, O. O.; Achuka, J. A.; Babarimisa, I. O.; Ayara, W. A.
2017-05-01
In-situ measurement of background radiation dose from selected dumpsites in Ota and its environs was done using Radialert Nuclear Radiation Monitor (Digilert 200). Ten measurements were taken from each dumpsite. The measured background radiation range between 0.015 mRhr-1 for AOD and 0.028 mRhr-1 for SUS dumpsites. The calculated annual equivalent doses vary between 1.31 mSvyr-1 for AOD and 2.28 mSv/yr for SUS dumpsites. The air absorbed dose calculated ranged from 150 nGyhr-1 to 280 nGy/hr for AOD and SUS dumpsites respectively with an average value of 217 nGyhr-1 for all the locations. All the estimated parameters were higher than permissible limit set for background radiation for the general public. Conclusively, the associated challenge and radiation burden posed by the wastes on the studied locations and scavengers is high. Therefore, there is need by the regulatory authorities to look into the way and how waste can be properly managed so as to alleviate the effects on the populace leaving and working in the dumpsites vicinity.
Bybee, Kevin A; Lee, John H; O'Keefe, James H
2008-04-01
Since the 1990s a multitude of statin trials have definitively demonstrated the ability of statin therapy to reduce the risk of adverse coronary heart disease (CHD) events. Among these, the Atorvastatin Landmarks program - a group of 32 major atorvastatin trials - has assessed the efficacy and safety of atorvastatin across its full dose range and has helped illustrate its effectiveness in treatment of cardiovascular disease and its related disorders and also in non-cardiovascular outcomes. This paper will review the major atorvastatin clinical trials and report the important findings and their clinical significance. Clinical trials with atorvastatin have established significant reductions in cardiovascular events in patients with and without CHD. Studies show that high-dose atorvastatin will reduce LDL to approximately 70 mg/dL in many patients and improve cardiac outcomes. Current evidence suggests that high-dose atorvastatin can halt and, in some cases, reverse atherosclerotic progression. A study of diabetic patients showed atorvastatin decreased the occurrence of acute CHD events, coronary revascularizations, and stroke. Atorvastatin has been found to be effective for reducing nonfatal myocardial infarctions and fatal CHD in hypertensive patients with three or more additional risk factors. High-dose atorvastatin was found to be effective in reducing risk of recurrent stroke in patients with prior cerebrovascular events, has been shown to benefit patients suffering a recent acute coronary syndrome, and to slow cognitive decline in preliminary studies of patients with Alzheimer's disease. Atorvastatin has been associated with reduced progression of mild chronic kidney disease; however, in a randomized trial of patients with end stage renal disease on hemodialysis, atorvastatin showed no statistically significant benefit. Limitations of this review include lack of generalizability of the atorvastatin trial data to other statins, lack of head to head outcome trials involving the newer more potent statins, and the relatively short study durations (none exceeded 5 years) when atherosclerosis is typically a decades-long disease. A compelling body of evidence documents that atorvastatin reduces major cardiovascular events in both secondary and primary prevention of CHD and in a broad range of patients and disease conditions. Furthermore, throughout its dose range, atorvastatin is safe and well tolerated.
Bentley, R Timothy; Thomovsky, Stephanie A; Miller, Margaret A; Knapp, Deborah W; Cohen-Gadol, Aaron A
2018-06-04
Metronomic (daily low-dose) chlorambucil requires further study before use in human patients with glioma. The aim of this study was to investigate distribution and safety of metronomic chlorambucil in naturally occurring canine glioma. Eight client-owned (pet) dogs with newly diagnosed spontaneous glioma were prospectively enrolled. Chlorambucil was administered preoperatively at 4 mg/m 2 every 24 hours for ≥3 days and continued postoperatively until death or dose-limiting adverse events. Chlorambucil concentrations in the surgical glioma specimen, cerebrospinal fluid, and serum were analyzed. Dogs additionally received lomustine postoperatively. Dogs were monitored for seizures, myoclonus, cytopenias, and tumor recurrence. Complete microsurgical resection was achieved in 7 oligodendrogliomas and 1 astrocytoma (6 high grade, 2 low grade). Median surgical glioma specimen chlorambucil concentration was 0.52 ng/g (range, 0-2.62 ng/g), or 37% (range, 0%-178%) of serum concentration. Median cerebrospinal fluid concentration was 0.1 ng/mL (range, 0-0.3 ng/mL). Chlorambucil was not associated with increase in seizure activity. Six dogs displayed prolonged seizure-free intervals. There was no myoclonus. Three dogs developed asymptomatic thrombocytopenia after 8-12 months of chlorambucil. Median progression-free survival was 253 days (range, 63-860 days). Median overall survival was 257 days (range, 64-860 days). The presence of intratumoral chlorambucil indicated an altered blood-brain barrier that varied from case to case. Despite sporadic previous reports of neurotoxicity, prolonged seizure-free intervals supported a high safety margin at this dose in this species. Metronomic chlorambucil was well tolerated. Spontaneous canine glioma offers a robust preclinical model. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, L; Braunstein, S; Chiu, J
2016-06-15
Purpose: Spinal cord tolerance for SBRT has been recommended for the maximum point dose level or at irradiated volumes such as 0.35 mL or 10% of contoured volumes. In this study, we investigated an inherent functional relationship that associates these dose surrogates for irradiated spinal cord volumes of up to 3.0 mL. Methods: A hidden variable termed as Effective Dose Radius (EDR) was formulated based on a dose fall-off model to correlate dose at irradiated spinal cord volumes ranging from 0 mL (point maximum) to 3.0 mL. A cohort of 15 spine SBRT cases was randomly selected to derive anmore » EDR-parameterized formula. The mean prescription dose for the studied cases was 21.0±8.0 Gy (range, 10–40Gy) delivered in 3±1 fractions with target volumes of 39.1 ± 70.6 mL. Linear regression and variance analysis were performed for the fitting parameters of variable EDR values. Results: No direct correlation was found between the dose at maximum point and doses at variable spinal cord volumes. For example, Pearson R{sup 2} = 0.643 and R{sup 2}= 0.491 were obtained when correlating the point maximum dose with the spinal cord dose at 1 mL and 3 mL, respectively. However, near perfect correlation (R{sup 2} ≥0.99) was obtained when corresponding parameterized EDRs. Specifically, Pearson R{sup 2}= 0.996 and R{sup 2} = 0.990 were obtained when correlating EDR (maximum point dose) with EDR (dose at 1 mL) and EDR(dose at 3 mL), respectively. As a result, high confidence level look-up tables were established to correlate spinal cord doses at the maximum point to any finite irradiated volumes. Conclusion: An inherent functional relationship was demonstrated for spine SBRT. Such a relationship unifies dose surrogates at variable cord volumes and proves that a single dose surrogate (e.g. point maximum dose) is mathematically sufficient in constraining the overall spinal cord dose tolerance for SBRT.« less
Can high-dose fotemustine reverse MGMT resistance in glioblastoma multiforme?
Gallo, Chiara; Buonerba, Carlo; Di Lorenzo, Giuseppe; Romeo, Valeria; De Placido, Sabino; Marinelli, Alfredo
2010-11-01
Glioblastoma multiforme (GBM), the highest grade malignant glioma, is associated with a grim prognosis-median overall survival is in the range 12-15 months, despite optimum treatment. Surgery to the maximum possible extent, external beam radiotherapy, and systemic temozolomide chemotherapy are current standard treatments for newly diagnosed GBM, with intracerebral delivery of carmustine wafers (Gliadel). Unfortunately, the effectiveness of chemotherapy can be hampered by the DNA repair enzyme O6-methylguanine methyltransferase (MGMT), which confers resistance both to temozolomide and nitrosoureas, for example fotemustine and carmustine. MGMT activity can be measured by PCR and immunohistochemistry, with the former being the current validated technique. High-dose chemotherapy can deplete MGMT levels in GBM cells and has proved feasible in various trials on temozolomide, in both newly diagnosed and recurrent GBM. We here report the unique case of a GBM patient, with high MGMT expression by immunohistochemistry, who underwent an experimental, high-dose fotemustine schedule after surgery and radiotherapy. Although treatment caused two episodes of grade 3-4 thrombocytopenia, a complete response and survival of more than three years were achieved, with a 30% increase in dose intensity compared with the standard fotemustine schedule.
Enhancement of radiation cytotoxicity by gold nanoparticles in MCF-7 breast cancer cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul
2015-04-24
Therapy combined with metallic nanoparticles is a new way to treat cancer, in which gold nanoparticles (AuNPs) are injected through intravenous administration and bound to tumor sites. Radiotherapy aims to deliver a high therapeutic dose of ionizing radiation to the tumor without exceeding normal tissue tolerance. The use of AuNPs which is a high-atomic-number (Z) material in radiotherapy will provide a high probability for photon interaction by photoelectric effect. These provide advantages in terms of radiation dose enhancement. The high linear energy transfer and short range of photoelectric interaction products (photoelectrons, characteristic x-rays, Auger electrons) produce localized dose enhancement ofmore » the tumor. In this work, breast cancer cell lines (MCF-7) are seeded in the 96-well plate and were treated with 13 nm AuNPs before they were irradiated with 6 MV and 10 MV photon beam from a medical linear accelerator at various radiation doses. To validate the enhanced killing effect, both with and without AuNPs MCF-7 cells is irradiated simultaneously. By comparison, the results show that AuNPs significantly enhance cancer killing.« less
Conte, John E; Golden, Jeffrey A; McIver, Marina; Zurlinden, Elisabeth
2006-08-01
The objective of this study was to determine the plasma and intrapulmonary pharmacokinetic parameters of intravenously administered levofloxacin in healthy volunteers. Three doses of either 750 mg or 1000 mg levofloxacin were administered intravenously to 4 healthy adult subjects (750 mg) to 20 healthy adult subjects divided into five groups of 4 subjects (1000 mg). Standardised bronchoscopy and timed bronchoalveolar lavage (BAL) were performed following administration of the last dose. Blood was obtained for drug assay prior to drug administration and at the time of BAL. Levofloxacin was measured in plasma, BAL fluid and alveolar cells (ACs) using a sensitive and specific combined high-performance liquid chromatographic tandem mass spectrometric technique (HPLC/MS/MS). Plasma, epithelial lining fluid (ELF) and AC pharmacokinetics were derived using non-compartmental methods. The maximum plasma drug concentration to minimum inhibitory concentration ratio (C(max)/MIC(90)) and the area under the drug concentration curve to minimum inhibitory concentration ratio (AUC/MIC(90)) during the dosing interval were calculated for potential respiratory pathogens with MIC(90) values from 0.03 microg/mL to 2 microg/mL. In the 1000 mg dose group, the C(max) (mean+/-standard deviation (S.D.)), AUC(0-8h) and half-life were: for plasma, 9.2+/-1.9 microg/mL, 103.6 microg h/mL and 7.45 h; for ELF, 25.8+/-7.9 microg/mL, 279.1 microg h/mL and 8.10h; and for ACs, 51.8+/-26.2 microg/mL, 507.5 microg h/mL and 14.32 h. In the 750 mg dose group, the C(max) values in plasma, ELF and ACs were 5.7+/-0.4, 28.0+/-23.6 and 34.2+/-18.7 microg/mL, respectively. Levofloxacin concentrations were significantly higher in ELF and ACs than in plasma at all time points. For pathogens commonly associated with community-acquired pneumonia, C(max)/MIC(90) ratios in ELF ranged from 12.9 for Mycoplasma pneumoniae to 859 for Haemophilus influenzae, and AUC/MIC(90) ratios ranged from 139 to 9303, respectively. The C(max)/MIC(90) ratios in ACs ranged from 25.9 for M. pneumoniae to 1727 for H. influenzae, and AUC/MIC(90) ratios ranged from 254 to 16917, respectively. The C(max)/MIC(90) and AUC/MIC(90) ratios provide a pharmacokinetic rationale for once-daily administration of a 1000 mg dose of levofloxacin and are favourable for the treatment of community-acquired respiratory pathogens.
Yip, C; Thomas, C; Michaelidou, A; James, D; Lynn, R; Lei, M
2014-01-01
Objective: To investigate if cone beam CT (CBCT) can be used to estimate the delivered dose in head and neck intensity-modulated radiotherapy (IMRT). Methods: 15 patients (10 without replan and 5 with replan) were identified retrospectively. Weekly CBCT was co-registered with original planning CT. Original high-dose clinical target volume (CTV1), low-dose CTV (CTV2), brainstem, spinal cord, parotids and external body contours were copied to each CBCT and modified to account for anatomical changes. Corresponding planning target volumes (PTVs) and planning organ-at-risk volumes were created. The original plan was applied and calculated using modified per-treatment volumes on the original CT. Percentage volumetric, cumulative (planned dose delivered prior to CBCT + adaptive dose delivered after CBCT) and actual delivered (summation of weekly adaptive doses) dosimetric differences between each per-treatment and original plan were calculated. Results: There was greater volumetric change in the parotids with an average weekly difference of between −4.1% and −27.0% compared with the CTVs/PTVs (−1.8% to −5.0%). The average weekly cumulative dosimetric differences were as follows: CTV/PTV (range, −3.0% to 2.2%), ipsilateral parotid volume receiving ≥26 Gy (V26) (range, 0.5–3.2%) and contralateral V26 (range, 1.9–6.3%). In patients who required replan, the average volumetric reductions were greater: CTV1 (−2.5%), CTV2 (−6.9%), PTV1 (−4.7%), PTV2 (−11.5%), ipsilateral (−10.4%) and contralateral parotids (−12.1%), but did not result in significant dosimetric changes. Conclusion: The dosimetric changes during head and neck simultaneous integrated boost IMRT do not necessitate adaptive radiotherapy in most patients. Advances in knowledge: Our study shows that CBCT could be used for dose estimation during head and neck IMRT. PMID:24288402
Is it necessary to plan with safety margins for actively scanned proton therapy?
NASA Astrophysics Data System (ADS)
Albertini, F.; Hug, E. B.; Lomax, A. J.
2011-07-01
In radiation therapy, a plan is robust if the calculated and the delivered dose are in agreement, even in the case of different uncertainties. The current practice is to use safety margins, expanding the clinical target volume sufficiently enough to account for treatment uncertainties. This, however, might not be ideal for proton therapy and in particular when using intensity modulated proton therapy (IMPT) plans as degradation in the dose conformity could also be found in the middle of the target resulting from misalignments of highly in-field dose gradients. Single field uniform dose (SFUD) and IMPT plans have been calculated for different anatomical sites and the need for margins has been assessed by analyzing plan robustness to set-up and range uncertainties. We found that the use of safety margins is a good way to improve plan robustness for SFUD and IMPT plans with low in-field dose gradients but not necessarily for highly modulated IMPT plans for which only a marginal improvement in plan robustness could be detected through the definition of a planning target volume.
Colussi, V C; Beddar, A S; Kinsella, T J; Sibata, C H
2001-01-01
The AAPM Task Group 40 reported that in vivo dosimetry can be used to identify major deviations in treatment delivery in radiation therapy. In this paper, we investigate the feasibility of using one single diode to perform in vivo dosimetry in the entire radiotherapeutic energy range regardless of its intrinsic buildup material. The only requirement on diode selection would be to choose a diode with the adequate build up to measure the highest beam energy. We have tested the new diodes from Sun Nuclear Corporation (called QED and ISORAD-p--both p-type) for low-, intermediate-, and high-energy range. We have clinically used both diode types to monitor entrance doses. In general, we found that the dose readings from the ISORAD (p-type) are closer of the dose expected than QED diodes in the clinical setting. In this paper we report on the response of these newly available ISORAD (p-type) diode detectors with respect to certain radiation field parameters such as source-to-surface distance, field size, wedge beam modifiers, as well as other parameters that affect detector characteristics (temperature and detector-beam orientation). We have characterized the response of the high-energy ISORAD (p-type) diode in the low- (1-4 MV), intermediate- (6-12 MV), and high-energy (15-25 MV) range. Our results showed that the total variation of the response of high-energy ISORAD (p-type) diodes to all the above parameters are within +/-5% in most encountered clinical patient treatment setups in the megavoltage photon beam radiotherapy. The usage of the high-energy buildup diode has the additional benefit of amplifying the response of the diode reading in case the wrong energy is used for patient treatment. In the light of these findings, we have since then switched to using only one single diode type, namely the "red" diode; manufacturer designation of the ISORAD (p-type) high-energy (15-25 MV) range diode, for all energies in our institution and satellites.
Ishihara, Hiroshi; Tanaka, Izumi; Yakumaru, Haruko; Tanaka, Mika; Yokochi, Kazuko; Fukutsu, Kumiko; Tajima, Katsushi; Nishimura, Mayumi; Shimada, Yoshiya; Akashi, Makoto
2016-01-01
Biodosimetry, the measurement of radiation damage in a biologic sample, is a reliable tool for increasing the accuracy of dose estimation. Although established chromosome analyses are suitable for estimating the absorbed dose after high-dose irradiation, biodosimetric methodology to measure damage following low-dose exposure is underdeveloped. RNA analysis of circulating blood containing radiation-sensitive cells is a candidate biodosimetry method. Here we quantified RNA from a small amount of blood isolated from mice following low-dose body irradiation (<0.5 Gy) aimed at developing biodosimetric tools for situations that are difficult to study in humans. By focusing on radiation-sensitive undifferentiated cells in the blood based on Myc RNA expression, we quantified the relative levels of RNA for DNA damage-induced (DDI) genes, such as Bax, Bbc3 and Cdkn1a. The RNA ratios of DDI genes/Myc in the blood increased in a dose-dependent manner 4 h after whole-body irradiation at doses ranging from 0.1 to 0.5 Gy (air-kerma) of X-rays, regardless of whether the mice were in an active or resting state. The RNA ratios were significantly increased after 0.014 Gy (air-kerma) of single X-ray irradiation. The RNA ratios were directly proportional to the absorbed doses in water ranging from 0.1 to 0.5 Gy, based on gamma-irradiation from 137Cs. Four hours after continuous irradiation with gamma-rays or by internal contamination with a beta-emitter, the increased RNA ratios resembled those following single irradiation. These findings indicate that the RNA status can be utilized as a biodosimetric tool to estimate low-dose radiation when focusing on undifferentiated cells in blood. PMID:26589759
A new shielding calculation method for X-ray computed tomography regarding scattered radiation.
Watanabe, Hiroshi; Noto, Kimiya; Shohji, Tomokazu; Ogawa, Yasuyoshi; Fujibuchi, Toshioh; Yamaguchi, Ichiro; Hiraki, Hitoshi; Kida, Tetsuo; Sasanuma, Kazutoshi; Katsunuma, Yasushi; Nakano, Takurou; Horitsugi, Genki; Hosono, Makoto
2017-06-01
The goal of this study is to develop a more appropriate shielding calculation method for computed tomography (CT) in comparison with the Japanese conventional (JC) method and the National Council on Radiation Protection and Measurements (NCRP)-dose length product (DLP) method. Scattered dose distributions were measured in a CT room with 18 scanners (16 scanners in the case of the JC method) for one week during routine clinical use. The radiation doses were calculated for the same period using the JC and NCRP-DLP methods. The mean (NCRP-DLP-calculated dose)/(measured dose) ratios in each direction ranged from 1.7 ± 0.6 to 55 ± 24 (mean ± standard deviation). The NCRP-DLP method underestimated the dose at 3.4% in fewer shielding directions without the gantry and a subject, and the minimum (NCRP-DLP-calculated dose)/(measured dose) ratio was 0.6. The reduction factors were 0.036 ± 0.014 and 0.24 ± 0.061 for the gantry and couch directions, respectively. The (JC-calculated dose)/(measured dose) ratios ranged from 11 ± 8.7 to 404 ± 340. The air kerma scatter factor κ is expected to be twice as high as that calculated with the NCRP-DLP method and the reduction factors are expected to be 0.1 and 0.4 for the gantry and couch directions, respectively. We, therefore, propose a more appropriate method, the Japanese-DLP method, which resolves the issues of possible underestimation of the scattered radiation and overestimation of the reduction factors in the gantry and couch directions.
Dyk, Pawel; Weiner, Ashley; Badiyan, Shahed; Myerson, Robert; Parikh, Parag; Olsen, Jeffrey
2015-01-01
The purpose of this study was to evaluate liver function after high-dose liver stereotactic body radiation therapy (SBRT) in the treatment of metastatic and primary malignancies of the liver using the Child-Pugh score classification system. This was a retrospective analysis of 46 patients treated with SBRT for metastatic and primary malignancies of the liver. Patient, disease, prior treatment, and SBRT dosimetric factors were analyzed to correlate with decline in Child-Pugh class after liver SBRT. Median follow-up was 11.0 months for patients alive at last follow-up. Twenty-three patients (50%) had primary liver malignancies. Median delivered dose was 55 Gy in 5 fractions (range, 36-60 Gy in 3-6 fractions) to 1 lesion (range, 1-4 lesions) measuring 4.0 cm (range, 1.3-12.4 cm). Forty-one patients (89%) received ≥50 Gy in 3 to 6 fractions. Child-Pugh score classification was A in 42 patients (91%). Seven patients (15%) received adjuvant chemotherapy or targeted therapy. Twenty-nine patients (63%) experienced an intrahepatic recurrence after treatment. Ten patients (22%) experienced a decline in Child-Pugh class at a median of 1.6 months (range, 0.2-6 months). Eighty percent experienced a one-category decline. Only the V20, V25, V30, and V50 were correlated with decline in Child-Pugh class on univariate analysis, with V25 being most significant (P = .027). A V25 >32% was associated with a 42% incidence of Child-Pugh class decline compared with 9% for V25 ≤32 (P = .029). For primary liver malignancies, a V25 >36% was associated with a 4-fold increase in the incidence of Child-Pugh class decline (60% vs 15%, P = .021). Approximately one-quarter of patients experience a decline in Child-Pugh class after high-dose liver SBRT. The V25 may be an important dosimetric parameter predicting decline in liver function after treatment. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
TH-A-9A-10: Prostate SBRT Delivery with Flattening-Filter-Free Mode: Benefit and Accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T; Yuan, L; Sheng, Y
Purpose: Flattening-filter-free (FFF) beam mode offered on TrueBeam™ linac enables delivering IMRT at 2400 MU/min dose rate. This study investigates the benefit and delivery accuracy of using high dose rate in the context of prostate SBRT. Methods: 8 prostate SBRT patients were retrospectively studied. In 5 cases treated with 600-MU/min dose rate, continuous prostate motion data acquired during radiation-beam-on was used to analyze motion range. In addition, the initial 1/3 of prostate motion trajectories during each radiation-beam-on was separated to simulate motion range if 2400-MU/min were used. To analyze delivery accuracy in FFF mode, MLC trajectory log files from anmore » additional 3 cases treated at 2400-MU/min were acquired. These log files record MLC expected and actual positions every 20ms, and therefore can be used to reveal delivery accuracy. Results: (1) Benefit. On average treatment at 600-MU/min takes 30s per beam; whereas 2400-MU/min requires only 11s. When shortening delivery time to ~1/3, the prostate motion range was significantly smaller (p<0.001). Largest motion reduction occurred in Sup-Inf direction, from [−3.3mm, 2.1mm] to [−1.7mm, 1.7mm], followed by reduction from [−2.1mm, 2.4mm] to [−1.0mm, 2.4mm] in Ant-Pos direction. No change observed in LR direction [−0.8mm, 0.6mm]. The combined motion amplitude (vector norm) confirms that average motion and ranges are significantly smaller when beam-on was limited to the 1st 1/3 of actual delivery time. (2) Accuracy. Trajectory log file analysis showed excellent delivery accuracy with at 2400 MU/min. Most leaf deviations during beam-on were within 0.07mm (99-percentile). Maximum leaf-opening deviations during each beam-on were all under 0.1mm for all leaves. Dose-rate was maintained at 2400-MU/min during beam-on without dipping. Conclusion: Delivery prostate SBRT with 2400 MU/min is both beneficial and accurate. High dose rates significantly reduced both treatment time and intra-beam prostate motion range. Excellent delivery accuracy was confirmed with very small leaf motion deviation.« less
Fukao, Mari; Kawamoto, Kiyosumi; Matsuzawa, Hiroaki; Honda, Osamu; Iwaki, Takeshi; Doi, Tsukasa
2015-01-01
We aimed to optimize the exposure conditions in the acquisition of soft-tissue images using dual-energy subtraction chest radiography with a direct-conversion flat-panel detector system. Two separate chest images were acquired at high- and low-energy exposures with standard or thick chest phantoms. The high-energy exposure was fixed at 120 kVp with the use of an auto-exposure control technique. For the low-energy exposure, the tube voltages and entrance surface doses ranged 40-80 kVp and 20-100 % of the dose required for high-energy exposure, respectively. Further, a repetitive processing algorithm was used for reduction of the image noise generated by the subtraction process. Seven radiology technicians ranked soft-tissue images, and these results were analyzed using the normalized-rank method. Images acquired at 60 kVp were of acceptable quality regardless of the entrance surface dose and phantom size. Using a repetitive processing algorithm, the minimum acceptable doses were reduced from 75 to 40 % for the standard phantom and to 50 % for the thick phantom. We determined that the optimum low-energy exposure was 60 kVp at 50 % of the dose required for the high-energy exposure. This allowed the simultaneous acquisition of standard radiographs and soft-tissue images at 1.5 times the dose required for a standard radiograph, which is significantly lower than the values reported previously.
Colmenero Sujo, L; Montero Cabrera, M E; Villalba, L; Rentería Villalobos, M; Torres Moye, E; García León, M; García-Tenorio, R; Mireles García, F; Herrera Peraza, E F; Sánchez Aroche, D
2004-01-01
High-resolution gamma spectrometry was used to determine the concentration of 40K, 238U and 232Th series in soil samples taken from areas surrounding the city of Aldama, in Chihuahua. Results of indoor air short-time sampling, with diffusion barrier charcoal detectors, revealed relatively high indoor radon levels, ranging from 29 to 422 Bq/m3; the radon concentrations detected exceeded 148 Bq/m3 in 76% of the homes tested. Additionally, liquid scintillation counting showed concentrations of radon in drinking water ranging from 4.3 to 42 kBq/m3. The high activity of 238U in soil found in some places may be a result of the uranium milling process performed 20 years ago in the area. High radon concentrations indoor and in water may be explained by assuming the presence of uranium-bearing rocks underneath of the city, similar to a felsic dike located near Aldama. The estimated annual effective dose of gamma radiation from the soil and radon inhalation was 3.83 mSv.
Fuss, Martina; Sturtewagen, Eva; De Wagter, Carlos; Georg, Dietmar
2007-07-21
The suitability of radiochromic EBT film was studied for high-precision clinical quality assurance (QA) by identifying the dose response for a wide range of irradiation parameters typically modified in highly-conformal treatment techniques. In addition, uncertainties associated with varying irradiation conditions were determined. EBT can be used for dose assessment of absorbed dose levels as well as relative dosimetry when compared to absolute absorbed dose calibrated using ionization chamber results. For comparison, a silver halide film (Kodak EDR-2) representing the current standard in film dosimetry was included. As an initial step a measurement protocol yielding accurate and precise results was established for a flatbed transparency scanner (Epson Expression 1680 Pro) that was utilized as a film reading instrument. The light transmission measured by the scanner was found to depend on the position of the film on the scanner plate. For three film pieces irradiated with doses of 0 Gy, approximately 1 Gy and approximately 7 Gy, the pixel values measured in portrait or landscape mode differed by 4.7%, 6.2% and 10.0%, respectively. A study of 200 film pieces revealed an excellent sheet-to-sheet uniformity. On a long time scale, the optical development of irradiated EBT film consisted of a slow but steady increase of absorbance which was not observed to cease during 4 months. Sensitometric curves of EBT films obtained under reference conditions (SSD = 95 cm, FS = 5 x 5 cm(2), d = 5 cm) for 6, 10 and 25 MV photon beams did not show any energy dependence. The average separation between all curves was only 0.7%. The variation of the depth d (range 2-25 cm) in the phantom did not affect the dose response of EBT film. Also the influence of the radiation field size (range 3 x 3-40 x 40 cm(2)) on the sensitometric curve was not significant. For EDR-2 films maximum differences between the calibration curves reached 7-8% for X6MV and X25MV. Radiochromic EBT film, in combination with a flatbed scanner, presents a versatile system for high-precision dosimetry in two dimensions, provided that the intrinsic behaviour of the film reading device is taken into account. EBT film itself presents substantial improvements on formerly available models of radiographic and a radiochromic film and its dosimetric characteristics allow us to measure absorbed dose levels in a large variety of situations with a single calibration curve.
NASA Astrophysics Data System (ADS)
Fuss, Martina; Sturtewagen, Eva; DeWagter, Carlos; Georg, Dietmar
2007-07-01
The suitability of radiochromic EBT film was studied for high-precision clinical quality assurance (QA) by identifying the dose response for a wide range of irradiation parameters typically modified in highly-conformal treatment techniques. In addition, uncertainties associated with varying irradiation conditions were determined. EBT can be used for dose assessment of absorbed dose levels as well as relative dosimetry when compared to absolute absorbed dose calibrated using ionization chamber results. For comparison, a silver halide film (Kodak EDR-2) representing the current standard in film dosimetry was included. As an initial step a measurement protocol yielding accurate and precise results was established for a flatbed transparency scanner (Epson Expression 1680 Pro) that was utilized as a film reading instrument. The light transmission measured by the scanner was found to depend on the position of the film on the scanner plate. For three film pieces irradiated with doses of 0 Gy, ~1 Gy and ~7 Gy, the pixel values measured in portrait or landscape mode differed by 4.7%, 6.2% and 10.0%, respectively. A study of 200 film pieces revealed an excellent sheet-to-sheet uniformity. On a long time scale, the optical development of irradiated EBT film consisted of a slow but steady increase of absorbance which was not observed to cease during 4 months. Sensitometric curves of EBT films obtained under reference conditions (SSD = 95 cm, FS = 5 × 5 cm2, d = 5 cm) for 6, 10 and 25 MV photon beams did not show any energy dependence. The average separation between all curves was only 0.7%. The variation of the depth d (range 2-25 cm) in the phantom did not affect the dose response of EBT film. Also the influence of the radiation field size (range 3 × 3-40 × 40 cm2) on the sensitometric curve was not significant. For EDR-2 films maximum differences between the calibration curves reached 7-8% for X6MV and X25MV. Radiochromic EBT film, in combination with a flatbed scanner, presents a versatile system for high-precision dosimetry in two dimensions, provided that the intrinsic behaviour of the film reading device is taken into account. EBT film itself presents substantial improvements on formerly available models of radiographic and a radiochromic film and its dosimetric characteristics allow us to measure absorbed dose levels in a large variety of situations with a single calibration curve.
Lell, Michael M; May, Matthias; Deak, Paul; Alibek, Sedat; Kuefner, Michael; Kuettner, Axel; Köhler, Henrik; Achenbach, Stephan; Uder, Michael; Radkow, Tanja
2011-02-01
computed tomography (CT) is considered the method of choice in thoracic imaging for a variety of indications. Sedation is usually necessary to enable CT and to avoid deterioration of image quality because of patient movement in small children. We evaluated a new, subsecond high-pitch scan mode (HPM), which obviates the need of sedation and to hold the breath. a total of 60 patients were included in this study. 30 patients (mean age, 14 ± 17 month; range, 0-55 month) were examined with a dual source CT system in an HPM. Scan parameters were as follows: pitch = 3.0, 128 × 0.6 mm slice acquisition, 0.28 seconds gantry rotation time, ref. mAs adapted to the body weight (50-100 mAs) at 80 kV. Images were reconstructed with a slice thickness of 0.75 mm. None of the children was sedated for the CT examination and no breathing instructions were given. Image quality was assessed focusing on motion artifacts and delineation of the vascular structures and lung parenchyma. Thirty patients (mean age, 15 ± 17 month; range, 0-55 month) were examined under sedation on 2 different CT systems (10-slice CT, n = 18; 64-slice CT, n = 13 patients) in conventional pitch mode (CPM). Dose values were calculated from the dose length product provided in the patient protocol/dose reports, Monte Carlo simulations were performed to assess dose distribution for CPM and HPM. all scans were performed without complications. Image quality was superior with HPM, because of a significant reduction in motion artifacts, as compared to CPM with 10- and 64-slice CT. In the control group, artifacts were encountered at the level of the diaphragm (n = 30; 100%), the borders of the heart (n = 30; 100%), and the ribs (n = 20; 67%) and spine (n = 6; 20%), whereas motion artifacts were detected in the HPM-group only in 6 patients in the lung parenchyma next to the diaphragm or the heart (P < 0,001). Dose values were within the same range in the patient examinations (CPM, 1.9 ± 0.6 mSv; HPM, 1.9 ± 0.5 mSv; P = 0.95), although z-overscanning increased with the increase of detector width and pitch-value. high-pitch chest CT is a robust method to provide highest image quality making sedation or controlled ventilation for the examination of infants, small or uncooperative children unnecessary, whereas maintaining low radiation dose values.
Yahya, Noorazrul; Ebert, Martin A; Bulsara, Max; House, Michael J; Kennedy, Angel; Joseph, David J; Denham, James W
2015-11-01
This study aimed to compare urinary dose-symptom correlates after external beam radiotherapy of the prostate using commonly utilised peak-symptom models to multiple-event and event-count models which account for repeated events. Urinary symptoms (dysuria, haematuria, incontinence and frequency) from 754 participants from TROG 03.04-RADAR trial were analysed. Relative (R1-R75 Gy) and absolute (A60-A75Gy) bladder dose-surface area receiving more than a threshold dose and equivalent uniform dose using exponent a (range: a ∈[1 … 100]) were derived. The dose-symptom correlates were analysed using; peak-symptom (logistic), multiple-event (generalised estimating equation) and event-count (negative binomial regression) models. Stronger dose-symptom correlates were found for incontinence and frequency using multiple-event and/or event-count models. For dysuria and haematuria, similar or better relationships were found using peak-symptom models. Dysuria, haematuria and high grade (⩾ 2) incontinence were associated to high dose (R61-R71 Gy). Frequency and low grade (⩾ 1) incontinence were associated to low and intermediate dose-surface parameters (R13-R41Gy). Frequency showed a parallel behaviour (a=1) while dysuria, haematuria and incontinence showed a more serial behaviour (a=4 to a ⩾ 100). Relative dose-surface showed stronger dose-symptom associations. For certain endpoints, the multiple-event and event-count models provide stronger correlates over peak-symptom models. Accounting for multiple events may be advantageous for a more complete understanding of urinary dose-symptom relationships. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A protocol for EBT3 radiochromic film dosimetry using reflection scanning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papaconstadopoulos, Pavlos, E-mail: pavpapac@gmail.com; Hegyi, Gyorgy; Seuntjens, Jan
2014-12-15
Purpose: To evaluate the performance of the EBT3 radiochromic film dosimetry system using reflection measurements and to suggest a calibration protocol for precise and accurate reflection film dosimetry. Methods: A set of 14 Gafchromic EBT3 film pieces were irradiated to various doses ranging from 0 to 8 Gy and subsequently scanned using both the reflection and transmission mode. Scanning resolution varied from 50 to 508 dpi (0.5–0.05 mm/pixel). Both the red and green color channels of scanned images were used to relate the film response to the dose. A sensitivity, uncertainty, and accuracy analysis was performed for all scanning modesmore » and color channels. The total uncertainty, along with the fitting and experimental uncertainty components, was identified and analyzed. A microscope resolution target was used to evaluate possible resolution losses under reflection scanning. The calibration range was optimized for reflection scanning in the low (<2 Gy) and high (>2 Gy) dose regions based on the reported results. Results: Reflection scanning using the red channel exhibited the highest sensitivity among all modes, being up to 150% higher than transmission mode in the red channel for the lowest dose level. Furthermore, there was no apparent loss in resolution between the two modes. However, higher uncertainties and reduced accuracy were observed for the red channel under reflection mode, especially at dose levels higher than 2 Gy. These uncertainties were mainly attributed to saturation effects which were translated in poor fitting results. By restricting the calibration to the 0–2 Gy dose range, the situation is reversed and the red reflection mode was superior to the transmission mode. For higher doses, the green channel in reflection mode presented comparable results to the red transmission. Conclusions: A two-color reflection scanning protocol can be suggested for EBT3 radiochromic film dosimetry using the red channel for doses less than 2 Gy and the green channel for higher doses. The precision and accuracy are significantly improved in the low dose region following such a protocol.« less
Martin, David E; Blum, Robert; Doto, Judy; Galbraith, Hal; Ballow, Charles
2007-01-01
Bevirimat [3-O-(3',3'-dimethylsuccinyl)-betulinic acid] is a novel inhibitor of HIV-1 maturation. This study was performed to investigate the pharmacokinetics and safety of bevirimat during repeated dosing in healthy volunteers. The study was a 10-day, randomised, double-blind, placebo-controlled, dose escalation study. A total of 48 healthy male volunteers, aged 19-54 years, took part in the study. Treatment was administered for 10 days in six escalating dose cohorts (n = 8 in each cohort; 6 bevirimat, 2 placebo). The doses of bevirimat given in each successive cohort were 25 mg, 50 mg, 75 mg (with 150 mg loading dose), 100 mg, 150 mg and 200mg. Safety follow-up was performed 28 days after the first dose. PHARMACOKINETIC AND STATISTICAL ANALYSIS: Plasma bevirimat levels were measured from blood samples collected pre-dose on days 1-10 and then at approximately 48-hour intervals until 21 days after dosing started. On days 1 and 10, further blood samples were obtained at 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8 and 12 hours after dosing. Urine samples were collected in the morning on days 1, 5 and 11 and at the end of the study for the measurement of cortisol and 6beta-hydroxycortisol. The pharmacokinetic parameters of bevirimat were estimated using non-compartmental methods. Dose proportionality of exposure to bevirimat, assessed by the maximum plasma concentration and the area under the plasma concentration-time curve. The mean terminal elimination half-life of bevirimat ranged from 56.3 to 69.5 hours, and the mean clearance ranged from 173.9 to 185.8 mL/hour. Bevirimat showed approximately 4-fold greater accumulation on day 10 compared with day 1, and the degree of accumulation was similar with all doses. Maximum plasma concentrations ranged from 8 to 58 microg/mL at day 10. Testing for dose-proportionality showed that exposure to bevirimat was proportional to the dose, both after a single dose and after repeat dosing for 10 days. Measurement of the urinary 6beta-hydroxycortisol/cortisol ratio indicated that bevirimat did not affect cytochrome P450 3A activity. Repeated dosing with bevirimat for 10 days was well tolerated. There was no increase in adverse events observed for bevirimat compared with placebo, and no serious adverse events occurred. No clinically relevant changes in vital signs, physical examination or clinical laboratory evaluations were observed. Bevirimat shows dose-proportional pharmacokinetics during repeated dosing for 10 days. Its accumulation is approximately 4-fold greater on day 10 compared with day 1. Repeated dosing with bevirimat is well tolerated. These properties make bevirimat potentially suitable for inclusion in highly active antiretroviral therapy regimens.
Optical properties of Si+ implanted PMMA
NASA Astrophysics Data System (ADS)
Balabanov, S.; Tsvetkova, T.; Borisova, E.; Avramov, L.; Bischoff, L.; Zuk, J.
2010-04-01
In the present work, low energy ion beam irradiation was used for surface modification of polymethyl-methacrylate (PMMA) using silicon (Si+) as the ion species. After high doses ion implantation of Si+ in the polymer material, a characterization of the optical properties was performed using optical transmission measurements in the visible and near infra-red (IR) wavelength range. The optical absorption increase observed with the ion dose was attributed to ion beam induced structural changes in the modified material.
NASA Astrophysics Data System (ADS)
Liu, Huifang; Zhang, Cuimiao; Tan, Yanli; Wang, Jianguo; Wang, Ke; Zhao, Yanyan; Jia, Guang; Hou, Yingjian; Wang, Shuxian; Zhang, Jinchao
2014-03-01
In order to evaluate the biodistribution and toxicity of europium-doped Gd2O3 nanotubes, we synthesized Gd2O3:Eu3+ nanotubes via a simple wet-chemical route at ambient pressure. The as-obtained Gd2O3:Eu3+ sample is composed of uniform and well-dispersed nanotubes. The diameters and lengths of the nanotubes are about 50 and 300 nm, respectively. All mice of the experimental groups were administered by intraperitoneal injection everyday over a period of 60 days at doses ranging from 1.25 to 125 mg/kg. Haematological and biochemical parameters and histopathology were examined, and the biodistribution of Gd element in different organs was analyzed. The results indicate that the spleen shows significant higher coefficient than the control, and other organs have no obvious difference from the control in the middle-dose and high-dose groups. There was no significant difference in the blood-elements between the control group and the experimental groups, and no significant change of all parameters can be observed in both low-dose and middle-dose groups. However, in the high-dose group, the ALT, AST, the ratio of AST/ALT, UA, LDH, and HBDH levels was increased significantly in comparison with the control group. The pathology results show that the ischemia of myocardial cell, hemorrhage of lung tissue, hepatocyte necrosis, congestion of renal interstitium, mesangial cell proliferation, and congestion of spleen sinus were induced by high-dose Gd2O3:Eu3+ nanotubes. Biodistribution experiment exhibits that Gd mainly accumulates in spleen, lung, and liver. Therefore, it can be concluded that high-dose Gd2O3:Eu3+ nanotubes were toxic, but low-dose and middle-dose groups did not show significant toxicity. The results provide novel toxicology data of Gd2O3:Eu3+ nanotubes and may be helpful for more rational applications of Gd-based compounds in the future.
Repair-dependent cell radiation survival and transformation: an integrated theory.
Sutherland, John C
2014-09-07
The repair-dependent model of cell radiation survival is extended to include radiation-induced transformations. The probability of transformation is presumed to scale with the number of potentially lethal damages that are repaired in a surviving cell or the interactions of such damages. The theory predicts that at doses corresponding to high survival, the transformation frequency is the sum of simple polynomial functions of dose; linear, quadratic, etc, essentially as described in widely used linear-quadratic expressions. At high doses, corresponding to low survival, the ratio of transformed to surviving cells asymptotically approaches an upper limit. The low dose fundamental- and high dose plateau domains are separated by a downwardly concave transition region. Published transformation data for mammalian cells show the high-dose plateaus predicted by the repair-dependent model for both ultraviolet and ionizing radiation. For the neoplastic transformation experiments that were analyzed, the data can be fit with only the repair-dependent quadratic function. At low doses, the transformation frequency is strictly quadratic, but becomes sigmodial over a wider range of doses. Inclusion of data from the transition region in a traditional linear-quadratic analysis of neoplastic transformation frequency data can exaggerate the magnitude of, or create the appearance of, a linear component. Quantitative analysis of survival and transformation data shows good agreement for ultraviolet radiation; the shapes of the transformation components can be predicted from survival data. For ionizing radiations, both neutrons and x-rays, survival data overestimate the transforming ability for low to moderate doses. The presumed cause of this difference is that, unlike UV photons, a single x-ray or neutron may generate more than one lethal damage in a cell, so the distribution of such damages in the population is not accurately described by Poisson statistics. However, the complete sigmodial dose-response data for neoplastic transformations can be fit using the repair-dependent functions with all parameters determined only from transformation frequency data.
Biodosimetry estimate for high-LET irradiation.
Wang, Z Z; Li, W J; Zhi, D J; Jing, X G; Wei, W; Gao, Q X; Liu, B
2007-08-01
The purpose of this paper is to prepare for an easy and reliable biodosimeter protocol for radiation accidents involving high-linear energy transfer (LET) exposure. Human peripheral blood lymphocytes were irradiated using carbon ions (LET: 34.6 keV microm(-1)), and the chromosome aberrations induced were analyzed using both a conventional colcemid block method and a calyculin A induced premature chromosome condensation (PCC) method. At a lower dose range (0-4 Gy), the measured dicentric (dics) and centric ring chromosomes (cRings) provided reasonable dose information. At higher doses (8 Gy), however, the frequency of dics and cRings was not suitable for dose estimation. Instead, we found that the number of Giemsa-stained drug-induced G2 prematurely condensed chromosomes (G2-PCC) can be used for dose estimation, since the total chromosome number (including fragments) was linearly correlated with radiation dose (r = 0.99). The ratio of the longest and the shortest chromosome length of the drug-induced G2-PCCs increased with radiation dose in a linear-quadratic manner (r = 0.96), which indicates that this ratio can also be used to estimate radiation doses. Obviously, it is easier to establish the dose response curve using the PCC technique than using the conventional metaphase chromosome method. It is assumed that combining the ratio of the longest and the shortest chromosome length with analysis of the total chromosome number might be a valuable tool for rapid and precise dose estimation for victims of radiation accidents.
Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F
2016-07-08
Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.
Xu, Yanqun; Charles, Marie Thérèse; Luo, Zisheng; Mimee, Benjamin; Veronneau, Pierre-Yves; Rolland, Daniel; Roussel, Dominique
2017-11-22
Preharvest ultraviolet C (UV-C) irradiation is an innovative approach for increasing the bioactive phytochemical content of strawberries to increase the disease resistance and nutritional value. This study investigated the changes in individual flavonoids in strawberry developed with three different cumulative doses of preharvest UV-C treatment (low, 9.6 kJ m -2 ; middle, 15 kJ m -2 ; and high , 29.4 kJ m -2 ). Significant accumulation (p < 0.05) of phenolics (25-75% increase), namely, cyanidin 3-glucoside, pelargonidin 3-glucoside/rutinoside, glucoside and glucuronide of quercetin and kaempferol, and ellagic acid, was found in the fruit subjected to low and middle supplemental doses of UV-C radiation. The expression of the flavonoid pathway structural genes, i.e., FaCHS1, FaCHI, FaFHT, FaDFR, FaFLS, and FaFGT, was upregulated in the low- and middle-dose groups, while the early stage genes were not affected by the high dose. FaMYB1 was also relatively enhanced in the low- and middle-dose groups, while FaASR was upregulated in only the low-dose group. Hormetic preharvest UV-C dose ranges for enhancing the polyphenol content of strawberries were established for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucconi, G; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA; Bentefour, E
Purpose: The clinical commissioning of a workflow for pre-treatment range verification/adjustment for the head treatment of pediatric medulloblastoma patients, including dose monitoring during treatment. Methods: An array of Si-diodes (DIODES Incorporated) is placed on the patient skin on the opposite side to the beam entrance. A “scout” SOBP beam, with a longer beam range to cover the diodes in its plateau, is delivered; the measured signal is analyzed and the extracted water equivalent path lengths (WEPL) are compared to the expected values, revealing if a range correction is needed. Diodes stay in place during treatment to measure dose. The workflowmore » was tested in solid water and head phantoms and validated against independent WEPL measurements. Both measured WEPL and skin doses were compared to computed values from the TPS (XiO); a Markus chamber was used for reference dose measurements. Results: The WEPL accuracy of the method was verified by comparing it with the dose extinction method. It resulted, for both solid water and head phantom, in the sub-millimeter range, with a deviation less than 1% to the value extracted from the TPS. The accuracy of dose measurements in the fall-off part of the dose profile was validated against the Markus chamber. The entire range verification workflow was successfully tested for the mock-treatment of head phantom with the standard delivery of 90 cGy per field per fraction. The WEPL measurement revealed no need for range correction. The dose measurements agreed to better than 4% with the prescription dose. The robustness of the method and workflow, including detector array, hardware set and software functions, was successfully stress-tested with multiple repetitions. Conclusion: The performance of the in-vivo range verification system and related workflow meet the clinical requirements in terms of the needed WEPL accuracy for pretreatment range verification with acceptable dose to the patient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Jian; Yang Fujun; Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan
2011-11-15
Purpose: To assess the relationship between biologically effective dose (BED) and efficacy of stereotactic body radiation therapy (SBRT) and to explore the optimal BED range for Stage I non-small-cell lung cancer (NSCLC). Methods and Materials: Eligible studies were identified on Medline, Embase, the Cochrane Library, and the proceedings of annual meetings through June 2010. According to the quartile of included studies, BED was divided into four dose groups: low (<83.2 Gy), medium (83.2-106 Gy), medium to high (106-146 Gy), high (>146 Gy). To obtain pooled estimates of overall survival (OS), cancer-specific survival (CSS), and local control rate (LCR), data weremore » combined in a random effect model. Pooled estimates were corrected for the percentage of small tumors (<3 cm). Results: Thirty-four observational studies with a total of 2,587 patients were included in the meta-analysis. Corrected pooled estimates of 2- or 3-year OS in the medium BED (76.1%, 63.5%) or the medium to high BED (68.3%, 63.2%) groups were higher than in the low (62.3%, 51.9%) or high groups (55.9%, 49.5%), respectively (p {<=} 0.004). Corrected 3-year CSS in the medium (79.5%), medium to high (80.6%), and high groups (90.0%) were higher than in the low group (70.1%, p = 0.016, 0.018, 0.001, respectively). Conclusion: The OS for the medium or medium to high BED groups were higher than those for the low or high BED group for SBRT in Stage I NSCLC. The medium or medium to high BED (range, 83.2-146 Gy) for SBRT may currently be more beneficial and reasonable in Stage I NSCLC.« less
Lai, Priscilla; McNeil, Sarah M; Gordon, Christopher L; Connolly, Bairbre L
2014-12-01
The purpose of this study was to determine the range of effective doses associated with imaging techniques used during interventional radiology procedures on children. A pediatric phantom set (1, 5, and 10 years) coupled with high-sensitivity metal oxide semiconductor field effect transistor (MOSFET) dosimeters was used to calculate effective doses. Twenty MOSFETs were inserted into each phantom at radiosensitive organ locations. The phantoms were exposed to mock head, chest, and abdominal interventional radiology procedures performed with different geometries and magnifications. Fluoroscopy, digital subtraction angiography (DSA), and spin angiography were simulated on each phantom. Road mapping was conducted only on the 5-year-old phantom. International Commission on Radiological Protection publication 103 tissue weights were applied to the organ doses recorded with the MOSFETs to determine effective dose. For easy application to clinical cases, doses were normalized per minute of fluoroscopy and per 10 frames of DSA or spin angiography. Effective doses from DSA, angiography, and fluoroscopy were higher for younger ages because of magnification use and were largest for abdominal procedures. DSA of the head, chest, and abdomen (normalized per 10 frames) imparted doses 2-3 times as high as corresponding doses per minute of fluoroscopy while all other factors remained unchanged (age, projection, collimation, magnification). Three to five frames of DSA imparted an effective dose equal to doses from 1 minute of fluoroscopy. Doses from spin angiography were almost one-half the doses received from an equivalent number of frames of DSA. Patient effective doses during interventional procedures vary substantially depending on procedure type but tend to be higher because of magnification use in younger children and higher in the abdomen.
Radiation Dose Index of Renal Colic Protocol CT Studies in the United States
Lukasiewicz, Adam; Bhargavan-Chatfield, Mythreyi; Coombs, Laura; Ghita, Monica; Weinreb, Jeffrey; Gunabushanam, Gowthaman; Moore, Christopher L.
2016-01-01
Purpose To determine radiation dose indexes for computed tomography (CT) performed with renal colic protocols in the United States, including frequency of reduced-dose technique usage and any institutional-level factors associated with high or low dose indexes. Materials and Methods The Dose Imaging Registry (DIR) collects deidentified CT data, including examination type and dose indexes, for CT performed at participating institutions; thus, the DIR portion of the study was exempt from institutional review board approval and was HIPAA compliant. CT dose indexes were examined at the institutional level for CT performed with a renal colic protocol at institutions that contributed at least 10 studies to the registry as of January 2013. Additionally, patients undergoing CT for renal colic at a single institution (with institutional review board approval and informed consent from prospective subjects and waiver of consent from retrospective subjects) were studied to examine individual renal colic CT dose index patterns and explore relationships between patient habitus, demographics, and dose indexes. Descriptive statistics were used to analyze dose indexes, and linear regression and Spearman correlations were used to examine relationships between dose indexes and institutional factors. Results There were 49 903 renal colic protocol CT examinations conducted at 93 institutions between May 2011 and January 2013. Mean age ± standard deviation was 49 years ± 18, and 53.9% of patients were female. Institutions contributed a median of 268 (interquartile range, 77–699) CT studies. Overall mean institutional dose-length product (DLP) was 746 mGy · cm (effective dose, 11.2 mSv), with a range of 307–1497 mGy · cm (effective dose, 4.6–22.5 mSv) for mean DLPs. Only 2% of studies were conducted with a DLP of 200 mGy · cm or lower (a “reduced dose”) (effective dose, 3 mSv), and only 10% of institutions kept DLP at 400 mGy · cm (effective dose, 6 mSv) or less in at least 50% of patients. Conclusion Reduced-dose renal protocol CT is used infrequently in the United States. Mean dose index is higher than reported previously, and institutional variation is substantial. PMID:24484064
Savage, A P; Adrian, T E; Carolan, G; Chatterjee, V K; Bloom, S R
1987-02-01
The effect of an infusion of two doses of peptide YY (PYY), a novel putative gastrointestinal hormone, has been assessed on mouth to caecum intestinal transit time and on the rate of gastric emptying after ingestion of an inert 200 ml liquid meal thought unlikely to interrupt fasting gastrointestinal motility patterns. A low dose of PYY was chosen to give plasma concentrations within the range seen postprandially in healthy subjects, while the high dose mimicked the raised levels seen in several malabsorptive conditions. During infusion of PYY at 0.18 pmol/kg/min plasma concentrations rose from a basal of 8 +/- 2 pmol/l to 38 +/- 5 pmol/l and at 0.51 pmol/kg/min to 87 +/- 10 pmol/l. Mouth to caecum transit time was delayed from 67 +/- 4 mins on the saline infusion day to 94 +/- 7 mins (p less than 0.01) on the low dose and 192 +/- 9 mins (p less than 0.001) on the high dose infusion day. Time to 50% gastric emptying was prolonged from 37 +/- 8 mins during saline infusion to 63 +/- 10 mins (p less than 0.05) during low and 130 +/- 12 mins (p less than 0.001) during high dose infusion. Thus the infusion of PYY shows a dose related inhibition of mouth to caecum intestinal transit time and of the rate of gastric emptying and suggests this novel hormonal peptide to be of importance in gastrointestinal physiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goddu, S; Sun, B; Grantham, K
2016-06-15
Purpose: Proton therapy (PT) delivery is complex and extremely dynamic. Therefore, quality assurance testing is vital, but highly time-consuming. We have developed a High-Speed Scintillation-Camera-System (HS-SCS) for simultaneously measuring multiple beam characteristics. Methods: High-speed camera was placed in a light-tight housing and dual-layer neutron shield. HS-SCS is synchronized with a synchrocyclotron to capture individual proton-beam-pulses (PBPs) at ∼504 frames/sec. The PBPs from synchrocyclotron trigger the HS-SCS to open its shutter for programmed exposure-time. Light emissions within 30×30×5cm3 plastic-scintillator (BC-408) were captured by a CCD-camera as individual images revealing dose-deposition in a 2D-plane with a resolution of 0.7mm for range andmore » SOBP measurements and 1.67mm for profiles. The CCD response as well as signal to noise ratio (SNR) was characterized for varying exposure times, gains for different light intensities using a TV-Optoliner system. Software tools were developed to analyze ∼5000 images to extract different beam parameters. Quenching correction-factors were established by comparing scintillation Bragg-Peaks with water scanned ionization-chamber measurements. Quenching corrected Bragg-peaks were integrated to ascertain proton-beam range (PBR), width of Spared-Out-Bragg-Peak (MOD) and distal.« less
Evaluation of 2 possible further developments of the UK in-flight radiation warning meter for SSTS
NASA Technical Reports Server (NTRS)
Wilson, I. J.; Eustace, R. C.
1972-01-01
A mass reduction of the moderator and the response to the nucleon flux, responsible for the tissue-star component of the total-dose equivalent rate using a high atomic number material, are discussed. Radiation situations at SST cruising altitudes (approximately 20 km) due to solar proton flares were simulated in the stratosphere and on the ground. Actual stratospheric situations due to galactic cosmic radiation with a limited range of quality factor values (2-4) were encountered during slow ascents by balloons to 36 km. Synthetic situations obtained from high and low energy acclerator radiations were used to obtain radiation distributions having a larger range of quality factor values (11/2-9) than experienced in the stratosphere. The measurements made in these simulations related to the directly ionizing, neutron and tissue-star components of dose-equivalent rate. Due to the restricted range of neutron spectra encountered in the stratosphere, a significant mass reduction of the moderator by 4 kg was made, with the moderator clad with cadmium or some other slow neutron absorber.
Antonovic, L; Brahme, A; Furusawa, Y; Toma-Dasu, I
2013-01-01
Light-ion radiation therapy against hypoxic tumors is highly curative due to reduced dependence on the presence of oxygen in the tumor at elevated linear energy transfer (LET) towards the Bragg peak. Clinical ion beams using spread-out Bragg peak (SOBP) are characterized by a wide spectrum of LET values. Accurate treatment optimization requires a method that can account for influence of the variation in response for a broad range of tumor hypoxia, absorbed doses and LETs. This paper presents a parameterization of the Repairable Conditionally-Repairable (RCR) cell survival model that can describe the survival of oxic and hypoxic cells over a wide range of LET values, and investigates the relationship between hypoxic radiation resistance and LET. The biological response model was tested by fitting cell survival data under oxic and anoxic conditions for V79 cells irradiated with LETs within the range of 30-500 keV/µm. The model provides good agreement with experimental cell survival data for the range of LET investigated, confirming the robustness of the parameterization method. This new version of the RCR model is suitable for describing the biological response of mixed populations of oxic and hypoxic cells and at the same time taking into account the distribution of doses and LETs in the incident beam and its variation with depth in tissue. The model offers a versatile tool for the selection of LET and dose required in the optimization of the therapeutic effect, without severely affecting normal tissue in realistic tumors presenting highly heterogeneous oxic and hypoxic regions.
Kotsuma, Tadayuki; Yamazaki, Hideya; Masui, Koji; Yoshida, Ken; Shimizutani, Kimishige; Akiyama, Hironori; Murakami, Shumei; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko; Tanaka, Eiichi
2017-12-01
To examine the effectiveness of newly-installed high-dose-rate interstitial brachytherapy (HDR-ISBT) for buccal cancer. We retrospectively reviewed 36 patients (25 men and 11 women) with buccal cancer treated with curative brachytherapy with or without external radiotherapy with a median follow-up of 99 months. A total of 15 HDR-ISBT (median 48 Gy/ 8 fractions, range=24-60 Gy) patients were compared to conventional 15 cases LDR-ISBT (70 Gy, range=42.8-110 Gy) and 7 molds techniques (15 Gy, range=9-74 Gy). A total of 31 patients also underwent external radiotherapy (30 Gy, range=24-48 Gy). They comprised of 3T1, 23 T2, 8 T3, 3 T4 including 11 node positive cases. HDR-ISBT provided 82% of local control rate at 5 years, whereas conventional brachytherapy showed 72% [p=0.44; LDR-ISBT (65%), mold therapy (85.7%)]. Patients with early lesions (T1-2 or stage I-II) showed better local control rates than those with advanced lesions (T3-4 or stage III-IV). Severe late grade 3 complications developed in two patients treated with LDR-ISBT and EBRT. There is no significant difference in toxicity grade ≤2 between conventional brachytherapy (5/15=33%) and HDR-ISBT (7/32=32%, p=0.92). HDR-ISBT achieved good and comparable local control rates to conventional brachytherapy without elevating the toxicity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Elschot, Mattijs; Nijsen, Johannes F W; Lam, Marnix G E H; Smits, Maarten L J; Prince, Jip F; Viergever, Max A; van den Bosch, Maurice A A J; Zonnenberg, Bernard A; de Jong, Hugo W A M
2014-10-01
Radiation pneumonitis is a rare but serious complication of radioembolic therapy of liver tumours. Estimation of the mean absorbed dose to the lungs based on pretreatment diagnostic (99m)Tc-macroaggregated albumin ((99m)Tc-MAA) imaging should prevent this, with administered activities adjusted accordingly. The accuracy of (99m)Tc-MAA-based lung absorbed dose estimates was evaluated and compared to absorbed dose estimates based on pretreatment diagnostic (166)Ho-microsphere imaging and to the actual lung absorbed doses after (166)Ho radioembolization. This prospective clinical study included 14 patients with chemorefractory, unresectable liver metastases treated with (166)Ho radioembolization. (99m)Tc-MAA-based and (166)Ho-microsphere-based estimation of lung absorbed doses was performed on pretreatment diagnostic planar scintigraphic and SPECT/CT images. The clinical analysis was preceded by an anthropomorphic torso phantom study with simulated lung shunt fractions of 0 to 30 % to determine the accuracy of the image-based lung absorbed dose estimates after (166)Ho radioembolization. In the phantom study, (166)Ho SPECT/CT-based lung absorbed dose estimates were more accurate (absolute error range 0.1 to -4.4 Gy) than (166)Ho planar scintigraphy-based lung absorbed dose estimates (absolute error range 9.5 to 12.1 Gy). Clinically, the actual median lung absorbed dose was 0.02 Gy (range 0.0 to 0.7 Gy) based on posttreatment (166)Ho-microsphere SPECT/CT imaging. Lung absorbed doses estimated on the basis of pretreatment diagnostic (166)Ho-microsphere SPECT/CT imaging (median 0.02 Gy, range 0.0 to 0.4 Gy) were significantly better predictors of the actual lung absorbed doses than doses estimated on the basis of (166)Ho-microsphere planar scintigraphy (median 10.4 Gy, range 4.0 to 17.3 Gy; p < 0.001), (99m)Tc-MAA SPECT/CT imaging (median 2.5 Gy, range 1.2 to 12.3 Gy; p < 0.001), and (99m)Tc-MAA planar scintigraphy (median 5.5 Gy, range 2.3 to 18.2 Gy; p < 0.001). In clinical practice, lung absorbed doses are significantly overestimated by pretreatment diagnostic (99m)Tc-MAA imaging. Pretreatment diagnostic (166)Ho-microsphere SPECT/CT imaging accurately predicts lung absorbed doses after (166)Ho radioembolization.
Freitas, Kelen; Carroll, F. Ivy; Negus, S. Stevens
2015-01-01
Intracranial self-stimulation (ICSS) is one type of preclinical procedure for research on pharmacological mechanisms that mediate abuse potential of drugs acting at various targets including nicotinic acetylcholine receptors (nAChRs). This study compared effects of the non-selective nAChR agonist nicotine (0.032-1.0 mg/kg) and the α4β2-selective nAChR agonist 5-I-A-85380 (0.01-1.0 mg/kg) on ICSS in male Sprague-Dawley rats. Rats were implanted with electrodes targeting the medial forebrain bundle at the level of the lateral hypothalamus and trained to respond under a fixed-ratio 1 schedule for a range of brain stimulation frequencies (158-56 Hz). A broad range of 5-I-A-85380 doses produced an abuse-related increase (or “facilitation”) of low ICSS rates maintained by low brain-stimulation frequencies, and this effect was blocked by both the nonselective nAChR antagonist mecamylamine and the selective α4β2 antagonist dihyrdo-ß-erythroidine (DHßE). Conversely, nicotine produced weaker ICSS facilitation across a narrower range of doses, and higher nicotine doses decreased high rates of ICSS maintained by high brain- stimulation frequencies. The rate-decreasing effects of a high nicotine dose were blocked by mecamylamine but not DHßE. Chronic nicotine treatment produced selective tolerance to rate-decreasing effects of nicotine but did not alter ICSS rate-increasing effects of nicotine. These results suggest that α4β2 receptors are sufficient to mediate abuse-related rate-increasing effects of nAChR agonists in this ICSS procedure. Conversely, nicotine effects at non-α4β2 nAChRs appear to oppose and limit abuse-related effects mediated by α4β2 receptors, although tolerance can develop to these non-α4β2 effects. Selective α4β2 agonists may have higher abuse potential than nicotine. PMID:26461167
Pelham, R W; Nix, L C; Chavira, R E; Cleveland, M Vb; Stetson, P
2008-07-01
The pharmacokinetics of polyethylene glycol 3350 (PEG-3350) have not been fully described because of lack of a sufficiently sensitive analytical method. To describe the pharmacokinetics of PEG-3350 in humans. A highly sensitive, high performance liquid chromatography with mass spectrometry (HPLC/MS/MS) method was developed for PEG-3350 in urine, plasma and faeces with quantification limits of 30 ng/mL, 100 ng/mL and 500 microg/g respectively. Noncompartmental pharmacokinetics methods were used and the effects of gender, age, renal status and dosing frequency were examined after the oral administration of 17 g to healthy volunteers. Peak PEG-3350 plasma concentrations occurred at 2-4 h and declined to nonquantifiable levels usually within 18 h after single and multiple doses, with a half-life of about 4-6 h. Steady state was reached within 5 days of dosing. Mean urinary excretion of the administered dose ranged from 0.19% to 0.25%. Age, gender or mild kidney impairment did not alter the pharmacokinetics of PEG-3350. Mean faecal excretion of the administered dose was 93% in young subjects. For the first time, a highly sensitive assay allowed comprehensive pharmacokinetics studies of PEG-3350 in humans. These studies confirmed that orally administered PEG-3350 is minimally absorbed, rapidly excreted and primarily eliminated via faeces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hata, Masaharu; Tokuuye, Koichi; Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki
Purpose: To present treatment outcomes of hypofractionated high-dose proton beam therapy for Stage I non-small-cell lung cancer (NSCLC). Methods and Materials: Twenty-one patients with Stage I NSCLC (11 with Stage IA and 10 with Stage IB) underwent hypofractionated high-dose proton beam therapy. At the time of irradiation, patient age ranged from 51 to 85 years (median, 74 years). Nine patients were medically inoperable because of comorbidities, and 12 patients refused surgical resection. Histology was squamous cell carcinoma in 6 patients, adenocarcinoma in 14, and large cell carcinoma in 1. Tumor size ranged from 10 to 42 mm (median, 25 mm)more » in maximum diameter. Three and 18 patients received proton beam irradiation with total doses of 50 Gy and 60 Gy in 10 fractions, respectively, to primary tumor sites. Results: Of 21 patients, 2 died of cancer and 2 died of pneumonia at a median follow-up period of 25 months. The 2-year overall and cause-specific survival rates were 74% and 86%, respectively. All but one of the irradiated tumors were controlled during the follow-up period. Five patients showed recurrences 6-29 months after treatment, including local progression and new lung lesions outside of the irradiated volume in 1 and 4 patients, respectively. The local progression-free and disease-free rates were 95% and 79% at 2 years, respectively. No therapy-related toxicity of Grade {>=}3 was observed. Conclusions: Hypofractionated high-dose proton beam therapy seems feasible and effective for Stage I NSCLC. Proton beams may contribute to enhanced efficacy and lower toxicity in the treatment of patients with Stage I NSCLC.« less
Advanced proton beam dosimetry part II: Monte Carlo vs. pencil beam-based planning for lung cancer.
Maes, Dominic; Saini, Jatinder; Zeng, Jing; Rengan, Ramesh; Wong, Tony; Bowen, Stephen R
2018-04-01
Proton pencil beam (PB) dose calculation algorithms have limited accuracy within heterogeneous tissues of lung cancer patients, which may be addressed by modern commercial Monte Carlo (MC) algorithms. We investigated clinical pencil beam scanning (PBS) dose differences between PB and MC-based treatment planning for lung cancer patients. With IRB approval, a comparative dosimetric analysis between RayStation MC and PB dose engines was performed on ten patient plans. PBS gantry plans were generated using single-field optimization technique to maintain target coverage under range and setup uncertainties. Dose differences between PB-optimized (PBopt), MC-recalculated (MCrecalc), and MC-optimized (MCopt) plans were recorded for the following region-of-interest metrics: clinical target volume (CTV) V95, CTV homogeneity index (HI), total lung V20, total lung V RX (relative lung volume receiving prescribed dose or higher), and global maximum dose. The impact of PB-based and MC-based planning on robustness to systematic perturbation of range (±3% density) and setup (±3 mm isotropic) was assessed. Pairwise differences in dose parameters were evaluated through non-parametric Friedman and Wilcoxon sign-rank testing. In this ten-patient sample, CTV V95 decreased significantly from 99-100% for PBopt to 77-94% for MCrecalc and recovered to 99-100% for MCopt (P<10 -5 ). The median CTV HI (D95/D5) decreased from 0.98 for PBopt to 0.91 for MCrecalc and increased to 0.95 for MCopt (P<10 -3 ). CTV D95 robustness to range and setup errors improved under MCopt (ΔD95 =-1%) compared to MCrecalc (ΔD95 =-6%, P=0.006). No changes in lung dosimetry were observed for large volumes receiving low to intermediate doses (e.g., V20), while differences between PB-based and MC-based planning were noted for small volumes receiving high doses (e.g., V RX ). Global maximum patient dose increased from 106% for PBopt to 109% for MCrecalc and 112% for MCopt (P<10 -3 ). MC dosimetry revealed a reduction in target dose coverage under PB-based planning that was regained under MC-based planning along with improved plan robustness. MC-based optimization and dose calculation should be integrated into clinical planning workflows of lung cancer patients receiving actively scanned proton therapy.
Advanced proton beam dosimetry part II: Monte Carlo vs. pencil beam-based planning for lung cancer
Maes, Dominic; Saini, Jatinder; Zeng, Jing; Rengan, Ramesh; Wong, Tony
2018-01-01
Background Proton pencil beam (PB) dose calculation algorithms have limited accuracy within heterogeneous tissues of lung cancer patients, which may be addressed by modern commercial Monte Carlo (MC) algorithms. We investigated clinical pencil beam scanning (PBS) dose differences between PB and MC-based treatment planning for lung cancer patients. Methods With IRB approval, a comparative dosimetric analysis between RayStation MC and PB dose engines was performed on ten patient plans. PBS gantry plans were generated using single-field optimization technique to maintain target coverage under range and setup uncertainties. Dose differences between PB-optimized (PBopt), MC-recalculated (MCrecalc), and MC-optimized (MCopt) plans were recorded for the following region-of-interest metrics: clinical target volume (CTV) V95, CTV homogeneity index (HI), total lung V20, total lung VRX (relative lung volume receiving prescribed dose or higher), and global maximum dose. The impact of PB-based and MC-based planning on robustness to systematic perturbation of range (±3% density) and setup (±3 mm isotropic) was assessed. Pairwise differences in dose parameters were evaluated through non-parametric Friedman and Wilcoxon sign-rank testing. Results In this ten-patient sample, CTV V95 decreased significantly from 99–100% for PBopt to 77–94% for MCrecalc and recovered to 99–100% for MCopt (P<10−5). The median CTV HI (D95/D5) decreased from 0.98 for PBopt to 0.91 for MCrecalc and increased to 0.95 for MCopt (P<10−3). CTV D95 robustness to range and setup errors improved under MCopt (ΔD95 =−1%) compared to MCrecalc (ΔD95 =−6%, P=0.006). No changes in lung dosimetry were observed for large volumes receiving low to intermediate doses (e.g., V20), while differences between PB-based and MC-based planning were noted for small volumes receiving high doses (e.g., VRX). Global maximum patient dose increased from 106% for PBopt to 109% for MCrecalc and 112% for MCopt (P<10−3). Conclusions MC dosimetry revealed a reduction in target dose coverage under PB-based planning that was regained under MC-based planning along with improved plan robustness. MC-based optimization and dose calculation should be integrated into clinical planning workflows of lung cancer patients receiving actively scanned proton therapy. PMID:29876310
Bulk unipolar diodes formed in GaAs by ion implantation
NASA Astrophysics Data System (ADS)
Hutchinson, S.; Kelly, M. J.; Gwilliam, R.; Sealy, B. J.; Carr, M.
1999-01-01
In an attempt to emulate epitaxially manufactured semiconductor multilayers for microwave device applications, we have produced a camel diode structure in GaAs for the first time, using the tail of a Mg + implant into a molecular beam epitaxially grown n +-n --n + structure. Using a range of ion energies and doses, samples are observed to exhibit bulk unipolar diode characteristics. With low dose and energy, a diode with barrier height of ˜0.8 V and ideality factor ˜1.25 is achieved. 'Punch through' diode characteristics are obtained at high ion dose and energy, some with knee voltages in excess of 7 V.
NASA Astrophysics Data System (ADS)
de Oliveira, L. N.; do Nascimento, E. O.; Schimidt, F.; Antonio, P. L.; Caldas, L. V. E.
2018-03-01
Materials with the potential to become dosimeters are of interest in radiation physics. In this research, the materials were analyzed and compared in relation to their linearity ranges. Samples of ethylene vinyl-acetate copolymer (EVA) were irradiated with doses from 10 Gy to 10 kGy using a 60Co Gamma-Cell system 220 and evaluated with the FTIR technique. The linearity analyses were applied through two methodologies, searching for linear regions in their response. The results show that both applied analyses indicate linear regions in defined dose interval. The radiation detectors EVA can be useful for radiation dosimetry in intermediate and high doses.
Diamond, David M.
2004-01-01
Dehydroepiandrosterone sulfate (DHEAS) is a steroid hornone that is synthesized, de novo, in the brain. Endogenous DHEAS levels correlate with the quality of mental and physical health, where the highest levels of DHEAS occur in healthy young adults and reduced levels of DHEAS are found with advanced age, disease, or extreme stress. DHEAS supplementation, therefore, may serve as a therapeutic agent against a broad range of maladies. This paper summarizes laboratory findings on dose-response relationships between DHEAS and cognitive and electrophysiological measures of hippocampal functioning. It was found that a low, but not a high, dose of DHEAS enhanced hippocampal primed burst potentiation (a physiological model of memory) as well as spatial (hippocampal-dependent) memory in rats. This complex dose-response function of DHEAS effects on the brain and memory may contribute toward the inconsistent findings that have been obtained by other investigators in studies on DHEAS administration in people. PMID:19330152
van Damme, Pierre; Kafeja, Froukje; Anemona, Alessandra; Basile, Venere; Hilbert, Anne Katrin; De Coster, Ilse; Rondini, Simona; Micoli, Francesca; Qasim Khan, Rana M; Marchetti, Elisa; Di Cioccio, Vito; Saul, Allan; Martin, Laura B; Podda, Audino
2011-01-01
Typhoid fever causes more than 21 million cases of disease and 200,000 deaths yearly worldwide, with more than 90% of the disease burden being reported from Asia. Epidemiological data show high disease incidence in young children and suggest that immunization programs should target children below two years of age: this is not possible with available vaccines. The Novartis Vaccines Institute for Global Health developed a conjugate vaccine (Vi-CRM₁₉₇) for infant vaccination concomitantly with EPI vaccines, either starting at 6 weeks with DTP or at 9 months with measles vaccine. We report the results from a Phase 1 and a Phase 2 dose ranging trial with Vi-CRM₁₉₇ in European adults. Following randomized blinded comparison of single vaccination with either Vi-CRM₁₉₇ or licensed polysaccharide vaccines (both containing 25·0 µg of Vi antigen), a randomised observer blinded dose ranging trial was performed in the same center to compare three concentrations of Vi-CRM₁₉₇ (1·25 µg, 5·0 µg and 12·5 µg of Vi antigen) with the polysaccharide vaccine. All vaccines were well tolerated. Compared to the polysaccharide vaccine, Vi-CRM₁₉₇ induced a higher incidence of mild to moderate short lasting local pain. All Vi-CRM₁₉₇ formulations induced higher Vi antibody levels compared to licensed control, with clear dose response relationship. Vi-CRM₁₉₇ did not elicit safety concerns, was highly immunogenic and is therefore suitable for further clinical testing in endemic populations of South Asia. ClinicalTrials.gov NCT01123941 NCT01193907.
Cytogenetic effects of high-energy iron ions: dependence on shielding thickness and material.
Durante, M; George, K; Gialanella, G; Grossi, G; La Tessa, C; Manti, L; Miller, J; Pugliese, M; Scampoli, P; Cucinotta, F A
2005-10-01
We report results for chromosomal aberrations in human peripheral blood lymphocytes after they were exposed to high-energy iron ions with or without shielding at the HIMAC, AGS and NSRL accelerators. Isolated lymphocytes were exposed to iron ions with energies between 200 and 5000 MeV/nucleon in the 0.1-1-Gy dose range. Shielding materials consisted of polyethylene, lucite (PMMA), carbon, aluminum and lead, with mass thickness ranging from 2 to 30 g/cm2. After exposure, lymphocytes were stimulated to grow in vitro, and chromosomes were prematurely condensed using a phosphatase inhibitor (calyculin A). Aberrations were scored using FISH painting. The yield of total interchromosomal exchanges (including dicentrics, translocations and complex rearrangements) increased linearly with dose or fluence in the range studied. Shielding decreased the effectiveness per unit dose of iron ions. The highest RBE value was measured with the 1 GeV/nucleon iron-ion beam at NSRL. However, the RBE for the induction of aberrations apparently is not well correlated with the mean LET. When shielding thickness was increased, the frequency of aberrations per particle incident on the shield increased for the 500 MeV/nucleon ions and decreased for the 1 GeV/nucleon ions. Maximum variation at equal mass thickness was obtained with light materials (polyethylene, carbon or PMMA). Variations in the yield of chromosomal aberrations per iron particle incident on the shield follow variations in the dose per incident particle behind the shield but can be modified by the different RBE of the mixed radiation field produced by nuclear fragmentation. The results suggest that shielding design models should be benchmarked using both physics and biological data.
Schmittner, M D; Faulhaber, J; Kemler, B; Koenen, W; Thumfart, J O; Weiss, C; Neumaier, M; Beck, G C
2010-12-01
Tumescent local anaesthesia (TLA) with high prilocaine doses leads to formation of methemoglobin (MHb) which is known to be a potent activator of pro-inflammatory endothelial cell response in vitro. As TLA is widely used for large dermatological resections, the aim of this study was to investigate the effects of high prilocaine doses on the systemic inflammatory response in vivo and its clinical relevance. This prospective study examines the influence of MHb on serum interleukin (IL)-6, IL-8 and tumour necrosis tumour necrosis (TNF)-α levels up to 72 h after application of TLA with prilocaine in doses higher than 600 mg. A total of 30 patients received prilocaine in a median dose of 1500 mg (range: 880-4160 mg) for large resections. Peak prilocaine serum concentration was reached 4 h (0.72 ± 0.07 μg/mL), the maximum concentration of MHb (7.43 ± 0.87%) and IL-6 (28.4 ± 4.1 U/L) 12 h after TLA application. TNF-α and IL-8 release were not found significantly increased. Three patients developed MHb concentrations >15%. This clinical study shows for the first time that a high prilocaine serum concentration leads in vivo to elevated systemic levels of IL-6 but not of IL-8 and TNF-α because of initial high MHb levels. Because of possible and unpredictable high MHb concentrations, TLA should only be performed with prilocaine in doses of 2.5 mg/kg. In general, new solutions of TLA are necessary to achieve adequate anaesthesia for large dermatological resections to decrease the risk of methemoglobinaemia. © 2010 The Authors. Journal compilation © 2010 European Academy of Dermatology and Venereology.
2013-01-01
Background To investigate the feasibility and dosimetric improvements of a novel technique to temporarily displace critical structures in the pelvis and abdomen from tumor during high-dose radiotherapy. Methods Between 2010 and 2012, 11 patients received high-dose image-guided intensity-modulated radiotherapy with temporary organ displacement (TOD) at our institution. In all cases, imaging revealed tumor abutting critical structures. An all-purpose drainage catheter was introduced between the gross tumor volume (GTV) and critical organs at risk (OAR) and infused with normal saline (NS) containing 5-10% iohexol. Radiation planning was performed with the displaced OARs and positional reproducibility was confirmed with cone-beam CT (CBCT). Patients were treated within 36 hours of catheter placement. Radiation plans were re-optimized using pre-TOD OARs to the same prescription and dosimetrically compared with post-TOD plans. A two-tailed permutation test was performed on each dosimetric measure. Results The bowel/rectum was displaced in six patients and kidney in four patients. One patient was excluded due to poor visualization of the OAR; thus 10 patients were analyzed. A mean of 229 ml (range, 80–1000) of NS 5-10% iohexol infusion resulted in OAR mean displacement of 17.5 mm (range, 7–32). The median dose prescribed was 2400 cGy in one fraction (range, 2100–3000 in 3 fractions). The mean GTV Dmin and PTV Dmin pre- and post-bowel TOD IG-IMRT dosimetry significantly increased from 1473 cGy to 2086 cGy (p=0.015) and 714 cGy to 1214 cGy (p=0.021), respectively. TOD increased mean PTV D95 by 27.14% of prescription (p=0.014) while the PTV D05 decreased by 9.2% (p=0.011). TOD of the bowel resulted in a 39% decrease in mean bowel Dmax (p=0.008) confirmed by CBCT. TOD of the kidney significantly decreased mean kidney dose and Dmax by 25% (0.022). Conclusions TOD was well tolerated, reproducible, and facilitated dose escalation to previously radioresistant tumors abutting critical structures while minimizing dose to OARs. PMID:23800073
Zhang, Hualin; Gopalakrishnan, Mahesh; Lee, Plato; Kang, Zhuang; Sathiaseelan, Vythialingam
2016-09-08
The purpose of this study was to evaluate the dosimetric impact of cylinder size in high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT). Sample plans of HDR VCBT in a list of cylinders ranging from 2.5 to 4 cm in diameter at 0.5 cm incre-ment were created and analyzed. The doses were prescribed either at the 0.5cm depth with 5.5 Gy for 4 fractions or at the cylinder surface with 8.8 Gy for 4 frac-tions, in various treatment lengths. A 0.5 cm shell volume called PTV_Eval was contoured for each plan and served as the target volume for dosimetric evaluation. The cumulative and differential dose volume histograms (c-DVH and d-DVH), mean doses (D-mean) and the doses covering 90% (D90), 10% (D10), and 5% (D5) of PTV_Eval were calculated. In the 0.5 cm depth regimen, the DVH curves were found to have shifted toward the lower dose zone when a larger cylinder was used, but in the surface regimen the DVH curves shifted toward the higher dose zone as the cylinder size increased. The D-means of the both regimens were between 6.9 and 7.8 Gy and dependent on the cylinder size but independent of the treatment length. A 0.5 cm variation of diameter could result in a 4% change of D-mean. Average D90s were 5.7 (ranging from 5.6 to 5.8 Gy) and 6.1 Gy (from 5.7 to 6.4 Gy), respectively, for the 0.5 cm and surface regimens. Average D10 and D5 were 9.2 and 11 Gy, respectively, for the 0.5 cm depth regimen, and 8.9 and 9.7 Gy, respectively, for the surface regimen. D-mean, D90, D10, and D5 for other prescription doses could be calculated from the lookup tables of this study. Results indicated that the cylinder size has moderate dosimetric impact, and that both regimens are comparable in dosimetric quality. © 2016 The Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orona, N.S.; Tasat, D.R., E-mail: deborah.tasat@unsam.edu.ar; School of Dentistry, University of Buenos Aires, M. T. de Alvear 2142
2012-06-15
Uranium compounds are widely used in the nuclear fuel cycle, military and many other diverse industrial processes. Health risks associated with uranium exposure include nephrotoxicity, cancer, respiratory, and immune disorders. Macrophages present in body tissues are the main cell type involved in the internalization of uranium particles. To better understand the pathological effects associated with depleted uranium (DU) inhalation, we examined the metabolic activity, phagocytosis, genotoxicity and inflammation on DU-exposed rat alveolar macrophages (12.5–200 μM). Stability and dissolution of DU could differ depending on the dissolvent and in turn alter its biological action. We dissolved DU in sodium bicarbonate (NaHCO{submore » 3} 100 mM) and in what we consider a more physiological vehicle resembling human internal media: sodium chloride (NaCl 0.9%). We demonstrate that uranyl nitrate in NaCl solubilizes, enters the cell, and elicits its cytotoxic effect similarly to when it is diluted in NaHCO{sub 3}. We show that irrespective of the dissolvent employed, uranyl nitrate impairs cell metabolism, and at low doses induces both phagocytosis and generation of superoxide anion (O{sub 2}{sup −}). At high doses it provokes the secretion of TNFα and through all the range of doses tested, apoptosis. We herein suggest that at DU low doses O{sub 2}{sup −} may act as the principal mediator of DNA damage while at higher doses the signaling pathway mediated by O{sub 2}{sup −} may be blocked, prevailing damage to DNA by the TNFα route. The study of macrophage functions after uranyl nitrate treatment could provide insights into the pathophysiology of uranium‐related diseases. -- Highlights: ► Uranyl nitrate effect on cultured macrophages is linked to the doses and independent of its solubility. ► At low doses uranyl nitrate induces generation of superoxide anion. ► At high doses uranyl nitrate provokes secretion of TNFα. ► Uranyl nitrate induces apoptosis through all the range of doses tested.« less
Bueno, M; Carrasco, P; Jornet, N; Muñoz-Montplet, C; Duch, M A
2014-08-01
The aim of this study was to evaluate the suitability of several detectors for the determination of absorbed dose in bone. Three types of ultrathin LiF-based thermoluminescent dosimeters (TLDs)-two LiF:Mg,Cu,P-based (MCP-Ns and TLD-2000F) and a (7)Li-enriched LiF:Mg,Ti-based (MTS-7s)-as well as EBT2 Gafchromic films were used to measure percentage depth-dose distributions (PDDs) in a water-equivalent phantom with a bone-equivalent heterogeneity for 6 and 18 MV and a set of field sizes ranging from 5 x 5 cm2 to 20 x 20 cm2. MCP-Ns, TLD-2000F, MTS-7s, and EBT2 have active layers of 50, 20, 50, and 30 μm, respectively. Monte Carlo (MC) dose calculations (PENELOPE code) were used as the reference and helped to understand the experimental results and to evaluate the potential perturbation of the fluence in bone caused by the presence of the detectors. The energy dependence and linearity of the TLDs' response was evaluated. TLDs exhibited flat energy responses (within 2.5%) and linearity with dose (within 1.1%) within the range of interest for the selected beams. The results revealed that all considered detectors perturb the electron fluence with respect to the energy inside the bone-equivalent material. MCP-Ns and MTS-7s underestimated the absorbed dose in bone by 4%-5%. EBT2 exhibited comparable accuracy to MTS-7s and MCP-Ns. TLD-2000F was able to determine the dose within 2% accuracy. No dependence on the beam energy or field size was observed. The MC calculations showed that a[Formula: see text] thick detector can provide reliable dose estimations in bone regardless of whether it is made of LiF, water or EBT's active layer material. TLD-2000F was found to be suitable for providing reliable absorbed dose measurements in the presence of bone for high-energy x-ray beams.
Ionizing radiation sensitivity of the ocular lens and its dose rate dependence.
Hamada, Nobuyuki
2017-10-01
In 2011, the International Commission on Radiological Protection reduced the threshold for the lens effects of low linear energy transfer (LET) radiation. On one hand, the revised threshold of 0.5 Gy is much lower than previously recommended thresholds, but mechanisms behind high radiosensitivity remain incompletely understood. On the other hand, such a threshold is independent of dose rate, in contrast to previously recommended separate thresholds each for single and fractionated/protracted exposures. Such a change was made predicated on epidemiological evidence suggesting that a threshold for fractionated/protracted exposures is not higher than an acute threshold, and that a chronic threshold is uncertain. Thus, the dose rate dependence is still unclear. This paper therefore reviews the current knowledge on the radiosensitivity of the lens and the dose rate dependence of radiation cataractogenesis, and discusses its mechanisms. Mounting biological evidence indicates that the lens cells are not necessarily radiosensitive to cell killing, and the high radiosensitivity of the lens thus appears to be attributable to other mechanisms (e.g., excessive proliferation, abnormal differentiation, a slow repair of DNA double-strand breaks, telomere, senescence, crystallin changes, non-targeted effects and inflammation). Both biological and epidemiological evidence generally supports the lack of dose rate effects. However, there is also biological evidence for the tissue sparing dose rate (or fractionation) effect of low-LET radiation and an enhancing inverse dose fractionation effect of high-LET radiation at a limited range of LET. Emerging epidemiological evidence in chronically exposed individuals implies the inverse dose rate effect. Further biological and epidemiological studies are warranted to gain deeper knowledge on the radiosensitivity of the lens and dose rate dependence of radiation cataractogenesis.
Anagnostopoulos, G; Baltas, D; Geretschlaeger, A; Martin, T; Papagiannis, P; Tselis, N; Zamboglou, N
2003-11-15
To evaluate the potential of in vivo thermoluminescence dosimetry to estimate the accuracy of dose delivery in conformal high-dose-rate brachytherapy of prostate cancer. A total of 50 LiF, TLD-100 cylindrical rods were calibrated in the dose range of interest and used as a batch for all fractions. Fourteen dosimeters for every treatment fraction were loaded in a plastic 4F catheter that was fixed in either one of the 6F needles implanted for treatment purposes or in an extra needle implanted after consulting with the patient. The 6F needles were placed either close to the urethra or in the vicinity of the median posterior wall of the prostate. Initial results are presented for 18 treatment fractions in 5 patients and compared to corresponding data calculated using the commercial treatment planning system used for the planning of the treatments based on CT images acquired postimplantation. The maximum observed mean difference between planned and delivered dose within a single treatment fraction was 8.57% +/- 2.61% (root mean square [RMS] errors from 4.03% to 9.73%). Corresponding values obtained after averaging results over all fractions of a patient were 6.88% +/- 4.93% (RMS errors from 4.82% to 7.32%). Experimental results of each fraction corresponding to the same patient point were found to agree within experimental uncertainties. Experimental results indicate that the proposed method is feasible for dose verification purposes and suggest that dose delivery in transperineal high-dose-rate brachytherapy after CT-based planning can be of acceptable accuracy.
Dose-rate effect of ultrashort electron beam radiation on DNA damage and repair in vitro.
Babayan, Nelly; Hovhannisyan, Galina; Grigoryan, Bagrat; Grigoryan, Ruzanna; Sarkisyan, Natalia; Tsakanova, Gohar; Haroutiunian, Samvel; Aroutiounian, Rouben
2017-11-01
Laser-generated electron beams are distinguished from conventional accelerated particles by ultrashort beam pulses in the femtoseconds to picoseconds duration range, and their application may elucidate primary radiobiological effects. The aim of the present study was to determine the dose-rate effect of laser-generated ultrashort pulses of 4 MeV electron beam radiation on DNA damage and repair in human cells. The dose rate was increased via changing the pulse repetition frequency, without increasing the electron energy. The human chronic myeloid leukemia K-562 cell line was used to estimate the DNA damage and repair after irradiation, via the comet assay. A distribution analysis of the DNA damage was performed. The same mean level of initial DNA damages was observed at low (3.6 Gy/min) and high (36 Gy/min) dose-rate irradiation. In the case of low-dose-rate irradiation, the detected DNA damages were completely repairable, whereas the high-dose-rate irradiation demonstrated a lower level of reparability. The distribution analysis of initial DNA damages after high-dose-rate irradiation revealed a shift towards higher amounts of damage and a broadening in distribution. Thus, increasing the dose rate via changing the pulse frequency of ultrafast electrons leads to an increase in the complexity of DNA damages, with a consequent decrease in their reparability. Since the application of an ultrashort pulsed electron beam permits us to describe the primary radiobiological effects, it can be assumed that the observed dose-rate effect on DNA damage/repair is mainly caused by primary lesions appearing at the moment of irradiation. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Versatile, high-sensitivity faraday cup array for ion implanters
Musket, Ronald G.; Patterson, Robert G.
2003-01-01
An improved Faraday cup array for determining the dose of ions delivered to a substrate during ion implantation and for monitoring the uniformity of the dose delivered to the substrate. The improved Faraday cup array incorporates a variable size ion beam aperture by changing only an insertable plate that defines the aperture without changing the position of the Faraday cups which are positioned for the operation of the largest ion beam aperture. The design enables the dose sensitivity range, typically 10.sup.11 -10.sup.18 ions/cm.sup.2 to be extended to below 10.sup.6 ions/cm.sup.2. The insertable plate/aperture arrangement is structurally simple and enables scaling to aperture areas between <1 cm.sup.2 and >750 cm.sup.2, and enables ultra-high vacuum (UHV) applications by incorporation of UHV-compatible materials.
Chen, Jack J; Hewitt, L Arthur
2018-03-01
Droxidopa is an oral prodrug of norepinephrine approved for the treatment of symptomatic neurogenic orthostatic hypotension. This two-part, randomized, crossover study evaluated the 24-h pharmacokinetic profile of droxidopa in 24 healthy elderly subjects. Noncompartmental analysis was used to calculate the area under the plasma concentration-time curve (AUC), maximum plasma concentration (C max ), time of C max (t max ), and elimination half-life (t ½e ) of droxidopa and metabolites. Droxidopa was administered in the fed (high-fat/high-calorie meal) or fasted state either as a single 300-mg dose (three 100-mg capsules) or 3 times/day (TID) (three 100-mg capsules) at 4-h intervals. Administration of a single droxidopa dose in the fed versus fasted state decreased mean C max (2057 vs 3160 ng/mL) and mean AUC (10,927 vs 13,857 h × ng/mL) and increased median t max twofold (4.00 vs 2.00 h). Differences between the fed and fasted state for mean t ½e (2.58 vs 2.68 h) were not observed. Fed versus fasted geometric mean ratios for C max and AUC were 66% [90% confidence interval (CI) 60.7-71.7] and 80% (90% CI 72.6-88.1), respectively. With TID dosing, similar values for C max were observed after each dose (range 2789-3389 ng/mL) with no return to baseline between doses. Norepinephrine C max was 895 pg/mL following dose 1, with no further increases upon subsequent doses; norepinephrine levels remained above baseline for 12-16 h after dose 1. Absorption of a single dose of droxidopa is slowed after a high-fat/high-calorie meal; for consistent effect, administer droxidopa in the same manner (with or without food). Pharmacokinetic parameters of droxidopa are similar after single and TID dosing. ClinicalTrials.gov Identifier: NCT01149629.
Effect of fluconazole on fungicidal activity of flucytosine in murine cryptococcal meningitis.
Larsen, R A; Bauer, M; Weiner, J M; Diamond, D M; Leal, M E; Ding, J C; Rinaldi, M G; Graybill, J R
1996-01-01
Both animal and in vitro studies have demonstrated that combinations of flucytosine with amphotericin B and with fluconazole have significantly improved activity against cryptococcal meningitis compared with the activity of each drug used alone. However, very few dose levels of these agents have been tested in combination. This study evaluated the efficacy of fluconazole plus flucytosine in a murine model of cryptococcal meningitis over a broad range of dose combinations (fluconazole, 0 to 40 micrograms/g of body weight per day; flucytosine, 0 to 200 micrograms/g/day). Both drugs were dissolved in drinking water, with treatment on days 2 to 11. In this highly reproducible model, fluconazole had a dramatic effect on the fungicidal activity of flucytosine. Flucytosine at dose levels of as much as 200 micrograms/g/day alone or in combination with low doses of fluconazole had minimal fungicidal activity, whereas in combination with fluconazole at 24 to 40 micrograms/g/day, flucytosine showed fungicidal activity in the range of 45 to 65% of the animals treated at doses of 40 to 100 micrograms/g/day. This striking effect of fluconazole is consistent with the results of both in vitro and clinical studies. In the clinic, the use of flucytosine is often limited by severe toxicity, while toxicity is rarely observed with fluconazole. These results suggest that when flucytosine is given with higher doses of fluconazole, the maximum therapeutic effect of the former in the clinic may be observed at dose levels that are far less than the doses commonly employed (150 micrograms/g daily). PMID:8878602
Dankers, Frank; Wijsman, Robin; Troost, Esther G C; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L
2017-05-07
In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC = 0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.
NASA Astrophysics Data System (ADS)
Dankers, Frank; Wijsman, Robin; Troost, Esther G. C.; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L.
2017-05-01
In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC = 0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotecha, Rupesh; Djemil, Toufik; Tendulkar, Rahul D.
Purpose: To report the short-term clinical outcomes and acute and late treatment-related genitourinary (GU) and gastrointestinal (GI) toxicities in patients with intermediate- and high-risk prostate cancer treated with dose-escalated stereotactic body radiation therapy (SBRT). Methods and Materials: Between 2011 and 2014, 24 patients with prostate cancer were treated with SBRT to the prostate gland and proximal seminal vesicles. A high-dose avoidance zone (HDAZ) was created by a 3-mm expansion around the rectum, urethra, and bladder. Patients were treated to a minimum dose of 36.25 Gy in 5 fractions, with a simultaneous dose escalation to a dose of 50 Gy to the targetmore » volume away from the HDAZ. Acute and late GU and GI toxicity outcomes were measured according to the National Cancer Institute Common Terminology Criteria for Adverse Events toxicity scale, version 4. Results: The median follow-up was 25 months (range, 18-45 months). Nine patients (38%) experienced an acute grade 2 GU toxicity, which was medically managed, and no patients experienced an acute grade 2 GI toxicity. Two patients (8%) experienced late grade 2 GU toxicity, and 2 patients (8%) experienced late grade 2 GI toxicity. No acute or late grade ≥3 GU or GI toxicities were observed. The 24-month prostate-specific antigen relapse-free survival outcome for all patients was 95.8% (95% confidence interval 75.6%-99.4%), and both biochemical failures occurred in patients with high-risk disease. All patients are currently alive at the time of this analysis and continue to be followed. Conclusions: A heterogeneous prostate SBRT planning technique with differential treatment volumes (low dose: 36.25 Gy; and high dose: 50 Gy) with an HDAZ provides a safe method of dose escalation. Favorable rates of biochemical control and acceptably low rates of acute and long-term GU and GI toxicity can be achieved in patients with intermediate- and high-risk prostate cancer treated with SBRT.« less
Chest wall toxicity after hypofractionated proton beam therapy for liver malignancies.
Yeung, Rosanna; Bowen, Stephen R; Chapman, Tobias R; MacLennan, Grayden T; Apisarnthanarax, Smith
2017-12-24
Normal liver-sparing with proton beam therapy (PBT) allows for dose escalation in the treatment of liver malignancies, but it may result in high doses to the chest wall (CW). CW toxicity (CWT) data after PBT for liver malignancies are limited, with most published reports describing toxicity after a combination of hypofractionated proton and photon radiation therapy. We examined the incidence and associated factors for CWT after hypofractionated PBT for liver malignancies. We retrospectively reviewed the charts of 37 consecutive patients with liver malignancies (30 hepatocellular carcinoma, 6 intrahepatic cholangiocarcinoma, and 1 metastasis) treated with hypofractionated PBT. CWT was scored using Common Terminology Criteria for Adverse Events, version 4. Receiver-operating characteristic curves were used to identify patient and dosimetric factors associated with CWT and to determine optimal dose-volume histogram parameters/cutoffs. Cox regression univariate analysis was used to associate factors to time-dependent onset of CWT. Thirty-nine liver lesions were treated with a median dose of 60 GyE (range, 35-67.5) in 15 fractions (range, 13-20). Median follow-up was 11 months (range, 2-44). Grade ≥2 and 3 CW pain occurred in 7 (19%) and 4 (11%) patients, respectively. Median time to onset of pain was 6 months (range, 1-14). No patients had radiographic rib fracture. On univariate analysis, CW equivalent 2 Gy dose with an α/β = 3 Gy (EQD2 α/β=3 ), V57 >20 cm 3 (hazard ratio [HR], 2.7; P = .004), V63 >17 cm 3 (HR, 2.7; P = .003), and V78 >8 cm 3 (HR, 2.6; P = .003) had the strongest association with grade ≥2 CW pain, as did tumor dose of >75 Gy EQD2 α/β=10 (HR, 8.7; P = .03). No other patient factors were associated with CWT. CWT after hypofractionated PBT for liver malignancies is clinically relevant. For a 15-fraction regimen, V47 >20 cm 3 , V50 >17 cm 3 , and V58 >8 cm 3 were associated with higher rates of CWT. Further investigation of PBT techniques to reduce CW dose are warranted. Copyright © 2018. Published by Elsevier Inc.
Inhaled corticosteroids in ventilated preterm neonates: a non-randomized dose-ranging study.
Raghuram, Kamini; Dunn, Michael; Jangaard, Krista; Reilly, Maureen; Asztalos, Elizabeth; Kelly, Edmond; Vincer, Michael; Shah, Vibhuti
2018-05-07
Inhaled corticosteroids (ICS) offer targeted treatment for bronchopulmonary dysplasia (BPD) with minimal systemic effects compared to systemic steroids. However, dosing of ICS in the management of infants at high-risk of developing BPD is not well established. The objective of this study was to determine an effective dose of ICS for the treatment of ventilator-dependent infants to facilitate extubation or reduce fractional inspired oxygen concentration. Forty-one infants born at < 32 weeks gestational age (GA) or < 1250 g who were ventilator-dependent at 10-28 days postnatal age were included. A non-randomized dose-ranging trial was performed using aerosolized inhaled beclomethasone with hydrofluoralkane propellant (HFA-BDP). Four dosing groups (200, 400, 600 and 800 μg twice daily for 1 week) with 11, 11, 10 and 9 infants in each group, respectively, were studied. The primary outcome was therapeutic efficacy (successful extubation or reduction in FiO 2 of > 75% from baseline) in ≥60% of infants in the group. Oxygen requirements, complications and long-term neurodevelopmental outcomes were also assessed. The median age at enrollment was 22 (10-28) postnatal days. The primary outcome, therapeutic efficacy as defined above, was not achieved in any group. However, there was a significant reduction in post-treatment FiO 2 at a dose of 800 μg bid. No obvious trends were seen in long-term neurodevelopmental outcomes. Therapeutic efficacy was not achieved with all studied doses of ICS. A significant reduction in oxygen requirements was noted in ventilator-dependent preterm infants at 10-28 days of age when given 800 μg of HFA-BDP bid. Larger randomized trials of ICS are required to determine efficacy for the management of infants at high-risk for development of BPD. This clinical trial was registered retrospectively on clinicaltrials.gov. The registration number is NCT03503994 .
Evaluation of the dosimetric properties of a diode detector for small field proton radiosurgery.
McAuley, Grant A; Teran, Anthony V; Slater, Jerry D; Slater, James M; Wroe, Andrew J
2015-11-08
The small fields and sharp gradients typically encountered in proton radiosurgery require high spatial resolution dosimetric measurements, especially below 1-2 cm diameters. Radiochromic film provides high resolution, but requires postprocessing and special handling. Promising alternatives are diode detectors with small sensitive volumes (SV) that are capable of high resolution and real-time dose acquisition. In this study we evaluated the PTW PR60020 proton dosimetry diode using radiation fields and beam energies relevant to radiosurgery applications. Energies of 127 and 157 MeV (9.7 to 15 cm range) and initial diameters of 8, 10, 12, and 20mm were delivered using single-stage scattering and four modulations (0, 15, 30, and 60mm) to a water tank in our treatment room. Depth dose and beam profile data were compared with PTW Markus N23343 ionization chamber, EBT2 Gafchromic film, and Monte Carlo simulations. Transverse dose profiles were measured using the diode in "edge-on" orientation or EBT2 film. Diode response was linear with respect to dose, uniform with dose rate, and showed an orientation-dependent (i.e., beam parallel to, or perpendicular to, detector axis) response of less than 1%. Diodevs. Markus depth-dose profiles, as well as Markus relative dose ratio vs. simulated dose-weighted average lineal energy plots, suggest that any LET-dependent diode response is negligible from particle entrance up to the very distal portion of the SOBP for the energies tested. Finally, while not possible with the ionization chamber due to partial volume effects, accurate diode depth-dose measurements of 8, 10, and 12 mm diameter beams were obtained compared to Monte Carlo simulations. Because of the small SV that allows measurements without partial volume effects and the capability of submillimeter resolution (in edge-on orientation) that is crucial for small fields and high-dose gradients (e.g., penumbra, distal edge), as well as negligible LET dependence over nearly the full the SOBP, the PTW proton diode proved to be a useful high-resolution, real-time metrology device for small proton field radiation measurements such as would be encountered in radiosurgery applications.
Clinical results of proton beam therapy for twenty older patients with esophageal cancer
Ono, Takashi; Nakamura, Tatsuya; Azami, Yusuke; Yamaguchi, Hisashi; Hayashi, Yuichiro; Suzuki, Motohisa; Hatayama, Yoshiomi; Tsukiyama, Iwao; Hareyama, Masato; Kikuchi, Yasuhiro; Nemoto, Kenji
2015-01-01
Background In an aging society, increasing number of older patients are diagnosed with esophageal cancer. The purpose of this study was to assess the clinical efficacy and safety of proton beam therapy for older patients with esophageal cancer. Patients and methods. Older patients (age: ≥ 65 years) newly diagnosed with esophageal cancer between January 2009 and June 2013 were enrolled in this study. All patients underwent either proton beam therapy alone or proton beam therapy with initial X-ray irradiation. Toxicities were evaluated using the Common Terminology Criteria for Adverse Events version 4.0. Results Twenty patients were eligible for this study and all completed the treatment. The median age was 78 years (range: 65–89 years) and the median follow-up time was 26.5 months (range: 6–62 months). Seven patients had lymph node metastases and 10 had stage II/III cancer. The median dose of proton beam therapy was 72.6 Gy relative biological dose effectiveness (RBE) (range: 66–74.8 Gy [RBE]) for proton beam therapy alone and 33 Gy (RBE) (range: 30.8–39.6 Gy [RBE]; total dose range: 66.8–75.6 Gy [RBE]) for proton beam therapy with initial X-ray irradiation. The 2-year overall survival rate was 81.8% (95% confidence interval [CI]: 62.4%–100%), and the 2-year local control rate was 89.4% (95% CI: 75.5%–100%). Grade 2 or 3 toxicities occurred in some cases; however, no grade 4 or 5 toxicity was observed. Conclusions High-dose (66–75.6 Gy [RBE]) proton beam therapy without chemotherapy was an efficacious and safe treatment for older patients with esophageal cancer. PMID:26834524
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Q; Lei, Y; Zheng, D
Purpose: To evaluate dose fall-off in normal tissue for lung stereotactic body radiation therapy (SBRT) cases planned with different prescription isodose levels (IDLs), by calculating the dose dropping speed (DDS) in normal tissue on plans computed with both Pencil Beam (PB) and Monte-Carlo (MC) algorithms. Methods: The DDS was calculated on 32 plans for 8 lung SBRT patients. For each patient, 4 dynamic conformal arc plans were individually optimized for prescription isodose levels (IDL) ranging from 60% to 90% of the maximum dose with 10% increments to conformally cover the PTV. Eighty non-overlapping rind structures each of 1mm thickness weremore » created layer by layer from each PTV surface. The average dose in each rind was calculated and fitted with a double exponential function (DEF) of the distance from the PTV surface, which models the steep- and moderate-slope portions of the average dose curve in normal tissue. The parameter characterizing the steep portion of the average dose curve in the DEF quantifies the DDS in the immediate normal tissue receiving high dose. Provided that the prescription dose covers the whole PTV, a greater DDS indicates better normal tissue sparing. The DDS were compared among plans with different prescription IDLs, for plans computed with both PB and MC algorithms. Results: For all patients, the DDS was found to be the lowest for 90% prescription IDL and reached a highest plateau region for 60% or 70% prescription. The trend was the same for both PB and MC plans. Conclusion: Among the range of prescription IDLs accepted by lung SBRT RTOG protocols, prescriptions to 60% and 70% IDLs were found to provide best normal tissue sparing.« less
Biological and dosimetric characterisation of spatially fractionated proton minibeams
NASA Astrophysics Data System (ADS)
Meyer, Juergen; Stewart, Robert D.; Smith, Daniel; Eagle, James; Lee, Eunsin; Cao, Ning; Ford, Eric; Hashemian, Reza; Schuemann, Jan; Saini, Jatinder; Marsh, Steve; Emery, Robert; Dorman, Eric; Schwartz, Jeff; Sandison, George
2017-12-01
The biological effectiveness of proton beams varies with depth, spot size and lateral distance from the beam central axis. The aim of this work is to incorporate proton relative biological effectiveness (RBE) and equivalent uniform dose (EUD) considerations into comparisons of broad beam and highly modulated proton minibeams. A Monte Carlo model of a small animal proton beamline is presented. Dose and variable RBE is calculated on a per-voxel basis for a range of energies (30-109 MeV). For an open beam, the RBE values at the beam entrance ranged from 1.02-1.04, at the Bragg peak (BP) from 1.3 to 1.6, and at the distal end of the BP from 1.4 to 2.0. For a 50 MeV proton beam, a minibeam collimator designed to produce uniform dose at the depth of the BP peak, had minimal impact on the open beam RBE values at depth. RBE changes were observed near the surface when the collimator was placed flush with the irradiated object, due to a higher neutron contribution derived from proton interactions with the collimator. For proton minibeams, the relative mean RBE weighted entrance dose (RWD) was ~25% lower than the physical mean dose. A strong dependency of the EUD with fraction size was observed. For 20 Gy fractions, the EUD varied widely depending on the radiosensitivity of the cells. For radiosensitive cells, the difference was up to ~50% in mean dose and ~40% in mean RWD and the EUD trended towards the valley dose rather than the mean dose. For comparative studies of uniform dose with spatially fractionated proton minibeams, EUD derived from a per-voxel RWD distribution is recommended for biological assessments of reproductive cell survival and related endpoints.
Biological and dosimetric characterisation of spatially fractionated proton minibeams.
Meyer, Juergen; Stewart, Robert D; Smith, Daniel; Eagle, James; Lee, Eunsin; Cao, Ning; Ford, Eric; Hashemian, Reza; Schuemann, Jan; Saini, Jatinder; Marsh, Steve; Emery, Robert; Dorman, Eric; Schwartz, Jeff; Sandison, George
2017-11-21
The biological effectiveness of proton beams varies with depth, spot size and lateral distance from the beam central axis. The aim of this work is to incorporate proton relative biological effectiveness (RBE) and equivalent uniform dose (EUD) considerations into comparisons of broad beam and highly modulated proton minibeams. A Monte Carlo model of a small animal proton beamline is presented. Dose and variable RBE is calculated on a per-voxel basis for a range of energies (30-109 MeV). For an open beam, the RBE values at the beam entrance ranged from 1.02-1.04, at the Bragg peak (BP) from 1.3 to 1.6, and at the distal end of the BP from 1.4 to 2.0. For a 50 MeV proton beam, a minibeam collimator designed to produce uniform dose at the depth of the BP peak, had minimal impact on the open beam RBE values at depth. RBE changes were observed near the surface when the collimator was placed flush with the irradiated object, due to a higher neutron contribution derived from proton interactions with the collimator. For proton minibeams, the relative mean RBE weighted entrance dose (RWD) was ~25% lower than the physical mean dose. A strong dependency of the EUD with fraction size was observed. For 20 Gy fractions, the EUD varied widely depending on the radiosensitivity of the cells. For radiosensitive cells, the difference was up to ~50% in mean dose and ~40% in mean RWD and the EUD trended towards the valley dose rather than the mean dose. For comparative studies of uniform dose with spatially fractionated proton minibeams, EUD derived from a per-voxel RWD distribution is recommended for biological assessments of reproductive cell survival and related endpoints.
Compartmental Pharmacokinetics of the Antifungal Echinocandin Caspofungin (MK-0991) in Rabbits
Groll, Andreas H.; Gullick, Bryan M.; Petraitiene, Ruta; Petraitis, Vidmantas; Candelario, Myrna; Piscitelli, Stephen C.; Walsh, Thomas J.
2001-01-01
The pharmacokinetics of the antifungal echinocandin-lipopeptide caspofungin (MK-0991) in plasma were studied in groups of three healthy rabbits after single and multiple daily intravenous administration of doses of 1, 3, and 6 mg/kg of body weight. Concentrations were measured by a validated high-performance liquid chromatography method and fitted into a three-compartment open pharmacokinetic model. Across the investigated dosage range, caspofungin displayed dose-independent pharmacokinetics. Following administration over 7 days, the mean peak concentration in plasma (Cmax) ± standard error of the mean increased from 16.01 ± 0.61 μg/ml at the 1-mg/kg dose to 105.52 ± 8.92 μg/ml at the 6-mg/kg dose; the mean area under the curve from 0 h to infinity rose from 13.15 ± 2.37 to 158.43 ± 15.58 μg · h/ml, respectively. The mean apparent volume of distribution at steady state (Vdss) was 0.299 ± 0.011 liter/kg at the 1-mg/kg dose and 0.351 ± 0.016 liter/kg at the 6-mg/kg dose (not significant [NS]). Clearance (CL) ranged from 0.086 ± 0.017 liter/kg/h at the 1-mg/kg dose to 0.043 ± 0.004 liter/kg/h at the 6-mg/kg dose (NS), and the mean terminal half-life was between 30 and 34 h (NS). Except for a trend towards an increased Vdss, there were no significant differences in pharmacokinetic parameters in comparison to those after single-dose administration. Caspofungin was well tolerated, displayed linear pharmacokinetics that fit into a three-compartment pharmacokinetic model, and achieved sustained concentrations in plasma that were multiple times in excess of reported MICs for susceptible opportunistic fungi. PMID:11158761
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appelt, Ane L., E-mail: ane.lindegaard.appelt@slb.regionsyddanmark.dk; University of Southern Denmark, Odense; Ploen, John
2013-01-01
Purpose: Preoperative chemoradiation therapy (CRT) is part of the standard treatment of locally advanced rectal cancers. Tumor regression at the time of operation is desirable, but not much is known about the relationship between radiation dose and tumor regression. In the present study we estimated radiation dose-response curves for various grades of tumor regression after preoperative CRT. Methods and Materials: A total of 222 patients, treated with consistent chemotherapy and radiation therapy techniques, were considered for the analysis. Radiation therapy consisted of a combination of external-beam radiation therapy and brachytherapy. Response at the time of operation was evaluated from themore » histopathologic specimen and graded on a 5-point scale (TRG1-5). The probability of achieving complete, major, and partial response was analyzed by ordinal logistic regression, and the effect of including clinical parameters in the model was examined. The radiation dose-response relationship for a specific grade of histopathologic tumor regression was parameterized in terms of the dose required for 50% response, D{sub 50,i}, and the normalized dose-response gradient, {gamma}{sub 50,i}. Results: A highly significant dose-response relationship was found (P=.002). For complete response (TRG1), the dose-response parameters were D{sub 50,TRG1} = 92.0 Gy (95% confidence interval [CI] 79.3-144.9 Gy), {gamma}{sub 50,TRG1} = 0.982 (CI 0.533-1.429), and for major response (TRG1-2) D{sub 50,TRG1} and {sub 2} = 72.1 Gy (CI 65.3-94.0 Gy), {gamma}{sub 50,TRG1} and {sub 2} = 0.770 (CI 0.338-1.201). Tumor size and N category both had a significant effect on the dose-response relationships. Conclusions: This study demonstrated a significant dose-response relationship for tumor regression after preoperative CRT for locally advanced rectal cancer for tumor dose levels in the range of 50.4-70 Gy, which is higher than the dose range usually considered.« less
Plasma-Filled Rod-Pinch Diode Research on Gamble II
2007-06-01
by the dashed red line in Fig. 3. CaF2 thermoluminescent dosimeters ( TLDs ) located on the front surface of the rolled edge measure the dose. The...half-maximum line-spread function] and high dose [23 rad(CaF2) at 1 m] with 1-2 MeV electron energies are unique capabilities that the PFRP offers...for radiographic imaging in this electron -energy range. The source distribution has a narrow central peak that can enhance the spatial resolution
Optimization of dual-energy CT acquisitions for proton therapy using projection-based decomposition.
Vilches-Freixas, Gloria; Létang, Jean Michel; Ducros, Nicolas; Rit, Simon
2017-09-01
Dual-energy computed tomography (DECT) has been presented as a valid alternative to single-energy CT to reduce the uncertainty of the conversion of patient CT numbers to proton stopping power ratio (SPR) of tissues relative to water. The aim of this work was to optimize DECT acquisition protocols from simulations of X-ray images for the treatment planning of proton therapy using a projection-based dual-energy decomposition algorithm. We have investigated the effect of various voltages and tin filtration combinations on the SPR map accuracy and precision, and the influence of the dose allocation between the low-energy (LE) and the high-energy (HE) acquisitions. For all spectra combinations, virtual CT projections of the Gammex phantom were simulated with a realistic energy-integrating detector response model. Two situations were simulated: an ideal case without noise (infinite dose) and a realistic situation with Poisson noise corresponding to a 20 mGy total central dose. To determine the optimal dose balance, the proportion of LE-dose with respect to the total dose was varied from 10% to 90% while keeping the central dose constant, for four dual-energy spectra. SPR images were derived using a two-step projection-based decomposition approach. The ranges of 70 MeV, 90 MeV, and 100 MeV proton beams onto the adult female (AF) reference computational phantom of the ICRP were analytically determined from the reconstructed SPR maps. The energy separation between the incident spectra had a strong impact on the SPR precision. Maximizing the incident energy gap reduced image noise. However, the energy gap was not a good metric to evaluate the accuracy of the SPR. In terms of SPR accuracy, a large variability of the optimal spectra was observed when studying each phantom material separately. The SPR accuracy was almost flat in the 30-70% LE-dose range, while the precision showed a minimum slightly shifted in favor of lower LE-dose. Photon noise in the SPR images (20 mGy dose) had lower impact on the proton range accuracy as comparable results were obtained for the noiseless situation (infinite dose). Root-mean-square range errors averaged over all irradiation angles associated to dual-energy imaging were comprised between 0.50 mm and 0.72 mm for the noiseless situation and between 0.51 mm and 0.77 mm for the realistic scenario. The impact of the dual-energy spectra and the dose allocation between energy levels on the SPR accuracy and precision determined through a projection-based dual-energy algorithm were evaluated to guide the choice of spectra for dual-energy CT for proton therapy. The dose balance between energy levels was not found to be sensitive for the SPR estimation. The optimal pair of dual-energy spectra was material dependent but on a heterogeneous anthropomorphic phantom, there was no significant difference in range accuracy and the choice of spectra could be driven by the precision, i.e., the energy gap. © 2017 American Association of Physicists in Medicine.
Ivannikov, A I; Zhumadilov, Zh; Gusev, B I; Miyazawa, Ch; Jiao, L; Skvortsov, V G; Stepanenko, V F; Takada, J; Hoshi, M
2002-08-01
Individual accumulated doses were determined by EPR spectroscopy of tooth enamel for 26 adult persons residing in territories adjacent to the Semipalatinsk Nuclear Test Site (SNTS). The absorbed dose values due to radiation from nuclear tests were obtained after subtracting the contribution of natural background radiation from the total accumulated dose. The determined dose values ranged up to 250 mGy, except for one person from Semipalatinsk city with a measured dose of 2.8 +/- 0.4 Gy. Increased dose values were determined for the individuals whose teeth were formed before 1962, the end of the atmospheric nuclear tests. These values were found to be significantly larger than those obtained for a group of younger residents of heavily exposed territories and the residents of territories not exposed to radioactive fallout. These increased dose values are consistent with those based on officially registered data for the Northeastern part of Kazakstan adjacent to SNTS, which was exposed to high levels of radioactive fallout from nuclear tests in period 1949-1962.
Levofloxacin : a review of its use as a high-dose, short-course treatment for bacterial infection.
Anderson, Vanessa R; Perry, Caroline M
2008-01-01
Levofloxacin (Levaquin) is a fluoroquinolone antibacterial that is the L-isomer of ofloxacin. A high-dose (750 mg) short-course (5 days) of once-daily levofloxacin is approved for use in the US in the treatment of community-acquired pneumonia (CAP), acute bacterial sinusitis (ABS), complicated urinary tract infections (UTI) and acute pyelonephritis (AP). The broad spectrum antibacterial profile of levofloxacin means that monotherapy is often a possibility in patients with CAP at times when other agents may require combination therapy, although levofloxacin can be used in combination therapy when necessary. The high-dose, short-course levofloxacin regimen maximizes its concentration-dependent bactericidal activity and may reduce the potential for resistance to emerge. In addition, this regimen lends itself to better compliance because of the shorter duration of treatment and the convenient once-daily administration schedule. Oral levofloxacin is rapidly absorbed and is bioequivalent to the intravenous formulation; importantly, patients can transition between the formulations, which results in more options in regards to the treatment regimen and the potential for patients with varying degrees of illness to be treated. Levofloxacin has good tissue penetration and an adequate concentration can be maintained in the urinary tract to treat uropathogens. Levofloxacin is generally well tolerated and has good efficacy in the treatment of patients with CAP, ABS, complicated UTI and AP. The efficacy and tolerability of levofloxacin 500 mg once daily for 10 days in patients with CAP, ABS and UTIs is well established, and the high-dose, short-course levofloxacin regimen has been shown to be noninferior to the 10-day regimen in CAP and ABS, and to have a similar tolerability profile. Similarly, the high-dose, short-course levofloxacin regimen is noninferior to ciprofloxacin in patients with complicated UTI or AP. Thus, levofloxacin is a valuable antimicrobial agent that has activity against a wide range of bacterial pathogens; however, its use should be considered carefully so that the potential for resistance selection can be minimized and its usefulness in severe infections and against a range of penicillin- and macrolide-resistant pathogens can be maintained.
Jibiri, N N; Farai, I P; Alausa, S K
2007-01-01
Soils and food crops from a former tin mining location in a high background radiation area on the Jos-Plateau, Nigeria were collected and analyzed by gamma spectrometry to measure their contents of 40K, 238U and 232Th. As well as collecting samples, in situ dose rates on farms were measured using a precalibrated survey meter. Activity concentrations determined in food crops were compared with the local food derivatives or diets to investigate the possible removal or addition of radionuclides during food preparation by cooking or other means. Potassium-40 was found to contribute the highest activity in all the food products. The activity concentration of 40K, 238U and 232Th in local prepared diets ranged between 60 and 494 Bq kg-1, between BDL and 48 Bq kg-1 and between BDL and 17 Bq kg-1, respectively. The internal effective dose to individuals from the consumption of the food types was estimated on the basis of the measured radionuclide contents in the food crops. It ranged between 0.2 microSv y-1 (beans) and 2164 microSv y-1 (yam) while the annual external gamma effective dose in the farms due to soil radioactivity ranged between 228 microSv and 4065 microSv.
Yirmibeşoğlu Erkal, Eda; Karabey, Sinan; Karabey, Ayşegül; Hayran, Mutlu; Erkal, Haldun Şükrü
2015-07-15
The aim of this study was to evaluate the impact of variations in pelvic dimensions on the dose delivered to the target volumes and the organs at risk (OARs) in patients with high-risk prostate cancer (PCa) to be treated with whole pelvic radiation therapy (WPRT) in an attempt to define the hostile pelvis in terms of intensity modulated radiation therapy (IMRT). In 45 men with high-risk PCa to be treated with WPRT, the target volumes and the OARs were delineated, the dose constraints for the OARs were defined, and treatment plans were generated according to the Radiation Therapy Oncology Group 0924 protocol. Six dimensions to reflect the depth, width, and height of the bony pelvis were measured, and 2 indexes were calculated from the planning computed tomographic scans. The minimum dose (Dmin), maximum dose (Dmax), and mean dose (Dmean) for the target volumes and OARs and the partial volumes of each of these structures receiving a specified dose (VD) were calculated from the dose-volume histograms (DVHs). The data from the DVHs were correlated with the pelvic dimensions and indexes. According to an overall hostility score (OHS) calculation, 25 patients were grouped as having a hospitable pelvis and 20 as having a hostile pelvis. Regarding the OHS grouping, the DVHs for the bladder, bowel bag, left femoral head, and right femoral head differed in favor of the hospitable pelvis group, and the DVHs for the rectum differed for a range of lower doses in favor of the hospitable pelvis group. Pelvimetry might be used as a guide to define the challenging anatomy or the hostile pelvis in terms of treatment planning for IMRT in patients with high-risk PCa to be treated with WPRT. Copyright © 2015 Elsevier Inc. All rights reserved.
Yorbik, Ozgur; Mutlu, Caner; Ozilhan, Selma; Eryilmaz, Gul; Isiten, Nuket; Alparslan, Serdar; Saglam, Esra
2015-06-01
There are limited studies investigating the relationship between oral release osmotic system-methylphenidate (OROS-MPH) doses and plasma methylphenidate (MPH) concentrations in children and adolescents. The aim of this study was to investigate the relationship between the doses of OROS-MPH and the plasma levels of the drug. We also examined the effects of the other drugs including aripiprazole, risperidone, fluoxetine, and sertraline on the levels of the MPH in the plasma. The files of 100 attention deficit hyperactivity disorder (ADHD) subjects (76 male, 24 female) who were diagnosed as ADHD according to the Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition criteria, were screened. The ages of subjects were between 6 and 18 years (mean = 11.5 ± 3.8 years). Plasma MPH levels were determined by high-performance liquid chromatography-tandem mass spectrometry assay. Daily mean OROS-MPH dose used in ADHD children was 0.7 ± 0.2 mg/kg (range: 0.3-1.3 mg/kg). The mean plasma OROS-MPH was 11.6 ± 7.3 ng/mL (range: 0.5-43.4 ng/mL). There was no group difference in the mean plasma MPH and dose-related MPH levels between the groups that used any additional drug including aripiprazole (n = 25), risperidone (n = 10), fluoxetine (n = 16), sertraline (n = 10), and did not use these drugs (P > 0.05). There was a positive correlation between the OROS-MPH doses (mg/kg) and the blood MPH levels (Pearson correlation = 0.40; P < 0.001). The plasma levels of MPH were found to be less than 13 ng/mL in 65% of the subjects. Our findings point to the fact that plasma levels of MPH show a wide range of changes at similar doses, correlate positively with the doses and, as expected, are not affected by using risperidone, sertraline, fluoxetine, and aripiprazole. Therapeutic drug monitoring may help to optimize MPH dose in patients not responding to treatment or in those experiencing serious side effects, but not in routine clinical practice. The presence of intermediate dose formulations such as 45-mg tablets for OROS-MPH may contribute to the optimization.
Kiernan, Michael S; Stevens, Susanna R; Tang, W H Wilson; Butler, Javed; Anstrom, Kevin J; Birati, Edo Y; Grodin, Justin L; Gupta, Divya; Margulies, Kenneth B; LaRue, Shane; Dávila-Román, Victor G; Hernandez, Adrian F; de Las Fuentes, Lisa
2018-03-01
Poor response to loop diuretic therapy is a marker of risk during heart failure hospitalization. We sought to describe baseline determinants of diuretic response and to further explore the relationship between this response and clinical outcomes. Patient data from the National Heart, Lung, and Blood Institute Heart Failure Network ROSE-AHF and CARRESS-HF clinical trials were analyzed to determine baseline determinants of diuretic response. Diuretic efficiency (DE) was defined as total 72-hour fluid output per total equivalent loop diuretic dose. Data from DOSE-AHF was then used to determine if these predictors of DE correlated with response to a high- versus low-dose diuretic strategy. At 72 hours, the high-DE group had median fluid output of 9071 ml (interquartile range: 7240-11775) with median furosemide dose of 320 mg (220-480) compared with 8030 ml (6300-9915) and 840 mg (600-1215) respectively for the low DE group. Cystatin C was independently associated with DE (odds ratio 0.36 per 1mg/L increase; 95% confidence interval: 0.24-0.56; P < 0.001). Independently from baseline characteristics, reduced fluid output, weight loss and DE were each associated with increased 60 day mortality. Among patients with estimated glomerular filtration rate below the median, those randomized to a high-dose strategy had improved symptoms compared with those randomized to a low-dose strategy. Elevated baseline cystatin C, as a biomarker of renal dysfunction, is associated with reduced diuretic response during heart failure hospitalization. Higher loop diuretic doses are required for therapeutic decongestion in patients with renal insufficiency. Poor response identifies a high-risk population. Copyright © 2018 Elsevier Inc. All rights reserved.
Biltekin, Fatih; Yeginer, Mete; Ozyigit, Gokhan
2015-07-01
We analysed the effects of field size, depth, beam modifier and beam type on the amount of in-field and out-of-field neutron contamination for medical linear accelerators (linacs). Measurements were carried out for three high-energy medical linacs of Elekta Synergy Platform, Varian Clinac DHX High Performance and Philips SL25 using bubble detectors. The photo-neutron measurements were taken in the first two linacs with 18 MV nominal energy, whereas the electro-neutrons were measured in the three linacs with 9 MeV, 10 MeV, 15 MeV and 18 MeV. The central neutron doses increased with larger field sizes as a dramatic drop off was observed in peripheral areas. Comparing with the jaws-shaped open-field of 10 × 10 cm, the motorised and physical wedges contributed to neutron contamination at central axis by 60% and 18%, respectively. The similar dose increment was observed in MLC-shaped fields. The contributions of MLCs were in the range of 55-59% and 19-22% in Elekta and Varian linacs comparing with 10 × 10 and 20 × 20 cm open fields shaped by the jaws, respectively. The neutron doses at shallow depths were found to be higher than the doses found at deeper regions. The electro-neutron dose at the 18 MeV energy was higher than the doses at the electron energies of 15 MeV and 9 MeV by a factor of 3 and 50, respectively. The photo- and electro-neutron dose should be taken into consideration in the radiation treatment with high photon and electron energies. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Peripheral doses from pediatric IMRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Eric E.; Maserang, Beth; Wood, Roy
Peripheral dose (PD) data exist for conventional fields ({>=}10 cm) and intensity-modulated radiotherapy (IMRT) delivery to standard adult-sized phantoms. Pediatric peripheral dose reports are limited to conventional therapy and are model based. Our goal was to ascertain whether data acquired from full phantom studies and/or pediatric models, with IMRT treatment times, could predict Organ at Risk (OAR) dose for pediatric IMRT. As monitor units (MUs) are greater for IMRT, it is expected IMRT PD will be higher; potentially compounded by decreased patient size (absorption). Baseline slab phantom peripheral dose measurements were conducted for very small field sizes (from 2 tomore » 10 cm). Data were collected at distances ranging from 5 to 72 cm away from the field edges. Collimation was either with the collimating jaws or the multileaf collimator (MLC) oriented either perpendicular or along the peripheral dose measurement plane. For the clinical tests, five patients with intracranial or base of skull lesions were chosen. IMRT and conventional three-dimensional (3D) plans for the same patient/target/dose (180 cGy), were optimized without limitation to the number of fields or wedge use. Six MV, 120-leaf MLC Varian axial beams were used. A phantom mimicking a 3-year-old was configured per Center for Disease Control data. Micro (0.125 cc) and cylindrical (0.6 cc) ionization chambers were appropriated for the thyroid, breast, ovaries, and testes. The PD was recorded by electrometers set to the 10{sup -10} scale. Each system set was uniquely calibrated. For the slab phantom studies, close peripheral points were found to have a higher dose for low energy and larger field size and when MLC was not deployed. For points more distant from the field edge, the PD was higher for high-energy beams. MLC orientation was found to be inconsequential for the small fields tested. The thyroid dose was lower for IMRT delivery than that predicted for conventional (ratio of IMRT/cnventional ranged from 0.47-0.94) doses {approx}[0.4-1.8 cGy]/[0.9-2.9 cGy]/fraction, respectively. Prior phantom reports are for fields 10 cm or greater, while pediatric central nervous system fields range from 4 to 7 cm, and effectively much smaller for IMRT (2-6 cm). Peripheral dose in close proximity (<10 cm from the field edge) is dominated by internal scatter; therefore, field-size differences overwhelm phantom size affects and increased MU. Distant peripheral dose, dominated by head leakage, was higher than predicted, even when accounting for MUs ({approx}factor of 3) likely due to the pediatric phantom size. The ratio of the testes dose ranged from 3.3-5.3 for IMRT/conventional. PD to OAR for pediatric IMRT cannot be predicted from large-field full phantom studies. For regional OAR, doses are likely lower than predicted by existing ''large field'' data, while the distant PD is higher.« less
Quality factor and dose equivalent investigations aboard the Soviet Space Station Mir
NASA Astrophysics Data System (ADS)
Bouisset, P.; Nguyen, V. D.; Parmentier, N.; Akatov, Ia. A.; Arkhangel'Skii, V. V.; Vorozhtsov, A. S.; Petrov, V. M.; Kovalev, E. E.; Siegrist, M.
1992-07-01
Since Dec 1988, date of the French-Soviet joint space mission 'ARAGATZ', the CIRCE device, had recorded dose equivalent and quality factor values inside the Mir station (380-410 km, 51.5 deg). After the initial gas filling two years ago, the low pressure tissue equivalent proportional counter is still in good working conditions. Some results of three periods are presented. The average dose equivalent rates measured are respectively 0.6, 0.8 and 0.6 mSv/day with a quality factor equal to 1.9. Some detailed measurements show the increasing of the dose equivalent rates through the SAA and near polar horns. The real time determination of the quality factors allows to point out high linear energy transfer events with quality factors in the range 10-20.
Pronzato, P.; Lionetto, R.; Botto, F.; Pensa, F.; Tognoni, A.
1998-01-01
Twenty patients with non-Hodgkin's lymphoma were treated with a combination of cyclophosphamide (750 mg m(-2), day 1), epidoxorubicin (60 mg m(-2), day 1), vincristine (1.4 mg m(-2), day 1) and prednisone (100 mg m(-2), days 1-5) every 14 days. Shortening of intervals was associated with the prophylactic employment of granulocyte colony-stimulating factor (G-CSF; specifically, filgrastim) administered at a dose of 300 microg subcutaneously from day 6 to day 11. The ratio between actually delivered dose intensity and planned dose intensity was 1.0 in 18 out the 20 patients. Toxicity was acceptable; response rate and survival are in the expected range. The present study demonstrated the feasibility of acceleration of chemotherapy cycles to obtain dose intensification in non-Hodgkin's lymphoma. PMID:9743300
Tateno, Amane; Sakayori, Takeshi; Kim, Woo-Chan; Honjo, Kazuyoshi; Nakayama, Haruo; Arakawa, Ryosuke; Okubo, Yoshiro
2018-06-01
Blockade of D3 receptor, a member of the dopamine D2-like receptor family, has been suggested as a possible medication for schizophrenia. Blonanserin has high affinity in vitro for D3 as well as D2 receptors. We investigated whether a single dose of 12 mg blonanserin, which was within the daily clinical dose range (i.e., 8-24 mg) for the treatment of schizophrenia, occupies D3 as well as D2 receptors in healthy subjects. Six healthy males (mean 35.7±7.6 years) received 2 positron emission tomography scans, the first prior to taking blonanserin, and the second 2 hours after the administration of a single dose of 12 mg blonanserin. Dopamine receptor occupancies by blonanserin were evaluated by [11C]-(+)-PHNO. Occupancy of each region by 12 mg blonanserin was: caudate (range 64.3%-81.5%; mean±SD, 74.3±5.6%), putamen (range 60.4%-84.3%; mean±SD, 73.3%±8.2%), ventral striatum (range 40.1%-88.2%; mean±SD, 60.8%±17.1%), globus pallidus (range 65.8%-87.6%; mean±SD, 75.7%±8.6%), and substantia nigra (range 56.0%-88.7%; mean±SD, 72.4%±11.0%). Correlation analysis between plasma concentration of blonanserin and receptor occupancy in D2-rich (caudate and putamen) and D3-rich (globus pallidus and substantia nigra) regions showed that EC50 for D2-rich region was 0.39 ng/mL (r=0.43) and EC50 for D3-rich region was 0.40 ng/mL (r=0.79). A single dose of 12 mg blonanserin occupied D3 receptor to the same degree as D2 receptor in vivo. Our results were consistent with previous studies that reported that some of the pharmacological effect of blonanserin is mediated via D3 receptor antagonism.
Induction of Chromosomal Aberrations at Fluences of Less Than One HZE Particle per Cell Nucleus
NASA Technical Reports Server (NTRS)
Hada, Megumi; Chappell, Lori J.; Wang, Minli; George, Kerry A.; Cucinotta, Francis A.
2014-01-01
The assumption of a linear dose response used to describe the biological effects of high LET radiation is fundamental in radiation protection methodologies. We investigated the dose response for chromosomal aberrations for exposures corresponding to less than one particle traversal per cell nucleus by high energy and charge (HZE) nuclei. Human fibroblast and lymphocyte cells where irradiated with several low doses of <0.1 Gy, and several higher doses of up to 1 Gy with O (77 keV/ (long-s)m), Si (99 keV/ (long-s)m), Fe (175 keV/ (long-s)m), Fe (195 keV/ (long-s)m) or Fe (240 keV/ (long-s)m) particles. Chromosomal aberrations at first mitosis were scored using fluorescence in situ hybridization (FISH) with chromosome specific paints for chromosomes 1, 2 and 4 and DAPI staining of background chromosomes. Non-linear regression models were used to evaluate possible linear and non-linear dose response models based on these data. Dose responses for simple exchanges for human fibroblast irradiated under confluent culture conditions were best fit by non-linear models motivated by a non-targeted effect (NTE). Best fits for the dose response data for human lymphocytes irradiated in blood tubes were a NTE model for O and a linear response model fit best for Si and Fe particles. Additional evidence for NTE were found in low dose experiments measuring gamma-H2AX foci, a marker of double strand breaks (DSB), and split-dose experiments with human fibroblasts. Our results suggest that simple exchanges in normal human fibroblasts have an important NTE contribution at low particle fluence. The current and prior experimental studies provide important evidence against the linear dose response assumption used in radiation protection for HZE particles and other high LET radiation at the relevant range of low doses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroll, Florian; Karsch, Leonhard; Pawelke, Jörg
2013-08-15
Purpose: Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-termmore » stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time.Methods: A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators.Results: Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible.Conclusions: It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.« less
Kroll, Florian; Pawelke, Jörg; Karsch, Leonhard
2013-08-01
Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-term stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time. A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators. Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible. It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poplawski, L; Li, T; Chino, J
Purpose: In brachytherapy, structures surrounding the target have the potential to move between treatments and receive unknown dose. Deformable image registration could overcome challenges through dose accumulation. This study uses two possible deformable dose summation techniques and compares the results to point dose summation currently performed in clinic. Methods: Data for ten patients treated with a Syed template was imported into the MIM software (Cleveland, OH). The deformable registration was applied to structures by masking other image data to a single intensity. The registration flow consisted of the following steps: 1) mask CTs so that each of the structures-of-interest hadmore » one unique intensity; 2) perform applicator — based rigid registration; 3) Perform deformable registration; 4) Refine registration by changing local alignments manually; 5) Repeat steps 1 to 3 until desired structure adequately deformed; 5) Transfer each deformed contours to the first CT. The deformed structure accuracy was determined by a dice similarity coefficient (DSC) comparison with the first fraction. Two dose summation techniques were investigated: a deformation and recalculation on the structure; and a dose deformation and accumulation method. Point doses were used as a comparison value. Results: The Syed deformations have DSC ranging from 0.53 to 0.97 and 0.75 and 0.95 for the bladder and rectum, respectively. For the bladder, contour deformation addition ranged from −34.8% to 0.98% and dose deformation accumulation ranged from −35% to 29.3% difference from clinical calculations. For the rectum, contour deformation addition ranged from −5.2% to 16.9% and the dose deformation accumulation ranged from −29.1% to 15.3% change. Conclusion: Deforming dose for summation leads to different volumetric doses than when dose is recalculated on deformed structures, raising concerns about the accuracy of the deformed dose. DSC alone cannot be used to establish the accuracy of a deformation for brachy dose summation purpose.« less
TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuemann, J; Grassberger, C; Paganetti, H
2014-06-15
Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50)more » were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend treatment plan verification using Monte Carlo simulations for patients with complex geometries.« less
Wilson, Sharon M; Prasan, Ananth M; Virdi, Amy; Lassere, Marissa; Ison, Glenn; Ramsay, David R; Weaver, James C
2016-10-10
The aim of this study was to evaluate whether a real-time (RT) colour pictorial radiation dose monitoring system reduces patient skin and total radiation dose during coronary angiography and intervention. Patient demographics, procedural variables and radiation parameters were recorded before and after institution of the RT skin dose recording system. Peak skin dose as well as traditionally available measures of procedural radiation dose were compared. A total of 1,077 consecutive patients underwent coronary angiography, of whom 460 also had PCI. Institution of the RT skin dose recording system resulted in a 22% reduction in peak skin dose after accounting for confounding variables. Radiation dose reduction was most pronounced in those having PCI but was also seen over a range of subgroups including those with prior coronary artery bypass surgery, high BMI, and with radial arterial access. This was associated with a significant reduction in the number of patients placed at risk of skin damage. Similar reductions in parameters reflective of total radiation dose were also demonstrated after institution of RT radiation monitoring. Institution of an RT skin dose recording reduced patient peak skin and total radiation dose during coronary angiography and intervention. Consideration should be given to widespread adoption of this technology.
Yao, Hsuan-Ming; Hsu, Ann; Gupta, Suneel; Modi, Nishit B.
2016-01-01
Objectives IPX066 is an oral, extended-release capsule formulation of carbidopa-levodopa (CD-LD) available in 4 strengths. The goals of this investigation were to assess the dose proportionality of IPX066 and to study the effects of a high-fat, high-calorie meal and of sprinkling the capsule contents on applesauce on the pharmacokinetics of IPX066 in healthy volunteers. Methods Three open-label studies were conducted. In the first study, subjects received 1 capsule of each IPX066 strength (23.75–95, 36.25–145, 48.75–195, and 61.25–245 mg of CD-LD). In the second study, subjects received 1 and 2 capsules of IPX066 245-mg LD under fasting conditions. In the third study, subjects received 2 capsules of IPX066 245-mg LD under 3 conditions: fasting; following a high-fat, high-calorie breakfast; and with the capsule contents sprinkled on applesauce under fasting conditions. Results Peak plasma concentrations (Cmax) and systemic exposure (AUCt, AUCinf) for LD and CD increased dose-proportionally over the range of the IPX066 capsule strengths. Comparison of 1 and 2 IPX066 245-mg LD capsules showed dose-proportional pharmacokinetics for Cmax and AUCt. Sprinkling the capsule contents on applesauce did not affect the pharmacokinetics. A high-fat, high-calorie meal delayed the initial increase in LD concentration by approximately 1 to 2 hours, reduced Cmax by 21%, and increased AUCinf by 13% compared with the fasted state. Conclusions IPX066 shows dose-proportional pharmacokinetics. Sprinkling the capsule contents on applesauce does not affect the pharmacokinetics; a high-fat, high-calorie meal delayed absorption by 1 to 2 hours, slightly reduced Cmax, and slightly increased extent of absorption. PMID:26626430
Yao, Hsuan-Ming; Hsu, Ann; Gupta, Suneel; Modi, Nishit B
2016-01-01
IPX066 is an oral, extended-release capsule formulation of carbidopa-levodopa (CD-LD) available in 4 strengths. The goals of this investigation were to assess the dose proportionality of IPX066 and to study the effects of a high-fat, high-calorie meal and of sprinkling the capsule contents on applesauce on the pharmacokinetics of IPX066 in healthy volunteers. Three open-label studies were conducted. In the first study, subjects received 1 capsule of each IPX066 strength (23.75-95, 36.25-145, 48.75-195, and 61.25-245 mg of CD-LD). In the second study, subjects received 1 and 2 capsules of IPX066 245-mg LD under fasting conditions. In the third study, subjects received 2 capsules of IPX066 245-mg LD under 3 conditions: fasting; following a high-fat, high-calorie breakfast; and with the capsule contents sprinkled on applesauce under fasting conditions. Peak plasma concentrations (Cmax) and systemic exposure (AUCt, AUCinf) for LD and CD increased dose-proportionally over the range of the IPX066 capsule strengths. Comparison of 1 and 2 IPX066 245-mg LD capsules showed dose-proportional pharmacokinetics for Cmax and AUCt. Sprinkling the capsule contents on applesauce did not affect the pharmacokinetics. A high-fat, high-calorie meal delayed the initial increase in LD concentration by approximately 1 to 2 hours, reduced Cmax by 21%, and increased AUCinf by 13% compared with the fasted state. IPX066 shows dose-proportional pharmacokinetics. Sprinkling the capsule contents on applesauce does not affect the pharmacokinetics; a high-fat, high-calorie meal delayed absorption by 1 to 2 hours, slightly reduced Cmax, and slightly increased extent of absorption.
Increased long term mortality associated with rash after early measles vaccination in rural Senegal.
Seng, R; Samb, B; Simondon, F; Cissé, B; Soumaré, M; Jensen, H; Bennett, J; Whittle, H; Aaby, P
1999-01-01
To examine whether clinical symptoms, including rash, were more common after measles immunization compared with placebo and to study the association between postvaccination symptoms and later mortality. Examination of side effects in the 3 weeks after immunization in a trial of high titer and standard titer measles vaccines. Two hundred twenty-four children randomly selected to be included in the surveillance for diarrhea, fever and rash. There was no difference in fever and diarrhea between recipients of high titer vaccines and recipients of placebo. However, high titer recipients tended to have more measles-like rashes than placebo recipients [relative risk, 2.12 (range, 0.90 to 5.03)]. Among recipients of high titer vaccines, children who presented a rash had higher mortality in the following 5 to 7 years than those who did not develop rash [mortality rate ratio, 3.85 (range, 1.52 to 9.79)]. High titer recipients without a rash had the same mortality as children in the placebo group who were given standard doses of measles vaccine at 10 months of age [mortality rate, 0.76 (range, 0.35 to 1.62)]. These observations suggest that in this particular study, rash after high titer measles vaccine may identify children who received a particularly high dose of vaccine or children with more severe and persistent postvaccination immunosuppression. Whether high titer vaccine is more likely than standard titer measles vaccine to provoke such reaction is not known, given that we did not compare side effects after different titers of measles vaccine. Future trials of live measles vaccine should monitor the development of rash.
Church, Kara M; Henalt, Robert; Baker, Errol; Smith, Gary L; Brennan, Michael T; Joseph, Jacob
2015-12-01
To determine if metoprolol succinate or carvedilol is more effective in delaying the time to first cardiovascular disease hospital admission in systolic heart failure patients. As a secondary objective, to determine the most effective dose of each agent in delaying first cardiovascular disease hospital admission, including but not limited to heart failure exacerbation, myocardial infarction, ischemic heart disease, cardiac arrhythmias, or death. This study was a retrospective chart review of 272 veterans at the VA Boston Healthcare System newly started on metoprolol succinate (n = 157) or carvedilol (n = 115) between January 2000 and December 2008. After an 8-week study medication titration period, subjects were subcategorized into low-, medium-, and high-dose ranging groups and followed until the first cardiovascular disease hospitalization, death, or 365 days. The main outcome measure was time to first cardiovascular hospitalization or death. The mean age (69.9 years vs. 67.9 years) and ejection fraction (26% vs. 25%) were comparable between study arms at baseline. Mean time to first cardiovascular disease hospitalization was significantly different (p = 0.001) between study groups with 330.6 days with in metoprolol succinate group vs. 282.6 days in the carvedilol groups. High-dose carvedilol significantly delayed time to first hospitalization in comparison to medium or low carvedilol doses (p = 0.015, p = 0.005). Low- and high-dose metoprolol succinate were not significantly different (p = 0.509) in time to first event, and both dosing groups fared better compared to medium dose metoprolol succinate (p = 0.046). In this veteran patient population in need of additional heart failure treatments, metoprolol succinate use resulted in a delayed time to first cardiovascular disease hospitalization or death compared to carvedilol. Both low and high doses of metoprolol succinate showed a significant delay of time to first cardiovascular hospitalization compared to medium doses of metoprolol succinate. Higher doses of carvedilol showed a significant delay of time to cardiovascular hospitalization than lower carvedilol doses. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Noise exposure levels for musicians during rehearsal and performance times.
McIlvaine, Devon; Stewart, Michael; Anderson, Robert
2012-03-01
The purpose of this study was to determine daily noise doses and 8-hour time weighted averages for rock band musicians, crew members, and spectators during a typical rehearsal and performance using both Occupational Safety and Health Administration (OSHA) and National Institute of Occupational Safety and Health (NIOSH) measurement criteria. Personal noise dosimetry was completed on five members of a rock band during one 2-hr rehearsal and one 4-hr performance. Time-weighted averages (TWA) and daily dose values were calculated using both OSHA and NIOSH criteria and compared to industry guidelines for enrollment in hearing conservation programs and the use of hearing protection devices. TWA values ranged from 84.3 to 90.4 dBA (OSHA) and from 90.0 to 96.4 dBA (NIOSH) during the rehearsal. The same values ranged from 91.0 to 99.7 dBA (OSHA) and 94.0 to 102.8 dBA (NIOSH) for the performance. During the rehearsal, daily noise doses ranged from 45.54% to 106.7% (OSHA) and from 317.74% to 1396.07% (NIOSH). During the performance, doses ranged from 114.66% to 382.49% (OSHA) and from 793.31% to 5970.15% (NIOSH). The musicians in this study were exposed to dangerously high levels of noise and should be enrolled in a hearing conservation programs. Hearing protection devices should be worn, especially during performances. The OSHA measurement criteria yielded values significantly more conservative than those produced by NIOSH criteria. Audiologists should counsel musician-patients about the hazards of excessive noise (music) exposure and how to protect their hearing.
Dose-dependent metabolic disposition of hydroxytyrosol and formation of mercapturates in rats.
Kotronoulas, Aristotelis; Pizarro, Nieves; Serra, Aida; Robledo, Patricia; Joglar, Jesús; Rubió, Laura; Hernaéz, Alvaro; Tormos, Carmen; Motilva, Ma José; Fitó, Montserrat; Covas, Maria-Isabel; Solà, Rosa; Farré, Magí; Saez, Guillermo; de la Torre, Rafael
2013-11-01
Hydroxytyrosol (HT), one of the major polyphenols present in olive oil, is known to possess a high antioxidant capacity. The aim of the present study was to investigate dose dependent (0, 1, 10 and 100 mg/kg) alterations in the metabolism of HT in rats since it has been reported that metabolites may contribute to biological effects. Special attention was paid to the activation of the semiquinone-quinone oxidative cycle and the formation of adducts with potential deleterious effects. Thus, we developed a novel analytical methodology to monitor the in vivo formation of the HT mercapturate, N-acetyl-5-S-cysteinyl-hydroxytyrosol in urine samples. Biomarkers of hepatic and renal toxicity were evaluated within the dose range tested. Following HT administration, dose-dependent effects were observed for the recovery of all the metabolites studied. At the lowest dose of 1 mg/kg, the glucuronidation pathway was the most relevant (25-30%), with lower recoveries for sulfation (14%), while at the highest dose of 100 mg/kg, sulfation was the most prevalent (75%). In addition, we report for the first time the formation of the mercapturate conjugate of HT in a dose-dependent manner. The biochemical data did not reveal significant toxic effects of HT at any of the doses studied. An increase in the GSH/GSSG ratio at the highest dose was observed indicating that the products of HT autoxidation are counteracted by glutathione, resulting in their detoxification. These results indicate that the metabolic disposition of HT is highly dependent on the dose ingested. Copyright © 2013. Published by Elsevier Ltd.
Obed, Rachel Ibhade; Akinlade, Bidemi Idayat; Ntekim, Atara
2015-01-01
Purpose In-vivo measurements to determine doses to organs-at-risk can be an essential part of brachytherapy quality assurance (QA). This study compares calculated doses to the rectum with measured dose values as a means of QA in vaginal vault brachytherapy using cylinder applicators. Material and methods At the Department of Radiotherapy, University College Hospital (UCH), Ibadan, Nigeria, intracavitary brachytherapy (ICBT) was delivered by a GyneSource high-dose-rate (HDR) unit with 60Co. Standard 2D treatment plans were created with HDR basic 2.6 software for prescription doses 5-7 Gy at points 5 mm away from the posterior surface of vaginal cylinder applicators (20, 25, and 30 mm diameters). The LiF:Mg, Ti thermoluminescent dosimeter rods (1 x 6 mm) were irradiated to a dose of 7 Gy on Theratron 60Co machine for calibration purpose prior to clinical use. Measurements in each of 34 insertions involving fourteen patients were performed with 5 TLD-100 rods placed along a re-usable rectal marker positioned in the rectum. The dosimeters were read in Harshaw 3500 TLD reader and compared with doses derived from the treatment planning system (TPS) at 1 cm away from the dose prescription points. Results The mean calculated and measured doses ranged from 2.1-3.8 Gy and 1.2-5.6 Gy with averages of 3.0 ± 0.5 Gy and 3.1 ± 1.1 Gy, respectively, for treatment lengths 2-8 cm along the cylinder-applicators. The mean values correspond to 48.9% and 50.8% of the prescribed doses, respectively. The deviations of the mean in-vivo doses from the TPS values ranged from –1.9 to 2.1 Gy with a p-value of 0.427. Conclusions This study was part of efforts to verify rectal dose obtained from the TPS during vaginal vault brachytherapy. There was no significant difference in the dose to the rectum from the two methods of measurements. PMID:26816506
Background radiation and individual dosimetry in the costal area of Tamil Nadu, India.
Matsuda, Naoki; Brahmanandhan, G M; Yoshida, Masahiro; Takamura, Noboru; Suyama, Akihiko; Koguchi, Yasuhiro; Juto, Norimichi; Raj, Y Lenin; Winsley, Godwin; Selvasekarapandian, S
2011-07-01
South coast of India is known as the high-level background radiation area (HBRA) mainly due to beach sands that contain natural radionuclides as components of the mineral monazite. The rich deposit of monazite is unevenly distributed along the coastal belt of Tamil Nadu and Kerala. An HBRA site that laid in 2×7 m along the sea was found in the beach of Chinnavillai, Tamil Nadu, where the maximum ambient dose equivalent reached as high as 162.7 mSv y(-1). From the sands collected at the HBRA spot, the high-purity germanium semi-conductor detector identified six nuclides of thorium series, four nuclides of uranium series and two nuclides belonging to actinium series. The highest radioactivity observed was 43.7 Bq g(-1) of Th-228. The individual dose of five inhabitants in Chinnavillai, as measured by the radiophotoluminescence glass dosimetry system, demonstrated the average dose of 7.17 mSv y(-1) ranging from 2.79 to 14.17 mSv y(-1).
High-dose proton beam therapy for sinonasal mucosal malignant melanoma.
Fuji, Hiroshi; Yoshikawa, Shusuke; Kasami, Masako; Murayama, Shigeyuki; Onitsuka, Tetsuro; Kashiwagi, Hiroya; Kiyohara, Yoshio
2014-07-23
The significance of definitive radiotherapy for sinonasal mucosal melanoma (SMM) is sill controvertial. This study was to evaluate the role of high-dose proton beam therapy (PBT) in patients with SMM. The cases of 20 patients with SMM localized to the primary site who were treated by PBT between 2006 and 2012 were retrospectively analyzed. The patterns of overall survival and morbidity were assessed. The median follow-up time was 35 months (range, 6-77 months). The 5-year overall and disease-free survival rates were 51% and 38%, respectively. Four patients showed local failure, 2 showed regrowth of the primary tumor, and 2 showed new sinonasal tumors beyond the primary site. The 5-year local control rate after PBT was 62%. Nodal and distant failure was seen in 7 patients. Three grade 4 late toxicities were observed in tumor-involved optic nerve. Our findings suggested that high-dose PBT is an effective local treatment that is less invasive than surgery but with comparable outcomes.