DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmuth, R.A.
1979-03-01
Progress is reported on the energy conservation potential of Portland cement particle size distribution control. Results of preliminary concrete tests, Series IIIa and Series IIIb, effects of particle size ranges on strength and drying shrinkage, are presented. Series IV, effects of mixing and curing temperature, tests compare the properties of several good particle size controlled cements with normally ground cements at low and high temperatures. The work on the effects of high alkali and high sulfate clinker cements (Series V) has begun.
The effect of plate position and size on tibial slope in high tibial osteotomy: a cadaveric study.
Rubino, L Joseph; Schoderbek, Robert J; Golish, S Raymond; Baumfeld, Joshua; Miller, Mark D
2008-01-01
Opening wedge high tibial osteotomies are performed for degenerative changes and varus. Opening wedge osteotomies can change proximal tibial slope in the sagittal plane, possibly imparting stability in the ACL-deficient knee. The aim of this study was to assess the effect of plate position and size on change in tibial slope. Eight cadaveric knees underwent opening wedge high tibial osteotomy with Puddu plates of each different size. Plates were placed anterior, central, and posterior for each size used. Lateral radiographs were obtained. Tibial slope was measured and compared with baseline slope. Tibial slope was affected by plate position (P < 0.05) and size (P < 0.001). Smaller, posterior plates had less effect on tibial slope. However, anterior and central plates increased tibial slope over all plate sizes (P < 0.05). This study found that tibial slope increases with opening wedge high tibial osteotomy. Larger corrections and anterior placement of the plate are associated with larger increases in slope.
García-Comas, Carmen; Sastri, Akash R.; Ye, Lin; Chang, Chun-Yi; Lin, Fan-Sian; Su, Min-Sian; Gong, Gwo-Ching; Hsieh, Chih-hao
2016-01-01
Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previous studies on single trophic levels: transfer efficiency decreases with increasing prey size diversity and is enhanced with greater predator size diversity. We further show that communities with low nano-microplankton size diversity and high mesozooplankton size diversity tend to occur in warmer environments with low nutrient concentrations, thus promoting trophic transfer to higher trophic levels in those conditions. Moreover, we reveal an interactive effect of predator and prey size diversities: the positive effect of predator size diversity becomes influential when prey size diversity is high. Mechanistically, the negative effect of prey size diversity on trophic transfer may be explained by unicellular size-based metabolic constraints as well as trade-offs between growth and predation avoidance with size, whereas increasing predator size diversity may enhance diet niche partitioning and thus promote trophic transfer. These findings provide insights into size-based theories of ecosystem functioning, with implications for ecosystem predictive models. PMID:26865298
NASA Technical Reports Server (NTRS)
Benson, H. E.; Monford, L. G., Jr.
1976-01-01
The results of a study of the application of a modular integrated utility system to six typical building types are compared with the application of a conventional utility system to the same facilities. The effects of varying the size and climatic location of the buildings and the size of the powerplants are presented. Construction details of the six building types (garden apartments, a high rise office building, high rise apartments, a shopping center, a high school, and a hospital) and typical site and floor plans are provided. The environmental effects, the unit size determination, and the market potential are discussed. The cost effectiveness of the various design options is not considered.
Modeling of grain size strengthening in tantalum at high pressures and strain rates
Rudd, Robert E.; Park, H. -S.; Cavallo, R. M.; ...
2017-01-01
Laser-driven ramp wave compression experiments have been used to investigate the strength (flow stress) of tantalum and other metals at high pressures and high strain rates. Recently this kind of experiment has been used to assess the dependence of the strength on the average grain size of the material, finding no detectable variation with grain size. The insensitivity to grain size has been understood theoretically to result from the dominant effect of the high dislocation density generated at the extremely high strain rates of the experiment. Here we review the experiments and describe in detail the multiscale strength model usedmore » to simulate them. The multiscale strength model has been extended to include the effect of geometrically necessary dislocations generated at the grain boundaries during compatible plastic flow in the polycrystalline metal. Lastly, we use the extended model to make predictions of the threshold strain rates and grain sizes below which grain size strengthening would be observed in the laser-driven Rayleigh-Taylor experiments.« less
ERIC Educational Resources Information Center
Greene, Jay P.; Winters, Marcus A.
2005-01-01
This study evaluates the effect that the size of a state's school districts has on public high school graduation rates. The authors calculate the graduation rate over the last decade and examine the relationship between these graduation rates and changes in each state's average school district size. The study finds that decreasing the size of…
The Impact of Fish Predation and Cyanobacteria on Zooplankton Size Structure in 96 Subtropical Lakes
Zhang, Jing; Xie, Ping; Tao, Min; Guo, Longgen; Chen, Jun; Li, Li; XueZhen Zhang; Zhang, Lu
2013-01-01
Zooplankton are relatively small in size in the subtropical regions. This characteristic has been attributed to intense predation pressure, high nutrient loading and cyanobacterial biomass. To provide further information on the effect of predation and cyanobacteria on zooplankton size structure, we analyzed data from 96 shallow aquaculture lakes along the Yangtze River. Contrary to former studies, both principal components analysis and multiple regression analysis showed that the mean zooplankton size was positively related to fish yield. The studied lakes were grouped into three types, namely, natural fishing lakes with low nutrient loading (Type1), planktivorous fish-dominated lakes (Type 2), and eutrophic lakes with high cyanobacterial biomass (Type 3). A marked difference in zooplankton size structure was found among these groups. The greatest mean zooplankton size was observed in Type 2 lakes, but zooplankton density was the lowest. Zooplankton abundance was highest in Type 3 lakes and increased with increasing cyanobacterial biomass. Zooplankton mean size was negatively correlated with cyanobacterial biomass. No obvious trends were found in Type 1 lakes. These results were reflected by the normalized biomass size spectrum, which showed a unimodal shape with a peak at medium sizes in Type 2 lakes and a peak at small sizes in Type 3 lakes. These results indicated a relative increase in medium-sized and small-sized species in Types 2 and 3 lakes, respectively. Our results suggested that fish predation might have a negative effect on zooplankton abundance but a positive effect on zooplankton size structure. High cyanobacterial biomass most likely caused a decline in the zooplankton size and encouraged the proliferation of small zooplankton. We suggest that both planktivorous fish and cyanobacteria have substantial effects on the shaping of zooplankton community, particularly in the lakes in the eastern plain along the Yangtze River where aquaculture is widespread and nutrient loading is high. PMID:24124552
Zhang, Jing; Xie, Ping; Tao, Min; Guo, Longgen; Chen, Jun; Li, Li; Xuezhen Zhang; Zhang, Lu
2013-01-01
Zooplankton are relatively small in size in the subtropical regions. This characteristic has been attributed to intense predation pressure, high nutrient loading and cyanobacterial biomass. To provide further information on the effect of predation and cyanobacteria on zooplankton size structure, we analyzed data from 96 shallow aquaculture lakes along the Yangtze River. Contrary to former studies, both principal components analysis and multiple regression analysis showed that the mean zooplankton size was positively related to fish yield. The studied lakes were grouped into three types, namely, natural fishing lakes with low nutrient loading (Type1), planktivorous fish-dominated lakes (Type 2), and eutrophic lakes with high cyanobacterial biomass (Type 3). A marked difference in zooplankton size structure was found among these groups. The greatest mean zooplankton size was observed in Type 2 lakes, but zooplankton density was the lowest. Zooplankton abundance was highest in Type 3 lakes and increased with increasing cyanobacterial biomass. Zooplankton mean size was negatively correlated with cyanobacterial biomass. No obvious trends were found in Type 1 lakes. These results were reflected by the normalized biomass size spectrum, which showed a unimodal shape with a peak at medium sizes in Type 2 lakes and a peak at small sizes in Type 3 lakes. These results indicated a relative increase in medium-sized and small-sized species in Types 2 and 3 lakes, respectively. Our results suggested that fish predation might have a negative effect on zooplankton abundance but a positive effect on zooplankton size structure. High cyanobacterial biomass most likely caused a decline in the zooplankton size and encouraged the proliferation of small zooplankton. We suggest that both planktivorous fish and cyanobacteria have substantial effects on the shaping of zooplankton community, particularly in the lakes in the eastern plain along the Yangtze River where aquaculture is widespread and nutrient loading is high.
Walking variations in healthy women wearing high-heeled shoes: Shoe size and heel height effects.
Di Sipio, Enrica; Piccinini, Giulia; Pecchioli, Cristiano; Germanotta, Marco; Iacovelli, Chiara; Simbolotti, Chiara; Cruciani, Arianna; Padua, Luca
2018-05-03
The use of high heels is widespread in modern society in professional and social contests. Literature showed that wearing high heels can produce injurious effects on several structures from the toes to the pelvis. No studies considered shoe length as an impacting factor on walking with high heels. The aim of this study is to evaluate walking parameters in young healthy women wearing high heels, considering not only the heel height but also the foot/shoe size. We evaluate spatio-temporal, kinematic and kinetic data, collected using a 8-camera motion capture system, in a sample of 21 healthy women in three different walking conditions: 1) barefoot, 2) wearing 12 cm high heel shoes independently from shoe size, and 3) wearing shoes with heel height based on shoe size, keeping the ankles' plantar flexion angle constant. The main outcome measures were: spatio-temporal parameters, gait harmony measurement, range of motion, flexion and extension maximal values, power and moment of lower limb joints. Comparing the three walking conditions, the Mixed Anova test, showed significant differences between both high heeled conditions (variable and constant height) and barefoot in spatio-temporal, kinematic and kinetic parameters. Regardless of the shoe size, both heeled conditions presented a similar gait pattern and were responsible for negative effects on walking parameters. Considering our results and the relevance of the heel height, further studies are needed to identify a threshold, over which it is possible to observe that wearing high heels could cause harmful effects, independently from the foot/shoe size. Copyright © 2018 Elsevier B.V. All rights reserved.
Kühberger, Anton; Fritz, Astrid; Scherndl, Thomas
2014-01-01
Background The p value obtained from a significance test provides no information about the magnitude or importance of the underlying phenomenon. Therefore, additional reporting of effect size is often recommended. Effect sizes are theoretically independent from sample size. Yet this may not hold true empirically: non-independence could indicate publication bias. Methods We investigate whether effect size is independent from sample size in psychological research. We randomly sampled 1,000 psychological articles from all areas of psychological research. We extracted p values, effect sizes, and sample sizes of all empirical papers, and calculated the correlation between effect size and sample size, and investigated the distribution of p values. Results We found a negative correlation of r = −.45 [95% CI: −.53; −.35] between effect size and sample size. In addition, we found an inordinately high number of p values just passing the boundary of significance. Additional data showed that neither implicit nor explicit power analysis could account for this pattern of findings. Conclusion The negative correlation between effect size and samples size, and the biased distribution of p values indicate pervasive publication bias in the entire field of psychology. PMID:25192357
Kühberger, Anton; Fritz, Astrid; Scherndl, Thomas
2014-01-01
The p value obtained from a significance test provides no information about the magnitude or importance of the underlying phenomenon. Therefore, additional reporting of effect size is often recommended. Effect sizes are theoretically independent from sample size. Yet this may not hold true empirically: non-independence could indicate publication bias. We investigate whether effect size is independent from sample size in psychological research. We randomly sampled 1,000 psychological articles from all areas of psychological research. We extracted p values, effect sizes, and sample sizes of all empirical papers, and calculated the correlation between effect size and sample size, and investigated the distribution of p values. We found a negative correlation of r = -.45 [95% CI: -.53; -.35] between effect size and sample size. In addition, we found an inordinately high number of p values just passing the boundary of significance. Additional data showed that neither implicit nor explicit power analysis could account for this pattern of findings. The negative correlation between effect size and samples size, and the biased distribution of p values indicate pervasive publication bias in the entire field of psychology.
NASA Astrophysics Data System (ADS)
Hou, Shang-Chieh; Su, Yuh-Fan; Chang, Chia-Chin; Hu, Chih-Wei; Chen, Tsan-Yao; Yang, Shun-Min; Huang, Jow-Lay
2017-05-01
The submicro-sized and nanostructured Si aggregated powder is prepared by combinational routes of high energy mechanical milling (HEMM) and wet milling. Milled Si powder is investigated by particle size analyzer, SEM, TEM, XPS and XRD as well as the control ones. Its electrode is also investigated by in situ XRD and electrochemical performance. Morphology reveals that combining the high energy mechanical milling and wet milling not only fracture primary Si particles but also form submicro-sized Si aggregates constructed by amorphous and nanocrystalline phases. Moreover, XPS shows that wet milling in ethanol trigger Sisbnd Osbnd CH2CH3 bonding on Si surface might enhance the SEI formation. In situ XRD analysis shows negative electrode made of submicro-sized Si aggregated powder can effectively suppress formation of crystalline Li15Si4 during lithiation and delithiation due to amorphous and nanocrystalline construction. Thus, the submicro-sized Si powder with synergistic effects combining the high energy mechanical milling and wet milling in ethanol as negative electrode performs better capacity retention.
ERIC Educational Resources Information Center
Rivers, Thomas E., Jr.
2012-01-01
This study included a comparison of the graduation rates among high schools in South Carolina closely analyzing school size and socioeconomic status. The purpose for the study was to answer two questions: What patterns and relationships exist between school size and graduation rates at high schools in South Carolina? What patterns and…
A query for effective mean particle size of dry and high moisture corns
USDA-ARS?s Scientific Manuscript database
Eighteen dry and high moisture corns submitted to the University of Wisconsin Soil and Forage Analysis Laboratory (Marshfield, WI) for routine analysis were retained for mean particle size (MPS) and chemistry determinations. Mean particle size of corns was determined by the methods of the American S...
Núñez-Peña, M Isabel; Suárez-Pellicioni, Macarena
2014-12-01
Numerical comparison tasks are widely used to study the mental representation of numerical magnitude. In study, event-related brain potentials (ERPs) were recorded while 26 high math-anxious (HMA) and 27 low math-anxious (LMA) individuals were presented with pairs of single-digit Arabic numbers and were asked to decide which one had the larger numerical magnitude. The size of the numbers and the distance between them were manipulated in order to study the size and the distance effects. The results showed that both distance and size effects were larger for the HMA group. As for ERPs, results showed that the ERP distance effect had larger amplitude for both the size and distance effects in the HMA group than among their LMA counterparts. Since this component has been taken as a marker of the processing of numerical magnitude, this result suggests that HMA individuals have a less precise representation of numerical magnitude. Copyright © 2014 Elsevier B.V. All rights reserved.
Electrokinetic mixing at high zeta potentials: ionic size effects on cross stream diffusion.
Ahmadian Yazdi, Alireza; Sadeghi, Arman; Saidi, Mohammad Hassan
2015-03-15
The electrokinetic phenomena at high zeta potentials may show several unique features which are not normally observed. One of these features is the ionic size (steric) effect associated with the solutions of high ionic concentration. In the present work, attention is given to the influences of finite ionic size on the cross stream diffusion process in an electrokinetically actuated Y-shaped micromixer. The method consists of a finite difference based numerical approach for non-uniform grid which is applied to the dimensionless form of the governing equations, including the modified Poisson-Boltzmann equation. The results reveal that, neglecting the ionic size at high zeta potentials gives rise to the overestimation of the mixing length, because the steric effects retard liquid flow, thereby enhancing the mixing efficiency. The importance of steric effects is found to be more intense for channels of smaller width to height ratio. It is also observed that, in sharp contrast to the conditions that the ions are treated as point charges, increasing the zeta potential improves the cross stream diffusion when incorporating the ionic size. Moreover, increasing the EDL thickness decreases the mixing length, whereas the opposite is true for the channel aspect ratio. Copyright © 2014 Elsevier Inc. All rights reserved.
Impact of mixing time and energy on the dispersion effectiveness and droplets size of oil.
Pan, Zhong; Zhao, Lin; Boufadel, Michel C; King, Thomas; Robinson, Brian; Conmy, Robyn; Lee, Kenneth
2017-01-01
The effects of mixing time and energy on Alaska Northern Slope (ANS) and diluted bitumen Cold Lake Blend (CLB) were investigated using EPA baffled flask test. Dispersion effectiveness and droplet size distribution were measured after 5-120 min. A modeling method to predict the mean droplet size was introduced for the first time to tentatively elucidate the droplet size breakup mechanism. The ANS dispersion effectiveness greatly increased with dispersant and mixing energy. However, little CLB dispersion was noted at small energy input (ε = 0.02 Watt/kg). With dispersant, the ANS droplet size distribution reached quasi-equilibrium within 10 min, but that of CLB seems to reach quasi-equilibrium after 120 min. Dispersants are assumed ineffective on high viscosity oils because dispersants do not penetrate them. We provide an alternative explanation based on the elongation time of the droplets and its residence in high intensity zones. When mixing energy is small, CLB did not disperse after 120 min, long enough to allow the surfactant penetration. Our findings suggest that dispersants may disperse high viscosity oils at a rougher sea state and a longer time. The latter could determine how far offshore one can intervene for effective responses to a high viscosity oil spill offshore. Copyright © 2016 Elsevier Ltd. All rights reserved.
A study of the effectiveness and energy efficiency of ultrasonic emulsification.
Li, Wu; Leong, Thomas S H; Ashokkumar, Muthupandian; Martin, Gregory J O
2017-12-20
Three essential experimental parameters in the ultrasonic emulsification process, namely sonication time, acoustic amplitude and processing volume, were individually investigated, theoretically and experimentally, and correlated to the emulsion droplet sizes produced. The results showed that with a decrease in droplet size, two kinetic regions can be separately correlated prior to reaching a steady state droplet size: a fast size reduction region and a steady state transition region. In the fast size reduction region, the power input and sonication time could be correlated to the volume-mean diameter by a power-law relationship, with separate power-law indices of -1.4 and -1.1, respectively. A proportional relationship was found between droplet size and processing volume. The effectiveness and energy efficiency of droplet size reduction was compared between ultrasound and high-pressure homogenisation (HPH) based on both the effective power delivered to the emulsion and the total electric power consumed. Sonication could produce emulsions across a broad range of sizes, while high-pressure homogenisation was able to produce emulsions at the smaller end of the range. For ultrasonication, the energy efficiency was higher at increased power inputs due to more effective droplet breakage at high ultrasound intensities. For HPH the consumed energy efficiency was improved by operating at higher pressures for fewer passes. At the laboratory scale, the ultrasound system required less electrical power than HPH to produce an emulsion of comparable droplet size. The energy efficiency of HPH is greatly improved at large scale, which may also be true for larger scale ultrasonic reactors.
Walzer, Andreas; Schausberger, Peter
2014-04-01
The adaptive canalization hypothesis predicts that highly fitness-relevant traits are canalized via past selection, resulting in low phenotypic plasticity and high robustness to environmental stress. Accordingly, we hypothesized that the level of phenotypic plasticity of male body size of the predatory mites Phytoseiulus persimilis (low plasticity) and Neoseiulus californicus (high plasticity) reflects the effects of body size variation on fitness, especially male lifetime reproductive success (LRS). We first generated small and standard-sized males of P. persimilis and N. californicus by rearing them to adulthood under limited and ample prey supply, respectively. Then, adult small and standard-sized males were provided with surplus virgin females throughout life to assess their mating and reproductive traits. Small male body size did not affect male longevity or the number of fertilized females but reduced male LRS of P. persimilis but not N. californicus . Proximately, the lower LRS of small than standard-sized P. persimilis males correlated with shorter mating durations, probably decreasing the amount of transferred sperm. Ultimately, we suggest that male body size is more strongly canalized in P. persimilis than N. californicus because deviation from standard body size has larger detrimental fitness effects in P. persimilis than N. californicus .
The Effects of Transient Emotional State and Workload on Size Scaling in Perspective Displays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuan Q. Tran; Kimberly R. Raddatz
2006-10-01
Previous research has been devoted to the study of perceptual (e.g., number of depth cues) and cognitive (e.g., instructional set) factors that influence veridical size perception in perspective displays. However, considering that perspective displays have utility in high workload environments that often induce high arousal (e.g., aircraft cockpits), the present study sought to examine the effect of observers’ emotional state on the ability to perceive and judge veridical size. Within a dual-task paradigm, observers’ ability to make accurate size judgments was examined under conditions of induced emotional state (positive, negative, neutral) and high and low workload. Results showed that participantsmore » in both positive and negative induced emotional states were slower to make accurate size judgments than those not under induced emotional arousal. Results suggest that emotional state is an important factor that influences visual performance on perspective displays and is worthy of further study.« less
Bounds on quantum confinement effects in metal nanoparticles
NASA Astrophysics Data System (ADS)
Blackman, G. Neal; Genov, Dentcho A.
2018-03-01
Quantum size effects on the permittivity of metal nanoparticles are investigated using the quantum box model. Explicit upper and lower bounds are derived for the permittivity and relaxation rates due to quantum confinement effects. These bounds are verified numerically, and the size dependence and frequency dependence of the empirical Drude size parameter is extracted from the model. Results suggest that the common practice of empirically modifying the dielectric function can lead to inaccurate predictions for highly uniform distributions of finite-sized particles.
NASA Astrophysics Data System (ADS)
Li, Wen; Wang, Tong; Na, Yu
2017-08-01
FRP tube-concrete-steel tube composite column (DSTC) was a new type of composite structures. The column consists of FRP outer tube and steel tube and concrete. Concrete was filled between FRP outer tube and steel tube. This column has the character of light and high strength and corrosion resistance. In this paper, properties of DSTC axial compression were studied in depth. The properties were studied by two groups DSTC short columns under axial compression performance experiment. The different size of DSTC short columns was importantly considered. According to results of the experiment, we can conclude that with the size of the column increases the ability of it to resist deformation drops. On the other hand, the size effect influences on properties of different concrete strength DSTC was different. The influence of size effect on high concrete strength was less than that of low concrete.
Dey, Snigdhadip; Joshi, Amitabh
2013-01-01
Constant immigration can stabilize population size fluctuations but its effects on extinction remain unexplored. We show that constant immigration significantly reduced extinction in fruitfly populations with relatively stable or unstable dynamics. In unstable populations with oscillations of amplitude around 1.5 times the mean population size, persistence and constancy were unrelated. Low immigration enhanced persistence without affecting constancy whereas high immigration increased constancy without enhancing persistence. In relatively stable populations with erratic fluctuations of amplitude close to the mean population size, both low and high immigration enhanced persistence. In these populations, the amplitude of fluctuations relative to mean population size went down due to immigration, and their dynamics were altered to low-period cycles. The effects of immigration on the population size distribution and intrinsic dynamics of stable versus unstable populations differed considerably, suggesting that the mechanisms by which immigration reduced extinction risk depended on underlying dynamics in complex ways. PMID:23470546
Grain-size-independent plastic flow at ultrahigh pressures and strain rates.
Park, H-S; Rudd, R E; Cavallo, R M; Barton, N R; Arsenlis, A; Belof, J L; Blobaum, K J M; El-dasher, B S; Florando, J N; Huntington, C M; Maddox, B R; May, M J; Plechaty, C; Prisbrey, S T; Remington, B A; Wallace, R J; Wehrenberg, C E; Wilson, M J; Comley, A J; Giraldez, E; Nikroo, A; Farrell, M; Randall, G; Gray, G T
2015-02-13
A basic tenet of material science is that the flow stress of a metal increases as its grain size decreases, an effect described by the Hall-Petch relation. This relation is used extensively in material design to optimize the hardness, durability, survivability, and ductility of structural metals. This Letter reports experimental results in a new regime of high pressures and strain rates that challenge this basic tenet of mechanical metallurgy. We report measurements of the plastic flow of the model body-centered-cubic metal tantalum made under conditions of high pressure (>100 GPa) and strain rate (∼10(7) s(-1)) achieved by using the Omega laser. Under these unique plastic deformation ("flow") conditions, the effect of grain size is found to be negligible for grain sizes >0.25 μm sizes. A multiscale model of the plastic flow suggests that pressure and strain rate hardening dominate over the grain-size effects. Theoretical estimates, based on grain compatibility and geometrically necessary dislocations, corroborate this conclusion.
Effect of dynamic high pressure on emulsifying and encapsulant properties of cashew tree gum.
Porto, Bruna Castro; Cristianini, Marcelo
2018-04-15
Dynamic high pressure (DHP) has been applied in the physical modification of biopolymers as polysaccharides, proteins and gums. It is known that DHP is able to promote degradation of polysaccharides (e.g. molecular weight reduction). However, few studies have assessed the effect of DHP on the emulsifying and encapsulating properties of polysaccharides. Thus, this study aimed to investigate the effect of DHP on the emulsifying (average droplet size and particle size distribution, optical and confocal scanning laser microscopy, rheology, zeta potential and electric conductivity, creaming index, and turbidity) and encapsulating (scanning electronic microscopy, flavor retention, average droplet size, and particle size distribution) properties of cashew tree gum (CG). The application of DHP process improved the emulsifying capacity of cashew tree gum (CG) by reducing the medium droplet size (D3,2 and D4,3), increasing the turbidity and improving the emulsion stability. However, no effect of DHP was observed on the encapsulating capacity of CG. Copyright © 2018 Elsevier Ltd. All rights reserved.
Structural effect of size on interracial friendship
Cheng, Siwei; Xie, Yu
2013-01-01
Social contexts exert structural effects on individuals’ social relationships, including interracial friendships. In this study, we posit that, net of group composition, total context size has a distinct effect on interracial friendship. Under the assumptions of (i) maximization of preference in choosing a friend, (ii) multidimensionality of preference, and (iii) preference for same-race friends, we conducted analyses using microsimulation that yielded three main findings. First, increased context size decreases the likelihood of forming an interracial friendship. Second, the size effect increases with the number of preference dimensions. Third, the size effect is diluted by noise, i.e., the random component affecting friendship formation. Analysis of actual friendship data among 4,745 American high school students yielded results consistent with the main conclusion that increased context size promotes racial segregation and discourages interracial friendship. PMID:23589848
Kic size effect study on two high-strength steels using notched bend specimens
NASA Technical Reports Server (NTRS)
Stonesifer, F. R.
1974-01-01
Five methods are used to calculate plane strain fracture toughness (K sub Q) values for bend-specimens of various sizes from two high-strength steels. None of the methods appeared to satisfactorily predict valid stress intensity factor (K sub IC) values from specimens of sizes well below that required by E399 standard tests.
High correlations between MRI brain volume measurements based on NeuroQuant® and FreeSurfer.
Ross, David E; Ochs, Alfred L; Tate, David F; Tokac, Umit; Seabaugh, John; Abildskov, Tracy J; Bigler, Erin D
2018-05-30
NeuroQuant ® (NQ) and FreeSurfer (FS) are commonly used computer-automated programs for measuring MRI brain volume. Previously they were reported to have high intermethod reliabilities but often large intermethod effect size differences. We hypothesized that linear transformations could be used to reduce the large effect sizes. This study was an extension of our previously reported study. We performed NQ and FS brain volume measurements on 60 subjects (including normal controls, patients with traumatic brain injury, and patients with Alzheimer's disease). We used two statistical approaches in parallel to develop methods for transforming FS volumes into NQ volumes: traditional linear regression, and Bayesian linear regression. For both methods, we used regression analyses to develop linear transformations of the FS volumes to make them more similar to the NQ volumes. The FS-to-NQ transformations based on traditional linear regression resulted in effect sizes which were small to moderate. The transformations based on Bayesian linear regression resulted in all effect sizes being trivially small. To our knowledge, this is the first report describing a method for transforming FS to NQ data so as to achieve high reliability and low effect size differences. Machine learning methods like Bayesian regression may be more useful than traditional methods. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Weijie; Loke, Desmond; Shi, Luping; Zhao, Rong; Yang, Hongxin; Law, Leong-Tat; Ng, Lung-Tat; Lim, Kian-Guan; Yeo, Yee-Chia; Chong, Tow-Chong; Lacaita, Andrea L
2012-01-01
The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. Phase-change materials are highly promising in this respect. However, their contradictory speed and stability properties present a key challenge towards this ambition. We reveal that as the device size decreases, the phase-change mechanism changes from the material inherent crystallization mechanism (either nucleation- or growth-dominated), to the hetero-crystallization mechanism, which resulted in a significant increase in PCRAM speeds. Reducing the grain size can further increase the speed of phase-change. Such grain size effect on speed becomes increasingly significant at smaller device sizes. Together with the nano-thermal and electrical effects, fast phase-change, good stability and high endurance can be achieved. These findings lead to a feasible solution to achieve a universal memory.
Wang, Weijie; Loke, Desmond; Shi, Luping; Zhao, Rong; Yang, Hongxin; Law, Leong-Tat; Ng, Lung-Tat; Lim, Kian-Guan; Yeo, Yee-Chia; Chong, Tow-Chong; Lacaita, Andrea L.
2012-01-01
The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. Phase-change materials are highly promising in this respect. However, their contradictory speed and stability properties present a key challenge towards this ambition. We reveal that as the device size decreases, the phase-change mechanism changes from the material inherent crystallization mechanism (either nucleation- or growth-dominated), to the hetero-crystallization mechanism, which resulted in a significant increase in PCRAM speeds. Reducing the grain size can further increase the speed of phase-change. Such grain size effect on speed becomes increasingly significant at smaller device sizes. Together with the nano-thermal and electrical effects, fast phase-change, good stability and high endurance can be achieved. These findings lead to a feasible solution to achieve a universal memory. PMID:22496956
ERIC Educational Resources Information Center
BARKER, ROGER G.; AND OTHERS
STUDIES WERE MADE IN KANSAS HIGH SCHOOLS TO DETERMINE THE EFFECT OF SCHOOL SIZE UPON THE BEHAVIOR AND EXPERIENCES OF STUDENTS. THE FOLLOWING AREAS WERE CONSIDERED-- THE SCHOOL INVOLVED IN THE STUDY, THE DATA GATHERED FROM RECORDS AND RESEARCH, OUT-OF-SCHOOL ACTIVITIES, AND THE PLACE OF HIGH SCHOOL STUDENTS IN THE TOTAL LIFE OF FOUR SMALL TOWNS.…
Effect of Boundary Conditions on the Back Face Deformations of Flat UHMWPE Panels
2014-12-01
Zhang [2] carried out a numerical study of the effects of clamping type and clamping pressure on the ballistic performance of woven Kevlar , and found...effects of composite size were also studied. Singletary [5] studied the effects of boundary conditions and panel sizes on V50 for Kevlar KM2 fabric. The...on the BFD in flat UHMWPE panels. UHMWPE possesses high tenacity and high strength compared to Kevlar , as a result of which it is the material of
Vermeir, Lien; Sabatino, Paolo; Balcaen, Mathieu; Declerck, Arnout; Dewettinck, Koen; Martins, José C; Guthausen, Gisela; Van der Meeren, Paul
2016-08-01
The accuracy of the inner water droplet size determination of W/O/W emulsions upon water diffusion measurement by diffusion NMR was evaluated. The resulting droplet size data were compared to the results acquired from the diffusion measurement of a highly water soluble marker compound with low permeability in the oil layer of a W/O/W emulsion, which provide a closer representation of the actual droplet size. Differences in droplet size data obtained from water and the marker were ascribed to extra-droplet water diffusion. The diffusion data of the tetramethylammonium cation marker were measured using high-resolution pulsed field gradient NMR, whereas the water diffusion was measured using both low-resolution and high-resolution NMR. Different data analysis procedures were evaluated to correct for the effect of extra-droplet water diffusion on the accuracy of water droplet size analysis. Using the water diffusion data, the use of a low measurement temperature and diffusion delay Δ could reduce the droplet size overestimation resulting from extra-droplet water diffusion, but this undesirable effect was inevitable. Detailed analysis of the diffusion data revealed that the extra-droplet diffusion effect was due to an exchange between the inner water phase and the oil phase, rather than by exchange between the internal and external aqueous phase. A promising data analysis procedure for retrieving reliable size data consisted of the application of Einstein's diffusion law to the experimentally determined diffusion distances. This simple procedure allowed determining the inner water droplet size of W/O/W emulsions upon measurement of water diffusion by low-resolution NMR at or even above room temperature. Copyright © 2016 Elsevier Inc. All rights reserved.
The Effect of Defects on the Fatigue Initiation Process in Two P/M Superalloys.
1980-09-01
determine the effect of Sdfect size, shape, and population on the fatigue initiation process in two high strength P/M superalloys, AF-l5 and AF2-lDA. The...to systematically determine the effects of defect size, shape, and population on fatigue. It is true that certain trends have been established...to determine the relative effects of defect size, shape, and population on the crack initiation life of a representative engineering material
Zinner, Christoph; Heilemann, Ilka; Kjendlie, Per-Ludvik; Holmberg, Hans-Christer; Mester, Joachim
2010-01-01
Training volume in swimming is usually very high when compared to the relatively short competition time. High-intensity interval training (HIIT) has been demonstrated to improve performance in a relatively short training period. The main purpose of the present study was to examine the effects of a 5-week HIIT versus high-volume training (HVT) in 9–11-year-old swimmers on competition performance, 100 and 2,000 m time (T100 m and T2,000 m), VO2peak and rate of maximal lactate accumulation (Lacmax). In a 5-week crossover study, 26 competitive swimmers with a mean (SD) age of 11.5 ± 1.4 years performed a training period of HIIT and HVT. Competition (P < 0.01; effect size = 0.48) and T2,000 m (P = 0.04; effect size = 0.21) performance increased following HIIT. No changes were found in T100 m (P = 0.20). Lacmax increased following HIIT (P < 0.01; effect size = 0.43) and decreased after HVT (P < 0.01; effect size = 0.51). VO2peak increased following both interventions (P < 0.05; effect sizes = 0.46–0.57). The increases in competition performance, T2,000 m, Lacmax and VO2peak following HIIT were achieved in significantly less training time (~2 h/week). PMID:20683609
Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan
2010-01-01
The effect of nanoparticle size (30–120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T2 relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics. PMID:21043459
Itsy bitsy spider?: Valence and self-relevance predict size estimation.
Leibovich, Tali; Cohen, Noga; Henik, Avishai
2016-12-01
The current study explored the role of valence and self-relevance in size estimation of neutral and aversive animals. In Experiment 1, participants who were highly fearful of spiders and participants with low fear of spiders rated the size and unpleasantness of spiders and other neutral animals (birds and butterflies). We found that although individuals with both high and low fear of spiders rated spiders as highly unpleasant, only the highly fearful participants rated spiders as larger than butterflies. Experiment 2 included additional pictures of wasps (not self-relevant, but unpleasant) and beetles. The results of this experiment replicated those of Experiment 1 and showed a similar bias in size estimation for beetles, but not for wasps. Mediation analysis revealed that in the high-fear group both relevance and valence influenced perceived size, whereas in the low-fear group only valence affected perceived size. These findings suggest that the effect of highly relevant stimuli on size perception is both direct and mediated by valence. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Local extinction and recolonization, species effective population size, and modern human origins.
Eller, Elise; Hawks, John; Relethford, John H
2004-10-01
A primary objection from a population genetics perspective to a multiregional model of modern human origins is that the model posits a large census size, whereas genetic data suggest a small effective population size. The relationship between census size and effective size is complex, but arguments based on an island model of migration show that if the effective population size reflects the number of breeding individuals and the effects of population subdivision, then an effective population size of 10,000 is inconsistent with the census size of 500,000 to 1,000,000 that has been suggested by archeological evidence. However, these models have ignored the effects of population extinction and recolonization, which increase the expected variance among demes and reduce the inbreeding effective population size. Using models developed for population extinction and recolonization, we show that a large census size consistent with the multiregional model can be reconciled with an effective population size of 10,000, but genetic variation among demes must be high, reflecting low interdeme migration rates and a colonization process that involves a small number of colonists or kin-structured colonization. Ethnographic and archeological evidence is insufficient to determine whether such demographic conditions existed among Pleistocene human populations, and further work needs to be done. More realistic models that incorporate isolation by distance and heterogeneity in extinction rates and effective deme sizes also need to be developed. However, if true, a process of population extinction and recolonization has interesting implications for human demographic history.
Murphy, M R; Whetstone, H D; Davis, C L
1983-12-01
We examined effects of source and particle size of supplemental defluorinated rock phosphate, to meet phosphorus requirements, on rumen function of 195-kg Holstein steers fed high concentrate. Two sources and two particle sizes of each source were evaluated in a 5 X 5 Latin square with 14-day periods. There was no effect of source on ruminal mH [- log (mean (H+)]; however, ruminal mH was higher in animals fed supplements of larger particle size. This effect was also evident when rumen pH versus time curves were integrated below pH 6. Animals fed supplements of larger particle size had less area below pH 6 than those fed supplements of smaller size. Ruminal buffering capacity at pH 7 was affected by diet; however, orthogonal comparisons between treatment means were not significant. Neither source nor particle size of the supplement affected ruminal fluid osmolality, total volatile fatty acid concentration, or fecal starch. Water intake and ruminal dry matter on HyCal supplemented diets; however, there was also a trend toward increasing rumen fluid volume. The net effect was little change of dilution rate of ruminal fluid. This may explain why rumen fermentation was not affected greatly. Conventional phosphate supplements may have potential as rumen buffering agents, but higher levels of feeding should be studied.
The large sample size fallacy.
Lantz, Björn
2013-06-01
Significance in the statistical sense has little to do with significance in the common practical sense. Statistical significance is a necessary but not a sufficient condition for practical significance. Hence, results that are extremely statistically significant may be highly nonsignificant in practice. The degree of practical significance is generally determined by the size of the observed effect, not the p-value. The results of studies based on large samples are often characterized by extreme statistical significance despite small or even trivial effect sizes. Interpreting such results as significant in practice without further analysis is referred to as the large sample size fallacy in this article. The aim of this article is to explore the relevance of the large sample size fallacy in contemporary nursing research. Relatively few nursing articles display explicit measures of observed effect sizes or include a qualitative discussion of observed effect sizes. Statistical significance is often treated as an end in itself. Effect sizes should generally be calculated and presented along with p-values for statistically significant results, and observed effect sizes should be discussed qualitatively through direct and explicit comparisons with the effects in related literature. © 2012 Nordic College of Caring Science.
NASA Astrophysics Data System (ADS)
Kharzeev, Dmitri; Tu, Zhoudunming; Zhang, Aobo; Li, Wei
2018-02-01
High energy proton-nucleus (pA) collisions provide an important constraint on the study of the chiral magnetic effect in QCD matter. Naively, in pA collisions one expects no correlation between the orientation of the event plane as reconstructed from the azimuthal distribution of produced hadrons and the orientation of the magnetic field. If this is the case, any charge-dependent hadron correlations can only result from the background. Nevertheless, in this paper we point out that in high multiplicity pA collisions a correlation between the magnetic field and the event plane can appear. This is because triggering on the high hadron multiplicity amounts to selecting Fock components of the incident proton with a large number of partons that are expected to have a transverse size much larger than the average proton size. We introduce the effect of the fluctuating proton size in the Monte Carlo Glauber model and evaluate the resulting correlation between the magnetic field and the second-order event plane in both pA and nucleus-nucleus (AA) collisions. The fluctuating proton size is found to result in a significant correlation between the magnetic field and the event plane in pA collisions, even though the magnitude of the correlation is still much smaller than in AA collisions. This result opens a possibility of studying the chiral magnetic effect in small systems.
Key to enhance thermoelectric performance by controlling crystal size of strontium titanate
NASA Astrophysics Data System (ADS)
Wang, Jun; Ye, Xinxin; Yaer, Xinba; Wu, Yin; Zhang, Boyu; Miao, Lei
2015-09-01
One-step molten salt synthesis process was introduced to fabricate nano to micrometer sized SrTiO3 powders in which effects of synthesis temperature, oxide-to-flux ratios and raw materials on the generation of SrTiO3 powders were examined. 100 nm or above sized pure SrTiO3 particles were obtained at relatively lower temperature of 900∘C. Micro-sized rhombohedral crystals with a maximum size of approximately 12 μm were obtained from SrCO3 or Sr(NO3)2 strontium source with 1:1 O/S ratio. Controlled crystal size and morphology of Nb-doped SrTiO3 particles are prepared by using this method to confirm the performance of thermoelectric properties. The Seebeck coefficient obtained is significantly high when compared with the reported data, and the high ratio of nano particles in the sample has a positive effect on the increase of Seebeck coefficient too, which is likely due to the energy filtering effect at large numbers of grain boundaries resulting from largely distributed structure.
Waif goodbye! Average-size female models promote positive body image and appeal to consumers.
Diedrichs, Phillippa C; Lee, Christina
2011-10-01
Despite consensus that exposure to media images of thin fashion models is associated with poor body image and disordered eating behaviours, few attempts have been made to enact change in the media. This study sought to investigate an effective alternative to current media imagery, by exploring the advertising effectiveness of average-size female fashion models, and their impact on the body image of both women and men. A sample of 171 women and 120 men were assigned to one of three advertisement conditions: no models, thin models and average-size models. Women and men rated average-size models as equally effective in advertisements as thin and no models. For women with average and high levels of internalisation of cultural beauty ideals, exposure to average-size female models was associated with a significantly more positive body image state in comparison to exposure to thin models and no models. For men reporting high levels of internalisation, exposure to average-size models was also associated with a more positive body image state in comparison to viewing thin models. These findings suggest that average-size female models can promote positive body image and appeal to consumers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dao, Trung Dung; Jeong, Han Mo, E-mail: hmjeong@mail.ulsan.ac.kr
Highlights: • Effect of raw graphite particle size on properties of GO and graphene is reported. • Size of raw graphite affects oxidation degree and chemical structure of GO. • Highly oxidized GO results in small-sized but well-exfoliated graphene. • GO properties affect reduction degree, structure, and conductivity of graphene. - Abstract: We report the effect of raw graphite size on the properties of graphite oxide and graphene prepared by thermal reduction–exfoliation of graphite oxide. Transmission electron microscope analysis shows that the lateral size of graphene becomes smaller when smaller size graphite is used. X-ray diffraction analysis confirms that graphitemore » with smaller size is more effectively oxidized, resulting in a more effective subsequent exfoliation of the obtained graphite oxide toward graphene. X-ray photoelectron spectroscopy demonstrates that reduction of the graphite oxide derived from smaller size graphite into graphene is more efficient. However, Raman analysis suggests that the average size of the in-plane sp{sup 2}-carbon domains on graphene is smaller when smaller size graphite is used. The enhanced reduction degree and the reduced size of sp{sup 2}-carbon domains contribute contradictively to the electrical conductivity of graphene when the particle size of raw graphite reduces.« less
Maternal investment in reproduction and its consequences in leatherback turtles.
Wallace, Bryan P; Sotherland, Paul R; Tomillo, Pilar Santidrian; Reina, Richard D; Spotila, James R; Paladino, Frank V
2007-05-01
Maternal investment in reproduction by oviparous non-avian reptiles is usually limited to pre-ovipositional allocations to the number and size of eggs and clutches, thus making these species good subjects for testing hypotheses of reproductive optimality models. Because leatherback turtles (Dermochelys coriacea) stand out among oviparous amniotes by having the highest clutch frequency and producing the largest mass of eggs per reproductive season, we quantified maternal investment of 146 female leatherbacks over four nesting seasons (2001-2004) and found high inter- and intra-female variation in several reproductive characteristics. Estimated clutch frequency [coefficient of variation (CV) = 31%] and clutch size (CV = 26%) varied more among females than did egg mass (CV = 9%) and hatchling mass (CV = 7%). Moreover, clutch size had an approximately threefold higher effect on clutch mass than did egg mass. These results generally support predictions of reproductive optimality models in which species that lay several, large clutches per reproductive season should exhibit low variation in egg size and instead maximize egg number (clutch frequency and/or size). The number of hatchlings emerging per nest was positively correlated with clutch size, but fraction of eggs in a clutch yielding hatchlings (emergence success) was not correlated with clutch size and varied highly among females. In addition, seasonal fecundity and seasonal hatchling production increased with the frequency and the size of clutches (in order of effect size). Our results demonstrate that female leatherbacks exhibit high phenotypic variation in reproductive traits, possibly in response to environmental variability and/or resulting from genotypic variability within the population. Furthermore, high seasonal and lifetime fecundity of leatherbacks probably reflect compensation for high and unpredictable mortality during early life history stages in this species.
Maiti, Rituparna; Mishra, Biswa Ranjan; Hota, Debasish
2017-01-01
Repetitive transcranial magnetic stimulation (rTMS), a noninvasive, neuromodulatory tool, has been used to reduce craving in different substance use disorders. There are some studies that have reported conflicting and inconclusive results; therefore, this meta-analysis was conducted to evaluate the effect of high-frequency rTMS on craving in substance use disorder and to investigate the reasons behind the inconsistency across the studies. The authors searched clinical trials from MEDLINE, Cochrane databases, and International Clinical Trials Registry Platform. The PRISMA guidelines, as well as recommended meta-analysis practices, were followed in the selection process, analysis, and reporting of the findings. The effect estimate used was the standardized mean difference (Hedge's g), and heterogeneity across the considered studies was explored using subgroup analyses. The quality assessment was done using the Cochrane risk of bias tool, and sensitivity analysis was performed to check the influences on effect size by statistical models. After screening and assessment of eligibility, finally 10 studies were included for meta-analysis, which includes six studies on alcohol and four studies on nicotine use disorder. The random-model analysis revealed a pooled effect size of 0.75 (95% CI=0.29 to 1.21, p=0.001), whereas the fixed-model analysis showed a large effect size of 0.87 (95% CI=0.63 to 1.12, p<0.00001). Subgroup analysis for alcohol use disorder showed an effect size of -0.06 (95% CI=-0.89 to 0.77, p=0.88). In the case of nicotine use disorder, random-model analysis revealed an effect size of 1.00 (95% CI=0.48 to 1.55, p=0.0001), whereas fixed-model analysis also showed a large effect size of 0.96 (95% CI=0.71 to 1.22). The present meta-analysis identified a beneficial effect of high-frequency rTMS on craving associated with nicotine use disorder but not alcohol use disorder.
Wainhouse, D; Staley, J; Johnston, J; Boswell, R
2005-04-01
Young plants of Sitka spruce, Scots and Corsican pine were subject to high and low light, and high and low nitrogen treatments in a polyhouse experiment. The effect of treatments on resin duct size and nitrogen concentration in stem bark was determined together with feeding by Hylobius abietis Linnaeus on the stems of 'intact' plants and on 'detached' stems cut from the plant. Resin duct size was largest on Corsican pine and smallest on Sitka spruce and inherent variation in duct size between the three conifer species appears to determine the pattern of weevil feeding between species. Resin ducts and the flow of resin from them protect the stems of young conifers from weevil feeding not by affecting the total amount of bark eaten but by limiting the depth of feeding and so protecting the inner phloem and cambium. Shallow feeding may increase the likelihood of effective wound repair. Duct size was positively related to plant growth and in particular increased with bark thickness. Overall, ducts were largest in the high light treatment although species differed in their response to the treatment. It is suggested that the effects of plant size, growing conditions and transplantation on susceptibility to attack by H. abietis, reported in various studies, may be due to underlying variation in resin duct size or flow rate. The effect on weevils of superficial feeding on stems is to increase the time for reproductive maturation by reducing consumption of the inner bark which has a higher nitrogen content.
USDA-ARS?s Scientific Manuscript database
The particle size effects of high-amylose rice (Goami 2) flour on quality attributes of frying batters were characterized in terms of physicochemical, rheological, and oil-resisting properties. High-amylose rice flours were fractionated into four fractions (70, 198, 256, and 415 µm) of which morpho...
Does prolonged semi-erection in prepubertal high flow priapism result in increased penile size?
Awwad, Ziad M
2005-03-01
High flow priapism is a rare pathology resulting mainly from trauma to the perineum leading to arterial-lacunar fistula. Management includes arterial embolization using absorbable material, as well as conservative approach. In this case, the effect of prolonged semi-erection in prepubertal high flow priapism on increased penile size is discussed.
Small Is Too Big: Achieving a Critical Anti-Mass in the High School.
ERIC Educational Resources Information Center
Gregory, Tom
Developing more effective conceptions of the high school may require radically reducing its size. In today's big high schools, size ensures that control of students is a primary concern and prevents the development of a collegial atmosphere among teachers. Although research provides ample evidence of the superior social climates of small informal…
The modified Yi qi decoction protects cardiac ischemia-reperfusion induced injury in rats.
Yu, Xiao; Zhao, Xiao-Dong; Bao, Rong-Qi; Yu, Jia-Yu; Zhang, Guo-Xing; Chen, Jing-Wei
2017-06-21
To investigate the effects and involved mechanisms of the modified Yi Qi decoction (MYQ) in cardiac ischemia-reperfusion (IR) induced injury. Male Sprague-Dawley rats were subjected to a 30-min coronary arterial occlusion followed by reperfusion, low or high dose decoction of MYQ was administrated orally for 1 week or 1 month. Both in 1 week and 1 month IR rat groups, cardiac function indexes were significantly impaired compared with sham group rats, accompanied with higher ratio of infarct size to risk size, decreased expressions of sodium calcium exchanger (NCX1) and sarcoplasmic reticulum Ca 2+ -ATPase (Serca2a), and different expressions of autophagic proteins, Beclin-1 and LC3. Treatment with MYQ (low or high dose) for 1 week showed no marked beneficial effects on cardiac function and cardiac injury (ratio of infarct size to risk size), although expressions of anti-apoptotic protein, Bcl-2, NCX1 and Serca2a were increased. Treatment with MYQ (low or high dose) for 1 month showed significantly improved effects on cardiac function and cardiac injury (ratio of infarct size to risk size), accompanied with increase of Bcl-2, NCX1 and Serca2a expressions, and decrease of Bax (a pro-apoptotic protein) and Beclin-1 expressions. The results show that MYQ have potential therapeutic effects on IR-induced cardiac injury, which may be through regulation of apoptotic proteins, cytosolic Ca 2+ handling proteins and autophagic proteins signal pathways.
Effect of Sizings on the Durability of High Temperature Polymer Composites
NASA Technical Reports Server (NTRS)
Allred, Ronald E.; Shin, E. Eugene; Inghram, Linda; McCorkle, Linda; Papadopoulos, Demetrios; Wheeler, Donald; Sutter, James K.
2003-01-01
To increase performance and durability of high-temperature composite for potential rocket engine components, it is necessary to optimize wetting and interfacial bonding between high modulus carbon fibers and high-temperature polyimide resins. Sizing commercially supplied on most carbon fiber are not compatible with polyimides. In this study, the chemistry of sizing on two high modulus carbon fiber (M40J and M60J, Tiray) was characterized. A continuous desizling system that uses an environmentally friendly chemical-mechanical process was developed for tow level fiber. Composites were fabricated with fibers containing the manufacturer's sizing, desized, and further treated with a reactive finish. Results of room-temperature tests after thermal aging show that the reactive finish produces a higher strength and more durable interface compared to the manufacturer's sizing. When exposed to moisture blistering tests, however, the butter bonded composite displayed a tendency to delaminate, presumably due to trapping of volatiles.
Particle size and support effects in electrocatalysis.
Hayden, Brian E
2013-08-20
Researchers increasingly recognize that, as with standard supported heterogeneous catalysts, the activity and selectivity of supported metal electrocatalysts are influenced by particle size, particle structure, and catalyst support. Studies using model supported heterogeneous catalysts have provided information about these effects. Similarly, model electrochemical studies on supported metal electrocatalysts can provide insight into the factors determining catalytic activity. High-throughput methods for catalyst synthesis and screening can determine systematic trends in activity as a function of support and particle size with excellent statistical certainty. In this Account, we describe several such studies investigating methods for dispersing precious metals on both carbon and oxide supports, with particular emphasis on the prospects for the development of low-temperature fuel-cell electrocatalysts. One key finding is a decrease in catalytic activity with decreasing particle size independent of the support for both oxygen reduction and CO oxidation on supported gold and platinum. For these reactions, there appears to be an intrinsic particle size effect that results in a loss of activity at particle sizes below 2-3 nm. A titania support, however, also increases activity of gold particles in the electrooxidation of CO and in the reduction of oxygen, with an optimum at 3 nm particle size. This optimum may represent the superposition of competing effects: a titania-induced enhanced activity versus deactivation at small particle sizes. The titania support shows catalytic activity at potentials where carbon-supported and bulk-gold surfaces are normally oxidized and CO electrooxidation is poisoned. On the other hand, platinum on amorphous titania shows a different effect: the oxidation reduction reaction is strongly poisoned in the same particle size range. We correlated the influence of the titania support with titania-induced changes in the surface redox behavior of the platinum particles. For both supported gold and platinum particles in electrocatalysis, we observe parallels to the effects of particle size and support in the equivalent heterogeneous catalysts. Studies of model supported-metal electrocatalysts, performs efficiently using high throughput synthetic and screening methodologies, will lead to a better understanding of the mechanisms responsible for support and particle size effects in electrocatalysis, and will drive the development of more effective and robust catalysts in the future.
Mitchell, Toby; Alton, Lesley A; White, Craig R; Franklin, Craig E
2012-12-01
Global increases in ultraviolet-B radiation (UVBR) associated with stratospheric ozone depletion are potentially contributing to the decline of numerous amphibian species around the world. Exposure to UVBR alone reduces survival and induces a range of sublethal effects in embryonic and larval amphibians. When additional environmental stressors are present, UVBR can have compounding negative effects. Thus, examination of the effects of UVBR in the absence of other stressors may substantially underestimate its potential to affect amphibians in natural habitats. We examined the independent and interactive effects of increased UVBR and high conspecific density would have embryonic and larval striped marsh frogs (Limnodynastes peronii). We exposed individuals to a factorial combination of low and high UVBR levels and low, medium, and high densities of striped marsh frog tadpoles. The response variables were time to hatching, hatching success, posthatch survival, burst-swimming performance of tadpoles (maximum instantaneous swim speed following an escape response), and size and morphology of tadpoles. Consistent with results of previous studies, we found that exposure to UVBR alone increased the time to hatching of embryos and reduced the burst-swimming performance and size of tadpoles. Similarly, increasing conspecific density increased the time to hatching of embryos and reduced the size of tadpoles, but had no effect on burst-swimming performance. The negative effect of UVBR on tadpole size was not apparent at high densities of tadpoles. This result suggests that tadpoles living at higher densities may invest relatively less energy in growth and thus have more energy to repair UVBR-induced damage. Lower densities of conspecifics increased the negative effects of UVBR on developing amphibians. Thus, low-density populations, which may include declining populations, may be particularly susceptible to the detrimental effects of increased UVBR and thus may be driven toward extinction faster than might be expected on the basis of results from single-factor studies. ©2012 Society for Conservation Biology.
The strength-of-weak-ties perspective on creativity: a comprehensive examination and extension.
Baer, Markus
2010-05-01
Disentangling the effects of weak ties on creativity, the present study separated, both theoretically and empirically, the effects of the size and strength of actors' idea networks and examined their joint impact while simultaneously considering the separate, moderating role of network diversity. I hypothesized that idea networks of optimal size and weak strength were more likely to boost creativity when they afforded actors access to a wide range of different social circles. In addition, I examined whether the joint effects of network size, strength, and diversity on creativity were further qualified by the openness to experience personality dimension. As expected, results indicated that actors were most creative when they maintained idea networks of optimal size, weak strength, and high diversity and when they scored high on the openness dimension. The implications of these results are discussed. PsycINFO Database Record (c) 2010 APA, all rights reserved.
Peng, Jie; Dong, Wu-Jun; Li, Ling; Xu, Jia-Ming; Jin, Du-Jia; Xia, Xue-Jun; Liu, Yu-Ling
2015-12-01
The effect of different high pressure homogenization energy input parameters on mean diameter droplet size (MDS) and droplets with > 5 μm of lipid injectable emulsions were evaluated. All emulsions were prepared at different water bath temperatures or at different rotation speeds and rotor-stator system times, and using different homogenization pressures and numbers of high-pressure system recirculations. The MDS and polydispersity index (PI) value of the emulsions were determined using the dynamic light scattering (DLS) method, and large-diameter tail assessments were performed using the light-obscuration/single particle optical sensing (LO/SPOS) method. Using 1000 bar homogenization pressure and seven recirculations, the energy input parameters related to the rotor-stator system will not have an effect on the final particle size results. When rotor-stator system energy input parameters are fixed, homogenization pressure and recirculation will affect mean particle size and large diameter droplet. Particle size will decrease with increasing homogenization pressure from 400 bar to 1300 bar when homogenization recirculation is fixed; when the homogenization pressure is fixed at 1000 bar, the particle size of both MDS and percent of fat droplets exceeding 5 μm (PFAT 5 ) will decrease with increasing homogenization recirculations, MDS dropped to 173 nm after five cycles and maintained this level, volume-weighted PFAT 5 will drop to 0.038% after three cycles, so the "plateau" of MDS will come up later than that of PFAT 5 , and the optimal particle size is produced when both of them remained at plateau. Excess homogenization recirculation such as nine times under the 1000 bar may lead to PFAT 5 increase to 0.060% rather than a decrease; therefore, the high-pressure homogenization procedure is the key factor affecting the particle size distribution of emulsions. Varying storage conditions (4-25°C) also influenced particle size, especially the PFAT 5 . Copyright © 2015. Published by Elsevier B.V.
High-numerical-aperture-based virtual point detectors for photoacoustic tomography
NASA Astrophysics Data System (ADS)
Li, Changhui; Wang, Lihong V.
2008-07-01
The focal point of a high-numerical-aperture (NA) ultrasonic transducer can be used as a virtual point detector. This virtual point detector detects omnidirectionally over a wide acceptance angle. It also combines a large active transducer surface and a small effective virtual detector size. Thus the sensitivity is high compared with that of a real point detector, and the aperture effect is small compared with that of a finite size transducer. We present two kinds of high-NA-based virtual point detectors and their successful application in photoacoustic tomography. They can also be applied in other ultrasound-related fields.
Shen, Shaobo; Rao, Ruirui; Wang, Jincao
2013-01-01
The effects of ore particle size on selectively bioleaching phosphorus (P) from high-phosphorus iron ore were studied. The average contents of P and Fe in the iron ore were 1.06 and 47.90% (w/w), respectively. The particle sizes of the ores used ranged from 58 to 3350 microm. It was found that the indigenous sulfur-oxidizing bacteria from municipal wastewater could grow well in the slurries of solid high-phosphorus iron ore and municipal wastewater. The minimum bioleaching pH reached for the current work was 0.33. The P content in bioleached iron ore reduced slightly with decreasing particle size, while the removal percentage of Fe decreased appreciably with decreasing particle size. The optimal particle size fraction was 58-75 microm, because the P content in bioleached iron ore reached a minimum of 0.16% (w/w), the removal percentage of P attained a maximum of 86.7%, while the removal percentage of Fe dropped to a minimum of 1.3% and the Fe content in bioleached iron ore was a maximum of 56.4% (w/w) in this case. The iron ores thus obtained were suitable to be used in the iron-making process. The removal percentage of ore solid decreased with decreasing particle size at particle size range of 106-3350 microm. The possible reasons resulting in above phenomena were explored in the current work. It was inferred that the particle sizes of the iron ore used in this work have no significant effect on the viability of the sulfur-oxidizing bacteria.
Germinant size of jack pine in relation to seed size and geographic origin
C.W. Yeatman
1966-01-01
The initial size of conifer seedlings is closely related to seed size (Hadders 1963), and seed size is a maternal characteristic that is highly subject to environmental modification (Mergen et al. 1964; Righter 1945). The effect of seed weight must be accounted for in critical studies of seedlings which attempt to attribute differences in growth to specific genetic or...
Ahn, Dohyun; Seo, Youngnam; Kim, Minkyung; Kwon, Joung Huem; Jung, Younbo; Ahn, Jungsun
2014-01-01
Abstract This study examined the role of display size and mode in increasing users' sense of being together with and of their psychological immersion in a virtual character. Using a high-resolution three-dimensional virtual character, this study employed a 2×2 (stereoscopic mode vs. monoscopic mode×actual human size vs. small size display) factorial design in an experiment with 144 participants randomly assigned to each condition. Findings showed that stereoscopic mode had a significant effect on both users' sense of being together and psychological immersion. However, display size affected only the sense of being together. Furthermore, display size was not found to moderate the effect of stereoscopic mode. PMID:24606057
Bridgman growth of large-aperture yttrium calcium oxyborate crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Anhua, E-mail: wuanhua@mail.sic.ac.cn; Jiang, Linwen; Qian, Guoxing
2012-09-15
Highlights: ► YCOB is a novel non-linear optical crystal possessing good thermal, mechanical and nonlinear optical properties. ► Large size crystal growth is key technology question for YCOB crystal. ► YCOB crystals 3 in. in diameter were grown with modified vertical Bridgman method. ► It is a more effective growth method to obtain large size and high quality YCOB crystal. -- Abstract: Large-aperture yttrium calcium oxyborate YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) crystals with 3 in. in diameter were grown with modified vertical Bridgman method, and the large crystal plate (63 mm × 68 mm × 20 mm) was harvested formore » high-average power frequency conversion system. The crack, facet growth and spiral growth can be effectively controlled in the as-grown crystal, and Bridgman method displays more effective in obtain large size and high quality YCOB crystal plate than Czochralski technique.« less
Masucci, F; De Rosa, G; Barone, C M A; Napolitano, F; Grasso, F; Uzun, P; Di Francia, A
2016-03-01
The effects of different dietary levels of maize silage (10% v. 36% DM) and group size (7 v. 14 animals) were assessed on growth performance and in vivo digestibility of 28 male fattening buffaloes. In addition, the effects of diet on meat quality and group size on behaviour and immune response were separately evaluated. Animals were weighed and assigned to three groups. The high silage - low size group (HL) was fed a total mixed ration (TMR) containing 36% DM of maize silage and consisted of seven animals (age 12.7±2.6 months; BW 382.2±67.7 kg at the start of the study). The low silage - low size group (LL) was fed a TMR containing 10% DM of maize silage and consisted of seven animals (age 13.0±2.7 months; BW 389.4±72.3 kg). The high silage - high size group (HH) was fed the 36% maize silage DM diet and consisted of 14 animals (age 13.9±3.25 months; BW 416.5±73.9 kg). Total space allowance (3.2 indoor+3.2 outdoor m2/animal) was kept constant in the three groups, as well as the ratio of animals to drinkers (seven animals per water bowl) and the manger space (70 cm per animal). Growth performance, carcass characteristics and digestibility were influenced neither by dietary treatment nor by group size, even if the group fed 36% maize silage diet showed a higher fibre digestibility. No effect of diet was found on meat quality. Group size did not affect the behavioural activities with the exception of drinking (1.04±0.35% v. 2.60±0.35%; P<0.01 for groups HL and HH, respectively) and vigilance (2.58±0.46% v. 1.20±0.46%; P<0.05 for groups HL and HH, respectively). Immune responses were not affected by group size.
Li, Jinfeng; Ye, Fayin; Lei, Lin; Zhou, Yun; Zhao, Guohua
2018-05-02
The granules of sweet potato starch were size fractionated into three portions with significantly different median diameters ( D 50 ) of 6.67 (small-sized), 11.54 (medium-sized), and 16.96 μm (large-sized), respectively. Each portion was hydrophobized at the mass-based degrees of substitution (DS m ) of approximately 0.0095 (low), 0.0160 (medium), and 0.0230 (high). The Pickering emulsion-stabilizing capacities of modified granules were tested, and the resultant emulsions were characterized. The joint effects of granule size and DS m on emulsifying capacity (EC) were investigated by response surface methodology. For small-, medium-, and large-sized fractions, their highest emulsifying capacities are comparable but, respectively, encountered at high (0.0225), medium (0.0158), and low (0.0095) DS m levels. The emulsion droplet size increased with granule size, and the number of freely scattered granules in emulsions decreased with DS m . In addition, the term of surface density of the octenyl succinic group (SD -OSG ) was first proposed for modified starch granules, and it was proved better than DS m in interpreting the emulsifying capacities of starch granules with varying sizes. The present results implied that, as the particulate stabilizers, the optimal DS m of modified starch granules is size specific.
Measured particulate behavior in a subscale solid propellant rocket motor
NASA Astrophysics Data System (ADS)
Brennan, W. D.; Hovland, D. L.; Netzer, D. W.
1992-10-01
Particulate matter are sized in the exhaust nozzle and plume of small rocket motors of varying geometry to assess the effects of the expansion process on particle size. Both converging and converging-diverging nozzles are considered, and particle sizing is accomplished at pressures of up to 4.36 MPa with aluminum loadings of 2.0 and 4.7 percent. An instrument based on Fraunhofer diffraction is used to measure the particle-size distributions showing that: (1) high burning rates reduce particle agglomeration and increase C* efficiency; (2) high pressures lead to small and monomodal D32 entering the nozzle; and (3) D32 sizes increase appreciably at the tailoff. Some variations in plume signature are theorized to be caused by the tailoff phenomenon, and particle collisions and/or surface effects in the nozzle convergence are suggested by the reduced number of larger particles at the nozzle convergence.
Kharzeev, Dmitri; Tu, Zhoudunming; Zhang, Aobo; ...
2018-02-12
High energy proton-nucleus (pA) collisions provide an important constraint on the study of the chiral magnetic effect in QCD matter. Naively, in pA collisions one expects no correlation between the orientation of event plane as reconstructed from the azimuthal distribution of produced hadrons and the orientation of magnetic field. If this is the case, any charge-dependent hadron correlations can only result from the background. Nevertheless, in this paper we point out that in high multiplicity pA collisions a correlation between the magnetic field and the event plane can appear. This is because triggering on the high hadron multiplicity amounts tomore » selecting Fock components of the incident proton with a large number of partons that are expected to have a transverse size much larger than the average proton size. We introduce the effect of the fluctuating proton size in the Monte Carlo Glauber model and evaluate the resulting correlation between the magnetic field and the second-order event plane in both pA and nucleus-nucleus (AA) collisions. The fluctuating proton size is found to result in a significant correlation between magnetic field and the event plane in pA collisions, even though the magnitude of the correlation is still much smaller than in AA collisions. Here, this result opens a possibility of studying the chiral magnetic effect in small systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharzeev, Dmitri; Tu, Zhoudunming; Zhang, Aobo
High energy proton-nucleus (pA) collisions provide an important constraint on the study of the chiral magnetic effect in QCD matter. Naively, in pA collisions one expects no correlation between the orientation of event plane as reconstructed from the azimuthal distribution of produced hadrons and the orientation of magnetic field. If this is the case, any charge-dependent hadron correlations can only result from the background. Nevertheless, in this paper we point out that in high multiplicity pA collisions a correlation between the magnetic field and the event plane can appear. This is because triggering on the high hadron multiplicity amounts tomore » selecting Fock components of the incident proton with a large number of partons that are expected to have a transverse size much larger than the average proton size. We introduce the effect of the fluctuating proton size in the Monte Carlo Glauber model and evaluate the resulting correlation between the magnetic field and the second-order event plane in both pA and nucleus-nucleus (AA) collisions. The fluctuating proton size is found to result in a significant correlation between magnetic field and the event plane in pA collisions, even though the magnitude of the correlation is still much smaller than in AA collisions. Here, this result opens a possibility of studying the chiral magnetic effect in small systems.« less
Size effects on the magnetic properties of LaCoO3 nanoparticles
NASA Astrophysics Data System (ADS)
Wei, Q.; Zhang, T.; Wang, X. P.; Fang, Q. F.
2012-02-01
Magnetic properties of LaCoO3 nanoparticles prepared by a sol-gel method with average particle size (D) ranging from 20 to 500 nm are investigated. All samples exhibit obvious ferromagnetic transition. With decreasing particle size from 500 to 120 nm, the transition temperature Tc decreases slightly from 85 K, however Tc decreases dramatically when D ≤ 85 nm. Low-field magnetic moment at 10 K decreases with reduction of particle size, while the high-field magnetization exhibits a converse behavior, which is different with previous reports. The coercivity Hc decreases as the particle size is reduced. It is different with other nanosystems that no exchange bias effect is observed in nanosized LaCoO3 particles. These interesting results arise from the surface effect induced by sized effect and the structure change in LaCoO3 nanoparticles.
ERIC Educational Resources Information Center
Ellis, Thomas I.
1985-01-01
After a brief introduction identifying current issues and trends in research on class size, this brochure reviews five recent studies bearing on the relationship of class size to educational effectiveness. Part 1 is a review of two interrelated and highly controversial "meta-analyses" or statistical integrations of research findings on…
Does Secondary School Size Make a Difference? A Systematic Review
ERIC Educational Resources Information Center
Newman, M.; Garrett, Z.; Elbourne, D.; Bradley, S.; Noden, P.; Taylor, J.; West, A.
2006-01-01
There is a vast body of literature on school size but comparatively few high quality empirical studies comparing outcomes in schools of different sizes. This systematic review synthesizes the results of the published research from 31 studies on the effects of secondary school size from OECD countries since 1990. Overall the directions and patterns…
Controlling the size of alginate gel beads by use of a high electrostatic potential.
Klokk, T I; Melvik, J E
2002-01-01
The effect of several parameters on the size of alginate beads produced by use of an electrostatic potential bead generator was examined. Parameters studied included needle diameter, electrostatic potential, alginate solution flow rate, gelling ion concentration and alginate concentration and viscosity, as well as alginate composition. Bead size was found to decrease with increasing electrostatic potential, but only down to a certain level. Minimum bead size was reached at between 2-4 kV/cm for the needles tested. The smallest alginate beads produced (using a needle with inner diameter 0.18 mm) had a mean diameter of approximately 300 microm. Bead size was also found to be dependent upon the flow rate of the fed alginate solution. Increasing the gelling ion concentration resulted in a moderate decrease in bead size. The concentration and viscosity of the alginate solution also had an effect on bead size as demonstrated by an increased bead diameter when the concentration or viscosity was increased. This effect was primarily an effect of the viscosity properties of the solution, which led to changes in the rate of droplet formation in the bead generator. Lowering the flow rate of the alginate solution could partly compensate for the increase in bead size with increased viscosity. For a constant droplet size, alginates with a low G block content (F(GG) approximately 0.20) resulted in approximately 30% smaller beads than alginates with a high G block content (F(GG) approximately 0.60). This is explained as a result of differences in the shrinking properties of the beads.
Barden, J A
1983-11-01
A high-performance size exclusion liquid chromatographic system has been used to separate proteins with different shapes solely on the basis of their molecular weights. After the effects of ionic and hydrophobic interactions with the stationary phase have been overcome, protein elution is normally governed by their effective size in solution. Conditions are described under which proteins, with isoelectric points within the normal operating pH range of the columns, are eluted independent of their Stokes' radii. Even fibrous proteins with axial ratios of 50 elute according to their known molecular weights over the range 2000-2,000,000.
Nanostructured Fe-Cr Alloys for Advanced Nuclear Energy Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scattergood, Ronald O.
2016-04-26
We have completed research on the grain-size stabilization of model nanostructured Fe14Cr base alloys at high temperatures by the addition of non-equilibrium solutes. Fe14Cr base alloys are representative for nuclear reactor applications. The neutron flux in a nuclear reactor will generate He atoms that coalesce to form He bubbles. These can lead to premature failure of the reactor components, limiting their lifetime and increasing the cost and capacity for power generation. In order to mitigate such failures, Fe14Cr base alloys have been processed to contain very small nano-size oxide particles (less than 10 nm in size) that trap He atomsmore » and reduce bubble formation. Theoretical and experimental results indicate that the grain boundaries can also be very effective traps for He atoms and bubble formation. An optimum grain size will be less than 100 nm, ie., nanocrystalline alloys must be used. Powder metallurgy methods based on high-energy ball milling can produce Fe-Cr base nanocrystalline alloys that are suitable for nuclear energy applications. The problem with nanocrystalline alloys is that excess grain-boundary energy will cause grains to grow at higher temperatures and their propensity for He trapping will be lost. The nano-size oxide particles in current generation nuclear alloys provide some grain size stabilization by reducing grain-boundary mobility (Zener pinning – a kinetic effect). However the current mitigation strategy minimizing bubble formation is based primarily on He trapping by nano-size oxide particles. An alternate approach to nanoscale grain size stabilization has been proposed. This is based on the addition of small amounts of atoms that are large compared to the base alloy. At higher temperatures these will diffuse to the grain boundaries and will produce an equilibrium state for the grain size at higher temperatures (thermodynamic stabilization – an equilibrium effect). This would be preferred compared to a kinetic effect, which is not based on an equilibrium state. The PI and coworkers have developed thermodynamic-based models that can be used to select appropriate solute additions to Fe14Cr base alloys to achieve a contribution to grain-size stabilization and He bubble mitigation by the thermodynamic effect. All such models require approximations and the proposed research was aimed at alloy selection, processing and detailed atomic-level microstructure evaluations to establish the efficacy of the thermodynamic effect. The outcome of this research shows that appropriate alloy additions can produce a contribution from the thermodynamic stabilization effect. Furthermore, due to the oxygen typically present in nominally high purity elemental powders used for powder metallurgy processing, the optimum results obtained appeared as a synergistic combination of nano-size oxide particle pinning kinetic effect and the grain-boundary segregation thermodynamic effect.« less
Digital holographic image fusion for a larger size object using compressive sensing
NASA Astrophysics Data System (ADS)
Tian, Qiuhong; Yan, Liping; Chen, Benyong; Yao, Jiabao; Zhang, Shihua
2017-05-01
Digital holographic imaging fusion for a larger size object using compressive sensing is proposed. In this method, the high frequency component of the digital hologram under discrete wavelet transform is represented sparsely by using compressive sensing so that the data redundancy of digital holographic recording can be resolved validly, the low frequency component is retained totally to ensure the image quality, and multiple reconstructed images with different clear parts corresponding to a laser spot size are fused to realize the high quality reconstructed image of a larger size object. In addition, a filter combing high-pass and low-pass filters is designed to remove the zero-order term from a digital hologram effectively. The digital holographic experimental setup based on off-axis Fresnel digital holography was constructed. The feasible and comparative experiments were carried out. The fused image was evaluated by using the Tamura texture features. The experimental results demonstrated that the proposed method can improve the processing efficiency and visual characteristics of the fused image and enlarge the size of the measured object effectively.
Forsberg, Björn; Ulander, Johan; Kjellander, Roland
2005-02-08
The effects of ionic size asymmetry on long-range electrostatic interactions in electrolyte solutions are investigated within the primitive model. Using the formalism of dressed ion theory we analyze correlation functions from Monte Carlo simulations and the hypernetted chain approximation for size asymmetric 1:1 electrolytes. We obtain decay lengths of the screened Coulomb potential, effective charges of ions, and effective permittivity of the solution. It is found that the variation of these quantities with the degree of size asymmetry depends in a quite intricate manner on the interplay between the electrostatic coupling and excluded volume effects. In most cases the magnitude of the effective charge of the small ion species is larger than that of the large species; the difference increases with increasing size asymmetry. The effective charges of both species are larger (in absolute value) than the bare ionic charge, except for high asymmetry where the effective charge of the large ions can become smaller than the bare charge.
Predator size divergence depends on community context.
Okuzaki, Yutaka; Sota, Teiji
2018-05-09
Body size is a multi-functional trait related to various fitness components, but the relative importance of different selection pressures is seldom resolved. In Carabus japonicus beetles, of which the larvae exclusively prey on earthworms, adult body size is related to the presence/absence of a larger congener and habitat temperature. In sympatry, C. japonicus consistently exhibits smaller body size which is effective for avoiding interspecific mating, but in allopatry, it shows size variation unrelated to temperature. Here, we show that this predator-size variation is attributed to prey-size variation, associated with high phylogenetic diversity in earthworm communities. In allopatry, the predator size was larger where larger prey occurred. Larger adult size may have been selected because larger females produce larger larvae, which can subdue larger prey. Thus, in the absence of a larger congener, variation in prey body size had a pronounced effect on geographic body size divergence in C. japonicus. © 2018 John Wiley & Sons Ltd/CNRS.
Rethinking Trade-Driven Extinction Risk in Marine and Terrestrial Megafauna.
McClenachan, Loren; Cooper, Andrew B; Dulvy, Nicholas K
2016-06-20
Large animals hunted for the high value of their parts (e.g., elephant ivory and shark fins) are at risk of extinction due to both intensive international trade pressure and intrinsic biological sensitivity. However, the relative role of trade, particularly in non-perishable products, and biological factors in driving extinction risk is not well understood [1-4]. Here we identify a taxonomically diverse group of >100 marine and terrestrial megafauna targeted for international luxury markets; estimate their value across three points of sale; test relationships among extinction risk, high value, and body size; and quantify the effects of two mitigating factors: poaching fines and geographic range size. We find that body size is the principal driver of risk for lower value species, but that this biological pattern is eliminated above a value threshold, meaning that the most valuable species face a high extinction risk regardless of size. For example, once mean product values exceed US$12,557 kg(-1), body size no longer drives risk. Total value scales with size for marine animals more strongly than for terrestrial animals, incentivizing the hunting of large marine individuals and species. Poaching fines currently have little effect on extinction risk; fines would need to be increased 10- to 100-fold to be effective. Large geographic ranges reduce risk for terrestrial, but not marine, species, whose ranges are ten times greater. Our results underscore both the evolutionary and ecosystem consequences of targeting large marine animals and the need to geographically scale up and prioritize conservation of high-value marine species to avoid extinction. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Post, R. B.; Welch, R. B.
1996-01-01
Visually perceived eye level (VPEL) was measured while subjects viewed two vertical lines which were either upright or pitched about the horizontal axis. In separate conditions, the display consisted of a relatively large pair of lines viewed at a distance of 1 m, or a display scaled to one third the dimensions and viewed at a distance of either 1 m or 33.3 cm. The small display viewed at 33.3 cm produced a retinal image the same size as that of the large display at 1 m. Pitch of all three displays top-toward and top-away from the observer caused upward and downward VPEL shifts, respectively. These effects were highly similar for the large display and the small display viewed at 33.3 cm (ie equal retinal size), but were significantly smaller for the small display viewed at 1 m. In a second experiment, perceived size of the three displays was measured and found to be highly accurate. The results of the two experiments indicate that the effect of optical pitch on VPEL depends on the retinal image size of stimuli rather than on perceived size.
Kim, Byeonggon; Kim, Hyun Gyu; Shim, Gyu-Yeop; Park, Ji-Sub; Joo, Kyung-Il; Lee, Dong-Jin; Lee, Joun-Ho; Baek, Ji-Ho; Kim, Byeong Koo; Choi, Yoonseuk; Kim, Hak-Rin
2018-01-10
We proposed and analyzed an optically isotropic nano-droplet liquid crystal (LC) doped with high k nanoparticles (NPs), exhibiting enhanced Kerr effects, which could be operated with reduced driving voltages. For enhancing the contrast ratio together with the light efficiencies, the LC droplet sizes were adjusted to be shorter than the wavelength of visible light to reduce depolarization effects by optical scattering of the LC droplets. Based on the optical analysis of the depolarization effects, the influence of the relationship between the LC droplet size and the NP doping ratio on the Kerr effect change was investigated.
Non-scaling behavior of electroosmotic flow in voltage-gated nanopores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Cheng; Gallegos, Alejandro; Liu, Honglai
2017-01-01
Ionic size effects and electrostatic correlations result in the non-monotonic dependence of the electrical conductivity on the pore size. For ion transport at a high gating voltage, the conductivity oscillates with the pore size due to a significant overlap of the electric double layers.
Walzer, Andreas; Schausberger, Peter
2014-01-01
The adaptive canalization hypothesis predicts that highly fitness-relevant traits are canalized via past selection, resulting in low phenotypic plasticity and high robustness to environmental stress. Accordingly, we hypothesized that the level of phenotypic plasticity of male body size of the predatory mites Phytoseiulus persimilis (low plasticity) and Neoseiulus californicus (high plasticity) reflects the effects of body size variation on fitness, especially male lifetime reproductive success (LRS). We first generated small and standard-sized males of P. persimilis and N. californicus by rearing them to adulthood under limited and ample prey supply, respectively. Then, adult small and standard-sized males were provided with surplus virgin females throughout life to assess their mating and reproductive traits. Small male body size did not affect male longevity or the number of fertilized females but reduced male LRS of P. persimilis but not N. californicus. Proximately, the lower LRS of small than standard-sized P. persimilis males correlated with shorter mating durations, probably decreasing the amount of transferred sperm. Ultimately, we suggest that male body size is more strongly canalized in P. persimilis than N. californicus because deviation from standard body size has larger detrimental fitness effects in P. persimilis than N. californicus. © 2014 The Authors. Biological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111, 889–899. PMID:25132689
Effect of Dissolution Kinetics on Feature Size in Dip-Pen Nanolithography
NASA Astrophysics Data System (ADS)
Weeks, B. L.; Noy, A.; Miller, A. E.; de Yoreo, J. J.
2002-06-01
We have investigated the effects of humidity, tip speed, and dwell time on feature size during dip pen nanolithography. Our results indicate a transition between two distinct deposition regimes occurs at a dwell time independent of humidity. While feature size increases with humidity, the relative increase is independent of dwell time. The results are described by a model that accounts for detachment and reattachment at the tip. The model suggests that, at short dwell times (high speed), the most important parameter controlling the feature size is the activation energy for thiol detachment.
Effects of excess salt and fat intake on myocardial function and infarct size in rat.
Mozaffari, Mahmood S; Patel, Champa; Ballas, Claudia; Schaffer, Stephen W
2006-03-13
Important risk factors for cardiovascular disease include excess dietary intake of saturated fat and (or) salt. This study tested the hypothesis that excess intakes of saturated fat (e.g., beef tallow) and salt cause greater myocardial cell death following ischemia-reperfusion injury than each risk factor alone. Male rats were divided into four groups: basal fat diet (4.5% as calories; control), high fat diet (40% as calories; FAT), basal fat diet and high salt (1% NaCl solution; SALT) and high fat diet and high salt (FATSALT). The gain in body weight was significantly higher for FAT and FATSALT groups than those of either the control or the SALT group. Five weeks of exposure to the dietary regimens did not significantly affect the coronary flow rate and except for the salt-fed group, had no effect on the rate-pressure-product of the isolated heart perfused in Langendorff mode. Although infarct size was not affected by the high fat diet, it was reduced by the high salt regimen relative to the high fat diet or the control groups. When rats were fed the FAT and SALT combination, the effect of salt feeding on infarct size was not observed. In addition, the FATSALT group displayed a more marked deterioration in contractile function following ischemia-reperfusion injury than the other groups. In conclusion, short-term intake of a high fat diet, which significantly increases body weight, does not worsen ischemia-reperfusion injury although the treatment prevents the reduction of infarct size associated with high salt feeding.
Wang, Yanbo; Yan, Xuxia; Fu, Linglin
2013-01-01
Nano-selenium (Se), with its high bioavailability and low toxicity, has attracted wide attention for its potential application in the prevention of oxidative damage in animal tissues. However, the effect of nano-Se of different sizes on the intestinal epithelial cells of the crucian carp (Carassius auratus gibelio) is poorly understood. Our study showed that different sizes and doses of nano-Se have varied effects on the cellular protein contents and the enzyme activities of secreted lactate dehydrogenase, intracellular sodium potassium adenosine triphosphatase, glutathione peroxidase, and superoxide dismutase. It was also indicated that nano-Se had a size-dependent effect on the primary intestinal epithelial cells of the crucian carp. Thus, these findings may bring us a step closer to understanding the size effect and the bioavailability of nano-Se on the intestinal tract of the crucian carp.
Wang, Yanbo; Yan, Xuxia; Fu, Linglin
2013-01-01
Nano-selenium (Se), with its high bioavailability and low toxicity, has attracted wide attention for its potential application in the prevention of oxidative damage in animal tissues. However, the effect of nano-Se of different sizes on the intestinal epithelial cells of the crucian carp (Carassius auratus gibelio) is poorly understood. Our study showed that different sizes and doses of nano-Se have varied effects on the cellular protein contents and the enzyme activities of secreted lactate dehydrogenase, intracellular sodium potassium adenosine triphosphatase, glutathione peroxidase, and superoxide dismutase. It was also indicated that nano-Se had a size-dependent effect on the primary intestinal epithelial cells of the crucian carp. Thus, these findings may bring us a step closer to understanding the size effect and the bioavailability of nano-Se on the intestinal tract of the crucian carp. PMID:24204137
Size, Shape and Impurity Effects on Superconducting critical temperature.
NASA Astrophysics Data System (ADS)
Umeda, Masaki; Kato, Masaru; Sato, Osamu
Bulk superconductors have their own critical temperatures Tc. However, for a nano-structured superconductor, Tc depends on size and shape of the superconductor. Nishizaki showed that the high pressure torsion on bulks of Nb makes Tc higher, because the torsion makes many nano-sized fine grains in the bulks. However the high pressure torsion on bulks of V makes Tc lower, and Nishizaki discussed that the decrease of Tc is caused by impurities in the bulks of V. We studied size, shape, and impurity effects on Tc, by solving the Gor'kov equations, using the finite element method. We found that smaller and narrower superconductors show higher Tc. We found how size and shape affects Tc by studying spacial order parameter distributions and quasi-particle eigen-energies. Also we studied the impurity effects on Tc, and found that Tc decreases with increase of scattering rate by impurities. This work was supported in part of KAKENHI Grant Number JP26400367 and JP16K05460, and program for leading graduate schools of ministry of education, culture, sports, science and technology-Japan.
Estoup, Arnaud; Jarne, Philippe; Cornuet, Jean-Marie
2002-09-01
Homoplasy has recently attracted the attention of population geneticists, as a consequence of the popularity of highly variable stepwise mutating markers such as microsatellites. Microsatellite alleles generally refer to DNA fragments of different size (electromorphs). Electromorphs are identical in state (i.e. have identical size), but are not necessarily identical by descent due to convergent mutation(s). Homoplasy occurring at microsatellites is thus referred to as size homoplasy. Using new analytical developments and computer simulations, we first evaluate the effect of the mutation rate, the mutation model, the effective population size and the time of divergence between populations on size homoplasy at the within and between population levels. We then review the few experimental studies that used various molecular techniques to detect size homoplasious events at some microsatellite loci. The relationship between this molecularly accessible size homoplasy size and the actual amount of size homoplasy is not trivial, the former being considerably influenced by the molecular structure of microsatellite core sequences. In a third section, we show that homoplasy at microsatellite electromorphs does not represent a significant problem for many types of population genetics analyses realized by molecular ecologists, the large amount of variability at microsatellite loci often compensating for their homoplasious evolution. The situations where size homoplasy may be more problematic involve high mutation rates and large population sizes together with strong allele size constraints.
NASA Astrophysics Data System (ADS)
Burritt, Rosemary; Francois, Elizabeth; Windler, Gary; Chavez, David
2017-06-01
Diaminoazoxyfurazan (DAAF) has many of the safety characteristics of an insensitive high explosive (IHE): it is extremely insensitive to impact and friction and is comparable to triaminotrinitrobezene (TATB) in this way. Conversely, it demonstrates many performance characteristics of a Conventional High Explosive (CHE). DAAF has a small failure diameter of about 1.25 mm and can be sensitive to shock under the right conditions. Large particle sized DAAF will not initiate in a typical exploding foil initiator (EFI) configuration but smaller particle sizes will. Large particle sized DAAF, of 40 μm, was crash precipitated and ball milled into six distinct samples and pressed into pellets with a density of 1.60 g/cc (91% TMD). To investigate the effect of particle size and surface area on the direct initiation on DAAF multiple threshold tests were preformed on each sample of DAAF in different EFI configurations, which varied in flyer thickness and/or bridge size. Comparative tests were performed examining threshold voltage and correlated to Photon Doppler Velocimetry (PDV) results. The samples with larger particle sizes and surface area required more energy to initiate while the smaller particle sizes required less energy and could be initiated with smaller diameter flyers.
Nano-sized Superlattice Clusters Created by Oxygen Ordering in Mechanically Alloyed Fe Alloys
NASA Astrophysics Data System (ADS)
Hu, Yong-Jie; Li, Jing; Darling, Kristopher A.; Wang, William Y.; Vanleeuwen, Brian K.; Liu, Xuan L.; Kecskes, Laszlo J.; Dickey, Elizabeth C.; Liu, Zi-Kui
2015-07-01
Creating and maintaining precipitates coherent with the host matrix, under service conditions is one of the most effective approaches for successful development of alloys for high temperature applications; prominent examples include Ni- and Co-based superalloys and Al alloys. While ferritic alloys are among the most important structural engineering alloys in our society, no reliable coherent precipitates stable at high temperatures have been found for these alloys. Here we report discovery of a new, nano-sized superlattice (NSS) phase in ball-milled Fe alloys, which maintains coherency with the BCC matrix up to at least 913 °C. Different from other precipitates in ferritic alloys, this NSS phase is created by oxygen-ordering in the BCC Fe matrix. It is proposed that this phase has a chemistry of Fe3O and a D03 crystal structure and becomes more stable with the addition of Zr. These nano-sized coherent precipitates effectively double the strength of the BCC matrix above that provided by grain size reduction alone. This discovery provides a new opportunity for developing high-strength ferritic alloys for high temperature applications.
Effects of size and moisture of rhizome on initial invasiveness ability of giant reed.
Santín-Montanyá, M I; Jimenéz, J; Vilán, X M; Ocaña, L
2014-01-01
Studies were conducted under controlled conditions to determine growth and reproductive capabilities of Arundo donax L. (giant reed), a riparian invasive perennial plant that has spread widely. Greenhouse experiments were conducted to determine the influence of rhizome size and moisture content in the early invasiveness ability of giant reed. We tested different sizes of rhizomes: rhizome size of 1 cm, 3 cm, 5 cm and shredded rhizome. (fragments < 1 cm). These rhizomes were observed at 7, 14, 21, 28 and 35 days after planting (DAP). To test the effect of moisture content we used fresh rhizome fragments; rhizomes with moderate dehydration (50%); rhizomes with high dehydration (over 70%) with 48 hours of rehydration and rhizomes with high dehydration (70-90%). The rhizomes monitored for moisture content and biomass increase were between 3 and 5 cm, and were observed 60 DAP. The initial size of rhizomes affected the level of sprouting. Rhizomes with low moisture content (due to dehydration) showed high increase in biomass compared with the rhizomes that had not been treated or had been dehydrated and then rehydrated. Our results indicated that size of rhizomes is related to regrowth and low moisture (dehydration) content can be overcome by this species. This could be linked to high rates of colonization and early establishment ability of this species even after mechanical treatment of rhizomes, in riparian environments.
The Effect of Family Size on Spanish Simple and Complex Words
ERIC Educational Resources Information Center
Lazaro, Miguel; Sainz, Javier S.
2012-01-01
This study presents the results of three experiments in which the Family Size (FS) effect is explored. The first experiment is carried out with no prime on simple words. The second and third experiments are carried out with morphological priming on complex words. In the first experiment a facilitatory effect of FS is observed: high FS targets…
ERIC Educational Resources Information Center
Ross, Sarah Gwen
2012-01-01
Response to intervention (RTI) is increasingly being used in educational settings to make high-stakes, special education decisions. Because of this, the accurate use and analysis of single-case designs to monitor intervention effectiveness has become important to the RTI process. Effect size methods for single-case designs provide a useful way to…
Effects of CNT size on the desalination performance of an outer-wall CNT slit membrane.
Ang, Elisa Y M; Ng, Teng Yong; Yeo, Jingjie; Lin, Rongming; Liu, Zishun; Geethalakshmi, K R
2018-05-23
We investigate the effect of varying carbon nanotube (CNT) size on the desalination performance through slit confinements formed by horizontally aligned CNTs stacked on top of one another. By increasing the CNT size, the results obtained from this study indicate a corresponding increase in the water flow rate, accompanied by a slight reduction in salt rejection performance. However, due to the increase in the membrane area with CNT size, the permeability performance is observed to reduce as the CNT size increases. Nevertheless, a comparison with nanoporous 2D membranes shows that the permeability of an outer-wall CNT slit membrane remains significantly higher for all CNT sizes considered. This indicates that precise dimensions of the CNTs are not highly crucial for achieving ultra-high permeability performance in such membranes, as long as the critical slit size is maintained. In-depth analytical studies were further conducted to correlate the influence of curvature effects due to increasing CNT size on the flow characteristcis of the outer-wall CNT membrane. These include the analysis of the measured velocity profiles, oxygen density mapping, potential of mean force profile and friction profile. The present numerical results demonstrate the superb desalination performance of the outer-wall CNT slit membrane, regardless of the size of CNTs used. In addition, an extensive analysis conducted provides detailed characterization of how the curvature affects flow across outer-wall CNTs, and can be used to guide future design and fabrication for experimental testing.
Size effect in thermoelectric materials
NASA Astrophysics Data System (ADS)
Mao, Jun; Liu, Zihang; Ren, Zhifeng
2016-12-01
Thermoelectric applications have attracted increasing interest recently due to its capability of converting waste heat into electricity without hazardous emissions. Materials with enhanced thermoelectric performance have been reported in recent two decades. The revival of research for thermoelectric materials began in early 1990s when the size effect is considered. Low-dimensional materials with exceptionally high thermoelectric figure of merit (ZT) have been presented, which broke the limit of ZT around unity. The idea of size effect in thermoelectric materials even inspired the later nanostructuring and band engineering strategies, which effectively enhanced the thermoelectric performance of bulk materials. In this overview, the size effect in low-dimensional thermoelectric materials is reviewed. We first discuss the quantum confinement effect on carriers, including the enhancement of electronic density of states, semimetal to semiconductor transition and carrier pocket engineering. Then, the effect of assumptions on theoretical calculations is presented. Finally, the effect of phonon confinement and interface scattering on lattice thermal conductivity is discussed.
NASA Astrophysics Data System (ADS)
Cho, Hyoup Je; Choi, Gyeong Man
A Ni-YSZ (Y 2O 3-stabilized ZrO 2) composite is commonly used as a solid oxide fuel cell anode. The composite powders are usually synthesized by mixing NiO and YSZ powders. The particle size and distribution of the two phases generally determine the performance of the anode. Two different milling methods are used to prepare the composite anode powders, namely, high-energy milling and ball-milling that reduce the particle size. The particle size and the Ni distribution of the two composite powders are examined. The effects of milling on the performance are evaluated by using both an electrolyte-supported, symmetric Ni-YSZ/YSZ/Ni-YSZ cell and an anode-supported, asymmetric cell. The performance is examined at 800 °C by impedance analysis and current-voltage measurements. Pellets made by using high-energy milled NiO-YSZ powders have much smaller particle sizes and a more uniform distribution of Ni particles than pellets made from ball-milled powder, and thus the polarization resistance of the electrode is also smaller. The maximum power density of the anode-supported cell prepared by using the high-energy milled powder is ∼850 mW cm -2 at 800 °C compared with ∼500 mW cm -2 for the cell with ball-milled powder. Thus, high-energy milling is found to be more effective in reducing particle size and obtaining a uniform distribution of Ni particles.
Social Cognition in Individuals at Ultra-High Risk for Psychosis: A Meta-Analysis
van Donkersgoed, R. J. M.; Wunderink, L.; Nieboer, R.; Aleman, A.; Pijnenborg, G. H. M.
2015-01-01
Objective Treatment in the ultra-high risk stage for a psychotic episode is critical to the course of symptoms. Markers for the development of psychosis have been studied, to optimize the detection of people at risk of psychosis. One possible marker for the transition to psychosis is social cognition. To estimate effect sizes for social cognition based on a quantitative integration of the published evidence, we conducted a meta-analysis of social cognitive performance in people at ultra high risk (UHR). Methods A literature search (1970-July 2015) was performed in PubMed, PsychINFO, Medline, Embase, and ISI Web of Science, using the search terms ‘social cognition’, ‘theory of mind’, ‘emotion recognition’, ‘attributional style’, ‘social knowledge’, ‘social perception’, ‘empathy’, ‘at risk mental state’, ‘clinical high risk’, ‘psychosis prodrome’, and ‘ultra high risk’. The pooled effect size (Cohen’s D) and the effect sizes for each domain of social cognition were calculated. A random effects model with 95% confidence intervals was used. Results Seventeen studies were included in the analysis. The overall significant effect was of medium magnitude (d = 0.52, 95% Cl = 0.38–0.65). No moderator effects were found for age, gender and sample size. Sub-analyses demonstrated that individuals in the UHR phase show significant moderate deficits in affect recognition and affect discrimination in faces as well as in voices and in verbal Theory of Mind (TOM). Due to an insufficient amount of studies, we did not calculate an effect size for attributional bias and social perception/ knowledge. A majority of studies did not find a correlation between social cognition deficits and transition to psychosis, which may suggest that social cognition in general is not a useful marker for the development of psychosis. However some studies suggest the possible predictive value of verbal TOM and the recognition of specific emotions in faces for the transition into psychosis. More research is needed on these subjects. Conclusion The published literature indicates consistent general impairments in social cognition in people in the UHR phase, but only very specific impairments seem to predict transition to psychosis. PMID:26510175
Electronic transport with dielectric confinement in degenerate InN nanowires.
Blömers, Ch; Lu, J G; Huang, L; Witte, C; Grützmacher, D; Lüth, H; Schäpers, Th
2012-06-13
In this Letter, we present the size effects on charge conduction in InN nanowires by comprehensive transport studies supported by theoretical analysis. A consistent model for highly degenerate narrow gap semiconductor nanowires is developed. In contrast to common knowledge of InN, there is no evidence of an enhanced surface conduction, however, high intrinsic doping exists. Furthermore, the room-temperature resistivity exhibits a strong increase when the lateral size becomes smaller than 80 nm and the temperature dependence changes from metallic to semiconductor-like. This effect is modeled by donor deactivation due to dielectric confinement, yielding a shift of the donor band to higher ionization energies as the size shrinks.
2015-01-01
Altitudinal clines in body size can result from the effects of natural and sexual selection on growth rates and developing times in seasonal environments. Short growing and reproductive seasons constrain the body size that adults can attain and their reproductive success. Little is known about the effects of altitudinal climatic variation on the diversification of Neotropical insects. In central Mexico, in addition to altitude, highly heterogeneous topography generates diverse climates that can occur even at the same latitude. Altitudinal variation and heterogeneous topography open an opportunity to test the relative impact of climatic variation on body size adaptations. In this study, we investigated the relationship between altitudinal climatic variation and body size, and the divergence rates of sexual size dimorphism (SSD) in Neotropical grasshoppers of the genus Sphenarium using a phylogenetic comparative approach. In order to distinguish the relative impact of natural and sexual selection on the diversification of the group, we also tracked the altitudinal distribution of the species and trends of both body size and SSD on the phylogeny of Sphenarium. The correlative evidence suggests no relationship between altitude and body size. However, larger species were associated with places having a warmer winter season in which the temporal window for development and reproduction can be longer. Nonetheless, the largest species were also associated with highly seasonal environments. Moreover, large body size and high levels of SSD have evolved independently several times throughout the history of the group and male body size has experienced a greater evolutionary divergence than females. These lines of evidence suggest that natural selection, associated with seasonality and sexual selection, on maturation time and body size could have enhanced the diversification of this insect group. PMID:26684616
ERIC Educational Resources Information Center
Faraone, Stephen V.
2012-01-01
Objective: An earlier meta-analysis of pediatric clinical trials indicated that lisdexamfetamine dimesylate (LDX) had a greater effect size than other stimulant medications. This work tested the hypothesis that the apparent increased efficacy was artifactual. Method: The authors assessed two potential artifacts: an unusually high precision of…
NASA Astrophysics Data System (ADS)
Goyal, M.; Chakravarty, A.; Atrey, M. D.
2017-02-01
Performance of modern helium refrigeration/ liquefaction systems depends significantly on the effectiveness of heat exchangers. Generally, compact plate fin heat exchangers (PFHE) having very high effectiveness (>0.95) are used in such systems. Apart from basic fluid film resistances, various secondary parameters influence the sizing/ rating of these heat exchangers. In the present paper, sizing calculations are performed, using in-house developed numerical models/ codes, for a set of high effectiveness PFHE for a modified Claude cycle based helium liquefier/ refrigerator operating in the refrigeration mode without liquid nitrogen (LN2) pre-cooling. The combined effects of secondary parameters like axial heat conduction through the heat exchanger metal matrix, parasitic heat in-leak from surroundings and variation in the fluid/ metal properties are taken care of in the sizing calculation. Numerical studies are carried out to predict the off-design performance of the PFHEs in the refrigeration mode with LN2 pre-cooling. Iterative process cycle calculations are also carried out to obtain the inlet/ exit state points of the heat exchangers.
Effective grain size and charpy impact properties of high-toughness X70 pipeline steels
NASA Astrophysics Data System (ADS)
Hwang, Byoungchul; Kim, Yang Gon; Lee, Sunghak; Kim, Young Min; Kim, Nack J.; Yoo, Jang Yong
2005-08-01
The correlation of microstructure and Charpy V-notch (CVN) impact properties of a high-toughness API X70 pipeline steel was investigated in this study. Six kinds of steel were fabricated by varying the hot-rolling conditions, and their microstructures, effective grain sizes, and CVN impact properties were analyzed. The CVN impact test results indicated that the steels rolled in the single-phase region had higher upper-shelf energies (USEs) and lower energy-transition temperatures (ETTs) than the steels rolled in the two-phase region because their microstructures were composed of acicular ferrite (AF) and fine polygonal ferrite (PF). The decreased ETT in the steels rolled in the single-phase region could be explained by the decrease in the overall effective grain size due to the presence of AF having a smaller effective grain size. On the other hand, the absorbed energy of the steels rolled in the two-phase region was considerably lower because a large amount of dislocations were generated inside PFs during rolling. It was further decreased when coarse martensite or cementite was formed during the cooling process.
Nanoscale effects of silica particle supports on the formation and properties of TiO2 nanocatalysts
NASA Astrophysics Data System (ADS)
Li, Aize; Jin, Yuhui; Muggli, Darrin; Pierce, David T.; Aranwela, Hemantha; Marasinghe, Gaya K.; Knutson, Theodore; Brockman, Greg; Zhao, Julia Xiaojun
2013-06-01
Small TiO2 crystals in the anatase phase are in high demand as photocatalysts. Stable TiO2 crystals in the anatase phase were obtained using a silica nanoparticle as a support. The focus of this study was to investigate the nanoscale effect of the silica support on the formation and properties of small anatase crystals. The experiments were carried out using powder X-ray diffraction, differential thermal analysis, transmission electron microscopy, and energy dispersion spectroscopy. The results showed that the size of the silica support played a crucial role in crystallization of TiO2 and regulation of TiO2 properties, including phase transition, crystal size, thermodynamic property and catalytic activity. A nanoscale curvature model of the spherical silica support was proposed to explain these size effects. Finally, the developed TiO2 catalysts were applied to the oxidation of methanol using a high-throughput photochemical reactor. The size effect of the silica supports on the TiO2 catalytic efficiency was demonstrated using this system.
Size effects of pore density and solute size on water osmosis through nanoporous membrane.
Zhao, Kuiwen; Wu, Huiying
2012-11-15
Understanding the behavior of osmotic transport across nanoporous membranes at molecular level is critical to their design and applications, and it is also beneficial to the comprehension of the mechanism of biological transmembrane transport processes. Pore density is an important parameter for nanoporous membranes. To better understand the influence of pore density on osmotic transport, we have performed systematic molecular dynamics simulations on water osmosis across nanoporous membranes with different pore densities (i.e., number of pores per unit area of membrane). The simulation results reveal that significant size effects occur when the pore density is so high that the center-to-center distance between neighboring nanopores is comparable to the solute size. The size effects are independent of the pore diameter and solute concentration. A simple quantitative correlation between pore density, solute size, and osmotic flux has been established. The results are excellently consistent with the theoretical predictions. It is also shown that solute hydration plays an important role in real osmotic processes. Solute hydration strengthens the size effects of pore density on osmotic processes due to the enlarged effective solute size induced by hydration. The influence of pore density, solute size, and solute hydration on water osmosis through nanoporous membranes can be introduced to eliminate the deviations of real osmotic processes from ideal behavior.
Ali, Arshad; Mattsson, Eskil
2017-11-15
The biodiversity - aboveground biomass relationship has been intensively studied in recent decades. However, no consensus has been arrived to consider the interplay of species diversity, and intraspecific and interspecific tree size variation in driving aboveground biomass, after accounting for the effects of plot size heterogeneity, soil fertility and stand quality in natural forest including agroforests. We tested the full, partial and no mediations effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass by employing structural equation models (SEMs) using data from 45 homegarden agroforestry systems in Sri Lanka. The full mediation effect of either species diversity or intraspecific and interspecific tree size variation was rejected, while the partial and no mediation effects were accepted. In the no mediation SEM, homegarden size had the strongest negative direct effect (β=-0.49) on aboveground biomass (R 2 =0.65), followed by strong positive direct effect of intraspecific tree size variation (β=0.32), species diversity (β=0.29) and interspecific tree size variation (β=0.28). Soil fertility had a negative direct effect on interspecific tree size variation (β=-0.31). Stand quality had a significant positive total effect on aboveground biomass (β=0.28), but homegarden size had a significant negative total effect (β=-0.62), while soil fertility had a non-significant total effect on aboveground biomass. Similar to the no mediation SEM, the partial mediation SEMs had explained almost similar variation in aboveground biomass because species diversity, and intraspecific and interspecific tree size variation had non-significant indirect effects on aboveground biomass via each other. Our results strongly suggest that a multilayered tree canopy structure, due to high intraspecific and interspecific tree size variation, increases light capture and efficient utilization of resources among component species, and hence, support the niche complementarity mechanism via plant-plant interactions. Copyright © 2017 Elsevier B.V. All rights reserved.
Lindholm, Anna K; Hunt, John; Brooks, Robert
2006-12-22
Maternal effects are an important source of adaptive variation, but little is known about how they vary throughout ontogeny. We estimate the contribution of maternal effects, sire genetic and environmental variation to offspring body size from birth until 1 year of age in the live-bearing fish Poecilia parae. In both the sexes, maternal effects on body size were initially high in juveniles, and then declined to zero at sexual maturity. In sons, this was accompanied by a sharp rise in sire genetic variance, consistent with the expression of Y-linked loci affecting male size. In daughters, all variance components decreased with time, consistent with compensatory growth. There were significant negative among-dam correlations between early body size and the timing of sexual maturity in both sons and daughters. However, there was no relationship between early life maternal effects and adult longevity, suggesting that maternal effects, although important early in life, may not always influence late life-history traits.
Pérez-San-Gregorio, M Á; Martín-Rodríguez, A; Borda-Mas, M; Avargues-Navarro, M L; Pérez-Bernal, J; Gómez-Bravo, M Á
2018-03-01
Analyze the influence of 2 variables (post-traumatic growth and time since liver transplantation) on coping strategies used by the transplant recipient's family members. In all, 218 family members who were their main caregivers of liver transplant recipients were selected. They were evaluated using the Posttraumatic Growth Inventory and the Brief COPE. A 3 × 3 factorial analysis of variance was used to analyze the influence that post-traumatic growth level (low, medium, and high) and time since transplantation (≤3.5 years, >3.5 to ≤9 years, and >9 years) exerted on caregiver coping strategies. No interactive effects between the two factors in the study were found. The only significant main effect was the influence of the post-traumatic growth factor on the following variables: instrumental support (P = .007), emotional support (P = .005), self-distraction (P = .006), positive reframing (P = .000), acceptance (P = .013), and religion (P = <.001). According to the most relevant effect sizes, low post-traumatic growth compared with medium growth was associated with less use of self-distraction (P = .006, d = -0.52, medium effect size), positive reframing (P = .001, d = -0.62, medium effect size), and religion (P = .000, d = -0.66, medium effect size), and in comparison with high growth, it was associated with less use of positive reframing (P = .002, d = -0.56, medium effect size) and religion (P = .000, d = 0.87, large effect size). Regardless of the time elapsed since the stressful life event (liver transplantation), family members with low post-traumatic growth usually use fewer coping strategies involving a positive, transcendent vision to deal with transplantation. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Daniels, Lindsey; Scott, Matthew; Mišković, Z. L.
2018-06-01
We analyze the effects of dielectric decrement and finite ion size in an aqueous electrolyte on the capacitance of a graphene electrode, and make comparisons with the effects of dielectric saturation combined with finite ion size. We first derive conditions for the cross-over from a camel-shaped to a bell-shaped capacitance of the diffuse layer. We show next that the total capacitance is dominated by a V-shaped quantum capacitance of graphene at low potentials. A broad peak develops in the total capacitance at high potentials, which is sensitive to the ion size with dielectric saturation, but is stable with dielectric decrement.
NASA Astrophysics Data System (ADS)
Kennett, Shane C.
Three low-carbon ASTM A514 microalloyed steels were used to assess the effects of austenite conditioning on the microstructure and mechanical properties of martensite. A range of prior austenite grain sizes with and without thermomechanical processing were produced in a Gleeble RTM 3500 and direct-quenched. Samples in the as-quenched, low temperature tempered, and high temperature tempered conditions were studied. The microstructure was characterized with scanning electron microscopy, electron backscattered diffraction, transmission electron microscopy, and x-ray diffraction. The uniaxial tensile properties and Charpy V-notch properties were measured and compared with the microstructural features (prior austenite grain size, packet size, block size, lath boundaries, and dislocation density). For the equiaxed prior austenite grain conditions, prior austenite grain size refinement decreases the packet size, decreases the block size, and increases the dislocation density of as-quenched martensite. However, after high temperature tempering the dislocation density decreases with prior austenite grain size refinement. Thermomechanical processing increases the low angle substructure, increases the dislocation density, and decreases the block size of as-quenched martensite. The dislocation density increase and block size refinement is sensitive to the austenite grain size before ausforming. The larger prior austenite grain size conditions have a larger increase in dislocation density, but the small prior austenite grain size conditions have the largest refinement in block size. Additionally, for the large prior austenite grain size conditions, the packet size increases with thermomechanical processing. The strength of martensite is often related to an effective grain size or carbon concentration. For the current work, it was concluded that the strength of martensite is primarily controlled by the dislocation density and dislocation substructure; which is related to a grain size and carbon concentration. In the microyielding regime, the strength and work hardening is related to the motion of unpinned dislocation segments. However, with tensile strain, a dislocation cell structure is developed and the flow strength (greater than 1% offset) is controlled by the dislocation density following a Taylor hardening model, thereby ruling out any grain size effects on the flow strength. Additionally, it is proposed that lath boundaries contribute to strength. It is shown that the strength differences associated with thermomechanically processed steels can be fully accounted for by dislocation density differences and the effect of lath boundaries. The low temperature ductile to brittle transition of martensite is controlled by the martensite block size, packet size, and prior austenite grain size. However, the effect of block size is likely small in comparison. The ductile to brittle transition temperature is best correlated to the inverse square root of the martensite packet size because large crack deflections are typical at packet boundaries.
Repeated Habitat Disturbances by Fire Decrease Local Effective Population Size
Ragsdale, Alexandria K.; McCoy, Earl D.; Mushinsky, Henry R.
2016-01-01
Effective population size is a fundamental parameter in population genetics, and factors that alter effective population size will shape the genetic characteristics of populations. Habitat disturbance may have a large effect on genetic characteristics of populations by influencing immigration and gene flow, particularly in fragmented habitats. We used the Florida Sand Skink (Plestiodon reynoldsi) to investigate the effect of fire-based habitat disturbances on the effective population size in the highly threatened, severely fragmented, and fire dependent Florida scrub habitat. We screened 7 microsatellite loci in 604 individuals collected from 12 locations at Archbold Biological Station. Archbold Biological Station has an active fire management plan and detailed records of fires dating to 1967. Our objective was to determine how the timing, number, and intervals between fires affect effective population size, focusing on multiple fires in the same location. Effective population size was higher in areas that had not been burned for more than 10 years and decreased with number of fires and shorter time between fires. A similar pattern was observed in abundance: increasing abundance with time-since-fire and decreasing abundance with number of fires. The ratio of effective population size to census size was higher at sites with more recent fires and tended to decrease with time-since-last-fire. These results suggest that habitat disturbances, such as fire, may have a large effect in the genetic characteristics of local populations and that Florida Sand Skinks are well adapted to the natural fire dynamics required to maintain Florida scrub. PMID:26976940
ERIC Educational Resources Information Center
Lindsay, Paul
1984-01-01
This study evaluates a model predicting that school size affects student participation in extracurricular activities and that these leisure interests will continue in young adult life. High school social participation, it is hypothesized, also is influenced by curriculum track placement and academic performance, which are affected by student…
Experimental investigation of optimum beam size for FSO uplink
NASA Astrophysics Data System (ADS)
Kaushal, Hemani; Kaddoum, Georges; Jain, Virander Kumar; Kar, Subrat
2017-10-01
In this paper, the effect of transmitter beam size on the performance of free space optical (FSO) communication has been determined experimentally. Irradiance profile for varying turbulence strength is obtained using optical turbulence generating (OTG) chamber inside laboratory environment. Based on the results, an optimum beam size is investigated using the semi-analytical method. Moreover, the combined effects of atmospheric scintillation and beam wander induced pointing errors are considered in order to determine the optimum beam size that minimizes the bit error rate (BER) of the system for a fixed transmitter power and link length. The results show that the optimum beam size for FSO uplink depends upon Fried parameter and outer scale of the turbulence. Further, it is observed that the optimum beam size increases with the increase in zenith angle but has negligible effect with the increase in fade threshold level at low turbulence levels and has a marginal effect at high turbulence levels. Finally, the obtained outcome is useful for FSO system design and BER performance analysis.
Guay, Valérie; Lamarche, Benoît; Charest, Amélie; Tremblay, André J; Couture, Patrick
2012-01-01
High-fat, low-carbohydrate diets have been shown to raise plasma cholesterol levels, an effect associated with the formation of large low-density lipoprotein (LDL) particles. However, the impact of dietary intervention on time-course changes in LDL particle size has not been investigated. To test whether a short-term dietary intervention affects LDL particle size, we conducted a randomized, double-blind, crossover study using an intensive dietary modification in 12 nonobese healthy men with normal plasma lipid profile. Participants were subjected to 2 isocaloric 3-day diets: high-fat diet (37% energy from fat and 50% from carbohydrates) and low-fat diet (25% energy from fat and 62% from carbohydrates). Plasma lipid levels and LDL particle size were assessed on fasting blood samples after 3 days of feeding on each diet. The LDL particles were characterized by polyacrylamide gradient gel electrophoresis. Compared with the low-fat diet, plasma cholesterol, LDL cholesterol, and high-density lipoprotein cholesterol were significantly increased (4.45 vs 4.78 mmol/L, P = .04; 2.48 vs 2.90 mmol/L, P = .005; and 1.29 vs 1.41 mmol/L, P = .005, respectively) following the 3-day high-fat diet. Plasma triglycerides and fasting apolipoprotein B-48 levels were significantly decreased after the high-fat diet compared with the low-fat diet (1.48 vs 1.01 mmol/L, P = .0003 and 9.6 vs 5.5 mg/L, P = .008, respectively). The high-fat diet was also associated with a significant increase in LDL particle size (255.0 vs 255.9 Å;P = .01) and a significant decrease in the proportion of small LDL particle (<255.0 Å) (50.7% vs 44.6%, P = .01). As compared with a low-fat diet, the cholesterol-raising effect of a high-fat diet is associated with the formation of large LDL particles after only 3 days of feeding. Copyright © 2012 Elsevier Inc. All rights reserved.
Effectiveness of treatments for infantile colic: systematic review.
Lucassen, P L; Assendelft, W J; Gubbels, J W; van Eijk, J T; van Geldrop, W J; Neven, A K
1998-05-23
To evaluate the effectiveness of diets, drug treatment, and behavioural interventions on infantile colic in trials with crying or the presence of colic as the primary outcome measure. Controlled clinical trials identified by a highly sensitive search strategy in Medline (1966-96), Embase (1986-95), and the Cochrane Controlled Trials Register, in combination with reference checking for further relevant publications. Keywords were crying and colic. Two independent assessors selected controlled trials with interventions lasting at least 3 days that included infants younger than 6 months who cried excessively. Methodological quality was assessed by two assessors independently with a quality assessment scale (range 0-5). Effect sizes were calculated as percentage success. Effect sizes of trials using identical interventions were pooled using a random effects model. 27 controlled trials were identified. Elimination of cows' milk protein was effective when substituted by hypoallergenic formula milks (effect size 0.22 (95% confidence interval 0.09 to 0.34)). The effectiveness of substitution by soy formula milks was unclear when only trials of good methodological quality were considered. The benefit of eliminating cows' milk protein was not restricted to highly selected populations. Dicyclomine was effective (effect size 0.46 (0.33 to 0.60)), but serious side effects have been reported. The advice to reduce stimulation was beneficial (effect size 0.48 (0.23 to 0.74)), whereas the advice to increase carrying and holding seemed not to reduce crying. No benefit was shown for simethicone. Uncertainty remained about the effectiveness of low lactose formula milks. Infantile colic should preferably be treated by advising carers to reduce stimulation and with a one week trial of a hypoallergenic formula milk.
Johnson, K E; McMorris, B J; Raynor, L A; Monsen, K A
2013-01-01
The Omaha System is a standardized interface terminology that is used extensively by public health nurses in community settings to document interventions and client outcomes. Researchers using Omaha System data to analyze the effectiveness of interventions have typically calculated p-values to determine whether significant client changes occurred between admission and discharge. However, p-values are highly dependent on sample size, making it difficult to distinguish statistically significant changes from clinically meaningful changes. Effect sizes can help identify practical differences but have not yet been applied to Omaha System data. We compared p-values and effect sizes (Cohen's d) for mean differences between admission and discharge for 13 client problems documented in the electronic health records of 1,016 young low-income parents. Client problems were documented anywhere from 6 (Health Care Supervision) to 906 (Caretaking/parenting) times. On a scale from 1 to 5, the mean change needed to yield a large effect size (Cohen's d ≥ 0.80) was approximately 0.60 (range = 0.50 - 1.03) regardless of p-value or sample size (i.e., the number of times a client problem was documented in the electronic health record). Researchers using the Omaha System should report effect sizes to help readers determine which differences are practical and meaningful. Such disclosures will allow for increased recognition of effective interventions.
Wolstencroft, J; Robinson, L; Srinivasan, R; Kerry, E; Mandy, W; Skuse, D
2018-07-01
Group social skills interventions (GSSIs) are a commonly offered treatment for children with high functioning ASD. We critically evaluated GSSI randomised controlled trials for those aged 6-25 years. Our meta-analysis of outcomes emphasised internal validity, thus was restricted to trials that used the parent-report social responsiveness scale (SRS) or the social skills rating system (SSRS). Large positive effect sizes were found for the SRS total score, plus the social communication and restricted interests and repetitive behaviours subscales. The SSRS social skills subscale improved with moderate effect size. Moderator analysis of the SRS showed that GSSIs that include parent-groups, and are of greater duration or intensity, obtained larger effect sizes. We recommend future trials distinguish gains in children's social knowledge from social performance.
Optical characterization of high speed microscanners based on static slit profiling method
NASA Astrophysics Data System (ADS)
Alaa Elhady, A.; Sabry, Yasser M.; Khalil, Diaa
2017-01-01
Optical characterization of high-speed microscanners is a challenging task that usually requires special high speed, extremely expensive camera systems. This paper presents a novel simple method to characterize the scanned beam spot profile and size in high-speed optical scanners under operation. It allows measuring the beam profile and the spot sizes at different scanning angles. The method is analyzed theoretically and applied experimentally on the characterization of a Micro Electro Mechanical MEMS scanner operating at 2.6 kHz. The variation of the spot size versus the scanning angle, up to ±15°, is extracted and the dynamic bending curvature effect of the micromirror is predicted.
Size effects and electron microscopy of thin metal films. M.S. Thesis
NASA Technical Reports Server (NTRS)
Hernandez, J. D.
1978-01-01
All films were deposited by resistive heated evaporation in an oil diffusion pumped vacuum system (ultimate approx. equal to 0.0000001 torr). The growth from nuclei to a continuous film is highly dependent on the deposition parameters, evaporation rate as well as substrate material and substrate temperature. The growth stages of a film and the dependence of grain size on various deposition and annealing parameters are shown. Resistivity measurements were taken on thin films to observe size effects.
Effects of Aperture Size on Q factor and Shielding Effectiveness of a Cubic Resonator
NASA Astrophysics Data System (ADS)
Parr, Stefan; Chromy, Stephan; Dickmann, Stefan; Schaarschmidt, Martin
2017-09-01
The EMC properties of a cubic metallic shield are highly affected by its resonances. At the resonant frequencies, the shielding effectiveness (SE) collapses, which results in high field strengths inside the cavity. This can cause failure or even breakdown of electronic devices inside the shield. The resonant behaviour is mainly determined by the quality or Q factor of the shield. In this paper, the effects of the aperture size on the Q factor and the SE of an electrically large, cubic shield are analysed. At first, a method is developed in order to determine the Q factor based on the resonance behaviour of the shield in time domain. Only the first resonance of the shield is considered therefore. The results are evaluated for different aperture diameters and compared with theory for the Q factor. The dominant coupling mechanism of electromagnetic energy into the shield is thus identified. Then the effect of aperture size on the SE is analysed. The excitation of resonances is very probable if the interfering signal is an ultrawideband (UWB) pulse, which constitutes a typical intentional electromagnetic interference (IEMI) scenario. Therefore, the relation between aperture size and SE is analysed using the theory of the transient SE for a broadband signal with a constant spectral density distribution. The results show, that a worst case
aperture size exists, where the SE has its minimum.
Yuan, Baohong; Pei, Yanbo; Kandukuri, Jayanth
2013-01-01
Our recently developed ultrasound-switchable fluorescence (USF) imaging technique showed that it was feasible to conduct high-resolution fluorescence imaging in a centimeter-deep turbid medium. Because the spatial resolution of this technique highly depends on the ultrasound-induced temperature focal size (UTFS), minimization of UTFS becomes important for further improving the spatial resolution USF technique. In this study, we found that UTFS can be significantly reduced below the diffraction-limited acoustic intensity focal size via nonlinear acoustic effects and thermal confinement by appropriately controlling ultrasound power and exposure time, which can be potentially used for deep-tissue high-resolution imaging. PMID:23479498
Statistical power analysis in wildlife research
Steidl, R.J.; Hayes, J.P.
1997-01-01
Statistical power analysis can be used to increase the efficiency of research efforts and to clarify research results. Power analysis is most valuable in the design or planning phases of research efforts. Such prospective (a priori) power analyses can be used to guide research design and to estimate the number of samples necessary to achieve a high probability of detecting biologically significant effects. Retrospective (a posteriori) power analysis has been advocated as a method to increase information about hypothesis tests that were not rejected. However, estimating power for tests of null hypotheses that were not rejected with the effect size observed in the study is incorrect; these power estimates will always be a??0.50 when bias adjusted and have no relation to true power. Therefore, retrospective power estimates based on the observed effect size for hypothesis tests that were not rejected are misleading; retrospective power estimates are only meaningful when based on effect sizes other than the observed effect size, such as those effect sizes hypothesized to be biologically significant. Retrospective power analysis can be used effectively to estimate the number of samples or effect size that would have been necessary for a completed study to have rejected a specific null hypothesis. Simply presenting confidence intervals can provide additional information about null hypotheses that were not rejected, including information about the size of the true effect and whether or not there is adequate evidence to 'accept' a null hypothesis as true. We suggest that (1) statistical power analyses be routinely incorporated into research planning efforts to increase their efficiency, (2) confidence intervals be used in lieu of retrospective power analyses for null hypotheses that were not rejected to assess the likely size of the true effect, (3) minimum biologically significant effect sizes be used for all power analyses, and (4) if retrospective power estimates are to be reported, then the I?-level, effect sizes, and sample sizes used in calculations must also be reported.
Category Size Effects Revisited: Frequency and Masked Priming Effects in Semantic Categorization
ERIC Educational Resources Information Center
Forster, Kenneth I.
2004-01-01
Previous work indicates that semantic categorization decisions for nonexemplars (e.g., deciding that TURBAN is not an animal name) are faster for high-frequency words than low-frequency words. However, there is evidence that this result might depend on category size. When narrow categories are used (e.g., Months, Numbers), there is no frequency…
De Visscher, Alice; Vogel, Stephan E; Reishofer, Gernot; Hassler, Eva; Koschutnig, Karl; De Smedt, Bert; Grabner, Roland H
2018-05-15
In the development of math ability, a large variability of performance in solving simple arithmetic problems is observed and has not found a compelling explanation yet. One robust effect in simple multiplication facts is the problem size effect, indicating better performance for small problems compared to large ones. Recently, behavioral studies brought to light another effect in multiplication facts, the interference effect. That is, high interfering problems (receiving more proactive interference from previously learned problems) are more difficult to retrieve than low interfering problems (in terms of physical feature overlap, namely the digits, De Visscher and Noël, 2014). At the behavioral level, the sensitivity to the interference effect is shown to explain individual differences in the performance of solving multiplications in children as well as in adults. The aim of the present study was to investigate the individual differences in multiplication ability in relation to the neural interference effect and the neural problem size effect. To that end, we used a paradigm developed by De Visscher, Berens, et al. (2015) that contrasts the interference effect and the problem size effect in a multiplication verification task, during functional magnetic resonance imaging (fMRI) acquisition. Forty-two healthy adults, who showed high variability in an arithmetic fluency test, participated in our fMRI study. In order to control for the general reasoning level, the IQ was taken into account in the individual differences analyses. Our findings revealed a neural interference effect linked to individual differences in multiplication in the left inferior frontal gyrus, while controlling for the IQ. This interference effect in the left inferior frontal gyrus showed a negative relation with individual differences in arithmetic fluency, indicating a higher interference effect for low performers compared to high performers. This region is suggested in the literature to be involved in resolution of proactive interference. Besides, no correlation between the neural problem size effect and multiplication performance was found. This study supports the idea that the interference due to similarities/overlap of physical traits (the digits) is crucial in memorizing arithmetic facts and in determining individual differences in arithmetic. Copyright © 2018 Elsevier Inc. All rights reserved.
Effects of grain size on the properties of bulk nanocrystalline Co-Ni alloys
NASA Astrophysics Data System (ADS)
Qiao, Gui-Ying; Xiao, Fu-Ren
2017-08-01
Bulk nanocrystalline Co78Ni22 alloys with grain size ranging from 5 nm to 35 nm were prepared by high-speed jet electrodeposition (HSJED) and annealing. Microhardness and magnetic properties of these alloys were investigated by microhardness tester and vibrating sample magnetometer. Effects of grain size on these characteristics were also discussed. Results show that the microhardness of nanocrystalline Co78Ni22 alloys increases following a d -1/2-power law with decreasing grain size d. This phenomenon fits the Hall-Petch law when the grain size ranges from 5 nm to 35 nm. However, coercivity H c increases following a 1/d-power law with increasing grain size when the grain size ranges from 5 nm to 15.9 nm. Coercivity H c decreases again for grain sizes above 16.6 nm according to the d 6-power law.
ERIC Educational Resources Information Center
Graham, Evol
2009-01-01
By reducing class size we will close the achievement gap in public school education, caused by prior neglect especially since the civil rights era of the sixties. Additional, highly qualified and specialized teachers will more effectively manage a smaller class size and serve more individual student needs in the crucial early grades, where a solid…
Spatial characterization of Bessel-like beams for strong-field physics.
Summers, Adam M; Yu, Xiaoming; Wang, Xinya; Raoul, Maxime; Nelson, Josh; Todd, Daniel; Zigo, Stefan; Lei, Shuting; Trallero-Herrero, Carlos A
2017-02-06
We present a compact, simple design for the generation and tuning of both the spot size and effective focal length of Bessel-like beams. In particular, this setup provides an important tool for the use of Bessel-like beams with high-power, femtosecond laser systems. Using a shallow angle axicon in conjunction with a spherical lens, we show that it is possible to focus Bessel-like modes to comparable focal spot sizes to sharp axicons while maintaining a long effective focal length. The resulting focal profiles are characterized in detail using an accurate high dynamic range imaging technique. Quantitatively, we introduce a metric (R0.8) which defines the spot-size containing 80% of the total energy. Our setup overcomes the typical compromise between long working distances and small spot sizes. This is particularly relevant for strong-field physics where most experiments must operate in vacuum.
Effect of wire size on maxillary arch force/couple systems for a simulated high canine malocclusion.
Major, Paul W; Toogood, Roger W; Badawi, Hisham M; Carey, Jason P; Seru, Surbhi
2014-12-01
To better understand the effects of copper nickel titanium (CuNiTi) archwire size on bracket-archwire mechanics through the analysis of force/couple distributions along the maxillary arch. The hypothesis is that wire size is linearly related to the forces and moments produced along the arch. An Orthodontic Simulator was utilized to study a simplified high canine malocclusion. Force/couple distributions produced by passive and elastic ligation using two wire sizes (Damon 0.014 and 0.018 inch) measured with a sample size of 144. The distribution and variation in force/couple loading around the arch is a complicated function of wire size. The use of a thicker wire increases the force/couple magnitudes regardless of ligation method. Owing to the non-linear material behaviour of CuNiTi, this increase is less than would occur based on linear theory as would apply for stainless steel wires. The results demonstrate that an increase in wire size does not result in a proportional increase of applied force/moment. This discrepancy is explained in terms of the non-linear properties of CuNiTi wires. This non-proportional force response in relation to increased wire size warrants careful consideration when selecting wires in a clinical setting. © 2014 British Orthodontic Society.
Offspring size effects mediate competitive interactions in a colonial marine invertebrate.
Marshall, Dustin J; Cook, Carly N; Emlet, Richard B
2006-01-01
Over the past 30 years, numerous attempts to understand the relationship between offspring size and fitness have been made, and it has become clear that this critical relationship is strongly affected by environmental heterogeneity. For marine invertebrates, there has been a long-standing interest in the evolution of offspring size, but there have been very few empirical and theoretical examinations of post-metamorphic offspring size effects, and almost none have considered the effect of environmental heterogeneity on the offspring size/fitness relationship. We investigated the post-metamorphic effects of offspring size in the field for the colonial marine invertebrate Botrylloides violaceus. We also examined how the relationship between offspring size and performance was affected by three different types of intraspecific competition. We found strong and persistent effects of offspring size on survival and growth, but these effects depended on the level and type of intraspecific competition. Generally, competition strengthened the advantages of increasing maternal investment. Interestingly, we found that offspring size determined the outcome of competitive interaction: juveniles that had more maternal investment were more likely to encroach on another juvenile's territory. This suggests that mothers have the previously unrecognized potential to influence the outcome of competitive interactions in benthic marine invertebrates. We created a simple optimality model, which utilized the data generated from our field experiments, and found that increasing intraspecific competition resulted in an increase in predicted optimal size. Our results suggest that the relationship between offspring size and fitness is highly variable in the marine environment and strongly dependent on the density of conspecifics.
Effects of ambient oxygen and size-selective mortality on growth and maturation in guppies
Diaz Pauli, Beatriz; Kolding, Jeppe; Jeyakanth, Geetha
2017-01-01
Abstract Growth, onset of maturity and investment in reproduction are key traits for understanding variation in life-history strategies. Many environmental factors affect variation in these traits, but for fish, hypoxia and size-dependent mortality have become increasingly important because of human activities, such as increased nutrient enrichment (eutrophication), climate warming and selective fishing. Here, we study experimentally the effect of oxygen availability on maturation and growth in guppies (Poecilia reticulata) from two different selected lines, one subjected to positive and the other negative size-dependent fishing. This is the first study to assess the effects of both reduced ambient oxygen and size-dependent mortality in fish. We show that reduced ambient oxygen led to stunting, early maturation and high reproductive investment. Likewise, lineages that had been exposed to high mortality of larger-sized individuals displayed earlier maturation at smaller size, greater investment in reproduction and faster growth. These life-history changes were particularly evident for males. The widely reported trends towards earlier maturation in wild fish populations are often interpreted as resulting from size-selective fishing. Our results highlight that reduced ambient oxygen, which has received little experimental investigation to date, can lead to similar phenotypic changes. Thus, changes in ambient oxygen levels can be a confounding factor that occurs in parallel with fishing, complicating the causal interpretation of changes in life-history traits. We believe that better disentangling of the effects of these two extrinsic factors, which increasingly affect many freshwater and marine ecosystems, is important for making more informed management decisions. PMID:28361001
Weber's Illusion and Body Shape: Anisotropy of Tactile Size Perception on the Hand
ERIC Educational Resources Information Center
Longo, Matthew R.; Haggard, Patrick
2011-01-01
The perceived distance between touches on a single skin surface is larger on regions of high tactile sensitivity than those with lower acuity, an effect known as "Weber's illusion". This illusion suggests that tactile size perception involves a representation of the perceived size of body parts preserving characteristics of the somatosensory…
NASA Astrophysics Data System (ADS)
Liu, Yichi; Liu, Debao; You, Chen; Chen, Minfang
2015-09-01
The aim of this study was to investigate the effect of grain size on the corrosion resistance of pure magnesium developed for biomedical applications. High-purity magnesium samples with different grain size were prepared by the cooling rate-controlled solidification. Electrochemical and immersion tests were employed to measure the corrosion resistance of pure magnesium with different grain size. The electrochemical polarization curves indicated that the corrosion susceptibility increased as the grain size decrease. However, the electrochemical impedance spectroscopy (EIS) and immersion tests indicated that the corrosion resistance of pure magnesium is improved as the grain size decreases. The improvement in the corrosion resistance is attributed to refine grain can produce more uniform and density film on the surface of sample.
ZnFe2O4 nanoparticles dispersed in a highly porous silica aerogel matrix: a magnetic study.
Bullita, S; Casu, A; Casula, M F; Concas, G; Congiu, F; Corrias, A; Falqui, A; Loche, D; Marras, C
2014-03-14
We report the detailed structural characterization and magnetic investigation of nanocrystalline zinc ferrite nanoparticles supported on a silica aerogel porous matrix which differ in size (in the range 4-11 nm) and the inversion degree (from 0.4 to 0.2) as compared to bulk zinc ferrite which has a normal spinel structure. The samples were investigated by zero-field-cooling-field-cooling, thermo-remnant DC magnetization measurements, AC magnetization investigation and Mössbauer spectroscopy. The nanocomposites are superparamagnetic at room temperature; the temperature of the superparamagnetic transition in the samples decreases with the particle size and therefore it is mainly determined by the inversion degree rather than by the particle size, which would give an opposite effect on the blocking temperature. The contribution of particle interaction to the magnetic behavior of the nanocomposites decreases significantly in the sample with the largest particle size. The values of the anisotropy constant give evidence that the anisotropy constant decreases upon increasing the particle size of the samples. All these results clearly indicate that, even when dispersed with low concentration in a non-magnetic and highly porous and insulating matrix, the zinc ferrite nanoparticles show a magnetic behavior similar to that displayed when they are unsupported or dispersed in a similar but denser matrix, and with higher loading. The effective anisotropy measured for our samples appears to be systematically higher than that measured for supported zinc ferrite nanoparticles of similar size, indicating that this effect probably occurs as a consequence of the high inversion degree.
Grain refinement of high strength steels to improve cryogenic toughness
NASA Technical Reports Server (NTRS)
Rush, H. F.
1985-01-01
Grain-refining techniques using multistep heat treatments to reduce the grain size of five commercial high-strength steels were investigated. The goal of this investigation was to improve the low-temperature toughness as measured by Charpy V-notch impact test without a significant loss in tensile strength. The grain size of four of five alloys investigated was successfully reduced up to 1/10 of original size or smaller with increases in Charpy impact energy of 50 to 180 percent at -320 F. Tensile properties were reduced from 0 to 25 percent for the various alloys tested. An unexpected but highly beneficial side effect from grain refining was improved machinability.
NASA Astrophysics Data System (ADS)
Belloul, M.; Bartolo, J.-F.; Ziraoui, B.; Coldren, F.; Taly, V.; El Abed, A. I.
2013-07-01
We investigate the effect of an applied ac high voltage on a confined stable nematic liquid crystal (LC) in a microfluidic device and show that this actuation leads to the formation of highly monodisperse microdroplets with an unexpected constant mean size over a large interval of the forcing frequency F and with a droplets production frequency f ≃2F. We show also that despite the nonlinear feature of the droplets formation mechanism, droplets size, and size distribution are governed simply by the LC flow rate Qd and the forcing frequency F.
Influence of mixing and ultrasound frequency on antisolvent crystallisation of sodium chloride.
Lee, Judy; Ashokkumar, Muthupandian; Kentish, Sandra E
2014-01-01
Ultrasound is known to promote nucleation of crystals and produce a narrower size distribution in a controlled and reproducible manner for the crystallisation process. Although there are various theories that suggest cavitation bubbles are responsible for sonocrystallisation, most studies use power ultrasonic horns that generate both intense shear and cavitation and this can mask the role that cavitation bubbles play. High frequency ultrasound from a plate transducer can be used to examine the effect of cavitation bubbles without the intense shear effect. This study reports the crystal size and morphology with various mixing speeds and ultrasound frequencies. The results show high frequency ultrasound produced sodium chloride crystals of similar size distribution as an ultrasonic horn. In addition, ultrasound generated sodium chloride crystals having a more symmetrical cubic structure compared to crystals produced by a high shear mixer. Copyright © 2013 Elsevier B.V. All rights reserved.
Repeated Habitat Disturbances by Fire Decrease Local Effective Population Size.
Schrey, Aaron W; Ragsdale, Alexandria K; McCoy, Earl D; Mushinsky, Henry R
2016-07-01
Effective population size is a fundamental parameter in population genetics, and factors that alter effective population size will shape the genetic characteristics of populations. Habitat disturbance may have a large effect on genetic characteristics of populations by influencing immigration and gene flow, particularly in fragmented habitats. We used the Florida Sand Skink (Plestiodon reynoldsi) to investigate the effect of fire-based habitat disturbances on the effective population size in the highly threatened, severely fragmented, and fire dependent Florida scrub habitat. We screened 7 microsatellite loci in 604 individuals collected from 12 locations at Archbold Biological Station. Archbold Biological Station has an active fire management plan and detailed records of fires dating to 1967. Our objective was to determine how the timing, number, and intervals between fires affect effective population size, focusing on multiple fires in the same location. Effective population size was higher in areas that had not been burned for more than 10 years and decreased with number of fires and shorter time between fires. A similar pattern was observed in abundance: increasing abundance with time-since-fire and decreasing abundance with number of fires. The ratio of effective population size to census size was higher at sites with more recent fires and tended to decrease with time-since-last-fire. These results suggest that habitat disturbances, such as fire, may have a large effect in the genetic characteristics of local populations and that Florida Sand Skinks are well adapted to the natural fire dynamics required to maintain Florida scrub. © The American Genetic Association. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka; Choyke, Peter L.
2016-06-01
To date, the delivery of nano-sized therapeutic agents to cancers largely relies on enhanced permeability and retention (EPR) effects that are caused by the leaky nature of cancer vasculature. However, nano-sized agents delivered in this way have demonstrated limited success in oncology due to the relatively small magnitude of the EPR effect. For achieving superior delivery of nano-sized agents, super-enhanced permeability and retention (SUPR) effects are needed. Near infrared photo-immunotherapy (NIR-PIT) is a recently reported therapy that treats tumors with light therapy and subsequently causes an increase in nano-drug delivery up to 24-fold compared with untreated tumors in which only the EPR effect is present. SUPR effects could enhance delivery into tumor beds of a wide variety of nano-sized agents including particles, antibodies, and protein binding small molecular agents. Therefore, taking advantage of the SUPR effects after NIR-PIT may be a promising avenue to utilize a wide variety of nano-drugs in a highly effective manner.
Bashey, Farrah
2006-02-01
The existence of adaptive phenotypic plasticity demands that we study the evolution of reaction norms, rather than just the evolution of fixed traits. This approach requires the examination of functional relationships among traits not only in a single environment but across environments and between traits and plasticity itself. In this study, I examined the interplay of plasticity and local adaptation of offspring size in the Trinidadian guppy, Poecilia reticulata. Guppies respond to food restriction by growing and reproducing less but also by producing larger offspring. This plastic difference in offspring size is of the same order of magnitude as evolved genetic differences among populations. Larger offspring sizes are thought to have evolved as an adaptation to the competitive environment faced by newborn guppies in some environments. If plastic responses to maternal food limitation can achieve the same fitness benefit, then why has guppy offspring size evolved at all? To explore this question, I examined the plastic response to food level of females from two natural populations that experience different selective environments. My goals were to examine whether the plastic responses to food level varied between populations, test the consequences of maternal manipulation of offspring size for offspring fitness, and assess whether costs of plasticity exist that could account for the evolution of mean offspring size across populations. In each population, full-sib sisters were exposed to either a low- or high-food treatment. Females from both populations produced larger, leaner offspring in response to food limitation. However, the population that was thought to have a history of selection for larger offspring was less plastic in its investment per offspring in response to maternal mass, maternal food level, and fecundity than the population under selection for small offspring size. To test the consequences of maternal manipulation of offspring size for offspring fitness, I raised the offspring of low- and high-food mothers in either low- or high-food environments. No maternal effects were detected at high food levels, supporting the prediction that mothers should increase fecundity rather than offspring size in noncompetitive environments. For offspring raised under low food levels, maternal effects on juvenile size and male size at maturity varied significantly between populations, reflecting their initial differences in maternal manipulation of offspring size; nevertheless, in both populations, increased investment per offspring increased offspring fitness. Several correlates of plasticity in investment per offspring that could affect the evolution of offspring size in guppies were identified. Under low-food conditions, mothers from more plastic families invested more in future reproduction and less in their own soma. Similarly, offspring from more plastic families were smaller as juveniles and female offspring reproduced earlier. These correlations suggest that a fixed, high level of investment per offspring might be favored over a plastic response in a chronically low-resource environment or in an environment that selects for lower reproductive effort.
The cost of large numbers of hypothesis tests on power, effect size and sample size.
Lazzeroni, L C; Ray, A
2012-01-01
Advances in high-throughput biology and computer science are driving an exponential increase in the number of hypothesis tests in genomics and other scientific disciplines. Studies using current genotyping platforms frequently include a million or more tests. In addition to the monetary cost, this increase imposes a statistical cost owing to the multiple testing corrections needed to avoid large numbers of false-positive results. To safeguard against the resulting loss of power, some have suggested sample sizes on the order of tens of thousands that can be impractical for many diseases or may lower the quality of phenotypic measurements. This study examines the relationship between the number of tests on the one hand and power, detectable effect size or required sample size on the other. We show that once the number of tests is large, power can be maintained at a constant level, with comparatively small increases in the effect size or sample size. For example at the 0.05 significance level, a 13% increase in sample size is needed to maintain 80% power for ten million tests compared with one million tests, whereas a 70% increase in sample size is needed for 10 tests compared with a single test. Relative costs are less when measured by increases in the detectable effect size. We provide an interactive Excel calculator to compute power, effect size or sample size when comparing study designs or genome platforms involving different numbers of hypothesis tests. The results are reassuring in an era of extreme multiple testing.
Size–strain separation in diffraction line profile analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scardi, P.; Ermrich, M.; Fitch, A.
Separation of size and strain effects on diffraction line profiles has been studied in a round robin involving laboratory instruments and synchrotron radiation beamlines operating with different radiation, optics, detectors and experimental configurations. The studied sample, an extensively ball milled iron alloy powder, provides an ideal test case, as domain size broadening and strain broadening are of comparable size. The high energy available at some synchrotron radiation beamlines provides the best conditions for an accurate analysis of the line profiles, as the size–strain separation clearly benefits from a large number of Bragg peaks in the pattern; high counts, reliable intensitymore » values in low-absorption conditions, smooth background and data collection at different temperatures also support the possibility to include diffuse scattering in the analysis, for the most reliable assessment of the line broadening effect. However, results of the round robin show that good quality information on domain size distribution and microstrain can also be obtained using standard laboratory equipment, even when patterns include relatively few Bragg peaks, provided that the data are of good quality in terms of high counts and low and smooth background.« less
Size–strain separation in diffraction line profile analysis
Scardi, P.; Ermrich, M.; Fitch, A.; ...
2018-05-29
Separation of size and strain effects on diffraction line profiles has been studied in a round robin involving laboratory instruments and synchrotron radiation beamlines operating with different radiation, optics, detectors and experimental configurations. The studied sample, an extensively ball milled iron alloy powder, provides an ideal test case, as domain size broadening and strain broadening are of comparable size. The high energy available at some synchrotron radiation beamlines provides the best conditions for an accurate analysis of the line profiles, as the size–strain separation clearly benefits from a large number of Bragg peaks in the pattern; high counts, reliable intensitymore » values in low-absorption conditions, smooth background and data collection at different temperatures also support the possibility to include diffuse scattering in the analysis, for the most reliable assessment of the line broadening effect. However, results of the round robin show that good quality information on domain size distribution and microstrain can also be obtained using standard laboratory equipment, even when patterns include relatively few Bragg peaks, provided that the data are of good quality in terms of high counts and low and smooth background.« less
Alam, Shah Jamal; Zhang, Xinyu; Romero-Severson, Ethan Obie; Henry, Christopher; Zhong, Lin; Volz, Erik M.; Brenner, Bluma G.; Koopman, James S.
2013-01-01
Episodic high-risk sexual behavior is common and can have a profound effect on HIV transmission. In a model of HIV transmission among men who have sex with men (MSM), changing the frequency, duration and contact rates of high-risk episodes can take endemic prevalence from zero to 50% and more than double transmissions during acute HIV infection (AHI). Undirected test and treat could be inefficient in the presence of strong episodic risk effects. Partner services approaches that use a variety of control options will be likely to have better effects under these conditions, but the question remains: What data will reveal if a population is experiencing episodic risk effects? HIV sequence data from Montreal reveals genetic clusters whose size distribution stabilizes over time and reflects the size distribution of acute infection outbreaks (AIOs). Surveillance provides complementary behavioral data. In order to use both types of data efficiently, it is essential to examine aspects of models that affect both the episodic risk effects and the shape of transmission trees. As a demonstration, we use a deterministic compartmental model of episodic risk to explore the determinants of the fraction of transmissions during acute HIV infection (AHI) at the endemic equilibrium. We use a corresponding individual-based model to observe AIO size distributions and patterns of transmission within AIO. Episodic risk parameters determining whether AHI transmission trees had longer chains, more clustered transmissions from single individuals, or different mixes of these were explored. Encouragingly for parameter estimation, AIO size distributions reflected the frequency of transmissions from acute infection across divergent parameter sets. Our results show that episodic risk dynamics influence both the size and duration of acute infection outbreaks, thus providing a possible link between genetic cluster size distributions and episodic risk dynamics. PMID:23438430
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kyu-Ho, E-mail: kyuhos@korea.ac.kr; Department of Materials Science and Engineering, Korea University, Seoul 136-713; Suh, Jin-Yoo, E-mail: jinyoo@kist.re.kr
2013-09-15
The effect of Nb and Cu addition on the creep properties of a high Mn–N austenitic stainless steel was investigated at 600 and 650 °C. In the original high Mn–N steel, which was initially precipitate-free, the precipitation of M{sub 23}C{sub 6} (M = Cr, Fe) and Cr{sub 2}N took place mostly on grain boudaries during creep deformation. On the other hand, the minor addition of Nb resulted in high number density of Z-phases (CrNbN) and MX (M = Nb; X = C, N) carbonitrides inside grains by combining with a high content of N, while suppressing the formation of Cr{submore » 2}N. The addition of Cu gave rise to the independent precipitation of nanometer-sized metallic Cu particles. The combination of the different precipitate-forming mechanisms associated with Z-phase, MX and Cu-rich precipitates turned out to improve the creep-resistance significantly. The thermodynamics and kinetics of the precipitation were discussed using thermo-kinetic simulations. - Highlights: • The creep rupture life was improved by Nb and Cu addition. • The creep resistance of the steel A2 in this study was comparable to that of TP347HFG. • The size of Z-phase and MX carbonitride did not change significantly after creep test. • The nanometer sized Cu-rich precipitate was observed after creep. • The predicted size of precipitates by MatCalc agreed well with measured size.« less
2013-01-01
Background Mosquito fitness is determined largely by body size and nutritional reserves. Plasmodium infections in the mosquito and resultant transmission of malaria parasites might be compromised by the vector’s nutritional status. We studied the effects of nutritional stress and malaria parasite infections on transmission fitness of Anopheles mosquitoes. Methods Larvae of Anopheles gambiae sensu stricto and An. stephensi were reared at constant density but with nutritionally low and high diets. Fitness of adult mosquitoes resulting from each dietary class was assessed by measuring body size and lipid, protein and glycogen content. The size of the first blood meal was estimated by protein analysis. Mosquitoes of each dietary class were fed upon a Plasmodium yoelii nigeriensis-infected mouse, and parasite infections were determined 5 d after the infectious blood meal by dissection of the midguts and by counting oocysts. The impact of Plasmodium infections on gonotrophic development was established by dissection. Results Mosquitoes raised under low and high diets emerged as adults of different size classes comparable between An. gambiae and An. stephensi. In both species low-diet females contained less protein, lipid and glycogen upon emergence than high-diet mosquitoes. The quantity of larval diet impacted strongly upon adult blood feeding and reproductive success. The prevalence and intensity of P. yoelii nigeriensis infections were reduced in low-diet mosquitoes of both species, but P. yoelii nigeriensis impacted negatively only on low-diet, small-sized An. gambiae considering survival and egg maturation. There was no measurable fitness effect of P. yoelii nigeriensis on An. stephensi. Conclusions Under the experimental conditions, small-sized An. gambiae expressed high mortality, possibly caused by Plasmodium infections, the species showing distinct physiological concessions when nutrionally challenged in contrast to well-fed, larger siblings. Conversely, An. stephensi was a robust, successful vector regardless of its nutrional status upon emergence. The data suggest that small-sized An. gambiae, therefore, would contribute little to malaria transmission, whereas this size effect would not affect An. stephensi. PMID:24326030
Rocket Research at Georgia Tech.
1979-11-01
Using dry-pressed mixtures of ammonium per orate, aluminum and carnauba wax powders, the effects of particle sizes, mixture ratios and pressure were...perchlorate, aluminum and carnauba wax powders, the effects of particle sizes, mixture ratios and pressure were studied by high speed photography...pressed powders) involving various combinations of aluminum, ammonium perchiorate and hydrocarbon wax powder. Also reported are results of quench tests
The impact of sample size on the reproducibility of voxel-based lesion-deficit mappings.
Lorca-Puls, Diego L; Gajardo-Vidal, Andrea; White, Jitrachote; Seghier, Mohamed L; Leff, Alexander P; Green, David W; Crinion, Jenny T; Ludersdorfer, Philipp; Hope, Thomas M H; Bowman, Howard; Price, Cathy J
2018-07-01
This study investigated how sample size affects the reproducibility of findings from univariate voxel-based lesion-deficit analyses (e.g., voxel-based lesion-symptom mapping and voxel-based morphometry). Our effect of interest was the strength of the mapping between brain damage and speech articulation difficulties, as measured in terms of the proportion of variance explained. First, we identified a region of interest by searching on a voxel-by-voxel basis for brain areas where greater lesion load was associated with poorer speech articulation using a large sample of 360 right-handed English-speaking stroke survivors. We then randomly drew thousands of bootstrap samples from this data set that included either 30, 60, 90, 120, 180, or 360 patients. For each resample, we recorded effect size estimates and p values after conducting exactly the same lesion-deficit analysis within the previously identified region of interest and holding all procedures constant. The results show (1) how often small effect sizes in a heterogeneous population fail to be detected; (2) how effect size and its statistical significance varies with sample size; (3) how low-powered studies (due to small sample sizes) can greatly over-estimate as well as under-estimate effect sizes; and (4) how large sample sizes (N ≥ 90) can yield highly significant p values even when effect sizes are so small that they become trivial in practical terms. The implications of these findings for interpreting the results from univariate voxel-based lesion-deficit analyses are discussed. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Effects of Grain Size on the Fatigue Properties in Cold-Expanded Austenitic HNSs
NASA Astrophysics Data System (ADS)
Shin, Jong-Ho; Kim, Young-Deak; Lee, Jong-Wook
2018-05-01
Cold-expanded austenitic high nitrogen steel (HNS) was subjected to investigate the effects of grain size on the stress-controlled high cycle fatigue (HCF) as well as the strain-controlled low cycle fatigue (LCF) properties. The austenitic HNSs with two different grain sizes (160 and 292 μm) were fabricated by the different hot forging strain. The fine-grained (FG) specimen exhibited longer LCF life and higher HCF limit than those of the coarse-grained (CG) specimen. Fatigue crack growth testing showed that crack propagation rate in the FG specimen was the same as that in the CG specimen, implying that crack propagation rate did not affect the discrepancy of LCF life and HCF limit between two cold-expanded HNSs. Therefore, it was estimated that superior LCF and HCF properties in the FG specimen resulted from the retardation of the fatigue crack initiation as compared with the CG specimen. Transmission electron microscopy showed that the effective grain size including twin boundaries are much finer in the FG specimen than that in the CG specimen, which can give favorable contributions to strengthening.
Fearon, Elizabeth; Chabata, Sungai T; Thompson, Jennifer A; Cowan, Frances M; Hargreaves, James R
2017-09-14
While guidance exists for obtaining population size estimates using multiplier methods with respondent-driven sampling surveys, we lack specific guidance for making sample size decisions. To guide the design of multiplier method population size estimation studies using respondent-driven sampling surveys to reduce the random error around the estimate obtained. The population size estimate is obtained by dividing the number of individuals receiving a service or the number of unique objects distributed (M) by the proportion of individuals in a representative survey who report receipt of the service or object (P). We have developed an approach to sample size calculation, interpreting methods to estimate the variance around estimates obtained using multiplier methods in conjunction with research into design effects and respondent-driven sampling. We describe an application to estimate the number of female sex workers in Harare, Zimbabwe. There is high variance in estimates. Random error around the size estimate reflects uncertainty from M and P, particularly when the estimate of P in the respondent-driven sampling survey is low. As expected, sample size requirements are higher when the design effect of the survey is assumed to be greater. We suggest a method for investigating the effects of sample size on the precision of a population size estimate obtained using multipler methods and respondent-driven sampling. Uncertainty in the size estimate is high, particularly when P is small, so balancing against other potential sources of bias, we advise researchers to consider longer service attendance reference periods and to distribute more unique objects, which is likely to result in a higher estimate of P in the respondent-driven sampling survey. ©Elizabeth Fearon, Sungai T Chabata, Jennifer A Thompson, Frances M Cowan, James R Hargreaves. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 14.09.2017.
Wang, Lei; Baskin, Jerry M; Baskin, Carol C; Cornelissen, J Hans C; Dong, Ming; Huang, Zhenying
2012-09-25
Maternal effects may influence a range of seed traits simultaneously and are likely to be context-dependent. Disentangling the interactions of plant phenotype and growth environment on various seed traits is important for understanding regeneration and establishment of species in natural environments. Here, we used the seed-dimorphic plant Suaeda aralocaspica to test the hypothesis that seed traits are regulated by multiple maternal effects. Plants grown from brown seeds had a higher brown:black seed ratio than plants from black seeds, and germination percentage of brown seeds was higher than that of black seeds under all conditions tested. However, the coefficient of variation (CV) for size of black seeds was higher than that of brown seeds. Seeds had the smallest CV at low nutrient and high salinity for plants from brown seeds and at low nutrient and low salinity for plants from black seeds. Low levels of nutrients increased size and germinability of black seeds but did not change the seed morph ratio or size and germinability of brown seeds. High levels of salinity decreased seed size but did not change the seed morph ratio. Seeds from high-salinity maternal plants had a higher germination percentage regardless of level of germination salinity. Our study supports the multiple maternal effects hypothesis. Seed dimorphism, nutrient and salinity interacted in determining a range of seed traits of S. aralocaspica via bet-hedging and anticipatory maternal effects. This study highlights the importance of examining different maternal factors and various offspring traits in studies that estimate maternal effects on regeneration.
2012-01-01
Background Maternal effects may influence a range of seed traits simultaneously and are likely to be context-dependent. Disentangling the interactions of plant phenotype and growth environment on various seed traits is important for understanding regeneration and establishment of species in natural environments. Here, we used the seed-dimorphic plant Suaeda aralocaspica to test the hypothesis that seed traits are regulated by multiple maternal effects. Results Plants grown from brown seeds had a higher brown:black seed ratio than plants from black seeds, and germination percentage of brown seeds was higher than that of black seeds under all conditions tested. However, the coefficient of variation (CV) for size of black seeds was higher than that of brown seeds. Seeds had the smallest CV at low nutrient and high salinity for plants from brown seeds and at low nutrient and low salinity for plants from black seeds. Low levels of nutrients increased size and germinability of black seeds but did not change the seed morph ratio or size and germinability of brown seeds. High levels of salinity decreased seed size but did not change the seed morph ratio. Seeds from high-salinity maternal plants had a higher germination percentage regardless of level of germination salinity. Conclusions Our study supports the multiple maternal effects hypothesis. Seed dimorphism, nutrient and salinity interacted in determining a range of seed traits of S. aralocaspica via bet-hedging and anticipatory maternal effects. This study highlights the importance of examining different maternal factors and various offspring traits in studies that estimate maternal effects on regeneration. PMID:23006315
NASA Astrophysics Data System (ADS)
Xuan, Weidong; Lan, Jian; Zhao, Dengke; Li, Chuanjun; Shang, Xingfu; Zhong, Yunbo; Li, Xi; Ren, Zhongming
2018-05-01
The effect of a high magnetic field on the γ' phase of Ni-based single crystal superalloy during directional solidification is investigated experimentally. The results clearly indicate that the magnetic field significantly reduces the γ' phase size. Further, the quenching experiment is carried out, and the results found that the length of mushy zone is obviously decreased under a high magnetic field. Based on both experimental results and nucleation mechanism, it is found that the decrease of γ' phase size should be attributed to the fact that a high magnetic field causes the increase of temperature gradient in front of solid/liquid interface and leads to the increase of undercooling of γ' phase.
Reproducibility of preclinical animal research improves with heterogeneity of study samples
Vogt, Lucile; Sena, Emily S.; Würbel, Hanno
2018-01-01
Single-laboratory studies conducted under highly standardized conditions are the gold standard in preclinical animal research. Using simulations based on 440 preclinical studies across 13 different interventions in animal models of stroke, myocardial infarction, and breast cancer, we compared the accuracy of effect size estimates between single-laboratory and multi-laboratory study designs. Single-laboratory studies generally failed to predict effect size accurately, and larger sample sizes rendered effect size estimates even less accurate. By contrast, multi-laboratory designs including as few as 2 to 4 laboratories increased coverage probability by up to 42 percentage points without a need for larger sample sizes. These findings demonstrate that within-study standardization is a major cause of poor reproducibility. More representative study samples are required to improve the external validity and reproducibility of preclinical animal research and to prevent wasting animals and resources for inconclusive research. PMID:29470495
Creating Cost-Effective DNA Size Standards for Use in Teaching and Research Laboratories
ERIC Educational Resources Information Center
Shultz, Jeff
2011-01-01
I have devised a method with which a molecular size standard can be readily manufactured using Lambda DNA and PCR. This method allows the production of specific sized DNA fragments and is easily performed in a standard molecular biology laboratory. The material required to create these markers can also be used to provide a highly robust and…
Kim, Minjin; Kim, Gi-Hwan; Oh, Kyoung Suk; Jo, Yimhyun; Yoon, Hyun; Kim, Ka-Hyun; Lee, Heon; Kim, Jin Young; Kim, Dong Suk
2017-06-27
Organic-inorganic hybrid metal halide perovskite solar cells (PSCs) are attracting tremendous research interest due to their high solar-to-electric power conversion efficiency with a high possibility of cost-effective fabrication and certified power conversion efficiency now exceeding 22%. Although many effective methods for their application have been developed over the past decade, their practical transition to large-size devices has been restricted by difficulties in achieving high performance. Here we report on the development of a simple and cost-effective production method with high-temperature and short-time annealing processing to obtain uniform, smooth, and large-size grain domains of perovskite films over large areas. With high-temperature short-time annealing at 400 °C for 4 s, the perovskite film with an average domain size of 1 μm was obtained, which resulted in fast solvent evaporation. Solar cells fabricated using this processing technique had a maximum power conversion efficiency exceeding 20% over a 0.1 cm 2 active area and 18% over a 1 cm 2 active area. We believe our approach will enable the realization of highly efficient large-area PCSs for practical development with a very simple and short-time procedure. This simple method should lead the field toward the fabrication of uniform large-scale perovskite films, which are necessary for the production of high-efficiency solar cells that may also be applicable to several other material systems for more widespread practical deployment.
NASA Astrophysics Data System (ADS)
Heinze, Karsta; Frank, Xavier; Lullien-Pellerin, Valérie; George, Matthieu; Radjai, Farhang; Delenne, Jean-Yves
2017-06-01
Wheat grains can be considered as a natural cemented granular material. They are milled under high forces to produce food products such as flour. The major part of the grain is the so-called starchy endosperm. It contains stiff starch granules, which show a multi-modal size distribution, and a softer protein matrix that surrounds the granules. Experimental milling studies and numerical simulations are going hand in hand to better understand the fragmentation behavior of this biological material and to improve milling performance. We present a numerical study of the effect of granule size distribution on the strength of such a cemented granular material. Samples of bi-modal starch granule size distribution were created and submitted to uniaxial tension, using a peridynamics method. We show that, when compared to the effects of starch-protein interface adhesion and voids, the granule size distribution has a limited effect on the samples' yield stress.
Zhao, Yi; Zhao, Yuzhu; Xu, Helan; Yang, Yiqi
2015-02-17
Biodegradable sizing agents from triethanolamine (TEA) modified soy protein could substitute poly(vinyl alcohol)(PVA) sizes for high-speed weaving of polyester and polyester/cotton yarns to substantially decrease environmental pollution and impel sustainability of textile industry. Nonbiodegradable PVA sizes are widely used and mainly contribute to high chemical oxygen demand (COD) in textile effluents. It has not been possible to effectively degrade, reuse or replace PVA sizes so far. Soy protein with good biodegradability showed potential as warp sizes in our previous studies. However, soy protein sizes lacked film flexibility and adhesion for required high-speed weaving. Additives with multiple hydroxyl groups, nonlinear molecule, and electric charge could physically modify secondary structure of soy protein and lead to about 23.6% and 43.3% improvement in size adhesion and ability of hair coverage comparing to unmodified soy protein. Industrial weaving results showed TEA-soy protein had relative weaving efficiency 3% and 10% higher than PVA and chemically modified starch sizes on polyester/cotton fabrics, and had relative weaving efficiency similar to PVA on polyester fabrics, although with 3- 6% lower add-on. In addition, TEA-soy sizes had a BOD5/COD ratio of 0.44, much higher than 0.03 for PVA, indicating that TEA-soy sizes were easily biodegradable in activated sludge.
NASA Astrophysics Data System (ADS)
Wang, Chunyang; Du, Kui; Song, Kepeng; Ye, Xinglong; Qi, Lu; He, Suyun; Tang, Daiming; Lu, Ning; Jin, Haijun; Li, Feng; Ye, Hengqiang
2018-05-01
Low-angle grain boundaries generally exist in the form of dislocation arrays, while high-angle grain boundaries (misorientation angle >15 ° ) exist in the form of structural units in bulk metals. Here, through in situ atomic resolution aberration corrected electron microscopy observations, we report size-dependent grain-boundary structures improving both stabilities of electrical conductivity and mechanical properties in sub-10-nm-sized gold crystals. With the diameter of a nanocrystal decreasing below 10 nm, the high-angle grain boundary in the crystal exists as an array of dislocations. This size effect may be of importance to a new generation of interconnects applications.
Salcedo, A; Kalisz, S; Wright, S I
2014-07-01
Highly selfing species often show reduced effective population sizes and reduced selection efficacy. Whether mixed mating species, which produce both self and outcross progeny, show similar patterns of diversity and selection remains less clear. Examination of patterns of molecular evolution and levels of diversity in species with mixed mating systems can be particularly useful for investigating the relative importance of linked selection and demographic effects on diversity and the efficacy of selection, as the effects of linked selection should be minimal in mixed mating populations, although severe bottlenecks tied to founder events could still be frequent. To begin to address this gap, we assembled and analysed the transcriptomes of individuals from a recently diverged mixed mating sister species pair in the self-compatible genus, Collinsia. The de novo assembly of 52 and 37 Mbp C. concolor and C. parryi transcriptomes resulted in ~40 000 and ~55 000 contigs, respectively, both with an average contig size ~945. We observed a high ratio of shared polymorphisms to fixed differences in the species pair and minimal differences between species in the ratio of synonymous to replacement substitutions or codon usage bias implying comparable effective population sizes throughout species divergence. Our results suggest that differences in effective population size and selection efficacy in mixed mating taxa shortly after their divergence may be minimal and are likely influenced by fluctuating mating systems and population sizes. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Pollard, Christine D.; Sigward, Susan M.; Powers, Christopher M.
2009-01-01
Background It has been proposed that female athletes who limit knee and hip flexion during athletic tasks rely more on the passive restraints in the frontal plane to deceleration their body center of mass. This biomechanical pattern is thought to increase the risk for anterior cruciate ligament injury. To date, the relationship between sagittal plane kinematics and frontal plane knee motion and moments has not been explored. Methods Subjects consisted of fifty-eight female club soccer players (age range: 11 to 20 years) with no history of knee injury. Kinematics, ground reaction forces, and surface electromyography were collected while each subject performed a drop landing task. Subjects were divided into two groups based on combined sagittal plane knee and hip flexion angles during the deceleration phase of landing (high flexion and low flexion). Findings Subjects in the low flexion group demonstrated increased knee valgus angles (P = 0.02, effect size 0.27), increased knee adductor moments (P = 0.03, effect size 0.24), decreased energy absorption at the knee and hip (P = 0.02, effect size 0.25; and P< 0.001, effect size 0.59), and increased vastus lateralis EMG when compared to subjects in the high flexion group (P = 0.005, effect size 0.35). Interpretation Female athletes with limited sagittal plane motion during landing exhibit a biomechanical profile that may put these individuals at greater risk for anterior cruciate ligament injury. PMID:19913961
Hetero-Orientation Epitaxial Growth of TiO2 Splats on Polycrystalline TiO2 Substrate
NASA Astrophysics Data System (ADS)
Chen, Lin; Yang, Guan-Jun
2018-05-01
In the present study, the effect of titania (TiO2) substrate grain size and orientation on the epitaxial growth of TiO2 splat was investigated. Interestingly, the splat presented comparable grain size with that of substrate, indicating the hereditary feature of grain size. In addition, hetero- and homo-orientation epitaxial growth was observed at deposition temperatures below 400 °C and above 500 °C, respectively. The preferential growth of high-energy (001) face was also observed at low deposition temperatures (≤ 400 °C), which was found to result from dynamic nonequilibrium effect during the thermal spray deposition. Moreover, thermal spray deposition paves the way for a new approach to prepare high-energy (001) facets of TiO2 crystals.
Inference of Ice Cloud Properties from High-spectral Resolution Infrared Observations. Appendix 4
NASA Technical Reports Server (NTRS)
Huang, Hung-Lung; Yang, Ping; Wei, Heli; Baum, Bryan A.; Hu, Yongxiang; Antonelli, Paolo; Ackerman, Steven A.
2005-01-01
The theoretical basis is explored for inferring the microphysical properties of ice crystal from high-spectral resolution infrared observations. A radiative transfer model is employed to simulate spectral radiances to address relevant issues. The extinction and absorption efficiencies of individual ice crystals, assumed as hexagonal columns for large particles and droxtals for small particles, are computed from a combination of the finite- difference time-domain (FDTD) technique and a composite method. The corresponding phase functions are computed from a combination of FDTD and an improved geometric optics method (IGOM). Bulk scattering properties are derived by averaging the single- scattering properties of individual particles for 30 particle size distributions developed from in situ measurements and for additional four analytical Gamma size distributions for small particles. The non-sphericity of ice crystals is shown to have a significant impact on the radiative signatures in the infrared (IR) spectrum; the spherical particle approximation for inferring ice cloud properties may result in an overest&ation of the optical thickness and an inaccurate retrieval of effective particle size. Furthermore, we show that the error associated with the use of the Henyey-Greenstein phase function can be as larger as 1 K in terms of brightness temperature for larger particle effective size at some strong scattering wavenumbers. For small particles, the difference between the two phase functions is much less, with brightness temperatures generally differing by less than 0.4 K. The simulations undertaken in this study show that the slope of the IR brightness temperature spectrum between 790-960/cm is sensitive to the effective particle size. Furthermore, a strong sensitivity of IR brightness temperature to cloud optical thickness is noted within the l050-1250/cm region. Based on this spectral feature, a technique is presented for the simultaneous retrieval of the visible optical thickness and effective particle size from high spectral resolution infrared data under ice cloudy con&tion. The error analysis shows that the uncertainty of the retrieved optical thickness and effective particle size has a small range of variation. The error for retrieving particle size in conjunction with an uncertainty of 5 K in cloud'temperature, or a surface temperature uncertainty of 2.5 K, is less than 15%. The corresponding e m r in the uncertainty of optical thickness is within 5-2096, depending on the value of cloud optical thickness. The applicability of the technique is demonstrated using the aircraft-based High- resolution Interferometer Sounder (HIS) data from the Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) in 1996 and the First ISCCP Regional Experiment - Arctic Clouds Experiment (FIRE-ACE) in 1998.
The effect of microstructure on the performance of Li-ion porous electrodes
NASA Astrophysics Data System (ADS)
Chung, Ding-Wen
By combining X-ray tomography data and computer-generated porous elec- trodes, the impact of microstructure on the energy and power density of lithium-ion batteries is analyzed. Specifically, for commercial LiMn2O4 electrodes, results indi- cate that a broad particle size distribution of active material delivers up to two times higher energy density than monodisperse-sized particles for low discharge rates, and a monodisperse particle size distribution delivers the highest energy and power density for high discharge rates. The limits of traditionally used microstructural properties such as tortuosity, reactive area density, particle surface roughness, morphological anisotropy were tested against degree of particle size polydispersity, thus enabling the identification of improved porous architectures. The effects of critical battery processing parameters, such as layer compaction and carbon black, were also rationalized in the context of electrode performance. While a monodisperse particle size distribution exhibits the lowest possible tortuosity and three times higher surface area per unit volume with respect to an electrode conformed of a polydisperse particle size distribution, a comparable performance can be achieved by polydisperse particle size distributions with degrees of polydispersity less than 0.2 of particle size standard deviation. The use of non-spherical particles raises the tortuosity by as much as three hundred percent, which considerably lowers the power performance. However, favorably aligned particles can maximize power performance, particularly for high discharge rate applications.
Effects of lipid emulsion particle size on satiety and energy intake: a randomised cross-over trial.
Poppitt, Sally D; Budgett, Stephanie C; MacGibbon, Alastair K; Quek, Siew-Young; Kindleysides, Sophie; Wiessing, Katy R
2018-03-01
Emulsified lipids, with central lipid core surrounded by polar lipid 'protective coat', have been proposed to stimulate the ileal brake, alter appetite, food intake and aid weight control. In addition to lipid composition, emulsion particle size may contribute to efficacy with small droplets providing a larger surface area for gastrointestinal (GI) lipase action and larger droplets prolonging and delaying digestion in the GI tract. Tube feeding studies delivering emulsions directly into the small intestine show clear effects of smaller particle size on appetite and food intake, but evidence from oral feeding studies is sparse. The objective of this study was to determine the effects of lipid emulsion particle size on appetite response and food intake. In a three-arm randomised cross-over, high-phospholipid (PL) dairy lipid emulsions or matched control were consumed at breakfast within a yoghurt smoothie: (i) large-particle size emulsion, LPE (diameter 0.759 µm, 10 g lipid emulsion, 190 g yoghurt), (ii) small-particle size emulsion, SPE (diameter 0.290 µm, 10 g lipid emulsion, 190 g yoghurt), (iii) control non-emulsion, NE (10 g non-emulsion lipid, 190 g yoghurt). Twenty male participants completed the study, where postprandial appetite response was rated using visual analogue scales (VAS) and ad libitum energy intake at a lunch meal measured 3 h later. There was a trend for LPE to suppress hunger (P = 0.08) and enhance fullness (P = 0.24) relative to both SPE and NE but not statistically significant, and no significant effect of either emulsion on food intake at the lunch meal (P > 0.05). Altering particle size of a high-PL emulsion did not enhance satiety or alter eating behaviour in a group of lean men.
Dry minor mergers and size evolution of high-z compact massive early-type galaxies
NASA Astrophysics Data System (ADS)
Oogi, Taira; Habe, Asao
2012-09-01
Recent observations show evidence that high-z (z ~ 2 - 3) early-type galaxies (ETGs) are quite compact than that with comparable mass at z ~ 0. Dry merger scenario is one of the most probable one that can explain such size evolution. However, previous studies based on this scenario do not succeed to explain both properties of high-z compact massive ETGs and local ETGs, consistently. We investigate effects of sequential, multiple dry minor (stellar mass ratio M2/M1<1/4) mergers on the size evolution of compact massive ETGs. We perform N-body simulations of the sequential minor mergers with parabolic and head-on orbits, including a dark matter component and a stellar component. We show that the sequential minor mergers of compact satellite galaxies are the most efficient in the size growth and in decrease of the velocity dispersion of the compact massive ETGs. The change of stellar size and density of the merger remnant is consistent with the recent observations. Furthermore, we construct the merger histories of candidates of high-z compact massive ETGs using the Millennium Simulation Database, and estimate the size growth of the galaxies by dry minor mergers. We can reproduce the mean size growth factor between z = 2 and z = 0, assuming the most efficient size growth obtained in the case of the sequential minor mergers in our simulations.
High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects
Nanda, Jagjit; Martha, Surendra K.; Kalyanaraman, Ramki
2015-06-02
In this review, we summarize the current state-of-the art electrode materials used for high-capacity lithium-ion-based batteries and their significant role towards revolutionizing the electrochemical energy storage landscape in the area of consumer electronics, transportation and grid storage application. We discuss the role of nanoscale effects on the electrochemical performance of high-capacity battery electrode materials. Decrease in the particle size of the primary electrode materials from micron to nanometre size improves the ionic and electronic diffusion rates significantly. Nanometre-thick solid electrolyte (such as lithium phosphorous oxynitride) and oxides (such as Al 2O 3, ZnO, TiO 2 etc.) material coatings also improvemore » the interfacial stability and rate capability of a number of battery chemistries. Finally, we elucidate these effects in terms of different high-capacity battery chemistries based on intercalation and conversion mechanism.« less
ERIC Educational Resources Information Center
Moody, Judith D.; Gifford, Vernon D.
This study investigated the grouping effect on student achievement in a chemistry laboratory when homogeneous and heterogeneous formal reasoning ability, high and low levels of formal reasoning ability, group sizes of two and four, and homogeneous and heterogeneous gender were used for grouping factors. The sample consisted of all eight intact…
Kamp, Siri-Maria; Brumback, Ty; Donchin, Emanuel
2013-11-01
We examined the degree to which ERP components elicited by items that are isolated from their context, either by their font size ("size isolates") or by their frequency of usage, are correlated with subsequent immediate recall. Study lists contained (a) 15 words including a size isolate, (b) 14 high frequency (HF) words with one low frequency word ("LF isolate"), or (c) 14 LF words with one HF word. We used spatiotemporal PCA to quantify ERP components. We replicated previously reported P300 subsequent memory effects for size isolates and found additional correlations with recall in the novelty P3, a right lateralized positivity, and a left lateralized slow wave that was distinct from the slow wave correlated with recall for nonisolates. LF isolates also showed evidence of a P300 subsequent memory effect and also elicited the left lateralized subsequent memory effect, supporting a role of distinctiveness in word frequency effects in recall. Copyright © 2013 Society for Psychophysiological Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMartini, Jaclyn D.; Foston, Marcus; Meng, Xianzhi
We report that woody biomass is highly recalcitrant to enzymatic sugar release and often requires significant size reduction and severe pretreatments to achieve economically viable sugar yields in biological production of sustainable fuels and chemicals. However, because mechanical size reduction of woody biomass can consume significant amounts of energy, it is desirable to minimize size reduction and instead pretreat larger wood chips prior to biological conversion. To date, however, most laboratory research has been performed on materials that are significantly smaller than applicable in a commercial setting. As a result, there is a limited understanding of the effects that largermore » biomass particle size has on the effectiveness of steam explosion pretreatment and subsequent enzymatic hydrolysis of wood chips. To address these concerns, novel downscaled analysis and high throughput pretreatment and hydrolysis (HTPH) were applied to examine whether differences exist in the composition and digestibility within a single pretreated wood chip due to heterogeneous pretreatment across its thickness. Heat transfer modeling, Simons’ stain testing, magnetic resonance imaging (MRI), and scanning electron microscopy (SEM) were applied to probe the effects of pretreatment within and between pretreated wood samples to shed light on potential causes of variation, pointing to enzyme accessibility (i.e., pore size) distribution being a key factor dictating enzyme digestibility in these samples. Application of these techniques demonstrated that the effectiveness of pretreatment of Populus tremuloides can vary substantially over the chip thickness at short pretreatment times, resulting in spatial digestibility effects and overall lower sugar yields in subsequent enzymatic hydrolysis. Finally, these results indicate that rapid decompression pretreatments (e.g., steam explosion) that specifically alter accessibility at lower temperature conditions are well suited for larger wood chips due to the non-uniformity in temperature and digestibility profiles that can result from high temperature and short pretreatment times. Furthermore, this study also demonstrated that wood chips were hydrated primarily through the natural pore structure during pretreatment, suggesting that preserving the natural grain and transport systems in wood during storage and chipping processes could likely promote pretreatment efficacy and uniformity.« less
DeMartini, Jaclyn D.; Foston, Marcus; Meng, Xianzhi; ...
2015-12-09
We report that woody biomass is highly recalcitrant to enzymatic sugar release and often requires significant size reduction and severe pretreatments to achieve economically viable sugar yields in biological production of sustainable fuels and chemicals. However, because mechanical size reduction of woody biomass can consume significant amounts of energy, it is desirable to minimize size reduction and instead pretreat larger wood chips prior to biological conversion. To date, however, most laboratory research has been performed on materials that are significantly smaller than applicable in a commercial setting. As a result, there is a limited understanding of the effects that largermore » biomass particle size has on the effectiveness of steam explosion pretreatment and subsequent enzymatic hydrolysis of wood chips. To address these concerns, novel downscaled analysis and high throughput pretreatment and hydrolysis (HTPH) were applied to examine whether differences exist in the composition and digestibility within a single pretreated wood chip due to heterogeneous pretreatment across its thickness. Heat transfer modeling, Simons’ stain testing, magnetic resonance imaging (MRI), and scanning electron microscopy (SEM) were applied to probe the effects of pretreatment within and between pretreated wood samples to shed light on potential causes of variation, pointing to enzyme accessibility (i.e., pore size) distribution being a key factor dictating enzyme digestibility in these samples. Application of these techniques demonstrated that the effectiveness of pretreatment of Populus tremuloides can vary substantially over the chip thickness at short pretreatment times, resulting in spatial digestibility effects and overall lower sugar yields in subsequent enzymatic hydrolysis. Finally, these results indicate that rapid decompression pretreatments (e.g., steam explosion) that specifically alter accessibility at lower temperature conditions are well suited for larger wood chips due to the non-uniformity in temperature and digestibility profiles that can result from high temperature and short pretreatment times. Furthermore, this study also demonstrated that wood chips were hydrated primarily through the natural pore structure during pretreatment, suggesting that preserving the natural grain and transport systems in wood during storage and chipping processes could likely promote pretreatment efficacy and uniformity.« less
Getting the most out of RNA-seq data analysis.
Khang, Tsung Fei; Lau, Ching Yee
2015-01-01
Background. A common research goal in transcriptome projects is to find genes that are differentially expressed in different phenotype classes. Biologists might wish to validate such gene candidates experimentally, or use them for downstream systems biology analysis. Producing a coherent differential gene expression analysis from RNA-seq count data requires an understanding of how numerous sources of variation such as the replicate size, the hypothesized biological effect size, and the specific method for making differential expression calls interact. We believe an explicit demonstration of such interactions in real RNA-seq data sets is of practical interest to biologists. Results. Using two large public RNA-seq data sets-one representing strong, and another mild, biological effect size-we simulated different replicate size scenarios, and tested the performance of several commonly-used methods for calling differentially expressed genes in each of them. We found that, when biological effect size was mild, RNA-seq experiments should focus on experimental validation of differentially expressed gene candidates. Importantly, at least triplicates must be used, and the differentially expressed genes should be called using methods with high positive predictive value (PPV), such as NOISeq or GFOLD. In contrast, when biological effect size was strong, differentially expressed genes mined from unreplicated experiments using NOISeq, ASC and GFOLD had between 30 to 50% mean PPV, an increase of more than 30-fold compared to the cases of mild biological effect size. Among methods with good PPV performance, having triplicates or more substantially improved mean PPV to over 90% for GFOLD, 60% for DESeq2, 50% for NOISeq, and 30% for edgeR. At a replicate size of six, we found DESeq2 and edgeR to be reasonable methods for calling differentially expressed genes at systems level analysis, as their PPV and sensitivity trade-off were superior to the other methods'. Conclusion. When biological effect size is weak, systems level investigation is not possible using RNAseq data, and no meaningful result can be obtained in unreplicated experiments. Nonetheless, NOISeq or GFOLD may yield limited numbers of gene candidates with good validation potential, when triplicates or more are available. When biological effect size is strong, NOISeq and GFOLD are effective tools for detecting differentially expressed genes in unreplicated RNA-seq experiments for qPCR validation. When triplicates or more are available, GFOLD is a sharp tool for identifying high confidence differentially expressed genes for targeted qPCR validation; for downstream systems level analysis, combined results from DESeq2 and edgeR are useful.
Eating less from bigger packs: Preventing the pack size effect with diet primes.
Versluis, Iris; Papies, Esther K
2016-05-01
An increase in the package size of food has been shown to lead to an increase in energy intake from this food, the so-called pack size effect. Previous research has shown that providing diet-concerned individuals with a reminder, or prime, of their dieting goal can help them control their consumption. Here, we investigated if providing such a prime is also effective for reducing the magnitude of the pack size effect. We conducted two experiments in which the cover of a dieting magazine (Experiment 1) and diet-related commercials (Experiment 2) served as diet goal primes. Both experiments had a 2 (pack size: small vs. large) × 2 (prime: diet vs. control) × 2 (dietary restraint: high vs. low) between participants design. We measured expected consumption of four snack foods in Experiment 1 (N = 477), and actual consumption of M&M's in Experiment 2 (N = 224). Results showed that the diet prime reduced the pack size effect for both restrained and unrestrained eaters in Experiment 1 and for restrained eaters only in Experiment 2. Although effect sizes were small, these findings suggest that a diet prime motivates restrained eaters to limit their consumption, and as a result the pack size has less influence on the amount consumed. We discuss limitations of this research as well as potential avenues for further research and theoretical and practical implications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Howard, Aaron F; Barrows, Edward M
2014-06-23
Animals fertilize thousands of angiosperm species whose floral-display sizes can significantly influence pollinator behavior and plant reproductive success. Many studies have measured the interactions among pollinator behavior, floral-display size, and plant reproductive success, but few studies have been able to separate the effects of pollinator behavior and post-pollination processes on angiosperm sexual reproduction. In this study, we utilized the highly self-incompatible pollinium-pollination system of Asclepias syriaca (Common Milkweed) to quantify how insect visitors influenced male reproductive success measured as pollen removal, female reproductive success measured as pollen deposition, and self-pollination rate. We also determined how floral-display size impacts both visitor behavior and self-pollination rate. Four insect taxonomic orders visited A. syriaca: Coleoptera, Diptera, Hymenoptera, and Lepidoptera. We focused on three groups of visitor taxa within two orders (Hymenoptera and Lepidoptera) with sample sizes large enough for quantitative analysis: Apis mellifera (Western Honey Bee), Bombus spp. (bumble bees) and lepidopterans (butterflies and moths). Qualitatively, lepidopterans had the highest pollinator importance values, but the large variability in the lepidopteran data precluded meaningful interpretation of much of their behavior. The introduced A. mellifera was the most effective and most important diurnal pollinator with regard to both pollen removal and pollen deposition. However, when considering the self-incompatibility of A. syriaca, A. mellifera was not the most important pollinator because of its high self-pollination rate as compared to Bombus spp. Additionally, the rate of self-pollination increased more rapidly with the number of flowers per inflorescence in A. mellifera than in the native Bombus spp. Apis mellifera's high rate of self-pollination may have significant negative effects on both male and female reproductive successes in A. syriaca, causing different selection on floral-display size than native pollinators.
Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO₂ Uptake.
Shakarova, Dilshod; Ojuva, Arto; Bergström, Lennart; Akhtar, Farid
2014-07-28
Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na₂O-SiO₂-Al₂O₃-H₂O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO₂ uptake capacity (4.9 mmol/g at 293 K at 100 kPa) and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas.
Lázaro-Nogal, Ana; Matesanz, Silvia; García-Fernández, Alfredo; Traveset, Anna; Valladares, Fernando
2017-09-01
The effect of population size on population genetic diversity and structure has rarely been studied jointly with other factors such as the position of a population within the species' distribution range or the presence of mutualistic partners influencing dispersal. Understanding these determining factors for genetic variation is critical for conservation of relict plants that are generally suffering from genetic deterioration. Working with 16 populations of the vulnerable relict shrub Cneorum tricoccon throughout the majority of its western Mediterranean distribution range, and using nine polymorphic microsatellite markers, we examined the effects of periphery (peripheral vs. central), population size (large vs. small), and seed disperser (introduced carnivores vs. endemic lizards) on the genetic diversity and population structure of the species. Contrasting genetic variation ( H E : 0.04-0.476) was found across populations. Peripheral populations showed lower genetic diversity, but this was dependent on population size. Large peripheral populations showed high levels of genetic diversity, whereas small central populations were less diverse. Significant isolation by distance was detected, indicating that the effect of long-distance gene flow is limited relative to that of genetic drift, probably due to high selfing rates ( F IS = 0.155-0.887), restricted pollen flow, and ineffective seed dispersal. Bayesian clustering also supported the strong population differentiation and highly fragmented structure. Contrary to expectations, the type of disperser showed no significant effect on either population genetic diversity or structure. Our results challenge the idea of an effect of periphery per se that can be mainly explained by population size, drawing attention to the need of integrative approaches considering different determinants of genetic variation. Furthermore, the very low genetic diversity observed in several small populations and the strong among-population differentiation highlight the conservation value of large populations throughout the species' range, particularly in light of climate change and direct human threats.
Role of laser beam radiance in different ceramic processing: A two wavelengths comparison
NASA Astrophysics Data System (ADS)
Shukla, Pratik; Lawrence, Jonathan
2013-12-01
Effects of laser beam radiance (brightness) of the fibre and the Nd3+:YAG laser were investigated during surface engineering of the ZrO2 and Si3N4 advanced ceramics with respect to dimensional size and microstructure of both of the advanced ceramics. Using identical process parameters, the effects of radiance of both the Nd3+:YAG laser and a fibre laser were compared thereon the two selected advanced ceramics. Both the lasers showed differences in each of the ceramics employed in relation to the microstructure and grain size as well as the dimensional size of the laser engineered tracks-notwithstanding the use of identical process parameters namely spot size; laser power; traverse speed; Gaussian beam modes; gas flow rate and gas composition as well the wavelengths. From this it was evident that the difference in the laser beam radiance between the two lasers would have had much to do with this effect. The high radiance fibre laser produced larger power per unit area in steradian when compared to the lower radiance of the Nd3+:YAG laser. This characteristically produced larger surface tracks through higher interaction temperature at the laser-ceramic interface. This in turn generated bigger melt-zones and different cooling rates which then led to the change in the microstructure of both the Si3N4 and ZrO2 advance ceramics. Owing to this, it was indicative that lasers with high radiance would result in much cheaper and cost effective laser assisted surface engineering processes, since lower laser power, faster traverse speeds, larger spot sizes could be used in comparison to lasers with lower radiance which require much slower traverse speed, higher power levels and finer spot sizes to induce the same effect thereon materials such as the advanced ceramics.
Predation and nutrients drive population declines in breeding waders.
Møller, Anders Pape; Thorup, Ole; Laursen, Karsten
2018-04-20
Allee effects are defined as a decline in per capita fitness at low population density. We hypothesized that predation reduces population size of breeding waders and thereby the efficiency of predator deterrence, while total nitrogen through its effects on primary and secondary productivity increases population size. Therefore, nest predation could have negative consequences for population size because nest failure generally results in breeding dispersal and hence reduced local population density. To test these predictions, we recorded nest predation in five species of waders for 4,745 nests during 1987-2015 at the nature reserve Tipperne, Denmark. Predation rates were generally negatively related to conspecific and heterospecific population density, but positively related to overall population density of the entire wader community. Nest predation and population density were related to ground water level, management (grazing and mowing), and nutrients. High nest predation with a time lag of one year resulted in low overall breeding population density, while high nutrient levels resulted in higher population density. These two factors accounted for 86% of the variance in population size, presumably due to effects of nest predation on emigration, while nutrient levels increased the level of vegetation cover and the abundance of food in the surrounding brackish water. These findings are consistent with the hypothesis that predation may reduce population density through negative density dependence, while total nitrogen at adjacent shallow water may increase population size. Nest predation rates were reduced by high ground water level in March, grazing by cattle and mowing that affected access to and susceptibility of nests to predators. These effects can be managed to benefit breeding waders. © 2018 by the Ecological Society of America.
Replication and contradiction of highly cited research papers in psychiatry: 10-year follow-up.
Tajika, Aran; Ogawa, Yusuke; Takeshima, Nozomi; Hayasaka, Yu; Furukawa, Toshi A
2015-10-01
Contradictions and initial overestimates are not unusual among highly cited studies. However, this issue has not been researched in psychiatry. Aims: To assess how highly cited studies in psychiatry are replicated by subsequent studies. We selected highly cited studies claiming effective psychiatric treatments in the years 2000 through 2002. For each of these studies we searched for subsequent studies with a better-controlled design, or with a similar design but a larger sample. Among 83 articles recommending effective interventions, 40 had not been subject to any attempt at replication, 16 were contradicted, 11 were found to have substantially smaller effects and only 16 were replicated. The standardised mean differences of the initial studies were overestimated by 132%. Studies with a total sample size of 100 or more tended to produce replicable results. Caution is needed when a study with a small sample size reports a large effect. © The Royal College of Psychiatrists 2015.
NASA Astrophysics Data System (ADS)
Wu, Shudong; Cheng, Liwen; Wang, Qiang
2017-08-01
The size- and dimensionality-dependence of excitonic effects and related properties in semiconductor nanostructures are theoretically studied in detail within the effective-mass approximation. When nanostructure sizes become smaller than the bulk exciton Bohr radius, excitonic effects are significantly enhanced with reducing size or dimensionality. This is as a result of quantum confinement in more directions leading to larger exciton binding energies and normalized exciton oscillator strengths. These excitonic effects originate from electron-hole Coulombic interactions, which strongly enhance the oscillator strength between the electron and hole. It is also established that the universal scaling of exciton binding energy versus the inverse of the exciton Bohr radius follows a linear scaling law. Herein, we propose a stretched exponential law for the size scaling of optical gap, which is in good agreement with the calculated data. Due to differences in the confinement dimensionality, the radiative lifetime of low-dimensional excitons becomes shorter than that of bulk excitons. The size dependence of the exciton radiative lifetimes is in good agreement with available experimental data. This strongly enhanced electron-hole exchange interaction is expected in low-dimensional structures due to enriched excitonic effects. The main difference in nanostructures compared to the bulk can be interpreted in terms of the enhanced excitonic effects induced by exciton localization. The enhanced excitonic effects are expected to be of importance in developing stable and high-efficiency nanoscale excitonic optoelectronic devices.
Grain-Size-Dependent Thermoelectric Properties of SrTiO3 3D Superlattice Ceramics
NASA Astrophysics Data System (ADS)
Zhang, Rui-zhi; Koumoto, Kunihito
2013-07-01
The thermoelectric (TE) performance of SrTiO3 (STO) 3D superlattice ceramics with 2D electron gas grain boundaries (GBs) was theoretically investigated. The grain size dependence of the power factor, lattice thermal conductivity, and ZT value were calculated by using Boltzmann transport equations. It was found that nanostructured STO ceramics with smaller grain size have larger ZT value. This is because the quantum confinement effect, energy filtering effect, and interfacial phonon scattering at GBs all become stronger with decreasing grain size, resulting in higher power factor and lower lattice thermal conductivity. These findings will aid the design of nanostructured oxide ceramics with high TE performance.
Lu, Benzhuo; Zhou, Y.C.
2011-01-01
The effects of finite particle size on electrostatics, density profiles, and diffusion have been a long existing topic in the study of ionic solution. The previous size-modified Poisson-Boltzmann and Poisson-Nernst-Planck models are revisited in this article. In contrast to many previous works that can only treat particle species with a single uniform size or two sizes, we generalize the Borukhov model to obtain a size-modified Poisson-Nernst-Planck (SMPNP) model that is able to treat nonuniform particle sizes. The numerical tractability of the model is demonstrated as well. The main contributions of this study are as follows. 1), We show that an (arbitrarily) size-modified PB model is indeed implied by the SMPNP equations under certain boundary/interface conditions, and can be reproduced through numerical solutions of the SMPNP. 2), The size effects in the SMPNP effectively reduce the densities of highly concentrated counterions around the biomolecule. 3), The SMPNP is applied to the diffusion-reaction process for the first time, to our knowledge. In the case of low substrate density near the enzyme reactive site, it is observed that the rate coefficients predicted by SMPNP model are considerably larger than those by the PNP model, suggesting both ions and substrates are subject to finite size effects. 4), An accurate finite element method and a convergent Gummel iteration are developed for the numerical solution of the completely coupled nonlinear system of SMPNP equations. PMID:21575582
Repeatability and heritability of reproductive traits in free-ranging snakes.
Brown, G P; Shine, R
2007-03-01
The underlying genetic basis of life-history traits in free-ranging animals is critical to the effects of selection on such traits, but logistical constraints mean that such data are rarely available. Our long-term ecological studies on free-ranging oviparous snakes (keelbacks, Tropidonophis mairii (Gray, 1841), Colubridae) on an Australian floodplain provide the first such data for any tropical reptile. All size-corrected reproductive traits (egg mass, clutch size, clutch mass and post-partum maternal mass) were moderately repeatable between pairs of clutches produced by 69 female snakes after intervals of 49-1152 days, perhaps because maternal body condition was similar between clutches. Parent-offspring regression of reproductive traits of 59 pairs of mothers and daughters revealed high heritability for egg mass (h2= 0.73, SE=0.24), whereas heritability for the other three traits was low (< 0.37). The estimated heritability of egg mass may be inflated by maternal effects such as differential allocation of yolk steroids to different-sized eggs. High heritability of egg size may be maintained (rather than eroded by stabilizing selection) because selection acts on a trait (hatchling size) that is determined by the interaction between egg size and incubation substrate rather than by egg size alone. Variation in clutch size was mainly because of environmental factors (h2=0.04), indicating that one component of the trade-off between egg size and clutch size is under much tighter genetic control than the other. Thus, the phenotypic trade-off between egg size and egg number in keelback snakes occurs because each female snake must allocate a finite amount of energy into eggs of a genetically determined size.
Neurocognitive dysfunction in subjects at clinical high risk for psychosis: A meta-analysis.
Zheng, Wei; Zhang, Qing-E; Cai, Dong-Bin; Ng, Chee H; Ungvari, Gabor S; Ning, Yu-Ping; Xiang, Yu-Tao
2018-05-05
Findings of neurocognitive dysfunction in subjects at Clinical High Risk for Psychosis (CHR-P) have been controversial. This meta-analysis systematically examined studies of neurocognitive functions using the MATRICS Consensus Cognitive Battery (MCCB) in CHR-P. An independent literature search of both English and Chinese databases was conducted by two reviewers. Standardized mean difference (SMD) was calculated using a random effects model to evaluate the effect size of the meta-analytic results. Six case-control studies (n = 396) comparing neurocognitive functions between CHR-P subjects (n = 197) and healthy controls (n = 199) using the MCCB were identified; 4 (66.7%) studies were rated as "high quality". Compared to healthy controls, CHR-P subjects showed impairment with large effect size in overall cognition (n = 128, SMD = -1.00, 95%CI: -1.38, -0.63, P < 0.00001; I 2 = 2%), processing speed (SMD = -1.21) and attention/vigilance (SMD = -0.83), and with medium effect size in working memory (SMD = -0.76), reasoning and problem solving (SMD = -0.71), visual (SMD = -0.68) and verbal learning (SMD = -0.67). No significant difference between CHR-P subjects and controls was found regarding social cognition (SMD = -0.33, 95%CI: -0.76, 0.10, P = 0.14; I 2 = 70%) with small effect size. Apart from social cognition, CHR-P subjects performed worse than healthy control in all MCCB cognitive domains, particularly in processing speed, attention/vigilance and working memory. Copyright © 2018 Elsevier Ltd. All rights reserved.
Impact of grain size and rock composition on simulated rock weathering
NASA Astrophysics Data System (ADS)
Israeli, Yoni; Emmanuel, Simon
2018-05-01
Both chemical and mechanical processes act together to control the weathering rate of rocks. In rocks with micrometer size grains, enhanced dissolution at grain boundaries has been observed to cause the mechanical detachment of particles. However, it remains unclear how important this effect is in rocks with larger grains, and how the overall weathering rate is influenced by the proportion of high- and low-reactivity mineral phases. Here, we use a numerical model to assess the effect of grain size on chemical weathering and chemo-mechanical grain detachment. Our model shows that as grain size increases, the weathering rate initially decreases; however, beyond a critical size no significant decrease in the rate is observed. This transition occurs when the density of reactive boundaries is less than ˜ 20 % of the entire domain. In addition, we examined the weathering rates of rocks containing different proportions of high- and low-reactivity minerals. We found that as the proportion of low-reactivity minerals increases, the weathering rate decreases nonlinearly. These simulations indicate that for all compositions, grain detachment contributes more than 36 % to the overall weathering rate, with a maximum of ˜ 50 % when high- and low-reactivity minerals are equally abundant in the rock. This occurs because selective dissolution of the high-reactivity minerals creates large clusters of low-reactivity minerals, which then become detached. Our results demonstrate that the balance between chemical and mechanical processes can create complex and nonlinear relationships between the weathering rate and lithology.
Iniesta-Sepúlveda, Marina; Rosa-Alcázar, Ana I; Sánchez-Meca, Julio; Parada-Navas, José L; Rosa-Alcázar, Ángel
2017-06-01
A meta-analysis on the efficacy of cognitive-behavior-family treatment (CBFT) on children and adolescents with obsessive-compulsive disorder (OCD) was accomplished. The purposes of the study were: (a) to estimate the effect magnitude of CBFT in ameliorating obsessive-compulsive symptoms and reducing family accommodation on pediatric OCD and (b) to identify potential moderator variables of the effect sizes. A literature search enabled us to identify 27 studies that fulfilled our selection criteria. The effect size index was the standardized pretest-postest mean change index. For obsessive-compulsive symptoms, the adjusted mean effect size for CBFT was clinically relevant and statistically significant in the posttest (d adj =1.464). For family accommodation the adjusted mean effect size was also positive and statistically significant, but in a lesser extent than for obsessive-compulsive symptoms (d adj =0.511). Publication bias was discarded as a threat against the validity of the meta-analytic results. Large heterogeneity among effect sizes was found. Better results were found when CBFT was individually applied than in group (d + =2.429 and 1.409, respectively). CBFT is effective to reduce obsessive-compulsive symptoms, but offers a limited effect for family accommodation. Additional modules must be included in CBFT to improve its effectiveness on family accommodation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of high density on spacing behaviour and reproduction in Akodon azarae: A fencing experiment
NASA Astrophysics Data System (ADS)
Ávila, Belén; Bonatto, Florencia; Priotto, José; Steinmann, Andrea R.
2016-01-01
We studied the short term spacing behavioural responses of Pampean grassland mouse (Akodon azarae) with regard to population density in four 0.25 ha enclosures (two control and two experimental) in the 2011 breeding season. Based on the hypothesis that A. azarae breeding females exhibit spacing behaviour, and breeding males show a fusion spatial response, we tested the following predictions: (1) home range size and intrasexual overlap degree of females are independent of population density values; (2) at high population density, home range size of males decreases and the intrasexual home range overlap degree increases. To determine if female reproductive success decreases at high population density, we analyzed pregnancy rate, size and weight of litters, and period until fecundation in both low and high enclosure population density. We found that both males and females varied their home range size in relation to population density. Although male home ranges were always bigger than those of females in populations with high density, home range sizes of both sexes decreased. Females kept exclusive home ranges independent of density values meanwhile males decreased home range overlap in high breeding density populations. Although females produced litters of similar size in both treatments, weight of litter, pregnant rate and period until fecundation varied in relation to population density. Our results did not support the hypothesis that at high density females of A. azarae exhibit spacing behaviour neither that males exhibit a fusion spatial response.
Identifying Effective Characteristics for Teaching in Urban and Suburban Settings
ERIC Educational Resources Information Center
Jones, Shawn Cecil
2017-01-01
Classroom size, curriculum, and student attendance are all important factors that affect student outcomes, but these factors cannot compare to the classroom teacher's influence on student academic performance. Unfortunately, highly qualified teachers are not equally effective in different school settings. Findings associated with highly effective…
Identifying Characteristics for Effective Teaching in Urban and Suburban Settings.
ERIC Educational Resources Information Center
Jones, Shawn Cecil
2017-01-01
Classroom size, curriculum, and student attendance are all important factors that affect student outcomes, but these factors cannot compare to the classroom teacher's influence on student academic performance. Unfortunately, highly qualified teachers are not equally effective in different school settings. Findings associated with highly effective…
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir; Skripnyak, Evgeniya; Skripnyak, Vladimir; Vaganova, Irina; Skripnyak, Nataliya
2013-06-01
Results of researches testify that a grain size have a strong influence on the mechanical behavior of metals and alloys. Ultrafine grained HCP and FCC metal alloys present higher values of the spall strength than a corresponding coarse grained counterparts. In the present study we investigate the effect of grain size distribution on the flow stress and strength under dynamic compression and tension of aluminium and magnesium alloys. Microstructure and grain size distribution in alloys were varied by carrying out severe plastic deformation during the multiple-pass equal channel angular pressing, cyclic constrained groove pressing, and surface mechanical attrition treatment. Tests were performed using a VHS-Instron servo-hydraulic machine. Ultra high speed camera Phantom V710 was used for photo registration of deformation and fracture of specimens in range of strain rates from 0,01 to 1000 1/s. In dynamic regime UFG alloys exhibit a stronger decrease in ductility compared to the coarse grained material. The plastic flow of UFG alloys with a bimodal grain size distribution was highly localized. Shear bands and shear crack nucleation and growth were recorded using high speed photography.
Self-regulation and quality of life in high-functioning young adults with autism.
Dijkhuis, Renee R; Ziermans, Tim B; Van Rijn, Sophie; Staal, Wouter G; Swaab, Hanna
2017-10-01
Autism is generally associated with poor functional outcome but little is known about predictors of quality of life, especially during early adulthood. This study was conducted to assess subjective quality of life during early adulthood in high-functioning autism spectrum disorder and its relation with self-regulating abilities. Individuals with high-functioning autism spectrum disorder who progressed into post-secondary higher education ( N = 75) were compared to a typical peer control group ( N = 28) based on behavioral self-report questionnaires. The results indicated that individuals with high-functioning autism spectrum disorder reported significantly lower subjective quality of life than typical controls ( p < 0.001, effect size ( d) = 1.84). In addition, individuals with high-functioning autism spectrum disorder reported more problems with emotion processing ( p < 0.05, effect size ( d) = 0.79) and daily executive functioning ( p < 0.001, effect size ( d) = 1.29) than controls. A higher level of executive functioning problems was related to lower quality of life in the high-functioning autism spectrum disorder group, but no significant relation between level of emotion processing and subjective quality of life became apparent in the regression analysis. Our findings show that even in high-functioning young adults with autism, executive functioning, emotion processing, and subjective quality of life are low compared to typically developing peers. Furthermore, these results emphasize the importance of targeting executive functioning problems in individuals with autism to improve subjective quality of life.
Chan, W I; Liao, P H; Lo, K V
2010-11-01
Using the microwave-enhanced advanced oxidation process (MW/H2O2-AOP), the pH and irradiation intensity on waste activated sludge samples were investigated to provide insight to the athermal effects on nutrients release, solids destruction, particle size distribution and dewaterability, and to demonstrate their interrelationships. Carbonaceous matters and nutrients released into solution depended on the irradiation intensity and time. Higher irradiation levels tended to be more effective in the solubilization of nutrients and had more pronounced effects in the dewaterability of sludge. In terms of particle size distribution, detectable particles increased in size for treatments in acidic conditions, while the dewaterability of treated sludge was improved. In treatments under neutral and alkaline conditions, the particle size range increased, with more small particles formed, thereby significantly deteriorating the dewaterability of sludge treated in alkaline conditions. The best results for the solubilization of nutrients were in alkaline conditions with high irradiation power, but dewaterability of the sludge was compromised. Sludge treatment with the MW/H2O2-AOP in acidic conditions with high irradiation power yielded the best dewaterable sludge and significant nutrient solubilization; therefore, it is the recommended treatment condition for activated sludge.
The research on the mean shift algorithm for target tracking
NASA Astrophysics Data System (ADS)
CAO, Honghong
2017-06-01
The traditional mean shift algorithm for target tracking is effective and high real-time, but there still are some shortcomings. The traditional mean shift algorithm is easy to fall into local optimum in the tracking process, the effectiveness of the method is weak when the object is moving fast. And the size of the tracking window never changes, the method will fail when the size of the moving object changes, as a result, we come up with a new method. We use particle swarm optimization algorithm to optimize the mean shift algorithm for target tracking, Meanwhile, SIFT (scale-invariant feature transform) and affine transformation make the size of tracking window adaptive. At last, we evaluate the method by comparing experiments. Experimental result indicates that the proposed method can effectively track the object and the size of the tracking window changes.
Kierat, Justyna; Szentgyörgyi, Hajnalka; Czarnoleski, Marcin; Woyciechowski, Michał
2017-08-01
Many ectotherms grow larger at lower temperatures than at higher temperatures. This pattern, known as the temperature-size rule, is often accompanied by plastic changes in cell size, which can mechanistically explain the thermal dependence of body size. However, the theory predicts that thermal plasticity in cell size has adaptive value for ectotherms because there are different optimal cell-membrane-to-cell-volume ratios at different temperatures. At high temperatures, the demand for oxygen is high; therefore, a large membrane surface of small cells is beneficial because it allows high rates of oxygen transport into the cell. The metabolic costs of maintaining membranes become more important at low temperatures than at high temperatures, which favours large cells. In a field experiment, we manipulated the thermal conditions inside nests of the red mason bee, a solitary bee that does not regulate the temperature in its nests and whose larvae develop under ambient conditions. We assessed the effect of temperature on body mass and ommatidia size (our proxy of cell size). The body and cell sizes decreased in response to a higher mean temperature and greater temperature fluctuations. This finding is in accordance with predictions of the temperature-size rule and optimal cell size theory and suggests that both the mean temperature and the magnitude of temperature fluctuations are important for determining body and cell sizes. Additionally, we observed that males of the red mason bee tend to have larger ommatidia in relation to their body mass than females, which might play an important role during mating flight. Copyright © 2016 Elsevier Ltd. All rights reserved.
Trattner, Sigal; Cheng, Bin; Pieniazek, Radoslaw L.; Hoffmann, Udo; Douglas, Pamela S.; Einstein, Andrew J.
2014-01-01
Purpose: Effective dose (ED) is a widely used metric for comparing ionizing radiation burden between different imaging modalities, scanners, and scan protocols. In computed tomography (CT), ED can be estimated by performing scans on an anthropomorphic phantom in which metal-oxide-semiconductor field-effect transistor (MOSFET) solid-state dosimeters have been placed to enable organ dose measurements. Here a statistical framework is established to determine the sample size (number of scans) needed for estimating ED to a desired precision and confidence, for a particular scanner and scan protocol, subject to practical limitations. Methods: The statistical scheme involves solving equations which minimize the sample size required for estimating ED to desired precision and confidence. It is subject to a constrained variation of the estimated ED and solved using the Lagrange multiplier method. The scheme incorporates measurement variation introduced both by MOSFET calibration, and by variation in MOSFET readings between repeated CT scans. Sample size requirements are illustrated on cardiac, chest, and abdomen–pelvis CT scans performed on a 320-row scanner and chest CT performed on a 16-row scanner. Results: Sample sizes for estimating ED vary considerably between scanners and protocols. Sample size increases as the required precision or confidence is higher and also as the anticipated ED is lower. For example, for a helical chest protocol, for 95% confidence and 5% precision for the ED, 30 measurements are required on the 320-row scanner and 11 on the 16-row scanner when the anticipated ED is 4 mSv; these sample sizes are 5 and 2, respectively, when the anticipated ED is 10 mSv. Conclusions: Applying the suggested scheme, it was found that even at modest sample sizes, it is feasible to estimate ED with high precision and a high degree of confidence. As CT technology develops enabling ED to be lowered, more MOSFET measurements are needed to estimate ED with the same precision and confidence. PMID:24694150
Effect of shape and size of lung and chest wall on stresses in the lung
NASA Technical Reports Server (NTRS)
Vawter, D. L.; Matthews, F. L.; West, J. B.
1975-01-01
To understand better the effect of shape and size of lung and chest wall on the distribution of stresses, strains, and surface pressures, we analyzed a theoretical model using the technique of finite elements. First we investigated the effects of changing the chest wall shape during expansion, and second we studied lungs of a variety of inherent shapes and sizes. We found that, in general, the distributions of alveolar size, mechanical stresses, and surface pressures in the lungs were dominated by the weight of the lung and that changing the shape of the lung or chest wall had relatively little effect. Only at high states of expansion where the lung was very stiff did changing the shape of the chest wall cause substantial changes. Altering the inherent shape of the lung generally had little effect but the topographical differences in stresses and surface pressures were approximately proportional to lung height. The results are generally consistent with those found in the dog by Hoppin et al (1969).
NASA Astrophysics Data System (ADS)
Liliawati, W.; Purwanto; Zulfikar, A.; Kamal, R. N.
2018-05-01
This study aims to examine the effectiveness of the use of teaching materials based on multiple intelligences on the understanding of high school students’ material on the theme of global warming. The research method used is static-group pretest-posttest design. Participants of the study were 60 high school students of XI class in one of the high schools in Bandung. Participants were divided into two classes of 30 students each for the experimental class and control class. The experimental class uses compound-based teaching materials while the experimental class does not use a compound intelligence-based teaching material. The instrument used is a test of understanding of the concept of global warming with multiple choices form amounted to 15 questions and 5 essay items. The test is given before and after it is applied to both classes. Data analysis using N-gain and effect size. The results obtained that the N-gain for both classes is in the medium category and the effectiveness of the use of teaching materials based on the results of effect-size test results obtained in the high category.
Zhu, Wei; Zhou, Xiaohua; Chen, Huaimin; Gao, Li; Xiao, Man; Li, Ming
2016-09-15
Correlations between Microcystis colony size and environmental factors were investigated in Meiliang Bay and Gonghu Bay of Lake Taihu (China) from 2011 to 2013. Compared with Gonghu Bay, both nutrient concentrations and Microcystis colony sizes were greater in Meiliang Bay. The median colony size (D50: 50% of the total mass of particles smaller than this size) increased from April to August and then decreased until November. In both bays, the average D50 of Microcystis colonies were <100 μm in spring, but colonies within moderate-size (100-500 μm) dominated in summer. The differences in colony size in Meiliang Bay and Gonghu Bay were probably due to horizontal drift driven by the prevailing south wind in summer. Redundancy analysis (RDA) of field data indicated that colony size was negatively related to nutrient concentrations but positively related to air temperature, suggesting that low nutrient concentrations and high air temperature promoted formation of large colonies. To validate the field survey, Microcystis colonies collected from Lake Taihu were cultured at different temperatures (15, 20, 25 and 30 °C) under high and low nutrient concentrations for 9 days. The size of Microcystis colonies significantly decreased when temperature was above 20 °C but had no significant change at 15 °C. The differences in temperature effects on colony formation shown from field and laboratory suggested that the larger colonies in summer were probably due to the longer growth period rather than the higher air temperature and light intensity. In addition, colony size decreased more significantly at high nutrient levels. Therefore, it could be concluded that high nutrient concentration and temperature may alleviate formation of large colonies of Microcystis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Droulers, Olivier; Lacoste-Badie, Sophie; Lajante, Mathieu
2017-01-01
The first aim of this research was to assess the effectiveness, in terms of emotional and behavioral reactions, of moderately vs. highly TVWs (Threatening Visual Warnings) displayed on tobacco packs. Given the key role that emotional reactions play in explaining the effect of TVWs on behaviors, psychophysiological and self-report methods were used–for the first time in this context–to measure the emotions provoked by TVWs. The second aim of this research was to determine whether increasing the size of warnings, and their display on plain packaging (compared with branded packaging) would improve their effectiveness. A within-subjects experiment was conducted. Three variables were manipulated: health warning threat level (high vs. moderate), image size (40% vs. 75%) and pack type (plain vs. branded). A convenience sample of 48 French daily smokers participated. They were exposed to eight different packs of cigarettes in a research lab at the University of Rennes. Smokers’ emotions and behavioral intentions were recorded through self-reports. Emotions were also evaluated using psychophysiological measurements: electrodermal activity and facial electromyography. The results revealed that TVWs with a high threat level are the most effective in increasing negative emotions (fear, disgust, valence, arousal) and behavioral intentions conducive to public health (desire to quit, etc.). They also highlight the appeal of increasing the size of the warnings and displaying them on plain packs, because this influences emotions, which is the first step toward behavioral change. Increasing the threat level of TVWs from moderate to high seems beneficial for public health. Our results also confirm the relevance of recent governmental decisions to adopt plain packaging and larger TVWs (in the UK, France, Ireland, Canada, New Zealand, Hungary, etc.). PMID:28910317
Droulers, Olivier; Gallopel-Morvan, Karine; Lacoste-Badie, Sophie; Lajante, Mathieu
2017-01-01
The first aim of this research was to assess the effectiveness, in terms of emotional and behavioral reactions, of moderately vs. highly TVWs (Threatening Visual Warnings) displayed on tobacco packs. Given the key role that emotional reactions play in explaining the effect of TVWs on behaviors, psychophysiological and self-report methods were used-for the first time in this context-to measure the emotions provoked by TVWs. The second aim of this research was to determine whether increasing the size of warnings, and their display on plain packaging (compared with branded packaging) would improve their effectiveness. A within-subjects experiment was conducted. Three variables were manipulated: health warning threat level (high vs. moderate), image size (40% vs. 75%) and pack type (plain vs. branded). A convenience sample of 48 French daily smokers participated. They were exposed to eight different packs of cigarettes in a research lab at the University of Rennes. Smokers' emotions and behavioral intentions were recorded through self-reports. Emotions were also evaluated using psychophysiological measurements: electrodermal activity and facial electromyography. The results revealed that TVWs with a high threat level are the most effective in increasing negative emotions (fear, disgust, valence, arousal) and behavioral intentions conducive to public health (desire to quit, etc.). They also highlight the appeal of increasing the size of the warnings and displaying them on plain packs, because this influences emotions, which is the first step toward behavioral change. Increasing the threat level of TVWs from moderate to high seems beneficial for public health. Our results also confirm the relevance of recent governmental decisions to adopt plain packaging and larger TVWs (in the UK, France, Ireland, Canada, New Zealand, Hungary, etc.).
Vermeer, W M; Steenhuis, I H M; Poelman, M P
2014-01-01
In the past decades, portion sizes of high-caloric foods and drinks have increased and can be considered an important environmental obesogenic factor. This paper describes a research project in which the feasibility and effectiveness of environmental interventions targeted at portion size was evaluated. The studies that we conducted revealed that portion size labeling, offering a larger variety of portion sizes, and proportional pricing (that is, a comparable price per unit regardless of the size) were considered feasible to implement according to both consumers and point-of-purchase representatives. Studies into the effectiveness of these interventions demonstrated that the impact of portion size labeling on the (intended) consumption of soft drinks was, at most, modest. Furthermore, the introduction of smaller portion sizes of hot meals in worksite cafeterias in addition to the existing size stimulated a moderate number of consumers to replace their large meals by a small meal. Elaborating on these findings, we advocate further research into communication and marketing strategies related to portion size interventions; the development of environmental portion size interventions as well as educational interventions that improve people's ability to deal with a ‘super-sized' environment; the implementation of regulation with respect to portion size labeling, and the use of nudges to stimulate consumers to select healthier portion sizes. PMID:25033959
Vermeer, W M; Steenhuis, I H M; Poelman, M P
2014-07-01
In the past decades, portion sizes of high-caloric foods and drinks have increased and can be considered an important environmental obesogenic factor. This paper describes a research project in which the feasibility and effectiveness of environmental interventions targeted at portion size was evaluated. The studies that we conducted revealed that portion size labeling, offering a larger variety of portion sizes, and proportional pricing (that is, a comparable price per unit regardless of the size) were considered feasible to implement according to both consumers and point-of-purchase representatives. Studies into the effectiveness of these interventions demonstrated that the impact of portion size labeling on the (intended) consumption of soft drinks was, at most, modest. Furthermore, the introduction of smaller portion sizes of hot meals in worksite cafeterias in addition to the existing size stimulated a moderate number of consumers to replace their large meals by a small meal. Elaborating on these findings, we advocate further research into communication and marketing strategies related to portion size interventions; the development of environmental portion size interventions as well as educational interventions that improve people's ability to deal with a 'super-sized' environment; the implementation of regulation with respect to portion size labeling, and the use of nudges to stimulate consumers to select healthier portion sizes.
Noise impact of advanced high lift systems
NASA Technical Reports Server (NTRS)
Elmer, Kevin R.; Joshi, Mahendra C.
1995-01-01
The impact of advanced high lift systems on aircraft size, performance, direct operating cost and noise were evaluated for short-to-medium and medium-to-long range aircraft with high bypass ratio and very high bypass ratio engines. The benefit of advanced high lift systems in reducing noise was found to be less than 1 effective-perceived-noise decibel level (EPNdB) when the aircraft were sized to minimize takeoff gross weight. These aircraft did, however, have smaller wings and lower engine thrusts for the same mission than aircraft with conventional high lift systems. When the advanced high lift system was implemented without reducing wing size and simultaneously using lower flap angles that provide higher L/D at approach a cumulative noise reduction of as much as 4 EPNdB was obtained. Comparison of aircraft configurations that have similar approach speeds showed cumulative noise reduction of 2.6 EPNdB that is purely the result of incorporating advanced high lift system in the aircraft design.
For Video Games, Bad News Is Good News: News Reporting of Violent Video Game Studies.
Copenhaver, Allen; Mitrofan, Oana; Ferguson, Christopher J
2017-12-01
News coverage of video game violence studies has been critiqued for focusing mainly on studies supporting negative effects and failing to report studies that did not find evidence for such effects. These concerns were tested in a sample of 68 published studies using child and adolescent samples. Contrary to our hypotheses, study effect size was not a predictor of either newspaper coverage or publication in journals with a high-impact factor. However, a relationship between poorer study quality and newspaper coverage approached significance. High-impact journals were not found to publish studies with higher quality. Poorer quality studies, which tended to highlight negative findings, also received more citations in scholarly sources. Our findings suggest that negative effects of violent video games exposure in children and adolescents, rather than large effect size or high methodological quality, increase the likelihood of a study being cited in other academic publications and subsequently receiving news media coverage.
Brown, R C; Witt, A; Fegert, J M; Keller, F; Rassenhofer, M; Plener, P L
2017-08-01
Children and adolescents are a vulnerable group to develop post-traumatic stress symptoms after natural or man-made disasters. In the light of increasing numbers of refugees under the age of 18 years worldwide, there is a significant need for effective treatments. This meta-analytic review investigates specific psychosocial treatments for children and adolescents after man-made and natural disasters. In a systematic literature search using MEDLINE, EMBASE and PsycINFO, as well as hand-searching existing reviews and contacting professional associations, 36 studies were identified. Random- and mixed-effects models were applied to test for average effect sizes and moderating variables. Overall, treatments showed high effect sizes in pre-post comparisons (Hedges' g = 1.34) and medium effect sizes as compared with control conditions (Hedges' g = 0.43). Treatments investigated by at least two studies were cognitive-behavioural therapy (CBT), eye movement desensitization and reprocessing (EMDR), narrative exposure therapy for children (KIDNET) and classroom-based interventions, which showed similar effect sizes. However, studies were very heterogenic with regard to their outcomes. Effects were moderated by type of profession (higher level of training leading to higher effect sizes). A number of effective psychosocial treatments for child and adolescent survivors of disasters exist. CBT, EMDR, KIDNET and classroom-based interventions can be equally recommended. Although disasters require immediate reactions and improvisation, future studies with larger sample sizes and rigorous methodology are needed.
Effects of Rotor Blade Scaling on High-Pressure Turbine Unsteady Loading
NASA Astrophysics Data System (ADS)
Lastiwka, Derek; Chang, Dongil; Tavoularis, Stavros
2013-03-01
The present work is a study of the effects of rotor blade scaling of a single-stage high pressure turbine on the time-averaged turbine performance and on parameters that influence vibratory stresses on the rotor blades and stator vanes. Three configurations have been considered: a reference case with 36 rotor blades and 24 stator vanes, a case with blades upscaled by 12.5%, and a case with blades downscaled by 10%. The present results demonstrate that blade scaling effects were essentially negligible on the time-averaged turbine performance, but measurable on the unsteady surface pressure fluctuations, which were intensified as blade size was increased. In contrast, blade torque fluctuations increased significantly as blade size decreased. Blade scaling effects were also measurable on the vanes.
Investigating Created Properties of Nanoparticles Based Drilling Mud
NASA Astrophysics Data System (ADS)
Ghasemi, Nahid; Mirzaee, Mojtaba; Aghayari, Reza; Maddah, Heydar
2018-05-01
The success of drilling operations is heavily dependent on the drilling fluid. Drilling fluids cool down and lubricate the drill bit, remove cuttings, prevent formation damage, suspend cuttings and also cake off the permeable formation, thus retarding the passage of fluid into the formation. Typical micro or macro sized loss circulation materials (LCM) show limited success, especially in formations dominated by micropores, due to their relatively large sizes. Due to unique characteristics of nanoparticles such as their size and high surface area to volume ratio, they play an effective role in solving problems associated with the drilling fluid. In this study, we investigate the effect of adding Al2O3 and TiO2 nanoparticles into the drilling mud. Al2O3 and TiO2 nanoparticles were used in 20 and 60 nm of size and 0.05 wt% in concentration. Investigating the effects of temperature and pressure has shown that an increase in temperature can reduce the drilling mud rheological properties such as plastic viscosity, while an increase in pressure can enhance these properties. Also, the effects of pressure in high temperatures were less than those in low temperatures. Studying the effects of adding nanoparticles has shown that they can reduce the drilling mud rheological properties. Moreover, they can increase gel strength, reduce capillary suction time and decrease formation damage.
Balcells, Cristina; Pastor, Isabel; Vilaseca, Eudald; Madurga, Sergio; Cascante, Marta; Mas, Francesc
2014-04-17
Enzyme kinetics studies have been usually designed as dilute solution experiments, which differ substantially from in vivo conditions. However, cell cytosol is crowded with a high concentration of molecules having different shapes and sizes. The consequences of such crowding in enzymatic reactions remain unclear. The aim of the present study is to understand the effect of macromolecular crowding produced by dextran of different sizes and at diverse concentrations in the well-known reaction of oxidation of NADH by pyruvate catalyzed by L-lactate dehydrogenase (LDH). Our results indicate that the reaction rate is determined by both the occupied volume and the relative size of dextran obstacles with respect to the enzyme present in the reaction. Moreover, we analyzed the influence of macromolecular crowding on the Michaelis-Menten constants, vmax and Km. The obtained results show that only high concentrations and large sizes of dextran reduce both constants suggesting a mixed activation-diffusion control of this enzymatic reaction due to the dextran crowding action. From our knowledge, this is the first experimental study that depicts mixed activation-diffusion control in an enzymatic reaction due to the effect of crowding.
Conn, Vicki S; Ruppar, Todd M; Chase, Jo-Ana D; Enriquez, Maithe; Cooper, Pamela S
2015-12-01
This systematic review applied meta-analytic procedures to synthesize medication adherence interventions that focus on adults with hypertension. Comprehensive searching located trials with medication adherence behavior outcomes. Study sample, design, intervention characteristics, and outcomes were coded. Random-effects models were used in calculating standardized mean difference effect sizes. Moderator analyses were conducted using meta-analytic analogues of ANOVA and regression to explore associations between effect sizes and sample, design, and intervention characteristics. Effect sizes were calculated for 112 eligible treatment-vs.-control group outcome comparisons of 34,272 subjects. The overall standardized mean difference effect size between treatment and control subjects was 0.300. Exploratory moderator analyses revealed interventions were most effective among female, older, and moderate- or high-income participants. The most promising intervention components were those linking adherence behavior with habits, giving adherence feedback to patients, self-monitoring of blood pressure, using pill boxes and other special packaging, and motivational interviewing. The most effective interventions employed multiple components and were delivered over many days. Future research should strive for minimizing risks of bias common in this literature, especially avoiding self-report adherence measures.
Wu, Mingyan; Sabisch, Julian E C; Song, Xiangyun; Minor, Andrew M; Battaglia, Vincent S; Liu, Gao
2013-01-01
To address the significant challenges associated with large volume change of micrometer-sized Si particles as high-capacity anode materials for lithium-ion batteries, we demonstrated a simple but effective strategy: using Si nanoparticles as a structural and conductive additive, with micrometer-sized Si as the main lithium-ion storage material. The Si nanoparticles connected into the network structure in situ during the charge process, to provide electronic connectivity and structure stability for the electrode. The resulting electrode showed a high specific capacity of 2500 mAh/g after 30 cycles with high initial Coulombic efficiency (73%) and good rate performance during electrochemical lithiation and delithiation: between 0.01 and 1 V vs Li/Li(+).
Hypothesis testing for band size detection of high-dimensional banded precision matrices.
An, Baiguo; Guo, Jianhua; Liu, Yufeng
2014-06-01
Many statistical analysis procedures require a good estimator for a high-dimensional covariance matrix or its inverse, the precision matrix. When the precision matrix is banded, the Cholesky-based method often yields a good estimator of the precision matrix. One important aspect of this method is determination of the band size of the precision matrix. In practice, crossvalidation is commonly used; however, we show that crossvalidation not only is computationally intensive but can be very unstable. In this paper, we propose a new hypothesis testing procedure to determine the band size in high dimensions. Our proposed test statistic is shown to be asymptotically normal under the null hypothesis, and its theoretical power is studied. Numerical examples demonstrate the effectiveness of our testing procedure.
Spectroscopy of metal "superatom" nanoclusters and high-Tc superconducting pairing
NASA Astrophysics Data System (ADS)
Halder, Avik; Kresin, Vitaly V.
2015-12-01
A unique property of metal nanoclusters is the "superatom" shell structure of their delocalized electrons. The electronic shell levels are highly degenerate and therefore represent sharp peaks in the density of states. This can enable exceptionally strong electron pairing in certain clusters composed of tens to hundreds of atoms. In a finite system, such as a free nanocluster or a nucleus, pairing is observed most clearly via its effect on the energy spectrum of the constituent fermions. Accordingly, we performed a photoionization spectroscopy study of size-resolved aluminum nanoclusters and observed a rapid rise in the near-threshold density of states of several clusters (A l37 ,44 ,66 ,68 ) with decreasing temperature. The characteristics of this behavior are consistent with compression of the density of states by a pairing transition into a high-temperature superconducting state with Tc≳100 K. This value exceeds that of bulk aluminum by two orders of magnitude. These results highlight the potential of novel pairing effects in size-quantized systems and the possibility to attain even higher critical temperatures by optimizing the particles' size and composition. As a new class of high-temperature superconductors, such metal nanocluster particles are promising building blocks for high-Tc materials, devices, and networks.
Controlling chitosan-based encapsulation for protein and vaccine delivery
Koppolu, Bhanu prasanth; Smith, Sean G.; Ravindranathan, Sruthi; Jayanthi, Srinivas; Kumar, Thallapuranam K.S.; Zaharoff, David A.
2014-01-01
Chitosan-based nano/microencapsulation is under increasing investigation for the delivery of drugs, biologics and vaccines. Despite widespread interest, the literature lacks a defined methodology to control chitosan particle size and drug/protein release kinetics. In this study, the effects of precipitation-coacervation formulation parameters on chitosan particle size, protein encapsulation efficiency and protein release were investigated. Chitosan particle sizes, which ranged from 300 nm to 3 μm, were influenced by chitosan concentration, chitosan molecular weight and addition rate of precipitant salt. The composition of precipitant salt played a significant role in particle formation with upper Hofmeister series salts containing strongly hydrated anions yielding particles with a low polydispersity index (PDI) while weaker anions resulted in aggregated particles with high PDIs. Sonication power had minimal effect on mean particle size, however, it significantly reduced polydispersity. Protein loading efficiencies in chitosan nano/microparticles, which ranged from 14.3% to 99.2%, was inversely related to the hydration strength of precipitant salts, protein molecular weight and directly related to the concentration and molecular weight of chitosan. Protein release rates increased with particle size and were generally inversely related to protein molecular weight. This study demonstrates that chitosan nano/microparticles with high protein loading efficiencies can be engineered with well-defined sizes and controllable release kinetics through manipulation of specific formulation parameters. PMID:24560459
He, Guoai; Tan, Liming; Liu, Feng; Huang, Lan; Huang, Zaiwang; Jiang, Liang
2017-01-01
Controlling grain size in polycrystalline nickel base superalloy is vital for obtaining required mechanical properties. Typically, a uniform and fine grain size is required throughout forging process to realize the superplastic deformation. Strain amount occupied a dominant position in manipulating the dynamic recrystallization (DRX) process and regulating the grain size of the alloy during hot forging. In this article, the high-throughput double cone specimen was introduced to yield wide-range strain in a single sample. Continuous variations of effective strain ranging from 0.23 to 1.65 across the whole sample were achieved after reaching a height reduction of 70%. Grain size is measured to be decreased from the edge to the center of specimen with increase of effective strain. Small misorientation tended to generate near the grain boundaries, which was manifested as piled-up dislocation in micromechanics. After the dislocation density reached a critical value, DRX progress would be initiated at higher deformation region, leading to the refinement of grain size. During this process, the transformations from low angle grain boundaries (LAGBs) to high angle grain boundaries (HAGBs) and from subgrains to DRX grains are found to occur. After the accomplishment of DRX progress, the neonatal grains are presented as having similar orientation inside the grain boundary. PMID:28772514
Effects of multiple organic ligands on size uniformity and optical properties of ZnSe quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archana, J., E-mail: archana.jayaram@yahoo.com; Navaneethan, M.; Hayakawa, Y.
2012-08-15
Highlights: ► Highly monodispersed ZnSe quantum dots have been synthesized by wet chemical route. ► Strong quantum confinement effect have been observed in ∼ 4 nm ZnSe quantum dots. ► Enhanced ultraviolet near band emission have been obtained using long chain polymer. -- Abstract: The effects of multi-ligands on the formation and optical transitions of ZnSe quantum dots have been investigated. The dots are synthesized using 3-mercapto-1,2-propanediol and polyvinylpyrrolidone ligands, and have been characterized by X-ray diffraction, transmission electron microscopy (TEM), UV–visible absorption spectroscopy, photoluminescence spectroscopy, and Fourier transform infrared spectroscopy. TEM reveals high monodispersion with an average size ofmore » 4 nm. Polymer-stabilized, organic ligand-passivated ZnSe quantum dots exhibit strong UV emission at 326 nm and strong quantum confinement in the UV–visible absorption spectrum. Uniform size and suppressed surface trap emission are observed when the polymer ligand is used. The possible growth mechanism is discussed.« less
Does boat traffic cause displacement of fish in estuaries?
Becker, Alistair; Whitfield, Alan K; Cowley, Paul D; Järnegren, Johanna; Næsje, Tor F
2013-10-15
Estuaries are increasingly under threat from a variety of human impacts. Recreational and commercial boat traffic in urban areas may represent a significant disturbance to fish populations and have particularly adverse effects in spatially restricted systems such as estuaries. We examined the effects of passing boats on the abundance of different sized fish within the main navigation channel of an estuary using high resolution sonar (DIDSON). Both the smallest (100-300 mm) and largest (>501 mm) size classes had no change in their abundance following the passage of boats. However, a decrease in abundance of mid-sized fish (301-500 mm) occurred following the passage of boats. This displacement may be attributed to a number of factors including noise, bubbles and the rapidly approaching object of the boat itself. In highly urbanised estuarine systems, regular displacement by boat traffic has the potential to have major negative population level effects on fish assemblages. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of Dark Energy Perturbation on Cosmic Voids Formation
NASA Astrophysics Data System (ADS)
Endo, Takao; Nishizawa, Atsushi J.; Ichiki, Kiyotomo
2018-05-01
In this paper, we present the effects of dark energy perturbation on the formation and abundance of cosmic voids. We consider dark energy to be a fluid with a negative pressure characterised by a constant equation of state w and speed of sound c_s^2. By solving fluid equations for two components, namely, dark matter and dark energy fluids, we quantify the effects of dark energy perturbation on the sizes of top-hat voids. We also explore the effects on the size distribution of voids based on the excursion set theory. We confirm that dark energy perturbation negligibly affects the size evolution of voids; c_s^2=0 varies the size only by 0.1% as compared to the homogeneous dark energy model. We also confirm that dark energy perturbation suppresses the void size when w < -1 and enhances the void size when w > -1 (Basse et al. 2011). In contrast to the negligible impact on the size, we find that the size distribution function on scales larger than 10 Mpc/h highly depends on dark energy perturbation; compared to the homogeneous dark energy model, the number of large voids of radius 30Mpc is 25% larger for the model with w = -0.9 and c_s^2=0 while they are 20% less abundant for the model with w = -1.3 and c_s^2=0.
Booksmythe, Isobel; Mautz, Brian; Davis, Jacqueline; Nakagawa, Shinichi; Jennions, Michael D
2017-02-01
Females can benefit from mate choice for male traits (e.g. sexual ornaments or body condition) that reliably signal the effect that mating will have on mean offspring fitness. These male-derived benefits can be due to material and/or genetic effects. The latter include an increase in the attractiveness, hence likely mating success, of sons. Females can potentially enhance any sex-biased benefits of mating with certain males by adjusting the offspring sex ratio depending on their mate's phenotype. One hypothesis is that females should produce mainly sons when mating with more attractive or higher quality males. Here we perform a meta-analysis of the empirical literature that has accumulated to test this hypothesis. The mean effect size was small (r = 0.064-0.095; i.e. explaining <1% of variation in offspring sex ratios) but statistically significant in the predicted direction. It was, however, not robust to correction for an apparent publication bias towards significantly positive results. We also examined the strength of the relationship using different indices of male attractiveness/quality that have been invoked by researchers (ornaments, behavioural displays, female preference scores, body condition, male age, body size, and whether a male is a within-pair or extra-pair mate). Only ornamentation and body size significantly predicted the proportion of sons produced. We obtained similar results regardless of whether we ran a standard random-effects meta-analysis, or a multi-level, Bayesian model that included a correction for phylogenetic non-independence. A moderate proportion of the variance in effect sizes (51.6-56.2%) was due to variation that was not attributable to sampling error (i.e. sample size). Much of this non-sampling error variance was not attributable to phylogenetic effects or high repeatability of effect sizes among species. It was approximately equally attributable to differences (occurring for unknown reasons) in effect sizes among and within studies (25.3, 22.9% of the total variance). There were no significant effects of year of publication or two aspects of study design (experimental/observational or field/laboratory) on reported effect sizes. We discuss various practical reasons and theoretical arguments as to why small effect sizes should be expected, and why there might be relatively high variation among studies. Currently, there are no species where replicated, experimental studies show that mothers adjust the offspring sex ratio in response to a generally preferred male phenotype. Ultimately, we need more experimental studies that test directly whether females produce more sons when mated to relatively more attractive males, and that provide the requisite evidence that their sons have higher mean fitness than their daughters. © 2015 Cambridge Philosophical Society.
NASA Astrophysics Data System (ADS)
Zeitlin, Bruce A.; Pyon, Taeyoung; Gregory, Eric; Scanlan, R. M.
2002-05-01
A number of configurations of a mono element internal tin conductor (MEIT) were fabricated designed to explore the effect of local ratio, niobium content, and tin content on the overall current density. Critical current densities on four configurations were measured, two to 17T. Current density as a function of filament size was also measured with filaments sizes ranging from 1.8 to 7.1 microns. A Nb60wt%Ta barrier was also explored as a means to reduce the high cost of the Tantalum barrier. The effectiveness of radial copper channels in high Nb conductors is also evaluated. Results are used to suggest designs for more optimized conductors.
Carey, Nicholas; Harianto, Januar; Byrne, Maria
2016-04-15
Body size and temperature are the major factors explaining metabolic rate, and the additional factor of pH is a major driver at the biochemical level. These three factors have frequently been found to interact, complicating the formulation of broad models predicting metabolic rates and hence ecological functioning. In this first study of the effects of warming and ocean acidification, and their potential interaction, on metabolic rate across a broad range in body size (two to three orders of magnitude difference in body mass), we addressed the impact of climate change on the sea urchin ITALIC! Heliocidaris erythrogrammain context with climate projections for southeast Australia, an ocean warming hotspot. Urchins were gradually introduced to two temperatures (18 and 23°C) and two pH levels (7.5 and 8.0), at which they were maintained for 2 months. Identical experimental trials separated by several weeks validated the fact that a new physiological steady state had been reached, otherwise known as acclimation. The relationship between body size, temperature and acidification on the metabolic rate of ITALIC! H. erythrogrammawas strikingly stable. Both stressors caused increases in metabolic rate: 20% for temperature and 19% for pH. Combined effects were additive: a 44% increase in metabolism. Body size had a highly stable relationship with metabolic rate regardless of temperature or pH. None of these diverse drivers of metabolism interacted or modulated the effects of the others, highlighting the partitioned nature of how each influences metabolic rate, and the importance of achieving a full acclimation state. Despite these increases in energetic demand there was very limited capacity for compensatory modulating of feeding rate; food consumption increased only in the very smallest specimens, and only in response to temperature, and not pH. Our data show that warming, acidification and body size all substantially affect metabolism and are highly consistent and partitioned in their effects, and for ITALIC! H. erythrogramma, near-future climate change will incur a substantial energetic cost. © 2016. Published by The Company of Biologists Ltd.
Kadić, Adnan; Palmqvist, Benny; Lidén, Gunnar
2014-01-01
Mixing is an energy demanding process which has been previously shown to affect enzymatic hydrolysis. Concentrated biomass slurries are associated with high and non-Newtonian viscosities and mixing in these systems is a complex task. Poor mixing can lead to mass and/or heat transfer problems as well as inhomogeneous enzyme distribution, both of which can cause possible yield reduction. Furthermore the stirring energy dissipation may impact the particle size which in turn may affect the enzymatic hydrolysis. The objective of the current work was to specifically quantify the effects of mixing on particle-size distribution (PSD) and relate this to changes in the enzymatic hydrolysis. Two rather different materials were investigated, namely pretreated Norway spruce and giant reed. Changes in glucan hydrolysis and PSD were measured as a function of agitation during enzymatic hydrolysis at fiber loadings of 7 or 13% water-insoluble solids (WIS). Enzymatic conversion of pretreated spruce was strongly affected by agitation rates at the higher WIS content. However, at low WIS content the agitation had almost no effect on hydrolysis. There was some effect of agitation on the hydrolysis of giant reed at high WIS loading, but it was smaller than that for spruce, and there was no measurable effect at low WIS loading. In the case of spruce, intense agitation clearly affected the PSD and resulted in a reduced mean particle size, whereas for giant reed the decrease in particle size was mainly driven by enzymatic action. However, the rate of enzymatic hydrolysis was not increased after size reduction by agitation. The impact of agitation on the enzymatic hydrolysis clearly depends not only on feedstock but also on the solids loading. Agitation was found to affect the PSD differently for the examined pretreated materials spruce and giant reed. The fact that the reduced mean particle diameter could not explain the enhanced hydrolysis rates found for spruce at an elevated agitation suggests that mass transfer at sustained high viscosities plays an important role in determining the rate of enzymatic hydrolysis.
Understanding Past Population Dynamics: Bayesian Coalescent-Based Modeling with Covariates
Gill, Mandev S.; Lemey, Philippe; Bennett, Shannon N.; Biek, Roman; Suchard, Marc A.
2016-01-01
Effective population size characterizes the genetic variability in a population and is a parameter of paramount importance in population genetics and evolutionary biology. Kingman’s coalescent process enables inference of past population dynamics directly from molecular sequence data, and researchers have developed a number of flexible coalescent-based models for Bayesian nonparametric estimation of the effective population size as a function of time. Major goals of demographic reconstruction include identifying driving factors of effective population size, and understanding the association between the effective population size and such factors. Building upon Bayesian nonparametric coalescent-based approaches, we introduce a flexible framework that incorporates time-varying covariates that exploit Gaussian Markov random fields to achieve temporal smoothing of effective population size trajectories. To approximate the posterior distribution, we adapt efficient Markov chain Monte Carlo algorithms designed for highly structured Gaussian models. Incorporating covariates into the demographic inference framework enables the modeling of associations between the effective population size and covariates while accounting for uncertainty in population histories. Furthermore, it can lead to more precise estimates of population dynamics. We apply our model to four examples. We reconstruct the demographic history of raccoon rabies in North America and find a significant association with the spatiotemporal spread of the outbreak. Next, we examine the effective population size trajectory of the DENV-4 virus in Puerto Rico along with viral isolate count data and find similar cyclic patterns. We compare the population history of the HIV-1 CRF02_AG clade in Cameroon with HIV incidence and prevalence data and find that the effective population size is more reflective of incidence rate. Finally, we explore the hypothesis that the population dynamics of musk ox during the Late Quaternary period were related to climate change. [Coalescent; effective population size; Gaussian Markov random fields; phylodynamics; phylogenetics; population genetics. PMID:27368344
NASA Astrophysics Data System (ADS)
Chauhan, Shakti Singh
Metallic interconnects and circuitry has been experiencing excessive deformation beyond their elastic limits in many applications, ranging from micro-electromechanical systems (MEMS) to flexible electronics. These broad applications are creating needs to understand the extent of strength and ductility of freestanding metallic films at scales approaching the micron and sub micron range. This work aims to elucidate the effects of microstructural constraint as well as geometric dimensional constraint on the strength and ductility of freestanding Cu films under uniaxial tension. Two types of films are tested (i) high purity rolled films of 12.5-100microm thickness and average grain sizes of 11-47microm and (ii) electroplated films of 2-50 microm thickness and average grain sizes of 1.8-5microm. Several experimental tools including residual electrical resistivity measurements, surface strain measurements and surface roughness measurements are employed to highlight the underlying deformation mechanisms leading to the observed size effects. With respect to the strength of the specimens, we find that the nature and magnitude of thickness effects is very sensitive to the average grain size. In all cases, coupled thickness and grain size effects were observed. This study shows that this observed coupling, unique to the case of freestanding specimen, arises because the observed size effects are an outcome of the size dependence of two fundamental microstructural parameters i.e. volume fraction of surface grains and grain boundary area per unit specimen volume. For films having thickness and grain sizes greater than 5microm, thickness dependent weakening is observed for a constant grain size. Reducing thickness results in an increase in the volume fraction of grains exposed to the free surface as well as a reduction in the grain boundary area per unit specimen volume. The former effect leads to a reduction in the effective microstructural constraint on the intragranular dislocation activity in individual grains. This free surface related effect is the origin of a weakening contribution to the overall specimen strength with reducing thickness. For specimens with grain sizes ˜ O (10-50microm), this effect was found to be dominating i.e. reducing thickness resulted in reducing strength. A phenomenological model employing the flow strength of surface and bulk grains is proposed to model the observed trends. For films having thickness and grain sizes smaller than 5microm, size dependent strengthening is observed for a constant grain size. At this scale, grain boundary dislocations dominate. As a consequence, thickness effects arise because grain boundary dislocation source density per unit specimen volume reduces with reducing specimen thickness. This statistical reduction in dislocation source density leads to increasing specimen strength via source starvation strengthening. Our results show that such increasing specimen strength with reducing thickness, which has only been observed previously for nanocrystalline thin films, first appears at average grain size of ˜5microm or xx smaller. The measurements showed a characteristic length scale of about 5microm, which defines the size dependent strengthening or weakening of the film. With respect to the thickness effects on ductility, it was found that both thickness and average grain size affect ductility. While prominent thickness effects persist at larger grain sizes, for specimens with grain size approaching 1microm, the loss of strain hardening ability at such fine microstructures dominates and a limiting ductility of ˜2% is seen irrespective of the thickness. The observed thickness effects on ductility were investigated via surface roughness measurements that allow the characterization of initiation and evolution of deformation heterogeneities. It was found that thickness has a strong influence on the characteristic heterogeneity of deformation. At small specimen thicknesses, the deformation was found to be highly localized i.e. widely spaced regions showing substantial thickness reduction, hence increasing the vulnerability to the onset of plastic instabilities. At larger thicknesses, however, the increasing microstructural constraint delocalizes the strain and thereby precludes the early onset of instability, leading to enhanced ductility.
NASA Astrophysics Data System (ADS)
Lim, Joohyun; Um, Ji Hyun; Lee, Kyung Jae; Yu, Seung-Ho; Kim, Young-Jae; Sung, Yung-Eun; Lee, Jin-Kyu
2016-03-01
The particle size effects of TiO2 nanoparticles (TNPs), which are composed of small crystallites, on Li ion storage are a very fundamental and important subject. However, size control of TNPs under 200 nm using a sol-gel method has been limited due to the highly reactive precursor, titanium alkoxide. In this study, TNPs with various sizes even under 100 nm are obtained by controlling the reactant concentrations in a mixed solvent of ethanol and acetonitrile. Among them, three different sizes of TNPs are prepared to compare the Li ion storage capacity, and 60 nm TNPs are found to have the best reversible capacity of 182 mA h g-1 after 50 cycles at 1 C and a remarkable rate performance of 120 mA h g-1 at 10 C. Capacity increase upon cycling is observed in the size-controlled TNPs, and the explanation of this phenomenon is proposed to the lattice volume expansion of TiO2 upon intercalation for enabling further penetration of the electrolyte into the particles' interior. Moreover, the capacity at high rates is more closely related to the surface area from Hg porosimetry analysis than from typical N2 adsorption/desorption analysis.The particle size effects of TiO2 nanoparticles (TNPs), which are composed of small crystallites, on Li ion storage are a very fundamental and important subject. However, size control of TNPs under 200 nm using a sol-gel method has been limited due to the highly reactive precursor, titanium alkoxide. In this study, TNPs with various sizes even under 100 nm are obtained by controlling the reactant concentrations in a mixed solvent of ethanol and acetonitrile. Among them, three different sizes of TNPs are prepared to compare the Li ion storage capacity, and 60 nm TNPs are found to have the best reversible capacity of 182 mA h g-1 after 50 cycles at 1 C and a remarkable rate performance of 120 mA h g-1 at 10 C. Capacity increase upon cycling is observed in the size-controlled TNPs, and the explanation of this phenomenon is proposed to the lattice volume expansion of TiO2 upon intercalation for enabling further penetration of the electrolyte into the particles' interior. Moreover, the capacity at high rates is more closely related to the surface area from Hg porosimetry analysis than from typical N2 adsorption/desorption analysis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00104a
Size effects on negative thermal expansion in cubic ScF{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, C.; Guo, X. G.; Zhang, K.
2016-07-11
Scandium trifluoride (ScF{sub 3}), adopting a cubic ReO{sub 3}-type structure at ambient pressure, undergoes a pronounced negative thermal expansion (NTE) over a wide range of temperatures (10 K–1100 K). Here, we report the size effects on the NTE properties of ScF{sub 3}. The magnitude of NTE is reduced with diminishing the crystal size. As revealed by the specific heat measurement, the low-energy phonon vibrations which account for the NTE behavior are stiffened as the crystal size decreases. With decreasing the crystal size, the peaks in high-energy X-ray pair distribution function (PDF) become broad, which cannot be illuminated by local symmetry breaking. Instead,more » the broadened PDF peaks are strongly indicative of enhanced atomic displacements which are suggested to be responsible for the stiffening of NTE-related lattice vibrations. The present study suggests that the NTE properties of ReO{sub 3}-type and other open-framework materials can be effectively adjusted by controlling the crystal size.« less
Sibling Competition & Growth Tradeoffs. Biological vs. Statistical Significance
Kramer, Karen L.; Veile, Amanda; Otárola-Castillo, Erik
2016-01-01
Early childhood growth has many downstream effects on future health and reproduction and is an important measure of offspring quality. While a tradeoff between family size and child growth outcomes is theoretically predicted in high-fertility societies, empirical evidence is mixed. This is often attributed to phenotypic variation in parental condition. However, inconsistent study results may also arise because family size confounds the potentially differential effects that older and younger siblings can have on young children’s growth. Additionally, inconsistent results might reflect that the biological significance associated with different growth trajectories is poorly understood. This paper addresses these concerns by tracking children’s monthly gains in height and weight from weaning to age five in a high fertility Maya community. We predict that: 1) as an aggregate measure family size will not have a major impact on child growth during the post weaning period; 2) competition from young siblings will negatively impact child growth during the post weaning period; 3) however because of their economic value, older siblings will have a negligible effect on young children’s growth. Accounting for parental condition, we use linear mixed models to evaluate the effects that family size, younger and older siblings have on children’s growth. Congruent with our expectations, it is younger siblings who have the most detrimental effect on children’s growth. While we find statistical evidence of a quantity/quality tradeoff effect, the biological significance of these results is negligible in early childhood. Our findings help to resolve why quantity/quality studies have had inconsistent results by showing that sibling competition varies with sibling age composition, not just family size, and that biological significance is distinct from statistical significance. PMID:26938742
Sibling Competition & Growth Tradeoffs. Biological vs. Statistical Significance.
Kramer, Karen L; Veile, Amanda; Otárola-Castillo, Erik
2016-01-01
Early childhood growth has many downstream effects on future health and reproduction and is an important measure of offspring quality. While a tradeoff between family size and child growth outcomes is theoretically predicted in high-fertility societies, empirical evidence is mixed. This is often attributed to phenotypic variation in parental condition. However, inconsistent study results may also arise because family size confounds the potentially differential effects that older and younger siblings can have on young children's growth. Additionally, inconsistent results might reflect that the biological significance associated with different growth trajectories is poorly understood. This paper addresses these concerns by tracking children's monthly gains in height and weight from weaning to age five in a high fertility Maya community. We predict that: 1) as an aggregate measure family size will not have a major impact on child growth during the post weaning period; 2) competition from young siblings will negatively impact child growth during the post weaning period; 3) however because of their economic value, older siblings will have a negligible effect on young children's growth. Accounting for parental condition, we use linear mixed models to evaluate the effects that family size, younger and older siblings have on children's growth. Congruent with our expectations, it is younger siblings who have the most detrimental effect on children's growth. While we find statistical evidence of a quantity/quality tradeoff effect, the biological significance of these results is negligible in early childhood. Our findings help to resolve why quantity/quality studies have had inconsistent results by showing that sibling competition varies with sibling age composition, not just family size, and that biological significance is distinct from statistical significance.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Wang, Yanan; Zhu, Zhenhao; Su, Jinhui
2018-05-01
A focused plenoptic camera can effectively transform angular and spatial information to yield a refocused rendered image with high resolution. However, choosing a proper patch size poses a significant problem for the image-rendering algorithm. By using a spatial frequency response measurement, a method to obtain a suitable patch size is presented. By evaluating the spatial frequency response curves, the optimized patch size can be obtained quickly and easily. Moreover, the range of depth over which images can be rendered without artifacts can be estimated. Experiments show that the results of the image rendered based on frequency response measurement are in accordance with the theoretical calculation, which indicates that this is an effective way to determine the patch size. This study may provide support to light-field image rendering.
Effects of lint cleaning on lint trash particle size distribution
USDA-ARS?s Scientific Manuscript database
Cotton quality trash measurements used today typically yield a single value for trash parameters for a lint sample (i.e. High Volume Instrument – percent area; Advanced Fiber Information System – total count, trash size, dust count, trash count, and visible foreign matter). A Cotton Trash Identifica...
Matthews, Frazer; Carlson, Thomas J.; Popper, Arthur N.
2013-01-01
The effects of loud sounds on fishes, such as those produced during impulsive pile driving, are an increasing concern in the management of aquatic ecosystems. However, very little is known about such effects. Accordingly, a High Intensity Controlled Impedance Fluid Filled wave Tube (HICI-FT) was used to investigate the effects of sounds produced by impulsive pile driving on two size groups of hybrid striped bass (white bass Morone chrysops x striped bass Morone saxatilis ). The larger striped bass (mean size 17.2 g) had more severe injuries, as well as more total injuries, than the smaller fish (mean size 1.3 g). However, fish in each size group recovered from most injuries within 10 days of exposure. A comparison with different species from previously published studies show that current results support the observation that fishes with physoclistous swim bladders are more susceptible to injury from impulsive pile driving than are fishes with physostomous swim bladders. PMID:24040089
Vermeer, Willemijn M; Alting, Esther; Steenhuis, Ingrid H M; Seidell, Jacob C
2010-02-01
Large food portion sizes are determinants of a high caloric intake, especially if they have been made attractive through value size pricing (i.e. lower unit prices for large than for small portion sizes). The purpose of the two questionnaire studies that are reported in this article was to assess the impact of proportional pricing (i.e. removing beneficial prices for large sizes) on people's portion size choices of high caloric food and drink items. Both studies employed an experimental design with a proportional pricing condition and a value size pricing condition. Study 1 was conducted in a fast food restaurant (N = 150) and study 2 in a worksite cafeteria (N = 141). Three different food products (i.e. soft drink, chicken nuggets in study 1 and a hot meal in study 2) with corresponding prices were displayed on pictures in the questionnaire. Outcome measures were consumers' intended portion size choices. No main effects of pricing were found. However, confronted with proportional pricing a trend was found for overweight fast food restaurant visitors being more likely to choose small portion sizes of chicken nuggets (OR = 4.31, P = 0.07) and less likely to choose large soft drink sizes (OR = 0.07, P = 0.04). Among a general public, proportional pricing did not reduce consumers' size choices. However, pricing strategies can help overweight and obese consumers selecting appropriate portion sizes of soft drink and high caloric snacks. More research in realistic settings with actual behaviour as outcome measure is required.
Azéma, Emilien; Linero, Sandra; Estrada, Nicolas; Lizcano, Arcesio
2017-08-01
By means of extensive contact dynamics simulations, we analyzed the effect of particle size distribution (PSD) on the strength and microstructure of sheared granular materials composed of frictional disks. The PSDs are built by means of a normalized β function, which allows the systematic investigation of the effects of both, the size span (from almost monodisperse to highly polydisperse) and the shape of the PSD (from linear to pronouncedly curved). We show that the shear strength is independent of the size span, which substantiates previous results obtained for uniform distributions by packing fraction. Notably, the shear strength is also independent of the shape of the PSD, as shown previously for systems composed of frictionless disks. In contrast, the packing fraction increases with the size span, but decreases with more pronounced PSD curvature. At the microscale, we analyzed the connectivity and anisotropies of the contacts and forces networks. We show that the invariance of the shear strength with the PSD is due to a compensation mechanism which involves both geometrical sources of anisotropy. In particular, contact orientation anisotropy decreases with the size span and increases with PSD curvature, while the branch length anisotropy behaves inversely.
Effect of power system technology and mission requirements on high altitude long endurance aircraft
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.
1994-01-01
An analysis was performed to determine how various power system components and mission requirements affect the sizing of a solar powered long endurance aircraft. The aircraft power system consists of photovoltaic cells and a regenerative fuel cell. Various characteristics of these components, such as PV cell type, PV cell mass, PV cell efficiency, fuel cell efficiency, and fuel cell specific mass, were varied to determine what effect they had on the aircraft sizing for a given mission. Mission parameters, such as time of year, flight altitude, flight latitude, and payload mass and power, were also altered to determine how mission constraints affect the aircraft sizing. An aircraft analysis method which determines the aircraft configuration, aspect ratio, wing area, and total mass, for maximum endurance or minimum required power based on the stated power system and mission parameters is presented. The results indicate that, for the power system, the greatest benefit can be gained by increasing the fuel cell specific energy. Mission requirements also substantially affect the aircraft size. By limiting the time of year the aircraft is required to fly at high northern or southern latitudes, a significant reduction in aircraft size or increase in payload capacity can be achieved.
Learning Effects in the Block Design Task: A Stimulus Parameter-Based Approach
ERIC Educational Resources Information Center
Miller, Joseph C.; Ruthig, Joelle C.; Bradley, April R.; Wise, Richard A.; Pedersen, Heather A.; Ellison, Jo M.
2009-01-01
Learning effects were assessed for the block design (BD) task, on the basis of variation in 2 stimulus parameters: perceptual cohesiveness (PC) and set size uncertainty (U). Thirty-one nonclinical undergraduate students (19 female) each completed 3 designs for each of 4 varied sets of the stimulus parameters (high-PC/high-U, high-PC/low-U,…
Sex While Intoxicated: A Meta-Analysis Comparing Heterosexual and Sexual Minority Youth
Herrick, Amy L.; Marshal, Michael P.; Smith, Helen A.; Sucato, Gina; Stall, Ron D.
2013-01-01
Background The social marginalization and victimization experienced by sexual minority youth (SMY) may lead to increased risk behaviors and higher rates of negative health outcomes compared with their heterosexual peers. Methods We conducted a meta-analysis to examine whether SMY reported higher rates of sex while intoxicated. Studies that report rates of substance use during sex in both SMY and heterosexual youth and had a mean participant age of 18 or less were included in our meta-analysis. Effect sizes were extracted from six studies (nine independent data sets and 24 effect sizes) that met study criteria and had high inter-rater reliability (.98). Results Results indicated that SMY were almost twice as likely to report sex while intoxicated as compared with heterosexual peers. A random-effects meta-analysis showed a moderate ([overall weighted effect OR]= 1.91, p < .0001) weighted effect size for the relationship between sexual orientation and the use of drugs at the time of sexual intercourse, with the mean effect size for each study ranging from 1.21 to 3.50 and individual effect sizes ranging from .35 to 9.86. Discussion Our findings highlight the need for healthcare providers to screen SMY for participation in substance use during sexual intercourse and to offer risk reduction counseling during office visits. PMID:21338904
Wu, Rongrong; Shen, Feiran; Hu, Fengxia; Wang, Jing; Bao, Lifu; Zhang, Lei; Liu, Yao; Zhao, Yingying; Liang, Feixiang; Zuo, Wenliang; Sun, Jirong; Shen, Baogen
2016-01-01
Magnetostructural coupling, which is the coincidence of crystallographic and magnetic transition, has obtained intense attention for its abundant magnetoresponse effects and promising technological applications, such as solid-state refrigeration, magnetic actuators and sensors. The hexagonal Ni2In-type compounds have attracted much attraction due to the strong magnetostructural coupling and the resulted giant negative thermal expansion and magnetocaloric effect. However, the as-prepared samples are quite brittle and naturally collapse into powders. Here, we report the effect of particle size on the magnetostructural coupling and magnetocaloric effect in the Ni2In-type Mn-Fe-Ni-Ge compound, which undergoes a large lattice change across the transformation from paramagnetic austenite to ferromagnetic martensite. The disappearance of martensitic transformation in a large amount of austenitic phase with reducing particle size, to our best knowledge, has not been reported up to now. The ratio can be as high as 40.6% when the MnNi0.8Fe0.2Ge bulk was broken into particles in the size range of 5~15 μm. Meanwhile, the remained magnetostructural transition gets wider and the magnetic hysteresis becomes smaller. As a result, the entropy change drops, but the effective cooling power RCeffe increases and attains to the maximum at particles in the range of 20~40 μm. These observations provide constructive information and highly benefit practical applications for this class of novel magnetoresponse materials. PMID:26883719
The effectiveness of stand alone air cleaners for shelter-in-place.
Ward, M; Siegel, J A; Corsi, R L
2005-04-01
Stand-alone air cleaners may be efficient for rapid removal of indoor fine particles and have potential use for shelter-in-place (SIP) strategies following acts of bioterrorism. A screening model was employed to ascertain the potential significance of size-resolved particle (0.1-2 microm) removal using portable high efficiency particle arresting (HEPA) air cleaners in residential buildings following an outdoor release of particles. The number of stand-alone air cleaners, air exchange rate, volumetric flow rate through the heating, ventilating and air-conditioning (HVAC) system, and size-resolved particle removal efficiency in the HVAC filter were varied. The effectiveness of air cleaners for SIP was evaluated in terms of the outdoor and the indoor particle concentration with air cleaner(s) relative to the indoor concentration without air cleaners. Through transient and steady-state analysis of the model it was determined that one to three portable HEPA air cleaners can be effective for SIP following outdoor bioaerosol releases, with maximum reductions in particle concentrations as high as 90% relative to conditions in which an air cleaner is not employed. The relative effectiveness of HEPA air cleaners vs. other removal mechanisms was predicted to decrease with increasing particle size, because of increasing competition by particle deposition with indoor surfaces and removal to HVAC filters. However, the effect of particle size was relatively small for most scenarios considered here. The results of a screening analysis suggest that stand-alone (portable) air cleaners that contain high efficiency particle arresting (HEPA) filters can be effective for reducing indoor fine particle concentrations in residential dwellings during outdoor releases of biological warfare agents. The relative effectiveness of stand-alone air cleaners for reducing occupants' exposure to particles of outdoor origin depends on several factors, including the type of heating, ventilating and air-conditioning (HVAC) filter, HVAC operation, building air exchange rate, particle size, and duration of elevated outdoor particle concentration. Maximum particle reductions, relative to no stand-alone air cleaners, of 90% are predicted when three stand-alone air cleaners are employed.
Modeling of electrically actuated elastomer structures for electro-optical modulation
NASA Astrophysics Data System (ADS)
Kluge, Christian; Galler, Nicole; Ditlbacher, Harald; Gerken, Martina
2011-02-01
A transparent elastomer layer sandwiched between two metal electrodes deforms upon voltage application due to electrostatic forces. This structure can be used as tunable waveguide. We investigate structures of a polydimethylsiloxane (PDMS) layer with 1-30 μm thickness and 40 nm gold electrodes. For extended electrodes the effect size may be calculated analytically as a function of the Poisson ratio. A fully coupled finite-element method (FEM) is used for calculation of the position-dependent deformation in case of structured electrodes. Different geometries are compared concerning actuation effect size and homogeneity. Structuring of the top electrode results in high effect magnitude, but non-uniform deformation concentrated at the electrode edges. Structured bottom electrodes provide good compromise between effect size and homogeneity for electrode widths of 2.75 times the elastomer thickness.
Martena, Valentina; Shegokar, Ranjita; Di Martino, Piera; Müller, Rainer H
2014-09-01
Nicergoline, a poorly soluble active pharmaceutical ingredient, possesses vaso-active properties which causes peripheral and central vasodilatation. In this study, nanocrystals of nicergoline were prepared in an aqueous solution of polysorbate 80 (nanosuspension) by using four different laboratory scale size reduction techniques: high pressure homogenization (HPH), bead milling (BM) and combination techniques (high pressure homogenization followed by bead milling HPH + BM, and bead milling followed by high pressure homogenization BM + HPH). Nanocrystals were investigated regarding to their mean particles size, zeta potential and particle dissolution. A short term physical stability study on nanocrystals stored at three different temperatures (4, 20 and 40 °C) was performed to evaluate the tendency to change in particle size, aggregation and zeta potential. The size reduction technique and the process parameters like milling time, number of homogenization cycles and pressure greatly affected the size of nanocrystals. Among the techniques used, the combination techniques showed superior and consistent particle size reduction compared to the other two methods, HPH + BM and BM + HPH giving nanocrystals of a mean particle size of 260 and 353 nm, respectively. The particle dissolution was increased for any nanocrystals samples, but it was particularly increased by HPH and combination techniques. Independently to the production method, nicergoline nanocrystals showed slight increase in particle size over the time, but remained below 500 nm at 20 °C and refrigeration conditions.
Heiman, Johanna; Tajarobi, Farhad; Gururajan, Bindhumadhavan; Juppo, Anne; Abrahmsén-Alami, Susanna
2015-04-01
The present study shows that roller compaction (RC) can successfully be used as a granulation method to prepare hydroxypropyl methylcellulose (HPMC)-based extended release matrix tablets containing a high drug load, both for materials deforming mainly by fragmentation (paracetamol) as for those having mainly plastic deformation (ibuprofen). The combined effect of RC process variables and composition on the manufacturability of HPMC tablets was investigated. Standard wet granulation grade HPMC was compared with a larger particle size direct compressible HPMC grade. Higher roll pressure was found to result in larger paracetamol granules and narrower granule particle size distributions, especially for formulations containing smaller size HPMC. However, for ibuprofen, no clear effect of roll pressure was observed. High roll pressure also resulted in denser ribbon and less bypass fines during RC. Loss of compactibility was observed for granules compared to powder blends, which was found to be related to differences in granule porosity and morphology. Using the large-sized HPMC grade did in some cases result in lower tensile strength tablets but had the advantage to improve the powder flow into the roller compactor. This work also indicates that when the HPMC level lies near the percolation threshold, significant changes can occur in the drug release rate due to changes in other factors (raw material characteristics and processing).
Point of impact: the effect of size and speed on puncture mechanics.
Anderson, P S L; LaCosse, J; Pankow, M
2016-06-06
The use of high-speed puncture mechanics for prey capture has been documented across a wide range of organisms, including vertebrates, arthropods, molluscs and cnidarians. These examples span four phyla and seven orders of magnitude difference in size. The commonality of these puncture systems offers an opportunity to explore how organisms at different scales and with different materials, morphologies and kinematics perform the same basic function. However, there is currently no framework for combining kinematic performance with cutting mechanics in biological puncture systems. Our aim here is to establish this framework by examining the effects of size and velocity in a series of controlled ballistic puncture experiments. Arrows of identical shape but varying in mass and speed were shot into cubes of ballistic gelatine. Results from high-speed videography show that projectile velocity can alter how the target gel responds to cutting. Mixed models comparing kinematic variables and puncture patterns indicate that the kinetic energy of a projectile is a better predictor of penetration than either momentum or velocity. These results form a foundation for studying the effects of impact on biological puncture, opening the door for future work to explore the influence of morphology and material organization on high-speed cutting dynamics.
NASA Astrophysics Data System (ADS)
Nowaczyk, Norbert R.; Harwart, Stefanie; Melles, Martin
2001-04-01
High-resolution analyses of rock magnetic and sedimentological parameters were conducted on an 11m long sediment core from Lama Lake, Northern Siberia, which encompasses the late Pleistocene and the Holocene epochs. The results reveal a strong link between the median grain size of the magnetic particles, identified as magnetite, and the oxidation state of the sediment. Reducing conditions associated with a relative high total organic carbon (TOC) content of the sediment characterize the upper 7m of the core (~Holocene), and these have led to a partial dissolution of detrital magnetite grains, and a homogenization of grain-size-related rock magnetic parameters. The anoxic sediments are characterized by significantly larger median magnetic grain sizes, as indicated, for example, by lower median destructive fields of the natural remanent magnetization (MDFNRM) and lower ratios of saturation remanence to saturation magnetization (MSR/MS). Consequently, estimates of relative geomagnetic palaeointensity variations yielded large amplitude shifts associated with anoxic/oxic boundaries. Despite the partial reductive dissolution of magnetic particles within the anoxic section, and consequent minimal variations in magnetic concentration and grain size, palaeointensity estimates for this part of the core were still lithologically distorted by the effects of particle size (and subsidiary TOC) variations. Anomalously high values coincide with an interval of significantly more fine-grained sediment, which is also associated with a decrease in TOC content, which may thus imply a decreased level of magnetite dissolution in this interval. Calculation of relative palaeointensity estimates therefore seems to be compromised by a combined effect of shifts in the particle size distribution of the bulk sediment and by partial magnetite dissolution varying in association with the TOC content of the sediment.
Effect of font size, italics, and colour count on web usability.
Bhatia, Sanjiv K; Samal, Ashok; Rajan, Nithin; Kiviniemi, Marc T
2011-04-01
Web usability measures the ease of use of a website. This study attempts to find the effect of three factors - font size, italics, and colour count - on web usability. The study was performed using a set of tasks and developing a survey questionnaire. We performed the study using a set of human subjects, selected from the undergraduate students taking courses in psychology. The data computed from the tasks and survey questionnaire were statistically analysed to find if there was any effect of font size, italics, and colour count on the three web usability dimensions. We found that for the student population considered, there was no significant effect of font size on usability. However, the manipulation of italics and colour count did influence some aspects of usability. The subjects performed better for pages with no italics and high italics compared to moderate italics. The subjects rated the pages that contained only one colour higher than the web pages with four or six colours. This research will help web developers better understand the effect of font size, italics, and colour count on web usability in general, and for young adults, in particular.
Effect of font size, italics, and colour count on web usability
Samal, Ashok; Rajan, Nithin; Kiviniemi, Marc T.
2013-01-01
Web usability measures the ease of use of a website. This study attempts to find the effect of three factors – font size, italics, and colour count – on web usability. The study was performed using a set of tasks and developing a survey questionnaire. We performed the study using a set of human subjects, selected from the undergraduate students taking courses in psychology. The data computed from the tasks and survey questionnaire were statistically analysed to find if there was any effect of font size, italics, and colour count on the three web usability dimensions. We found that for the student population considered, there was no significant effect of font size on usability. However, the manipulation of italics and colour count did influence some aspects of usability. The subjects performed better for pages with no italics and high italics compared to moderate italics. The subjects rated the pages that contained only one colour higher than the web pages with four or six colours. This research will help web developers better understand the effect of font size, italics, and colour count on web usability in general, and for young adults, in particular. PMID:24358055
NASA Astrophysics Data System (ADS)
Iannitti, Gianluca; Bonora, Nicola; Ruggiero, Andrew; Dichiaro, Simone
2012-03-01
In this work, a constitutive modeling that couples plasticity, grain size evolution (due to plastic deformation and dynamic recrystallization) and ductile damage has been developed. The effect of grain size on the material yield stress (Hall-Petch) and on the melting temperature has been considered. The model has been used to investigate computationally the behavior of high purity copper in dynamic tensile extrusion test (DTE). An extensive numerical simulation work, using implicit finite element code with direct integration, has been performed and the results have been compared with available experimental data. The major finding is that the proposed model is capable to predict most of the observed features such as the increase of material ductility with the decreasing average grain size, the overall number and size of fragments and the average grain size distribution in the fragment trapped into the dime.
NASA Astrophysics Data System (ADS)
Iannitti, Gianluca; Bonora, Nicola; Ruggiero, Andrew; Dichiaro, Simone
2011-06-01
In this work, a constitutive modeling that couples plasticity, grain size evolution (due to plastic deformation and dynamic recrystallization) and ductile damage has been developed. The effect of grain size on the material yield stress (Hall-Petch) and on the melting temperature has been considered. The model has been used to investigate computationally the behaviour of high purity copper in dynamic tensile extrusion test (DTE). An extensive numerical simulation work, using implicit finite element code with direct integration, has been performed and the results have been compared with available experimental data. The major finding is that the proposed model is capable to predict most of the observed features such as the increase of material ductility with the decreasing average grain size, the overall number and size of fragments and the average grain size distribution in the fragment trapped into the dime.
Spheroidization of glass powders for glass ionomer cements.
Gu, Y W; Yap, A U J; Cheang, P; Kumar, R
2004-08-01
Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.
Substance-dependence rehab treatment in Thailand: a meta analysis.
Verachai, Viroj; Kittipichai, Wirin; Konghom, Suwapat; Lukanapichonchut, Lumsum; Sinlapasacran, Narong; Kimsongneun, Nipa; Rergarun, Prachern; Doungnimit, Amawasee
2009-12-01
To synthesize the substance-dependence researches focusing on rehab treatment phase. Several criteria were used to select studies for meta analysis. Firstly, the research must have focused on the rehab period on the substance-dependence treatment, secondly, only quantitative researches that used statistics to calculate effect sizes were selected, and thirdly, all researches were from Thai libraries and were done during 1997-2006. The instrument used for data collection was comprised of two sets. The first used to collect the general information of studies including the crucial statistics and test statistics. The second was used to assess the quality of studies. Results from synthesizing 32 separate studies found that 323 effect sizes were computed in terms of the correlation coefficient "r". The psychology approach rehab program was higher in effect size than the network approach (p < 0.05). Additionally, Quasi-experimental studies were higher in effect size than correlation studies (p < 0.05). Among the quasi-experimental studies it was found that TCs revealed the highest effect size (r = 0.76). Among the correlation studies, it was found that the motivation program revealed the highest effect size (r = 0.84). The substance-use rehab treatment programs in Thailand which revealed the high effect size should be adjusted to the current program. However, the narcotic studies which focus on the rehab phase should be synthesized every 5-10 years in order to integrate new concept into the development of future the substance-dependence rehab treatment program, especially those at the research unit of the Drug Dependence Treatment Institute/Centers in Thailand.
Ahmed, Ahmed Khaled Abdella; Sun, Cuizhen; Hua, Likun; Zhang, Zhibin; Zhang, Yanhao; Zhang, Wen; Marhaba, Taha
2018-07-01
Generation of gaseous nanobubbles (NBs) by simple, efficient, and scalable methods is critical for industrialization and applications of nanobubbles. Traditional generation methods mainly rely on hydrodynamic, acoustic, particle, and optical cavitation. These generation processes render issues such as high energy consumption, non-flexibility, and complexity. This research investigated the use of tubular ceramic nanofiltration membranes to generate NBs in water with air, nitrogen and oxygen gases. This system injects pressurized gases through a tubular ceramic membrane with nanopores to create NBs. The effects of membrane pores size, surface energy, and the injected gas pressures on the bubble size and zeta potential were examined. The results show that the gas injection pressure had considerable effects on the bubble size, zeta potential, pH, and dissolved oxygen of the produced NBs. For example, increasing the injection air pressure from 69 kPa to 414 kPa, the air bubble size was reduced from 600 to 340 nm respectively. Membrane pores size and surface energy also had significant effects on sizes and zeta potentials of NBs. The results presented here aim to fill out the gaps of fundamental knowledge about NBs and development of efficient generation methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Survival analysis and classification methods for forest fire size
2018-01-01
Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression activities. We present a novel application of survival analysis to quantify the effects of these factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at the scene) and the size at “being held” (a state when no further increase in size is expected). We developed a statistical classifier to try to predict cases where there will be a growth in fire size (i.e., the size at “being held” exceeds the size at initial assessment). Logistic regression was preferred over two alternative classifiers, with covariates consistent with similar past analyses. We conducted survival analysis on the group of fires exhibiting a size increase. A screening process selected three covariates: an index of fire weather at the day the fire started, the fuel type burning at initial assessment, and a factor for the type and capabilities of the method of initial attack. The Cox proportional hazards model performed better than three accelerated failure time alternatives. Both fire weather and fuel type were highly significant, with effects consistent with known fire behaviour. The effects of initial attack method were not statistically significant, but did suggest a reverse causality that could arise if fire management agencies were to dispatch resources based on a-priori assessment of fire growth potentials. We discuss how a more sophisticated analysis of larger data sets could produce unbiased estimates of fire suppression effect under such circumstances. PMID:29320497
Survival analysis and classification methods for forest fire size.
Tremblay, Pier-Olivier; Duchesne, Thierry; Cumming, Steven G
2018-01-01
Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression activities. We present a novel application of survival analysis to quantify the effects of these factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at the scene) and the size at "being held" (a state when no further increase in size is expected). We developed a statistical classifier to try to predict cases where there will be a growth in fire size (i.e., the size at "being held" exceeds the size at initial assessment). Logistic regression was preferred over two alternative classifiers, with covariates consistent with similar past analyses. We conducted survival analysis on the group of fires exhibiting a size increase. A screening process selected three covariates: an index of fire weather at the day the fire started, the fuel type burning at initial assessment, and a factor for the type and capabilities of the method of initial attack. The Cox proportional hazards model performed better than three accelerated failure time alternatives. Both fire weather and fuel type were highly significant, with effects consistent with known fire behaviour. The effects of initial attack method were not statistically significant, but did suggest a reverse causality that could arise if fire management agencies were to dispatch resources based on a-priori assessment of fire growth potentials. We discuss how a more sophisticated analysis of larger data sets could produce unbiased estimates of fire suppression effect under such circumstances.
Huang, Qinqin; Cai, Bo; Chen, Bolei; Rao, Lang; He, Zhaobo; He, Rongxiang; Guo, Feng; Zhao, Libo; Kondamareddy, Kiran Kumar; Liu, Wei; Guo, Shishang; Zhao, Xing-Zhong
2016-07-01
Microfluidics-based circulating tumor cell (CTC) isolation is achieved by using gelatin-coated silica microbeads conjugated to CTC-specific antibodies. Bead-binding selectively enlarges target cell size, providing efficient high-purity capture. CTCs captured can be further released non-invasively. This stratagem enables high-performance CTC isolation for subsequent studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brülle, Tine; Ju, Wenbo; Niedermayr, Philipp; Denisenko, Andrej; Paschos, Odysseas; Schneider, Oliver; Stimming, Ulrich
2011-12-06
Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density) increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.
High-purity silica reflecting heat shield development
NASA Technical Reports Server (NTRS)
Congdon, W. M.
1974-01-01
A high-purity, fused-silica reflecting heat shield for the thermal protection of outer-planet probes was developed. Factors that strongly influence the performance of a silica heat shield were studied. Silica-bonded silica configurations, each prepared by a different technique, were investigated and rated according to its relative merits. Slip-casting was selected as the preferred fabrication method because it produced good reflectivity and good strength, and is relatively easy to scale up for a full-size outer-planet probe. The slips were cast using a variety of different particle sizes: continuous particle-size slips; monodisperse particle-size slips; and blends of monodisperse particle-size slips were studied. In general, smaller particles gave the highest reflectance. The monodisperse slips as well as the blend slips gave a higher reflectance than the continuous particle-size slips. An upgraded and fused natural quartz was used to study the effects of microstructure on reflectance and as the baseline to ascertain the increase in reflectance obtained from using a higher-purity synthetic material.
Huss, Magnus; Gårdmark, Anna; Van Leeuwen, Anieke; de Roos, André M
2012-04-01
Patterns of coexistence among competing species exhibiting size- and food-dependent growth remain largely unexplored. Here we studied mechanisms behind coexistence and shifts in competitive dominance in a size-structured fish guild, representing sprat and herring stocks in the Baltic Sea, using a physiologically structured model of competing populations. The influence of degree of resource overlap and the possibility of undergoing ontogenetic diet shifts were studied as functions of zooplankton and zoobenthos productivity. By imposing different size-dependent mortalities, we could study the outcome of competition under contrasting environmental regimes representing poor and favorable growth conditions. We found that the identity of the dominant species shifted between low and high productivity. Adding a herring-exclusive benthos resource only provided a competitive advantage over sprat when size-dependent mortality was high enough to allow for rapid growth in the zooplankton niche. Hence, the importance of a bottom-up effect of varying productivity was dependent on a strong top-down effect. Although herring could depress shared resources to lower levels than could sprat and also could access an exclusive resource, the smaller size at maturation of sprat allowed it to coexist with herring and, in some cases, exclude it. Our model system, characterized by interactions among size cohorts, allowed for consumer coexistence even at full resource overlap at intermediate productivities when size-dependent mortality was low. Observed shifts in community patterns were crucially dependent on the explicit consideration of size- and food-dependent growth. Accordingly, we argue that accounting for food-dependent growth and size-dependent interactions is necessary to better predict changes in community structure and dynamics following changes in major ecosystem drivers such as resource productivity and mortality, which are fundamental for our ability to manage exploitation of living resources in, e.g., fisheries.
Giant Kerr response of ultrathin gold films from quantum size effect.
Qian, Haoliang; Xiao, Yuzhe; Liu, Zhaowei
2016-10-10
With the size of plasmonic devices entering into the nanoscale region, the impact of quantum physics needs to be considered. In the past, the quantum size effect on linear material properties has been studied extensively. However, the nonlinear aspects have not been explored much so far. On the other hand, much effort has been put into the field of integrated nonlinear optics and a medium with large nonlinearity is desirable. Here we study the optical nonlinear properties of a nanometre scale gold quantum well by using the z-scan method and nonlinear spectrum broadening technique. The quantum size effect results in a giant optical Kerr susceptibility, which is four orders of magnitude higher than the intrinsic value of bulk gold and several orders larger than traditional nonlinear media. Such high nonlinearity enables efficient nonlinear interaction within a microscopic footprint, making quantum metallic films a promising candidate for integrated nonlinear optical applications.
Font size matters--emotion and attention in cortical responses to written words.
Bayer, Mareike; Sommer, Werner; Schacht, Annekathrin
2012-01-01
For emotional pictures with fear-, disgust-, or sex-related contents, stimulus size has been shown to increase emotion effects in attention-related event-related potentials (ERPs), presumably reflecting the enhanced biological impact of larger emotion-inducing pictures. If this is true, size should not enhance emotion effects for written words with symbolic and acquired meaning. Here, we investigated ERP effects of font size for emotional and neutral words. While P1 and N1 amplitudes were not affected by emotion, the early posterior negativity started earlier and lasted longer for large relative to small words. These results suggest that emotion-driven facilitation of attention is not necessarily based on biological relevance, but might generalize to stimuli with arbitrary perceptual features. This finding points to the high relevance of written language in today's society as an important source of emotional meaning.
2013-01-01
Background Demographic bottlenecks can severely reduce the genetic variation of a population or a species. Establishing whether low genetic variation is caused by a bottleneck or a constantly low effective number of individuals is important to understand a species’ ecology and evolution, and it has implications for conservation management. Recent studies have evaluated the power of several statistical methods developed to identify bottlenecks. However, the false positive rate, i.e. the rate with which a bottleneck signal is misidentified in demographically stable populations, has received little attention. We analyse this type of error (type I) in forward computer simulations of stable populations having greater than Poisson variance in reproductive success (i.e., variance in family sizes). The assumption of Poisson variance underlies bottleneck tests, yet it is commonly violated in species with high fecundity. Results With large variance in reproductive success (Vk ≥ 40, corresponding to a ratio between effective and census size smaller than 0.1), tests based on allele frequencies, allelic sizes, and DNA sequence polymorphisms (heterozygosity excess, M-ratio, and Tajima’s D test) tend to show erroneous signals of a bottleneck. Similarly, strong evidence of population decline is erroneously detected when ancestral and current population sizes are estimated with the model based method MSVAR. Conclusions Our results suggest caution when interpreting the results of bottleneck tests in species showing high variance in reproductive success. Particularly in species with high fecundity, computer simulations are recommended to confirm the occurrence of a population bottleneck. PMID:24131797
Deep and surface learning in problem-based learning: a review of the literature.
Dolmans, Diana H J M; Loyens, Sofie M M; Marcq, Hélène; Gijbels, David
2016-12-01
In problem-based learning (PBL), implemented worldwide, students learn by discussing professionally relevant problems enhancing application and integration of knowledge, which is assumed to encourage students towards a deep learning approach in which students are intrinsically interested and try to understand what is being studied. This review investigates: (1) the effects of PBL on students' deep and surface approaches to learning, (2) whether and why these effects do differ across (a) the context of the learning environment (single vs. curriculum wide implementation), and (b) study quality. Studies were searched dealing with PBL and students' approaches to learning. Twenty-one studies were included. The results indicate that PBL does enhance deep learning with a small positive average effect size of .11 and a positive effect in eleven of the 21 studies. Four studies show a decrease in deep learning and six studies show no effect. PBL does not seem to have an effect on surface learning as indicated by a very small average effect size (.08) and eleven studies showing no increase in the surface approach. Six studies demonstrate a decrease and four an increase in surface learning. It is concluded that PBL does seem to enhance deep learning and has little effect on surface learning, although more longitudinal research using high quality measurement instruments is needed to support this conclusion with stronger evidence. Differences cannot be explained by the study quality but a curriculum wide implementation of PBL has a more positive impact on the deep approach (effect size .18) compared to an implementation within a single course (effect size of -.05). PBL is assumed to enhance active learning and students' intrinsic motivation, which enhances deep learning. A high perceived workload and assessment that is perceived as not rewarding deep learning are assumed to enhance surface learning.
Robbins, R T; Barker, K R
1974-01-01
Effects of soil type, particle size, temperature, and moisture on the reproduction of Belonolaimus longicaudatus were investigated under greenhouse conditions. Nematode increases occurred only in soils with a minimum of 80% sand and a maximum of 10% clay. Optimum soil particle size for reproduction of the Tarboro, N.C. and Tifton, Ga. populations of the nematode was near that of 120-370 mum (65-mesh) silica sand. Reproduction was greatest at 25-30 C. Some reproduction by the Tifton, Ga. population occurred at 35 C, whereas the Tarboro, N.C. population declined, as compared to the initial inoculum. Both populations reproduced slightly at 20 C. Nematode reproduction was greater at a moisture level of 7% than at a high of 30% or a low of 2%. Reproduction occurred at the high moisture level only when the nutrient solution was aerated.
Addressing Institutional Amplifiers in the Dynamics and Control of Tuberculosis Epidemics
Basu, Sanjay; Stuckler, David; McKee, Martin
2011-01-01
Tuberculosis outbreaks originating in prisons, mines, or hospital wards can spread to the larger community. Recent proposals have targeted these high-transmission institutional amplifiers by improving case detection, treatment, or reducing the size of the exposed population. However, what effects these alternative proposals may have is unclear. We mathematically modeled these control strategies and found case detection and treatment methods insufficient in addressing epidemics involving common types of institutional amplifiers. Movement of persons in and out of amplifiers fundamentally altered the transmission dynamics of tuberculosis in a manner not effectively mitigated by detection or treatment alone. Policies increasing the population size exposed to amplifiers or the per-person duration of exposure within amplifiers potentially worsened incidence, even in settings with high rates of detection and treatment success. However, reducing the total population size entering institutional amplifiers significantly lowered tuberculosis incidence and the risk of propagating new drug-resistant tuberculosis strains. PMID:21212197
Walzer, Andreas; Schausberger, Peter
2015-02-01
The adaptive canalization hypothesis predicts that traits with low phenotypic plasticity are more fitness relevant, because they have been canalized via strong past selection, than traits with high phenotypic plasticity. Based on differing male body size plasticities of the predatory mites Phytoseiulus persimilis (low plasticity) and Neoseiulus californicus (high plasticity), we accordingly hypothesized that small male body size entails higher costs in female choice and male-male competition in P. persimilis than N. californicus . Males of both species are highly polygynous but females differ in the level of polyandry (low level in P. persimilis ; medium level in N. californicus ). We videotaped the mating interactions in triplets of either P. persimilis or N. californicus , consisting of a virgin female (small or standard-sized) and a small and a standard-sized male. Mating by both small and standard-sized P. persimilis females was biased towards standard-sized males, resulting from the interplay between female preference for standard-sized males and the inferiority of small males in male-male competition. In contrast, mating by N. californicus females was equally balanced between small and standard-sized males. Small N. californicus males were more aggressive ('Napoleon complex') in male-male competition, reducing the likelihood of encounter between the standard-sized male and the female, and thus counterbalancing female preference for standard-sized males. Our results support the hypothesis that male body size is more important to fitness in the low-level polyandrous P. persimilis than in the medium-level polyandrous N. californicus and provide a key example of the implications of sexually selected body size plasticity on mating behaviour.
Walzer, Andreas; Schausberger, Peter
2015-01-01
The adaptive canalization hypothesis predicts that traits with low phenotypic plasticity are more fitness relevant, because they have been canalized via strong past selection, than traits with high phenotypic plasticity. Based on differing male body size plasticities of the predatory mites Phytoseiulus persimilis (low plasticity) and Neoseiulus californicus (high plasticity), we accordingly hypothesized that small male body size entails higher costs in female choice and male–male competition in P. persimilis than N. californicus. Males of both species are highly polygynous but females differ in the level of polyandry (low level in P. persimilis; medium level in N. californicus). We videotaped the mating interactions in triplets of either P. persimilis or N. californicus, consisting of a virgin female (small or standard-sized) and a small and a standard-sized male. Mating by both small and standard-sized P. persimilis females was biased towards standard-sized males, resulting from the interplay between female preference for standard-sized males and the inferiority of small males in male–male competition. In contrast, mating by N. californicus females was equally balanced between small and standard-sized males. Small N. californicus males were more aggressive (‘Napoleon complex’) in male–male competition, reducing the likelihood of encounter between the standard-sized male and the female, and thus counterbalancing female preference for standard-sized males. Our results support the hypothesis that male body size is more important to fitness in the low-level polyandrous P. persimilis than in the medium-level polyandrous N. californicus and provide a key example of the implications of sexually selected body size plasticity on mating behaviour. PMID:25673881
Simons, Mirre J P; Reimert, Inonge; van der Vinne, Vincent; Hambly, Catherine; Vaanholt, Lobke M; Speakman, John R; Gerkema, Menno P
2011-01-01
The heat dissipation limit theory suggests that heat generated during metabolism limits energy intake and, thus, reproductive output. Experiments in laboratory strains of mice and rats, and also domestic livestock generally support this theory. Selection for many generations in the laboratory and in livestock has increased litter size or productivity in these animals. To test the wider validity of the heat dissipation limit theory, we studied common voles (Microtus arvalis), which have small litter sizes by comparison with mice and rats, and regular addition of wild-caught individuals of this species to our laboratory colony ensures a natural genetic background. A crossover design of ambient temperatures (21 and 30°C) during pregnancy and lactation was used. High ambient temperature during lactation decreased milk production, slowing pup growth. The effect on pup growth was amplified when ambient temperature was also high during pregnancy. Shaving fur off dams at 30°C resulted in faster growth of pups; however, no significant increase in food intake and or milk production was detected. With increasing litter size (natural and enlarged), asymptotic food intake during lactation levelled off in the largest litters at both 21 and 30°C. Interestingly, the effects of lactation temperature on pup growth where also observed at smaller litter sizes. This suggests that vole dams trade-off costs associated with hyperthermia during lactation with the yield from investment in pup growth. Moreover, pup survival was higher at 30°C, despite lower growth, probably owing to thermoregulatory benefits. It remains to be seen how the balance is established between the negative effect of high ambient temperature on maternal milk production and pup growth (and/or future reproduction of the dam) and the positive effect of high temperatures on pup survival. This balance ultimately determines the effect of different ambient temperatures on reproductive success.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Haiping; Zheng, Jianming; Song, Junhua
Porous structured silicon (p-Si) has been recognized as one of the most promising anodes for Li-ion batteries. However, many available methods to synthesize p-Si are difficult to scale up due to their high production cost. Here we introduce a new approach to obtain spherical micrometer-sized silicon with unique porous structure by using a microemulsion of the cost-effective of silica nanoparticles and magnesiothermic reduction method. The spherical micron-sized p-Si particles prepared by this approach consist of highly aligned nano-sized silicon and exhibit a tap density close to that of bulk Si particles. They have demonstrated significantly improved electrochemical stability compared tomore » nano-Si. Well controlled void space and a highly graphitic carbon coating on the p-Si particles enable good stability of the structure and low overall resistance, thus resulting in a Si-based anode with high capacity (~1467 mAh g –1 at 1 C), enhanced cycle life (370 cycles with 83% capacity retention), and high rate capability (~650 mAh g –1 at 5 C). Furthermore, this approach may also be generalized to prepare other hierarchical structured high capacity anode materials for constructing high energy density lithium ion batteries.« less
Jia, Haiping; Zheng, Jianming; Song, Junhua; ...
2018-05-21
Porous structured silicon (p-Si) has been recognized as one of the most promising anodes for Li-ion batteries. However, many available methods to synthesize p-Si are difficult to scale up due to their high production cost. Here we introduce a new approach to obtain spherical micrometer-sized silicon with unique porous structure by using a microemulsion of the cost-effective of silica nanoparticles and magnesiothermic reduction method. The spherical micron-sized p-Si particles prepared by this approach consist of highly aligned nano-sized silicon and exhibit a tap density close to that of bulk Si particles. They have demonstrated significantly improved electrochemical stability compared tomore » nano-Si. Well controlled void space and a highly graphitic carbon coating on the p-Si particles enable good stability of the structure and low overall resistance, thus resulting in a Si-based anode with high capacity (~1467 mAh g –1 at 1 C), enhanced cycle life (370 cycles with 83% capacity retention), and high rate capability (~650 mAh g –1 at 5 C). Furthermore, this approach may also be generalized to prepare other hierarchical structured high capacity anode materials for constructing high energy density lithium ion batteries.« less
Effect of Cutting Velocity / Stem Size on the Efficiency of NRCRI Cassave Stem Cutting Machine
NASA Astrophysics Data System (ADS)
Ikejiofor, M. C.
2012-11-01
The developed NRCRI (National Root Crops Research Institute) cassava stem cutting machine was evaluated. The cassava stems from the variety TME 419 were used. The sizes of the stem used were 1.8, 2.0, 2.3 and 2.6cm. Also, different cutting velocities of 1.20, 1.23 and 1.32m/s were used. The stakes produced has length of 2.5cm. Analysis of variance in RCBD was used to evaluate the effect of the cutting velocity and the stem size on the efficiency of the cutting machine. The result of the analysis showed that the cutting velocity had very highly significant effect, while the stem size had no significant effect at 5% level on the efficiency of the cutting machine. The data obtained also showed that the highest and least cutting efficiencies of 99.42 and 94.71% were obtained with the machine cutting velocities of 1.2 and 1.32m/s respectively.
A Spiritually Based Group Intervention for Combat Veterans With Posttraumatic Stress Disorder
Bormann, Jill E.; Thorp, Steven; Wetherell, Julie L.; Golshan, Shahrokh
2014-01-01
Purpose To assess the feasibility, effect sizes, and satisfaction of mantram repetition—the spiritual practice of repeating a sacred word/phrase throughout the day—for managing symptoms of posttraumatic stress disorder (PTSD) in veterans. Design A two group (intervention vs. control) by two time (pre- and postintervention) experimental design was used. Methods Veterans were randomly assigned to intervention (n = 14) or delayed-treatment control (n = 15). Measures were PTSD symptoms, psychological distress, quality of life, and patient satisfaction. Effect sizes were calculated using Cohen’s d. Findings Thirty-three male veterans were enrolled, and 29 (88%) completed the study. Large effect sizes were found for reducing PTSD symptom severity (d = −.72), psychological distress (d = −.73) and increasing quality of life (d = .70). Conclusions A spiritual program was found to be feasible for veterans with PTSD. They reported moderate to high satisfaction. Effect sizes show promise for symptom improvement but more research is needed. PMID:18356284
Lower pitch is larger, yet falling pitches shrink.
Eitan, Zohar; Schupak, Asi; Gotler, Alex; Marks, Lawrence E
2014-01-01
Experiments using diverse paradigms, including speeded discrimination, indicate that pitch and visually-perceived size interact perceptually, and that higher pitch is congruent with smaller size. While nearly all of these studies used static stimuli, here we examine the interaction of dynamic pitch and dynamic size, using Garner's speeded discrimination paradigm. Experiment 1 examined the interaction of continuous rise/fall in pitch and increase/decrease in object size. Experiment 2 examined the interaction of static pitch and size (steady high/low pitches and large/small visual objects), using an identical procedure. Results indicate that static and dynamic auditory and visual stimuli interact in opposite ways. While for static stimuli (Experiment 2), higher pitch is congruent with smaller size (as suggested by earlier work), for dynamic stimuli (Experiment 1), ascending pitch is congruent with growing size, and descending pitch with shrinking size. In addition, while static stimuli (Experiment 2) exhibit both congruence and Garner effects, dynamic stimuli (Experiment 1) present congruence effects without Garner interference, a pattern that is not consistent with prevalent interpretations of Garner's paradigm. Our interpretation of these results focuses on effects of within-trial changes on processing in dynamic tasks and on the association of changes in apparent size with implied changes in distance. Results suggest that static and dynamic stimuli can differ substantially in their cross-modal mappings, and may rely on different processing mechanisms.
Strong effects of ionizing radiation from Chernobyl on mutation rates
NASA Astrophysics Data System (ADS)
Møller, Anders Pape; Mousseau, Timothy A.
2015-02-01
In this paper we use a meta-analysis to examine the relationship between radiation and mutation rates in Chernobyl across 45 published studies, covering 30 species. Overall effect size of radiation on mutation rates estimated as Pearson's product-moment correlation coefficient was very large (E = 0.67; 95% confidence intervals (CI) 0.59 to 0.73), accounting for 44.3% of the total variance in an unstructured random-effects model. Fail-safe calculations reflecting the number of unpublished null results needed to eliminate this average effect size showed the extreme robustness of this finding (Rosenberg's method: 4135 at p = 0.05). Indirect tests did not provide any evidence of publication bias. The effect of radiation on mutations varied among taxa, with plants showing a larger effect than animals. Humans were shown to have intermediate sensitivity of mutations to radiation compared to other species. Effect size did not decrease over time, providing no evidence for an improvement in environmental conditions. The surprisingly high mean effect size suggests a strong impact of radioactive contamination on individual fitness in current and future generations, with potentially significant population-level consequences, even beyond the area contaminated with radioactive material.
Strong effects of ionizing radiation from Chernobyl on mutation rates.
Møller, Anders Pape; Mousseau, Timothy A
2015-02-10
In this paper we use a meta-analysis to examine the relationship between radiation and mutation rates in Chernobyl across 45 published studies, covering 30 species. Overall effect size of radiation on mutation rates estimated as Pearson's product-moment correlation coefficient was very large (E = 0.67; 95% confidence intervals (CI) 0.59 to 0.73), accounting for 44.3% of the total variance in an unstructured random-effects model. Fail-safe calculations reflecting the number of unpublished null results needed to eliminate this average effect size showed the extreme robustness of this finding (Rosenberg's method: 4135 at p = 0.05). Indirect tests did not provide any evidence of publication bias. The effect of radiation on mutations varied among taxa, with plants showing a larger effect than animals. Humans were shown to have intermediate sensitivity of mutations to radiation compared to other species. Effect size did not decrease over time, providing no evidence for an improvement in environmental conditions. The surprisingly high mean effect size suggests a strong impact of radioactive contamination on individual fitness in current and future generations, with potentially significant population-level consequences, even beyond the area contaminated with radioactive material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suemune, I.; Takeoka, T.; Yamanashi, M.
1986-09-01
Gain-switching characteristics of the proposed size-effect modulation light sources are investigated. For realizing the laser operation, the consideration of the screening effect on the applied electric fields due to the high concentration of carriers is indispensable. In this respect, the authors propose a separate-confinement-hereto-multiple-quantum-well (SCH-MQW) structure as the most suitable one for gain switching. The key point of the structure is the sufficiently high heterobarriers at the clad-barrier interfaces to prevent carrier leakage. The examinations of the transient response clarify that they are principally photon-lifetime limited. Employing the three-terminal character of the proposed laser, the fast pulse modulation up tomore » 12 Gbits/s, which is almost free from the relaxation oscillations and the pattern effects, is predicted.« less
In Situ Balloon-Borne Ice Particle Imaging in High-Latitude Cirrus
NASA Astrophysics Data System (ADS)
Kuhn, Thomas; Heymsfield, Andrew J.
2016-09-01
Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time, these clouds absorb the infrared radiation from the Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions and particle shapes. Knowledge of these cloud properties is also needed for calibrating and validating passive and active remote sensors. Ice particles of sizes below 100 µm are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. Furthermore, artefacts are produced by shattering of particles on the leading surfaces of the aircraft probes when particles several hundred microns or larger are present. Here, we report on a series of balloon-borne in situ measurements that were carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The method used here avoids these issues experienced with the aircraft probes. Furthermore, with a balloon-borne instrument, data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always unused section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 µm together with a pixel resolution of 1.65 µm allows particle detection at sizes of 10 µm and larger. For particles that are 20 µm (12 pixel) in size or larger, the shape can be recognized. The sampling volume, 130 cm3 s-1, is well defined and independent of particle size. With the encountered number concentrations of between 4 and 400 L-1, this required about 90- to 4-s sampling times to determine particle size distributions of cloud layers. Depending on how ice particles vary through the cloud, several layers per cloud with relatively uniform properties have been analysed. Preliminary results of the balloon campaign, targeting upper tropospheric, cold cirrus clouds, are presented here. Ice particles in these clouds were predominantly very small, with a median size of measured particles of around 50 µm and about 80 % of all particles below 100 µm in size. The properties of the particle size distributions at temperatures between -36 and -67 °C have been studied, as well as particle areas, extinction coefficients, and their shapes (area ratios). Gamma and log-normal distribution functions could be fitted to all measured particle size distributions achieving very good correlation with coefficients R of up to 0.95. Each distribution features one distinct mode. With decreasing temperature, the mode diameter decreases exponentially, whereas the total number concentration increases by two orders of magnitude with decreasing temperature in the same range. The high concentrations at cold temperatures also caused larger extinction coefficients, directly determined from cross-sectional areas of single ice particles, than at warmer temperatures. The mass of particles has been estimated from area and size. Ice water content (IWC) and effective diameters are then determined from the data. IWC did vary only between 1 × 10-3 and 5 × 10-3 g m-3 at temperatures below -40 °C and did not show a clear temperature trend. These measurements are part of an ongoing study.
[Size dependent SERS activity of gold nanoparticles studied by 3D-FDTD simulation].
Li, Li-mei; Fang, Ping-ping; Yang, Zhi-lin; Huang, Wen-da; Wu, De-yin; Ren, Bin; Tian, Zhong-qun
2009-05-01
By synthesizing Au nanoparticles with the controllable size from about 16 to 160 nm and measuring their SERS activity, the authors found that Au nanoparticles film with a size in the range of 120-135 nm showed the highest SERS activity with the 632.8 nm excitation, which is different from previous experimental results and theoretical predictions. The three dimensional finite difference time domain (3D-FDTD)method was employed to simulate the size dependent SERS activity. At the 632.8 nm excitation, the particles with a size of 110 nm shows the highest enhancement under coupling condition and presents an enhancement as high as 10(9) at the hot site. If the enhancement is averaged over the whole surface, the enhancement can still be as high as 10(7), in good agreement with our experimental data. For Au nanoparticles with a larger size such as 220 nm, the multipolar effect leads to the appearance of the second maximum enhancement with the increase in particles size. The averaged enhancement for the excitation line of 325 nm is only 10(2).
Do plastic particles affect microalgal photosynthesis and growth?
Sjollema, Sascha B; Redondo-Hasselerharm, Paula; Leslie, Heather A; Kraak, Michiel H S; Vethaak, A Dick
2016-01-01
The unbridled increase in plastic pollution of the world's oceans raises concerns about potential effects these materials may have on microalgae, which are primary producers at the basis of the food chain and a major global source of oxygen. Our current understanding about the potential modes and mechanisms of toxic action that plastic particles exert on microalgae is extremely limited. How effects might vary with particle size and the physico-chemical properties of the specific plastic material in question are equally unelucidated, but may hold clues to how toxicity, if observed, is exerted. In this study we selected polystyrene particles, both negatively charged and uncharged, and three different sizes (0.05, 0.5 and 6μm) for testing the effects of size and material properties. Microalgae were exposed to different polystyrene particle sizes and surface charges for 72h. Effects on microalgal photosynthesis and growth were determined by pulse amplitude modulation fluorometry and flow cytometry, respectively. None of the treatments tested in these experiments had an effect on microalgal photosynthesis. Microalgal growth was negatively affected (up to 45%) by uncharged polystyrene particles, but only at high concentrations (250mg/L). Additionally, these adverse effects were demonstrated to increase with decreasing particle size. Copyright © 2015 Elsevier B.V. All rights reserved.
Self-regulation and quality of life in high-functioning young adults with autism
Dijkhuis, Renee R; Ziermans, Tim B; Van Rijn, Sophie; Staal, Wouter G; Swaab, Hanna
2016-01-01
Background: Autism is generally associated with poor functional outcome but little is known about predictors of quality of life, especially during early adulthood. This study was conducted to assess subjective quality of life during early adulthood in high-functioning autism spectrum disorder and its relation with self-regulating abilities. Individuals with high-functioning autism spectrum disorder who progressed into post-secondary higher education (N = 75) were compared to a typical peer control group (N = 28) based on behavioral self-report questionnaires. The results indicated that individuals with high-functioning autism spectrum disorder reported significantly lower subjective quality of life than typical controls (p < 0.001, effect size (d) = 1.84). In addition, individuals with high-functioning autism spectrum disorder reported more problems with emotion processing (p < 0.05, effect size (d) = 0.79) and daily executive functioning (p < 0.001, effect size (d) = 1.29) than controls. A higher level of executive functioning problems was related to lower quality of life in the high-functioning autism spectrum disorder group, but no significant relation between level of emotion processing and subjective quality of life became apparent in the regression analysis. Our findings show that even in high-functioning young adults with autism, executive functioning, emotion processing, and subjective quality of life are low compared to typically developing peers. Furthermore, these results emphasize the importance of targeting executive functioning problems in individuals with autism to improve subjective quality of life. PMID:27407040
Barlow, Allison; Mullany, Britta; Neault, Nicole; Goklish, Novalene; Billy, Trudy; Hastings, Ranelda; Lorenzo, Sherilynn; Kee, Crystal; Lake, Kristin; Redmond, Cleve; Carter, Alice; Walkup, John T
2015-02-01
The Affordable Care Act provides funding for home-visiting programs to reduce health care disparities, despite limited evidence that existing programs can overcome implementation and evaluation challenges with at-risk populations. The authors report 36-month outcomes of the paraprofessional-delivered Family Spirit home-visiting intervention for American Indian teen mothers and children. Expectant American Indian teens (N=322, mean age=18.1 years) from four southwestern reservation communities were randomly assigned to the Family Spirit intervention plus optimized standard care or optimized standard care alone. Maternal and child outcomes were evaluated at 28 and 36 weeks gestation and 2, 6, 12, 18, 24, 30, and 36 months postpartum. At baseline the mothers had high rates of substance use (>84%), depressive symptoms (>32%), dropping out of school (>57%), and residential instability (51%). Study retention was ≥83%. From pregnancy to 36 months postpartum, mothers in the intervention group had significantly greater parenting knowledge (effect size=0.42) and parental locus of control (effect size=0.17), fewer depressive symptoms (effect size=0.16) and externalizing problems (effect size=0.14), and lower past month use of marijuana (odds ratio=0.65) and illegal drugs (odds ratio=0.67). Children in the intervention group had fewer externalizing (effect size=0.23), internalizing (effect size=0.23), and dysregulation (effect size=0.27) problems. The paraprofessional home-visiting intervention promoted effective parenting, reduced maternal risks, and improved child developmental outcomes in the U.S. population subgroup with the fewest resources and highest behavioral health disparities. The methods and results can inform federal efforts to disseminate and sustain evidence-based home-visiting interventions in at-risk populations.
L2 Reading Comprehension and Its Correlates: A Meta-Analysis
ERIC Educational Resources Information Center
Jeon, Eun Hee; Yamashita, Junko
2014-01-01
The present meta-analysis examined the overall average correlation (weighted for sample size and corrected for measurement error) between passage-level second language (L2) reading comprehension and 10 key reading component variables investigated in the research domain. Four high-evidence correlates (with 18 or more accumulated effect sizes: L2…
Impact of pore size on the sorption of uranyl under seawater conditions
Mayes, Richard T.; Gorka, Joanna; Dai, Sheng
2016-04-05
The extraction of uranium from seawater has received significant interest recently, because of the possibility of a near-limitless supply of uranium to fuel the nuclear power industry. While sorbent development has focused primarily on polymeric sorbents, nanomaterials represent a new area that has the potential to surpass the current polymeric sorbents, because of the high surface areas that are possible. Mesoporous carbon materials are a stable, high-surface-area material capable of extracting various chemical species from a variety of environments. Herein, we report the use of a dual templating process to understand the effect of pore size on the adsorption ofmore » uranyl ions from a uranyl brine consisting of seawater-relevant sodium, chloride, and bicarbonate ions. It was found that pore size played a more significant role in the effective use of the grafted polymer, leading to higher uranium capacities than the surface area. Furthermore, the pore size must be tailored to meet the demands of the extraction medium and analyte metal to achieve efficacy as an adsorbent.« less
NASA Astrophysics Data System (ADS)
Seeberger, Pia; Vidal, Julien
2017-08-01
Formation entropy of point defects is one of the last crucial elements required to fully describe the temperature dependence of point defect formation. However, while many attempts have been made to compute them for very complicated systems, very few works have been carried out such as to assess the different effects of finite size effects and precision on such quantity. Large discrepancies can be found in the literature for a system as primitive as the silicon vacancy. In this work, we have proposed a systematic study of formation entropy for silicon vacancy in its 3 stable charge states: neutral, +2 and -2 for supercells with size not below 432 atoms. Rationalization of the formation entropy is presented, highlighting importance of finite size error and the difficulty to compute such quantities due to high numerical requirement. It is proposed that the direct calculation of formation entropy of VSi using first principles methods will be plagued by very high computational workload (or large numerical errors) and finite size dependent results.
Papies, Esther K; Nicolaije, Kim A H
2012-01-01
The present studies examined the effect of perceiving images of slim and plus-size models on restrained eaters' self-evaluation. While previous research has found that such images can lead to either inspiration or deflation, we argue that these inconsistencies can be explained by differences in perceived similarity with the presented model. The results of two studies (ns=52 and 99) confirmed this and revealed that restrained eaters with high (low) perceived similarity to the model showed more positive (negative) self-evaluations when they viewed a slim model, compared to a plus-size model. In addition, Study 2 showed that inducing in participants a similarities mindset led to more positive self-evaluations after viewing a slim compared to a plus-size model, but only among restrained eaters with a relatively high BMI. These results are discussed in the context of research on social comparison processes and with regard to interventions for protection against the possible detrimental effects of media images. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trattner, Sigal; Cheng, Bin; Pieniazek, Radoslaw L.
2014-04-15
Purpose: Effective dose (ED) is a widely used metric for comparing ionizing radiation burden between different imaging modalities, scanners, and scan protocols. In computed tomography (CT), ED can be estimated by performing scans on an anthropomorphic phantom in which metal-oxide-semiconductor field-effect transistor (MOSFET) solid-state dosimeters have been placed to enable organ dose measurements. Here a statistical framework is established to determine the sample size (number of scans) needed for estimating ED to a desired precision and confidence, for a particular scanner and scan protocol, subject to practical limitations. Methods: The statistical scheme involves solving equations which minimize the sample sizemore » required for estimating ED to desired precision and confidence. It is subject to a constrained variation of the estimated ED and solved using the Lagrange multiplier method. The scheme incorporates measurement variation introduced both by MOSFET calibration, and by variation in MOSFET readings between repeated CT scans. Sample size requirements are illustrated on cardiac, chest, and abdomen–pelvis CT scans performed on a 320-row scanner and chest CT performed on a 16-row scanner. Results: Sample sizes for estimating ED vary considerably between scanners and protocols. Sample size increases as the required precision or confidence is higher and also as the anticipated ED is lower. For example, for a helical chest protocol, for 95% confidence and 5% precision for the ED, 30 measurements are required on the 320-row scanner and 11 on the 16-row scanner when the anticipated ED is 4 mSv; these sample sizes are 5 and 2, respectively, when the anticipated ED is 10 mSv. Conclusions: Applying the suggested scheme, it was found that even at modest sample sizes, it is feasible to estimate ED with high precision and a high degree of confidence. As CT technology develops enabling ED to be lowered, more MOSFET measurements are needed to estimate ED with the same precision and confidence.« less
Ostrand, Kenneth G.; Zydlewski, Gayle B.; Gale, William L.; Zydlewski, Joseph D.
2011-01-01
To track individuals in situ, over 12 million salmon and trout have been marked with passive integrated transponder (PIT) tags in the Columbia River Basin, USA. However, few studies have examined long term tag retention as well as tag effects on juvenile salmon and trout. We marked juvenile coho salmon Oncorhynchus kisutch (N = 207), steelhead (anadromous rainbow trout) O. mykiss (N = 221), cutthroat trout O. clarkii (N = 202) and bull trout Salvelinus confluentus (N = 180) with 12, 19, or 23 mm PIT tags and examined tag retention, survival, growth, and physiological performance over a six month period in a laboratory environment. PIT tag retention rates were high for coho salmon (100%), steelhead (95%), cutthroat trout (97%), and bull trout (99%), regardless of tag size. Survival was also high for coho (99%), steelhead (99%), cutthroat trout (97%), and bull trout (88%) and did not vary among tag sizes. Short term individual growth rates for coho salmon marked with 12 mm tags were significantly higher than those marked with 19 mm and 23 mm PIT tags. Likewise, steelhead trout individual growth rates were lower for fish marked with 23 mm PIT tags followed by 19 and 12 mm tags. Conversely, long-term growth rates were positive and not affected by tag size. There were no significant effects of tag size or marking on coho gill Na+, K+, -ATPase activity (µmol ADP x mg protein–1 h–1) and plasma osmolality (µmol kg–1) or bull trout hepatosomatic indices. Our study suggests that marking juvenile salmonids with PIT tags results in high retention with little effect upon their survival, growth, and important physiological indicators regardless of tag size in a laboratory environment.
New phase method of measuring particle size with laser Doppler radar
NASA Astrophysics Data System (ADS)
Zemlianskii, Vladimir M.
1996-06-01
A vast field of non-contact metrology, vibrometry, dynamics and microdynamics problems solved on the basis of laser Doppler method resulted in the development of great variety of laser Doppler radar (LDR). In coherent LDR few beams with various polarization are generally adopted, that are directed at the zone of measurement, through which the probing air stream moves. Studies of various coherent LDR demonstrated that polarization-phase effects of scattering can in some cases considerably effect on the signal-to-noise ratio of the Doppler signal. On the other side using phase effects can simultaneous measurement of size and velocity of spherical particles. New possibilities for improving the accuracy of measuring spherical particles' sizes come to light when application is made in coherent LDR of two waves- probing and one out of the types of symmetrical reception of scattered radiation, during which phase-conjugate signals are formed. The theoretical analysis on the basis of the scattering theory showed, that in symmetrical reception of scattered radiation with respect to the planes OXZ and OYZ output signal of the photoreceiver contains two high- frequency signal components, which in relation to parameters of the probing and size, can either be in phase or antiphase. Results of numerical modeling are presented: amplitude of high frequency signal, coefficient of phase and polarization matching of mixed waves, the depths of photocurrent modulation and also signal's phase in relation to the angle between the probing beams. Phase method of determining particle's sizes based on the use of two wavelengths probing and symmetrical reception of scattered radiation in which conditions for the formation of phase conjugated high-frequency signals are satisfied is presented.
Maga, A. Murat; Navarro, Nicolas; Cunningham, Michael L.; Cox, Timothy C.
2015-01-01
We describe the first application of high-resolution 3D micro-computed tomography, together with 3D landmarks and geometric morphometrics, to map QTL responsible for variation in skull shape and size using a backcross between C57BL/6J and A/J inbred strains. Using 433 animals, 53 3D landmarks, and 882 SNPs from autosomes, we identified seven QTL responsible for the skull size (SCS.qtl) and 30 QTL responsible for the skull shape (SSH.qtl). Size, sex, and direction-of-cross were all significant factors and included in the analysis as covariates. All autosomes harbored at least one SSH.qtl, sometimes up to three. Effect sizes of SSH.qtl appeared to be small, rarely exceeding 1% of the overall shape variation. However, they account for significant amount of variation in some specific directions of the shape space. Many QTL have stronger effect on the neurocranium than expected from a random vector that will parcellate uniformly across the four cranial regions. On the contrary, most of QTL have an effect on the palate weaker than expected. Combined interval length of 30 SSH.qtl was about 315 MB and contained 2476 known protein coding genes. We used a bioinformatics approach to filter these candidate genes and identified 16 high-priority candidates that are likely to play a role in the craniofacial development and disorders. Thus, coupling the QTL mapping approach in model organisms with candidate gene enrichment approaches appears to be a feasible way to identify high-priority candidates genes related to the structure or tissue of interest. PMID:25859222
Magnetization measurements on multifilamentary No/sub 3/Sn and NbTi conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, A.K.; Robins, K.E.; Sampson, W.B.
1985-03-01
The effective filament size has been determined for a number of high current Nb/sub 3/Sn multifilamentary composites. In most cases it is much larger than the nominal filament size. For the smallest filaments (..integral.. 1 micron) the effective size can be as much as a factor of forty times the nominal size. Samples made by the ''internal tin'', ''bronze route'', and ''jelly roll'' methods have been examined with filaments in the range one to ten microns. Rate dependent magnetization and ''flux'' jumping'' have been observed in some cases. NbTi composites ranging in filament size from nine to two hundred micronsmore » and with copper to super-conductor ratios between 1.6:1 and 7:1 have been examined in the same apparatus. Low field ''flux jumping'' was only observed in conductors with very large filaments and relatively little stabilizing copper.« less
Berchane, N S; Carson, K H; Rice-Ficht, A C; Andrews, M J
2007-06-07
The need to tailor release rate profiles from polymeric microspheres is a significant problem. Microsphere size, which has a significant effect on drug release rate, can potentially be varied to design a controlled drug delivery system with desired release profile. In this work the effects of microspheres mean diameter, polydispersity, and polymer degradation on drug release rate from poly(lactide-co-glycolide) (PLG) microspheres are described. Piroxicam containing PLG microspheres were fabricated at 20% loading, and at three different impeller speeds. A portion of the microspheres was then sieved giving five different size distributions. In vitro release kinetics were determined for each preparation. Based on these experimental results, a suitable mathematical theory has been developed that incorporates the effect of microsphere size distribution and polymer degradation on drug release. We show from in vitro release experiments that microsphere size has a significant effect on drug release rate. The initial release rate decreased with an increase in microsphere size. In addition, the release profile changed from first order to concave-upward (sigmoidal) as the microsphere size was increased. The mathematical model gave a good fit to the experimental release data. For highly polydisperse populations (polydispersity parameter b<3), incorporating the microsphere size distribution into the mathematical model gave a better fit to the experimental results than using the representative mean diameter. The validated mathematical model can be used to predict small-molecule drug release from PLG microsphere populations.
Dittmar, Helga; Howard, Sarah
2004-12-01
Previous experimental research indicates that the use of average-size women models in advertising prevents the well-documented negative effect of thin models on women's body image, while such adverts are perceived as equally effective (Halliwell & Dittmar, 2004). The current study extends this work by: (a) seeking to replicate the finding of no difference in advertising effectiveness between average-size and thin models (b) examining level of ideal-body internalization as an individual, internal factor that moderates women's vulnerability to thin media models, in the context of (c) comparing women in professions that differ radically in their focus on, and promotion of, the sociocultural ideal of thinness for women--employees in fashion advertising (n = 75) and teachers in secondary schools (n = 75). Adverts showing thin, average-size and no models were perceived as equally effective. High internalizers in both groups of women felt worse about their body image after exposure to thin models compared to other images. Profession affected responses to average-size models. Teachers reported significantly less body-focused anxiety after seeing average-size models compared to no models, while there was no difference for fashion advertisers. This suggests that women in professional environments with less focus on appearance-related ideals can experience increased body-esteem when exposed to average-size models, whereas women in appearance-focused professions report no such relief.
Innocente, N; Biasutti, M; Venir, E; Spaziani, M; Marchesini, G
2009-05-01
The effect of different homogenization pressures (15/3 MPa and 97/3 MPa) on fat globule size and distribution as well as on structure-property relationships of ice cream mixes was investigated. Dynamic light scattering, steady shear, and dynamic rheological analyses were performed on mixes with different fat contents (5 and 8%) and different aging times (4 and 20 h). The homogenization of ice cream mixes determined a change from bimodal to monomodal particle size distributions and a reduction in the mean particle diameter. Mean fat globule diameters were reduced at higher pressure, but the homogenization effect on size reduction was less marked with the highest fat content. The rheological behavior of mixes was influenced by both the dispersed and the continuous phases. Higher fat contents caused greater viscosity and dynamic moduli. The lower homogenization pressure (15/3 MPa) mainly affected the dispersed phase and resulted in a more pronounced viscosity reduction in the higher fat content mixes. High-pressure homogenization (97/3 MPa) greatly enhanced the viscoelastic properties and the apparent viscosity. Rheological results indicated that unhomogenized and 15/3 MPa homogenized mixes behaved as weak gels. The 97/3 MPa treatment led to stronger gels, perhaps as the overall result of a network rearrangement or interpenetrating network formation, and the fat globules were found to behave as interactive fillers. High-pressure homogenization determined the apparent viscosity of 5% fat to be comparable to that of 8% fat unhomogenized mix.
Resist heating effect on e-beam mask writing at 75 kV and 60 A/cm2
NASA Astrophysics Data System (ADS)
Benes, Zdenek; Deverich, Christina; Huang, Chester; Lawliss, Mark
2003-12-01
Resist heating has been known to be one of the main contributors to local CD variation in mask patterning using variable shape e-beam tools. Increasingly complex mask patterns require increased number of shapes which drives the need for higher electron beam current densities to maintain reasonable write times. As beam current density is increased, CD error resulting from resist heating may become a dominating contributor to local CD variations. In this experimental study, the IBM EL4+ mask writer with high voltage and high current density has been used to quantitatively investigate the effect of resist heating on the local CD uniformity. ZEP 7000 and several chemically amplified resists have been evaluated under various exposure conditions (single-pass, multi-pass, variable spot size) and pattern densities. Patterns were designed specifically to allow easy measurement of local CD variations with write strategies designed to maximize the effect of resist heating. Local CD variations as high as 15 nm in 18.75 × 18.75 μm sub-field size have been observed for ZEP 7000 in a single-pass writing with full 1000 nm spots at 50% pattern density. This number can be reduced by increasing the number of passes or by decreasing the maximum spot size. The local CD variation has been reduced to as low as 2 nm for ZEP 7000 for the same pattern under modified exposure conditions. The effectiveness of various writing strategies is discussed as well as their possible deficiencies. Minimal or no resist heating effects have been observed for the chemically amplified resists studied. The results suggest that the resist heating effect can be well controlled by careful selection of the resist/process system and/or writing strategy and that resist heating does not have to pose a problem for high throughput e-beam mask making that requires high voltage and high current densities.
Effects of genes, sex, age, and activity on BMC, bone size, and areal and volumetric BMD.
Havill, Lorena M; Mahaney, Michael C; L Binkley, Teresa; Specker, Bonny L
2007-05-01
Quantitative genetic analyses of bone data for 710 inter-related individuals 8-85 yr of age found high heritability estimates for BMC, bone area, and areal and volumetric BMD that varied across bone sites. Activity levels, especially time in moderate plus vigorous activity, had notable effects on bone. In some cases, these effects were age and sex specific. Genetic and environmental factors play a complex role in determining BMC, bone size, and BMD. This study assessed the heritability of bone measures; characterized the effects of age, sex, and physical activity on bone; and tested for age- and sex-specific bone effects of activity. Measures of bone size and areal and volumetric density (aBMD and vBMD, respectively) were obtained by DXA and pQCT on 710 related individuals (466 women) 8-85 yr of age. Measures of activity included percent time in moderate + vigorous activity (%ModVig), stair flights climbed per day, and miles walked per day. Quantitative genetic analyses were conducted to model the effects of activity and covariates on bone outcomes. Accounting for effects of age, sex, and activity levels, genes explained 40-62% of the residual variation in BMC and BMD and 27-75% in bone size (all p<0.001). Decline in femoral neck (FN), hip, and spine aBMD with advancing age was greater among women than men (age-by-sex interaction; all p
Maternal effects and larval survival of marbled sole Pseudopleuronectes yokohamae
NASA Astrophysics Data System (ADS)
Higashitani, Tomomi; Takatsu, Tetsuya; Nakaya, Mitsuhiro; Joh, Mikimasa; Takahashi, Toyomi
2007-07-01
Maternal effects of animals are the phenotypic influences of age, size, and condition of spawners on the survival and phenotypic traits of offspring. To clarify the maternal effects for marbled sole Pseudopleuronectes yokohamae, we investigated the effects of body size, nutrient condition, and growth history of adult females on egg size, larval size, and starvation tolerance, growth, and feeding ability of offspring. The fecundity of adult females was strongly dependent on body size. Path analysis revealed that the mother's total length positively affected mean egg diameter, meaning that large females spawned large eggs. In contrast, the relative growth rate of adult females negatively affected egg diameter. Egg diameters positively affected both notochord length and yolk sac volume of the larvae at hatching. Under starvation conditions, notochord length at hatching strongly and positively affected days of survival at 14 °C but not at 9 °C. Under adequate food conditions (1000 rotifers L - 1 ), the notochord length of larvae 5 days after hatching positively affected feeding rate, implying that large larvae have high feeding ability. In addition, the mean growth rate of larvae between 0 and 15 days increased with increasing egg diameter under homogenous food conditions, suggesting that larvae hatched from large eggs might have a growth advantage for at least to 15 days after hatching. In marbled sole, these relationships (i.e., mother's body size-egg size-larval size-larval resistance to starvation-larval feeding ability) may help explain recruitment variability.
Maximizing return on socioeconomic investment in phase II proof-of-concept trials.
Chen, Cong; Beckman, Robert A
2014-04-01
Phase II proof-of-concept (POC) trials play a key role in oncology drug development, determining which therapeutic hypotheses will undergo definitive phase III testing according to predefined Go-No Go (GNG) criteria. The number of possible POC hypotheses likely far exceeds available public or private resources. We propose a design strategy for maximizing return on socioeconomic investment in phase II trials that obtains the greatest knowledge with the minimum patient exposure. We compare efficiency using the benefit-cost ratio, defined to be the risk-adjusted number of truly active drugs correctly identified for phase III development divided by the risk-adjusted total sample size in phase II and III development, for different POC trial sizes, powering schemes, and associated GNG criteria. It is most cost-effective to conduct small POC trials and set the corresponding GNG bars high, so that more POC trials can be conducted under socioeconomic constraints. If δ is the minimum treatment effect size of clinical interest in phase II, the study design with the highest benefit-cost ratio has approximately 5% type I error rate and approximately 20% type II error rate (80% power) for detecting an effect size of approximately 1.5δ. A Go decision to phase III is made when the observed effect size is close to δ. With the phenomenal expansion of our knowledge in molecular biology leading to an unprecedented number of new oncology drug targets, conducting more small POC trials and setting high GNG bars maximize the return on socioeconomic investment in phase II POC trials. ©2014 AACR.
Enhanced oxidation resistance of active nanostructures via dynamic size effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yun; Yang, Fan; Zhang, Yi
A major challenge limiting the practical applications of nanomaterials is that the activities of nanostructures (NSs) increase with reduced size, often sacrificing their stability in the chemical environment. Under oxidative conditions, NSs with smaller sizes and higher defect densities are commonly expected to oxidize more easily, since high-concentration defects can facilitate oxidation by enhancing the reactivity with O 2 and providing a fast channel for oxygen incorporation. Here, using FeO NSs as an example, we show to the contrary, that reducing the size of active NSs can drastically increase their oxidation resistance. A maximum oxidation resistance is found for FeOmore » NSs with dimensions below 3.2 nm. Rather than being determined by the structure or electronic properties of active sites, the enhanced oxidation resistance originates from the size-dependent structural dynamics of FeO NSs in O 2. We find this dynamic size effect to govern the chemical properties of active NSs.« less
Enhanced oxidation resistance of active nanostructures via dynamic size effect
Liu, Yun; Yang, Fan; Zhang, Yi; ...
2017-02-22
A major challenge limiting the practical applications of nanomaterials is that the activities of nanostructures (NSs) increase with reduced size, often sacrificing their stability in the chemical environment. Under oxidative conditions, NSs with smaller sizes and higher defect densities are commonly expected to oxidize more easily, since high-concentration defects can facilitate oxidation by enhancing the reactivity with O 2 and providing a fast channel for oxygen incorporation. Here, using FeO NSs as an example, we show to the contrary, that reducing the size of active NSs can drastically increase their oxidation resistance. A maximum oxidation resistance is found for FeOmore » NSs with dimensions below 3.2 nm. Rather than being determined by the structure or electronic properties of active sites, the enhanced oxidation resistance originates from the size-dependent structural dynamics of FeO NSs in O 2. We find this dynamic size effect to govern the chemical properties of active NSs.« less
NASA Astrophysics Data System (ADS)
Li, Bo; Guo, Bo; Fan, Hongsong; Zhang, Xingdong
2008-11-01
To investigate the effects of nano-hydroxyapatite (HA) particles with different morphology on highly malignant melanoma cells, three kinds of HA particles with different morphology were synthesized and co-cultured with highly malignant melanoma cells using phosphate-buffered saline (PBS) as control. A precipitation method with or without citric acid addition as surfactant was used to produce rod-like hydroxyapatite (HA) particles with nano- and micron size, respectively, and a novel oil-in-water emulsion method was employed to prepare ellipse-like nano-HA particles. Particle morphology and size distribution of the as prepared HA powders were characterized by transmission electron microscope (TEM) and dynamic light scattering technique. The nano- and micron HA particles with different morphology were co-cultured with highly malignant melanoma cells. Immunofluorescence analysis and MTT assay were employed to evaluate morphological change of nucleolus and proliferation of tumour cells, respectively. To compare the effects of HA particles on cell response, the PBS without HA particles was used as control. The experiment results indicated that particle nanoscale effect rather than particle morphology of HA was more effective for the inhibition on highly malignant melanoma cells proliferation.
Kumpulainen, M; Anderson, H; Svevar, T; Kangasvuo, I; Donner, J; Pohjoismäki, J
2017-10-01
Finnish Spitz is 130-year-old breed and has been highly popular in Finland throughout its history. Nordic Spitz is very similar to Finnish Spitz by origin and use, but is a relatively recent breed with much smaller population size. To see how breed age and breeding history have influenced the current population, we performed comprehensive population genetic analysis using pedigree data of 28,119 Finnish and 9,009 Nordic Spitzes combined with genomewide single nucleotide polymorphism (SNP) data from 135 Finnish and 110 Nordic Spitzes. We found that the Finnish Spitz has undergone repeated male bottlenecks resulting in dramatic loss of genetic diversity, reflected by 20 effective founders (f a ) and mean heterozygosity (Hz) of 0.313. The realized effective population size in the breed based on pedigree analysis (N¯ec) is 168, whereas the genetic effective population size (N eg ) computed the decay of linkage disequilibrium (r 2 ) is only 57 individuals. Nordic Spitz, although once been near extinction, has not been exposed to similar repeated bottlenecks than Finnish Spitz and had f a of 27 individuals. However, due to the smaller total population size, the breed has also smaller effective population size than Finnish Spitz (N¯ec = 98 and N eg = 49). Interestingly, the r 2 data show that the effective population size has contracted dramatically since the establishment of the breed, emphasizing the role of breed standards as constrains for the breeding population. Despite the small population size, Nordic Spitz still maintains SNP heterozygosity levels similar to mixed breed dogs (mean Hz = 0.409). Our study demonstrates that although pedigree analyses cannot provide estimates of the present diversity within a breed, the effective population sizes inferred from them correlate with the genotyping results. The genetic relationships of the northern Spitz breeds and the benefits of the open breed registry are discussed. © 2017 Blackwell Verlag GmbH.
Sacco, Roberto; Gabriele, Stefano; Persico, Antonio M
2015-11-30
Macrocephaly and brain overgrowth have been associated with autism spectrum disorder. We performed a systematic review and meta-analysis to provide an overall estimate of effect size and statistical significance for both head circumference and total brain volume in autism. Our literature search strategy identified 261 and 391 records, respectively; 27 studies defining percentages of macrocephalic patients and 44 structural brain imaging studies providing total brain volumes for patients and controls were included in our meta-analyses. Head circumference was significantly larger in autistic compared to control individuals, with 822/5225 (15.7%) autistic individuals displaying macrocephaly. Structural brain imaging studies measuring brain volume estimated effect size. The effect size is higher in low functioning autistics compared to high functioning and ASD individuals. Brain overgrowth was recorded in 142/1558 (9.1%) autistic patients. Finally, we found a significant interaction between age and total brain volume, resulting in larger head circumference and brain size during early childhood. Our results provide conclusive effect sizes and prevalence rates for macrocephaly and brain overgrowth in autism, confirm the variation of abnormal brain growth with age, and support the inclusion of this endophenotype in multi-biomarker diagnostic panels for clinical use. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Contact behavior modelling and its size effect on proton exchange membrane fuel cell
NASA Astrophysics Data System (ADS)
Qiu, Diankai; Peng, Linfa; Yi, Peiyun; Lai, Xinmin; Janßen, Holger; Lehnert, Werner
2017-10-01
Contact behavior between the gas diffusion layer (GDL) and bipolar plate (BPP) is of significant importance for proton exchange membrane fuel cells. Most current studies on contact behavior utilize experiments and finite element modelling and focus on fuel cells with graphite BPPs, which lead to high costs and huge computational requirements. The objective of this work is to build a more effective analytical method for contact behavior in fuel cells and investigate the size effect resulting from configuration alteration of channel and rib (channel/rib). Firstly, a mathematical description of channel/rib geometry is outlined in accordance with the fabrication of metallic BPP. Based on the interface deformation characteristic and Winkler surface model, contact pressure between BPP and GDL is then calculated to predict contact resistance and GDL porosity as evaluative parameters of contact behavior. Then, experiments on BPP fabrication and contact resistance measurement are conducted to validate the model. The measured results demonstrate an obvious dependence on channel/rib size. Feasibility of the model used in graphite fuel cells is also discussed. Finally, size factor is proposed for evaluating the rule of size effect. Significant increase occurs in contact resistance and porosity for higher size factor, in which channel/rib width decrease.
Zorpas, Antonis A; Vassilis, Inglezakis; Loizidou, Maria; Grigoropoulou, Helen
2002-06-01
Land application of sewage sludge may be the least energy consuming and the most cost-effective means of sludge disposal or utilization. However, the major technical problem with land application of sludge concerns the high concentrations of heavy metals. These metals may be leached and enter the ecosystem, the food chain, and eventually the human population. This paper deals with the removal of heavy metals from sewage sludge compost using natural zeolite clinoptilolite, in respect to the particle size. The final results indicate that heavy metals can be sufficiently removed by using 25% w/w of zeolite with particle size of 3.3-4.0 mm. Pore clogging and structural damage in smaller particle sizes is probably the reason for lower uptake of metals by the latter.
Intrinsic Variability in Shell and Soft Tissue Growth of the Freshwater Mussel Lampsilis siliquoidea
Larson, James H.; Eckert, Nathan L.; Bartsch, Michelle R.
2014-01-01
Freshwater mussels are ecologically and economically important members of many aquatic ecosystems, but are globally among the most imperiled taxa. Propagation techniques for mussels have been developed and used to boost declining and restore extirpated populations. Here we use a cohort of propagated mussels to estimate the intrinsic variability in size and growth rate of Lampsilis siliquoidea (a commonly propagated species). Understanding the magnitude and pattern of variation in data is critical to determining whether effects observed in nature or experimental treatments are likely to be important. The coefficient of variation (CV) of L. siliquoidea soft tissues (6.0%) was less than the CV of linear shell dimensions (25.1–66.9%). Size-weight relationships were best when mussel width (the maximum left-right dimension with both valves appressed) was used as a predictor, but 95% credible intervals on these predictions for soft tissues were ∼145 mg wide (about 50% of the mean soft tissue mass). Mussels in this study were treated identically, raised from a single cohort and yet variation in soft tissue mass at a particular size class (as determined by shell dimensions) was still high. High variability in mussel size is often acknowledged, but seldom discussed in the context of mussel conservation. High variability will influence the survival of stocked juvenile cohorts, may affect the ability to experimentally detect sublethal stressors and may lead to incongruities between the effects that mussels have on structure (via hard shells) and biogeochemical cycles (via soft tissue metabolism). Given their imperiled status and longevity, there is often reluctance to destructively sample unionid mussel soft tissues even in metabolic studies (e.g., studies of nutrient cycling). High intrinsic variability suggests that using shell dimensions (particularly shell length) as a response variable in studies of sublethal stressors or metabolic processes will make confident identifications of smaller effect sizes difficult. PMID:25411848
Intrinsic variability in shell and soft tissue growth of the freshwater mussel Lampsilis siliquoidea
Larson, James H.; Eckert, Nathan L.; Bartsch, Michelle
2014-01-01
Freshwater mussels are ecologically and economically important members of many aquatic ecosystems, but are globally among the most imperiled taxa. Propagation techniques for mussels have been developed and used to boost declining and restore extirpated populations. Here we use a cohort of propagated mussels to estimate the intrinsic variability in size and growth rate of Lampsilis siliquoidea (a commonly propagated species). Understanding the magnitude and pattern of variation in data is critical to determining whether effects observed in nature or experimental treatments are likely to be important. The coefficient of variation (CV) of L. siliquoidea soft tissues (6.0%) was less than the CV of linear shell dimensions (25.1-66.9%). Size-weight relationships were best when mussel width (the maximum left-right dimension with both valves appressed) was used as a predictor, but 95% credible intervals on these predictions for soft tissues were ~145 mg wide (about 50% of the mean soft tissue mass). Mussels in this study were treated identically, raised from a single cohort and yet variation in soft tissue mass at a particular size class (as determined by shell dimensions) was still high. High variability in mussel size is often acknowledged, but seldom discussed in the context of mussel conservation. High variability will influence the survival of stocked juvenile cohorts, may affect the ability to experimentally detect sublethal stressors and may lead to incongruities between the effects that mussels have on structure (via hard shells) and biogeochemical cycles (via soft tissue metabolism). Given their imperiled status and longevity, there is often reluctance to destructively sample unionid mussel soft tissues even in metabolic studies (e.g., studies of nutrient cycling). High intrinsic variability suggests that using shell dimensions (particularly shell length) as a response variable in studies of sublethal stressors or metabolic processes will make confident identifications of smaller effect sizes difficult.
NASA Astrophysics Data System (ADS)
El-Sayed, Karimat; Mohamed, Mohamed Bakr; Hamdy, Sh.; Ata-Allah, S. S.
2017-02-01
Nano-crystalline NiFe2O4 was synthesized by citrate and sol-gel methods at different annealing temperatures and the results were compared with a bulk sample prepared by ceramic method. The effect of methods of preparation and different annealing temperatures on the crystallize size, strain, bond lengths, bond angles, cations distribution and degree of inversions were investigated by X-ray powder diffraction, high resolution transmission electron microscope, Mössbauer effect spectrometer and vibrating sample magnetometer. The cations distributions were determined at both octahedral and tetrahedral sites using both Mössbauer effect spectroscopy and a modified Bertaut method using Rietveld method. The Mössbauer effect spectra showed a regular decrease in the hyperfine field with decreasing particle size. Saturation magnetization and coercivity are found to be affected by the particle size and the cations distribution.
Biased phylodynamic inferences from analysing clusters of viral sequences
Xiang, Fei; Frost, Simon D. W.
2017-01-01
Abstract Phylogenetic methods are being increasingly used to help understand the transmission dynamics of measurably evolving viruses, including HIV. Clusters of highly similar sequences are often observed, which appear to follow a ‘power law’ behaviour, with a small number of very large clusters. These clusters may help to identify subpopulations in an epidemic, and inform where intervention strategies should be implemented. However, clustering of samples does not necessarily imply the presence of a subpopulation with high transmission rates, as groups of closely related viruses can also occur due to non-epidemiological effects such as over-sampling. It is important to ensure that observed phylogenetic clustering reflects true heterogeneity in the transmitting population, and is not being driven by non-epidemiological effects. We qualify the effect of using a falsely identified ‘transmission cluster’ of sequences to estimate phylodynamic parameters including the effective population size and exponential growth rate under several demographic scenarios. Our simulation studies show that taking the maximum size cluster to re-estimate parameters from trees simulated under a randomly mixing, constant population size coalescent process systematically underestimates the overall effective population size. In addition, the transmission cluster wrongly resembles an exponential or logistic growth model 99% of the time. We also illustrate the consequences of false clusters in exponentially growing coalescent and birth-death trees, where again, the growth rate is skewed upwards. This has clear implications for identifying clusters in large viral databases, where a false cluster could result in wasted intervention resources. PMID:28852573
NASA Astrophysics Data System (ADS)
Xuan, Weidong; Lan, Jian; Liu, Huan; Li, Chuanjun; Wang, Jiang; Ren, Weili; Zhong, Yunbo; Li, Xi; Ren, Zhongming
2017-08-01
High magnetic fields are widely used to improve the microstructure and properties of materials during the solidification process. During the preparation of single-crystal turbine blades, the microstructure of the superalloy is the main factor that determines its mechanical properties. In this work, the effects of a high magnetic field on the microstructure of Ni-based single-crystal superalloys PWA1483 and CMSX-4 during directional solidification were investigated experimentally. The results showed that the magnetic field modified the primary dendrite arm spacing, γ' phase size, and microsegregation of the superalloys. In addition, the size and volume fractions of γ/ γ' eutectic and the microporosity were decreased in a high magnetic field. Analysis of variance (ANOVA) results showed that the effect of a high magnetic field on the microstructure during directional solidification was significant ( p < 0.05). Based on both experimental results and theoretical analysis, the modification of microstructure was attributed to thermoelectric magnetic convection occurring in the interdendritic regions under a high magnetic field. The present work provides a new method to optimize the microstructure of Ni-based single-crystal superalloy blades by applying a high magnetic field.
2014-01-01
Background Animals fertilize thousands of angiosperm species whose floral-display sizes can significantly influence pollinator behavior and plant reproductive success. Many studies have measured the interactions among pollinator behavior, floral-display size, and plant reproductive success, but few studies have been able to separate the effects of pollinator behavior and post-pollination processes on angiosperm sexual reproduction. In this study, we utilized the highly self-incompatible pollinium-pollination system of Asclepias syriaca (Common Milkweed) to quantify how insect visitors influenced male reproductive success measured as pollen removal, female reproductive success measured as pollen deposition, and self-pollination rate. We also determined how floral-display size impacts both visitor behavior and self-pollination rate. Results Four insect taxonomic orders visited A. syriaca: Coleoptera, Diptera, Hymenoptera, and Lepidoptera. We focused on three groups of visitor taxa within two orders (Hymenoptera and Lepidoptera) with sample sizes large enough for quantitative analysis: Apis mellifera (Western Honey Bee), Bombus spp. (bumble bees) and lepidopterans (butterflies and moths). Qualitatively, lepidopterans had the highest pollinator importance values, but the large variability in the lepidopteran data precluded meaningful interpretation of much of their behavior. The introduced A. mellifera was the most effective and most important diurnal pollinator with regard to both pollen removal and pollen deposition. However, when considering the self-incompatibility of A. syriaca, A. mellifera was not the most important pollinator because of its high self-pollination rate as compared to Bombus spp. Additionally, the rate of self-pollination increased more rapidly with the number of flowers per inflorescence in A. mellifera than in the native Bombus spp. Conclusions Apis mellifera’s high rate of self-pollination may have significant negative effects on both male and female reproductive successes in A. syriaca, causing different selection on floral-display size than native pollinators. PMID:24958132
High energy ball milling study of Fe{sub 2}MnSn Heusler alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Vivek Kumar, E-mail: vivek.jain129@gmail.com; Lakshmi, N.; Jain, Vishal
The structural and magnetic properties of as-melted and high energy ball milled alloy samples have been studied by X-ray diffraction, DC magnetization and electronic structure calculations by means of density functional theory. The observed properties are compared to that of the bulk sample. There is a very good enhancement of saturation magnetization and coercivity in the nano-sized samples as compared to bulk which is explained in terms of structural disordering and size effect.
Zuo, Feng; Peng, Xingyun; Shi, Xiaodi; Guo, Shuntang
2016-10-15
This study focused on the effect of high-temperature pressure cooking on the sensory quality of soymilk. Soymilk was prepared by high-temperature pressure cooking (105-125°C and 0.12-0.235MPa) and traditional cooking (97°C and 0.1MPa). The size distribution and composition of protein particles and the rheological properties of soymilk were compared. Results showed that the content of protein particles and the average size of soymilk particles were higher in high-temperature pressure cooking than in traditional cooking (p<0.05). High-temperature pressure cooking affected soymilk protein denaturation and favored protein aggregation. Similar to traditional soymilk, soymilk cooked at 115°C was categorized as a Newtonian fluid but was found with increased viscosity in the rheological test. Soymilk cooked at 115°C for 10min exhibited a homogeneous, smooth, and creamy texture with a high acceptability in the sensory test. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hetley, Richard; Dosher, Barbara Anne; Lu, Zhong-Lin
2014-01-01
Attention precues improve the performance of perceptual tasks in many but not all circumstances. These spatial attention effects may depend upon display set size or workload, and have been variously attributed to external noise filtering, stimulus enhancement, contrast gain, or response gain, or to uncertainty or other decision effects. In this study, we document systematically different effects of spatial attention in low- and high-precision judgments, with and without external noise, and in different set sizes in order to contribute to the development of a taxonomy of spatial attention. An elaborated perceptual template model (ePTM) provides an integrated account of a complex set of effects of spatial attention with just two attention factors: a set-size dependent exclusion or filtering of external noise and a narrowing of the perceptual template to focus on the signal stimulus. These results are related to the previous literature by classifying the judgment precision and presence of external noise masks in those experiments, suggesting a taxonomy of spatially cued attention in discrimination accuracy. PMID:24939234
Hetley, Richard; Dosher, Barbara Anne; Lu, Zhong-Lin
2014-11-01
Attention precues improve the performance of perceptual tasks in many but not all circumstances. These spatial attention effects may depend upon display set size or workload, and have been variously attributed to external noise filtering, stimulus enhancement, contrast gain, or response gain, or to uncertainty or other decision effects. In this study, we document systematically different effects of spatial attention in low- and high-precision judgments, with and without external noise, and in different set sizes in order to contribute to the development of a taxonomy of spatial attention. An elaborated perceptual template model (ePTM) provides an integrated account of a complex set of effects of spatial attention with just two attention factors: a set-size dependent exclusion or filtering of external noise and a narrowing of the perceptual template to focus on the signal stimulus. These results are related to the previous literature by classifying the judgment precision and presence of external noise masks in those experiments, suggesting a taxonomy of spatially cued attention in discrimination accuracy.
NASA Astrophysics Data System (ADS)
Reza Barati, Mohammad; Selomulya, Cordelia; Suzuki, Kiyonori
2014-05-01
Magnetic nanoparticles with narrow size distributions have successfully been synthesized by an ultrasonic assisted co-precipitation method. The effects of particle size on magnetic properties, heat generation by AC fields, and the cell cytotoxicity were investigated for MgFe2O4 nanoparticles with mean diameters varying from 7 ± 0.5 nm to 29 ± 1 nm. The critical size for superparamagnetic to ferrimagnetic transition (DS→F) of MgFe2O4 was determined to be about 13 ± 0.5 nm at 300 K. The specific absorption rate (SAR) of MgFe2O4 nanoparticles was strongly size dependent; it showed a maximum value of 19 W/g when the particle size was 10 ± 0.5 nm at which the Néel and Brownian relaxations are the major cause of heating. The SAR value was suppressed dramatically by 46% with increasing particle size from 10 ± 0.5 nm to 13 ± 0.5 nm, where Néel relaxation slows down and SAR results primarily from Brownian relaxation loss. A further reduction in SAR value was evident when the size was increased from 13 ± 0.5 nm to 16 ± 1 nm, where the superparamagnetic to ferromagnetic transition occurs. However, SAR showed a tendency to increase with particle size again above 16 ± 1 nm where hysteresis loss becomes the dominant mechanism of heat generation. The particle size dependence of SAR in the superparamagnetic region was well described by considering the effective relaxation time estimated based on a log-normal size distribution. The clear size dependence of SAR is attributable to the high degree of monodispersity of particles synthesized here. The high SAR value of water-based MgFe2O4 magnetic suspension combined with low cell cytotoxicity suggests a great potential of MgFe2O4 nanoparticles for magnetic hyperthermia therapy applications.
Size dependent polaronic conduction in hematite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Monika; Banday, Azeem; Murugavel, Sevi
2016-05-23
Lithium Ion Batteries have been attracted as the major renewable energy source for all portable electronic devices because of its advantages like superior energy density, high theoretical capacity, high specific energy, stable cycling and less memory effects. Recently, α-Fe{sub 2}O{sub 3} has been considered as a potential anode material due to high specific capacity, low cost, high abundance and environmental benignity. We have synthesized α-Fe{sub 2}O{sub 3} with various sizes by using the ball milling and sol-gel procedure. Here, we report the dc conductivity measurement for the crystallite size ranging from 15 nm to 50 nm. It has been observedmore » that the enhancement in the polaronic conductivity nearly two orders in magnitude while reducing the crystallite size from bulk into nano scale level. The enhancement in the conductivity is due to the augmented to compressive strain developed in the material which leads to pronounced decrease in the hopping length of polarons. Thus, nanocrystaline α-Fe{sub 2}O{sub 3} may be a better alternative anode material for lithium ion batteries than earlier reported systems.« less
Cai, Wenjia; Ye, Lin; Zhang, Li; Ren, Yuanhang; Yue, Bin; Chen, Xueying; He, Heyong
2014-01-01
A series of nickel-containing mesoporous silica samples (Ni-SiO2) with different nickel content (3.1%–13.2%) were synthesized by the evaporation-induced self-assembly method. Their catalytic activity was tested in carbon dioxide reforming of methane. The characterization results revealed that the catalysts, e.g., 6.7%Ni-SiO2, with highly dispersed small nickel particles, exhibited excellent catalytic activity and long-term stability. The metallic nickel particle size was significantly affected by the metal anchoring effect between metallic nickel particles and unreduced nickel ions in the silica matrix. A strong anchoring effect was suggested to account for the remaining of small Ni particle size and the improved catalytic performance. PMID:28788570
An assessment of the effects of cell size on AGNPS modeling of watershed runoff
Wu, S.-S.; Usery, E.L.; Finn, M.P.; Bosch, D.D.
2008-01-01
This study investigates the changes in simulated watershed runoff from the Agricultural NonPoint Source (AGNPS) pollution model as a function of model input cell size resolution for eight different cell sizes (30 m, 60 m, 120 m, 210 m, 240 m, 480 m, 960 m, and 1920 m) for the Little River Watershed (Georgia, USA). Overland cell runoff (area-weighted cell runoff), total runoff volume, clustering statistics, and hot spot patterns were examined for the different cell sizes and trends identified. Total runoff volumes decreased with increasing cell size. Using data sets of 210-m cell size or smaller in conjunction with a representative watershed boundary allows one to model the runoff volumes within 0.2 percent accuracy. The runoff clustering statistics decrease with increasing cell size; a cell size of 960 m or smaller is necessary to indicate significant high-runoff clustering. Runoff hot spot areas have a decreasing trend with increasing cell size; a cell size of 240 m or smaller is required to detect important hot spots. Conclusions regarding cell size effects on runoff estimation cannot be applied to local watershed areas due to the inconsistent changes of runoff volume with cell size; but, optimal cells sizes for clustering and hot spot analyses are applicable to local watershed areas due to the consistent trends.
NASA Astrophysics Data System (ADS)
Wang, Ruzhuan; Li, Xiaobo; Wang, Jing; Jia, Bi; Li, Weiguo
2018-06-01
This work shows a new rational theoretical model for quantitatively predicting fracture strength and critical flaw size of the ZrB2-ZrC composites at different temperatures, which is based on a new proposed temperature dependent fracture surface energy model and the Griffith criterion. The fracture model takes into account the combined effects of temperature and damage terms (surface flaws and internal flaws) with no any fitting parameters. The predictions of fracture strength and critical flaw size of the ZrB2-ZrC composites at high temperatures agree well with experimental data. Then using the theoretical method, the improvement and design of materials are proposed. The proposed model can be used to predict the fracture strength, find the critical flaw and study the effects of microstructures on the fracture mechanism of the ZrB2-ZrC composites at high temperatures, which thus could become a potential convenient, practical and economical technical means for predicting fracture properties and material design.
Effects of turbine cooling assumptions on performance and sizing of high-speed civil transport
NASA Technical Reports Server (NTRS)
Senick, Paul F.
1992-01-01
The analytical study presented examines the effects of varying turbine cooling assumptions on the performance of a high speed civil transport propulsion system as well as the sizing sensitivity of this aircraft to these performance variations. The propulsion concept employed in this study was a two spool, variable cycle engine with a sea level thrust of 55,000 lbf. The aircraft used for this study was a 250 passenger vehicle with a cruise Mach number of 2.4 and 5000 nautical mile range. The differences in turbine cooling assumptions were represented by varying the amount of high pressure compressor bleed air used to cool the turbines. It was found that as this cooling amount increased, engine size and weight increased, but specific fuel consumption (SFC) decreased at takeoff and climb only. Because most time is spent at cruise, the SFC advantage of the higher bleed engines seen during subsonic flight was minimized and the lower bleed, lighter engines led to the lowest takeoff gross weight vehicles. Finally, the change in aircraft takeoff gross weight versus turbine cooling level is presented.
Bashey, Farrah; Lively, Curtis M
2009-05-01
Selection is recognized to operate on multiple levels. In disease organisms, selection among hosts is thought to provide an important counterbalance to selection for faster growth within hosts. We performed three experiments, each selecting for a divergence in group size in the entomopathogenic nematode, Steinernema carpocapsae. These nematodes infect and kill insect larvae, reproduce inside the host carcass, and emerge as infective juveniles. We imposed selection on group size by selecting among hosts for either high or low numbers of emerging nematodes. Our goal was to determine whether this trait could respond to selection at the group level, and if so, to examine what other traits would evolve as correlated responses. One of the three experiments showed a significant response to group selection. In that experiment, the high-selected treatment consistently produced more emerging nematodes per host than the low-selected treatment. In addition, nematodes were larger and they emerged later from hosts in the low-selected lines. Despite small effective population sizes, the effects of inbreeding were small in this experiment. Thus, selection among hosts can be effective, leading to both a direct evolutionary response at the population level, as well as to correlated responses in populational and individual traits.
Burger, Joanna
2014-01-01
Relatively little attention has been devoted to the risks from mercury in saltwater fish, that were caught by recreational fisherfolk. Although the US Food and Drug Administration has issued advisories based on mercury for four saltwater species or groups of fish, there are few data on how mercury levels vary by size, season, or location. This paper examines total mercury levels in muscle of bluefish (Pomatomus saltatrix) collected from coastal New Jersey, mainly by recreational fishermen. Of primary interest was whether there were differences in mercury levels as a function of location, weight and length of the fish, and season, and in what risk mercury posed to the food chain, including people. Selenium was also measured because of its reported protective effects against mercury. Mercury levels averaged 0.35±0.02 (mean and standard error) ppm, and selenium levels averaged 0.37±0.01ppm (N = 206). In this study, 41% of the fish had mercury levels above 0.3 ppm, 20% had levels above 0.5 ppm, and 4% had levels above 1 ppm. Size was highly correlated with mercury levels, but not with selenium. While selenium levels did not vary at all with season, mercury levels decreased significantly. This relationship was not due to differences in the size of fish, since the fish collected in the summer were the smallest, but had intermediate mercury levels. Mercury levels declined from early June until November, particularly for the smaller-sized fish. While there were significant locational differences in mercury levels (but not selenium), these differences could be a result of size. The levels of mercury in bluefish are not sufficiently high to cause problems for the bluefish themselves, based on known adverse health effects levels, but are high enough to cause potential adverse health effects in sensitive birds and mammals that eat them, and to provide a potential health risk to humans who consume them. Fish larger than 50cm fork length averaged levels above 0.3 ppm, suggesting that eating them should be avoided by pregnant women, children, and others who are at risk. PMID:19643400
Burger, Joanna
2009-10-01
Relatively little attention has been devoted to the risks from mercury in saltwater fish, that were caught by recreational fisherfolk. Although the US Food and Drug Administration has issued advisories based on mercury for four saltwater species or groups of fish, there are few data on how mercury levels vary by size, season, or location. This paper examines total mercury levels in muscle of bluefish (Pomatomus saltatrix) collected from coastal New Jersey, mainly by recreational fishermen. Of primary interest was whether there were differences in mercury levels as a function of location, weight and length of the fish, and season, and in what risk mercury posed to the food chain, including people. Selenium was also measured because of its reported protective effects against mercury. Mercury levels averaged 0.35+/-0.02 (mean and standard error)ppm, and selenium levels averaged 0.37+/-0.01ppm (N=206). In this study, 41% of the fish had mercury levels above 0.3ppm, 20% had levels above 0.5ppm, and 4% had levels above 1ppm. Size was highly correlated with mercury levels, but not with selenium. While selenium levels did not vary at all with season, mercury levels decreased significantly. This relationship was not due to differences in the size of fish, since the fish collected in the summer were the smallest, but had intermediate mercury levels. Mercury levels declined from early June until November, particularly for the smaller-sized fish. While there were significant locational differences in mercury levels (but not selenium), these differences could be a result of size. The levels of mercury in bluefish are not sufficiently high to cause problems for the bluefish themselves, based on known adverse health effects levels, but are high enough to cause potential adverse health effects in sensitive birds and mammals that eat them, and to provide a potential health risk to humans who consume them. Fish larger than 50cm fork length averaged levels above 0.3ppm, suggesting that eating them should be avoided by pregnant women, children, and others who are at risk.
2015-01-01
High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production. PMID:24824296
Preferred viewing distance of liquid crystal high-definition television.
Lee, Der-Song
2012-01-01
This study explored the effect of TV size, illumination, and viewing angle on preferred viewing distance in high-definition liquid crystal display televisions (HDTV). Results showed that the mean preferred viewing distance was 2856 mm. TV size and illumination significantly affected preferred viewing distance. The larger the screen size, the greater the preferred viewing distance, at around 3-4 times the width of the screen (W). The greater the illumination, the greater the preferred viewing distance. Viewing angle also correlated significantly with preferred viewing distance. The more deflected from direct frontal view, the shorter the preferred viewing distance seemed to be. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Size and shape dependent optical properties of InAs quantum dots
NASA Astrophysics Data System (ADS)
Imran, Ali; Jiang, Jianliang; Eric, Deborah; Yousaf, Muhammad
2018-01-01
In this study Electronic states and optical properties of self assembled InAs quantum dots embedded in GaAs matrix have been investigated. Their carrier confinement energies for single quantum dot are calculated by time-independent Schrödinger equation in which hamiltonianian of the system is based on effective mass approximation and position dependent electron momentum. Transition energy, absorption coefficient, refractive index and high frequency dielectric constant for spherical, cylindrical and conical quantum dots with different sizes in different dimensions are calculated. Comparative studies have revealed that size and shape greatly affect the electronic transition energies and absorption coefficient. Peaks of absorption coefficients have been found to be highly shape dependent.
NASA Technical Reports Server (NTRS)
Weick, Fred E; Wenzinger, Carl J
1935-01-01
This report covers the twelfth of a series of tests conducted to compare different lateral control devices with particular reference to their effectiveness at high angles of attack. The present wind tunnel tests were made with two sizes of upper-surface ailerons on rectangular Clark Y wing models equipped with full span split flaps. The tests showed the effect of the upper-surface ailerons and of the split flaps on the general performance characteristics of the wings, and on the lateral controllability and stability characteristics. The results are compared with those for plain wings with ordinary ailerons of similar sizes.
Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, Eisenia fetida.
Coleman, Jessica G; Johnson, David R; Stanley, Jacob K; Bednar, Anthony J; Weiss, Charles A; Boyd, Robert E; Steevens, Jeffery A
2010-07-01
Nano-sized aluminum is currently being used by the military and commercial industries in many applications including coatings, thermites, and propellants. Due to the potential for wide dispersal in soil systems, we chose to investigate the fate and effects of nano-sized aluminum oxide (Al2O3), the oxidized form of nano aluminum, in a terrestrial organism. The toxicity and bioaccumulation potential of micron-sized (50-200 microm, nominal) and nano-sized (11 nm, nominal) Al2O3 was comparatively assessed through acute and subchronic bioassays using the terrestrial earthworm, Eisenia fetida. Subchronic (28-d) studies were performed exposing E. fetida to nano- and micron-sized Al2O3-spiked soils to assess the effects of long-term exposure. No mortality occurred in subchronic exposures, although reproduction decreased at >or=3,000 mg/kg nano-sized Al2O3 treatments, with higher aluminum body burdens observed at 100 and 300 mg/kg; no reproductive effects were observed in the micron-sized Al2O3 treatments. In addition to toxicity and bioaccumulation bioassays, an acute (48-h) behavioral bioassay was conducted utilizing a soil avoidance wheel in which E. fetida were given a choice of habitat between control, nano-, or micron-sized Al2O3 amended soils. In the soil avoidance bioassays, E. fetida exhibited avoidance behavior toward the highest concentrations of micron- and nano-sized Al2O3 (>5,000 mg/kg) relative to control soils. Results of the present study indicate that nano-sized Al2O3 may impact reproduction and behavior of E. fetida, although at high levels unlikely to be found in the environment. Copyright (c) 2010 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Yang; Gorey, Timothy J.; Anderson, Scott L.
2016-12-12
X-ray absorption near-edge structure (XANES) is commonly used to probe the oxidation state of metal-containing nanomaterials, however, as the particle size in the material drops below a few nanometers, it becomes important to consider inherent size effects on the electronic structure of the materials. In this paper, we analyze a series of size-selected Pt n/SiO 2 samples, using X-ray photoelectron spectroscopy (XPS), low energy ion scattering, grazing-incidence small angle X-ray scattering, and XANES. The oxidation state and morphology are characterized both as-deposited in UHV, and after air/O 2 exposure and annealing in H 2. Here, the clusters are found tomore » be stable during deposition and upon air exposure, but sinter if heated above ~150 °C. XANES shows shifts in the Pt L 3 edge, relative to bulk Pt, that increase with decreasing cluster size, and the cluster samples show high white line intensity. Reference to bulk standards would suggest that the clusters are oxidized, however, XPS shows that they are not. Instead, the XANES effects are attributable to development of a band gap and localization of empty state wavefunctions in small clusters.« less
Effect of Bimodal Grain Size Distribution on Scatter in Toughness
NASA Astrophysics Data System (ADS)
Chakrabarti, Debalay; Strangwood, Martin; Davis, Claire
2009-04-01
Blunt-notch tests were performed at -160 °C to investigate the effect of a bimodal ferrite grain size distribution in steel on cleavage fracture toughness, by comparing local fracture stress values for heat-treated microstructures with uniformly fine, uniformly coarse, and bimodal grain structures. An analysis of fracture stress values indicates that bimodality can have a significant effect on toughness by generating high scatter in the fracture test results. Local cleavage fracture values were related to grain size distributions and it was shown that the largest grains in the microstructure, with an area percent greater than approximately 4 pct, gave rise to cleavage initiation. In the case of the bimodal grain size distribution, the large grains from both the “fine grain” and “coarse grain” population initiate cleavage; this spread in grain size values resulted in higher scatter in the fracture stress than in the unimodal distributions. The notch-bend test results have been used to explain the difference in scatter in the Charpy energies for the unimodal and bimodal ferrite grain size distributions of thermomechanically controlled rolled (TMCR) steel, in which the bimodal distribution showed higher scatter in the Charpy impact transition (IT) region.
Ion size effects on the electrokinetics of spherical particles in salt-free concentrated suspensions
NASA Astrophysics Data System (ADS)
Roa, Rafael; Carrique, Felix; Ruiz-Reina, Emilio
2012-02-01
In this work we study the influence of the counterion size on the electrophoretic mobility and on the dynamic mobility of a suspended spherical particle in a salt-free concentrated colloidal suspension. Salt-free suspensions contain charged particles and the added counterions that counterbalance their surface charge. A spherical cell model approach is used to take into account particle-particle electro-hydrodynamic interactions in concentrated suspensions. The finite size of the counterions is considered including an entropic contribution, related with the excluded volume of the ions, in the free energy of the suspension, giving rise to a modified counterion concentration profile. We are interested in studying the linear response of the system to an electric field, thus we solve the different electrokinetic equations by using a linear perturbation scheme. We find that the ionic size effect is quite important for moderate to high particles charges at a given particle volume fraction. In addition for such particle surface charges, both the electrophoretic mobility and the dynamic mobility suffer more important changes the larger the particle volume fraction for each ion size. The latter effects are more relevant the larger the ionic size.
Amiel, Joshua Johnstone; Lindström, Tom; Shine, Richard
2014-03-01
Previous studies have suggested that body size and locomotor performance are targets of Darwinian selection in reptiles. However, much of the variation in these traits may derive from phenotypically plastic responses to incubation temperature, rather than from underlying genetic variation. Intriguingly, incubation temperature may also influence cognitive traits such as learning ability. Therefore, we might expect correlations between a reptile's size, locomotor speed and learning ability either due to selection on all of these traits or due to environmental effects during egg incubation. In the present study, we incubated lizard eggs (Scincidae: Bassiana duperreyi) under 'hot' and 'cold' thermal regimes and then assessed differences in hatchling body size, running speed and learning ability. We measured learning ability using a Y-maze and a food reward. We found high correlations between size, speed and learning ability, using two different metrics to quantify learning (time to solution, and directness of route), and showed that environmental effects (incubation temperature) cause these correlations. If widespread, such correlations challenge any simple interpretation of fitness advantages due to body size or speed within a population; for example, survivors may be larger and faster than nonsurvivors because of differences in learning ability, not because of their size or speed.
Effect of charcoal doping on the superconducting properties of MgB 2 bulk
NASA Astrophysics Data System (ADS)
Kim, N. K.; Tan, K. S.; Jun, B.-H.; Park, H. W.; Joo, J.; Kim, C.-J.
2008-09-01
The effect of charcoal doping on the superconducting properties of in situ processed MgB 2 bulk samples was investigated. To understand the size effect of the dopant the charcoal powder was attrition milled for 1 h, 3 h and 6 h using ZrO 2 balls. The milled charcoal powders were mixed with magnesium and boron powders to a nominal composition of Mg(B 0.975C 0.025) 2. The Mg(B 0.975C 0.025) 2 compacts were heat-treated at 900 °C for 0.5 h in flowing Ar atmosphere. Magnetic susceptibility for the samples showed that the superconducting transition temperature ( Tc) decreased as the size of the charcoal powder decreased. The critical current density ( Jc) of Mg(B 0.975C 0.025) 2 prepared using large size charcoal powder was lower than that of the undoped MgB 2. However, a crossover of Jc value was observed at high magnetic fields of about 4 T in Mg(B 0.975C 0.025) 2 prepared using small size charcoal powder. Carbon diffusion into the boron site was easier and gave the Jc increase effect when the small size charcoal was used as a dopant.
An integrated approach to piezoactuator positioning in high-speed atomic force microscope imaging
NASA Astrophysics Data System (ADS)
Yan, Yan; Wu, Ying; Zou, Qingze; Su, Chanmin
2008-07-01
In this paper, an integrated approach to achieve high-speed atomic force microscope (AFM) imaging of large-size samples is proposed, which combines the enhanced inversion-based iterative control technique to drive the piezotube actuator control for lateral x-y axis positioning with the use of a dual-stage piezoactuator for vertical z-axis positioning. High-speed, large-size AFM imaging is challenging because in high-speed lateral scanning of the AFM imaging at large size, large positioning error of the AFM probe relative to the sample can be generated due to the adverse effects—the nonlinear hysteresis and the vibrational dynamics of the piezotube actuator. In addition, vertical precision positioning of the AFM probe is even more challenging (than the lateral scanning) because the desired trajectory (i.e., the sample topography profile) is unknown in general, and the probe positioning is also effected by and sensitive to the probe-sample interaction. The main contribution of this article is the development of an integrated approach that combines advanced control algorithm with an advanced hardware platform. The proposed approach is demonstrated in experiments by imaging a large-size (50μm ) calibration sample at high-speed (50Hz scan rate).
Droplet and multiphase effects in a shock-driven hydrodynamic instability with reshock
NASA Astrophysics Data System (ADS)
Middlebrooks, John B.; Avgoustopoulos, Constantine G.; Black, Wolfgang J.; Allen, Roy C.; McFarland, Jacob A.
2018-06-01
Shock-driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching applications in engineering and science such as high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase field is impulsively accelerated by a shock wave and evolves as a result of gradients in particle-gas momentum transfer. A new shock tube facility has been constructed to study the SDMI. Experiments were conducted to investigate liquid particle and multiphase effects in the SDMI. A multiphase cylindrical interface was created with water droplet laden air in our horizontal shock tube facility. The interface was accelerated by a Mach 1.66 shock wave, and its reflection from the end wall. The interface development was captured using laser illumination and a high-resolution CCD camera. Laser interferometry was used to determine the droplet size distribution. A particle filtration technique was used to determine mass loading within an interface and verify particle size distribution. The effects of particle number density, particle size, and a secondary acceleration (reshock) of the interface were noted. Particle number density effects were found comparable to Atwood number effects in the Richtmyer-Meshkov instability for small (˜ 1.7 {μ }m) droplets. Evaporation was observed to alter droplet sizes and number density, markedly after reshock. For large diameter droplets (˜ 10.7 {μ }m), diminished development was observed with larger droplets lagging far behind the interface. These lagging droplets were also observed to breakup after reshock into structured clusters of smaller droplets. Mixing width values were reported to quantify mixing effects seen in images.
NASA Astrophysics Data System (ADS)
Dadras, Sedigheh; Davoudiniya, Masoumeh
2018-05-01
This paper sets out to investigate and compare the effects of Ag nanoparticles and carbon nanotubes (CNTs) doping on the mechanical properties of Y1Ba2Cu3O7-δ (YBCO) high temperature superconductor. For this purpose, the pure and doped YBCO samples were synthesized by sol-gel method. The microstructural analysis of the samples is performed using X-ray diffraction (XRD). The crystalline size, lattice strain and stress of the pure and doped YBCO samples were estimated by modified forms of Williamson-Hall analysis (W-H), namely, uniform deformation model (UDM), uniform deformation stress model (UDSM) and the size-strain plot method (SSP). These results show that the crystalline size, lattice strain and stress of the YBCO samples declined by Ag nanoparticles and CNTs doping.
Haverkamp, Nicolas; Beauducel, André
2017-01-01
We investigated the effects of violations of the sphericity assumption on Type I error rates for different methodical approaches of repeated measures analysis using a simulation approach. In contrast to previous simulation studies on this topic, up to nine measurement occasions were considered. Effects of the level of inter-correlations between measurement occasions on Type I error rates were considered for the first time. Two populations with non-violation of the sphericity assumption, one with uncorrelated measurement occasions and one with moderately correlated measurement occasions, were generated. One population with violation of the sphericity assumption combines uncorrelated with highly correlated measurement occasions. A second population with violation of the sphericity assumption combines moderately correlated and highly correlated measurement occasions. From these four populations without any between-group effect or within-subject effect 5,000 random samples were drawn. Finally, the mean Type I error rates for Multilevel linear models (MLM) with an unstructured covariance matrix (MLM-UN), MLM with compound-symmetry (MLM-CS) and for repeated measures analysis of variance (rANOVA) models (without correction, with Greenhouse-Geisser-correction, and Huynh-Feldt-correction) were computed. To examine the effect of both the sample size and the number of measurement occasions, sample sizes of n = 20, 40, 60, 80, and 100 were considered as well as measurement occasions of m = 3, 6, and 9. With respect to rANOVA, the results plead for a use of rANOVA with Huynh-Feldt-correction, especially when the sphericity assumption is violated, the sample size is rather small and the number of measurement occasions is large. For MLM-UN, the results illustrate a massive progressive bias for small sample sizes ( n = 20) and m = 6 or more measurement occasions. This effect could not be found in previous simulation studies with a smaller number of measurement occasions. The proportionality of bias and number of measurement occasions should be considered when MLM-UN is used. The good news is that this proportionality can be compensated by means of large sample sizes. Accordingly, MLM-UN can be recommended even for small sample sizes for about three measurement occasions and for large sample sizes for about nine measurement occasions.
Dáttilo, Wesley; Aguirre, Armando; Quesada, Mauricio; Dirzo, Rodolfo
2015-01-01
Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae) and its floral visitors (including both effective and non-effective pollinators) at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i) Does fragment size affect the structure of individual-based plant-pollinator networks? (ii) Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii) Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in remnant forests.
Needs of the Learning Effect on Instructional Website for Vocational High School Students
ERIC Educational Resources Information Center
Lo, Hung-Jen; Fu, Gwo-Liang; Chuang, Kuei-Chih
2013-01-01
The purpose of study was to understand the correlation between the needs of the learning effect on instructional website for the vocational high school students. Our research applied the statistic methods of product-moment correlation, stepwise regression, and structural equation method to analyze the questionnaire with the sample size of 377…
ERIC Educational Resources Information Center
Rutledge, Stacey A.; Cannata, Marisa
2015-01-01
What are the policies, programs and practices that make some high schools in the same state and district context more effective than others? Motivated to understand the differences between schools with similar size and demographics yet different attendance, graduation and levels of student academic growth, the National Center for Scaling Up…
Morales, Rocío; Martínez, Karina D; Pizones Ruiz-Henestrosa, Víctor M; Pilosof, Ana M R
2015-09-01
The effect of high intensity ultrasound (HIUS) may produce structural modifications on proteins through a friendly environmental process. Thus, it can be possible to obtain aggregates with a determined particle size, and altering a defined functional property at the same time. The objective of this work was to explore the impact of HIUS on the functionality of a denatured soy protein isolate (SPI) on foaming and interfacial properties. SPI solutions at pH 6.9 were treated with HIUS for 20 min, in an ultrasonic processor at room temperature, at 75, 80 and 85°C. The operating conditions were: 20 kHz, 4.27 ± 0.71 W and 20% of amplitude. It was determined the size of the protein particles, before and after the HIUS treatment, by dynamic light scattering. It was also analyzed the interfacial behavior of the different systems as well as their foaming properties, by applying the whipping method. The HIUS treatment and HIUS with temperature improved the foaming capacity by alteration of particle size whereas stability was not modified significantly. The temperature of HIUS treatment (80 and 85°C) showed a synergistic effect on foaming capacity. It was found that the reduction of particle size was related to the increase of foaming capacity of SPI. On the other hand, the invariable elasticity of the interfacial films could explain the stability of foams over time. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xi, S. B.; Lu, W. J.; Wu, H. Y.; Tong, P.; Sun, Y. P.
2012-12-01
The surface magnetic behavior of La0.8Ca0.2MnO3 nanoparticles was investigated. We observed irreversibility in high magnetic field. The surface spin-glass behavior as well as the high-field irreversibility is suppressed by increasing particle size while the freezing temperature TF does not change with particle size. The enhanced coercivity has been observed in the particles and we attributed it to the large surface anisotropy. We have disclosed a clear relationship between the particle size, the thickness of the shell, and the saturation magnetization of the particles. The large reduction of the saturation magnetization of the samples is found to be induced by the increase of nonmagnetic surface large since the thickness of the spin-disordered surface layer increases with a decrease in the particle size. Due to the reduction of the magnetization, the magnetocaloric effect (MCE) has been reduced by the decreased particle size since the nonmagnetic surface contributes little to the MCE. Based on the core-shell structure, large relative cooling powers RCP(s) of 180 J/kg and 471 J/kg were predicted for a field change of 2.0 T and 4.5 T, respectively, in the small particles with thin spin-glass layer.
Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro
NASA Astrophysics Data System (ADS)
Zhou, Guoqiang; Li, Yunfei; Ma, Yanyan; Liu, Zhu; Cao, Lili; Wang, Da; Liu, Sudan; Xu, Wenshi; Wang, Wenying
2016-05-01
Yttrium oxide nanoparticles are an excellent host material for the rare earth metals and have high luminescence efficiency providing a potential application in photodynamic therapy and biological imaging. In this study, the effects of yttrium oxide nanoparticles with four different sizes were investigated using primary osteoblasts in vitro. The results demonstrated that the cytotoxicity generated by yttrium oxide nanoparticles depended on the particle size, and smaller particles possessed higher toxicological effects. For the purpose to elucidate the relationship between reactive oxygen species generation and cell damage, cytomembrane integrity, intracellular reactive oxygen species level, mitochondrial membrane potential, cell apoptosis rate, and activity of caspase-3 in cells were then measured. Increased reactive oxygen species level was also observed in a size-dependent way. Thus, our data demonstrated that exposure to yttrium oxide nanoparticles resulted in a size-dependent cytotoxicity in cultured primary osteoblasts, and reactive oxygen species generation should be one possible damage pathway for the toxicological effects produced by yttrium oxide particles. The results may provide useful information for more rational applications of yttrium oxide nanoparticles in the future.
Effect of particle size distribution on the hydrodynamics of dense CFB risers
NASA Astrophysics Data System (ADS)
Bakshi, Akhilesh; Khanna, Samir; Venuturumilli, Raj; Altantzis, Christos; Ghoniem, Ahmed
2015-11-01
Circulating Fluidized Beds (CFB) are favorable in the energy and chemical industries, due to their high efficiency. While accurate hydrodynamic modeling is essential for optimizing performance, most CFB riser simulations are performed assuming equally-sized solid particles, owing to limited computational resources. Even though this approach yields reasonable predictions, it neglects commonly observed experimental findings suggesting the strong effect of particle size distribution (psd) on the hydrodynamics and chemical conversion. Thus, this study is focused on the inclusion of discrete particle sizes to represent the psd and its effect on fluidization via 2D numerical simulations. The particle sizes and corresponding mass fluxes are obtained using experimental data in dense CFB riser while the modeling framework is described in Bakshi et al 2015. Simulations are conducted at two scales: (a) fine grid to resolve heterogeneous structures and (b) coarse grid using EMMS sub-grid modifications. Using suitable metrics which capture bed dynamics, this study provides insights into segregation and mixing of particles as well as highlights need for improved sub-grid models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jomekian, A.; Faculty of Chemical Engineering, Iran University of Science and Technology; Behbahani, R.M., E-mail: behbahani@put.ac.ir
Ultra porous ZIF-8 particles synthesized using PEO/PA6 based poly(ether-block-amide) (Pebax 1657) as structure directing agent. Structural properties of ZIF-8 samples prepared under different synthesis parameters were investigated by laser particle size analysis, XRD, N{sub 2} adsorption analysis, BJH and BET tests. The overall results showed that: (1) The mean pore size of all ZIF-8 samples increased remarkably (from 0.34 nm to 1.1–2.5 nm) compared to conventionally synthesized ZIF-8 samples. (2) Exceptional BET surface area of 1869 m{sup 2}/g was obtained for a ZIF-8 sample with mean pore size of 2.5 nm. (3) Applying high concentrations of Pebax 1657 to themore » synthesis solution lead to higher surface area, larger pore size and smaller particle size for ZIF-8 samples. (4) Both, Increase in temperature and decrease in molar ratio of MeIM/Zn{sup 2+} had increasing effect on ZIF-8 particle size, pore size, pore volume, crystallinity and BET surface area of all investigated samples. - Highlights: • The pore size of ZIF-8 samples synthesized with Pebax 1657 increased remarkably. • The BET surface area of 1869 m{sup 2}/gr obtained for a ZIF-8 synthesized sample with Pebax. • Increase in temperature had increasing effect on textural properties of ZIF-8 samples. • Decrease in MeIM/Zn{sup 2+} had increasing effect on textural properties of ZIF-8 samples.« less
Simplified fatigue life analysis for traction drive contacts
NASA Technical Reports Server (NTRS)
Rohn, D. A.; Loewenthal, S. H.; Coy, J. J.
1980-01-01
A simplified fatigue life analysis for traction drive contacts of arbitrary geometry is presented. The analysis is based on the Lundberg-Palmgren theory used for rolling-element bearings. The effects of torque, element size, speed, contact ellipse ratio, and the influence of traction coefficient are shown. The analysis shows that within the limits of the available traction coefficient, traction contacts exhibit longest life at high speeds. Multiple, load-sharing roller arrangements have an advantageous effect on system life, torque capacity, power-to-weight ratio and size.
Automated thinning increases uniformity of in-row spacing and plant size in romaine lettuce
USDA-ARS?s Scientific Manuscript database
Low availability and high cost of farm hand labor make automated thinners a faster and cheaper alternative to hand thinning in lettuce (Lactuca sativa L.). However, the effects of this new technology on uniformity of plant spacing and size as well as crop yield are not proven. Three experiments wer...
ERIC Educational Resources Information Center
Galler, Janina R.; Ramsey, Frank C.; Harrison, Robert H.; Taylor, John; Cumberbatch, Glenroy; Forde, Victor
2004-01-01
Background: In an earlier series of studies, we documented the effects of feeding practices and postnatal maternal mood on the growth and development of 226 Barbadian children during the first few months of life. In this report, we extend our earlier studies by examining predictive relationships between infant size, feeding practices and…
Effects of plot size on forest-type algorithm accuracy
James A. Westfall
2009-01-01
The Forest Inventory and Analysis (FIA) program utilizes an algorithm to consistently determine the forest type for forested conditions on sample plots. Forest type is determined from tree size and species information. Thus, the accuracy of results is often dependent on the number of trees present, which is highly correlated with plot area. This research examines the...
Developmental Environment Effects on Sexual Selection in Male and Female Drosophila melanogaster
Morimoto, Juliano; Pizzari, Tommaso; Wigby, Stuart
2016-01-01
The developmental environment can potentially alter the adult social environment and influence traits targeted by sexual selection such as body size. In this study, we manipulated larval density in male and female Drosophila melanogaster, which results in distinct adult size phenotypes–high (low) densities for small (large) adults–and measured sexual selection in experimental groups consisting of adult males and females from high, low, or a mixture of low and high larval densities. Overall, large adult females (those reared at low larval density) had more matings, more mates and produced more offspring than small females (those reared at high larval density). The number of offspring produced by females was positively associated with their number of mates (i.e. there was a positive female Bateman gradient) in social groups where female size was experimentally varied, likely due to the covariance between female productivity and mating rate. For males, we found evidence that the larval environment affected the relative importance of sexual selection via mate number (Bateman gradients), mate productivity, paternity share, and their covariances. Mate number and mate productivity were significantly reduced for small males in social environments where males were of mixed sizes, versus social environments where all males were small, suggesting that social heterogeneity altered selection on this subset of males. Males are commonly assumed to benefit from mating with large females, but in contrast to expectations we found that in groups where both the male and female size varied, males did not gain more offspring per mating with large females. Collectively, our results indicate sex-specific effects of the developmental environment on the operation of sexual selection, via both the phenotype of individuals, and the phenotype of their competitors and mates. PMID:27167120
NASA Astrophysics Data System (ADS)
Nadeem, Imran; Formayer, Herbert
2016-11-01
A suite of high-resolution (10 km) simulations were performed with the International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3) to study the effect of various lateral boundary conditions (LBCs), domain size, and intermediate domains on simulated precipitation over the Great Alpine Region. The boundary conditions used were ECMWF ERA-Interim Reanalysis with grid spacing 0.75∘, the ECMWF ERA-40 Reanalysis with grid spacing 1.125 and 2.5∘, and finally the 2.5∘ NCEP/DOE AMIP-II Reanalysis. The model was run in one-way nesting mode with direct nesting of the high-resolution RCM (horizontal grid spacing Δx = 10 km) with driving reanalysis, with one intermediate resolution nest (Δx = 30 km) between high-resolution RCM and reanalysis forcings, and also with two intermediate resolution nests (Δx = 90 km and Δx = 30 km) for simulations forced with LBC of resolution 2.5∘. Additionally, the impact of domain size was investigated. The results of multiple simulations were evaluated using different analysis techniques, e.g., Taylor diagram and a newly defined useful statistical parameter, called Skill-Score, for evaluation of daily precipitation simulated by the model. It has been found that domain size has the major impact on the results, while different resolution and versions of LBCs, e.g., 1.125∘ ERA40 and 0.7∘ ERA-Interim, do not produce significantly different results. It is also noticed that direct nesting with reasonable domain size, seems to be the most adequate method for reproducing precipitation over complex terrain, while introducing intermediate resolution nests seems to deteriorate the results.
A study of in-situ sediment flocculation in the turbidity maxima of the Yangtze Estuary
NASA Astrophysics Data System (ADS)
Guo, Chao; He, Qing; Guo, Leicheng; Winterwerp, Johan C.
2017-05-01
In order to improve our understandings of temporal and vertical variations of sediment flocculation dynamics within the turbidity maxima (TM) of the highly turbid Yangtze Estuary (YE), we deployed LISST-100C, a laser instrument for in-situ monitor of the sizes and concentrations of flocculated particles in a wet season. Field data in terms of vertical profiles of flow velocity, suspended sediment concentration (SSC), salinity, flocculated particle size distribution and volume concentration were obtained, based on field works conducted at consecutive spring, moderate, and neap tides. Data analyses show that the mean floc diameters (DM) were in the range of 14-95 μm, and flocculation exhibited strong temporal and vertical variations within a tidal cycle and between spring-neap cycles. Larger DM were observed during high and low slack waters, and the averaged floc size at neap tide was found 57% larger than at spring tide. Effective density of flocs decreased with the increase of floc size, and fractal dimension of flocs in the YE was mainly between 1.5 and 2.1. We also estimated the settling velocity of flocs by 0.04-0.6 mm s-1 and the largest settling velocity occurred also at slack waters. Moreover, it is found that turbulence plays a dominant role in the flocculation process. Floc size decreases significantly when the shear rate parameter G is > 2-3 s-1, suggesting the turbulence breaking force. Combined effects of fine sediment flocculation, enhanced settling process, and high sediment concentration resulted in a large settling flux around high water, which can in part explain the severe siltation in the TM of the YE, thus shedding lights on the navigation channel management.
The demographic consequences of growing older and bigger in oyster populations.
Moore, Jacob L; Lipcius, Romuald N; Puckett, Brandon; Schreiber, Sebastian J
2016-10-01
Structured population models, particularly size- or age-structured, have a long history of informing conservation and natural resource management. While size is often easier to measure than age and is the focus of many management strategies, age-structure can have important effects on population dynamics that are not captured in size-only models. However, relatively few studies have included the simultaneous effects of both age- and size-structure. To better understand how population structure, particularly that of age and size, impacts restoration and management decisions, we developed and compared a size-structured integral projection model (IPM) and an age- and size-structured IPM, using a population of Crassostrea gigas oysters in the northeastern Pacific Ocean. We analyzed sensitivity of model results across values of local retention that give populations decreasing in size to populations increasing in size. We found that age- and size-structured models yielded the best fit to the demographic data and provided more reliable results about long-term demography. Elasticity analysis showed that population growth rate was most sensitive to changes in the survival of both large (>175 mm shell length) and small (<75 mm shell length) oysters, indicating that a maximum size limit, in addition to a minimum size limit, could be an effective strategy for maintaining a sustainable population. In contrast, the purely size-structured model did not detect the importance of large individuals. Finally, patterns in stable age and stable size distributions differed between populations decreasing in size due to limited local retention and populations increasing in size due to high local retention. These patterns can be used to determine population status and restoration success. The methodology described here provides general insight into the necessity of including both age- and size-structure into modeling frameworks when using population models to inform restoration and management decisions. © 2016 by the Ecological Society of America.
Froud, Robert; Rajendran, Dévan; Patel, Shilpa; Bright, Philip; Bjørkli, Tom; Eldridge, Sandra; Buchbinder, Rachelle; Underwood, Martin
2017-06-01
A systematic review of nonspecific low back pain trials published between 1980 and 2012. To explore what proportion of trials have been powered to detect different bands of effect size; whether there is evidence that sample size in low back pain trials has been increasing; what proportion of trial reports include a sample size calculation; and whether likelihood of reporting sample size calculations has increased. Clinical trials should have a sample size sufficient to detect a minimally important difference for a given power and type I error rate. An underpowered trial is one within which probability of type II error is too high. Meta-analyses do not mitigate underpowered trials. Reviewers independently abstracted data on sample size at point of analysis, whether a sample size calculation was reported, and year of publication. Descriptive analyses were used to explore ability to detect effect sizes, and regression analyses to explore the relationship between sample size, or reporting sample size calculations, and time. We included 383 trials. One-third were powered to detect a standardized mean difference of less than 0.5, and 5% were powered to detect less than 0.3. The average sample size was 153 people, which increased only slightly (∼4 people/yr) from 1980 to 2000, and declined slightly (∼4.5 people/yr) from 2005 to 2011 (P < 0.00005). Sample size calculations were reported in 41% of trials. The odds of reporting a sample size calculation (compared to not reporting one) increased until 2005 and then declined (Equation is included in full-text article.). Sample sizes in back pain trials and the reporting of sample size calculations may need to be increased. It may be justifiable to power a trial to detect only large effects in the case of novel interventions. 3.
Kollipara, Sivacharan; Bende, Girish; Movva, Snehalatha; Saha, Ranendra
2010-11-01
Polymeric carrier systems of paclitaxel (PCT) offer advantages over only available formulation Taxol® in terms of enhancing therapeutic efficacy and eliminating adverse effects. The objective of the present study was to prepare poly (lactic-co-glycolic acid) nanoparticles containing PCT using emulsion solvent evaporation technique. Critical factors involved in the processing method were identified and optimized by scientific, efficient rotatable central composite design aiming at low mean particle size and high entrapment efficiency. Twenty different experiments were designed and each formulation was evaluated for mean particle size and entrapment efficiency. The optimized formulation was evaluated for in vitro drug release, and absorption characteristics were studied using in situ rat intestinal permeability study. Amount of polymer and duration of ultrasonication were found to have significant effect on mean particle size and entrapment efficiency. First-order interactions of amount of miglyol with amount of polymer were significant in case of mean particle size, whereas second-order interactions of polymer were significant in mean particle size and entrapment efficiency. The developed quadratic model showed high correlation (R(2) > 0.85) between predicted response and studied factors. The optimized formulation had low mean particle size (231.68 nm) and high entrapment efficiency (95.18%) with 4.88% drug content. The optimized formulation showed controlled release of PCT for more than 72 hours. In situ absorption study showed faster and enhanced extent of absorption of PCT from nanoparticles compared to pure drug. The poly (lactic-co-glycolic acid) nanoparticles containing PCT may be of clinical importance in enhancing its oral bioavailability.
Point of impact: the effect of size and speed on puncture mechanics
Anderson, P. S. L.; LaCosse, J.; Pankow, M.
2016-01-01
The use of high-speed puncture mechanics for prey capture has been documented across a wide range of organisms, including vertebrates, arthropods, molluscs and cnidarians. These examples span four phyla and seven orders of magnitude difference in size. The commonality of these puncture systems offers an opportunity to explore how organisms at different scales and with different materials, morphologies and kinematics perform the same basic function. However, there is currently no framework for combining kinematic performance with cutting mechanics in biological puncture systems. Our aim here is to establish this framework by examining the effects of size and velocity in a series of controlled ballistic puncture experiments. Arrows of identical shape but varying in mass and speed were shot into cubes of ballistic gelatine. Results from high-speed videography show that projectile velocity can alter how the target gel responds to cutting. Mixed models comparing kinematic variables and puncture patterns indicate that the kinetic energy of a projectile is a better predictor of penetration than either momentum or velocity. These results form a foundation for studying the effects of impact on biological puncture, opening the door for future work to explore the influence of morphology and material organization on high-speed cutting dynamics. PMID:27274801
Mega-fire Recovery in Dry Conifer Forests of the Interior West
NASA Astrophysics Data System (ADS)
Malone, S. L.; Fornwalt, P.; Chambers, M. E.; Battaglia, M.
2015-12-01
Wildfire is a complex landscape process with great uncertainty in whether trends in size and severity are shifting trajectories for ecosystem recovery that are outside of the historical range of variability. Considering that wildfire size and severity is likely to increase into the future with a drier climate, it is important that we understand wildfire effects and ecosystem recovery. To evaluate how ecosystems recover from wildfire we measured spatial patterns in regeneration and mapped tree refugia within mega-fire perimeters (Hayman, Jasper, Bobcat, and Grizzly Gulch) in ponderosa pine (Pinus ponderosa) dominated forest. On average, high severity fire effects accounted for > 15% of burned area and increased with fire size. Areas with high severity fire effects contained 1 - 15% tree refugia cover, compared to 37 - 70% observed in low severity areas . Large high severity patches with low coverage of tree refugia, were more frequent in larger fires and regeneration distances required to initiate forest recovery far exceeded 1.5 canopy height or 200 m, distances where the vast majority of regeneration is likely to arise. Using a recovery model driven by distance, we estimate recovery times between 300 to > 1000 years for these mega-fires. In Western dry conifer forests, large patches of stand replacing fire are likely to lead to uneven aged forest and very long recovery times.
NASA Astrophysics Data System (ADS)
Tao, Lu; Zhao, Yueping; Zhao, Yufeng; Huang, Shifei; Yang, Yunxia; Tong, Qi; Gao, Faming
2018-02-01
High efficiency platinum-based catalyst demands the ultrafine size and well dispersion of Pt nanoparticles (NPs), with clean surface and strong interactions between the supports. In this work, we demonstrate a simple strategy for the preparation of ultra-dispersed surface-clean Pt catalyst with high stability, in which the Pt nanoparticles (NPs) with 1.8 ± 0.6 nm in size are anchored tightly on a 3D hierarchical porous graphitized carbon (3D-HPG) through galvanic replacement reaction. The as-obtained catalyst can undergo 2000 voltage cycles with negligible activity decay and no apparent structure and size changes for MOR during the durability test, and its mass activity for ORR only reduce 18.3% after 5000 cycles. The excellent performance is attributed to strong anchoring effect between carbon support and Pt nanoparticles.
NASA Astrophysics Data System (ADS)
Alizadeh, A.; Parsafar, S.; Khodaei, M. M.
2017-03-01
A biocompatible method for synthesizing of highly disperses gold nanoparticles using Ferulago Angulata leaf extract has been developed. It has been shown that leaf extract acts as reducing and coating agent. Various spectroscopic and electron microscopic techniques were employed for the structural characterization of the prepared nanoparticles. The biosynthesized particles were identified as elemental gold with spherical morphology, narrow size distribution (ranged 9.2-17.5 nm) with high stability. Also, the effect of initial ratio of precursors, temperature and time of reaction on the size and morphology of the nanoparticles was studied in more detail. It was observed that varying these parameters provides an accessible remote control on the size and morphology of nanoparticles. The uniqueness of this procedure lies in its cleanliness using no extra surfactant, reducing agent or any capping agent.
NASA Astrophysics Data System (ADS)
Purdue, James R.
1989-11-01
White-tailed deer ( Odocoileus virginianus) from central Illinois varied in size during the Holocene. The record, which extends back to 8450 yr B.P., indicates small deer through the mid-Holocene until 3650 yr B.P., after which size increases. Although influences of winter climate, seasonality, anthropogenic effects, and other ecological factors should not be discounted, an intriguing possible cause of the deer size shifts is insolation-driven summer climate and its influence on food resources. In the Holocene, small deer size is correlated with high summer insolation and with low winter insolation. Climatic models indicate that in spite of changes in insolation, Holocene winters did not vary greatly through time, especially in contrast to summers, which were dynamic. Physiological constraints peculiar to O. virginianus make critical the quality of summer forage for determining final adult size. Summer temperature averaged 2°C warmer than present during the middle Holocene, which increased evaporation and probably reduced the period of availability of high-quality forage low in fiber and high in protein. Consequently, less fuel for growth was consumed by mid-Holocene deer and only small body size was achieved. Other possible causes (e.g., Bergmann's rule, seasonality) of clinal variation are considered with reference to central Illinois deer, but at present the most parsimonious explanation appears to be the summer insolation hypothesis.
High Impact = High Statistical Standards? Not Necessarily So
Tressoldi, Patrizio E.; Giofré, David; Sella, Francesco; Cumming, Geoff
2013-01-01
What are the statistical practices of articles published in journals with a high impact factor? Are there differences compared with articles published in journals with a somewhat lower impact factor that have adopted editorial policies to reduce the impact of limitations of Null Hypothesis Significance Testing? To investigate these questions, the current study analyzed all articles related to psychological, neuropsychological and medical issues, published in 2011 in four journals with high impact factors: Science, Nature, The New England Journal of Medicine and The Lancet, and three journals with relatively lower impact factors: Neuropsychology, Journal of Experimental Psychology-Applied and the American Journal of Public Health. Results show that Null Hypothesis Significance Testing without any use of confidence intervals, effect size, prospective power and model estimation, is the prevalent statistical practice used in articles published in Nature, 89%, followed by articles published in Science, 42%. By contrast, in all other journals, both with high and lower impact factors, most articles report confidence intervals and/or effect size measures. We interpreted these differences as consequences of the editorial policies adopted by the journal editors, which are probably the most effective means to improve the statistical practices in journals with high or low impact factors. PMID:23418533
High impact = high statistical standards? Not necessarily so.
Tressoldi, Patrizio E; Giofré, David; Sella, Francesco; Cumming, Geoff
2013-01-01
What are the statistical practices of articles published in journals with a high impact factor? Are there differences compared with articles published in journals with a somewhat lower impact factor that have adopted editorial policies to reduce the impact of limitations of Null Hypothesis Significance Testing? To investigate these questions, the current study analyzed all articles related to psychological, neuropsychological and medical issues, published in 2011 in four journals with high impact factors: Science, Nature, The New England Journal of Medicine and The Lancet, and three journals with relatively lower impact factors: Neuropsychology, Journal of Experimental Psychology-Applied and the American Journal of Public Health. Results show that Null Hypothesis Significance Testing without any use of confidence intervals, effect size, prospective power and model estimation, is the prevalent statistical practice used in articles published in Nature, 89%, followed by articles published in Science, 42%. By contrast, in all other journals, both with high and lower impact factors, most articles report confidence intervals and/or effect size measures. We interpreted these differences as consequences of the editorial policies adopted by the journal editors, which are probably the most effective means to improve the statistical practices in journals with high or low impact factors.
Is extreme bite performance associated with extreme morphologies in sharks?
Huber, Daniel R; Claes, Julien M; Mallefet, Jérôme; Herrel, Anthony
2009-01-01
As top predators in many oceanic communities, sharks are known to eat large prey and are supposedly able to generate high bite forces. This notion has, however, largely gone untested due to the experimental intractability of these animals. For those species that have been investigated, it remains unclear whether their high bite forces are simply a consequence of their large body size or the result of diet-related adaptation. As aquatic poikilotherms, sharks can grow very large, making them ideal subjects with which to investigate the effects of body size on bite force. Relative bite-force capacity is often associated with changes in head shape because taller or wider heads can, for example, accommodate larger jaw muscles. Constraints on bite force in general may also be released by changes in tooth shape. For example, more pointed teeth may allow a predator to penetrate prey more effectively than blunt, pavementlike teeth. Our analyses show that large sharks do not bite hard for their body size, but they generally have larger heads. Head width is the best predictor of bite force across the species included in our study as indicated by a multiple regression model. Contrary to our predictions, sharks with relatively high bite forces for their body size also have relatively more pointed teeth at the front of the tooth row. Moreover, species including hard prey in their diet are characterized by high bite forces and narrow and pointed teeth at the jaw symphysis.
On the development of HSCT tail sizing criteria using linear matrix inequalities
NASA Technical Reports Server (NTRS)
Kaminer, Isaac
1995-01-01
This report presents the results of a study to extend existing high speed civil transport (HSCT) tail sizing criteria using linear matrix inequalities (LMI). In particular, the effects of feedback specifications, such as MIL STD 1797 Level 1 and 2 flying qualities requirements, and actuator amplitude and rate constraints on the maximum allowable cg travel for a given set of tail sizes are considered. Results comparing previously developed industry criteria and the LMI methodology on an HSCT concept airplane are presented.
Rai, Kedar N; Jain, Subodh K
1982-06-01
Pollen and seed dispersal patterns were analyzed in both natural and experimental populations of Avena barbata. Localized estimates of gene flow rates and plant densities gave estimates of neighborhood size in the range of 40 to 400 plants; the estimates of mean rate and distance of gene flow seemed to vary widely due to variable wind direction, rodent activity, microsite heterogeneity, etc. The relative sizes of neighborhoods in several populations were correlated with the patchy distribution of different genotypes (scored for lemma color and leaf sheath hairiness) within short distances, but patch sizes had a wide range among different sites. Highly localized gene flow patterns seemed to account for the observed pattern of highly patchy variation even when the dispersal curves for both pollen and seed were platykurtic in many cases. Measures of the stability of patches in terms of their size, dispersion in space and genetic structure in time are needed in order to sort out the relative roles of founder effects, random drift (due to small neighborhood size), and highly localized selection. However, our observations suggest that many variables and stochastic processes are involved in such studies so as to allow only weak inference about the underlying role of natural selection, drift and factors of population regulatien.
Quast, Daniel Robert; Schneider, Ralph; Burdzik, Emanuel; Hoppe, Steffen; Möslein, Gabriela
2016-01-01
Aim of this study is to evaluate the outcome of long-term conservative treatment with sulindac and high-dose selective estrogen receptor modulators (SERMs) for sporadic and FAP-associated desmoid tumors. Desmoids are very rare tumors in the general population but occur frequently in FAP patients, being encountered in 23-38 %. Treatment of desmoids is still most controversial since response cannot be predicted and they are prone to develop recurrence. This study included all desmoid patients that were treated and followed at our institution and had completed at least 1 year of treatment. Response was defined as stable size or regression of desmoid size between two CT or MRI scans. A total of 134 patients were included. 64 (47.8 %) patients had a confirmed diagnosis of FAP, 69 (51.5 %) patients were sporadic. Overall 114 (85.1 %) patients showed regressive or stable desmoid size. Patients with previous history of multiple desmoid-related surgeries showed less-favorable response. The mean time to reach at least stable size was 14.9 (±9.1) months. After regression or stabilization, medication was tapered in 69 (60.5 %) of the treated patients with only one long-term recurrence after >10 years. The results of this study fortify the role of sulindac and high-dose SERMs as an effective and safe treatment for both, sporadic and FAP-associated desmoid tumors. While invasive treatment frequently results in high recurrence rates, high morbidity and high mortality, this conservative treatment is successful in most patients. The recurrence rate is negligible with no desmoid-related mortality in this large series. Therefore surgical resection, especially for mesenteric desmoids, should be deferred favoring this convincingly effective, well tolerated regimen.
Impact of particle concentration and out-of-range sizes on the measurements of the LISST
NASA Astrophysics Data System (ADS)
Zhao, Lin; Boufadel, Michel C.; King, Thomas; Robinson, Brian; Conmy, Robyn; Lee, Kenneth
2018-05-01
The instrument LISST (laser in situ scattering and transmissiometry) has been widely used for measuring the size of oil droplets in relation to oil spills and sediment particles. Major concerns associated with using the instrument include the impact of high concentrations and/or out-of-range particle (droplet) sizes on the LISST reading. These were evaluated experimentally in this study using monosized microsphere particles. The key findings include: (1) When high particle concentration reduced the optical transmission (OT) to below 30%, the measured peak value tended to underestimate the true peak value, and the accuracy of the LISST decreased by ~8% to ~28%. The maximum concentration to reach the 30% OT was about 50% of the theoretical values, suggesting a lower concentration level should be considered during the instrument deployment. (2) The out-of-range sizes of particles affected the LISST measurements when the sizes were close to the LISST measurement range. Fine below-range sizes primarily affected the data in the lowest two bins of the LISST with >75% of the volume at the smallest bin. Large out-of-range particles affected the sizes of the largest 8–10 bins only when very high concentration was present. The out-of-range particles slightly changed the size distribution of the in-range particles, but their concentration was conserved. An approach to interpret and quantify the effects of the out-of-range particles on the LISST measurement was proposed.
Ramirez-San-Juan, J C; Mendez-Aguilar, E; Salazar-Hermenegildo, N; Fuentes-Garcia, A; Ramos-Garcia, R; Choi, B
2013-01-01
Laser Speckle Contrast Imaging (LSCI) is an optical technique used to generate blood flow maps with high spatial and temporal resolution. It is well known that in LSCI, the speckle size must exceed the Nyquist criterion to maximize the speckle's pattern contrast. In this work, we study experimentally the effect of speckle-pixel size ratio not only in dynamic speckle contrast, but also on the calculation of the relative flow speed for temporal and spatial analysis. Our data suggest that the temporal LSCI algorithm is more accurate at assessing the relative changes in flow speed than the spatial algorithm.
Adhesion at the interface in cured graphite fiber epoxy-amine resin composites
NASA Technical Reports Server (NTRS)
Needles, Howard L.; Alger, Kenneth W.; Okamoto, Robert
1987-01-01
The effect of high temperature curing on the interface between unsized or epoxy-sized graphite fiber tow and epoxy-amine resin was examined by scanning electron microscopy of compression and freeze fractured specimens. Little or no adhesion was found between the unsized graphite fiber tows and the epoxy-amine resin on curing at 165 C for 17 hrs. Epoxy-sized graphite fibers showed a similar lack of adhesion between the fiber tows and the epoxy-amine resin at 3 and 17 hr cures, although good penetration of the resin into the sized fiber tows had occurred. Interfacial bond strengths for the composites could not be effectively measured by compression fracture of specimens.
NASA Technical Reports Server (NTRS)
Carson, George T., Jr.; Bare, E. Ann; Burley, James R., II
1987-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effect of a boattail angle and wedge-size trade on the performance of nonaxisymmetric wedge nozzles installed on a generic twin-engine fighter aircraft model. Test data were obtained at static conditions and at Mach numbers from 0.60 to 1.25. Angle of attack was held constant at 0 deg. High-pressure air was used to simulate jet exhaust, and the nozzle pressure ratio was varied from 1.0 (jet off) to slightly over 15.0. For the configurations studied, the results indicate that wedge size can be reduced without affecting aeropropulsive performance.
Effects of polycrystallinity in nano patterning by ion-beam sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Sun Mi; Kim, J.-S., E-mail: jskim@sm.ac.kr; Yoon, D.
Employing graphites with distinctly different mean grain sizes, we study the effects of polycrystallinity on the pattern formation by ion-beam sputtering. The grains influence the growth of the ripples in a highly anisotropic fashion; both the mean uninterrupted ripple length along the ridges and the surface width depend on the mean size of the grains, which is attributed to the large sputter yield at the grain boundary compared with that on the terrace. In contrast, the ripple wavelength does not depend on the mean size of the grains, indicating that the mass transport across the grain boundaries should efficiently proceedmore » by both thermal diffusion and ion-induced processes.« less
Reporting of sample size calculations in analgesic clinical trials: ACTTION systematic review.
McKeown, Andrew; Gewandter, Jennifer S; McDermott, Michael P; Pawlowski, Joseph R; Poli, Joseph J; Rothstein, Daniel; Farrar, John T; Gilron, Ian; Katz, Nathaniel P; Lin, Allison H; Rappaport, Bob A; Rowbotham, Michael C; Turk, Dennis C; Dworkin, Robert H; Smith, Shannon M
2015-03-01
Sample size calculations determine the number of participants required to have sufficiently high power to detect a given treatment effect. In this review, we examined the reporting quality of sample size calculations in 172 publications of double-blind randomized controlled trials of noninvasive pharmacologic or interventional (ie, invasive) pain treatments published in European Journal of Pain, Journal of Pain, and Pain from January 2006 through June 2013. Sixty-five percent of publications reported a sample size calculation but only 38% provided all elements required to replicate the calculated sample size. In publications reporting at least 1 element, 54% provided a justification for the treatment effect used to calculate sample size, and 24% of studies with continuous outcome variables justified the variability estimate. Publications of clinical pain condition trials reported a sample size calculation more frequently than experimental pain model trials (77% vs 33%, P < .001) but did not differ in the frequency of reporting all required elements. No significant differences in reporting of any or all elements were detected between publications of trials with industry and nonindustry sponsorship. Twenty-eight percent included a discrepancy between the reported number of planned and randomized participants. This study suggests that sample size calculation reporting in analgesic trial publications is usually incomplete. Investigators should provide detailed accounts of sample size calculations in publications of clinical trials of pain treatments, which is necessary for reporting transparency and communication of pre-trial design decisions. In this systematic review of analgesic clinical trials, sample size calculations and the required elements (eg, treatment effect to be detected; power level) were incompletely reported. A lack of transparency regarding sample size calculations may raise questions about the appropriateness of the calculated sample size. Copyright © 2015 American Pain Society. All rights reserved.
Nest survival relative to patch size in a highly fragmented shortgrass prairie landscape
Skagen, S.K.; Yackel Adams, A.A.; Adams, R.D.
2005-01-01
Understanding the influences of habitat fragmentation on vertebrate populations is essential for the protection and ecological restoration of strategic sites for native species. We examined the effects of prairie fragmentation on avian reproductive success using artificial and natural nests on 26 randomly selected, privately owned patches of shortgrass prairie ranging in size from 7 to 454 ha within a cropland matrix in Washington County, Colorado, summer 2000. Survival trends of artificial and natural nests differed. Daily survival of artificial nests increased with patch size up to about 65 ha and differed little at larger patch sizes, whereas daily survival of Lark Bunting (Calamospiza melanocorys) and Horned Lark (Eremophila alpestris) nests decreased with increasing size of the grassland patch. We hypothesize that our unexpected findings of lower survival of natural nests with increasing patch sizes and different trends between artificial and natural nests are due to the particular structure of predator communities in our study area and the ways in which individual predators respond to artificial and natural nests. We recommend that the value of small habitat patches in highly fragmented landscapes not be overlooked.
NASA Astrophysics Data System (ADS)
Hernández-Pinero, Jorge Luis; Terrón-Rebolledo, Manuel; Foroughbakhch, Rahim; Moreno-Limón, Sergio; Melendrez, M. F.; Solís-Pomar, Francisco; Pérez-Tijerina, Eduardo
2016-11-01
Mixing aqueous silver solutions with aqueous leaf aromatic plant extracts from basil, mint, marjoram and peppermint resulted in the synthesis of quasi-spherical silver nanoparticles in a range of size between 2 and 80 nm in diameter as analyzed by analytical high-resolution electron microscopy. The average size could be controlled by applying heat to the initial reaction system at different rates of heating, and by the specific botanical species employed for the reaction. Increasing the rate of heating resulted in a statistically significant decrease in the size of the nanoparticles produced, regardless of the species employed. This fact was more evident in the case of marjoram, which decreased the average diameter from 27 nm at a slow rate of heating to 8 nm at a high rate of heating. With regard to the species, minimum sizes of <10 nm were obtained with basil and peppermint, while marjoram and mint yielded an average size between 10 and 25 nm. The results indicate that aromatic plant extracts can be used to achieve the controlled synthesis of metal nanoparticles.
Waxman, D
2012-06-01
A fundamental result of population genetics states that a new mutation, at an unlinked neutral locus in a randomly mating diploid population, has a mean time of fixation of ∼4N(e) generations, where N(e) is the effective population size. This result is based on an assumption of fixed population size, which does not universally hold in natural populations. Here, we analyze such neutral fixations in populations of changing size within the framework of the diffusion approximation. General expressions are derived for the mean and variance of the fixation time in changing populations. Some explicit results are given for two cases: (i) the effective population size undergoes a sudden change, representing a sudden population expansion or a sudden bottleneck; (ii) the effective population changes linearly for a limited period of time and then remains constant. Additionally, a lower bound for the mean time of fixation is obtained for an effective population size that increases with time, and this is applied to exponentially growing populations. The results obtained in this work show, among other things, that for populations that increase in size, the mean time of fixation can be enhanced, sometimes substantially so, over 4N(e,0) generations, where N(e,0) is the effective population size at the time the mutation arises. Such an enhancement is associated with (i) an increased probability of neutral polymorphism in a population and (ii) an enhanced persistence of high-frequency neutral variation, which is the variation most likely to be observed.
Erythorbic acid promoted formation of CdS QDs in a tube-in-tube micro-channel reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Yan; Tan, Jiawei; Wang, Jiexin
2014-12-15
Erythorbic acid assistant synthesis of CdS quantum dots (QDs) was conducted by homogeneous mixing of two continuous liquids in a high-throughput microporous tube-in-tube micro-channel reactor (MTMCR) at room temperature. The effects of the micropore size of the MTMCR, liquid flow rate, mixing time and reactant concentration on the size and size distribution of CdS QDs were investigated. It was found that the size and size distribution of CdS QDs could be tuned in the MTMCR. A combination of erythorbic acid promoted formation technique with the MTMCR may be a promising pathway for controllable mass production of QDs.
Ya-Juan, Xing; Jun-Yuan, Ji; Ping, Zheng; Lan, Wang; Abbas, Ghulam; Zhang, Jiqiang; Ru, Wang; Zhan-Fei, He
2018-05-31
The autotrophic process for nitrogen removal has attracted worldwide attention in the field of wastewater treatment, and the performance of this process is greatly influenced by the size of granular sludge particles present in the system. In this work, the granular sludge was divided into three groups, i.e. large size (> 1.2 mm), medium size (0.6-1.2 mm) and small size (< 0.6 mm). The medium granular sludge was observed to dominate at high volumetric nitrogen loading rates, while offering strong support for good performance. Its indispensable contribution was found to originate from improved settling velocity (0.84 ± 0.10 cm/s), high SOUR-A (specific oxygen uptake rate for ammonia oxidizing bacteria, 25.93 mg O 2 /g MLVSS/h), low SOUR-N (specific oxygen uptake rate for nitrite oxidizing bacteria, 3.39 mg O 2 /g MLVSS/h), and a reasonable microbial spatial distribution.
Burger, Nicholas; Lambert, Michael I; Viljoen, Wayne; Brown, James C; Readhead, Clint; Hendricks, Sharief
2016-08-01
The high injury rate associated with rugby union is primarily due to the tackle, and poor contact technique has been identified as a risk factor for injury. We aimed to determine whether the tackle technique proficiency scores were different in injurious tackles versus tackles that did not result in injury using real-match scenarios in high-level youth rugby union. Injury surveillance was conducted at the under-18 Craven Week tournaments (2011-2013). Tackle-related injury information was used to identify injury events in the match video footage and non-injury events were identified for the injured player cohort. Injury and non-injury events were scored for technique proficiency and Cohen's effect sizes were calculated and the Student t test (p<0.05) was performed to compare injury versus non-injury scores. The overall mean score for front-on ball-carrier proficiency was 7.17±1.90 and 9.02±2.15 for injury and non-injury tackle events, respectively (effect size=moderate; p<0.05). The overall mean score for side/behind ball-carrier proficiency was 4.09±2.12 and 7.68±1.72 for injury and non-injury tackle events, respectively (effect size=large; p<0.01). The overall mean score for front-on tackler proficiency was 7.00±1.95 and 9.35±2.56 for injury and non-injury tackle events, respectively (effect size=moderate; p<0.05). The overall mean score for side/behind tackler proficiency was 5.47±1.60 and 8.14±1.75 for injury and non-injury tackle events, respectively (effect size=large; p<0.01). Higher overall mean and criterion-specific tackle-related technique scores were associated with a non-injury outcome. The ability to perform well during tackle events may decrease the risk of injury and may manifest in superior performance. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Doutel, E; Pinto, S I S; Campos, J B L M; Miranda, J M
2016-08-07
Murray developed two laws for the geometry of bifurcations in the circulatory system. Based on the principle of energy minimization, Murray found restrictions for the relation between the diameters and also between the angles of the branches. It is known that bifurcations are prone to the development of atherosclerosis, in regions associated to low wall shear stresses (WSS) and high oscillatory shear index (OSI). These indicators (size of low WSS regions, size of high OSI regions and size of high helicity regions) were evaluated in this work. All of them were normalized by the size of the outflow branches. The relation between Murray's laws and the size of low WSS regions was analysed in detail. It was found that the main factor leading to large regions of low WSS is the so called expansion ratio, a relation between the cross section areas of the outflow branches and the cross section area of the main branch. Large regions of low WSS appear for high expansion ratios. Furthermore, the size of low WSS regions is independent of the ratio between the diameters of the outflow branches. Since the expansion ratio in bifurcations following Murray's law is kept in a small range (1 and 1.25), all of them have regions of low WSS with similar size. However, the expansion ratio is not small enough to completely prevent regions with low WSS values and, therefore, Murray's law does not lead to atherosclerosis minimization. A study on the effect of the angulation of the bifurcation suggests that the Murray's law for the angles does not minimize the size of low WSS regions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Topological Hall and Spin Hall Effects in Disordered Skyrmionic Textures
NASA Astrophysics Data System (ADS)
Ndiaye, Papa Birame; Akosa, Collins; Manchon, Aurelien; Spintronics Theory Group Team
We carry out a throughout study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and found that the adiabatic approximation still holds for large skyrmions as well as for few atomic size-nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that topological Hall effect is highly sensitive to momentum scattering. This work was supported by the King Abdullah University of Science and Technology (KAUST) through the Award No OSR-CRG URF/1/1693-01 from the Office of Sponsored Research (OSR).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caron-Huot, Simon; Gale, Charles
2010-12-15
We consider finite-size effects on the radiative energy loss of a fast parton moving in a finite-temperature, strongly interacting medium, using the light-cone path integral formalism put forward by B. G. Zakharov [JETP Lett. 63, 952 (1996); 65, 615 (1997)]. We present a convenient reformulation of the problem that makes possible its exact numerical analysis. This is done by introducing the concept of a radiation rate in the presence of finite-size effects. This effectively extends the finite-temperature approach of Arnold, Moore, and Yaffe [J. High Energy Phys. 11 (2001) 057; 12 (2001) 009; 06 (2001) 030] (AMY) to include interferencemore » between vacuum and medium radiation. We compare results with those obtained in the regime considered by AMY, with those obtained at leading order in an opacity expansion, and with those obtained deep in the Landau-Pomeranchuk-Migdal regime.« less
Do social groups prevent Allee effect related extinctions?: The case of wild dogs.
Angulo, Elena; Rasmussen, Greg S A; Macdonald, David W; Courchamp, Franck
2013-03-15
Allee effects may arise as the number of individuals decreases, thereby reducing opportunities for cooperation and constraining individual fitness, which can lead to population decrease and extinction. Obligate cooperative breeders rely on a minimum group size to subsist and are thus expected to be particularly susceptible to Allee effects. Although Allee effects in some components of the fitness of cooperative breeders have been detected, empirical confirmation of population extinction due to Allee effects is lacking yet. Because previous studies of cooperation have focused on Allee effects affecting individual fitness (component Allee effect) and population dynamics (demographic Allee effect), we argue that a new conceptual level of Allee effect, the group Allee effect, is needed to understand the special case of cooperative breeders. We hypothesize that whilst individuals are vulnerable to Allee effects, the group could act as a buffer against population extinction if: (i) individual fitness and group fate depend on group size but not on population size and (ii) group size is independent of population size (that is, at any population size, populations comprise both large and small groups). We found that both conditions apply for the African wild dog, Lycaon pictus, and data on this species in Zimbabwe support our hypothesis. The importance of groups in obligate cooperative breeders needs to be accounted for within the Allee effect framework, through a group Allee effect, because the group mediates the relationship between individual fitness and population performance. Whilst sociality is associated with a high probability of Allee effects, we suggest that cooperative individuals organized in relatively autonomous groups within populations might be behaving in ways that diminish extinction risks caused by Allee effects. This study opens new avenues to a better understanding of the role of the evolution of group-living on the probability of extinction faced by social species.
Stephen, Ian D; Sturman, Daniel; Stevenson, Richard J; Mond, Jonathan; Brooks, Kevin R
2018-01-01
Body size misperception-the belief that one is larger or smaller than reality-affects a large and growing segment of the population. Recently, studies have shown that exposure to extreme body stimuli results in a shift in the point of subjective normality, suggesting that visual adaptation may be a mechanism by which body size misperception occurs. Yet, despite being exposed to a similar set of bodies, some individuals within a given geographical area will develop body size misperception and others will not. The reason for these individual difference is currently unknown. One possible explanation stems from the observation that women with lower levels of body satisfaction have been found to pay more attention to images of thin bodies. However, while attention has been shown to enhance visual adaptation effects in low (e.g. rotational and linear motion) and high level stimuli (e.g., facial gender), it is not known whether this effect exists in visual adaptation to body size. Here, we test the hypothesis that there is an indirect effect of body satisfaction on the direction and magnitude of the body fat adaptation effect, mediated via visual attention (i.e., selectively attending to images of thin over fat bodies or vice versa). Significant mediation effects were found in both men and women, suggesting that observers' level of body satisfaction may influence selective visual attention to thin or fat bodies, which in turn influences the magnitude and direction of visual adaptation to body size. This may provide a potential mechanism by which some individuals develop body size misperception-a risk factor for eating disorders, compulsive exercise behaviour and steroid abuse-while others do not.
Sturman, Daniel; Stevenson, Richard J.; Mond, Jonathan; Brooks, Kevin R.
2018-01-01
Body size misperception–the belief that one is larger or smaller than reality–affects a large and growing segment of the population. Recently, studies have shown that exposure to extreme body stimuli results in a shift in the point of subjective normality, suggesting that visual adaptation may be a mechanism by which body size misperception occurs. Yet, despite being exposed to a similar set of bodies, some individuals within a given geographical area will develop body size misperception and others will not. The reason for these individual difference is currently unknown. One possible explanation stems from the observation that women with lower levels of body satisfaction have been found to pay more attention to images of thin bodies. However, while attention has been shown to enhance visual adaptation effects in low (e.g. rotational and linear motion) and high level stimuli (e.g., facial gender), it is not known whether this effect exists in visual adaptation to body size. Here, we test the hypothesis that there is an indirect effect of body satisfaction on the direction and magnitude of the body fat adaptation effect, mediated via visual attention (i.e., selectively attending to images of thin over fat bodies or vice versa). Significant mediation effects were found in both men and women, suggesting that observers’ level of body satisfaction may influence selective visual attention to thin or fat bodies, which in turn influences the magnitude and direction of visual adaptation to body size. This may provide a potential mechanism by which some individuals develop body size misperception–a risk factor for eating disorders, compulsive exercise behaviour and steroid abuse–while others do not. PMID:29385137
Limited capacity for contour curvature in iconic memory.
Sakai, Koji
2006-06-01
We measured the difference threshold for contour curvature in iconic memory by using the cued discrimination method. The study stimulus consisting of 2 to 6 curved contours was briefly presented in the fovea, followed by two lines as cues. Subjects discriminated the curvature of two cued curves. The cue delays were 0 msec. and 300 msec. in Exps. 1 and 2, respectively, and 50 msec. before the study offset in Exp. 3. Analysis of data from Exps. 1 and 2 showed that the Weber fraction rose monotonically with the increase in set size. Clear set-size effects indicate that iconic memory has a limited capacity. Moreover, clear set-size effect in Exp. 3 indicates that perception itself has a limited capacity. Larger set-size effects in Exp. 1 than in Exp. 3 suggest that iconic memory after perceptual process has limited capacity. These properties of iconic memory at threshold level are contradictory to the traditional view that iconic memory has a high capacity both at suprathreshold and categorical levels.
Effect of Particle Size on Thermal Conductivity of Nanofluid
NASA Astrophysics Data System (ADS)
Chopkar, M.; Sudarshan, S.; Das, P. K.; Manna, I.
2008-07-01
Nanofluids, containing nanometric metallic or oxide particles, exhibit extraordinarily high thermal conductivity. It is reported that the identity (composition), amount (volume percent), size, and shape of nanoparticles largely determine the extent of this enhancement. In the present study, we have experimentally investigated the impact of Al2Cu and Ag2Al nanoparticle size and volume fraction on the effective thermal conductivity of water and ethylene glycol based nanofluid prepared by a two-stage process comprising mechanical alloying of appropriate Al-Cu and Al-Ag elemental powder blend followed by dispersing these nanoparticles (1 to 2 vol pct) in water and ethylene glycol with different particle sizes. The thermal conductivity ratio of nanofluid, measured using an indigenously developed thermal comparator device, shows a significant increase of up to 100 pct with only 1.5 vol pct nanoparticles of 30- to 40-nm average diameter. Furthermore, an analytical model shows that the interfacial layer significantly influences the effective thermal conductivity ratio of nanofluid for the comparable amount of nanoparticles.
Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications
Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef
2013-01-01
Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The optimization of the nanoparticles’ size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents. PMID:24232575
Effect of Fuel Particle Size on the Stability of Swirl Stabilized Flame in a Gas Turbine Combustor
NASA Astrophysics Data System (ADS)
Mishra, R. K.; Kishore Kumar, S.; Chandel, Sunil
2015-05-01
Combustion stability is examined in a swirl stabilized aero gas turbine combustor using computational fluid dynamics. A 22.5° sector of an annular combustor is modeled for the study. Unstructured tetrahedral meshes comprising 1.2 × 106 elements are employed in the model where the governing equations are solved using CFD flow solver CFX using eddy dissipation combustion model. The effect of fuel particle size on the combustion and its stability has been studied at steady state and transient conditions. The time for complete evaporation is increased exponentially when drop size increases. It delays heating up the mixture and subsequent ignition. This strongly affects the stability of the combustion flame as the incoming fresh mixture will have a quenching effect on the existing temperature field. Transient analysis at low fuel-air ratio and high particle size shows that there is a series of flame extinction and re-ignition prior to complete extinction which is observed from the fluctuation of gas temperature in the primary zone.
Size effect and scaling power-law for superelasticity in shape-memory alloys at the nanoscale.
Gómez-Cortés, Jose F; Nó, Maria L; López-Ferreño, Iñaki; Hernández-Saz, Jesús; Molina, Sergio I; Chuvilin, Andrey; San Juan, Jose M
2017-08-01
Shape-memory alloys capable of a superelastic stress-induced phase transformation and a high displacement actuation have promise for applications in micro-electromechanical systems for wearable healthcare and flexible electronic technologies. However, some of the fundamental aspects of their nanoscale behaviour remain unclear, including the question of whether the critical stress for the stress-induced martensitic transformation exhibits a size effect similar to that observed in confined plasticity. Here we provide evidence of a strong size effect on the critical stress that induces such a transformation with a threefold increase in the trigger stress in pillars milled on [001] L2 1 single crystals from a Cu-Al-Ni shape-memory alloy from 2 μm to 260 nm in diameter. A power-law size dependence of n = -2 is observed for the nanoscale superelasticity. Our observation is supported by the atomic lattice shearing and an elastic model for homogeneous martensite nucleation.
Variables associated with achievement in higher education: A systematic review of meta-analyses.
Schneider, Michael; Preckel, Franzis
2017-06-01
The last 2 decades witnessed a surge in empirical studies on the variables associated with achievement in higher education. A number of meta-analyses synthesized these findings. In our systematic literature review, we included 38 meta-analyses investigating 105 correlates of achievement, based on 3,330 effect sizes from almost 2 million students. We provide a list of the 105 variables, ordered by the effect size, and summary statistics for central research topics. The results highlight the close relation between social interaction in courses and achievement. Achievement is also strongly associated with the stimulation of meaningful learning by presenting information in a clear way, relating it to the students, and using conceptually demanding learning tasks. Instruction and communication technology has comparably weak effect sizes, which did not increase over time. Strong moderator effects are found for almost all instructional methods, indicating that how a method is implemented in detail strongly affects achievement. Teachers with high-achieving students invest time and effort in designing the microstructure of their courses, establish clear learning goals, and employ feedback practices. This emphasizes the importance of teacher training in higher education. Students with high achievement are characterized by high self-efficacy, high prior achievement and intelligence, conscientiousness, and the goal-directed use of learning strategies. Barring the paucity of controlled experiments and the lack of meta-analyses on recent educational innovations, the variables associated with achievement in higher education are generally well investigated and well understood. By using these findings, teachers, university administrators, and policymakers can increase the effectivity of higher education. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Luo, Shezhou; Chen, Jing M; Wang, Cheng; Xi, Xiaohuan; Zeng, Hongcheng; Peng, Dailiang; Li, Dong
2016-05-30
Vegetation leaf area index (LAI), height, and aboveground biomass are key biophysical parameters. Corn is an important and globally distributed crop, and reliable estimations of these parameters are essential for corn yield forecasting, health monitoring and ecosystem modeling. Light Detection and Ranging (LiDAR) is considered an effective technology for estimating vegetation biophysical parameters. However, the estimation accuracies of these parameters are affected by multiple factors. In this study, we first estimated corn LAI, height and biomass (R2 = 0.80, 0.874 and 0.838, respectively) using the original LiDAR data (7.32 points/m2), and the results showed that LiDAR data could accurately estimate these biophysical parameters. Second, comprehensive research was conducted on the effects of LiDAR point density, sampling size and height threshold on the estimation accuracy of LAI, height and biomass. Our findings indicated that LiDAR point density had an important effect on the estimation accuracy for vegetation biophysical parameters, however, high point density did not always produce highly accurate estimates, and reduced point density could deliver reasonable estimation results. Furthermore, the results showed that sampling size and height threshold were additional key factors that affect the estimation accuracy of biophysical parameters. Therefore, the optimal sampling size and the height threshold should be determined to improve the estimation accuracy of biophysical parameters. Our results also implied that a higher LiDAR point density, larger sampling size and height threshold were required to obtain accurate corn LAI estimation when compared with height and biomass estimations. In general, our results provide valuable guidance for LiDAR data acquisition and estimation of vegetation biophysical parameters using LiDAR data.
Hausenblas, Heather A; Campbell, Anna; Menzel, Jessie E; Doughty, Jessica; Levine, Michael; Thompson, J Kevin
2013-02-01
Older meta-analyses of the effects of the media's portrayal of the ideal physique have found small effects revealing that exposure to the ideal physique increases body image concerns. These meta-analyses also included correlational, quasi-experimental, and experimental studies, with limited examination of moderators and other relevant outcomes besides body image. We conducted a systematic literature search and identified 33 experimental (i.e., pre and post data for both experimental and control groups) laboratory studies examining the effects of acute exposure to the media's portrayal of the ideal physique on eating disorder symptoms (i.e., body image, positive affect, negative affect, self-esteem, anger, anxiety and depression) and the mechanisms that moderate this effect. Fourteen separate meta-analyses revealed a range of small to moderate effect sizes for change in outcomes from pre to post for both experimental and control groups. Exposure to images of the ideal physique resulted in small effect sizes for increased depression and anger and decreased self-esteem and positive affect. Moderator analyses revealed moderate effect sizes for increased depression and body dissatisfaction among high-risk participants. This meta-analysis makes it clear that media exposure of the ideal physique results in small changes in eating disorder symptoms, particularly with participants at high risk for developing an eating disorder. Further research is needed to examine the longitudinal effects of media exposure of eating disorder symptoms. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chowell, Gerardo; Fuentes, R; Olea, A; Aguilera, X; Nesse, H; Hyman, J M
2013-01-01
We use a stochastic simulation model to explore the effect of reactive intervention strategies during the 2002 dengue outbreak in the small population of Easter Island, Chile. We quantified the effect of interventions on the transmission dynamics and epidemic size as a function of the simulated control intensity levels and the timing of initiation of control interventions. Because no dengue outbreaks had been reported prior to 2002 in Easter Island, the 2002 epidemic provided a unique opportunity to estimate the basic reproduction number R0 during the initial epidemic phase, prior to the start of control interventions. We estimated R0 at 27.2 (95%CI: 14.8, 49.3). We found that the final epidemic size is highly sensitive to the timing of start of interventions. However, even when the control interventions start several weeks after the epidemic onset, reactive intervention efforts can have a significant impact on the final epidemic size. Our results indicate that the rapid implementation of control interventions can have a significant effect in reducing the epidemic size of dengue epidemics.
NASA Astrophysics Data System (ADS)
Jiang, W. G.; Xiong, C. A.; Wu, X. G.
2013-11-01
The residual thermal stresses induced by the high-temperature sintering process in multilayer ceramic capacitors (MLCCs) are investigated by using a finite-element unit cell model, in which the strain gradient effect is considered. The numerical results show that the residual thermal stresses depend on the lateral margin length, the thickness ratio of the dielectrics layer to the electrode layer, and the MLCC size. At a given thickness ratio, as the MLCC size is scaled down, the peak shear stress reduces significantly and the normal stresses along the length and thickness directions change slightly with the decrease in the ceramic layer thickness t d as t d > 1 μm, but as t d < 1 μm, the normal stress components increase sharply with the increase in t d. Thus, the residual thermal stresses induced by the sintering process exhibit strong size effects and, therefore, the strain gradient effect should be taken into account in the design and evaluation of MLCC devices
Thermal conductivity of graphene mediated by strain and size
Kuang, Youdi; Shi, Sanqiang; Wang, Xinjiang; ...
2016-06-09
Based on first-principles calculations and full iterative solution of the linearized Boltzmann–Peierls transport equation for phonons, we systematically investigate effects of strain, size and temperature on the thermal conductivity k of suspended graphene. The calculated size-dependent and temperature-dependent k for finite samples agree well with experimental data. The results show that, contrast to the convergent room-temperature k = 5450 W/m-K of unstrained graphene at a sample size ~8 cm, k of strained graphene diverges with increasing the sample size even at high temperature. Out-of-plane acoustic phonons are responsible for the significant size effect in unstrained and strained graphene due tomore » their ultralong mean free path and acoustic phonons with wavelength smaller than 10 nm contribute 80% to the intrinsic room temperature k of unstrained graphene. Tensile strain hardens the flexural modes and increases their lifetimes, causing interesting dependence of k on sample size and strain due to the competition between boundary scattering and intrinsic phonon–phonon scattering. k of graphene can be tuned within a large range by strain for the size larger than 500 μm. These findings shed light on the nature of thermal transport in two-dimensional materials and may guide predicting and engineering k of graphene by varying strain and size.« less
Which is the Ideal Breast Size?: Some Social Clues for Plastic Surgeons.
Raposio, Edoardo; Belgrano, Valerio; Santi, PierLuigi; Chiorri, Carlo
2016-03-01
To provide plastic surgeons with more detailed information as to factors affecting the perception of female attractiveness, the present study was aimed to investigate whether the interaction effect of breast and body size on ratings of female attractiveness is moderated by sociodemographic variables and whether ratings of shapeliness diverge from those of attractiveness.A community sample of 958 Italian participants rated the attractiveness and the shapeliness of 15 stimuli (5 breast sizes × 3 body sizes) in which frontal, 3/4, and profile views of the head and torso of a faceless woman were jointly shown.Bigger breast sizes obtained the highest attractiveness ratings, but the breast-by-body size interaction was also significant. Evidence was found of a moderator role of sex, marital status, and age. When the effects of breast and body size and their interaction had been ruled out, sex differences were at best very slight and limited to very specific combinations of breast and body sizes. Ratings of attractiveness and shapeliness were highly correlated and did not significantly differ.Results suggest that to address women's psychological needs, concerns, and expectations about their appearance, plastic surgeons should not simply focus on breast size but should carefully consider the 'big picture': the body in its entirety.
Effectiveness of treatments for infantile colic: systematic review
Lucassen, P L B J; Assendelft, W J J; Gubbels, J W; van Eijk, J T M; van Geldrop, W J; Neven, A Knuistingh
1998-01-01
Objective: To evaluate the effectiveness of diets, drug treatment, and behavioural interventions on infantile colic in trials with crying or the presence of colic as the primary outcome measure. Data sources: Controlled clinical trials identified by a highly sensitive search strategy in Medline (1966-96), Embase (1986-95), and the Cochrane Controlled Trials Register, in combination with reference checking for further relevant publications. Keywords were crying and colic. Study selection: Two independent assessors selected controlled trials with interventions lasting at least 3 days that included infants younger than 6 months who cried excessively. Data synthesis: Methodological quality was assessed by two assessors independently with a quality assessment scale (range 0-5). Effect sizes were calculated as percentage success. Effect sizes of trials using identical interventions were pooled using a random effects model. Results: 27 controlled trials were identified. Elimination of cows’ milk protein was effective when substituted by hypoallergenic formula milks (effect size 0.22 (95% confidence interval 0.09 to 0.34)). The effectiveness of substitution by soy formula milks was unclear when only trials of good methodological quality were considered. The benefit of eliminating cows’ milk protein was not restricted to highly selected populations. Dicyclomine was effective (effect size 0.46 ( 0.33 to 0.60)), but serious side effects have been reported. The advice to reduce stimulation was beneficial (effect size 0.48 (0.23 to 0.74)), whereas the advice to increase carrying and holding seemed not to reduce crying. No benefit was shown for simethicone. Uncertainty remained about the effectiveness of low lactose formula milks. Conclusions: Infantile colic should preferably be treated by advising carers to reduce stimulation and with a one week trial of a hypoallergenic formula milk. Key messages Infantile colic is common during the first months of life, but its cause is unknown A definite diagnosis of infantile colic should be followed by a one week trial of substituting cows’ milk with hypoallergenic formula milk Dietary intervention should be combined with behavioural interventions: general advice, reassurance, reduction in stimuli, and sensitive differential responding (teaching parents to be more appropriately responsive to their infants with less overstimulation and more effective soothing) Anticholinergic drugs are not recommended because of their serious side effects PMID:9596593
NASA Technical Reports Server (NTRS)
Heinemann, K.
1985-01-01
The interaction of 100 and 200 keV electron beams with amorphous alumina, titania, and aluminum nitride substrates and nanometer-size palladium particulate deposits was investigated for the two extreme cases of (1) large-area electron-beam flash-heating and (2) small-area high-intensity electron-beam irradiation. The former simulates a short-term heating effect with minimum electron irradiation exposure, the latter simulates high-dosage irradiation with minimum heating effect. All alumina and titania samples responded to the flash-heating treatment with significant recrystallization. However, the size, crystal structure, shape, and orientation of the grains depended on the type and thickness of the films and the thickness of the Pd deposit. High-dosage electron irradiation also readily crystallized the alumina substrate films but did not affect the titania films. The alumina recrystallization products were usually either all in the alpha phase, or they were a mixture of small grains in a number of low-temperature phases including gamma, delta, kappa, beta, theta-alumina. Palladium deposits reacted heavily with the alumina substrates during either treatment, but they were very little effected when supported on titania. Both treatments had the same, less prominent localized crystallization effect on aluminum nitride films.
The role of weak selection and high mutation rates in nearly neutral evolution.
Lawson, Daniel John; Jensen, Henrik Jeldtoft
2009-04-21
Neutral dynamics occur in evolution if all types are 'effectively equal' in their reproductive success, where the definition of 'effectively equal' depends on the population size and the details of mutations. Empirically observed neutral genetic evolution in extremely large clonal populations can only be explained under current models if selection is completely absent. Such models typically consider the case where population dynamics occurs on a different timescale to evolution. However, this assumption is invalid when mutations are not rare in a whole population. We show that this has important consequences for the occurrence of neutral evolution in clonal populations. In highly connected type spaces, neutral dynamics can occur for all population sizes despite significant selective differences, via the forming of effectively neutral networks connecting rare neutral types. Biological implications include an explanation for the high diversity of rare types that survive in large clonal populations, and a theoretical justification for the use of neutral null models.
Thommes, Markus; Kleinebudde, Peter
2007-11-09
The aim of this study was to systematically evaluate the pelletization process parameters of kappa-carrageenan-containing formulations. The study dealt with the effect of 4 process parameters--screw speed, number of die holes, friction plate speed, and spheronizer temperature--on the pellet properties of shape, size, size distribution, tensile strength, and drug release. These parameters were varied systematically in a 2(4) full factorial design. In addition, 4 drugs--phenacetin, chloramphenicol, dimenhydrinate, and lidocaine hydrochloride--were investigated under constant process conditions. The most spherical pellets were achieved in a high yield by using a large number of die holes and a high spheronizer speed. There was no relevant influence of the investigated process parameters on the size distribution, mechanical stability, and drug release. The poorly soluble drugs, phenacetin and chloramphenicol, resulted in pellets with adequate shape, size, and tensile strength and a fast drug release. The salts of dimenhydrinate and lidocaine affected pellet shape, mechanical stability, and the drug release properties using an aqueous solution of pH 3 as a granulation liquid. In the case of dimenhydrinate, this was attributed to the ionic interactions with kappa-carrageenan, resulting in a stable matrix during dissolution that did not disintegrate. The effect of lidocaine is comparable to the effect of sodium ions, which suppress the gelling of carrageenan, resulting in pellets with fast disintegration and drug release characteristics. The pellet properties are affected by the process parameters and the active pharmaceutical ingredient used.
Samuvel, K; Ramachandran, K
2015-07-05
This study examined the effects of the combination of starting materials on the properties of solid-state reacted BaTiO3 using two different types of BaCO3 and TiO2. In addition, the effect of mechanochemical activation by high energy milling and the Ba/Ti molar ratio on the reaction temperature, particle size and tetragonality were investigated. The TiO2 phase and size plays a major role in increasing the reaction temperature and particle size. With the optimum selection of starting materials and processing conditions, BaTiO3 with a particle size <200 nm (Scherrer's formula) and a tetragonality c/a of approximately 1.007 was obtained. Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. From the X-ray diffraction analysis it was found that the newly obtained BaTi0.5Fe0.5O3 ceramics consist of two chemically different phases. The electric modulus M∗ formalism used in the analysis enabled us to distinguish and separate the relaxation processes, dominated by marked conductivity in the ε∗(ω) representation. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in solid state routed samples. Copyright © 2015 Elsevier B.V. All rights reserved.
da Silva Carvalho, C; Ribeiro, M C; Côrtes, M C; Galetti, M; Collevatti, R G
2015-01-01
Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes. PMID:25873150
NASA Astrophysics Data System (ADS)
Samuvel, K.; Ramachandran, K.
2015-07-01
This study examined the effects of the combination of starting materials on the properties of solid-state reacted BaTiO3 using two different types of BaCO3 and TiO2. In addition, the effect of mechanochemical activation by high energy milling and the Ba/Ti molar ratio on the reaction temperature, particle size and tetragonality were investigated. The TiO2 phase and size plays a major role in increasing the reaction temperature and particle size. With the optimum selection of starting materials and processing conditions, BaTiO3 with a particle size <200 nm (Scherrer's formula) and a tetragonality c/a of approximately 1.007 was obtained. Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. From the X-ray diffraction analysis it was found that the newly obtained BaTi0.5Fe0.5O3 ceramics consist of two chemically different phases. The electric modulus M∗ formalism used in the analysis enabled us to distinguish and separate the relaxation processes, dominated by marked conductivity in the ε∗(ω) representation. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in solid state routed samples.
Sawtarie, Nader; Cai, Yuhang; Lapitsky, Yakov
2017-09-01
Nanoparticles prepared through the ionotropic gelation of chitosan with tripolyphosphate (TPP) have been extensively studied as vehicles for drug and gene delivery. Though a number of these works have focused on preparing particles with narrow size distributions, the monodisperse particles produced by these methods have been limited to narrow size ranges (where the average particle size was not varied by more than twofold). Here we show how, by tuning the NaCl concentration in the parent chitosan and TPP solutions, low-polydispersity particles with z-average diameters ranging between roughly 100 and 900nm can be prepared. Further, we explore how the size of these particles depends on the method by which the TPP is mixed into the chitosan solution, specifically comparing: (1) single-shot mixing; (2) dropwise addition; and (3) a dilution technique, where chitosan and TPP are codissolved at a high (gelation-inhibiting) ionic strength and then diluted to lower ionic strengths to trigger gelation. Though the particle size increases sigmoidally with the NaCl concentration for all three mixing methods, the dilution method delivers the most uniform/gradual size increase - i.e., it provides the most precise control. Also investigated are the effects of mixture composition and mixing procedure on the particle yield. These reveal the particle yield to increase with the chitosan/TPP concentration, decrease with the NaCl concentration, and vary only weakly with the mixing protocol; thus, at elevated NaCl concentrations, it may be beneficial to increase chitosan and TPP concentrations to ensure high particle yields. Finally, possible pitfalls of the salt-assisted size control strategy (and their solutions) are discussed. Taken together, these findings provide a simple and reliable method for extensively tuning chitosan/TPP particle size while maintaining narrow size distributions. Copyright © 2017 Elsevier B.V. All rights reserved.
Macdonald, Tara A; Burd, Brenda J; van Roodselaar, Albert
2012-01-01
Size distributions of biotic assemblages are important modifiers of productivity and function in marine sediments. We investigated the distribution of proportional organic biomass among logarithmic size classes (2(-6)J to 2(16)J) in the soft-bottom macrofaunal communities of the Strait of Georgia, Salish Sea on the west coast of Canada. The study examines how size structure is influenced by 3 fundamental habitat descriptors: depth, sediment percent fines, and organic flux (modified by quality). These habitat variables are uncorrelated in this hydrographically diverse area, thus we examine their effects in combination and separately. Cluster analyses and cumulative biomass size spectra reveal clear and significant responses to each separate habitat variable. When combined, habitat factors result in three distinct assemblages: (1) communities with a high proportion of biomass in small organisms, typical of shallow areas (<10 m) with coarse sediments (<10% fines) and low accumulation of organic material (<3.0 gC/m(2)/yr/δ(15)N); (2) communities with high proportion of biomass in the largest organisms found in the Strait, typical of deep, fine sediments with high modified organic flux (>3 g C/m(2)/yr/δ(15)N) from the Fraser River; and (3) communities with biomass dominated by moderately large organisms, but lacking the smallest and largest size classes, typical of deep, fine sediments experiencing low modified organic flux (<3.0 gC/m(2)/yr/δ(15)N). The remaining assemblages had intermediate habitat types and size structures. Sediment percent fines and flux appear to elicit threshold responses in size structure, whereas depth has the most linear influence on community size structure. The ecological implications of size structure in the Strait of Georgia relative to environmental conditions, secondary production and sediment bioturbation are discussed.
Macdonald, Tara A.; Burd, Brenda J.; van Roodselaar, Albert
2012-01-01
Size distributions of biotic assemblages are important modifiers of productivity and function in marine sediments. We investigated the distribution of proportional organic biomass among logarithmic size classes (2−6J to 216J) in the soft-bottom macrofaunal communities of the Strait of Georgia, Salish Sea on the west coast of Canada. The study examines how size structure is influenced by 3 fundamental habitat descriptors: depth, sediment percent fines, and organic flux (modified by quality). These habitat variables are uncorrelated in this hydrographically diverse area, thus we examine their effects in combination and separately. Cluster analyses and cumulative biomass size spectra reveal clear and significant responses to each separate habitat variable. When combined, habitat factors result in three distinct assemblages: (1) communities with a high proportion of biomass in small organisms, typical of shallow areas (<10 m) with coarse sediments (<10% fines) and low accumulation of organic material (<3.0 gC/m2/yr/δ15N); (2) communities with high proportion of biomass in the largest organisms found in the Strait, typical of deep, fine sediments with high modified organic flux (>3 g C/m2/yr/δ15N) from the Fraser River; and (3) communities with biomass dominated by moderately large organisms, but lacking the smallest and largest size classes, typical of deep, fine sediments experiencing low modified organic flux (<3.0 gC/m2/yr/δ15N). The remaining assemblages had intermediate habitat types and size structures. Sediment percent fines and flux appear to elicit threshold responses in size structure, whereas depth has the most linear influence on community size structure. The ecological implications of size structure in the Strait of Georgia relative to environmental conditions, secondary production and sediment bioturbation are discussed. PMID:22911694
Qiu, Jianjun; Li, Yangyang; Huang, Qin; Wang, Yang; Li, Pengcheng
2013-11-18
In laser speckle contrast imaging, it was usually suggested that speckle size should exceed two camera pixels to eliminate the spatial averaging effect. In this work, we show the benefit of enhancing signal to noise ratio by correcting the speckle contrast at small speckle size. Through simulations and experiments, we demonstrated that local speckle contrast, even at speckle size much smaller than one pixel size, can be corrected through dividing the original speckle contrast by the static speckle contrast. Moreover, we show a 50% higher signal to noise ratio of the speckle contrast image at speckle size below 0.5 pixel size than that at speckle size of two pixels. These results indicate the possibility of selecting a relatively large aperture to simultaneously ensure sufficient light intensity and high accuracy and signal to noise ratio, making the laser speckle contrast imaging more flexible.
Cryogenic spray vaporization in high-velocity helium, argon and nitrogen gasflows
NASA Technical Reports Server (NTRS)
Ingebo, Robert D.
1993-01-01
Effects of gas properties on cryogenic liquid-jet atomization in high-velocity helium, nitrogen, and argon gas flows were investigated. Volume median diameter, D(sub v.5e), data were obtained with a scattered-light scanning instrument. By calculating the change in spray drop size, -Delta D(sub v.5)(exp 2), due to droplet vaporization, it was possible to calculate D(sub v.5C). D(sub v.5C) is the unvaporized characteristic drop size formed at the fuel-nozzle orifice. This drop size was normalized with respect to liquid-jet diameter, D(sub O). It was then correlated with several dimensionless groups to give an expression for the volume median diameter of cryogenic LN2 sprays. This expression correlates drop size D(sub v.5c) with aerodynamic and liquid-surface forces so that it can be readily determined in the design of multiphase-flow propellant injectors for rocket combustors.
NASA Astrophysics Data System (ADS)
Koo, Bon-Uk; Yi, Yujeong; Lee, Minjeong; Kim, Byoung-Kee
2017-03-01
With increased hydrogen consumption in ammonia production, refining and synthesis, fuel cells and vehicle industries, development of the material components related to hydrogen production is becoming an important factor in industry growth. Porous metals for fabrication of hydrogen are commonly known for their relative excellence in terms of large area, lightness, lower heat capacity, high toughness, and permeability. Fe-Cr-Al alloys not only have high corrosion resistance, heat resistance, and chemical stability but also ductility, excellent mechanical properties. In order to control powder size and sintering temperature effects of Fe-Cr-Al porous metal fabrication, Fe-Cr-Al powder was classified into 25-35 μm, 35-45 μm, 45-75 μm using an auto shaking sieve machine and then classified Fe-Cr-Al powders were pressed into disk shapes using a uniaxial press machine and CIP. The pelletized Fe-Cr-Al specimens were sintered at various temperatures in high vacuum. Properties such as pore size, porosity, and air permeability were evaluated using perm-porosimetry. Microstructure and phase changes were observed with SEM and XRD. Porosity and relative density were proportionated to increasing sintering temperature. With sufficient sintering at increasing temperatures, the pore size is expected to be gradually reduced. Porosity decreased with increasing sintering temperature and gradually increased necking of the powder.
Wildy, Erica L; Chivers, Douglas P; Kiesecker, Joseph M; Blaustein, Andrew R
2001-07-01
Previous studies have examined abiotic and biotic factors that facilitate agonistic behavior. For larval amphibians, food availability and conspecific density have been suggested as important factors influencing intraspecific aggression and cannibalism. In this study, we examined the separate and combined effects of food availability and density on the agonistic behavior and life history of larval long-toed salamanders, Ambystoma macrodactylum. We designed a 2×2 factorial experiment in which larvae were raised with either a high or low density of conspecifics and fed either a high or low level of food. For each treatment, we quantified the amount of group size variation, biting, and cannibalism occurring. Additionally, we examined survival to, time to and size at metamorphosis for all larvae. Results indicated that differences in both density and food level influenced all three life history traits measured. Moreover, differences in food level at which larvae were reared resulted in higher within-group size variation and heightened intraspecific biting while both density and food level contributed to increased cannibalism. We suggest that increased hunger levels and an uneven size structure promoted biting among larvae in the low food treatments. Moreover, these factors combined with a higher encounter rate with conspecifics in the high density treatments may have prompted larger individuals to seek an alternative food source in the form of smaller conspecifics.
The Effect of DEM Source and Grid Size on the Index of Connectivity in Savanna Catchments
NASA Astrophysics Data System (ADS)
Jarihani, Ben; Sidle, Roy; Bartley, Rebecca; Roth, Christian
2017-04-01
The term "hydrological connectivity" is increasingly used instead of sediment delivery ratio to describe the linkage between the sources of water and sediment within a catchment to the catchment outlet. Sediment delivery ratio is an empirical parameter that is highly site-specific and tends to lump all processes, whilst hydrological connectivity focuses on the spatially-explicit hydrologic drivers of surficial processes. Detailed topographic information plays a fundamental role in geomorphological interpretations as well as quantitative modelling of sediment fluxes and connectivity. Geomorphometric analysis permits a detailed characterization of drainage area and drainage pattern together with the possibility of characterizing surface roughness. High resolution topographic data (i.e., LiDAR) are not available for all areas; however, remotely sensed topographic data from multiple sources with different grid sizes are used to undertake geomorphologic analysis in data-sparse regions. The Index of Connectivity (IC), a geomorphometric model based only on DEM data, is applied in two small savanna catchments in Queensland, Australia. The influence of the scale of the topographic data is explored by using DEMs from LiDAR ( 1 m), WorldDEM ( 10 m), raw SRTM and hydrologically corrected SRTM derived data ( 30 m) to calculate the index of connectivity. The effect of the grid size is also investigated by resampling the high resolution LiDAR DEM to multiple grid sizes (e.g. 5, 10, 20 m) and comparing the extracted IC.
Wall, D M; Straccialini, B; Allen, E; Nolan, P; Herrmann, C; O'Kiely, P; Murphy, J D
2015-09-01
This work examines the digestion of advanced growth stage grass silage. Two variables were investigated: particle size (greater than 3 cm and less than 1cm) and rumen fluid addition. Batch studies indicated particle size and rumen fluid addition had little effect on specific methane yields (SMYs). In continuous digestion of 3 cm silage the SMY was 342 and 343 L CH4 kg(-1)VS, respectively, with and without rumen fluid addition. However, digester operation was significantly affected through silage floating on the liquor surface and its entanglement in the mixing system. Digestion of 1cm silage with no rumen fluid addition struggled; volatile fatty acid concentrations rose and SMYs dropped. The best case was 1cm silage with rumen fluid addition, offering higher SMYs of 371 L CH4 kg(-1)VS and stable operation throughout. Thus, physical and biological treatments benefited continuous digestion of high fibre grass silage. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shariffa, Y N; Tan, T B; Uthumporn, U; Abas, F; Mirhosseini, H; Nehdi, I A; Wang, Y-H; Tan, C P
2017-11-01
The aim of this study was to develop formulations to produce lycopene nanodispersions and to investigate the effects of the homogenization pressure on the physicochemical properties of the lycopene nanodispersion. The samples were prepared by using emulsification-evaporation technique. The best formulation was achieved by dispersing an organic phase (0.3% w/v lycopene dissolved in dichloromethane) in an aqueous phase (0.3% w/v Tween 20 dissolved in deionized water) at a ratio of 1:9 by using homogenization process. The increased level of homogenization pressure to 500bar reduced the particle size and lycopene concentration significantly (p<0.05). Excessive homogenization pressure (700-900bar) resulted in large particle sizes with high dispersibility. The zeta potential and turbidity of the lycopene nanodispersion were significantly influenced by the homogenization pressure. The results from this study provided useful information for producing small-sized lycopene nanodispersions with a narrow PDI and good stability for application in beverage products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Role of CaCO3 and Charcoal Application on Organic Matter Retention in Silt-sized Aggregates
NASA Astrophysics Data System (ADS)
Berhe, A. A.; Kaiser, M.; Ghezzehei, T.; Myrold, D.; Kleber, M.
2011-12-01
The effectiveness of charcoal and calcium carbonate (CaCO3) applications to improve soil conditions has been well documented. However, their influence on the formation of silt-sized aggregates and the amount and protection of associated organic matter (OM) against microbial decomposition under differing soil mineralogical and microbiological conditions are still unknown. For sustainable management of agricultural soils, silt-sized aggregates (2-50 μm) are of particularly large importance because they store up to 60% of soil organic carbon and with mean residence times between 70 and 400 years. The objectives of this study are i) to analyze the ability of soil amendments (CaCO3, charcoal and their combined application) to increase the amount of silt-sized aggregates and associated organic matter, ii) vary soil mineral conditions to establish relevant boundary conditions for amendment-induced aggregation process, iii) to determine how amendment-induced changes in formation of silt-sized aggregates relate to microbial decomposition of OM. We set up artificial high reactive (clay: 40%, sand: 57%, SOM: 3%) and low reactive soils (clay: 10%, sand: 89%, SOM: 1%) and mixed them with charcoal (1%) and/or CaCO3 (0.2%). The samples were adjusted to a water potential of 0.3 bar using a nutrient solution and sub samples were incubated with microbial innoculum. After four months, silt-sized aggregates are separated by a combination of wet-sieving and sedimentation. We hypothesize that the relative increase in amount of silt-sized aggregates and associated OM is larger for less reactive soils than for high reactive soils because of a relative larger increase in binding agents by addition of charcoal and/or CaCO3 in less reactive soils. The effect of charcoal and/or CaCO3 application on the amount of silt-sized aggregates and associated OM is expected to increases with an increase in microbial activity. Between different treatments, we expect the incubated 'charcoal+CaCO3' combination to have the largest effect on silt-size scale aggregation processes because the amount of microbial derived cementing agents, charcoal derived functional groups containing OM, and Ca2+ ions are enhanced at the same time.
Boundaries around Group Interaction: The Effect of Size and Status.
ERIC Educational Resources Information Center
Knowles, Eric S.
The stimulus value of group boundaries was investigated in a field experiment. It was hypothesized that the size of a group and the status of its members would reduce the permeability of a boundary around an interacting group. Two or 4 interacting people of high or low status interrupted the traffic flow in a university hallway. Results indicate…
NASA Astrophysics Data System (ADS)
Palmer, R. B.; Gallardo, J. C.
INTRODUCTION PHYSICS CONSIDERATIONS GENERAL REQUIRED LUMINOSITY FOR LEPTON COLLIDERS THE EFFECTIVE PHYSICS ENERGIES OF HADRON COLLIDERS HADRON-HADRON MACHINES LUMINOSITY SIZE AND COST CIRCULAR e^{+}e^- MACHINES LUMINOSITY SIZE AND COST e^{+}e^- LINEAR COLLIDERS LUMINOSITY CONVENTIONAL RF SUPERCONDUCTING RF AT HIGHER ENERGIES γ - γ COLLIDERS μ ^{+} μ^- COLLIDERS ADVANTAGES AND DISADVANTAGES DESIGN STUDIES STATUS AND REQUIRED R AND D COMPARISION OF MACHINES CONCLUSIONS DISCUSSION
Plate-tectonic boundary formation by grain-damage and pinning
NASA Astrophysics Data System (ADS)
Bercovici, David
2015-04-01
Shear weakening in the lithosphere is an essential ingredient for understanding how and why plate tectonics is generated from mantle convection on terrestrial planets. I present continued work on a theoretical model for lithospheric shear-localization and plate generation through damage, grain evolution and Zener pinning in two-phase (polycrystalline) lithospheric rocks. Grain size evolves through the competition between coarsening, which drives grain-growth, with damage, which drives grain reduction. The interface between phases controls Zener pinning, which impedes grain growth. Damage to the interface enhances the Zener pinning effect, which then reduces grain-size, forcing the rheology into the grain-size-dependent diffusion creep regime. This process thus allows damage and rheological weakening to co-exist, providing a necessary shear-localizing feedback. Moreover, because pinning inhibits grain-growth it promotes shear-zone longevity and plate-boundary inheritance. This theory has been applied recently to the emergence of plate tectonics in the Archean by transient subduction and accumulation of plate boundaries over 1Gyr, as well as to rapid slab detachment and abrupt tectonic changes. New work explores the saturation of interface damage at low interface curvature (e.g., because it is associated with larger grains that take up more of the damage, and/or because interface area is reduced). This effect allows three possible equilibrium grain-sizes for a given stress; a small-grain-size high-shear state in diffusion creep, a large grain-size low shear state in dislocation creep, and an intermediate state (often near the deformation map phase-boundary). The low and high grain-size states are stable, while the intermediate one is unstable. This implies that a material deformed at a given stress can acquire two stable deformation regimes, a low- and high- shear state; these are indicative of plate-like flows, i.e, the coexistence of both slowly deforming plates and rapidly deforming plate boundaries.
Spacecraft configuration study for second generation mobile satellite system
NASA Technical Reports Server (NTRS)
Louie, M.; Vonstentzsch, W.; Zanella, F.; Hayes, R.; Mcgovern, F.; Tyner, R.
1985-01-01
A high power, high performance communicatons satellite bus being developed is designed to satisfy a broad range of multimission payload requirements in a cost effective manner and is compatible with both STS and expendable launchers. Results are presented of tradeoff studies conducted to optimize the second generation mobile satellite system for its mass, power, and physical size. Investigations of the 20-meter antenna configuration, transponder linearization techniques, needed spacecraft modifications, and spacecraft power, dissipation, mass, and physical size indicate that the advanced spacecraft bus is capable of supporting the required payload for the satellite.
Integrated microfluidic system with simultaneous emulsion generation and concentration.
Koppula, Karuna S; Fan, Rong; Veerapalli, Kartik R; Wan, Jiandi
2016-03-15
Because the size, size distribution, and concentration of emulsions play an important role in most of the applications, controlled emulsion generation and effective concentration are of great interest in fundamental and applied studies. While microfluidics has been demonstrated to be able to produce emulsion drops with controlled size, size distribution, and hierarchical structures, progress of controlled generation of concentrated emulsions is limited. Here, we present an effective microfluidic emulsion generation system integrated with an orifice structure to separate aqueous droplets from the continuous oil phase, resulting in concentrated emulsion drops in situ. Both experimental and simulation results show that the efficiency of separation is determined by a balance between pressure drop and droplet accumulation near the orifice. By manipulating this balance via changing flow rates and microfluidic geometry, we can achieve monodisperse droplets on chip that have a concentration as high as 80,000 drops per microliter (volume fraction of 66%). The present approach thus provides insights to the design of microfluidic device that can be used to concentrate emulsions (drops and bubbles), colloidal particles (drug delivery polymer particles), and biological particles (cells and bacteria) when volume fractions as high as 66% are necessary. Copyright © 2015 Elsevier Inc. All rights reserved.
Size-selective sorting in bubble streaming flows: Particle migration on fast time scales
NASA Astrophysics Data System (ADS)
Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha
2015-11-01
Steady streaming from ultrasonically driven microbubbles is an increasingly popular technique in microfluidics because such devices are easily manufactured and generate powerful and highly controllable flows. Combining streaming and Poiseuille transport flows allows for passive size-sensitive sorting at particle sizes and selectivities much smaller than the bubble radius. The crucial particle deflection and separation takes place over very small times (milliseconds) and length scales (20-30 microns) and can be rationalized using a simplified geometric mechanism. A quantitative theoretical description is achieved through the application of recent results on three-dimensional streaming flow field contributions. To develop a more fundamental understanding of the particle dynamics, we use high-speed photography of trajectories in polydisperse particle suspensions, recording the particle motion on the time scale of the bubble oscillation. Our data reveal the dependence of particle displacement on driving phase, particle size, oscillatory flow speed, and streaming speed. With this information, the effective repulsive force exerted by the bubble on the particle can be quantified, showing for the first time how fast, selective particle migration is effected in a streaming flow. We acknowledge support by the National Science Foundation under grant number CBET-1236141.
Study on optimum length of raw material in stainless steel high-lock nuts forging
NASA Astrophysics Data System (ADS)
Cheng, Meiwen; Liu, Fenglei; Zhao, Qingyun; Wang, Lidong
2018-04-01
Taking 302 stainless steel (1Cr18Ni9) high-lock nuts for research objects, adjusting the length of raw material, then using DEFORM software to simulate the isothermal forging process of each station and conducting the corresponding field tests to study the effects of raw material size on the stainless steel high-lock nuts forming performance. The tests show that the samples of each raw material length is basically the same as the results of the DEFORM software. When the length of the raw material is 10mm, the appearance size of the parts can meet the design requirements.
Service Delivery for High School Students with High Incidence Disabilities: Issues and Challenges
ERIC Educational Resources Information Center
Schultz, Edward; Simpson, Cynthia; Owen, Jane C.; McIntyre, Christina Janise
2015-01-01
High schools throughout this country are as heterogeneous as the students they serve in size, location, tax base, student make-up, and teacher quality. However, they must all follow the mandates of NCLB and IDEA. While these policies affect all schools, high schools continue to face many challenges implementing these laws effectively for students…
Ward, David L.; Morton-Starner, Rylan
2015-01-01
Predation on juvenile native fish by introduced Rainbow Trout and Brown Trout is considered a significant threat to the persistence of endangered Humpback Chub Gila cypha in the Colorado River in the Grand Canyon. Diet studies of Rainbow Trout and Brown Trout in Glen and Grand canyons indicate that these species do eat native fish, but impacts are difficult to assess because predation vulnerability is highly variable, depending on prey size, predator size, and the water temperatures under which the predation interactions take place. We conducted laboratory experiments to evaluate how short-term predation vulnerability of juvenile native fish changes in response to fish size and water temperature using captivity-reared Humpback Chub, Bonytail, and Roundtail Chub. Juvenile chub 45–90 mm total length (TL) were exposed to adult Rainbow and Brown trouts at 10, 15, and 20°C to measure predation vulnerability as a function of water temperature and fish size. A 1°C increase in water temperature decreased short-term predation vulnerability of Humpback Chub to Rainbow Trout by about 5%, although the relationship is not linear. Brown Trout were highly piscivorous in the laboratory at any size > 220 mm TL and at all water temperatures we tested. Understanding the effects of predation by trout on endangered Humpback Chub is critical in evaluating management options aimed at preserving native fishes in Grand Canyon National Park.
Kuwaiti, Ahmed Al
2015-01-01
This study aims at investigating the effect of response rate and class size interaction on students' evaluation of instructors and the courses offered at heath science colleges in Saudi Arabia. A retrospective study design was adapted to ascertain Course Evaluation Surveys (CES) conducted at the health science colleges of the University of Dammam [UOD] in the academic year 2013-2014. Accordingly, the CES data which was downloaded from an exclusive online application 'UDQUEST' which includes 337 different courses and 15,264 surveys were utilized in this study. Two-way analysis of variance was utilized to test whether there is any significant interaction between the class size and the response rate on the students' evaluation of courses and instructors. The study showed that high response rate is required for student evaluation of instructors at Health Science colleges when the class size is small whereas a medium response rate is required for students' evaluation of courses. On the other hand, when the class size is medium, a medium or high response rate is needed for students' evaluation of both instructors and courses. The results of this study recommend that the administrators of the health science colleges to be aware of the interpretation of students' evaluations of courses and instructors. The study also suggests that the interaction between response rate and class size is a very important factor that needs to be taken into consideration while interpreting the findings of the students' evaluation of instructors and courses.
Simultaneous contrast: evidence from licking microstructure and cross-solution comparisons.
Dwyer, Dominic M; Lydall, Emma S; Hayward, Andrew J
2011-04-01
The microstructure of rats' licking responses was analyzed to investigate both "classic" simultaneous contrast (e.g., Flaherty & Largen, 1975) and a novel discrete-trial contrast procedure where access to an 8% test solution of sucrose was preceded by a sample of either 2%, 8%, or 32% sucrose (Experiments 1 and 2, respectively). Consumption of a given concentration of sucrose was higher when consumed alongside a low rather than high concentration comparison solution (positive contrast) and consumption of a given concentration of sucrose was lower when consumed alongside a high rather than a low concentration comparison solution (negative contrast). Furthermore, positive contrast increased the size of lick clusters while negative contrast decreased the size of lick clusters. Lick cluster size has a positive monotonic relationship with the concentration of palatable solutions and so positive and negative contrasts produced changes in lick cluster size that were analogous to raising or lowering the concentration of the test solution respectively. Experiment 3 utilized the discrete-trial procedure and compared contrast between two solutions of the same type (sucrose-sucrose or maltodextrin-maltodextrin) or contrast across solutions (sucrose-maltodextrin or maltodextrin-sucrose). Contrast effects on consumption were present, but reduced in size, in the cross-solution conditions. Moreover, lick cluster sizes were not affected at all by cross-solution contrasts as they were by same-solution contrasts. These results are consistent with the idea that simultaneous contrast effects depend, at least partially, on sensory mechanisms.
NASA Astrophysics Data System (ADS)
Pervishko, Anastasiia A.; Yudin, Dmitry; Shelykh, Ivan A.
2018-02-01
Lowering of the thickness of a thin-film three-dimensional topological insulator down to a few nanometers results in the gap opening in the spectrum of topologically protected two-dimensional surface states. This phenomenon, which is referred to as the anomalous finite-size effect, originates from hybridization between the states propagating along the opposite boundaries. In this work, we consider a bismuth-based topological insulator and show how the coupling to an intense high-frequency linearly polarized pumping can further be used to manipulate the value of a gap. We address this effect within recently proposed Brillouin-Wigner perturbation theory that allows us to map a time-dependent problem into a stationary one. Our analysis reveals that both the gap and the components of the group velocity of the surface states can be tuned in a controllable fashion by adjusting the intensity of the driving field within an experimentally accessible range and demonstrate the effect of light-induced band inversion in the spectrum of the surface states for high enough values of the pump.
Liu, Penglong; Gu, Xiaojun; Kang, Kai; Zhang, Hao; Cheng, Jia; Su, Haiquan
2017-03-29
A series of nonprecious metal nanoparticles (NPs) supported by metal-organic framework MIL-101 were synthesized using four methods and their catalytic performance on hydrogen evolution from ammonia borane (NH 3 BH 3 ) was studied. The results showed that the crystalline Co NPs with size of 4.5-8.5 and 14.5-24.5 nm had low activities featuring the total turnover frequency (TOF) values of 9.9 and 4.5 mol H2 mol cat -1 min -1 , respectively. In contrast, the amorphous Co NPs with size of 1.6-2.6 and 13.5-24.5 nm exhibited high activities featuring the total TOF values of 51.4 and 22.3 mol H2 mol cat -1 min -1 , respectively. The remarkably different activities could be ascribed to the different crystallinity and size of Co NPs in the catalysts. Moreover, the ultrasound-assisted in situ method was also successfully applied to bimetallic systems, and MIL-101-supported amorphous CuCo, FeCo and NiCo NPs had the catalytic activities with total TOF values of 51.7, 50.8, and 44.3 mol H2 mol cat -1 min -1 , respectively, which were the highest in the values of the reported non-noble metal Co-based catalysts. The present approach, namely, using the synergistic effect of crystallinity and size of metal NPs, may offer a new prospect for high-performance and low-cost nanocatalysts.
Schielzeth, Holger; Streitner, Corinna; Lampe, Ulrike; Franzke, Alexandra; Reinhold, Klaus
2014-12-01
Genome size is largely uncorrelated to organismal complexity and adaptive scenarios. Genetic drift as well as intragenomic conflict have been put forward to explain this observation. We here study the impact of genome size on sexual attractiveness in the bow-winged grasshopper Chorthippus biguttulus. Grasshoppers show particularly large variation in genome size due to the high prevalence of supernumerary chromosomes that are considered (mildly) selfish, as evidenced by non-Mendelian inheritance and fitness costs if present in high numbers. We ranked male grasshoppers by song characteristics that are known to affect female preferences in this species and scored genome sizes of attractive and unattractive individuals from the extremes of this distribution. We find that attractive singers have significantly smaller genomes, demonstrating that genome size is reflected in male courtship songs and that females prefer songs of males with small genomes. Such a genome size dependent mate preference effectively selects against selfish genetic elements that tend to increase genome size. The data therefore provide a novel example of how sexual selection can reinforce natural selection and can act as an agent in an intragenomic arms race. Furthermore, our findings indicate an underappreciated route of how choosy females could gain indirect benefits. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Olsen, Kim Rose; Sørensen, Torben Højmark; Gyrd-Hansen, Dorte
2010-04-19
Due to shortage of general practitioners, it may be necessary to improve productivity. We assess the association between productivity, list size and patient- and practice characteristics. A regression approach is used to perform productivity analysis based on national register data and survey data for 1,758 practices. Practices are divided into four groups according to list size and productivity. Statistical tests are used to assess differences in patient- and practice characteristics. There is a significant, positive correlation between list size and productivity (p < 0.01). Nevertheless, 19% of the practices have a list size below and a productivity above mean sample values. These practices have relatively demanding patients (older, low socioeconomic status, high use of pharmaceuticals) and they are frequently located in areas with limited access to specialized care and have a low use of assisting personnel. 13% of the practices have a list size above and a productivity below mean sample values. These practices have relatively less demanding patients, are located in areas with good access to specialized care, and have a high use of assisting personnel. Lists and practice characteristics have substantial influence on both productivity and list size. Adjusting list size to external factors seems to be an effective tool to increase productivity in general practice.
The effects of density dependent resource limitation on size of wild reindeer.
Skogland, Terje
1983-11-01
A density-dependent decrement in size for wild reindeer from 12 different Norwegian herds at 16 different densities was shown using lower jawbone-length as the criterion of size. This criterion was tested and found to adequately predict body size of both bucks and does. Lactation in does did not affect jaw length but significantly affected dressed weights.A decrement in the size of does as a result of gross density was found. This size decrement was further analysed in relation to the habitat densities in winter (R 2 =0.85) and in summer (R 2 =0.75) separately, in order to estimate the relative effects of each factor. For herds with adequate food in winter (no signs of overgrazing of lichens) density in relation to summer habitat and mires yielded the highest predictive power in a multiple regression. For herds with adequate summer pastures, densities per winter habitat and lichen volumes showed likewise a highly significant correlation. The inclusion of the lichen volume data in the regression increased its predictive power. The major effect of resource limitation was to delay the time of calving because a maternal carry-over effect allowed the calf a shorter period of growth to be completed during its first summer. Neonate size at birth was highly correlated with maternal size regardless of the mean calving date although the latter was significantly delayed for small-sized does in food resource-limited herds. Likewise the postnatal growth rate of all calves were not significantly different during 50 days postpartum regardless of maternal conditions in winter feeding. The summer growth rates of bucks ≧1 year did not vary significantly between herds. The age of maturity of food resource-limited does was delayed by one year and growth ceased after the initiation of reproduction. This shows that under conditions of limited resources the does with delayed births of calves allocated less energy to body growth simply because they had less time to replenish body reserves once they were freed of the energetic demands of lactation. The overriding effects of such limitation of food resources is thus to produce a time-lag for the completition of all the important life-history events, such as growth, maintenance and reproduction. From a theoretical point of view, i.e. according to the reproductive effort model their only option is to try to overcome this time limitation to reproductive success.
Complex life cycles and offspring provisioning in marine invertebrates.
Marshall, Dustin J; Keough, Michael J
2006-10-01
Offspring size can have pervasive effects throughout an organism's life history. Mothers can make either a few large or many small offspring, and the balance between these extremes is determined by the relationship between offspring size and performance. This relationship in turn is thought to be determined by the offspring's environment. Recently, it has become clear that events in one life-history stage can strongly affect performance in another. Given these strong carryover effects, we asked whether events in the larval phase can change the relationship between offspring size and performance in the adult phase. We manipulated the length of the larval period in the bryozoan Bugula neritina and then examined the relationship between offspring size and various parameters of adult performance under field conditions. We found that despite the adult stage being outplanted into identical conditions, different offspring sizes were predicted to be optimal, depending on the experience of those adults as larvae. This work highlights the fact that the strong phenotypic links between life-history stages may result in optimal offspring size being highly unpredictable for organisms with complex life cycles.
Effect of solute atoms on swelling in Ni alloys and pure Ni under He + ion irradiation
NASA Astrophysics Data System (ADS)
Wakai, E.; Ezawa, T.; Imamura, J.; Takenaka, T.; Tanabe, T.; Oshima, R.
2002-12-01
The effects of solute atoms on microstructural evolutions have been investigated using Ni alloys under 25 keV He + irradiation at 500 °C. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys with different volume size factors. The high number densities of dislocation loops about 1.5×10 22 m -3 were formed in the specimens irradiated to 1×10 19 ions/m 2, and they were approximately equivalent, except for Ni-Si. The mean size of loops tended to increase with the volume size factor of solute atoms. In a dose of 4×10 20 ions/m 2, the swelling was changed from 0.2% to 4.5%, depending on the volume size factors. The number densities of bubbles tended to increase with the absolute values of the volume size factor, and the swelling increased with the volume size factors. This suggests that the mobility of helium and vacancy atoms may be influenced by the interaction of solute atoms with them.
Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold
NASA Astrophysics Data System (ADS)
Schade, Lina; Franzka, Steffen; Biener, Monika; Biener, Jürgen; Hartmann, Nils
2016-06-01
Photothermal processing of nanoporous gold with a microfocused continuous-wave laser at λ = 532 nm provides a facile means in order engineer the pore and ligament size of nanoporous gold. In this report we take advantage of this approach in order to investigate the size-dependence of enhancement effects in surface-enhanced Raman spectroscopy (SERS). Surface structures with laterally varying pore sizes from 25 nm to ≥200 nm are characterized using scanning electron microscopy and then functionalized with N719, a commercial ruthenium complex, which is widely used in dye-sensitized solar cells. Raman spectroscopy reveals the characteristic spectral features of N719. Peak intensities strongly depend on the pore size. Highest intensities are observed on the native support, i.e. on nanoporous gold with pore sizes around 25 nm. These results demonstrate the particular perspectives of laser-fabricated nanoporous gold structures in fundamental SERS studies. In particular, it is emphasized that laser-engineered porous gold substrates represent a very well defined platform in order to study size-dependent effects with high reproducibility and precision and resolve conflicting results in previous studies.
Influence of the size reduction of organic waste on their anaerobic digestion.
Palmowski, L M; Müller, J A
2000-01-01
The rate-limiting step in anaerobic digestion of organic solid waste is generally their hydrolysis. A size reduction of the particles and the resulting enlargement of the available specific surface can support the biological process in two ways. Firstly, in case of substrates with a high content of fibres and a low xegradability, their comminution yields to an improved digester gas production. This leads to a decreased amount of residues to be disposed of and to an increased quantity of useful digester gas. The second effect of the particle size reduction observed with all the substrates but particularly with those of low degradability is a reduction of the technical digestion time. Furthermore, the particle size of organic waste has an influence on the dewaterability after codigestion with sewage sludge. The presence of organic waste residues improves the dewaterability measured as specific resistance to filtration but this positive effect is attenuated if the particle size of the solids is reduced.
Analysis of the effect of waste's particle size variations on biodrying method
NASA Astrophysics Data System (ADS)
Kristanto, Gabriel Andari; Zikrina, Masayu Nadiya
2017-11-01
The use of municipal solid waste as energy source can be a solution for Indonesia's increasing energy demand. However, its high moisture content limits the use of solid waste as energy. Biodrying is a method of lowering wastes' moisture content using biological process. This study investigated the effect of wastes' particle size variations on biodrying method. The experiment was performed on 3 lab-scale reactors with the same specifications. Organic wastes with the composition of 50% vegetable wastes and 50% garden wastes were used as substrates. The feedstock was manually shredded into 3 size variations, which were 10 - 40 mm, 50 - 80 mm, and 100 - 300 mm. The experiment lasted for 21 days. After 21 days, it was shown that the waste with the size of 100 - 300 mm has the lowest moisture content, which is 50.99%, and the volatile solids content is still 74.3% TS. This may be caused by the higher free air space of the reactor with the bigger sized substrate.
The correlation of social support with mental health: A meta-analysis.
Harandi, Tayebeh Fasihi; Taghinasab, Maryam Mohammad; Nayeri, Tayebeh Dehghan
2017-09-01
Social support is an important factor that can affect mental health. In recent decades, many studies have been done on the impact of social support on mental health. The purpose of the present study is to investigate the effect size of the relationship between social support and mental health in studies in Iran. This meta-analysis was carried out in studies that were performed from 1996 through 2015. Databases included SID and Magiran, the comprehensive portal of human sciences, Noor specialized magazine databases, IRANDOC, Proquest, PubMed, Scopus, ERIC, Iranmedex and Google Scholar. The keywords used to search these websites included "mental health or general health," and "Iran" and "social support." In total, 64 studies had inclusion criteria meta-analysis. In order to collect data used from a meta-analysis worksheet that was made by the researcher and for data analysis software, CMA-2 was used. The mean of effect size of the 64 studies in the fixed-effect model and random-effect model was obtained respectively as 0.356 and 0.330, which indicated the moderate effect size of social support on mental health. The studies did not have publication bias, and enjoyed a heterogeneous effect size. The target population and social support questionnaire were moderator variables, but sex, sampling method, and mental health questionnaire were not moderator variables. Regarding relatively high effect size of the correlation between social support and mental health, it is necessary to predispose higher social support, especially for women, the elderly, patients, workers, and students.
Size effects under homogeneous deformation of single crystals: A discrete dislocation analysis
NASA Astrophysics Data System (ADS)
Guruprasad, P. J.; Benzerga, A. A.
Mechanism-based discrete dislocation plasticity is used to investigate the effect of size on micron scale crystal plasticity under conditions of macroscopically homogeneous deformation. Long-range interactions among dislocations are naturally incorporated through elasticity. Constitutive rules are used which account for key short-range dislocation interactions. These include junction formation and dynamic source and obstacle creation. Two-dimensional calculations are carried out which can handle high dislocation densities and large strains up to 0.1. The focus is laid on the effect of dimensional constraints on plastic flow and hardening processes. Specimen dimensions ranging from hundreds of nanometers to tens of microns are considered. Our findings show a strong size-dependence of flow strength and work-hardening rate at the micron scale. Taylor-like hardening is shown to be insufficient as a rationale for the flow stress scaling with specimen dimensions. The predicted size effect is associated with the emergence, at sufficient resolution, of a signed dislocation density. Heuristic correlations between macroscopic flow stress and macroscopic measures of dislocation density are sought. Most accurate among those is a correlation based on two state variables: the total dislocation density and an effective, scale-dependent measure of signed density.
Gaspelin, Nicholas; Ruthruff, Eric; Jung, Kyunghun
2014-06-01
In the flanker paradigm, participants identify a target letter while attempting to ignore an irrelevant flanker. When the identity of this flanker mismatches the target, target identification is slowed (called the flanker compatibility effect). Interestingly, reducing the array set size greatly increases flanker compatibility effects. This finding inspired 2 prominent explanations: perceptual load (mandatory capacity spillover) and dilution (visual interference). However, an alternative explanation, based on early selection theory and attention capture research, can also explain the data pattern. According to this "slippage" account, observers sometimes accidentally allocate spatial attention to the flanker (see Lachter, Forster, & Ruthruff, 2004), especially when the flanker has the property used to find the target (cf. contingent capture). In Experiments 1 through 4, deterring slippage to the flanker nearly eliminated flanker compatibility effects, even at the low set size. In Experiment 5, promoting slippage to the flanker dramatically enhanced compatibility effects, even at the high set size. Thus, slippage strongly modulates flanker effects and can, by itself, readily explain the impact of set size. The perceptual load and dilution accounts are, at best, incomplete, and, at worst, not needed. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Mak, Winnie W S; Mo, Phoenix K H; Ma, Gloria Y K; Lam, Maggie Y Y
2017-09-01
The present study conducted a meta-analysis and systematic review on studies evaluating the effectiveness of stigma reduction programs in improving knowledge and reducing negative attitudes towards people living with HIV (PLHIV). Meta-analysis (k = 42 studies) found significant and small effect sizes in the improvement of the participants' knowledge of HIV/AIDS from interventions with (Cohen's d = 0.48, 95% CI [0.30, 0.66]) and without control groups (Cohen's d = 0.42, 95% CI [0.28, 0.57]). Significant and small effect sizes were found in the improvement of the participants' attitudes toward PLHIV from interventions with (Cohen's d = 0.39, 95% CI [0.23, 0.55]) and without control groups (Cohen's d = 0.25, 95% CI [0.11, 0.39]). Significant and small effect sizes were sustained at the follow-up assessments. Subgroup analysis showed that number of intervention sessions, intervention settings, and sample type significantly moderated the effect sizes in the meta-analysis. Findings from the systematic review of 35 studies indicated that most of the included studies showed positive results in reducing negative attitudes toward PLHIV and improving HIV-related knowledge. Most of the included studies tended to have low methodological quality. The present meta-analysis and systematic review indicated that the studies generally found small improvement in HIV-related knowledge and reduction in negative attitudes towards PLHIV among the stigma reduction programs being evaluated. High-quality stigma reduction programs with multidimensional stigma indicators and psychometrically sound outcome measures are highly warranted. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of open-graded friction course mixture : technical assistance report.
DOT National Transportation Integrated Search
2004-10-01
Open-graded friction course (OGFC) is a porous, gap-graded, predominantly single size aggregate bituminous mixture that contains a high percentage of air voids. The high air void content and the open structure of this mix promote the effective draina...
Tokatlian, Talar; Cam, Cynthia; Siegman, Shayne N.; Lei, Yuguo; Segura, Tatiana
2013-01-01
The effective and sustained delivery of DNA locally would increase the applicability of gene therapy in tissue regeneration and therapeutic angiogenesis. One promising approach is to use porous hydrogel scaffolds to encapsulate and deliver nucleotides in the form of nanoparticles to the affected sites. We have designed and characterized micro-porous (µ-pore) hyaluronic acid hydrogels which allow for effective cell seeding in vitro post scaffold fabrication and allow for cell spreading and proliferation without requiring high levels of degradation. These factors, coupled with high loading efficiency of DNA polyplexes using a previously developed caged nanoparticle encapsulation (CnE) technique, then allowed for long-term sustained transfection and transgene expression of incorporated mMSCs. In this study, we examined the effect of pore size on gene transfer efficiency and the kinetics of transgene expression. For all investigated pore sizes (30, 60, and 100 µm), encapsulated DNA polyplexes were released steadily starting by day 4 for up to 10 days. Likewise, transgene expression was sustained over this period, although significant differences between different pore sizes were not observed. Cell viability was also shown to remain high over time, even in the presence of high concentrations of DNA polyplexes. The knowledge acquired through this in vitro model can be utilized to design and better predict scaffold-mediated gene delivery for local gene therapy in an in vivo model where host cells infiltrate the scaffold over time. PMID:22820309
NASA Astrophysics Data System (ADS)
Zheng, Huifeng; Liu, Yangqiao; Sun, Jing
2018-04-01
The preparation of hybrid perovskite films with large columnar grains via low-temperature solid-state reaction remains a big challenge. Conventional solvent annealing using DMF, DMSO and ethanol, etc. fails to work effectively at low temperature (<100 °C). Here, we comprehensively investigated the effects of non-coordinating solvent vapor on the properties of perovskite film, and obtained micron-sized columnar grains (with an average grain size of 1.4 μm) of CH3NH3PbI3 even at a low temperature of 75 °C when annealed with benzyl alcohol vapor. The perovskite solar cells based on benzyl-alcohol-vapor annealing (75 °C), delivered much higher photovoltaic performance, better stability and smaller hysteresis than those based on conventional thermal annealing. Additionally, a champion power conversion efficiency (PCE) of 15.1% was obtained and the average PCE reached 12.2% with a tiny deviation. Finally, the mechanism of solvent annealing with non-coordinating solvent was discussed. Moreover, we revealed that high polarity and high boiling point of the solvent used for generating vapor, was critical to grow micron-sized columnar grains at such a low temperature (75 °C). This work will contribute to understanding the mechanism of grain growth in solvent annealing and improving its facility and effectiveness.
Nielsen, Scott E; Cattet, Marc R L; Boulanger, John; Cranston, Jerome; McDermid, Greg J; Shafer, Aaron B A; Stenhouse, Gordon B
2013-09-08
Individual body growth is controlled in large part by the spatial and temporal heterogeneity of, and competition for, resources. Grizzly bears (Ursus arctos L.) are an excellent species for studying the effects of resource heterogeneity and maternal effects (i.e. silver spoon) on life history traits such as body size because their habitats are highly variable in space and time. Here, we evaluated influences on body size of grizzly bears in Alberta, Canada by testing six factors that accounted for spatial and temporal heterogeneity in environments during maternal, natal and 'capture' (recent) environments. After accounting for intrinsic biological factors (age, sex), we examined how body size, measured in mass, length and body condition, was influenced by: (a) population density; (b) regional habitat productivity; (c) inter-annual variability in productivity (including silver spoon effects); (d) local habitat quality; (e) human footprint (disturbances); and (f) landscape change. We found sex and age explained the most variance in body mass, condition and length (R(2) from 0.48-0.64). Inter-annual variability in climate the year before and of birth (silver spoon effects) had detectable effects on the three-body size metrics (R(2) from 0.04-0.07); both maternal (year before birth) and natal (year of birth) effects of precipitation and temperature were related with body size. Local heterogeneity in habitat quality also explained variance in body mass and condition (R(2) from 0.01-0.08), while annual rate of landscape change explained additional variance in body length (R(2) of 0.03). Human footprint and population density had no observed effect on body size. These results illustrated that body size patterns of grizzly bears, while largely affected by basic biological characteristics (age and sex), were also influenced by regional environmental gradients the year before, and of, the individual's birth thus illustrating silver spoon effects. The magnitude of the silver spoon effects was on par with the influence of contemporary regional habitat productivity, which showed that both temporal and spatial influences explain in part body size patterns in grizzly bears. Because smaller bears were found in colder and less-productive environments, we hypothesize that warming global temperatures may positively affect body mass of interior bears.
Enhanced Photocurrent of Transparent CuFeO2 Photocathodes by Self-Light-Harvesting Architecture.
Oh, Yunjung; Yang, Wooseok; Kim, Jimin; Jeong, Sunho; Moon, Jooho
2017-04-26
Efficient sunlight-driven water-splitting devices can be achieved by using an optically and energetically well-matched pair of photoelectrodes in a tandem configuration. The key for maximizing the photoelectrochemical efficiency is the use of a highly transparent front photoelectrode with a band gap below 2.0 eV. Herein, we propose two-dimensional (2D) photonic crystal (PC) structures consisting of a CuFeO 2 -decorated microsphere monolayer, which serve as self-light-harvesting architectures allowing for amplified light absorption and high transparency. The photocurrent densities are evaluated for three CuFeO 2 2D PC-based photoelectrodes with microspheres of different sizes. The optical analysis confirmed the presence of a photonic stop band that generates slow light and at the same time amplifies the absorption of light. The 410 nm sized CuFeO 2 -decorated microsphere 2D PC photocathode shows an exceptionally high visible light transmittance of 76.4% and a relatively high photocurrent of 0.2 mA cm -2 at 0.6 V vs a reversible hydrogen electrode. The effect of the microsphere size on the carrier collection efficiency was analyzed by in situ conductive atomic force microscopy observation under illumination. Our novel synthetic method to produce self-light-harvesting nanostructures provides a promising approach for the effective use of solar energy by highly transparent photocathodes.
NASA Astrophysics Data System (ADS)
Pu, Jun; Du, Hongxiu; Wang, Jian; Wu, Wenlu; Shen, Zihan; Liu, Jinyun; Zhang, Huigang
2017-08-01
High capacity electrodes are demanded to increase the energy and power density of lithium ion batteries. However, the cycling and rate properties are severely affected by the large volume changes caused by the lithium insertion and extraction. Structured electrodes with mechanically stable scaffolds are widely developed to mitigate the adverse effects of volume changes. Tin, as a promising anode material, receives great attentions because of its high theoretic capacity. There is a critical value of tin particle size above which tin anodes readily crack, leading to low cyclability. The electrode design using mechanical scaffolds must retain tin particles below the critical size and concurrently enable high volumetric capacity. It is a challenge to guarantee the critical size for high cyclability and space utilization for high volumetric capacity. This study provides a highly conductive TiN nanotubes array with submicron diameters, which enable thin tin coating without sacrificing the volumetric capacity. Such a structured electrode delivers a capacity of 795 mAh gSn-1 (Sn basis) and 1812 mAh cmel-3 (electrode basis). The long-term cycling shows only 0.04% capacity decay per cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.
The platinum 'particle size effect' on the oxygen reduction reaction (ORR) has been re-evaluated using commercial Pt/C catalysts (2-10 nm Pt particle) and polycrystalline Pt (poly-Pt) in 0.1 M HClO4 with a rotating disk electrode method. Nafion-free catalyst layers were employed to obtain specific activities (SA) that were not perturbed (suppressed) by sulfonate anion adsorption/blocking. By using ultrathin uniform catalyst layers, O2 diffusion limitation was minimized as confirmed from the high SAs of our supported catalysts that were comparable to unsupported sputtered Pt having controlled sizes. The specific activity (SA) steeply increased for the particle sizes in the range -2-10more » nm (0.8-1.8 mA/cm2Pt at 0.9 V vs. RHE) and plateaued over -10 nm to 2.7 mA/cm2Pt for bulk poly-Pt. On the basis of the activity trend for the range of particle sizes studied, it appears that the effect of carbon support on activity is negligible. The experimental results and the concomitant profile of SA vs. particle size was found to be in an agreement to a truncated octahedral particle model that assumes active terrace sites.« less
Combinative Particle Size Reduction Technologies for the Production of Drug Nanocrystals
Salazar, Jaime; Müller, Rainer H.; Möschwitzer, Jan P.
2014-01-01
Nanosizing is a suitable method to enhance the dissolution rate and therefore the bioavailability of poorly soluble drugs. The success of the particle size reduction processes depends on critical factors such as the employed technology, equipment, and drug physicochemical properties. High pressure homogenization and wet bead milling are standard comminution techniques that have been already employed to successfully formulate poorly soluble drugs and bring them to market. However, these techniques have limitations in their particle size reduction performance, such as long production times and the necessity of employing a micronized drug as the starting material. This review article discusses the development of combinative methods, such as the NANOEDGE, H 96, H 69, H 42, and CT technologies. These processes were developed to improve the particle size reduction effectiveness of the standard techniques. These novel technologies can combine bottom-up and/or top-down techniques in a two-step process. The combinative processes lead in general to improved particle size reduction effectiveness. Faster production of drug nanocrystals and smaller final mean particle sizes are among the main advantages. The combinative particle size reduction technologies are very useful formulation tools, and they will continue acquiring importance for the production of drug nanocrystals. PMID:26556191
Bowman, Sean; Jiang, Qiuran; Memon, Hafeezullah; Qiu, Yiping; Liu, Wanshuang; Wei, Yi
2018-03-01
Thermoplastic towpregs are convenient and scalable raw materials for the fabrication of continuous fiber-reinforced thermoplastic matrix composites. In this paper, the potential to employ epoxy and styrene-acrylic sizing agents was evaluated for the making of carbon fiber thermoplastic towpregs via a powder-coating method. The protective effects and thermal stability of these sizing agents were investigated by single fiber tensile test and differential scanning calorimetry (DSC) measurement. The results indicate that the epoxy sizing agent provides better protection to carbon fibers, but it cannot be used for thermoplastic towpreg processing due to its poor chemical stability at high temperature. The bending rigidity of the tows and towpregs with two styrene-acrylic sizing agents was measured by cantilever and Kawabata methods. The styrene-acrylic sized towpregs show low torque values, and are suitable for further processing, such as weaving, preforming, and winding. Finally, composite panels were fabricated directly from the towpregs by hot compression molding. Both of the composite panels show superior flexural strength (>400 MPa), flexural modulus (>63 GPa), and interlaminar shear strength (>27 MPa), indicating the applicability of these two styrene-acrylic sizing agents for carbon fiber thermoplastic towpregs.
Liao, Wan-Jin; Hu, Yi; Zhu, Bi-Ru; Zhao, Xia-Qing; Zeng, Yan-Fei; Zhang, Da-Yong
2009-01-01
Background and Aims Reduction in female fitness in large clones can occur as a result of increased geitonogamous self-fertilization and its influence through inbreeding depression. This possibility was investigated in the self-compatible, bee-pollinated perennial herb Aconitum kusnezoffii which varies in clone size. Methods Field investigations were conducted on pollinator behaviour, flowering phenology and variation in seed set. The effects of self-pollination following controlled self- and cross-pollination were also examined. Selfing rates of differently sized clones were assessed using allozyme markers. Key Results High rates of geitonogamous pollination were associated with large display size. Female fitness at the ramet level decreased with clone size. Fruit and seed set under cross-pollination were significantly higher than those under self-pollination. The pre-dispersal inbreeding depression was estimated as 0·502 based on the difference in seed set per flower between self- and cross-pollinated flowers. Selfing rates of differently sized clones did not differ. Conclusions It is concluded that in A. kusnezoffii the negative effects of self-pollination causing reduced female fertility with clone size arise primarily from a strong early-acting inbreeding depression leading to the abortion of selfed embryos prior to seed maturation. PMID:19767308
Fiber study involving a polyimide matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cano, R.J.; Rommel, M.; Hinkley, J.A.
1996-12-31
Mechanical properties are presented for eight different intermediate modulus carbon fiber/ polyimide matrix composites. Two unsized carbon fibers (Thornel T650-42 and Hercules IM9) and two sized carbon fibers (high temperature sized Thornel T650-42 HTS and epoxy sized Toray T1000) were prepregged on the NASA LaRC Multipurpose Tape Machine using the NASA LaRC developed polyimide resin matrix, LaRC{trademark}-PETI-5, and the DuPont developed Avitnid{reg_sign} R1-16. Composite panels fabricated from these prepregs were evaluated to determine their mechanical properties. The data show the effects of using sized fibers on the processing and mechanical properties of polyimide composites.
Nano-sized and micro-sized polystyrene particles affect phagocyte function
Prietl, B.; Meindl, C.; Roblegg, E.; Pieber, T. R.; Lanzer, G.; Fröhlich, E.
2015-01-01
Adverse effect of nanoparticles may include impairment of phagocyte function. To identify the effect of nanoparticle size on uptake, cytotoxicity, chemotaxis, cytokine secretion, phagocytosis, oxidative burst, nitric oxide production and myeloperoxidase release, leukocytes isolated from human peripheral blood, monocytes and macrophages were studied. Carboxyl polystyrene (CPS) particles in sizes between 20 and 1,000 nm served as model particles. Twenty nanometers CPS particles were taken up passively, while larger CPS particles entered cells actively and passively. Twenty nanometers CPS were cytotoxic to all phagocytes, ≥500 nm CPS particles only to macrophages. Twenty nanometers CPS particles stimulated IL-8 secretion in human monocytes and induced oxidative burst in monocytes. Five hundred nanometers and 1,000 nm CPS particles stimulated IL-6 and IL-8 secretion in monocytes and macrophages, chemotaxis towards a chemotactic stimulus of monocytes and phagocytosis of bacteria by macrophages and provoked an oxidative burst of granulocytes. At very high concentrations, CPS particles of 20 and 500 nm stimulated myeloperoxidase release of granulocytes and nitric oxide generation in macrophages. Cytotoxic effect could contribute to some of the observed effects. In the absence of cytotoxicity, 500 and 1,000 nm CPS particles appear to influence phagocyte function to a greater extent than particles in other sizes. PMID:24292270
Effect of gold nanoparticle size on acoustic cavitation using chemical dosimetry method.
Shanei, Ahmad; Shanei, Mohammad Mahdi
2017-01-01
When a liquid is irradiated with high intensities of ultrasound irradiation, acoustic cavitation occurs. Acoustic cavitation generates free radicals from the breakdown of water and other molecules. Cavitation can be fatal to cells and is utilized to destroy cancer tumors. The existence of particles in liquid provides nucleation sites for cavitation bubbles and leads to decrease the ultrasonic intensity threshold needed for cavitation onset. In the present investigation, the effect of gold nanoparticles with appropriate amount and size on the acoustic cavitation activity has been shown by determining hydroxyl radicals in terephthalic acid solutions containing 15, 20, 28 and 35nm gold nanoparticles sizes by using 1MHz low level ultrasound. The effect of sonication intensity in hydroxyl radical production was considered. The recorded fluorescence signal in terephthalic acid solutions containing gold nanoparticles was considerably higher than the terephthalic acid solutions without gold nanoparticles at different intensities of ultrasound irradiation. Also, the results showed that the recorded fluorescence signal intensity in terephthalic acid solution containing finer size of gold nanoparticles was lower than the terephthalic acid solutions containing larger size of gold nanoparticles. Acoustic cavitation in the presence of gold nanoparticles can be used as a way for improving therapeutic effects on the tumors. Copyright © 2016 Elsevier B.V. All rights reserved.
Nano-sized and micro-sized polystyrene particles affect phagocyte function.
Prietl, B; Meindl, C; Roblegg, E; Pieber, T R; Lanzer, G; Fröhlich, E
2014-02-01
Adverse effect of nanoparticles may include impairment of phagocyte function. To identify the effect of nanoparticle size on uptake, cytotoxicity, chemotaxis, cytokine secretion, phagocytosis, oxidative burst, nitric oxide production and myeloperoxidase release, leukocytes isolated from human peripheral blood, monocytes and macrophages were studied. Carboxyl polystyrene (CPS) particles in sizes between 20 and 1,000 nm served as model particles. Twenty nanometers CPS particles were taken up passively, while larger CPS particles entered cells actively and passively. Twenty nanometers CPS were cytotoxic to all phagocytes, ≥500 nm CPS particles only to macrophages. Twenty nanometers CPS particles stimulated IL-8 secretion in human monocytes and induced oxidative burst in monocytes. Five hundred nanometers and 1,000 nm CPS particles stimulated IL-6 and IL-8 secretion in monocytes and macrophages, chemotaxis towards a chemotactic stimulus of monocytes and phagocytosis of bacteria by macrophages and provoked an oxidative burst of granulocytes. At very high concentrations, CPS particles of 20 and 500 nm stimulated myeloperoxidase release of granulocytes and nitric oxide generation in macrophages. Cytotoxic effect could contribute to some of the observed effects. In the absence of cytotoxicity, 500 and 1,000 nm CPS particles appear to influence phagocyte function to a greater extent than particles in other sizes.
Effects of normalization on quantitative traits in association test
2009-01-01
Background Quantitative trait loci analysis assumes that the trait is normally distributed. In reality, this is often not observed and one strategy is to transform the trait. However, it is not clear how much normality is required and which transformation works best in association studies. Results We performed simulations on four types of common quantitative traits to evaluate the effects of normalization using the logarithm, Box-Cox, and rank-based transformations. The impact of sample size and genetic effects on normalization is also investigated. Our results show that rank-based transformation gives generally the best and consistent performance in identifying the causal polymorphism and ranking it highly in association tests, with a slight increase in false positive rate. Conclusion For small sample size or genetic effects, the improvement in sensitivity for rank transformation outweighs the slight increase in false positive rate. However, for large sample size and genetic effects, normalization may not be necessary since the increase in sensitivity is relatively modest. PMID:20003414
USDA-ARS?s Scientific Manuscript database
The field of high-content screening (HCS) typically uses measures of screen quality conceived for fairly straightforward high-throughput screening (HTS) scenarios. However, in contrast to HTS, image-based HCS systems rely on multidimensional readouts reporting biological responses associated with co...
McDermott, Molly E.; Wood, Petra B.
2011-01-01
Avian use of even-aged timber harvests is likely affected by stand attributes such as size, amount of edge, and retained basal area, all characteristics that can easily be manipulated in timber harvesting plans. However, few studies have examined their effects during the post-breeding period. We studied the impacts of clearcut, low-leave two-age, and high-leave two-age harvesting on post-breeding birds using transect sampling and mist-netting in north-central West Virginia. In our approach, we studied the effects of these harvest types as well as stand size and edge on species characteristic of both early-successional and mature forest habitats. In 2005–2006, 13 stands ranging from 4 to 10 years post-harvest and 4–21 ha in size were sampled from late June through mid-August. Capture rates and relative abundance were similar among treatments for generalist birds. Early-successional birds had the lowest capture rates and fewer species (∼30% lower), and late-successional birds reached their highest abundance and species totals (double the other treatments) in high-leave two-age stands. Area sensitivity was evident for all breeding habitat groups. Both generalist and late-successional bird captures were negatively related to stand size, but these groups showed no clear edge effects. Mean relative abundance decreased to nearly zero for the latter group in the largest stands. In contrast, early-successional species tended to use stand interiors more often and responded positively to stand size. Capture rates for this group tripled as stand size increased from 4 to 21 ha. Few birds in the forest periphery responded to harvest edge types despite within-stand edge effects evident for several species. To create suitable habitat for early-successional birds, large, non-linear openings with a low retained basal area are ideal, while smaller harvests and increased residual tree retention would provide habitat for more late-successional birds post-breeding. Although our study has identified habitat use patterns for different species in timber harvests, understanding habitat-specific bird survival is needed to help determine the quality of silvicultural harvests for post-breeding birds.
The High and Low Molecular Weight Forms of Hyaluronan Have Distinct Effects on CD44 Clustering*
Yang, Cuixia; Cao, Manlin; Liu, Hua; He, Yiqing; Xu, Jing; Du, Yan; Liu, Yiwen; Wang, Wenjuan; Cui, Lian; Hu, Jiajie; Gao, Feng
2012-01-01
CD44 is a major cell surface receptor for the glycosaminoglycan hyaluronan (HA). Native high molecular weight hyaluronan (nHA) and oligosaccharides of hyaluronan (oHA) provoke distinct biological effects upon binding to CD44. Despite the importance of such interactions, however, the feature of binding with CD44 at the cell surface and the molecular basis for functional distinction between different sizes of HA is still unclear. In this study we investigated the effects of high and low molecular weight hyaluronan on CD44 clustering. For the first time, we provided direct evidence for a strong relationship between HA size and CD44 clustering in vivo. In CD44-transfected COS-7 cells, we showed that exogenous nHA stimulated CD44 clustering, which was disrupted by oHA. Moreover, naturally expressed CD44 was distributed into clusters due to abundantly expressed nHA in HK-2 cells (human renal proximal tubule cells) and BT549 cells (human breast cancer cell line) without exogenous stimulation. Our results suggest that native HA binding to CD44 selectively induces CD44 clustering, which could be inhibited by oHA. Finally, we demonstrated that HA regulates cell adhesion in a manner specifically dependent on its size. oHA promoted cell adhesion while nHA showed no effects. Our results might elucidate a molecular- and/or cellular-based mechanism for the diverse biological activities of nHA and oHA. PMID:23118219
Laikre, L; Olsson, F; Jansson, E; Hössjer, O; Ryman, N
2016-01-01
The Scandinavian wolf population descends from only five individuals, is isolated, highly inbred and exhibits inbreeding depression. To meet international conservation goals, suggestions include managing subdivided wolf populations over Fennoscandia as a metapopulation; a genetically effective population size of Ne⩾500, in line with the widely accepted long-term genetic viability target, might be attainable with gene flow among subpopulations of Scandinavia, Finland and Russian parts of Fennoscandia. Analytical means for modeling Ne of subdivided populations under such non-idealized situations have been missing, but we recently developed new mathematical methods for exploring inbreeding dynamics and effective population size of complex metapopulations. We apply this theory to the Fennoscandian wolves using empirical estimates of demographic parameters. We suggest that the long-term conservation genetic target for metapopulations should imply that inbreeding rates in the total system and in the separate subpopulations should not exceed Δf=0.001. This implies a meta-Ne of NeMeta⩾500 and a realized effective size of each subpopulation of NeRx⩾500. With current local effective population sizes and one migrant per generation, as recommended by management guidelines, the meta-Ne that can be reached is ~250. Unidirectional gene flow from Finland to Scandinavia reduces meta-Ne to ~130. Our results indicate that both local subpopulation effective sizes and migration among subpopulations must increase substantially from current levels to meet the conservation target. Alternatively, immigration from a large (Ne⩾500) population in northwestern Russia could support the Fennoscandian metapopulation, but immigration must be substantial (5–10 effective immigrants per generation) and migration among Fennoscandian subpopulations must nevertheless increase. PMID:27328654
Reduced oxygen at high altitude limits maximum size.
Peck, L S; Chapelle, G
2003-11-07
The trend towards large size in marine animals with latitude, and the existence of giant marine species in polar regions have long been recognized, but remained enigmatic until a recent study showed it to be an effect of increased oxygen availability in sea water of a low temperature. The effect was apparent in data from 12 sites worldwide because of variations in water oxygen content controlled by differences in temperature and salinity. Another major physical factor affecting oxygen content in aquatic environments is reduced pressure at high altitude. Suitable data from high-altitude sites are very scarce. However, an exceptionally rich crustacean collection, which remains largely undescribed, was obtained by the British 1937 expedition from Lake Titicaca on the border between Peru and Bolivia in the Andes at an altitude of 3809 m. We show that in Lake Titicaca the maximum length of amphipods is 2-4 times smaller than other low-salinity sites (Caspian Sea and Lake Baikal).
Ratanajanchai, Montri; Soodvilai, Sunhapas; Pimpha, Nuttaporn; Sunintaboon, Panya
2014-01-01
Herein, we prepared PEI-immobilized core-shell particles possessing various types of polymer cores via a visible light-induced surfactant-free emulsion polymerization (SFEP) of three vinyl monomers: styrene (St), methyl methacrylate (MMA), and 2-hydroxyethyl methacrylate (HEMA). An effect of monomers on the polymerization and characteristics of resulting products was investigated. Monomers with high polarity can provide high monomer conversion, high percentage of grafted PEI, stable particles with uniform size distribution but less amino groups per particles. All prepared nanoparticles exhibited a core-shell nanostructure, containing PEI on the shell with hydrodynamic size around 140-230nm. For in-vitro study in Caco-2 cells, we found that the incorporation of PEI into these core-shell nanoparticles can significantly reduce its cytotoxic effect and also be able to internalized within the cells. Accordingly, these biocompatible particles would be useful for various biomedical applications, including gene transfection and intracellular drug delivery. © 2013.
The widespread misuse of effect sizes.
Dankel, Scott J; Mouser, J Grant; Mattocks, Kevin T; Counts, Brittany R; Jessee, Matthew B; Buckner, Samuel L; Loprinzi, Paul D; Loenneke, Jeremy P
2017-05-01
Studies comparing multiple groups (i.e., experimental and control) often examine the efficacy of an intervention by calculating within group effect sizes using Cohen's d. This method is inappropriate and largely impacted by the pre-test variability as opposed to the variability in the intervention itself. Furthermore, the percentage change is often analyzed, but this is highly impacted by the baseline values and can be potentially misleading. Thus, the objective of this study was to illustrate the common misuse of the effect size and percent change measures. Here we provide a realistic sample data set comparing two resistance training groups with the same pre-test to post-test change. Statistical tests that are commonly performed within the literature were computed. Analyzing the within group effect size favors the control group, while the percent change favors the experimental group. The most appropriate way to present the data would be to plot the individual responses or, for larger samples, provide the mean change and 95% confidence intervals of the mean change. This details the magnitude and variability within the response to the intervention itself in units that are easily interpretable. This manuscript demonstrates the common misuse of the effect size and details the importance for investigators to always report raw values, even when alternative statistics are performed. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Ki-Won; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr; Kim, Min-Yi
2015-12-15
We investigated a self-assembled Ag nanoparticle network electrode passivated by a nano-sized ZnO layer for use in high-performance transparent and flexible film heaters (TFFHs). The low temperature atomic layer deposition of a nano-sized ZnO layer effectively filled the uncovered area of Ag network and improved the current spreading in the self-assembled Ag network without a change in the sheet resistance and optical transmittance as well as mechanical flexibility. The time-temperature profiles and heat distribution analysis demonstrate that the performance of the TFTH with the ZnO/Ag network is superior to that of a TFFH with Ag nanowire electrodes. In addition, themore » TFTHs with ZnO/Ag network exhibited better stability than the TFFH with a bare Ag network due to the effective current spreading through the nano-sized ZnO layer.« less
NASA Astrophysics Data System (ADS)
Baruah, Prahlad K.; Sharma, Ashwini K.; Khare, Alika
2018-04-01
The effect of incident laser energy on the surface plasmon resonance (SPR) and size of silver nanoparticles synthesized via pulsed laser ablation of silver immersed in distilled water is reported in this paper. The broadening in the plasmonic bandwidth of the synthesized nanoparticles with the increase in the laser energy incident onto the silver target indicates the reduction in size of the nanoparticles. This is confirmed by the transmission electron microscope (TEM) images which show a decrease in the average particle size of the nanoparticles from approximately 15 to 10 nm with the increase in incident laser energy from 30 to 70 mJ, respectively. The structural features as revealed by the selected area electron diffraction and ultra-high resolution TEM studies confirmed the formation of both silver as well as silver oxide nanoparticles.
Thermoelectricity in atom-sized junctions at room temperatures
Tsutsui, Makusu; Morikawa, Takanori; Arima, Akihide; Taniguchi, Masateru
2013-01-01
Atomic and molecular junctions are an emerging class of thermoelectric materials that exploit quantum confinement effects to obtain an enhanced figure of merit. An important feature in such nanoscale systems is that the electron and heat transport become highly sensitive to the atomic configurations. Here we report the characterization of geometry-sensitive thermoelectricity in atom-sized junctions at room temperatures. We measured the electrical conductance and thermoelectric power of gold nanocontacts simultaneously down to the single atom size. We found junction conductance dependent thermoelectric voltage oscillations with period 2e2/h. We also observed quantum suppression of thermovoltage fluctuations in fully-transparent contacts. These quantum confinement effects appeared only statistically due to the geometry-sensitive nature of thermoelectricity in the atom-sized junctions. The present method can be applied to various nanomaterials including single-molecules or nanoparticles and thus may be used as a useful platform for developing low-dimensional thermoelectric building blocks. PMID:24270238
NASA Astrophysics Data System (ADS)
Yin, Peng; Liu, Shouchao; Li, Qiuying; Chen, Xiaolei; Guo, Weihong; Wu, Chifei
2017-08-01
In our work, highly surface-roughened quasi-spherical silver powders with controllable size and superior dispersibility, which have narrow size distribution and relatively high tap density, were successfully prepared by reducing silver nitrate with ascorbic acid in aqueous solutions. Gum arabic (AG) was selected as dispersant to prevent the agglomeration of silver particles. Furthermore, the effects of preparation conditions on the characteristics of the powders were systematically investigated. By varying the concentration of the reactants, dosage of dispersant, the feeding modes, synthesis temperature and the pH value of the mixture solution of silver nitrate and AG, the resulted silver particles displayed controllable size, different morphologies and surface roughness. The spherical silver powder with mean particle size of 1.20 µm, tap density of 4.1 g cm-3 and specific area value of 0.46 m2 g-1 was prepared by adjusting preparation conditions. The AG absorbed on the surface preventing the silver particles from diffusion and aggregation was proved by the ultraviolet spectra. Observations of SEM images showed that the as-prepared silver powders were relatively monodisperse silver spheres with highly roughened surface and the particle size was controllable from 1 µm to 5 µm, specific surface area value from approximately 0.2 m2 g-1 to 0.8 m2 g-1. X-ray diffraction (XRD) patterns, energy dispersive spectroscopy (EDS), x-ray photoelectron spectra (XPS) and thermal gravity analysis (TGA) demonstrated high crystallinity and purity of the obtained silver powders.
Fast and precise dense grid size measurement method based on coaxial dual optical imaging system
NASA Astrophysics Data System (ADS)
Guo, Jiping; Peng, Xiang; Yu, Jiping; Hao, Jian; Diao, Yan; Song, Tao; Li, Ameng; Lu, Xiaowei
2015-10-01
Test sieves with dense grid structure are widely used in many fields, accurate gird size calibration is rather critical for success of grading analysis and test sieving. But traditional calibration methods suffer from the disadvantages of low measurement efficiency and shortage of sampling number of grids which could lead to quality judgment risk. Here, a fast and precise test sieve inspection method is presented. Firstly, a coaxial imaging system with low and high optical magnification probe is designed to capture the grid images of the test sieve. Then, a scaling ratio between low and high magnification probes can be obtained by the corresponding grids in captured images. With this, all grid dimensions in low magnification image can be obtained by measuring few corresponding grids in high magnification image with high accuracy. Finally, by scanning the stage of the tri-axis platform of the measuring apparatus, whole surface of the test sieve can be quickly inspected. Experiment results show that the proposed method can measure the test sieves with higher efficiency compare to traditional methods, which can measure 0.15 million grids (gird size 0.1mm) within only 60 seconds, and it can measure grid size range from 20μm to 5mm precisely. In a word, the presented method can calibrate the grid size of test sieve automatically with high efficiency and accuracy. By which, surface evaluation based on statistical method can be effectively implemented, and the quality judgment will be more reasonable.
Ornament size and colour as alternative strategies for effective communication in gliding lizards.
Klomp, D A; Ord, T J; Das, I; Diesmos, A; Ahmad, N; Stuart-Fox, D
2016-09-01
Sexual ornamentation needs to be conspicuous to be effective in attracting potential mates and defending territories and indeed, a multitude of ways exists to achieve this. Two principal mechanisms for increasing conspicuousness are to increase the ornament's colour or brightness contrast against the background and to increase the size of the ornament. We assessed the relationship between the colour and size of the dewlap, a large extendible throat-fan, across a range of species of gliding lizards (Agamidae; genus Draco) from Malaysia and the Philippines. We found a negative relationship across species between colour contrast against the background and dewlap size in males, but not in females, suggesting that males of different species use increasing colour contrast and dewlap size as alternative strategies for effective communication. Male dewlap size also increases with increasing sexual size dimorphism, and dewlap colour and brightness contrast increase with increasing sexual dichromatism in colour and brightness, respectively, suggesting that sexual selection may act on both dewlap size and colour. We further found evidence that relative predation intensity, as measured from predator attacks on models placed in the field, may play a role in the choice of strategy (high chromatic contrast or large dewlap area) a species employs. More broadly, these results highlight that each component in a signal (such as colour or size) may be influenced by different selection pressures and that by assessing components individually, we can gain a greater understanding of the evolution of signal diversity. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Interplay of wavelength, fluence and spot-size in free-electron laser ablation of cornea.
Hutson, M Shane; Ivanov, Borislav; Jayasinghe, Aroshan; Adunas, Gilma; Xiao, Yaowu; Guo, Mingsheng; Kozub, John
2009-06-08
Infrared free-electron lasers ablate tissue with high efficiency and low collateral damage when tuned to the 6-microm range. This wavelength-dependence has been hypothesized to arise from a multi-step process following differential absorption by tissue water and proteins. Here, we test this hypothesis at wavelengths for which cornea has matching overall absorption, but drastically different differential absorption. We measure etch depth, collateral damage and plume images and find that the hypothesis is not confirmed. We do find larger etch depths for larger spot sizes--an effect that can lead to an apparent wavelength dependence. Plume imaging at several wavelengths and spot sizes suggests that this effect is due to increased post-pulse ablation at larger spots.
Dry minor mergers and size evolution of high-z compact massive early-type galaxies
NASA Astrophysics Data System (ADS)
Oogi, Taira; Habe, Asao
2013-01-01
Recent observations show evidence that high-z (z ˜ 2-3) early-type galaxies (ETGs) are more compact than those with comparable mass at z ˜ 0. Such size evolution is most likely explained by the `dry merger sceanario'. However, previous studies based on this scenario cannot consistently explain the properties of both high-z compact massive ETGs and local ETGs. We investigate the effect of multiple sequential dry minor mergers on the size evolution of compact massive ETGs. From an analysis of the Millennium Simulation Data Base, we show that such minor (stellar mass ratio M2/M1 < 1/4) mergers are extremely common during hierarchical structure formation. We perform N-body simulations of sequential minor mergers with parabolic and head-on orbits, including a dark matter component and a stellar component. Typical mass ratios of these minor mergers are 1/20 < M2/M1 ≤q 1/10. We show that sequential minor mergers of compact satellite galaxies are the most efficient at promoting size growth and decreasing the velocity dispersion of compact massive ETGs in our simulations. The change of stellar size and density of the merger remnants is consistent with recent observations. Furthermore, we construct the merger histories of candidates for high-z compact massive ETGs using the Millennium Simulation Data Base and estimate the size growth of the galaxies through the dry minor merger scenario. We can reproduce the mean size growth factor between z = 2 and z = 0, assuming the most efficient size growth obtained during sequential minor mergers in our simulations. However, we note that our numerical result is only valid for merger histories with typical mass ratios between 1/20 and 1/10 with parabolic and head-on orbits and that our most efficient size-growth efficiency is likely an upper limit.
The role of sex and body weight on the metabolic effects of high-fat diet in C57BL/6N mice.
Ingvorsen, C; Karp, N A; Lelliott, C J
2017-04-10
Metabolic disorders are commonly investigated using knockout and transgenic mouse models on the C57BL/6N genetic background due to its genetic susceptibility to the deleterious metabolic effects of high-fat diet (HFD). There is growing awareness of the need to consider sex in disease progression, but limited attention has been paid to sexual dimorphism in mouse models and its impact in metabolic phenotypes. We assessed the effect of HFD and the impact of sex on metabolic variables in this strain. We generated a reference data set encompassing glucose tolerance, body composition and plasma chemistry data from 586 C57BL/6N mice fed a standard chow and 733 fed a HFD collected as part of a high-throughput phenotyping pipeline. Linear mixed model regression analysis was used in a dual analysis to assess the effect of HFD as an absolute change in phenotype, but also as a relative change accounting for the potential confounding effect of body weight. HFD had a significant impact on all variables tested with an average absolute effect size of 29%. For the majority of variables (78%), the treatment effect was modified by sex and this was dominated by male-specific or a male stronger effect. On average, there was a 13.2% difference in the effect size between the male and female mice for sexually dimorphic variables. HFD led to a significant body weight phenotype (24% increase), which acts as a confounding effect on the other analysed variables. For 79% of the variables, body weight was found to be a significant source of variation, but even after accounting for this confounding effect, similar HFD-induced phenotypic changes were found to when not accounting for weight. HFD and sex are powerful modifiers of metabolic parameters in C57BL/6N mice. We also demonstrate the value of considering body size as a covariate to obtain a richer understanding of metabolic phenotypes.
Ensemble coding remains accurate under object and spatial visual working memory load.
Epstein, Michael L; Emmanouil, Tatiana A
2017-10-01
A number of studies have provided evidence that the visual system statistically summarizes large amounts of information that would exceed the limitations of attention and working memory (ensemble coding). However the necessity of working memory resources for ensemble coding has not yet been tested directly. In the current study, we used a dual task design to test the effect of object and spatial visual working memory load on size averaging accuracy. In Experiment 1, we tested participants' accuracy in comparing the mean size of two sets under various levels of object visual working memory load. Although the accuracy of average size judgments depended on the difference in mean size between the two sets, we found no effect of working memory load. In Experiment 2, we tested the same average size judgment while participants were under spatial visual working memory load, again finding no effect of load on averaging accuracy. Overall our results reveal that ensemble coding can proceed unimpeded and highly accurately under both object and spatial visual working memory load, providing further evidence that ensemble coding reflects a basic perceptual process distinct from that of individual object processing.
Climate alters intraspecific variation in copepod effect traits through pond food webs.
Charette, Cristina; Derry, Alison M
2016-05-01
Essential fatty acids (EFAs) are primarily generated by phytoplankton in aquatic ecosystems, and can limit the growth, development, and reproduction of higher consumers. Among the most critical of the EFAs are highly unsaturated fatty acids (HUFAs), which are only produced by certain groups of phytoplankton. Changing environmental conditions can alter phytoplankton community and fatty acid composition and affect the HUFA content of higher trophic levels. Almost no research has addressed intraspecific variation in HUFAs in zooplankton, nor intraspecific relationships of HUFAs with body size and fecundity. This is despite that intraspecific variation in HUFAs can exceed interspecific variation and that intraspecific trait variation in body size and fecundity is increasingly recognized to have an important role in food web ecology (effect traits). Our study addressed the relative influences of abiotic selection and food web effects associated with climate change on intraspecific differences and interrelationships between HUFA content, body size, and fecundity of freshwater copepods. We applied structural equation modeling and regression analyses to intraspecific variation in a dominant calanoid copepod, Leptodiatomus minutus, among a series of shallow north-temperate ponds. Climate-driven diurnal temperature fluctuations favored the coexistence of diversity of phytoplankton groups with different temperature optima and nutritive quality. This resulted in unexpected positive relationships between temperature, copepod DHA content and body size. Temperature correlated positively with diatom biovolume, and mediated relationships between copepod HUFA content and body size, and between copepod body size and fecundity. The presence of brook trout further accentuated these positive effects in warm ponds, likely through nutrient cycling and stimulation of phytoplankton resources. Climate change may have previously unrecognized positive effects on freshwater copepod DHA content, body size, and fecundity in the small, shallow bodies of inland waters that are commonly found in north-temperate landscapes.
Nature of size effects in compact models of field effect transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torkhov, N. A., E-mail: trkf@mail.ru; Scientific-Research Institute of Semiconductor Devices, Tomsk 634050; Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050
Investigations have shown that in the local approximation (for sizes L < 100 μm), AlGaN/GaN high electron mobility transistor (HEMT) structures satisfy to all properties of chaotic systems and can be described in the language of fractal geometry of fractional dimensions. For such objects, values of their electrophysical characteristics depend on the linear sizes of the examined regions, which explain the presence of the so-called size effects—dependences of the electrophysical and instrumental characteristics on the linear sizes of the active elements of semiconductor devices. In the present work, a relationship has been established for the linear model parameters of themore » equivalent circuit elements of internal transistors with fractal geometry of the heteroepitaxial structure manifested through a dependence of its relative electrophysical characteristics on the linear sizes of the examined surface areas. For the HEMTs, this implies dependences of their relative static (A/mm, mA/V/mm, Ω/mm, etc.) and microwave characteristics (W/mm) on the width d of the sink-source channel and on the number of sections n that leads to a nonlinear dependence of the retrieved parameter values of equivalent circuit elements of linear internal transistor models on n and d. Thus, it has been demonstrated that the size effects in semiconductors determined by the fractal geometry must be taken into account when investigating the properties of semiconductor objects on the levels less than the local approximation limit and designing and manufacturing field effect transistors. In general, the suggested approach allows a complex of problems to be solved on designing, optimizing, and retrieving the parameters of equivalent circuits of linear and nonlinear models of not only field effect transistors but also any arbitrary semiconductor devices with nonlinear instrumental characteristics.« less
Clarification of effects of DDE on shell thickness, size, mass, and shape of avian eggs
Blus, Lawrence J.; Wiemeyer, Stanley N.; Bunck, Christine M.
1997-01-01
Moriarty et al. (1986) used field data to conclude that DDE decreased the size or altered the shape of avian eggs; therefore, they postulated that decreased eggshell thickness was a secondary effect because, as a general rule, thickness and egg size are positively correlated. To further test this relationship, the present authors analyzed data from eggs of captive American kestrels. Falco sparverius given DDT- or DDE-contaminated or clean diets and from wild brown pelicans Pelecanus occidentalis collected both before (pre-1946) and after (post-1945) DDT was introduced into the environment. Pertinent data from other field and laboratory studies were also summarized. DDE was not related to and did not affect size, mass, or shape of eggs of the brown pelican or American kestrel; but the relationship of DDE to eggshell thinning held true. Size and shape of eggs of brown pelicans from the post-1945 era and those of kestrels, on DDT-contaminated diets showed some significant, but inconsistent, changes compared to brown pelican data from the pre-1946 era or kestrels on clean diets. In contrast, nearly all samples of eggs of experimental kestrels given DDT-contaminated diets and those of wild brown pelicans from the post-1945 era exhibited significant eggshell thinning. Pertinent experimental studies with other sensitive avian species indicated no effects of DDE on the size or shape of eggs, even though the high dietary concentrations caused extreme eggshell thinning and mortality of some adult mallards (Anas platyrhynchos) in one study. These findings essentially controvert the argument that decreased eggshell thickness is a secondary effect resulting from the primary effect of DDE-induced changes in the size or shape of eggs.
Hatadani, Luciane Mendes; Klaczko, Louis Bernard
2008-07-01
The second chromosome of Drosophila mediopunctata is highly polymorphic for inversions. Previous work reported a significant interaction between these inversions and collecting date on wing size, suggesting the presence of genotype-environment interaction. We performed experiments in the laboratory to test for the joint effects of temperature and chromosome inversions on size and shape of the wing in D. mediopunctata. Size was measured as the centroid size, and shape was analyzed using the generalized least squares Procrustes superimposition followed by discriminant analysis and canonical variates analysis of partial warps and uniform components scores. Our findings show that wing size and shape are influenced by temperature, sex, and karyotype. We also found evidence suggestive of an interaction between the effects of karyotype and temperature on wing shape, indicating the existence of genotype-environment interaction for this trait in D. mediopunctata. In addition, the association between wing size and chromosome inversions is in agreement with previous results indicating that these inversions might be accumulating alleles adapted to different temperatures. However, no significant interaction between temperature and karyotype for size was found--in spite of the significant presence of temperature-genotype (cross) interaction. We suggest that other ecological factors--such as larval crowding--or seasonal variation of genetic content within inversions may explain the previous results.
Dilution: atheoretical burden or just load? A reply to Tsal and Benoni (2010).
Lavie, Nilli; Torralbo, Ana
2010-12-01
Load theory of attention proposes that distractor processing is reduced in tasks with high perceptual load that exhaust attentional capacity within task-relevant processing. In contrast, tasks of low perceptual load leave spare capacity that spills over, resulting in the perception of task-irrelevant, potentially distracting stimuli. Tsal and Benoni (2010) find that distractor response competition effects can be reduced under conditions with a high search set size but low perceptual load (due to a singleton color target). They claim that the usual effect of search set size on distractor processing is not due to attentional load but instead attribute this to lower level visual interference. Here, we propose an account for their findings within load theory. We argue that in tasks of low perceptual load but high set size, an irrelevant distractor competes with the search nontargets for remaining capacity. Thus, distractor processing is reduced under conditions in which the search nontargets receive the spillover of capacity instead of the irrelevant distractor. We report a new experiment testing this prediction. Our new results demonstrate that, when peripheral distractor processing is reduced, it is the search nontargets nearest to the target that are perceived instead. Our findings provide new evidence for the spare capacity spillover hypothesis made by load theory and rule out accounts in terms of lower level visual interference (or mere "dilution") for cases of reduced distractor processing under low load in displays of high set size. We also discuss additional evidence that discounts the viability of Tsal and Benoni's dilution account as an alternative to perceptual load.
Lavie, Nilli; Torralbo, Ana
2010-01-01
Load theory of attention proposes that distractor processing is reduced in tasks with high perceptual load that exhaust attentional capacity within task-relevant processing. In contrast, tasks of low perceptual load leave spare capacity that spills over, resulting in the perception of task-irrelevant, potentially distracting stimuli. Tsal and Benoni (2010) find that distractor response competition effects can be reduced under conditions with a high search set size but low perceptual load (due to a singleton color target). They claim that the usual effect of search set size on distractor processing is not due to attentional load but instead attribute this to lower level visual interference. Here, we propose an account for their findings within load theory. We argue that in tasks of low perceptual load but high set size, an irrelevant distractor competes with the search nontargets for remaining capacity. Thus, distractor processing is reduced under conditions in which the search nontargets receive the spillover of capacity instead of the irrelevant distractor. We report a new experiment testing this prediction. Our new results demonstrate that, when peripheral distractor processing is reduced, it is the search nontargets nearest to the target that are perceived instead. Our findings provide new evidence for the spare capacity spillover hypothesis made by load theory and rule out accounts in terms of lower level visual interference (or mere “dilution”) for cases of reduced distractor processing under low load in displays of high set size. We also discuss additional evidence that discounts the viability of Tsal and Benoni's dilution account as an alternative to perceptual load. PMID:21133554
Nadeau, P S; Hinch, S G; Pon, L B; Patterson, D A
2009-08-01
Sockeye salmon Oncorhynchus nerka were used as a model in an artificial fertilization experiment to investigate the relationships between individual adult O. nerka and their offspring. Survival, size and burst swimming ability were assessed in fry of known parentage (adult spawners from the Weaver Creek population, British Columbia, Canada). Maternal identity significantly affected the survival rate of eggs at hatch time, though this effect did not extend to fry life stages. The results were also suggestive of a paternal effect on both egg and fry survival, though this could not be separated from the experimental block design. After 4 months of exogenous feeding, fry mass remained under significant maternal influence, though fork length did not, despite having a high correlation with mass. Burst swimming performance was highly variable among individuals, and was not significantly influenced by maternal identity or individual fry size. Collectively, the findings presented here suggest that maternal, and possibly paternal, effects can be integral components of population dynamics in the early life stages of O. nerka. A good understanding of these factors will be essential for scientists and fisheries managers in developing a more holistic view of population-level spawning success and fry survival.
Leskinen, Jani; Ihalainen, Mika; Torvela, Tiina; Kortelainen, Miika; Lamberg, Heikki; Tiitta, Petri; Jakobi, Gert; Grigonyte, Julija; Joutsensaari, Jorma; Sippula, Olli; Tissari, Jarkko; Virtanen, Annele; Zimmermann, Ralf; Jokiniemi, Jorma
2014-11-18
The effective density of fine particles emitted from small-scale wood combustion of various fuels were determined with a system consisting of an aerosol particle mass analyzer and a scanning mobility particle sizer (APM-SMPS). A novel sampling chamber was combined to the system to enable measurements of highly fluctuating combustion processes. In addition, mass-mobility exponents (relates mass and mobility size) were determined from the density data to describe the shape of the particles. Particle size, type of fuel, combustion phase, and combustion conditions were found to have an effect on the effective density and the particle shape. For example, steady combustion phase produced agglomerates with effective density of roughly 1 g cm(-3) for small particles, decreasing to 0.25 g cm(-3) for 400 nm particles. The effective density was higher for particles emitted from glowing embers phase (ca. 1-2 g cm(-3)), and a clear size dependency was not observed as the particles were nearly spherical in shape. This study shows that a single value cannot be used for the effective density of particles emitted from wood combustion.
Effect of the microstructure on electrical properties of high-purity germanium
NASA Astrophysics Data System (ADS)
Podkopaev, O. I.; Shimanskii, A. F.; Molotkovskaya, N. O.; Kulakovskaya, T. V.
2013-05-01
The interrelation between the electrical properties and the microstructure of high-purity germanium crystals has been revealed. The electrical conductivity of polycrystalline samples increases and the life-time of nonequilibrium charge carriers in them decreases with a decrease in the crystallite sizes.
NASA Astrophysics Data System (ADS)
Wang, Liping; Qin, Kaiqiang; Li, Jiajun; Zhao, Naiqin; Shi, Chunsheng; Ma, Liying; He, Chunnian; He, Fang; Liu, Enzuo
2018-01-01
High quality free-standing 3D nanoporous graphene (3DNG) films were fabricated using nanoporous nickel as template and catalyst. The effect of heteroatom doping and pore size on the electrochemical performance of the 3D graphene films as supercapacitor electrodes are systematically studied. Compared with macroporous graphene films, nanoporous graphene films exhibit an extraordinarily large operational window in neutral, acidic and alkaline aqueous electrolytes, as well as high packing density. Nitrogen and oxygen doping play different roles in different aqueous electrolytes on the electrical conductivity and pseudocapacitance of 3DNG. The realization of both high packing density, 3.65 mg/cm2, and the maximum working window, as well as the synergistic effect between N and O doping, gives rise to a high areal capacitance of 435 mF/cm2 in neutral electrolyte and excellent cycle stability up to 5000 cycles. The results provide a potential strategy to further increase the volumetric or areal energy density of carbon-based aqueous supercapacitor.
NASA Astrophysics Data System (ADS)
Chen, Xiaolong; Honda, Hiroshi; Kuroda, Seiji; Araki, Hiroshi; Murakami, Hideyuki; Watanabe, Makoto; Sakka, Yoshio
2016-12-01
Effects of the ceramic powder size used for suspension as well as several processing parameters in suspension plasma spraying of YSZ were investigated experimentally, aiming to fabricate highly segmented microstructures for thermal barrier coating (TBC) applications. Particle image velocimetry (PIV) was used to observe the atomization process and the velocity distribution of atomized droplets and ceramic particles travelling toward the substrates. The tested parameters included the secondary plasma gas (He versus H2), suspension injection flow rate, and substrate surface roughness. Results indicated that a plasma jet with a relatively higher content of He or H2 as the secondary plasma gas was critical to produce highly segmented YSZ TBCs with a crack density up to 12 cracks/mm. The optimized suspension flow rate played an important role to realize coatings with a reduced porosity level and improved adhesion. An increased powder size and higher operation power level were beneficial for the formation of highly segmented coatings onto substrates with a wider range of surface roughness.
NASA Astrophysics Data System (ADS)
Hesong, Zhang; Yonglin, Kang
With the rapid development of oil and gas industry long distance pipelines inevitably pass through regions with complex geological activities. In order to avoid large deformation the pipelines must be designed based on strain criteria. In this paper the alloy system of X80 high deformability pipeline steel was designed which was 0.25%Mo-0.05%C-1.75%Mn. The effect of controlled cooling process on microstructure and mechanical properties of X80 high deformability pipeline steel were systematically investigated. Through the two-stage controlled cooling process the microstructure of the X80 high deformability pipeline steel were ferrite, bainite and M/A island. There were two kinds of ferrite which were polygonal ferrite (PF) and quasi-polygonal ferrite (QF). The bainite was granular bainite ferrite (GF). Along with the decrease of the start cooling temperature, the volume fraction of ferrite and M/A both increased, the yield ratio (Y/T) decreased, the uniform elongation (uEl) increased firstly with the content of ferrite increased but then decreased with the content and size of M/A increased. When the finish cooling temperature decreasing, the size of M/A became finer. As the start cooling temperature was 690 °C and the finish cooling temperature was 450 °C the volume fraction of ferrite was 23%, the size of ferrite grain was 5μm, the size of M/A island was below 1μm and the structure uniformity was the best. The deformation mechanism of X80 high deformability pipeline steel was analyzed. The best way to improve the work hardening rate was reducing the size of M/A islands on the premise of a certain volume fraction. The decreasing path of instantaneous strain hardening index (n*-value) showed three stages in the deformation process. The n*-value kept stable in the second stage, the reason was that the retained austenite transformed into martensite and the phase transition improved the strain hardening ability of the microstructure. This phenomenon was called transformation induced plasticity effect (TRIP).
Using high-resolution satellite imagery to assess populations of animals in the Antarctic
NASA Astrophysics Data System (ADS)
LaRue, Michelle Ann
The Southern Ocean is one of the most rapidly-changing ecosystems on the planet due to the effects of climate change and commercial fishing for ecologically-important krill and fish. It is imperative that populations of indicator species, such as penguins and seals, be monitored at regional- to global scales to decouple the effects of climate and anthropogenic changes for appropriate ecosystem-based management of the Southern Ocean. Remotely monitoring populations through high-resolution satellite imagery is currently the only feasible way to gain information about population trends of penguins and seals in Antarctica. In my first chapter, I review the literature where high-resolution satellite imagery has been used to assess populations of animals in polar regions. Building on this literature, my second chapter focuses on estimating changes in abundance in the Weddell seal population in Erebus Bay. I found a strong correlation between ground and satellite counts, and this finding provides an alternate method for assessing populations of Weddell seals in areas where less is known about population status. My third chapter explores how size of the guano stain of Adelie penguins can be used to predict population size. Using high-resolution imagery and ground counts, I built a model to estimate the breeding population of Adelie penguins using a supervised classification to estimate guano size. These results suggest that the size of guano stain is an accurate predictor of population size, and can be applied to estimate remote Adelie penguin colonies. In my fourth chapter, I use air photos, satellite imagery, climate and mark-resight data to determine that climate change has positively impacted the population of Adelie penguins at Beaufort Island through a habitat release that ultimately affected the dynamics within the southern Ross Sea metapopulation. Finally, for my fifth chapter I combined the literature with observations from aerial surveys and satellite imagery to determine that emperor penguins are not philopatric. These results have implications for interpreting long-term modeling studies and I suggest that future research should account for metapopulation dynamics within emperor penguin populations. Combined, my dissertation provides resources and new insights for effective management of the Southern Ocean ecosystem.
Photoluminescence Spectra From The Direct Energy Gap of a-SiQDs
NASA Astrophysics Data System (ADS)
Abdul-Ameer, Nidhal M.; Abdulrida, Moafak C.; Abdul-Hakeem, Shatha M.
2018-05-01
A theoretical model for radiative recombination in amorphous silicon quantum dots (a-SiQDs) was developed. In this model, for the first time, the coexistence of both spatial and quantum confinements were considered. Also, it is found that the photoluminescence exhibits significant size dependence in the range (1-4) nm of the quantum dots. a-SiQDs show visible light emission peak energies and high radiative quantum efficiency at room temperature,in contrast to bulk a-Si structures. The quantum efficiency is sensitive to any change in defect density (the volume nonradiative centers density and/or the surface nonradiative centers density) but, with small dots sizes, the quantum efficiency is insensitive to such defects. Our analysis shows that the photoluminescence intensity increases or decreases by the effect of radiative quantum efficiency. By controlling the size of a-SiQDs, we note that the energy of emission can be tuned. The blue shift is attributed to quantum confinement effect. Meanwhile, the spatial confinement effect is clearly observed in red shift in emission spectra. we found a good agreement with the experimental published data. Therefore, we assert that a-SiQDs material is a promising candidate for visible, tunable, and high performance devices of light emitting.
PSYCHOLOGICAL TREATMENT OF DEPRESSION IN COLLEGE STUDENTS: A METAANALYSIS
Cuijpers, Pim; Cristea, Ioana A.; Ebert, David D.; Koot, Hans M.; Auerbach, Randy P.; Bruffaerts, Ronny; Kessler, Ronald C.
2015-01-01
Background Expanded efforts to detect and treat depression among college students, a peak period of onset, have the potential to bear high human capital value from a societal perspective because depression increases college withdrawal rates. However, it is not clear whether evidence-based depression therapies are as effective in college students as in other adult populations. The higher levels of cognitive functioning and IQ and higher proportions of first-onset cases might lead to treatment effects being different among college students relative to the larger adult population. Methods We conducted a metaanalysis of randomized trials comparing psychological treatments of depressed college students relative to control groups and compared effect sizes in these studies to those in trials carried out in unselected populations of depressed adults. Results The 15 trials on college students satisfying study inclusion criteria included 997 participants. The pooled effect size of therapy versus control was g = 0.89 (95% CI: 0.66~1.11; NNT = 2.13) with moderate heterogeneity (I2 = 57; 95% CI: 23~72). None of these trials had low risk of bias. Effect sizes were significantly larger when students were not remunerated (e.g. money, credit), received individual versus group therapy, and were in trials that included a waiting list control group. No significant difference emerged in comparing effect sizes among college students versus adults either in simple mean comparisons or in multivariate metaregression analyses. Conclusions This metaanalysis of trials examining psychological treatments of depression in college students suggests that these therapies are effective and have effect sizes comparable to trials carried out among depressed adults. PMID:26682536
ERIC Educational Resources Information Center
Munson, Benjamin; Kurtz, Beth A.; Windsor, Jennifer
2005-01-01
Research has shown that children repeat high-probability phoneme sequences more accurately than low-probability ones. This effect attenuates with age, and its decrease is predicted by developmental changes in the size of the lexicon (J. Edwards, M. E. Beckman, & B. Munson, 2004; B. Munson, 2001; B. Munson, J. Edwards, & M. Beckman, 2005). This…
Intelligent Sensors for Atomization Processing of Molten Metals and Alloys
1988-06-01
20ff. 12. Hirleman, Dan E. Particle Sizing by Optical , Nonimaging Techniques. Liquid Particle Size Measurement Techniques, ASTM, 1984, pp. 35ff. 13...sensors are based on electric, electromagnetic or optical principles, the latter being most developed in fields obviously related to atomization. Optical ...beams to observe various interference, diffraction, and heterodyning effects, and to observe, with high signal-to-noise ratio, even weak optical
Impact of scaling voltage and size on the performance of Side-contacted Field Effect Diode
NASA Astrophysics Data System (ADS)
Touchaei, Behnam Jafari; Manavizadeh, Negin
2018-05-01
Side-contacted Fild Effect Diode (S-FED), with low leakage current and high Ion/Ioff ratio, has been recently introduced to suppress short channel effects in nanoscale regime. The voltage and size scalability of S-FEDs and effects on the power consumption, propagation delay time, and power delay product have been studied in this article. The most attractive properties are related to channel length to channel thickness ratio in the S-FED which reduces in comparison with MOSFET significantly, while gates control over the channel improve and the off-state current reduces dramatically. This promising advantage is not only capable to improve important S-FED's characteristics such as subthreshold slope but also eliminate Latch-up and floating body effect.
Science curriculum effects in high school: A quantitative synthesis
NASA Astrophysics Data System (ADS)
Weinstein, Thomas; Boulanger, F. David; Walberg, Herbert J.
To assess the impact of the innovative precollege science curricula of the past twenty years on learning, a search was conducted using the computer-assisted Bibliographic Retrieval System (BRS), the ERIC Annual Summaries of Research in Science Education, and Dissertation Abstracts International. A total of 151 effect sizes were obtained from 33 studies representing 19,149 junior and senior high school students in the United States, Great Britain, and Israel. Study-weighted analysis yielded an overall mean effect size of 0.31 significantly favorable to the innovative curricula [t(25) = 2.183, p < 0.05] on all outcomes. Student performance in innovative curricula averaged in the 62nd percentile relative to the control norm. Tabulation of signed comparisons indicated that sixty-four out of eighty-one unweighted outcomes were favorable to the innovative curricula. Separate analyses for test content bias, methodological rigor, type of learning, and student characteristics showed no significant differences across these categories.
Sediment toxicity and bioaccumulation of nano and micron-sized aluminum oxide.
Stanley, Jacob K; Coleman, Jessica G; Weiss, Charles A; Steevens, Jeffery A
2010-02-01
Nano-aluminum oxide (Al(2)O(3)) is used commercially in coatings and abrasives. Nano-Al(2)O(3) can also be generated through the oxidation of nano-aluminum in military propellants and energetics. The purpose of the present study was to assess toxicity and bioaccumulation of nano-Al(2)O(3) to a variety of sediment organisms (Tubifex tubifex, Hyalella azteca, Lumbriculus variegatus, and Corbicula fluminea). The bioaccumulation and toxicity of nano-Al(2)O(3) was compared with that of micron-sized Al(2)O(3) to investigate potential size-related effects. Results of the present study show species-specific differences in relative bioaccumulation of nano and micron-sized Al(2)O(3). Significant toxic effects (survival and growth) were observed in H. azteca testing, but only at high concentrations unlikely to be found in the environment. Nano-Al(2)O(3) was found to be more toxic than micron-sized Al(2)O(3) to H. azteca survival in a 14-d study in which organisms were in direct contact with a thin layer of 625 or 2,500 mg of Al(2)O(3) dispersed on the surface of either sediment or sand. A significant growth effect was also observed for nano but not micron-sized Al(2)O(3) at the highest treatment level tested (100 g/kg Al(2)O(3)) in a 10-d H. azteca bioassay in which Al(2)O(3) was homogenized with sediment. However, differences in measured sediment Al concentrations (micron-sized = 55.1 [+/-0.6] g/kg Al; nano-sized = 66.2 [+/-0.6] g/kg Al) in the nano and micron-sized Al(2)O(3) preclude direct comparison of the toxicity of these two treatments based on particle size. Copyright 2009 SETAC.
NASA Astrophysics Data System (ADS)
Jamil, Farinaa Md; Sulaiman, Mohd Ali; Ibrahim, Suhaina Mohd; Masrom, Abdul Kadir; Yahya, Muhd Zu Azhan
2017-12-01
A series of mesoporous carbon sample was synthesized using silica template, SBA-15 with two different pore sizes. Impregnation method was applied using glucose as a precursor for converting it into carbon. An appropriate carbonization and silica removal process were carried out to produce a series of mesoporous carbon with different pore sizes and surface areas. Mesoporous carbon sample was then assembled as electrode and its performance was tested using cyclic voltammetry and impedance spectroscopy to study the effect of ion transportation into several pore sizes on electric double layer capacitor (EDLC) system. 6M KOH was used as electrolyte at various scan rates of 10, 20, 30 and 50 mVs-1. The results showed that the pore size of carbon increased as the pore size of template increased and the specific capacitance improved as the increasing of the pore size of carbon.
NASA Astrophysics Data System (ADS)
Kulenkampff, Johannes; Zakhnini, Abdelhamid; Gründig, Marion; Lippmann-Pipke, Johanna
2016-08-01
Clay plays a prominent role as barrier material in the geosphere. The small particle sizes cause extremely small pore sizes and induce low permeability and high sorption capacity. Transport of dissolved species by molecular diffusion, driven only by a concentration gradient, is less sensitive to the pore size. Heterogeneous structures on the centimetre scale could cause heterogeneous effects, like preferential transport zones, which are difficult to assess. Laboratory measurements with diffusion cells yield limited information on heterogeneity, and pore space imaging methods have to consider scale effects. We established positron emission tomography (PET), applying a high-resolution PET scanner as a spatially resolved quantitative method for direct laboratory observation of the molecular diffusion process of a PET tracer on the prominent scale of 1-100 mm. Although PET is rather insensitive to bulk effects, quantification required significant improvements of the image reconstruction procedure with respect to Compton scatter and attenuation. The experiments were conducted with 22Na and 124I over periods of 100 and 25 days, respectively. From the images we derived trustable anisotropic diffusion coefficients and, in addition, we identified indications of preferential transport zones. We thus demonstrated the unique potential of the PET imaging modality for geoscientific process monitoring under conditions where other methods fail, taking advantage of the extremely high detection sensitivity that is typical of radiotracer applications.
Impacts of reform-based science in middle school classrooms
NASA Astrophysics Data System (ADS)
Ruth, Lisa Mccurry
2007-12-01
In the summer of 2005, the University of South Carolina offered a four week, summer professional development opportunity for middle school science teachers. In this institute, reform-based curricula and strategies were introduced to the teachers. Seven teachers were asked to participate in this study to assess the impacts of reformed curricula and pedagogy. Teachers administered standards-based pretests and posttests to their students before and after the specified unit of study. Teachers were videotaped teaching lessons included in the curriculum unit or teaching a lesson that addressed the same set of standards. Pretests and posttests were analyzed and effect sizes were calculated. Effect sizes ranged from a minimum of 0.57 to 3.18. Videotaped lessons were analyzed using the Reformed Teaching Observation Protocol (RTOP) developed by the Arizona Collaborative for Excellence in the Preparation of Teachers (ACEPT) project. The level of inquiry-based instruction was not found to be a primary predictor of student learning gains, but was found to be associated with teachers who implemented the curriculum and associated pedagogical techniques. Teachers who presented lessons considered highly reformed had effect sizes as high as or greater than those who continued to utilize more traditional methods of teaching, when student population differences are taken into account. These same teachers were highly successful in facilitating student-directed, scientific discussions in their classrooms as compared to teachers who did not utilize curriculum materials.
Li, P; Chai, G H; Zhu, K H; Lan, N; Sui, X H
2015-01-01
Tactile sensory feedback plays a key role in accomplishing the dexterous manipulation of prosthetic hands for the amputees, and the non-invasive transcutaneous electrical nerve stimulation (TENS) of the phantom finger perception (PFP) area would be an effective way to realize sensory feedback clinically. In order to realize the high-spatial-resolution tactile sensory feedback in the PFP region, we investigated the effects of electrode size and spacing on the tactile sensations for potentially optimizing the surface electrode array configuration. Six forearm-amputated subjects were recruited in the psychophysical studies. With the diameter of the circular electrode increasing from 3 mm to 12 mm, the threshold current intensity was enhanced correspondingly under different sensory modalities. The smaller electrode could potentially lead to high sensation spatial resolution. Whereas, the smaller the electrode, the less the number of sensory modalities. For an Φ-3 mm electrode, it is even hard for the subject to perceive any perception modalities under normal stimulating current. In addition, the two-electrode discrimination distance (TEDD) in the phantom thumb perception area decreased with electrode size decreasing in two directions of parallel or perpendicular to the forearm. No significant difference of TEDD existed along the two directions. Studies in this paper would guide the configuration optimization of the TENS electrode array for potential high spatial-resolution sensory feedback.
Efremov, V V; Parenskiĭ, V A
2004-04-01
Using Parensky's approach for estimating the number of breeding pairs, we determined effective subpopulation size Ne in early-run sockeye salmon Oncorhynchus nerka from Azabach'e Lake (Kamchatka) in 1977 through 1981. On average (over years and populations), biased sex ratio decreased Ne by 7% as compared to the number of fish on the spawning sites (Ni). High density reduced the Ne/Ni ratio by 62-66% because some fish were excluded from spawning. Dominance polygyny as compared to monogamy and random union of gametes could reduce Ne by about 17%.
2012-01-01
The purpose of this study was to investigate the aerosolization of particles (micro- and macroconidia and fragments) from Botrytis cinerea cultures in relation to potential human inhalation in indoor environments. The influence of the following factors on the aerosolization of B. cinerea particles was studied: exposure to airflow, relative humidity (rh), changing rh, and plant or building materials. The aerodynamic diameter (da) and the respirable fraction of the aerosolized particles were determined. Conidia and fragments of B. cinerea were not aerosolized as a response to a decrease in the rh. In contrast, both micro- and macroconidia and fungal fragments were aerosolized when exposed to an airflow of 1.5 m s−1 or 0.5 m s−1. Significantly more particles of microconidial size and fragment size were aerosolized at a low rh (18 to 40% rh) than at a higher rh (60 to 80% rh) when cultures were exposed to airflow. The size of the respirable fraction of the aerosolized particles was dependent on the rh but not on the growth material. At high rh, about 30% of the aerosolized particles were of respirable size, while at low rh, about 70% were of respirable size. During low rh, more fungal (1→3)-β-d-glucan and chitinase were aerosolized than during high rh. In conclusion, exposure to external physical forces such as airflow is necessary for the aerosolization of particles from B. cinerea. The amount and size distribution are highly affected by the rh, and more particles of respirable sizes were aerosolized at low rh than at high rh. PMID:22447608
ERIC Educational Resources Information Center
Hoest, Anders; Jensen, Vibeke Myrup; Nielsen, Lisbeth Palmhoej
2013-01-01
Although several studies investigate the effects of school resources on student performance, these studies tend to focus more on intervention effect sizes than on their cost-effectiveness. Exploiting policy-induced variation in Denmark and using high-quality administrative data, we investigate the effects of a school intervention that introduces…
Preparation of HCPT-Loaded Nanoneedles with Pointed Ends for Highly Efficient Cancer Chemotherapy
NASA Astrophysics Data System (ADS)
Wu, Shichao; Yang, Xiangrui; Li, Yang; Wu, Hongjie; Huang, Yu; Xie, Liya; Zhang, Ying; Hou, Zhenqing; Liu, Xiangyang
2016-06-01
The high-aspect-ratio nanoparticles were proved to be internalized much more rapidly and efficiently by cancer cells than the nanoparticles with an equal aspect ratio. Herein, a kind of high-aspect ratio, pointed-end nanoneedles (NDs) with a high drug loading (15.04 %) and the prolonged drug release profile were fabricated with an anti-tumor drug—10-hydroxycamptothecin (HCPT)—via an ultrasound-assisted emulsion crystallization technique. It is surprising to see that the cellular internalization of NDs with an average length of 5 μm and an aspect ratio of about 12:1 was even much faster and higher than that of nanorods with the same size and the nanospheres with a much smaller size of 150 nm. The results further validated that cellular internalization of the nanoparticles exhibited a strong shape-dependent effect, and cellular uptake may favor the particles with sharp ends as well as a high-aspect ratio instead of particle size. The NDs with enhanced cytotoxicity would lead to a promising sustained local drug delivery system for highly efficient anticancer therapy. More importantly, the fabrication of NDs opens a door to design new formulations of nanoneedle drug delivery systems for highly efficient cancer.
Pang, Chong-guang; Yu, Wei; Yang, Yang
2010-03-01
In July of 2008, under the natural condition of sea water, the Laser in-situ scattering and transmissometry (LISST-100X Type C) was used to measure grain size distribution spectrum and volume concentration of total suspended matter in the sea water, including flocs at different layers of 24 sampling stations at Changjiang Estuary and its adjacent sea. The characteristics and its forming mechanism on grain size distribution of total suspended matter were analyzed based on the observation data of LISST-100X Type C, and combining with the temperature, salinity and turbidity of sea water, simultaneously observed by Alec AAQ1183. The observation data showed that the average median grain size of total suspended matter was about 4.69 phi in the whole measured sea area, and the characteristics of grain size distribution was relatively poor sorted, wide kurtosis, and basically symmetrical. The conclusion could be drawn that vertically average volume concentration decreased with the distance from the coastline, while median grain size had an increase trend with the distance, for example, at 31.0 degrees N section, the depth-average median grain size had been increased from 11 microm up to 60 microm. With the increasing of distance from the coast, the concentration of fine suspended sediment reduced distinctly, nevertheless some relatively big organic matter or big flocs appeared in quantity, so its grain size would rise. The observation data indicated that the effective density was ranged from 246 kg/m3 to 1334 kg/m, with average was 613 kg/m3. When the concentration of total suspended matter was relatively high, median grain size of total suspended matter increased with the water depth, while effective density decreased with the depth, because of the faster settling velocity and less effective density of large flocs that of small flocs. As for station 37 and 44, their correlation coefficients between effective density and median grain size were larger than 0.9.
NASA Astrophysics Data System (ADS)
Li, Xifei; Hu, Yuhai; Liu, Jian; Lushington, Andrew; Li, Ruying; Sun, Xueliang
2013-11-01
How to tune graphene nanosheets (GNSs) with various morphologies has been a significant challenge for lithium ion batteries (LIBs). In this study, three types of GNSs with varying size, edge sites, defects and layer numbers have been successfully achieved. It was demonstrated that controlling GNS morphology and microstructure has important effects on its cyclic performance and rate capability in LIBs. Diminished GNS layer number, decreased size, increased edge sites and increased defects in the GNS anode can be highly beneficial to lithium storage and result in increased electrochemical performance. Interestingly, GNSs treated with a hydrothermal approach delivered a high reversible discharge capacity of 1348 mA h g-1. This study demonstrates that the controlled design of high performance GNS anodes is an important concept in LIB applications.How to tune graphene nanosheets (GNSs) with various morphologies has been a significant challenge for lithium ion batteries (LIBs). In this study, three types of GNSs with varying size, edge sites, defects and layer numbers have been successfully achieved. It was demonstrated that controlling GNS morphology and microstructure has important effects on its cyclic performance and rate capability in LIBs. Diminished GNS layer number, decreased size, increased edge sites and increased defects in the GNS anode can be highly beneficial to lithium storage and result in increased electrochemical performance. Interestingly, GNSs treated with a hydrothermal approach delivered a high reversible discharge capacity of 1348 mA h g-1. This study demonstrates that the controlled design of high performance GNS anodes is an important concept in LIB applications. Electronic supplementary information (ESI) available: SEM morphologies of GNS-I-III at low magnification, the TEM image of GNSs hydrothermally treated with urea in a ratio of 1 : 0, XPS survey, and SEM morphology changes of the three GNS anodes at low magnification after 100 charge-discharge cycles. See DOI: 10.1039/c3nr04823c
Antifungal activity of gold nanoparticles prepared by solvothermal method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in; Wani, Irshad A.; Lone, Irfan H.
2013-01-15
Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract:more » Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.« less
Influence of Terraced area DEM Resolution on RUSLE LS Factor
NASA Astrophysics Data System (ADS)
Zhang, Hongming; Baartman, Jantiene E. M.; Yang, Xiaomei; Gai, Lingtong; Geissen, Viollette
2017-04-01
Topography has a large impact on the erosion of soil by water. Slope steepness and slope length are combined (the LS factor) in the universal soil-loss equation (USLE) and its revised version (RUSLE) for predicting soil erosion. The LS factor is usually extracted from a digital elevation model (DEM). The grid size of the DEM will thus influence the LS factor and the subsequent calculation of soil loss. Terracing is considered as a support practice factor (P) in the USLE/RUSLE equations, which is multiplied with the other USLE/RUSLE factors. However, as terraces change the slope length and steepness, they also affect the LS factor. The effect of DEM grid size on the LS factor has not been investigated for a terraced area. We obtained a high-resolution DEM by unmanned aerial vehicles (UAVs) photogrammetry, from which the slope steepness, slope length, and LS factor were extracted. The changes in these parameters at various DEM resolutions were then analysed. The DEM produced detailed LS-factor maps, particularly for low LS factors. High (small valleys, gullies, and terrace ridges) and low (flats and terrace fields) spatial frequencies were both sensitive to changes in resolution, so the areas of higher and lower slope steepness both decreased with increasing grid size. Average slope steepness decreased and average slope length increased with grid size. Slope length, however, had a larger effect than slope steepness on the LS factor as the grid size varied. The LS factor increased when the grid size increased from 0.5 to 30-m and increased significantly at grid sizes >5-m. The LS factor was increasingly overestimated as grid size decreased. The LS factor decreased from grid sizes of 30 to 100-m, because the details of the terraced terrain were gradually lost, but the factor was still overestimated.
Taisova, A S; Yakovlev, A G; Fetisova, Z G
2014-03-01
This work continuous a series of studies devoted to discovering principles of organization of natural antennas in photosynthetic microorganisms that generate in vivo large and highly effective light-harvesting structures. The largest antenna is observed in green photosynthesizing bacteria, which are able to grow over a wide range of light intensities and adapt to low intensities by increasing of size of peripheral BChl c/d/e antenna. However, increasing antenna size must inevitably cause structural changes needed to maintain high efficiency of its functioning. Our model calculations have demonstrated that aggregation of the light-harvesting antenna pigments represents one of the universal structural factors that optimize functioning of any antenna and manage antenna efficiency. If the degree of aggregation of antenna pigments is a variable parameter, then efficiency of the antenna increases with increasing size of a single aggregate of the antenna. This means that change in degree of pigment aggregation controlled by light-harvesting antenna size is biologically expedient. We showed in our previous work on the oligomeric chlorosomal BChl c superantenna of green bacteria of the Chloroflexaceae family that this principle of optimization of variable antenna structure, whose size is controlled by light intensity during growth of bacteria, is actually realized in vivo. Studies of this phenomenon are continued in the present work, expanding the number of studied biological materials and investigating optical linear and nonlinear spectra of chlorosomes having different structures. We show for oligomeric chlorosomal superantennas of green bacteria (from two different families, Chloroflexaceae and Oscillochloridaceae) that a single BChl c aggregate is of small size, and the degree of BChl c aggregation is a variable parameter, which is controlled by the size of the entire BChl c superantenna, and the latter, in turn, is controlled by light intensity in the course of cell culture growth.
NASA Astrophysics Data System (ADS)
Hwang, Jin Hwan; Pham, Van Sy
2017-04-01
The Big-Brother Experiment (BBE) evaluates the effect of domain size on the ocean regional circulation model (ORCMs) in the downscaling and nesting from the ocean global circulation (OGCMs). The BBE first establishes a mimic ocean global circulation models (M-OGCMs) data and employs a ORCM to simulate for a highly resolved large domain. This M-OGCM's results were then filtered to remove short scales then used for boundary and initial conditions of the nested ORCMs, which have the same resolution to the M-OGCMs. The various sizes of domain were embedded in the M-OGCMs and the cases were simulated to see the effect of domain size with the extra buffering distance to the results of the ORCMs. The diagnostic variables including temperature, salinity and vorticity of the nested domain are then compared with those of the M-OGCMs before filtering. Differences between them can address the errors associating with the sizes of the domain, which are not attributed unambiguously to models errors or observational errors. The results showed that domain size significantly impacts on the results of ORCMs. As the domain size of the ORCM becomes lager, the distance of the extra space between the area of interest and the updated LBCs increases. So, the results of ORCMs perform more highly correlated with the M-OGCM. But, there are a certain optimal sizes of the OGCMs, which could be larger than nested ORCMs' domain size from 2 to 10 times, depending on the computational costs. Key words: domain size, error, ocean regional circulation model, Big-Brother Experiment. Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled "Development of integrated estuarine management system" and a National Research Foundation of Korea (NRF) Grant (No. 2015R1A5A 7037372) funded by MSIP of Korea. The authors thank the Integrated Research Institute of Construction and Environmental Engineering of Seoul National University for administrative support.
Dennison, Thomas J.; Smith, Julian; Hofmann, Michael P.; Bland, Charlotte E.; Badhan, Raj K.; Al-Khattawi, Ali; Mohammed, Afzal R.
2016-01-01
Atomisation of an aqueous solution for tablet film coating is a complex process with multiple factors determining droplet formation and properties. The importance of droplet size for an efficient process and a high quality final product has been noted in the literature, with smaller droplets reported to produce smoother, more homogenous coatings whilst simultaneously avoiding the risk of damage through over-wetting of the tablet core. In this work the effect of droplet size on tablet film coat characteristics was investigated using X-ray microcomputed tomography (XμCT) and confocal laser scanning microscopy (CLSM). A quality by design approach utilising design of experiments (DOE) was used to optimise the conditions necessary for production of droplets at a small (20 μm) and large (70 μm) droplet size. Droplet size distribution was measured using real-time laser diffraction and the volume median diameter taken as a response. DOE yielded information on the relationship three critical process parameters: pump rate, atomisation pressure and coating-polymer concentration, had upon droplet size. The model generated was robust, scoring highly for model fit (R2 = 0.977), predictability (Q2 = 0.837), validity and reproducibility. Modelling confirmed that all parameters had either a linear or quadratic effect on droplet size and revealed an interaction between pump rate and atomisation pressure. Fluidised bed coating of tablet cores was performed with either small or large droplets followed by CLSM and XμCT imaging. Addition of commonly used contrast materials to the coating solution improved visualisation of the coating by XμCT, showing the coat as a discrete section of the overall tablet. Imaging provided qualitative and quantitative evidence revealing that smaller droplets formed thinner, more uniform and less porous film coats. PMID:27548263
Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds
NASA Astrophysics Data System (ADS)
Panich, A. M.; Sergeev, N. A.; Shames, A. I.; Osipov, V. Yu; Boudou, J.-P.; Goren, S. D.
2015-02-01
Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and 13C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of 13C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.
NASA Astrophysics Data System (ADS)
Jiang, Jingkun; Chen, Da-Ren; Biswas, Pratim
2007-07-01
A flame aerosol reactor (FLAR) was developed to synthesize nanoparticles with desired properties (crystal phase and size) that could be independently controlled. The methodology was demonstrated for TiO2 nanoparticles, and this is the first time that large sets of samples with the same size but different crystal phases (six different ratios of anatase to rutile in this work) were synthesized. The degree of TiO2 nanoparticle agglomeration was determined by comparing the primary particle size distribution measured by scanning electron microscopy (SEM) to the mobility-based particle size distribution measured by online scanning mobility particle spectrometry (SMPS). By controlling the flame aerosol reactor conditions, both spherical unagglomerated particles and highly agglomerated particles were produced. To produce monodisperse nanoparticles, a high throughput multi-stage differential mobility analyser (MDMA) was used in series with the flame aerosol reactor. Nearly monodisperse nanoparticles (geometric standard deviation less than 1.05) could be collected in sufficient mass quantities (of the order of 10 mg) in reasonable time (1 h) that could be used in other studies such as determination of functionality or biological effects as a function of size.