Science.gov

Sample records for high efficiency dc-dc

  1. High-Efficiency dc/dc Converter

    NASA Technical Reports Server (NTRS)

    Sturman, J.

    1982-01-01

    High-efficiency dc/dc converter has been developed that provides commonly used voltages of plus or minus 12 Volts from an unregulated dc source of from 14 to 40 Volts. Unique features of converter are its high efficiency at low power level and ability to provide output either larger or smaller than input voltage.

  2. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    DOEpatents

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  3. Regulation of a lightweight high efficiency capacitator diode voltage multiplier dc-dc converter

    NASA Technical Reports Server (NTRS)

    Harrigill, W. T., Jr.; Myers, I. T.

    1976-01-01

    A method for the regulation of a capacitor diode voltage multiplier dc-dc converter has been developed which has only minor penalties in weight and efficiency. An auxiliary inductor is used, which only handles a fraction of the total power, to control the output voltage through a pulse width modulation method in a buck boost circuit.

  4. Regulation of a lightweight high efficiency capacitor diode voltage multiplier dc-dc converter

    NASA Technical Reports Server (NTRS)

    Harrigill, W. T., Jr.; Myers, I. T.

    1976-01-01

    A method for the regulation of a capacitor diode voltage multiplier dc-dc converter has been developed which has only minor penalties in weight and efficiency. An auxiliary inductor is used, which only handles a fraction of the total power, to control the output voltage through a pulse width modulation method in a buck boost circuit.

  5. High efficiency interleaved bi-directional ZVS DC-DC converter

    NASA Astrophysics Data System (ADS)

    Zafarullah Khan, M.; Mohsin Naveed, M.; Akbar Hussain, D. M.

    2013-06-01

    A high efficiency interleaved bi-directional ZVS DC-DC converter is presented in this paper. This converter can be operated in both buck and boost mode. CoolMOS is used as a power device to achieve low conduction losses and fast turn off. The value of inductance is selected such that the CoolMOS drain-to-source voltage always falls to zero before it turns on and ZVS is achieved. Multiphase interleaved inductors are used to achieve high power and low ripple currents. Converter is operated at 50kHz and MATLAB Simulink simulation is performed. 6kW prototype converter is implemented in buck mode and simulation results are verified.

  6. High efficiency and low electromagnetic interference boost DC-DC converter

    NASA Astrophysics Data System (ADS)

    Yajun, Li; Xinquan, Lai; Qiang, Ye; Bing, Yuan

    2014-04-01

    A synchronous boost DC-DC converter with an adaptive dead time control (DTC) circuit and anti-ringing circuit is presented. The DTC circuit is used to provide adjustable dead time and zero inductor current detection for power transistors and therefore, a high efficiency is achieved by minimizing power losses, such as the shoot-through current loss, the body diode conduction loss, the charge-sharing loss and the reverse inductor current loss. Simultaneously, a novel anti-ringing circuit controlled by the switching sequence of power transistors is developed to suppress the ringing when the converter enters the discontinuous conduction mode (DCM) for low electromagnetic interference (EMI) and additional power savings. The proposed converter has been fabricated in a 0.6 μm CDMOS technology. Simulation and experimental results show that the power efficiency of the boost converter is above 81% under different load currents from 10 to 250 mA and a peak efficiency of 90% is achieved at about 100 mA. Moreover, the ringing is easily suppressed by the anti-ringing circuit and therefore the EMI noise is attenuated.

  7. A High Efficiency DC-DC Converter Topology Suitable for Distributed Large Commercial and Utility Scale PV Systems

    SciTech Connect

    Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Steigerwald, Robert L; Sabate, Juan A; Chi, Song; McCann, Adam J; Zhang, Li; Mueller, Frank

    2012-09-01

    In this paper a DC-DC power converter for distributed photovoltaic plant architectures is presented. The proposed converter has the advantages of simplicity, high efficiency, and low cost. High efficiency is achieved by having a portion of the input PV power directly fed forward to the output without being processed by the converter. The operation of this converter also allows for a simplified maximum power point tracker design using fewer measurements

  8. High efficiency DC-DC converter using GaN transistors

    NASA Astrophysics Data System (ADS)

    Tómaş, Cosmin-Andrei; Grecu, Cristian; Pantazicǎ, Mihaela; Marghescu, Ion

    2015-02-01

    The paper presents a new high-efficiency power switching supply using the Gallium Nitride (GaN) technology. There are compared two solutions, the first using standard MOS transistors and the second using the new GaN transistor. The actual green technologies for obtaining the maximum energy and minimum losses have pushed the semiconductor industry into a continuous research regarding high power and high frequency devices, having uses in both digital communications and switching power supplies.

  9. High performance dc-dc conversion with voltage multipliers

    NASA Technical Reports Server (NTRS)

    Harrigill, W. T.; Myers, I. T.

    1974-01-01

    The voltage multipliers using capacitors and diodes first developed by Cockcroft and Walton in 1932 were reexamined in terms of state of the art fast switching transistors and diodes, and high energy density capacitors. Because of component improvements, the voltage multiplier, used without a transformer, now appears superior in weight to systems now in use for dc-dc conversion. An experimental 100-watt 1000-volt dc-dc converter operating at 100 kHz was built, with a component weight of about 1 kg/kW. Calculated and measured values of output voltage and efficiency agreed within experimental error.

  10. Design of high efficiency dual-mode buck DC-DC converter

    NASA Astrophysics Data System (ADS)

    Xinquan, Lai; Huali, Zeng; Qiang, Ye; Huisen, He; Shasha, Zhang; Yuqing, Sun

    2010-11-01

    A buck DC—DC switching regulator with high efficiency is implemented by automatically altering the modulation mode according to load current, and it can operate with an input range of 4.5 to 30 V. At light load current, the converter operates in skip mode. The converter enters PWM mode operation with increasing load current. It reduces the switching loss at light load and standby state, which results in prolonging battery lifetime and stand-by time. Meanwhile, externally adjustable soft-start minimizes the inrush supply current and avoids the overshoot of output voltage at initial startup. The regulator is fabricated by a 0.6 μm CDMOS process. The test results show that, under the condition of 3.3 V output, the efficiency is up to 64% at 5 mA and the maximum efficiency is 95.5%.

  11. Micro-Fabrication and Circuit Optimization for Magnetic Components of High-Efficiency DC-DC Converters

    NASA Astrophysics Data System (ADS)

    Tian, Rui

    Magnetic components are essential parts of power converters. Inductors with magnetic cores are investigated. An eddy current loss model for pot-core inductors is developed with finite elemental analysis (FEA). The reliability of inductors using magnetic cores in a high-temperature environment is investigated. Working in up to 150°C circumstance for a short periods is not destructive for the inductors. Optimization of toroidal inductors in a DC-DC converter is investigated. Parasitic capacitance and the capacitive loss in toroidal inductors are modeled. Standard circuit optimization is performed to explore the energy conversion efficiency of the toroidal inductors. Thermal analysis, light-load efficiency and relative permeability of the toroidal inductor design are also investigated. The toroidal inductor can achieve about 85% efficiency for 3 A DC current and 1 W/mm2 power density. Inductor-only efficiency of toroidal inductors is investigated with revised model. At 100 MHz operating frequency, toroidal inductors can achieve more than 97% inductor efficiency with power density range of 0.7 W/mm2 to 6 W/mm2. The performance of our nanograngular magnetic core is dependent on the angle of the poling magnetic field compared to the field during operation. Experiments on a serious of samples show that the poling angle can deviate by up to 15 degrees from ideal with only a small penalty in performance. The field-angle experiment is intended to prove integrated toroidal inductor process possible. A magnetic fixture model is proposed for large-scale toroidal inductor processing.

  12. Modular AC Nano-Grid with Four-Quadrant Micro-Inverters and High-Efficiency DC-DC Conversion

    NASA Astrophysics Data System (ADS)

    Poshtkouhi, Shahab

    A significant portion of the population in developing countries live in remote communities, where the power infrastructure and the required capital investment to set up local grids do not exist. This is due to the fuel shipment and utilization costs required for fossil fuel based generators, which are traditionally used in these local grids, as well as high upfront costs associated with the centralized Energy Storage Systems (ESS). This dissertation targets modular AC nano-grids for these remote communities developed at minimal capital cost, where the generators are replaced with multiple inverters, connected to either Photovoltaic (PV) or battery modules, which can be gradually added to the nano-grid. A distributed droop-based control architecture is presented for the PV and battery Micro-Inverters (MIV) in order to achieve frequency and voltage stability, as well as active and reactive power sharing. The nano-grid voltage is regulated collectively in either one of four operational regions. Effective load sharing and transient handling are demonstrated experimentally by forming a nano-grid which consists of two custom 500 W MIVs. The MIVs forming the nano-grid have to meet certain requirements. A two-stage MIV architecture and control scheme with four-quadrant power-flow between the nano-grid, the PV/battery and optional short-term storage is presented. The short-term storage is realized using high energy-density Lithium-Ion Capacitor (LIC) technology. A real-time power smoothing algorithm utilizing LIC modules is developed and tested, while the performance of the 100 W MIV is experimentally verified under closed-loop dynamic conditions. Two main limitations of the DAB topology, as the core of the MIV architecture's dc-dc stage, are addressed: 1) This topology demonstrates poor efficiency and limited regulation accuracy at low power. These are improved by introducing a modified topology to operate the DAB in Flyback mode, achieving up to an 8% increase in

  13. Efficient, lightweight dc/dc switching converter

    NASA Technical Reports Server (NTRS)

    Cuk, S.; Middlebrook, R. D.

    1981-01-01

    Converters have input properties of boost power stage and output properties of buck power stage, yet they perform general conversion function with high efficiency. Other features include non-pulsating input/output currents, use of capacitive energy transfer, low output voltage ripple, reduced EMI, and small size.

  14. Advanced DC/DC Converters Towards Higher Volumetric Efficiencies For Space Applications

    NASA Technical Reports Server (NTRS)

    Shaw, Harry; Shue, Jack; Liu, David; Wang, Bright; Plante, Jeanette

    2005-01-01

    A new emphasis on planetary exploration by NASA drives the need for small, high power DC/DC converters which are functionally modular. NASA GSFC and other government space organizations are supporting technology development in the DC/DC converter area to both meet new needs and to promote more sources of supply. New technologies which enable miniaturization such as embedded passive technologies and thermal management using high thermal conductivity materials are features of the new designs. Construction of some simple DC/DC converter core circuits using embedded components was found to be successful for increasing volumetric efficiency to 37 W/inch. The embedded passives were also able to perform satisfactorily in this application in cryogenic temperatures.

  15. Efficiency and weight of voltage multiplier type ultra lightweight dc-dc converters

    NASA Technical Reports Server (NTRS)

    Harrigill, W. T., Jr.; Myers, I. T.

    1975-01-01

    An analytical and experimental study was made of a capacitor-diode voltage multiplier without a transformer which offers the possibility of high efficiency with light weight. The dc-dc conversion efficiencies of about 94 percent were achieved at output powers of 150 watts at 1000 volts using 8x multiplication. A detailed identification of losses was made, including forward drop losses in component, switching losses, reverse junction capacitance charging losses, and charging losses in the main ladder capacitors.

  16. Integrated ZVS DC-DC converter with continuous input current and high voltage gain

    NASA Astrophysics Data System (ADS)

    Do, Hyun-Lark

    2011-09-01

    An integrated zero-voltage-switching (ZVS) DC-DC converter with continuous input current and high voltage gain is proposed. The proposed converter can operate with soft switching, a continuous inductor current and fixed switching frequency. The voltage stress of the power switches is relatively low compared to the output voltage. Moreover, soft-switching characteristic of the proposed converter reduces switching loss of active power switches and raise the conversion efficiency. The reverse-recovery problem of output rectifiers is also alleviated by controlling the current changing rates of diodes with the use of the leakage inductance of a coupled inductor. The operation and performance of the proposed DC-DC converter were verified on an 115 W experimental prototype operating at 100 kHz.

  17. A High Power Density DC-DC Converter for Distributed PV Architectures

    SciTech Connect

    Agamy, Mohammed S; Chi, Song; Elasser, Ahmed; Harfman-Todorovic, Maja; Jiang, Yan; Mueller, Frank; Tao, Fengfeng

    2012-06-01

    In order to maximize solar energy harvesting capabilities, power converters have to be designed for high efficiency and good MPPT and voltage/current performance. When many converters are used in distributed systems, power density also becomes an important factor as it allows for simpler system integration. In this paper a high power density string dc-dc converter suitable for distributed medium to large scale PV installation is presented. A simple partial power processing topology, implemented with all silicon carbide devices provides high efficiency as well as high power density. A 3.5kW, 100kHz converter is designed and tested to verify the proposed methods.

  18. Efficiency and Regulation of Commercial Low Power DC/DC Converter Modules at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.

    2000-01-01

    DC/DC converters that are capable of operating at cryogenic temperatures are anticipated to play an important role in the power systems of future NASA deep space missions. Design of these converters to survive cryogenic temperatures will improve the power system performance, and reduce development and launch costs. At the NASA Glenn Research Center Low Temperature Electronics Laboratory, several commercial off-the-shelf dc/dc converter modules were evaluated for their low temperature performance. Various parameters were investigated as a function of temperature, in the range of 20 C to -190 C. Data pertaining to the efficiency and voltage regulation of the tested converters is presented and discussed.

  19. Microfabricated Thin-Film Inductors for High-Frequency DC-DC Power Conversion

    NASA Astrophysics Data System (ADS)

    Yao, Di

    2011-12-01

    Microfabricated V-groove inductors targeted to operate above 10 MHz are investigated. Multilayer nano-granular Co-Zr-O/ZrO2 magnetic thin films are used as the core material of the inductors to improve the magnetic performance of the films deposited on the sidewalls of V-grooves and to control eddy-current loss in the core, which goes up very quickly as frequency increases. A loss model is developed to estimate eddy-current loss in multilayer magnetic thin films considering the effect of displacement current at high frequencies, and the model is applied in the design of V-groove inductors. V-groove inductors using multilayer magnetic thin films are co-optimized with power MOSFETs for 7-V to 3.3-V, 1-A DC-DC buck converters to maximize power handling capability per unit substrate area for given efficiencies. Prototype V-groove inductors are fabricated based on the optimization results, and measured and predicted performance of the inductors match well. The prototype inductors are a promising candidate for high-power-density high-efficiency DC-DC converters. The 7-V to 3.3-V, 1-A converters using prototype V-groove inductors are expected to exhibit power density of 2.5 W/mm2 and efficiency of 86% at 100 MHz, and power density of 0.36 W/mm2 and efficiency of 91% at 11 MHz.

  20. High power density dc/dc converter: Selection of converter topology

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1990-01-01

    The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.

  1. High power density dc/dc converter: Component selection and design

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.

    1989-01-01

    Further work pertaining to design considerations for the new high power, high frequency dc/dc converters is discussed. The goal of the project is the development of high power, high power density dc/dc converters at power levels in the multi-kilowatt to megawatt range for aerospace applications. The prototype converter is rated for 50 kW at a switching frequency of 50 kHz, with an input voltage of 200 Vdc and an output of 2000 Vdc. The overall power density must be in the vicinity of 0.2 to 0.3 kg/kW.

  2. Analysis of high voltage step-up nonisolated DC-DC boost converters

    NASA Astrophysics Data System (ADS)

    Alisson Alencar Freitas, Antônio; Lessa Tofoli, Fernando; Junior, Edilson Mineiro Sá; Daher, Sergio; Antunes, Fernando Luiz Marcelo

    2016-05-01

    A high voltage step-up nonisolated DC-DC converter based on coupled inductors suitable to photovoltaic (PV) systems applications is proposed in this paper. Considering that numerous approaches exist to extend the voltage conversion ratio of DC-DC converters that do not use transformers, a detailed comparison is also presented among the proposed converter and other popular topologies such as the conventional boost converter and the quadratic boost converter. The qualitative analysis of the coupled-inductor-based topology is developed so that a design procedure can be obtained, from which an experimental prototype is implemented to validate the theoretical assumptions.

  3. Designing Magnetic Components for High Frequency DC-DC Converters

    NASA Technical Reports Server (NTRS)

    McLyman, W. T.

    1993-01-01

    The conversion process in power electronics requires the use of tranformers and inductors, components which frequenly are the heaviest and bulkiest item in the conversion circuits. They also have a significant effect upon the overall performance and efficiency of the system.

  4. High performance dc-dc conversion with voltage multipliers. [using transformerless capacitor diode circuit

    NASA Technical Reports Server (NTRS)

    Harrigill, W. T., Jr.; Myers, I. T.

    1974-01-01

    An experimental 100W 1000V dc-dc converter using a capacitor diode voltage multipler (CDVM) with a nominal frequency of 100 kHz is studied. A component weight of about 1 kg/kW was obtained. Design equations for current, output -ripple and -power, efficiency and output voltage are derived. Agreement between experimental results and calculations is fairly good except for ripple.

  5. A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.

    PubMed

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters.

  6. A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.

    PubMed

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters. PMID:23365536

  7. A High Voltage Ratio and Low Ripple Interleaved DC-DC Converter for Fuel Cell Applications

    PubMed Central

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters. PMID:23365536

  8. High reliability DC/DC converter module for electronic boards equipped with FPGAs

    NASA Astrophysics Data System (ADS)

    Viganò, W.; Boccardi, A.; Zamantzas, C.

    2015-01-01

    The Beam Instrumentation Group at CERN is designing a new general-purpose VME carrier module utilising several PTH04T230W DC/DC converters. These off-the-shelf converters are built with unshielded inductors and need to be mounted on the printed circuit board as stand-alone components. Thus, reducing the global manageability and increasing the total cost of the carrier module. The new design aims to develop a module with better power dissipation, efficiency and reliability. In the future, it should be also possible to be directly integrated on the mainboard. For this reason, a Buck DC/DC converter has been implemented with the following main characteristics: input range from 3.0 V to 5.5 V; output range from 0.6 V to 3.3 V, settable by means of an external resistor; output current protection at 6 A; maximum output ripple ± 50 mVpp; switching frequency of 300KHz; short circuit protection; On/Off function; EMI reduction with frequency spread spectrum; soft-start function and thermal shutdown, in a 16 × 19 mm compact size. The selected buck controller is the TPS40303 integrated circuit and drives the CSD16321 power MOSFET, both from Texas Instruments. All selected components have been used at a minimum derating of 50% to reduce component stress and increase the reliability of this module. The selected inductors, i.e. Bourns SRP1055, are the main contributor for the high efficiency (95%), due to their very low equivalent series resistance. On the 4-layer PCB comprising all the components of this module, a snubber circuit, for further reduction of the output ripple due to the MOSFET ringing, can be mounted optionally. It is left as an option due to its effect on the total efficiency. The board layout has been optimized for maximum heat transfer and it can be used without active cooling. The board can maintain the maximum temperature on its surface, while at maximum current output, below 55°C at 25°C ambient temperature. An example of the electrical performance

  9. Advanced DC/DC Converters towards higher Volumetric Efficiencies for Space Applications

    NASA Technical Reports Server (NTRS)

    Plante, Jeannette; Shue, Jack; Liu, David; Wang, Bright; Shaw, Harry

    2005-01-01

    Contents include the following: 1. NASA mission outlook. 2. Issues with DC/DC converter for space. 3. Statement of newly initiated engineering activities for DC/DC converter. 4. Overview of prototyping work with novel materials. 5. Results of cryogenic testing.

  10. Multiphase High-Frequency Isolated DC-DC Converter for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Maurya, Rakesh; Srivastava, S. P.; Agarwal, Pramod

    2014-01-01

    Industrial applications such as welding, plasma cutting, and surface hardening require a large DC current at low voltage. In such applications, the rating of power supply varies from few kilowatts to hundreds of kilowatts. The power supply employs in such applications particularly in arc welding process is expected to operate from open-circuit (no-load) to short-circuit (when the electrode sticks to the workpiece for a short span of time) quickly. In this paper, high-frequency isolated multiphase DC-DC converter is proposed which is well suited for aforementioned applications. Based on mathematical analysis, a simulation study with 5 kW, 5 V/1,000 A proposed model is carried out using Simulink block set and Sim Power System tool box and its performances are evaluated under symmetrical control methods. To verify the simulation results, scaled prototype model of rating 1.5 V/100 A is developed and tested with aforementioned control method under different operating conditions. In comparison with conventional welding power supply employed in many industries, the performance of proposed converter is improved significantly in terms of size and weight, efficiency and dynamic response.

  11. Recovery Act: Integrated DC-DC Conversion for Energy-Efficient Multicore Processors

    SciTech Connect

    Shepard, Kenneth L

    2013-03-31

    In this project, we have developed the use of thin-film magnetic materials to improve in energy efficiency of digital computing applications by enabling integrated dc-dc power conversion and management with on-chip power inductors. Integrated voltage regulators also enables fine-grained power management, by providing dynamic scaling of the supply voltage in concert with the clock frequency of synchronous logic to throttle power consumption at periods of low computational demand. The voltage converter generates lower output voltages during periods of low computational performance requirements and higher output voltages during periods of high computational performance requirements. Implementation of integrated power conversion requires high-capacity energy storage devices, which are generally not available in traditional semiconductor processes. We achieve this with integration of thin-film magnetic materials into a conventional complementary metal-oxide-semiconductor (CMOS) process for high-quality on-chip power inductors. This project includes a body of work conducted to develop integrated switch-mode voltage regulators with thin-film magnetic power inductors. Soft-magnetic materials and inductor topologies are selected and optimized, with intent to maximize efficiency and current density of the integrated regulators. A custom integrated circuit (IC) is designed and fabricated in 45-nm CMOS silicon-on-insulator (SOI) to provide the control system and power-train necessary to drive the power inductors, in addition to providing a digital load for the converter. A silicon interposer is designed and fabricated in collaboration with IBM Research to integrate custom power inductors by chip stacking with the 45-nm CMOS integrated circuit, enabling power conversion with current density greater than 10A/mm2. The concepts and designs developed from this work enable significant improvements in performance-per-watt of future microprocessors in servers, desktops, and mobile

  12. High speed variable-inductor controlled with DC-DC converter

    SciTech Connect

    Ichinokura, Osamu; Kagami, Toshiro; Jinzenji, Toshimasa; Maeda, Mitsuru; Wakiya, Yoshie

    1995-11-01

    This paper describes a fundamental consideration on high speed control of the orthogonal-core type variable-inductor. The variable-inductor is applicable to a VAR compensation in the electric power system. The transient characteristics of the variable-inductor under the condition of dc control are discussed based on simulation and experiment. For high speed operation, the authors present an instantaneous control of the primary current. A simple control circuit using a dc-dc converter is demonstrated in this paper.

  13. SSP Technology Investigation of a High-Voltage DC-DC Converter

    NASA Technical Reports Server (NTRS)

    Pappas, J. A.; Grady, W. M.; George, Patrick J. (Technical Monitor)

    2002-01-01

    The goal of this project was to establish the feasibility of a high-voltage DC-DC converter based on a rod-array triggered vacuum switch (RATVS) for the Space Solar Power system. The RATVS has many advantages over silicon and silicon-carbide devices. The RATVS is attractive for this application because it is a high-voltage device that has already been demonstrated at currents in excess of the requirement for an SSP device and at much higher per-device voltages than existing or near-term solid state switching devices. The RATVS packs a much higher specific power rating than any solid-state device and it is likely to be more tolerant of its surroundings in space. In addition, pursuit of an RATVS-based system would provide NASA with a nearer-term and less expensive power converter option for the SSP.

  14. Inverse dual converter (IDC) for high power dc-dc applications

    NASA Astrophysics Data System (ADS)

    Ehsani, M.; Husain, I.; Bilgic, M. O.

    The inverse dual converter (IDC), suitable for high-power dc-dc conversion applications, is presented. The IDC is a voltage source converter with an ac link and has been derived from an inductor converter bridge. This capacitor commutated converter is capable of continuous voltage step-up or step-down control over a wide range without the need of a transformer. In addition to high-frequency switching the converter is characterized by soft switching techniques, reducing constraints on the ratings of the switches. The average model developed with the help of gyrator theory provides sufficient information for control strategies and design considerations. The results of gyrator modeling and computer simulation are compared with experimental results obtained from a prototype IDC.

  15. Low Temperature Performance of High Power Density DC/DC Converter Modules

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Hammond, Ahmad; Gerber, Scott; Patterson, Richard L.; Overton, Eric

    2001-01-01

    In this paper, two second-generation high power density DC/DC converter modules have been evaluated at low operating temperatures. The power rating of one converter (Module 1) was specified at 150 W with an input voltage range of 36 to 75 V and output voltage of 12 V. The other converter (Module 2) was specified at 100 W with the same input voltage range and an output voltage of 3.3 V. The converter modules were evaluated in terms of their performance as a function of operating temperature in the range of 25 to -140 C. The experimental procedures along with the experimental data obtained are presented and discussed in this paper.

  16. High-Voltage 1-kW dc/dc Converter Developed for Low-Temperature Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.

    1998-01-01

    Recently, Lewis developed and demonstrated a high-voltage, 1-kW dc/dc converter that operates from room temperature to -184 C. A power supply designed for use in a NASA ion beam propulsion system was utilized as a starting point for the design of a low- (wide-) temperature dc/dc converter. For safety, we decided to halve the output voltage and power level, so the converter was designed for an 80-Vdc input and a 550-Vdc output at 1 kW.

  17. Fast response double series resonant high-voltage DC-DC converter

    NASA Astrophysics Data System (ADS)

    Lee, S. S.; Iqbal, S.; Kamarol, M.

    2012-10-01

    In this paper, a novel double series resonant high-voltage dc-dc converter with dual-mode pulse frequency modulation (PFM) control scheme is proposed. The proposed topology consists of two series resonant tanks and hence two resonant currents flow in each switching period. Moreover, it consists of two high-voltage transformer with the leakage inductances are absorbed as resonant inductor in the series resonant tanks. The secondary output of both transformers are rectified and mixed before supplying to load. In the resonant mode operation, the series resonant tanks are energized alternately by controlling two Insulated Gate Bipolar Transistor (IGBT) switches with pulse frequency modulation (PFM). This topology operates in discontinuous conduction mode (DCM) with all IGBT switches operating in zero current switching (ZCS) condition and hence no switching loss occurs. To achieve fast rise in output voltage, a dual-mode PFM control during start-up of the converter is proposed. In this operation, the inverter is started at a high switching frequency and as the output voltage reaches 90% of the target value, the switching frequency is reduced to a value which corresponds to the target output voltage. This can effectively reduce the rise time of the output voltage and prevent overshoot. Experimental results collected from a 100-W laboratory prototype are presented to verify the effectiveness of the proposed system.

  18. An efficient switch-mode power supply using an AC-DC interleaved boost converter and a DC-DC full-bridge topology

    NASA Astrophysics Data System (ADS)

    Lessa Tofoli, Fernando; Gallo, Carlos Alberto

    2011-04-01

    This work presents the conception and analysis of a switch-mode power supply with desirable characteristics of high power factor, low harmonic distortion, regulated output voltage, and high efficiency. An interleaved boost converter associated with a nondissipative snubber is used as a preregulator stage. Additionally, a soft switching full-bridge converter is chosen as DC-DC stage. The combination of both topologies results in the proposed switch-mode power supply. Theoretical background on each one of the converters is presented and analytical results are discussed in order to validate the proposal.

  19. Light weight, high power, high voltage dc/dc converter technologies

    NASA Technical Reports Server (NTRS)

    Kraus, Robert; Myers, Ira; Baumann, Eric

    1990-01-01

    Power-conditioning weight reductions by orders of magnitude will be required to enable the megawatt-power-level space systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. An interagency program has been initiated to develop an 0.1-kg/kW dc/dc converter technology base for these future space applications. Three contractors are in the first phase of a competitive program to develop a megawatt dc/dc converter. Researchers at NASA Lewis Research Center are investigating innovative converter topology control. Three different converter subsystems based on square wave, resonant, and super-resonant topologies are being designed. The components required for the converter designs cover a wide array of technologies. Two different switches, one semiconductor and the other gas, are under development. Issues related to thermal management and material reliability for inductors, transformers, and capacitors are being investigated in order to maximize power density. A brief description of each of the concepts proposed to meet the goals of this program is presented.

  20. Milliwatt dc/dc Inverter

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W.

    1983-01-01

    Compact dc/dc inverter uses single integrated-circuit package containing six inverter gates that generate and amplify 100-kHz square-wave switching signal. Square-wave switching inverts 10-volt local power to isolated voltage at another desired level. Relatively high operating frequency reduces size of filter capacitors required, resulting in small package unit.

  1. Design of a high voltage input - output ratio dc-dc converter dedicated to small power fuel cell systems

    NASA Astrophysics Data System (ADS)

    Béthoux, O.; Cathelin, J.

    2010-12-01

    Consuming chemical energy, fuel cells produce simultaneously heat, water and useful electrical power [J.M. Andújar, F. Segura, Renew. Sust. Energy Rev. 13, 2309 (2009)], [J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. (John Wiley & Sons, 2003)]. As a matter of fact, the voltage generated by a fuel cell strongly depends on both the load power demand and the operating conditions. Besides, as a result of many design aspects, fuel cells are low voltage and high current electric generators. On the contrary, electric loads are commonly designed for small voltage swing and a high V/I ratio in order to minimize Joule losses. Therefore, electric loads supplied by fuel cells are typically fed by means of an intermediate power voltage regulator. The specifications of such a power converter are to be able to step up the input voltage with a high ratio (a ratio of 10 is a classic situation) and also to work with an excellent efficiency (in order to minimize its size, its weight and its losses) [A. Shahin, B. Huang, J.P. Martin, S. Pierfederici, B. Davat, Energy Conv. Manag. 51, 56 (2010)]. This paper deals with the design of this essential ancillary device. It intends to bring out the best structure for fulfilling this function. Several dc-dc converters with large voltage step-up ratios are introduced. A topology based on a coupled inductor or tapped inductor is closely studied. A detailed modelling is performed with the purpose of providing designing rules. This model is validated with both simulation and implementation. The experimental prototype is based on the following specifications: the fuel cell output voltage ranges from a 50 V open-voltage to a 25 V rated voltage while the load requires a constant 250 V voltage. The studied coupled inductor converter is compared with a classic boost converter commonly used in this voltage elevating application. Even though the voltage regulator faces severe FC specifications, the measured efficiency reaches 96% at the

  2. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  3. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  4. High frequency capacitor-diode voltage multiplier dc-dc converter development

    NASA Technical Reports Server (NTRS)

    Kisch, J. J.; Martinelli, R. M.

    1977-01-01

    A power conditioner was developed which used a capacitor diode voltage multiplier to provide a high voltage without the use of a step-up transformer. The power conditioner delivered 1200 Vdc at 100 watts and was operated from a 120 Vdc line. The efficiency was in excess of 90 percent. The component weight was 197 grams. A modified boost-add circuit was used for the regulation. A short circuit protection circuit was used which turns off the drive circuit upon a fault condition, and recovers within 5 ms after removal of the short. High energy density polysulfone capacitors and high speed diodes were used in the multiplier circuit.

  5. DC-DC Type High-Frequency Link DC for Improved Power Quality of Cascaded Multilevel Inverter

    NASA Astrophysics Data System (ADS)

    Sadikin, Muhammad; Senjyu, Tomonobu; Yona, Atsushi

    2013-06-01

    Multilevel inverters are emerging as a new breed of power converter options for power system applications. Recent advances in power switching devices enabled the suitability of multilevel inverters for high voltage and high power applications because they are connecting several devices in series without the need of component matching. Usually, a transformerless battery energy storage system, based on a cascaded multilevel inverter, is used as a measure for voltage and frequency deviations. System can be reduced in size, weight, and cost of energy storage system. High-frequency link circuit topology is advantageous in realizing compact and light-weight power converters for uninterruptible power supply systems, new energy systems using photovoltaic-cells, fuel-cells and so on. This paper presents a DC-DC type high-frequency link DC (HFLDC) cascaded multilevel inverter. Each converter cell is implemented a control strategy for two H-bridge inverters that are controlled with the same multicarrier pulse width modulation (PWM) technique. The proposed cascaded multilevel inverter generates lower voltage total harmonic distortion (THD) in comparison with conventional cascaded multilevel inverter. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of the proposed cascaded multilevel inverter.

  6. Anisotropic nanolaminated CoNiFe cores integrated into microinductors for high-frequency dc-dc power conversion

    NASA Astrophysics Data System (ADS)

    Kim, Jooncheol; Kim, Minsoo; Kim, Jung-Kwun; Herrault, Florian; Allen, Mark G.

    2015-11-01

    This paper presents a rectangular, anisotropic nanolaminated CoNiFe core that possesses a magnetically hard axis in the long geometric axis direction. Previously, we have developed nanolaminated cores comprising tens to hundreds of layers of 300-1000 nm thick metallic alloys (i.e. Ni80Fe20 or Co44Ni37Fe19) based on sequential electrodeposition, demonstrating suppressed eddy-current losses at MHz frequencies. In this work, magnetic anisotropy was induced to the nanolaminated CoNiFe cores by applying an external magnetic field (50-100 mT) during CoNiFe film electrodeposition. The fabricated cores comprised tens to hundreds of layers of 500-1000 nm thick CoNiFe laminations that have the hard-axis magnetic property. Packaged in a 22-turn solenoid test inductor, the anisotropic core showed 10% increased effective permeability and 25% reduced core power losses at MHz operation frequency, compared to an isotropic core of the identical geometry. Operating the anisotropic nanolaminated CoNiFe core in a step-down dc-dc converter (15 V input to 5 V output) demonstrated 81% converter efficiency at a switching frequency of 1.1 MHz and output power of 6.5 W. A solenoid microinductor with microfabricated windings integrated with the anisotropic nanolaminated CoNiFe core was fabricated, demonstrating a constant inductance of 600 nH up to 10 MHz and peak quality factor exceeding 20 at 4 MHz. The performance of the microinductor with the anisotropic nanolaminated CoNiFe core is compared with other previously reported microinductors.

  7. Topological variations of the inverse dual converter for high-power dc-dc distribution systems

    NASA Astrophysics Data System (ADS)

    Ehsani, Mehrdad; Laskai, Laszlo

    New dc-to-dc converter topologies are presented which are suitable for high density high power supplies. Topological variations of the basic inverse dual converter (IDC) circuit such as the transformer coupled, the multiphase and the multipulse derivation of the single phase IDC have been analyzed and some simulation results have been presented. The single phase IDC offers a buck-boost operation over wide range without transformer, bidirectional power flow, and complementary commutation of the switches. The topologies examined in this paper have additional features such as lower device and component stresses, and smaller filter requirements, resulting in smaller size and weight. Some performance and possible applications are also examined. IDCs for serial and parallel power distribution, and ac tapping of the IDC are discussed.

  8. A CW CO 2 laser using a high-voltage Dc-dc converter with resonant inverter and Cockroft-Walton multiplier

    NASA Astrophysics Data System (ADS)

    Chung, Hyun-Ju

    2006-11-01

    I propose a high-voltage Dc-dc converter for a CW (continuous wave) CO 2 laser system using a current resonant half-bridge inverter and a Cockcroft-Walton circuit. This high-voltage power supply includes a two-stage voltage multiplier driven by a regulated half-bridge series resonant inverter. The inverter drives a step-up transformer and the secondary transformer is applied to the voltage multiplier. It is highly efficient because of the reduced amount of switching losses by virtue of the current resonant half-bridge inverter, and also due to the small size, low parasitic capacitance in the transformer stage owing to the low number of winding turns of the step-up secondary transformer combined with the Cockroft-Walton circuit. I obtained a maximum laser output power of 44 W, a maximum system efficiency of over 16%, and the stability of laser output power of about 4.6% in this laser system.

  9. DC/DC Converter Stability Testing Study

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2008-01-01

    This report presents study results on hybrid DC/DC converter stability testing methods. An input impedance measurement method and a gain/phase margin measurement method were evaluated to be effective to determine front-end oscillation and feedback loop oscillation. In particular, certain channel power levels of converter input noises have been found to have high degree correlation with the gain/phase margins. It becomes a potential new method to evaluate stability levels of all type of DC/DC converters by utilizing the spectral analysis on converter input noises.

  10. Digital Control Technologies for Modular DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Kascak, Peter E.; Lebron-Velilla, Ramon

    2002-01-01

    Recent trends in aerospace Power Management and Distribution (PMAD) systems focus on using commercial off-the-shelf (COTS) components as standard building blocks. This move to more modular designs has been driven by a desire to reduce costs and development times, but is also due to the impressive power density and efficiency numbers achieved by today's commercial DC-DC converters. However, the PMAD designer quickly learns of the hidden "costs" of using COTS converters. The most significant cost is the required addition of external input filters to meet strict electromagnetic interference (MIAMI) requirements for space systems. In fact, the high power density numbers achieved by the commercial manufacturers are greatly due to the lack of necessary input filters included in the COTS module. The NASA Glenn Research Center is currently pursuing a digital control technology that addresses this problem with modular DC-DC converters. This paper presents the digital control technologies that have been developed to greatly reduce the input filter requirements for paralleled, modular DC-DC converters. Initial test result show that the input filter's inductor size was reduced by 75 percent, and the capacitor size was reduced by 94 percent while maintaining the same power quality specifications.

  11. Novel bidirectional DC-DC converters based on the three-state switching cell

    NASA Astrophysics Data System (ADS)

    da Silva Júnior, José Carlos; Robles Balestero, Juan Paulo; Lessa Tofoli, Fernando

    2016-05-01

    It is well known that there is an increasing demand for bidirectional DC-DC converters for applications that range from renewable energy sources to electric vehicles. Within this context, this work proposes novel DC-DC converter topologies that use the three-state switching cell (3SSC), whose well-known advantages over conventional existing structures are ability to operate at high current levels, while current sharing is maintained by a high frequency transformer; reduction of cost and dimensions of magnetics; improved distribution of losses, with consequent increase of global efficiency and reduction of cost associated to the need of semiconductors with lower current ratings. Three distinct topologies can be derived from the 3SSC: one DC-DC converter with reversible current characteristic able to operate in the first and second quadrants; one DC-DC converter with reversible voltage characteristic able to operate in the first and third quadrants and one DC-DC converter with reversible current and voltage characteristics able to operate in four quadrants. Only the topology with bidirectional current characteristic is analysed in detail in terms of the operating stages in both nonoverlapping and overlapping modes, while the design procedure of the power stage elements is obtained. In order to validate the theoretical assumptions, an experimental prototype is also implemented, so that relevant issues can be properly discussed.

  12. Bi-Directional DC-DC Converter for PHEV Applications

    SciTech Connect

    Abas Goodarzi

    2011-01-31

    Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

  13. Model predictive control of bidirectional isolated DC-DC converter for energy conversion system

    NASA Astrophysics Data System (ADS)

    Akter, Parvez; Uddin, Muslem; Mekhilef, Saad; Tan, Nadia Mei Lin; Akagi, Hirofumi

    2015-08-01

    Model predictive control (MPC) is a powerful and emerging control algorithm in the field of power converters and energy conversion systems. This paper proposes a model predictive algorithm to control the power flow between the high-voltage and low-voltage DC buses of a bidirectional isolated full-bridge DC-DC converter. The predictive control algorithm utilises the discrete nature of the power converters and predicts the future nature of the system, which are compared with the references to calculate the cost function. The switching state that minimises the cost function is selected for firing the converter in the next sampling time period. The proposed MPC bidirectional DC-DC converter is simulated with MATLAB/Simulink and further verified with a 2.5 kW experimental configuration. Both the simulation and experimental results confirm that the proposed MPC algorithm of the DC-DC converter reduces reactive power by avoiding the phase shift between primary and secondary sides of the high-frequency transformer and allow power transfer with unity power factor. Finally, an efficiency comparison is performed between the MPC and dual-phase-shift-based pulse-width modulation controlled DC-DC converter which ensures the effectiveness of the MPC controller.

  14. SUBCONTRACT REPORT: DC-DC Converter for Fuel Cell and Hybrid Vehicles

    SciTech Connect

    Marlino, Laura D; Zhu, Lizhi

    2007-07-01

    The goal of this project is to develop and fabricate a 5kW dc-dc converter with a baseline 14V output capability for fuel cell and hybrid vehicles. The major objectives for this dc-dc converter technology are to meet: Higher efficiency (92%); High coolant temperature,e capability (105 C); High reliability (15 Years/150,000miles); Smaller volume (5L); Lower weight (6kg); and Lower cost ($75/kW). The key technical challenge for these converters is the 105 C coolant temperatures. The power switches and magnetics must be designed to sustain these operating temperatures reliably, without a large cost/mass/volume penalty.

  15. Early Oscillation Detection Technique for Hybrid DC/DC Converters

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    Oscillation or instability is a situation that must be avoided for reliable hybrid DC/DC converters. A real-time electronics measurement technique was developed to detect catastrophic oscillations at early stages for hybrid DC/DC converters. It is capable of identifying low-level oscillation and determining the degree of the oscillation at a unique frequency for every individual model of the converters without disturbing their normal operations. This technique is specially developed for space-used hybrid DC/DC converters, but it is also suitable for most of commercial and military switching-mode power supplies. This is a weak-electronic-signal detection technique to detect hybrid DC/DC converter oscillation presented as a specific noise signal at power input pins. It is based on principles of feedback control loop oscillation and RF signal modulations, and is realized by using signal power spectral analysis. On the power spectrum, a channel power amplitude at characteristic frequency (CPcf) and a channel power amplitude at switching frequency (CPsw) are chosen as oscillation level indicators. If the converter is stable, the CPcf is a very small pulse and the CPsw is a larger, clear, single pulse. At early stage of oscillation, the CPcf increases to a certain level and the CPsw shows a small pair of sideband pulses around it. If the converter oscillates, the CPcf reaches to a higher level and the CPsw shows more high-level sideband pulses. A comprehensive stability index (CSI) is adopted as a quantitative measure to accurately assign a degree of stability to a specific DC/DC converter. The CSI is a ratio of normal and abnormal power spectral density, and can be calculated using specified and measured CPcf and CPsw data. The novel and unique feature of this technique is the use of power channel amplitudes at characteristic frequency and switching frequency to evaluate stability and identify oscillations at an early stage without interfering with a DC/DC converter s

  16. DC-DC Converter Topology Assessment for Large Scale Distributed Photovoltaic Plant Architectures

    SciTech Connect

    Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Sabate, Juan A; Steigerwald, Robert L; Jiang, Yan; Essakiappan, Somasundaram

    2011-07-01

    Distributed photovoltaic (PV) plant architectures are emerging as a replacement for the classical central inverter based systems. However, power converters of smaller ratings may have a negative impact on system efficiency, reliability and cost. Therefore, it is necessary to design converters with very high efficiency and simpler topologies in order not to offset the benefits gained by using distributed PV systems. In this paper an evaluation of the selection criteria for dc-dc converters for distributed PV systems is performed; this evaluation includes efficiency, simplicity of design, reliability and cost. Based on this evaluation, recommendations can be made as to which class of converters is best fit for this application.

  17. Development of a DC-DC conversion powering scheme for the CMS Phase-1 pixel upgrade

    NASA Astrophysics Data System (ADS)

    Feld, L.; Fimmers, C.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Rittich, D.; Sammet, J.; Wlochal, M.

    2014-01-01

    A novel powering scheme based on the DC-DC conversion technique will be exploited to power the CMS Phase-1 pixel detector. DC-DC buck converters for the CMS pixel project have been developed, based on the AMIS5 ASIC designed by CERN. The powering system of the Phase-1 pixel detector is described and the performance of the converter prototypes is detailed, including power efficiency, stability of the output voltage, shielding, and thermal management. Results from a test of the magnetic field tolerance of the DC-DC converters are reported. System tests with pixel modules using many components of the future pixel barrel system are summarized. Finally first impressions from a pre-series of 200 DC-DC converters are presented.

  18. Integrated modeling and control of a PEM fuel cell power system with a PWM DC/DC converter

    NASA Astrophysics Data System (ADS)

    Choe, Song-Yul; Lee, Jung-Gi; Ahn, Jong-Woo; Baek, Soo-Hyun

    A fuel cell powered system is regarded as a high current and low voltage source. To boost the output voltage of a fuel cell, a DC/DC converter is employed. Since these two systems show different dynamics, they need to be coordinated to meet the demand of a load. This paper proposes models for the two systems with associated controls, which take into account a PEM fuel cell stack with air supply and thermal systems, and a PWM DC/DC converter. The integrated simulation facilitates optimization of the power control strategy, and analyses of interrelated effects between the electric load and the temperature of cell components. In addition, the results show that the proposed power control can coordinate the two sources with improved dynamics and efficiency at a given dynamic load.

  19. Radiation Effects on DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Zhang, De-Xin; AbdulMazid, M. D.; Attia, John O.; Kankam, Mark D. (Technical Monitor)

    2001-01-01

    In this work, several DC-DC converters were designed and built. The converters are Buck Buck-Boost, Cuk, Flyback, and full-bridge zero-voltage switched. The total ionizing dose radiation and single event effects on the converters were investigated. The experimental results for the TID effects tests show that the voltages of the Buck Buck-Boost, Cuk, and Flyback converters increase as total dose increased when using power MOSFET IRF250 as a switching transistor. The change in output voltage with total dose is highest for the Buck converter and the lowest for Flyback converter. The trend of increase in output voltages with total dose in the present work agrees with those of the literature. The trends of the experimental results also agree with those obtained from PSPICE simulation. For the full-bridge zero-voltage switch converter, it was observed that the dc-dc converter with IRF250 power MOSFET did not show a significant change of output voltage with total dose. In addition, for the dc-dc converter with FSF254R4 radiation-hardened power MOSFET, the output voltage did not change significantly with total dose. The experimental results were confirmed by PSPICE simulation that showed that FB-ZVS converter with IRF250 power MOSFET's was not affected with the increase in total ionizing dose. Single Event Effects (SEE) radiation tests were performed on FB-ZVS converters. It was observed that the FB-ZVS converter with the IRF250 power MOSFET, when the device was irradiated with Krypton ion with ion-energy of 150 MeV and LET of 41.3 MeV-square cm/mg, the output voltage increased with the increase in fluence. However, for Krypton with ion-energy of 600 MeV and LET of 33.65 MeV-square cm/mg, and two out of four transistors of the converter were permanently damaged. The dc-dc converter with FSF254R4 radiation hardened power MOSFET's did not show significant change at the output voltage with fluence while being irradiated by Krypton with ion energy of 1.20 GeV and LET of 25

  20. Radiation effects on DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Zhang, Dexin; Attia, John O.; Kankam, Mark D. (Technical Monitor)

    2000-01-01

    DC-DC switching converters are circuits that can be used to convert a DC voltage of one value to another by switching action. They are increasing being used in space systems. Most of the popular DC-DC switching converters utilize power MOSFETs. However power MOSFETs, when subjected to radiation, are susceptible to degradation of device characteristics or catastrophic failure. This work focuses on the effects of total ionizing dose on converter performance. Four fundamental switching converters (buck converter, buck-boost converter, cuk converter, and flyback converter) were built using Harris IRF250 power MOSFETs. These converters were designed for converting an input of 60 volts to an output of about 12 volts with a switching frequency of 100 kHz. The four converters were irradiated with a Co-60 gamma source at dose rate of 217 rad/min. The performances of the four converters were examined during the exposure to the radiation. The experimental results show that the output voltage of the converters increases as total dose increases. However, the increases of the output voltage were different for the four different converters, with the buck converter and cuk converter the highest and the flyback converter the lowest. We observed significant increases in output voltage for cuk converter at a total dose of 24 krad (si).

  1. Radiation-Tolerant DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Skutt, Glenn; Sable, Dan; Leslie, Leonard; Graham, Shawn

    2012-01-01

    A document discusses power converters suitable for space use that meet the DSCC MIL-PRF-38534 Appendix G radiation hardness level P classification. A method for qualifying commercially produced electronic parts for DC-DC converters per the Defense Supply Center Columbus (DSCC) radiation hardened assurance requirements was developed. Development and compliance testing of standard hybrid converters suitable for space use were completed for missions with total dose radiation requirements of up to 30 kRad. This innovation provides the same overall performance as standard hybrid converters, but includes assurance of radiation- tolerant design through components and design compliance testing. This availability of design-certified radiation-tolerant converters can significantly reduce total cost and delivery time for power converters for space applications that fit the appropriate DSCC classification (30 kRad).

  2. Test Results of Selected Commercial DC/DC Converters under Cryogenic Temperatures - A Digest

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2010-01-01

    DC/DC converters are widely used in space power systems in the areas of power management and distribution, signal conditioning, and motor control. Design of DC/DC converters to survive cryogenic temperatures will improve the power system performance, simplify design, and reduce development and launch costs. In this work, the performance of nine COTS modular, low-tomedium power DC/DC converters was investigated under cryogenic temperatures. The converters were evaluated in terms of their output regulation, efficiency, and input and output currents. At a given temperature, these properties were obtained at various input voltages and at different load levels. A summary on the performance of the tested converters was given. More comprehensive testing and in-depth analysis of performance under long-term exposure to extreme temperatures are deemed necessary to establish the suitability of these and other devices for use in the harsh environment of space exploration missions.

  3. DC-DC converters with reduced mass for trackers at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Affolder, A.; Allongue, B.; Blanchot, G.; Faccio, F.; Fuentes, C.; Greenall, A.; Michelis, S.

    2011-11-01

    The development at CERN of low noise DC-DC converters for the powering of front-end systems enables the implementation of efficient powering schemes for the physics experiments at the HL-LHC. Recent tests made on the ATLAS short strip tracker modules confirm the full electromagnetic compatibility of the DC-DC converter prototypes with front-end detectors. The integration of the converters in the trackers front-ends needs to address also the material budget constraints. The impact of the DC-DC converters onto the material budget of the ATLAS tracker modules is discussed and mass reduction techniques are explored, leading to a compromise between electromagnetic compatibility and mass. Low mass shield implementations and Aluminum core inductors are proposed. Also, the impact on emitted noise due to a size reduction of critical components is discussed. Finally, material reduction techniques are discussed at the board layout and manufacturing levels.

  4. Modelling and Simulation of Digital Compensation Technique for dc-dc Converter by Pole Placement

    NASA Astrophysics Data System (ADS)

    Shenbagalakshmi, R.; Sree Renga Raja, T.

    2015-09-01

    A thorough and effective analysis of the dc-dc converters is carried out in order to achieve the system stability and to improve the dynamic performance. A small signal modelling based on state space averaging technique for dc-dc converters is carried out. A digital state feedback gain matrix is derived by pole placement technique in order to achieve the stability of a completely controllable system. A prediction observer for the dc-dc converters is designed and a dynamic compensation (observer plus control law) is provided using separation principle. The output is very much improved with zero output voltage ripples, zero peak overshoot, and much lesser settling time in the range of ms and with higher overall efficiency (>90 %).

  5. Low-temperature operation of a Buck DC/DC converter

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    Low-temperature (77 K) operation of a 42/28 V, 175 W, 50 kHz PWM Buck DC/DC converter designed with commercially available components is reported. Overall, the converter losses decreased at 77 K compared to room temperature operation. A full-load efficiency of 97 percent was recorded at liquid-nitrogen temperature, compared to 95.8 percent at room temperature. Power MOSFET operation improved significantly where as the output rectifier operation deteriorated at low-temperature. The performance of the output filter inductor and capacitor did not change significantly at 77 K compared to room temperature performance. It is possible to achieve high-density and high efficiency power conversion at low-temperatures due to improved electronic, electrical and thermal properties of materials.

  6. DC-DC converters in 0.35μm CMOS technology

    NASA Astrophysics Data System (ADS)

    Michelis, S.; Allongue, B.; Blanchot, G.; Faccio, F.; Fuentes, C.; Orlandi, S.; Saggini, S.; Cengarle, S.; Ongaro, F.

    2012-01-01

    In view of the upgrade of the LHC experiments, we are developing custom DC/DC converters for a more efficient power distribution scheme. A new prototype have been integrated in ASICs in the selected 0.35μm commercial high voltage technology that has been successfully tested for all radiation effects: TID, displacement damage and Single Event Burnout. This converter has been optimized for high efficiency and improved radiation tolerance. Amongst the new features the most relevant are the presence of internal linear regulators, protection circuits with a state-machine and a new pinout for a modified assembly in package in order to reduce conductive losses. This paper illustrates the design of the prototype followed by functional and radiation tests.

  7. Intelligent dc-dc Converter Technology Developed and Tested

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2001-01-01

    The NASA Glenn Research Center and the Cleveland State University have developed a digitally controlled dc-dc converter to research the benefits of flexible, digital control on power electronics and systems. Initial research and testing has shown that conventional dc-dc converters can benefit from improved performance by using digital-signal processors and nonlinear control algorithms.

  8. A Compact, Soft-Switching DC-DC Converter for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Button, Robert; Redilla, Jack; Ayyanar, Raja

    2003-01-01

    A hybrid, soft-switching, DC-DC converter has been developed with superior soft switching characteristics, high efficiency, and low electro-magnetic interference. This hybrid topology is comprised of an uncontrolled bridge operating at full pulse-width, and a controlled section operating as a conventional phase modulated converter. The unique topology is able to maintain zero voltage switching down to no load operating conditions. A breadboard prototype was developed and tested to demonstrate the benefits of the topology. Improvements were then made to reduce the size of passive components and increase efficiency in preparation for packaging. A packaged prototype was then designed and built, and several innovative packaging techniques are presented. Performance test data is presented that reveals deficiencies in the design of the power transformer. A simple redesign of the transformer windings eliminated the deficiency. Future plans to improve the converter and packaging design are presented along with several conclusions.

  9. A Reduced-Part, Triple-Voltage DC-DC Converter for Electric Vehicle Power Management

    SciTech Connect

    Su, Gui-Jia; Tang, Lixin

    2007-01-01

    Electrical power systems in future hybrid and fuel cell vehicles may consist of three voltage nets; 14 V, 42 V and high voltage (>200 V) buses. A soft-switched, bi-directional dc-dc converter using only four switches was proposed for interconnecting the three nets. This paper presents a reduced- part dc-dc converter, which decreases the converter cost while retaining all the favorable features of the original topology. Simulation and experimental data are included to verify a simple power flow control scheme.

  10. New topology for DC/DC bidirectional converter for hybrid systems in renewable energy

    NASA Astrophysics Data System (ADS)

    Lopez, Juan Carlos; Ortega, Manuel; Jurado, Francisco

    2015-03-01

    This article presents a new isolated DC/DC bidirectional converter with soft switching, using a transformer with two voltage taps and two full bridges with insulated-gate bipolar transistors (IGBTs), one on each side of the transformer to be integrated in hybrid systems of renewable energy. A large voltage conversion ratio can be achieved using this converter, in buck and booster modes. Also medium and high DC power can be converted with a good efficiency. Analysis and switching techniques have been reported. To verify the principle of operation, a laboratory prototype of 10 kW has been performed. Experimental results are presented, operating in boost mode. The switching algorithm used has been modelled in MATLAB-Simulink to generate C code. This code has been implemented in a DSP F2812, which has been used to build the prototype.

  11. A DC-DC conversion powering scheme for the CMS Phase-1 pixel upgrade

    NASA Astrophysics Data System (ADS)

    Feld, L.; Fleck, M.; Friedrichs, M.; Hensch, R.; Karpinski, W.; Klein, K.; Sammet, J.; Wlochal, M.

    2013-02-01

    The CMS pixel detector was designed for a nominal instantaneous LHC luminosity of 1ṡ1034 cm-2s-1. During Phase-1 of the LHC upgrade, the instantaneous luminosity will be increased to about twice this value. To preserve the excellent performance of the pixel detector despite the increase in particle rates and track densities, the CMS Collaboration foresees the exchange of its pixel detector in the shutdown 2016/2017. The new pixel detector will be improved in many respects, and will comprise twice the number of readout channels. A powering scheme based on DC-DC conversion will be adopted, which will enable the provision of the required power with the present cable plant. The powering scheme of the CMS pixel detector will be described, and the performance of prototype DC-DC buck converters will be presented, including power efficiency, system tests with DC-DC converters and pixel modules, thermal management, reliability at low temperature, and studies of potential frequency locking between DC-DC converters.

  12. Single Event Burnout in DC-DC Converters for the LHC Experiments

    SciTech Connect

    Claudio H. Rivetta et al.

    2001-09-24

    High voltage transistors in DC-DC converters are prone to catastrophic Single Event Burnout in the LHC radiation environment. This paper presents a systematic methodology to analyze single event effects sensitivity in converters and proposes solutions based on de-rating input voltage and output current or voltage.

  13. DC-DC powering for the CMS pixel upgrade

    NASA Astrophysics Data System (ADS)

    Feld, Lutz; Fleck, Martin; Friedrichs, Marcel; Hensch, Richard; Karpinski, Waclaw; Klein, Katja; Rittich, David; Sammet, Jan; Wlochal, Michael

    2013-12-01

    The CMS experiment plans to replace its silicon pixel detector with a new one with improved rate capability and an additional detection layer at the end of 2016. In order to cope with the increased number of detector modules the new pixel detector will be powered via DC-DC converters close to the sensitive detector volume. This paper reviews the DC-DC powering scheme and reports on the ongoing R&D program to develop converters for the pixel upgrade. Design choices are discussed and results from the electrical and thermal characterisation of converter prototypes are shown. An emphasis is put on system tests with up to 24 converters. The performance of pixel modules powered by DC-DC converters is compared to conventional powering. The integration of the DC-DC powering scheme into the pixel detector is described and system design issues are reviewed.

  14. Early Oscillation Detection for DC/DC Converter Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.

  15. A Versatile Step-Up/Step-Down Switched-Capacitor-Based DC-DC Converter

    NASA Astrophysics Data System (ADS)

    Wei, Chia-Ling; Wu, Lu-Yao; Yang, Hsiu-Hui; Tsai, Chien-Hung; Liu, Bin-Da; Chang, Soon-Jyh

    For battery-powered electronic products, one way to extend battery life is to use a versatile step-up/step-down DC-DC converter. A new versatile step-up/step-down switched-capacitor-based converter structure is proposed, and its efficiency is analyzed. In the step-down case, the efficiency is the same as, or even better than the efficiency of linear regulators.

  16. Design of a 3/2 Step-Up SC DC-DC Converter for Diode-Lamps

    NASA Astrophysics Data System (ADS)

    Eguchi, Kei; Ueno, Fumio; Inoue, Takahiro

    Aiming an IC implementation of a DC-DC converter which can provide a 4.5˜5 V stepped-up voltage for diode-lamps, a switched-capacitor (SC) DC-DC converter is proposed in this paper. Different from a conventional approach employing doubler circuits, the proposed circuit provides the output voltage by achieving a 3/2 step-up conversion. Therefore, decline in power efficiency for the proposed circuit is gentle. The process of DC-DC conversion is analyzed theoretically. To confirm the validity of the circuit design, SPICE simulations are performed. For the input voltage 3.2˜4.5 V, the power efficiency is 73˜92 % in the output current about 150 mA.

  17. DC-DC power converter research for Orbiter/Station power exchange

    NASA Technical Reports Server (NTRS)

    Ehsani, M.

    1993-01-01

    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.

  18. Cryogenic Evaluation of an Advanced DC/DC Converter Module for Deep Space Applications

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Hammoud, Ahmad; Gerber, Scott S.; Patterson, Richard

    2003-01-01

    DC/DC converters are widely used in power management, conditioning, and control of space power systems. Deep space applications require electronics that withstand cryogenic temperature and meet a stringent radiation tolerance. In this work, the performance of an advanced, radiation-hardened (rad-hard) commercial DC/DC converter module was investigated at cryogenic temperatures. The converter was investigated in terms of its steady state and dynamic operations. The output voltage regulation, efficiency, terminal current ripple characteristics, and output voltage response to load changes were determined in the temperature range of 20 to -140 C. These parameters were obtained at various load levels and at different input voltages. The experimental procedures along with the results obtained on the investigated converter are presented and discussed.

  19. A Ring-Type SC DC-DC Converter with Series-Connected Capacitors

    NASA Astrophysics Data System (ADS)

    Eguchi, Kei; Tabata, Toru; Zhu, Hongbing; Ueno, Fumio; Inoue, Takahiro

    A ring-type SC DC-DC converter with series-connected capacitors is proposed in this paper. The series-connected capacitors in a ring-connection enable us to convert an input voltage at short step-up/step-down interval. Hence, the proposed circuit can provide more various types of output-voltages than conventional converters. Concerning the proposed DC-DC converter, SPICE simulations are performed to investigate the characteristics of the circuit. The SPICE simulations show that 1. the proposed circuit can realize shorter step-up/step-down interval than the conventional ring-type power converter and 2. the efficiency is more than 95 % when the output load Ro = 1kΩ.

  20. Lightweight DC-DC Converter with Partial Power Processing and MPPT for a Solar Powered Aircraft

    NASA Astrophysics Data System (ADS)

    Diab-Marzouk, Ahmad

    A lightweight dc-dc partial power processing converter is demonstrated for solar aerospace applications. A system-level model is conceived to determine conformity to payload and target distance objectives, with the Solarship aircraft used as an application example. The concept of partial power processing is utilized to realize a high efficiency lightweight converter that performs Max Peak Power Tracking (MPPT) to transfer power from the aircraft solar array to the high-voltage battery bus. The isolated Cuk is determined to be a suitable converter topology for the application. A small-signal model is derived for control design. The operation of a 400V, 2.7 kW prototype is verified at high frequency (200 kHz), high efficiency (> 98%), small mass (0.604 kg), and uses no electrolytic capacitors. MPPT operation is verified on a 376 V commercial solar installation at The University of Toronto. The prototype serves as an enabling technology for solar aerospace applications.

  1. A Plasma-Based DC-DC Electrical Transformer

    NASA Astrophysics Data System (ADS)

    Nebel, Richard; Finn, John

    2013-10-01

    Previous work has indicated that it may be possible to make DC-DC electrical transformers using plasmas. The mechanism is an MHD electromagnetic relaxation process induced by helical electrodes. This process is now being tested on the Bismark device at Tibbar Technologies.

  2. A Three-Phase Bidirectional DC-DC Converter for Automotive Applications

    SciTech Connect

    Su, Gui-Jia; Tang, Lixin

    2008-01-01

    This paper presents a three-phase soft-switching, bidirectional dc-dc converter for high-power automotive applications. The converter employs dual three-phase active bridges and operates with a novel asymmetrical but fixed duty cycle for the top and bottom switches of each phase leg. Simulation and experimental data on a 6-kW prototype are included to verify the novel operating and power flow control principles.

  3. Design of piezoelectric transformer for DC/DC converter with stochastic optimization method

    NASA Astrophysics Data System (ADS)

    Vasic, Dejan; Vido, Lionel

    2016-04-01

    Piezoelectric transformers were adopted in recent year due to their many inherent advantages such as safety, no EMI problem, low housing profile, and high power density, etc. The characteristics of the piezoelectric transformers are well known when the load impedance is a pure resistor. However, when piezoelectric transformers are used in AC/DC or DC/DC converters, there are non-linear electronic circuits connected before and after the transformer. Consequently, the output load is variable and due to the output capacitance of the transformer the optimal working point change. This paper starts from modeling a piezoelectric transformer connected to a full wave rectifier in order to discuss the design constraints and configuration of the transformer. The optimization method adopted here use the MOPSO algorithm (Multiple Objective Particle Swarm Optimization). We start with the formulation of the objective function and constraints; then the results give different sizes of the transformer and the characteristics. In other word, this method is looking for a best size of the transformer for optimal efficiency condition that is suitable for variable load. Furthermore, the size and the efficiency are found to be a trade-off. This paper proposes the completed design procedure to find the minimum size of PT in need. The completed design procedure is discussed by a given specification. The PT derived from the proposed design procedure can guarantee both good efficiency and enough range for load variation.

  4. Design and implementation of a switched capacitor-based embedded hybrid DC-DC converter

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kaushik; Mandal, Pradip

    2012-06-01

    Here, we propose an integrated hybrid DC-DC converter suitable for high drop-out energy conscious applications. In the hybrid converter topology, along with a linear regulator two switched capacitors are used to store and recycle charge for better power efficiency. Without significant power loss the switched capacitors step down the supply voltage for the linear regulator working in low drop-out mode. The linear regulator, on the other hand, attenuates the voltage ripple that originates from the switched capacitors converter on its power supply rejection ratio. It also helps for line and load regulation. Additionally, a synthesised counter ripple is injected through the linear regulator to further reduce the output ripple. With these two techniques, for a moderate load current and an acceptable output ripple, the switching and load capacitors are reduced to a value which can be implemented within the chip. The proposed integrated converter circuit has been designed, implemented and tested in a 0.18 mm CMOS process for 3.3-1.3V conversion. With two switching capacitors of 210 pF each and 100 pF load capacitor, more than 13 mA of load current, measured peak-to-peak output voltage ripple is 146 mV. The achieved measured power efficiency is 64.97%. Exhaustive silicon characterisation of the converter is done to observe the power efficiency and ripple variation at different frequency of operations.

  5. Electrodeposited Nanolaminated CoNiFe Cores for Ultracompact DC-DC Power Conversion

    SciTech Connect

    Kim, J; Kim, M; Herrault, F; Park, JY; Allen, MG

    2015-09-01

    Laminated metallic alloy cores (i.e., alternating layers of thin film metallic alloy and insulating material) of appropriate lamination thickness enable suppression of eddy current losses at high frequencies. Magnetic cores comprised of many such laminations yield substantial overall magnetic volume, thereby enabling high-power operation. Previously, we reported nanolaminated permalloy (Ni-80 Fe-20) cores based on a sequential electrodeposition technique, demonstrating negligible eddy current losses at peak flux densities up to 0.5 T and operating at megahertz frequencies. This paper demonstrates improved performance of nanolaminated cores comprising tens to hundreds of layers of 300-500-nm-thick CoNiFe films that exhibit superior magnetic properties (e.g., higher saturation flux density and lower coercivity) than permalloy. Nanolaminated CoNiFe cores can be operated up to a peak flux density of 0.9 T, demonstrating improved power handling capacity and exhibiting 30% reduced volumetric core loss, attributed to lowered hysteresis losses compared to the nanolaminated permalloy core of the same geometry. Operating these cores in a buck dc-dc power converter at a switching frequency of 1 MHz, the nanolaminated CoNiFe cores achieved a conversion efficiency exceeding 90% at output power levels up to 7 W, compared to an achieved permalloy core conversion efficiency below 86% at 6 W.

  6. Wide-range 7-switch flying capacitor based dc-dc converter for point-of-load applications

    NASA Astrophysics Data System (ADS)

    Jain, Parth

    In this thesis a dc-dc converter referred to as the 7-switch flying capacitor (7SFC) based multi-level buck converter intended for point-of-load applications is presented. The 7SFC operates with the principle of "transformability" which allows it to run in several switching modes when paired with a digital controller. The mode is selected based on input and output conditions by estimating the highest efficiency mode. The 7SFC converter utilizes a flying capacitor, which for certain modes allows for a large reduction in switching losses, especially when the converter is operated with high-input voltages. Compared to the conventional 2-phase interleaved buck converter, the 7SFC is able to reduce the size of the output inductors and capacitor by 33%. The 7SFC discrete prototype is able to achieve efficiencies greater than 90% over the majority of the operating range.

  7. A Reduced-Part, Triple-Voltage DC-DC Converter for EV/HEV Power Management

    SciTech Connect

    Su, Gui-Jia; Tang, Lixin

    2009-01-01

    Electrical power systems in future hybrid and fuel cell vehicles may consist of three voltage nets: 14 V, 42 V, and high voltage (>200 V) buses. A soft-switched, bidirectional dc-dc converter that uses only four switches was proposed for interconnecting the three nets. This paper presents a reduced-part dc-dc converter, which decreases the converter cost while retaining all the favorable features of the original topology. Experimental data are included to verify a simple power flow control scheme.

  8. ZVS Full-Bridge Based DC-DC Converter with Linear Voltage Gain According to Duty Cycle

    NASA Astrophysics Data System (ADS)

    Do, Hyun-Lark

    2013-09-01

    This paper presents a zero-voltage-switching (ZVS) full-bridge based DC-DC converter with linear voltage gain according to duty cycle. The proposed converter is based on an asymmetrical pulse-width-modulation (APWM) full-bridge converter which has various advantages over other converters. However, it has some drawbacks such as limited maximum duty cycle to 0.5 and narrow input range. The proposed converter overcomes these problems. The duty cycle is not limited and input voltage range is wide. Also, the ZVS operation of all power switches is achieved. Therefore, switching losses are significantly reduced and high-efficiency is obtained. Steady-state analysis and experimental results for the proposed converter are presented to validate the feasibility and the performance of the proposed converter.

  9. Experience from design, prototyping and production of a DC-DC conversion powering scheme for the CMS Phase-1 Pixel Upgrade

    NASA Astrophysics Data System (ADS)

    Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Schmitz, S.; Wlochal, M.

    2016-02-01

    The CMS collaboration has adopted a DC-DC conversion powering scheme for the Phase-1 Upgrade of its pixel detector. DC-DC buck converters with a conversion ratio of around 3 are installed on the support structures, outside of the sensitive tracking region, requiring a re-design of the low and high voltage distribution to the pixel modules. After several years of R&D, the project has entered the production phase. A total of 1800 DC-DC converters are being produced, and rigorous quality assurance and control is being employed during the production process. The testing program is outlined, results from mass production are presented and issues that have been encountered are described. In addition, two system level challenges, namely the choice of output voltage in the presence of large, load-dependent voltage drops, and the thermal management required to remove the heat load caused by the DC-DC converters, are discussed.

  10. Sliding-mode control of single input multiple output DC-DC converter

    NASA Astrophysics Data System (ADS)

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  11. Commercial Of-The Shelf DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Denzinger, W.; Baumel, S.

    2011-10-01

    A commercial of-the-shelf (COTS) DC/DC converter for the supply of digital electronics on board of spacecraft has been developed with special emphasis on: *Low cost Readily available *Easy manufacturing *No use of ITAR listed EEE parts like rad-hard mosfets *Minimum number of rad-hard digital and analog IC's *Design tolerance against SEE by appropriate filtering The study was supported by the European Space Agency (ESA) under the contract number 21729/08/NL7LvH.

  12. Low dose failures of hardened DC-DC power converters

    NASA Technical Reports Server (NTRS)

    Lehman, J.; Yui, C.; Rax, B. G.; Miyahira, T. F.; Weideman, M.; Schrick, P.; Swift, G. M.; Johnston, A. H.

    2002-01-01

    Box-level total dose testing of the FOG (Fiber Optic Gyro) by IXSEA at ESA's GammabeamFacility were abruptly terminated at 8krad (Si) due to catastrophic failure (complete shutdown). This was unexpected because all components within the gyro were supposedly radiation tolerant. Further testing showed that the components responsible for the failure were two DC-DC converters, manufactured by Interpoint, that stopped regulating shortly before shutdown. This paper summarizes diagnostic test results for the converters to determine the underlying cause of the unexpected failure at low levels of radiation.

  13. Thermoelectric-Generator-Based DC-DC Conversion Networks for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Li, Molan; Xu, Shaohui; Chen, Qiang; Zheng, Li-Rong

    2011-05-01

    Maximizing electrical energy generation through waste heat recovery is one of the modern research questions within automotive applications of thermoelectric (TE) technologies. This paper proposes a novel concept of distributed multisection multilevel DC-DC conversion networks based on thermoelectric generators (TEGs) for automotive applications. The concept incorporates a bottom-up design approach to collect, convert, and manage vehicle waste heat efficiently. Several state-of-the-art thermoelectric materials are analyzed for the purpose of power generation at each waste heat harvesting location on a vehicle. Optimal materials and TE couple configurations are suggested. Moreover, a comparison of prevailing DC-DC conversion techniques was made with respect to applications at each conversion level within the network. Furthermore, higher-level design considerations are discussed according to system specifications. Finally, a case study is performed to compare the performance of the proposed network and a traditional single-stage system. The results show that the proposed network enhances the system conversion efficiency by up to 400%.

  14. A 1.6-kW, 110-kHz dc-dc converter optimized for IGBT's

    NASA Technical Reports Server (NTRS)

    Chen, Keming; Stuart, Thomas A.

    1993-01-01

    A full bridge dc-dc converter using a zero-current and zero-voltage switching technique is described. This circuit utilizes the characteristics of the IGBT to achieve power and frequency combinations that are much higher than previously reported for this device. Experimental results are included for a 1.6-kW, 110-kHz converter with 95 percent efficiency.

  15. Double layer capacitor/DC-DC converter system applied to constant power loads

    SciTech Connect

    Spyker, R.L.; Nelms, R.M.

    1996-12-31

    Ultracapacitors or double layer capacitors are a recent technology based on the well-known electrochemical phenomenon of extremely high capacitance/unit area in an electrode-electrolyte interface and the high surface area achievable in activated carbon fibers. Capacitors have been tested with a rated capacitance value of 470 F and a rated voltage of 2.3 V. Test voltages as high as 3V (30% above rated) have been used without any short term effect on measured capacitance. At 3 V the total energy storage capacity of one capacitor is 2,100 Joules. With a total volume of 245 cm{sup 3}, the specific energy of this capacitor is 8.5 J/cm{sup 3}. To tap this entire energy store would require running the capacitor to zero voltage. Of course, few loads to which a capacitor bank might be connected can tolerate any drop in input voltage. To remedy this problem a DC/DC converter between the capacitor bank and load is proposed. This paper describes optimization of capacitor bank configurations when supplying a constant power load through a DC/DC converter.

  16. A fully on-chip three-terminal switched-capacitor DC-DC converter for low-voltage CMOS LSIs

    NASA Astrophysics Data System (ADS)

    Kojima, Yuta; Hirose, Tetsuya; Tsubaki, Keishi; Ozaki, Toshihiro; Asano, Hiroki; Kuroki, Nobutaka; Numa, Masahiro

    2016-04-01

    In this paper, we present a fully on-chip switched-capacitor DC-DC converter for low-voltage CMOS LSIs. The converter has three terminals of input, ground, and output, by developing control circuits with fully on-chip configuration. We employ an ultra low-power nanoampere bias current and voltage reference circuit to achieve ultra low-power dissipation of control circuits. It enables us to realize a highly efficient power conversion circuit at light-load-current applications. The converter achieves highly efficient and robust voltage conversion using a pulse frequency modulation control circuit and a start-up/fail-safe circuit. Measurement results demonstrated that the converter can convert a 3.0 V input into 1.2 V output successfully. The start-up and fail-safe operations were confirmed through the measurement. The efficiency was more than 50% in the range of 2-6 µA load current.

  17. Power Network impedance effects on noise emission of DC-DC converters

    NASA Astrophysics Data System (ADS)

    Esteban, M. C.; Arteche, F.; Iglesias, M.; Gimeno, A.; Arcega, F. J.; Johnson, M.; Cooper, W. E.

    2012-01-01

    The characterization of electromagnetic noise emissions of DC-DC converters is a critical issue that has been analyzed during the desing phase of CMS tracker upgrade. Previous simulation studies showed important variations in the level of conducted emissions when DC-DC converters are loaded/driven by different impedances and power network topologies. Several tests have been performed on real DC-DC converters to validate the Pspice model and simulation results. This paper presents these test results. Conducted noise emissions at the input and at the output terminals of DC-DC converters has been measured for different types of power and FEE impedances. Special attention has been paid to influence on the common-mode emissions by the carbon fiber material used to build the mechanical structure of the central detector. These study results show important recommendations and criteria to be applied in order to decrease the system noise level when integrating the DC-DC.

  18. Practical Design Guidelines of qZSI Based Step-Up DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Zakis, Janis; Vinnikov, Dmitri; Roasto, Indrek; Jalakas, Tanel

    2010-01-01

    This paper presents some design guidelines for a new voltage fed step-up DC/DC isolated converter. The most significant advantage of proposed converter is voltage buck-boost operation on single stage. The most promising application for proposed converter is in the field of distributed power generation e.g. fuel cells or photovoltaic. The most sensitive issues - such as power losses caused by high currents in the input side of converter and high transient overvoltages across the inverter bridge caused by stray inductances were discussed and solved. The proposals and recommendations to overcome these issues are given in the paper. The Selection and design guidelines of converter elements are proposed and explained. The prototype of proposed converter was built and experimentally tested. Some results are presented and evaluated.

  19. High-efficiency grid-connected photovoltaic module integrated converter system with high-speed communication interfaces for small-scale distribution power generation

    SciTech Connect

    Choi, Woo-Young; Lai, Jih-Sheng

    2010-04-15

    This paper presents a high-efficiency grid-connected photovoltaic (PV) module integrated converter (MIC) system with reduced PV current variation. The proposed PV MIC system consists of a high-efficiency step-up DC-DC converter and a single-phase full-bridge DC-AC inverter. An active-clamping flyback converter with a voltage-doubler rectifier is proposed for the step-up DC-DC converter. The proposed step-up DC-DC converter reduces the switching losses by eliminating the reverse-recovery current of the output rectifying diodes. To reduce the PV current variation introduced by the grid-connected inverter, a PV current variation reduction method is also suggested. The suggested PV current variation reduction method reduces the PV current variation without any additional components. Moreover, for centralized power control of distributed PV MIC systems, a PV power control scheme with both a central control level and a local control level is presented. The central PV power control level controls the whole power production by sending out reference power signals to each individual PV MIC system. The proposed step-up DC-DC converter achieves a high-efficiency of 97.5% at 260 W output power to generate the DC-link voltage of 350 V from the PV voltage of 36.1 V. The PV MIC system including the DC-DC converter and the DC-AC inverter achieves a high-efficiency of 95% with the PV current ripple less than 3% variation of the rated PV current. (author)

  20. Development of a Novel Bi-Directional Isolated Multiple-Input DC-DC Converter

    SciTech Connect

    Li, H.

    2005-10-24

    There is vital need for a compact, lightweight, and efficient energy-storage system that is both affordable and has an acceptable cycle life for the large-scale production of electric vehicles (EVs) and hybrid electric vehicles (HEVs). Most of the current research employs a battery-storage unit (BU) combined with a fuel cell (FC) stack in order to achieve the operating voltage-current point of maximum efficiency for the FC system. A system block diagram is shown in Fig.1.1. In such a conventional arrangement, the battery is sized to deliver the difference between the energy required by the traction drive and the energy supplied by the FC system. Energy requirements can increase depending on the drive cycle over which the vehicle is expected to operate. Peak-power transients result in an increase of losses and elevated temperatures which result in a decrease in the lifetime of the battery. This research will propose a novel two-input direct current (dc) dc to dc converter to interface an additional energy-storage element, an ultracapacitor (UC), which is shown in Fig.1.2. It will assist the battery during transients to reduce the peak-power requirements of the battery.

  1. Robust DC/DC converter control for polymer electrolyte membrane fuel cell application

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Xiong; Yu, Duck-Hyun; Chen, Shi-An; Kim, Young-Bae

    2014-09-01

    This study investigates a robust controller in regulating the pulse width modulation (PWM) of a DC/DC converter for a polymer electrolyte membrane fuel cell (PEMFC) application. A significant variation in the output voltage of a PEMFC depends on the power requirement and prevents a PEMFC from directly connecting to a subsequent power bus. DC/DC converters are utilized to step-up or step-down voltage to match the subsequent power bus voltage. In this study, a full dynamic model, which includes a PEMFC and boost and buck DC/DC converters, is developed under MATLAB/Simulink environment for control. A robust PWM duty ratio control for the converters is designed using time delay control (TDC). This control enables state variables to accurately follow the dynamics of a reference model using time-delayed information of plant input and output information within a few sampling periods. To prove the superiority of the TDC performance, traditional proportional-integral control (PIC) and model predictive control (MPC) are designed and implemented, and the simulation results are compared. The efficacies of TDC for the PEMFC-fed PWM DC/DC converters are validated through experimental test results using a 100 W PEMFC as well as boost and buck DC/DC converters.

  2. A Low-Power Asynchronous Step-Down DC-DC Converter for Implantable Devices.

    PubMed

    Al-Terkawi Hasib, Omar; Sawan, M; Savaria, Y

    2011-06-01

    In this paper, we present a fully integrated asynchronous step-down switched capacitor dc-dc conversion structure suitable for supporting ultra-low-power circuits commonly found in biomedical implants. The proposed converter uses a fully digital asynchronous state machine as the heart of the control circuitry to generate the drive signals. To minimize the switching losses, the asynchronous controller scales the switching frequency of the drive signals according to the loading conditions. It also turns on additional parallel switches when needed and has a backup synchronous drive mode. This circuit regulates load voltages from 300 mV to 1.1 V derived from a 1.2-V input voltage. A total of 350 pF on-chip capacitance was implemented to support a maximum of 230-μ W load power, while providing efficiency up to 80%. The circuit validating the proposed concepts was fabricated in 0.13- μm complementary metal-oxide semiconductor technology. Experimental test results confirm the expected functionality and performance of the proposed circuit. PMID:23851480

  3. A Low-Power Asynchronous Step-Down DC-DC Converter for Implantable Devices.

    PubMed

    Al-Terkawi Hasib, Omar; Sawan, M; Savaria, Y

    2011-06-01

    In this paper, we present a fully integrated asynchronous step-down switched capacitor dc-dc conversion structure suitable for supporting ultra-low-power circuits commonly found in biomedical implants. The proposed converter uses a fully digital asynchronous state machine as the heart of the control circuitry to generate the drive signals. To minimize the switching losses, the asynchronous controller scales the switching frequency of the drive signals according to the loading conditions. It also turns on additional parallel switches when needed and has a backup synchronous drive mode. This circuit regulates load voltages from 300 mV to 1.1 V derived from a 1.2-V input voltage. A total of 350 pF on-chip capacitance was implemented to support a maximum of 230-μ W load power, while providing efficiency up to 80%. The circuit validating the proposed concepts was fabricated in 0.13- μm complementary metal-oxide semiconductor technology. Experimental test results confirm the expected functionality and performance of the proposed circuit.

  4. Development of a fuzzy logic controller for dc/dc converters: Design, computer simulation, and experimental evaluation

    SciTech Connect

    So, W.C.; Tse, C.K.; Lee, Y.S.

    1996-01-01

    The design of a fuzzy logic controller for dc/dc converters is described in this paper. A brief review of fuzzy logic and its application to control is first given. Then, the derivation of a fuzzy control algorithm for regulating dc/dc converters is described in detail. The proposed fuzzy control is evaluated by computer simulations as well as experimental measurements of the closed-loop performance of simple dc/dc converters in respect of load regulation and line regulation.

  5. The Series Connected Buck Boost Regulator Concept for High Efficiency Light Weight DC Voltage Regulation

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.

    2003-01-01

    Improvements in the efficiency and size of DC-DC converters have resulted from advances in components, primarily semiconductors, and improved topologies. One topology, which has shown very high potential in limited applications, is the Series Connected Boost Unit (SCBU), wherein a small DC-DC converter output is connected in series with the input bus to provide an output voltage equal to or greater than the input voltage. Since the DC-DC converter switches only a fraction of the power throughput, the overall system efficiency is very high. But this technique is limited to applications where the output is always greater than the input. The Series Connected Buck Boost Regulator (SCBBR) concept extends partial power processing technique used in the SCBU to operation when the desired output voltage is higher or lower than the input voltage, and the implementation described can even operate as a conventional buck converter to operate at very low output to input voltage ratios. This paper describes the operation and performance of an SCBBR configured as a bus voltage regulator providing 50 percent voltage regulation range, bus switching, and overload limiting, operating above 98 percent efficiency. The technique does not provide input-output isolation.

  6. The DC-DC conversion power system of the CMS Phase-1 pixel upgrade

    NASA Astrophysics Data System (ADS)

    Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Schmitz, St.; Wlochal, M.

    2015-01-01

    The pixel detector of the CMS experiment will be exchanged during the year-end technical stop in 2016/2017, as part of the experiment's Phase-1 upgrade. The new device will feature approximately twice the number of readout channels, and consequently the power consumption will be doubled. By moving to a DC-DC conversion powering scheme, it is possible to power the new pixel detector with the existing power supplies and cable plant. The power system of the Phase-1 pixel detector is described and the performance of the new components, including DC-DC converters, DC-DC converter motherboards and various power distribution boards, is detailed. The outcome of system tests in terms of electrical behaviour, thermal management and pixel module performance is discussed.

  7. Nonlinear Phenomena and Resonant Parametric Perturbation Control in QR-ZCS Buck DC-DC Converters

    NASA Astrophysics Data System (ADS)

    Hsieh, Fei-Hu; Liu, Feng-Shao; Hsieh, Hui-Chang

    The purpose of this study is to investigate the chaotic phenomena and to control in current-mode controlled quasi-resonant zero-current-switching (QR-ZCS) DC-DC buck converters, and to present control of chaos by resonant parametric perturbation control methods. First of all, MATLAB/SIMULINK is used to derive a mathematical model for QR-ZCS DC-DC buck converters, and to simulate the converters to observe the waveform of output voltages, inductance currents and phase-plane portraits from the period-doubling bifurcation to chaos by changing the load resistances. Secondly, using resonant parametric perturbation control in QR-ZCS buck DC-DC converters, the simulation results of the chaotic converter form chaos state turn into stable state period 1, and improve ripple amplitudes of converters under the chaos, to verify the validity of the proposes method.

  8. Critical conditions of saddle-node bifurcations in switching DC-DC converters

    NASA Astrophysics Data System (ADS)

    Fang, Chung-Chieh

    2013-08-01

    Although existence of multiple periodic orbits in some DC-DC converters have been known for decades, linking the multiple periodic orbits with the saddle-node bifurcation (SNB) is rarely reported. The SNB occurs in popular DC-DC converters, but it is generally reported as a strange instability. Recently, design-oriented instability critical conditions are of great interest. In this article, average, sampled-data and harmonic balance analyses are applied and they lead to equivalent results. Many new critical conditions are derived. They facilitate future research on the instability associated with multiple periodic orbits, sudden voltage jumps or disappearances of periodic orbits observed in DC-DC converters. The effects of various converter parameters on the instability can be readily seen from the derived critical conditions. New Nyquist-like plots are also proposed to predict or prevent the occurrence of the instability.

  9. Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Mahmoud, M. F.; Yu, Y.

    1980-01-01

    The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.

  10. DC/DC Power Converter for Super-Capacitor Supplied by Electric Power Splitter

    NASA Astrophysics Data System (ADS)

    Haubert, T.; Mindl, P.

    The aim of the article is design of DC/DC converter and discussing of problematic supply using electric power splitter. The electric power splitter with AC/DC converter is source for the DC/DC converter, which is dedicated for charging and discharging of hybrid car drive super-capacitor energy storage. The electric power splitter is synchronous machine with two rotating parts. First rotor contains permanent magnet and the second rotor contains three-phase windings. The amplitude of output voltage depends on difference between first and second rotor speed. The main role of the DC/DC converter is to optimize energy content in super-capacitor storage used to acceleration and deceleration driving period of the passenger car with hybrid electric vehicle (HEV) drive system using electric power splitter.

  11. Interleaved DC-DC Converter with Discrete Duty Cycle and Open Loop Control

    NASA Astrophysics Data System (ADS)

    Kroics, K.; Sokolovs, A.

    2016-08-01

    The authors present the control principle of the multiphase interleaved DC-DC converter that can be used to vastly reduce output current ripple of the converter. The control algorithm can be easily implemented by using microcontroller without current loop in each phase. The converter works in discontinuous conduction mode (DCM) but close to boundary conduction mode (BCM). The DC-DC converter with such a control algorithm is useful in applications that do not require precise current adjustment. The prototype of the converter has been built. The experimental results of the current ripple are presented in the paper.

  12. Reliability and performance studies of DC-DC conversion powering scheme for the CMS pixel tracker at SLHC

    NASA Astrophysics Data System (ADS)

    Todri, A.; Perera, L.; Rivera, R.; Kwan, S.

    2010-12-01

    The upgrades of the Large Hadron Collider (LHC) introduce a significant challenge to the power distribution of the detectors. DC-DC conversion is the preferred powering scheme proposed to be integrated for the CMS tracker to deliver high input voltage levels and performing a step-down conversion nearby the detector modules. In this work, we propose a step-up/step-down powering scheme by performing voltage step up at the CAEN supply unit and voltage step down near the detector. We designed step-up converters and investigate the pixel performance and power loss on the FPIX power distribution system. Tests are performed using the PSI46 pixel readout chips on a forward pixel panel module and the DC-DC converters developed at CERN and Fermilab. Reliability studies include the voltage drop measurements on the readout chips and the power supply noise generated from the converter. Performance studies include pixel noise and threshold dispersion results. Comparison between step-down only and step-up/step-down conversion powering schemes are provided.

  13. Computer-aided analysis and simulation of switched dc-dc converters

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Yu, Y.

    1978-01-01

    State space techniques are employed to derive an equivalent nonlinear recurrent time-domain model that describes the switched dc-dc converter behavior exactly. This model is employed effectively to analyze both large signal behavior by propagating the recurrence equation and matching boundary conditions through digital computation and small signal behavior by linearizing it about the equilibrium state.

  14. Modelling, simulation and construction of a dc/dc boost power converter: a school experimental system

    NASA Astrophysics Data System (ADS)

    Silva-Ortigoza, R.; Silva-Ortigoza, G.; Hernández-Guzmán, V. M.; Saldaña-González, G.; Marcelino-Aranda, M.; Marciano-Melchor, M.

    2012-05-01

    We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders the feasible introduction of this equipment in undergraduate laboratories.

  15. Modelling, Simulation and Construction of a DC/DC Boost Power Converter: A School Experimental System

    ERIC Educational Resources Information Center

    Silva-Ortigoza, R.; Silva-Ortigoza, G.; Hernandez-Guzman, V. M.; Saldana-Gonzalez, G.; Marcelino-Aranda, M.; Marciano-Melchor, M.

    2012-01-01

    We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders…

  16. A novel PWM control for a bi-directional full-bridge DC-DC converter with smooth conversion mode transitions

    NASA Astrophysics Data System (ADS)

    Lorentz, V. R. H.; Schwarzmann, H.; März, M.; Bauer, A. J.; Ryssel, H.; Frey, L.; Poure, P.; Braun, F.

    2011-08-01

    A novel CMOS integrated pulse-width modulation (PWM) control circuit allowing smooth transitions between conversion modes in full-bridge based bi-directional DC-DC converters operating at high switching frequencies is presented. The novel PWM control circuit is able to drive full-bridge based DC-DC converters performing step-down (i.e. buck) and step-up (i.e. boost) voltage conversion in both directions, thus allowing charging and discharging of the batteries in mobile systems. It provides smooth transitions between buck, buck-boost and boost modes. Additionally, the novel PWM control loop circuit uses a symmetrical triangular carrier, which overcomes the necessity of using an output phasing circuit previously required in PWM controllers based on sawtooth oscillators. The novel PWM control also enables to build bi-directional DC-DC converters operating at high switching frequencies (i.e. up to 10 MHz and above). Finally, the proposed PWM control circuit also allows the use of an average lossless inductor-current sensor for sensing the average load current even at very high switching frequencies. In this article, the proposed PWM control circuit is modelled and the integrated CMOS schematic is given. The corresponding theory is analysed and presented in detail. The circuit simulations realised in the Cadence Spectre software with a commercially available 0.18 µm mixed-signal CMOS technology from UMC are shown. The PWM control circuit was implemented in a monolithic integrated bi-directional CMOS DC-DC converter ASIC prototype. The fabricated prototype was tested experimentally and has shown performances in accordance with the theory.

  17. Advanced medium-voltage bidirectional dc-dc conversion systems for future electric energy delivery and management systems

    NASA Astrophysics Data System (ADS)

    Fan, Haifeng

    2011-12-01

    The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low

  18. SEMICONDUCTOR INTEGRATED CIRCUITS: A variable step-down conversion ratio switched capacitor DC-DC converter for energy harvesting systems working in intermittent mode

    NASA Astrophysics Data System (ADS)

    Wenhan, Hao; Chen, Jia; Hong, Chen; Chun, Zhang; Zhihua, Wang

    2009-12-01

    Energy harvesting systems stimulate the development of power management for low power consumption applications. Improving the converter efficiency of power management circuits has become a significant issue in energy harvesting system design. This paper presents a variable step-down conversion ratio switched capacitor (SC) DC-DC converter to advance the converter efficiency of charge on the stored capacitor in a wireless monitoring system of orthopedic implants. The converter is designed to work at 1 MHz switching frequency and achieves 15 to 2 V conversion. Measurement results show that the converter efficiency can reach 42% including all circuit power consumption, which is much higher than previous work.

  19. Current Fed Step-up DC/DC Converter for Fuel Cell Inverter Applications

    NASA Astrophysics Data System (ADS)

    Andreičiks, Aleksandrs; Vitols, Kristaps; Krievs, Oskars; Steiks, Ingars

    2009-01-01

    In order to use hydrogen fuel cells in domestic applications either as main power supply or backup source, their low DC output voltage has to be matched to the level and frequency of the utility grid AC voltage. Such power converter systems usually consist of a DC-DC converter and a DC-AC inverter. Comparison of different current fed step-up DC/DC converters is done in this paper and a double inductor step-up push-pull converter investigated, presenting simulation and experimental results. The converter is elaborated for 1200 W power to match the rated power of the proton exchange membrane (PEM) fuel cell located in hydrogen fuel cell research laboratory of Riga Technical University.

  20. A Nonlinear Digital Control Solution for a DC/DC Power Converter

    NASA Technical Reports Server (NTRS)

    Zhu, Minshao

    2002-01-01

    A digital Nonlinear Proportional-Integral-Derivative (NPID) control algorithm was proposed to control a 1-kW, PWM, DC/DC, switching power converter. The NPID methodology is introduced and a practical hardware control solution is obtained. The design of the controller was completed using Matlab (trademark) Simulink, while the hardware-in-the-loop testing was performed using both the dSPACE (trademark) rapid prototyping system, and a stand-alone Texas Instruments (trademark) Digital Signal Processor (DSP)-based system. The final Nonlinear digital control algorithm was implemented and tested using the ED408043-1 Westinghouse DC-DC switching power converter. The NPID test results are discussed and compared to the results of a standard Proportional-Integral (PI) controller.

  1. Novel Full-bridge ZVS DC-DC Converter with an Clamp Diodes

    NASA Astrophysics Data System (ADS)

    Guangqun, Nan; Xue, Hu

    The two arms of this converter all work at zero-voltage switching condition, that bring many advantages, such as little loss of power, simple control, etc. But these also exists some problems, such as parasitic oscillation on the output rectifier diodes. A novel full-bridge ZVS PWM DC-DC converter which adopts two clamping diodes in the first side of the transformer is proposed to reduce the parasitic oscillation in this paper. In this paper, It heavily analyzes the realization process of their soft-switching and the reason of related issues and solution, we establishes simulation model and simulates using orCAD. Finally,a 5 kW ZVS PWM DC-DC converter Prototype in that TMS320F2812 is the core controlled chip has been set up, and the experiments showed us the validation of the correlative theory.

  2. Chaos, bifurcation and intermittent phenomena in DC-DC converters under resonant parametric perturbation

    NASA Astrophysics Data System (ADS)

    Deivasundari, P.; Geetha, R.; Uma, G.; Murali, K.

    2013-07-01

    DC-DC converters act as a black box to study various bifurcations. In the present study, the influence of external periodic interference signal in the input of DC-DC voltage-mode controlled buck converter has been considered. It is found that the presence of sinusoidal or saw-tooth interference signal whose frequency is comparable with the switching frequency of the converter or its rational multiples manifests as remerging chaotic band attractors (or Feigenbaum trees) and intermittent chaos. However, the presence of sinusoidal interference signal having irrational frequency ratios with the switching frequency of the converter leads to quasi-periodic route to chaos. The study was carried out both theoretically and experimentally.

  3. Linearized stability analysis and design of a flyback dc-dc boost regulator.

    NASA Technical Reports Server (NTRS)

    Wester, G. W.

    1973-01-01

    Analytic expressions for the small-signal power-stage describing functions of a switched dc-dc boost regulator are derived from an approximate continuous circuit model which is developed by a time-averaging technique. Closed-loop stability is attained through the design of frequency compensation of the loop gain. Open- and closed-loop regulator output impedances are derived from the linearized models for the given configuration. The analysis and design are compared with and confirmed by breadboard measurements.

  4. Killing of naive T cells by CD95L-transfected dendritic cells (DC): in vivo study using killer DC-DC hybrids and CD4(+) T cells from DO11.10 mice.

    PubMed

    Kusuhara, Masahiro; Matsue, Keiko; Edelbaum, Dale; Loftus, Julie; Takashima, Akira; Matsue, Hiroyuki

    2002-04-01

    Dendritic cells (DC) play the dual task of initiating cellular immunity against potentially harmful foreign antigens (Ag), while maintaining immunological tolerance to self-Ag and environmental Ag. As an approach to induce Ag-specific suppression, we and others introduced CD95 ligand (L) cDNA into DC. The resulting "killer" DC delivered apoptotic signals, instead of activation signals, to primed CD4(+) T cells in vitro and induced Ag-specific immunosuppression in vivo. To study the impact of killer DC on naive T cells, the fate of Ag-reactive T cells and the extent of their depletion after killer DC treatment, we performed in vitro and in vivo reconstitution experiments using: (a) killer DC-DC hybrids created between CD95L-transduced XS106 DC clone (A/J origin) and splenic DC from BALB/c mice, (b) CD4(+) T cells isolated from DO11.10 transgenic mice (BALB/c background), and (c) OVA(323-339) peptide as relevant Ag. Ovalbumin (OVA)-pulsed killer DC-DC hybrids inhibited DO11.10 T cell activation triggered by conventional DC, instead of inducing their activation. Rapid apoptosis of T cells was observed after co-culture with OVA-pulsed killer DC-DC hybrids, but not with non-pulsed killer DC-DC hybrids or OVA-pulsed control DC-DC hybrids. For in vivo reconstitution, (BALB/cxA/J)F1 mice received subcutaneous administration of killer DC-DC hybrids, followed by intravenous inoculation of DO11.10 T cells. Killer DC-DC hybrids migrated preferentially to draining lymph nodes albeit with relatively low efficiency (0.5-1% recovery) and they induced significant, but incomplete (30-40%) killing of DO11.10 T cells in this location. These results document the abilities of CD95L-transduced DC to trigger apoptosis of naive T cells in an Ag-specific manner, to overrule T cell activation signals delivered by conventional DC, and to reduce local frequencies of Ag-reactive T cells in vivo. Our data also uncover two major limitations (relatively low homing efficiency and incomplete

  5. Estimation of Bidirectional Buck/boost DC/DC Converters with Electric Double-Layer Capacitors for Energy Storage Systems

    NASA Astrophysics Data System (ADS)

    Funabiki, Shigeyuki; Yamamoto, Masayoshi

    Renewable energy such as wind force and solar light has collected the attention as alternative energy sources of fossil fuel. An energy storage system with an electric double-layer capacitor (EDLC), which balances the demand and supply power, is required in order to introduce the electric power generating system that utilizes renewable energy. Currently, the research and development of these energy storage systems are actively carried out. In the energy storage system with an EDLC, the DC/DC converter having the function of the bidirectional power flow and the buck/boost performance is essential as an interface and power control circuit. There are two types of the bidirectional buck/boost DC/DC converters. One type consists of two buck/boost DC/DC converters with one reactor. The other type consists of two sets of two-quadrant DC/DC converters with one reactor. This paper discusses the comparison of these types of DC/DC converters with bidirectional power flow and buck/boost performance. The two types of DC/DC converters are estimated for their application to the energy storage system with the EDLC. As the voltage endurance of the device is lower and the mean current is smaller in the latter type of converter despite of having twice the number of devices compared to the former, the latter type of converter has the advantage of a smaller reactor, i.e., core volume and loss, and lower loss in the converter.

  6. Finite-time control of DC-DC buck converters via integral terminal sliding modes

    NASA Astrophysics Data System (ADS)

    Chiu, Chian-Song; Shen, Chih-Teng

    2012-05-01

    This article presents novel terminal sliding modes for finite-time output tracking control of DC-DC buck converters. Instead of using traditional singular terminal sliding mode, two integral terminal sliding modes are introduced for robust output voltage tracking of uncertain buck converters. Different from traditional sliding mode control (SMC), the proposed controller assures finite convergence time for the tracking error and integral tracking error. Furthermore, the singular problem in traditional terminal SMC is removed from this article. When considering worse modelling, adaptive integral terminal SMC is derived to guarantee finite-time convergence under more relaxed stability conditions. In addition, several experiments show better start-up performance and robustness.

  7. A DC-DC converter based powering scheme for the upgrade of the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Feld, L.; Karpinski, W.; Klein, K.; Merz, J.; Sammet, J.; Wlochal, M.

    2011-11-01

    Around 2016, the pixel detector of the CMS experiment will be upgraded. The amount of current that has to be provided to the front-end electronics is expected to increase by a factor of two. Since the space available for cables is limited, this would imply unacceptable power losses in the currently installed supply cables. Therefore it is foreseen to place DC-DC converters close to the front-end electronics, allowing the provision of power at higher voltages, thereby facilitating the supply of the required currents with the present cable plant. This conference report introduces the foreseen powering scheme of the pixel upgrade. For the first time, system tests have been conducted with pixel barrel sensor modules, radiation tolerant DC-DC converters and the full power supply chain of the pixel detector. In addition, studies of the stability of different powering schemes under various conditions are summarized. In particular the impact of large and fast load variations, which are related to the bunch structure of the LHC beam, has been studied.

  8. Microprocessor control of multiple peak power tracking DC/DC converters for use with solar cell arrays

    NASA Technical Reports Server (NTRS)

    Frederick, Martin E. (Inventor); Jermakian, Joel (Inventor)

    1991-01-01

    A method and an apparatus is provided for efficiently controlling the power output of a solar cell array string or a plurality of solar cell array strings to achieve a maximum amount of output power from the strings under varying conditions of use. Maximum power output from a solar array string is achieved through control of a pulse width modulated DC/DC buck converter which transfers power from a solar array to a load or battery bus. The input voltage from the solar array to the converter is controlled by a pulse width modulation duty cycle, which in turn is controlled by a differential signal controller. By periodically adjusting the control voltage up or down by a small amount and comparing the power on the load or bus with that generated at different voltage values a maximum power output voltage may be obtained. The system is totally modular and additional solar array strings may be added to the system simply by adding converter boards to the system and changing some constants in the controller's control routines.

  9. A 1 MW, 100 kV, less than 100 kg space based dc-dc power converter

    NASA Technical Reports Server (NTRS)

    Cooper, J. R.; White, C. W.

    1991-01-01

    A 1 MW dc-dc power converter has been designed which has an input voltage of 5 kV +/-3 percent, an output voltage of 100 kV +/- 0.25 percent, and a run time of 1000 s at full power. The estimated system mass is 83.8 kg, giving a power density of 11.9 kW/kg. The system exceeded the weight goal of 10 kW/kg through the use of innovative components and system concepts. The system volume is approximately 0.1 cu m, and the overall system efficiency is estimated to be 87 percent. Some of the unique system features include a 50-kHz H-bridge inverter using MOS-controlled thyristors as the switching devices, a resonance transformer to step up the voltage, open-cycle cryogenic hydrogen gas cooling, and a nonrigid, inflatable housing which provides on-demand pressurization of the power converter local environment. This system scales very well to higher output powers. The weight of the 10-MW system with the same input and output voltage requirements and overall system configuration is estimated to be 575.3 kg. This gives a power density of 17.4 kW/kg, significantly higher than the 11.9 kW/kg estimated at 1 MW.

  10. Maximum Power Point Tracking Controller for Thermoelectric Generators with Peak Gain Control of Boost DC-DC Converters

    NASA Astrophysics Data System (ADS)

    Park, Jungyong; Kim, Shiho

    2012-06-01

    An analog maximum power point tracking (MPPT) circuit for a thermoelectric generator (TEG) is proposed. We show that the peak point of the voltage conversion gain of a boost DC-DC converter with an input voltage source having an internal resistor is the maximum power point of the TEG. The key characteristic of the proposed MPPT controller is that the duty ratio of the input clock pulse to the boost DC-DC converter shifts toward the maximum power point of the TEG by seeking the peak gain point of the boost DC-DC converters. The proposed MPPT technique provides a simple and useful analog MPPT solution, without employing digital microcontroller units.

  11. ASIC and FPGA based DPWM architectures for single-phase and single-output DC-DC converter: a review

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Agarwal, Pramod; Gupta, Indra

    2013-12-01

    Pulse width modulation (PWM) has been widely used in power converter control. This paper presents a review of architectures of the Digital Pulse Width Modulators (DPWM) targeting digital control of switching DC-DC converters. An attempt is made to review the reported architectures with emphasis on the ASIC and FPGA implementations in single phase and single-output DC-DC converters. Recent architectures using FPGA's advanced resources for achieving the resolution higher than classical methods have also been discussed. The merits and demerits of different architectures, and their relative comparative performance, are also presented. The Authors intention is to uncover the groundwork and the related references through this review for the benefit of readers and researchers targeting different DPWM architectures for the DC-DC converters.

  12. Analysis of Discontinuity Induced Bifurcations in a Dual Input DC-DC Converter

    NASA Astrophysics Data System (ADS)

    Giaouris, Damian; Banerjee, Soumitro; Mandal, Kuntal; Al-Hindawi, Mohammed M.; Abusorrah, Abdullah; Al-Turki, Yusuf; El Aroudi, Abdelali

    DC-DC power converters with multiple inputs and a single output are used in numerous applications where multiple sources, e.g. two or more renewable energy sources and/or a battery, feed a single load. In this work, a classical boost converter topology with two input branches connected to two different sources is chosen, with each branch independently being controlled by a separate peak current mode controller. We demonstrate for the first time that even though this converter is similar to other well known topologies that have been studied before, it exhibits many complex nonlinear behaviors that are not found in any other standard PWM controlled power converter. The system undergoes period incrementing cascade as a parameter is varied, with discontinuous hard transitions between consecutive periodicities. We show that the system can be described by a discontinuous map, which explains the observed bifurcation phenomena. The results have been experimentally validated.

  13. Performance of a spacecraft DC-DC converter breadboard modified for low temperature operation

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.; Stell, Chris; Patterson, Richard; Ray, Biswajit

    1996-01-01

    A 1OW 3OV/5.OV push-pull dc-dc converter breadboard, designed by the Jet Propulsion Laboratory (JPL) with a +50 C to +5 C operating range for the Cassini space probe, was characterized for lower operating temperatures. The breadboard converter which failed to operate for temperatures below -125 C was then modified to operate at temperatures approaching that of liquid nitrogen (LN2). Associated with this low operating temperature range (greater than -196 C) was a variety of performance problems such as significant change in output voltage, converter switching instability, and failure to restart at temperatures below -154 C. An investigation into these problems yielded additional modifications to the converter which improved low temperature performance even further.

  14. A Current-Mode Buck DC-DC Converter with Frequency Characteristics Independent of Input and Output Voltages Using a Quadratic Compensation Slope

    NASA Astrophysics Data System (ADS)

    Sai, Toru; Sugimoto, Yasuhiro

    By using a quadratic compensation slope, a CMOS current-mode buck DC-DC converter with constant frequency characteristics over wide input and output voltage ranges has been developed. The use of a quadratic slope instead of a conventional linear slope makes both the damping factor in the transfer function and the frequency bandwidth of the current feedback loop independent of the converter's output voltage settings. When the coefficient of the quadratic slope is chosen to be dependent on the input voltage settings, the damping factor in the transfer function and the frequency bandwidth of the current feedback loop both become independent of the input voltage settings. Thus, both the input and output voltage dependences in the current feedback loop are eliminated, the frequency characteristics become constant, and the frequency bandwidth is maximized. To verify the effectiveness of a quadratic compensation slope with a coefficient that is dependent on the input voltage in a buck DC-DC converter, we fabricated a test chip using a 0.18µm high-voltage CMOS process. The evaluation results show that the frequency characteristics of both the total feedback loop and the current feedback loop are constant even when the input and output voltages are changed from 2.5V to 7V and from 0.5V to 5.6V, respectively, using a 3MHz clock.

  15. A 10 kW dc-dc converter using IGBTs with active snubbers. [Insulated Gate Bipolar Transistor

    NASA Technical Reports Server (NTRS)

    Masserant, Brian J.; Shriver, Jeffrey L.; Stuart, Thomas A.

    1993-01-01

    This full bridge dc-dc converter employs zero voltage switching (ZVS) on one leg and zero current switching (ZCS) on the other. This technique produces exceptionally low IGBT switching losses through the use of an active snubber that recycles energy back to the source. Experimental results are presented for a 10 kW, 20 kHz converter.

  16. Step-by-Step Design of an FPGA-Based Digital Compensator for DC/DC Converters Oriented to an Introductory Course

    ERIC Educational Resources Information Center

    Zumel, P.; Fernandez, C.; Sanz, M.; Lazaro, A.; Barrado, A.

    2011-01-01

    In this paper, a short introductory course to introduce field-programmable gate array (FPGA)-based digital control of dc/dc switching power converters is presented. Digital control based on specific hardware has been at the leading edge of low-medium power dc/dc switching converters in recent years. Besides industry's interest in this topic, from…

  17. An Optimal Current Observer for Predictive Current Controlled Buck DC-DC Converters

    PubMed Central

    Min, Run; Chen, Chen; Zhang, Xiaodong; Zou, Xuecheng; Tong, Qiaoling; Zhang, Qiao

    2014-01-01

    In digital current mode controlled DC-DC converters, conventional current sensors might not provide isolation at a minimized price, power loss and size. Therefore, a current observer which can be realized based on the digital circuit itself, is a possible substitute. However, the observed current may diverge due to the parasitic resistors and the forward conduction voltage of the diode. Moreover, the divergence of the observed current will cause steady state errors in the output voltage. In this paper, an optimal current observer is proposed. It achieves the highest observation accuracy by compensating for all the known parasitic parameters. By employing the optimal current observer-based predictive current controller, a buck converter is implemented. The converter has a convergently and accurately observed inductor current, and shows preferable transient response than the conventional voltage mode controlled converter. Besides, costs, power loss and size are minimized since the strategy requires no additional hardware for current sensing. The effectiveness of the proposed optimal current observer is demonstrated experimentally. PMID:24854061

  18. An optimal current observer for predictive current controlled buck DC-DC converters.

    PubMed

    Min, Run; Chen, Chen; Zhang, Xiaodong; Zou, Xuecheng; Tong, Qiaoling; Zhang, Qiao

    2014-01-01

    In digital current mode controlled DC-DC converters, conventional current sensors might not provide isolation at a minimized price, power loss and size. Therefore, a current observer which can be realized based on the digital circuit itself, is a possible substitute. However, the observed current may diverge due to the parasitic resistors and the forward conduction voltage of the diode. Moreover, the divergence of the observed current will cause steady state errors in the output voltage. In this paper, an optimal current observer is proposed. It achieves the highest observation accuracy by compensating for all the known parasitic parameters. By employing the optimal current observer-based predictive current controller, a buck converter is implemented. The converter has a convergently and accurately observed inductor current, and shows preferable transient response than the conventional voltage mode controlled converter. Besides, costs, power loss and size are minimized since the strategy requires no additional hardware for current sensing. The effectiveness of the proposed optimal current observer is demonstrated experimentally.

  19. Bifurcation boundary conditions for current programmed PWM DC-DC converters at light loading

    NASA Astrophysics Data System (ADS)

    Fang, Chung-Chieh

    2012-10-01

    Three types of bifurcations (instabilities) in the PWM DC-DC converter at light loading under current mode control in continuous-conduction mode (CCM) or discontinuous-conduction mode (DCM) are analysed: saddle-node bifurcation (SNB) in CCM or DCM, border-collision bifurcation during the CCM-DCM transition, and period-doubling bifurcation in CCM. Different bifurcations occur in some particular loading ranges. Bifurcation boundary conditions separating stable regions from unstable regions in the parametric space are derived. A new methodology to analyse the SNB in the buck converter based on the peak inductor current is proposed. The same methodology is applied to analyse the other types of bifurcations and converters. In the buck converter, multiple stable/unstable CCM/DCM steady-state solutions may coexist. Possibility of multiple solutions deserves careful study, because an ignored solution may merge with a desired stable solution and make both disappear. Understanding of SNB can explain some sudden disappearances or jumps of steady-state solutions observed in switching converters.

  20. Bifurcation Analysis of a DC-DC Bidirectional Power Converter Operating with Constant Power Loads

    NASA Astrophysics Data System (ADS)

    Cristiano, Rony; Pagano, Daniel J.; Benadero, Luis; Ponce, Enrique

    Direct current (DC) microgrids (MGs) are an emergent option to satisfy new demands for power quality and integration of renewable resources in electrical distribution systems. This work addresses the large-signal stability analysis of a DC-DC bidirectional converter (DBC) connected to a storage device in an islanding MG. This converter is responsible for controlling the balance of power (load demand and generation) under constant power loads (CPLs). In order to control the DC bus voltage through a DBC, we propose a robust sliding mode control (SMC) based on a washout filter. Dynamical systems techniques are exploited to assess the quality of this switching control strategy. In this sense, a bifurcation analysis is performed to study the nonlinear stability of a reduced model of this system. The appearance of different bifurcations when load parameters and control gains are changed is studied in detail. In the specific case of Teixeira Singularity (TS) bifurcation, some experimental results are provided, confirming the mathematical predictions. Both a deeper insight in the dynamic behavior of the controlled system and valuable design criteria are obtained.

  1. Performance of a Voltage Step-Up/Step-Down Transformerless DC/DC Converter: Analytical Model

    NASA Astrophysics Data System (ADS)

    Suskis, P.; Rankis, I.

    2012-01-01

    The authors present an analytical model for a voltage step-up/step-down DC/DC converter without transformers. The proposed topology is a combination of classic buck and boost converters in one single circuit but with differing operational principles. The converter is developed for a wind power autonomous supply system equipped with a hydrogen electrolytic tank and a fuel cell for energy stabilization. The main power source of the hydrogen-based autonomous supply system is energized by a synchronous generator operating on permanent magnets and equipped with a diode bridge. The input voltage of the converter in this case varies in the range 0-700 V, while its output DC voltage must be 540 V according to the demand of other parts of the system. To maintain the rated voltage, a special electrical load regulation is introduced. The calculations of the converter, the generator (equipped with a diode bridge) as element of the power system supply joint, and the load replaced by resistance are verified with PSIM software.

  2. Adaptive terminal sliding-mode control strategy for DC-DC buck converters.

    PubMed

    Komurcugil, Hasan

    2012-11-01

    This paper presents an adaptive terminal sliding mode control (ATSMC) strategy for DC-DC buck converters. The idea behind this strategy is to use the terminal sliding mode control (TSMC) approach to assure finite time convergence of the output voltage error to the equilibrium point and integrate an adaptive law to the TSMC strategy so as to achieve a dynamic sliding line during the load variations. In addition, the influence of the controller parameters on the performance of closed-loop system is investigated. It is observed that the start up response of the output voltage becomes faster with increasing value of the fractional power used in the sliding function. On the other hand, the transient response of the output voltage, caused by the step change in the load, becomes faster with decreasing the value of the fractional power. Therefore, the value of fractional power is to be chosen to make a compromise between start up and transient responses of the converter. Performance of the proposed ATSMC strategy has been tested through computer simulations and experiments. The simulation results of the proposed ATSMC strategy are compared with the conventional SMC and TSMC strategies. It is shown that the ATSMC exhibits a considerable improvement in terms of a faster output voltage response during load changes.

  3. A brief review of models of DC-DC power electronic converters for analysis of their stability

    NASA Astrophysics Data System (ADS)

    Siewniak, Piotr; Grzesik, Bogusław

    2014-10-01

    A brief review of models of DC-DC power electronic converters (PECs) is presented in this paper. It contains the most popular, continuous-time and discrete-time models used for PEC simulation, design, stability analysis and other applications. Both large-signal and small-signal models are considered. Special attention is paid to models that are used in practice for the analysis of the global and local stability of PECs.

  4. An Interleaved Reduced-Component-Count Multivoltage Bus DC/DC Converter for Fuel Cell Powered Electric Vehicle Applications

    SciTech Connect

    Tang, Lixin; Su, Gui-Jia

    2008-01-01

    An interleaved reduced-component-count dc/dc converter is proposed for power management in fuel cell powered vehicles with a multivoltage electric net. The converter is based on a simplified topology and can handle more power with less ripple current, therefore reducing the capacitor requirements, making it more suited for fuel cell powered vehicles in the near future. A prototype rated at 4.3 kW was built and tested to verify the proposed topology.

  5. Quasi-Periodicity, Chaos and Coexistence in the Time Delay Controlled Two-Cell DC-DC Buck Converter

    NASA Astrophysics Data System (ADS)

    Koubaâ, Karama; Feki, Moez

    In addition to border collision bifurcation, the time delay controlled two-cell DC/DC buck converter is shown to exhibit a chaotic behavior as well. The time delay controller adds new design parameters to the system and therefore the variation of a parameter may lead to different types of bifurcation. In this work, we present a thorough analysis of different scenarios leading to bifurcation and chaos. We show that the time delay controlled two-cell DC/DC buck converter may also exhibit a Neimark-Sacker bifurcation which for some parameter set may lead to a 2D torus that may then break yielding a chaotic behavior. Besides, the saturation of the controller can also lead to the coexistence of a stable focus and a chaotic attractor. The results are presented using numerical simulation of a discrete map of the two-cell DC/DC buck converter obtained by expressing successive crossings of Poincaré section in terms of each other.

  6. A High Efficiency Boost Converter with MPPT Scheme for Low Voltage Thermoelectric Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Guan, Mingjie; Wang, Kunpeng; Zhu, Qingyuan; Liao, Wei-Hsin

    2016-11-01

    Using thermoelectric elements to harvest energy from heat has been of great interest during the last decade. This paper presents a direct current-direct current (DC-DC) boost converter with a maximum power point tracking (MPPT) scheme for low input voltage thermoelectric energy harvesting applications. Zero current switch technique is applied in the proposed MPPT scheme. Theoretical analysis on the converter circuits is explored to derive the equations for parameters needed in the design of the boost converter. Simulations and experiments are carried out to verify the theoretical analysis and equations. A prototype of the designed converter is built using discrete components and a low-power microcontroller. The results show that the designed converter can achieve a high efficiency at low input voltage. The experimental efficiency of the designed converter is compared with a commercial converter solution. It is shown that the designed converter has a higher efficiency than the commercial solution in the considered voltage range.

  7. A High Efficiency Boost Converter with MPPT Scheme for Low Voltage Thermoelectric Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Guan, Mingjie; Wang, Kunpeng; Zhu, Qingyuan; Liao, Wei-Hsin

    2016-07-01

    Using thermoelectric elements to harvest energy from heat has been of great interest during the last decade. This paper presents a direct current-direct current (DC-DC) boost converter with a maximum power point tracking (MPPT) scheme for low input voltage thermoelectric energy harvesting applications. Zero current switch technique is applied in the proposed MPPT scheme. Theoretical analysis on the converter circuits is explored to derive the equations for parameters needed in the design of the boost converter. Simulations and experiments are carried out to verify the theoretical analysis and equations. A prototype of the designed converter is built using discrete components and a low-power microcontroller. The results show that the designed converter can achieve a high efficiency at low input voltage. The experimental efficiency of the designed converter is compared with a commercial converter solution. It is shown that the designed converter has a higher efficiency than the commercial solution in the considered voltage range.

  8. Symmetrical dynamics of peak current-mode and valley current-mode controlled switching dc-dc converters with ramp compensation

    NASA Astrophysics Data System (ADS)

    Zhou, Guo-Hua; Xu, Jian-Ping; Bao, Bo-Cheng; Jin, Yan-Yan

    2010-06-01

    The discrete iterative map models of peak current-mode (PCM) and valley current-mode (VCM) controlled buck converters, boost converters, and buck-boost converters with ramp compensation are established and their dynamical behaviours are investigated by using the operation region, parameter space map, bifurcation diagram, and Lyapunov exponent spectrum. The research results indicate that ramp compensation extends the stable operation range of the PCM controlled switching dc-dc converter to D > 0.5 and that of the VCM controlled switching dc-dc converter to D < 0.5. Compared with PCM controlled switching dc-dc converters with ramp compensation, VCM controlled switching dc-dc converters with ramp compensation exhibit interesting symmetrical dynamics. Experimental results are given to verify the analysis results in this paper.

  9. Design of Performance Driven Self-Tuning PID Control Systems and It's Application for DC-DC Converters

    NASA Astrophysics Data System (ADS)

    Ohnishi, Yoshihiro; Ikemoto, Takahiro; Yamamoto, Toru

    This paper proposes an adaptive PID controller which is driven by current control performance. The calculations of the PID parameters are based on the generalized minimum variance control(GMVC) algorithm. The current control performance is obtained in an online manner over a user-specified time-window with some overlap. The retuning of PID parameters are only carried out when controller performance deteriorates below a user-specified threshold. Experimental evaluations on the voltage control of the DC-DC converter demonstrates the practicality and utility of this idea.

  10. Application of Multi-port Bidirectional DC-DC Converter to Fuel Cell Vehicle Driving in JC08 Mode

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsunori; Katayama, Noboru; Kogoshi, Sumio; Fukada, Takafumi; Ogawa, Makoto

    A fuel cell-EDLC hybrid power system with a multi-port bidirectional DC-DC converter has been recently proposed for extending lifetime of a fuel cell due to smoothing the output current of the fuel cell. This paper studies the performance of the hybrid power system when a fuel cell vehicle drives in the JC08 mode using a simulation model. The simulation results indicate that even if the load current fluctuates, the output current of the fuel cell could be maintained at almost constant values with an assist from the EDLC although small spikes are observed.

  11. Discrete time domain modelling and analysis of dc-dc converters with continuous and discontinuous inductor current

    NASA Technical Reports Server (NTRS)

    Iwens, R. P.; Lee, F. C.; Triner, J. E.

    1977-01-01

    Using discrete time state variable representation, a generalized computer-aided modeling and analysis of dc-dc converters is presented. The methodology provides exact modeling and is applicable to all types of power stages and duty-cycle control, including continuous and discontinuous inductor current operation. Converter stability, transient behavior and audio susceptibility can be analytically evaluated and predicted. The generalized theory of the proposed approach to converter modeling and analysis is presented first, followed by a demonstrative example applying the theory to a constant frequency buck converter operating in continuous and discontinuous inductor current mode. Excellent agreement with laboratory test data has been observed.

  12. High power dc/dc and dc/ac electrical power conversion techniques developed

    NASA Technical Reports Server (NTRS)

    Berryman, G.; White, W. T.

    1967-01-01

    Small magnetic amplifiers pass square waves through transformers and provide regulation by varying the pulse width on the secondary of the output power transformers. This pulse duration modulation is provided by a control rectifier technique or a phase-shift technique.

  13. Modular DC-DC converter system for energy harvesting with EAPs

    NASA Astrophysics Data System (ADS)

    Eitzen, L.; Graf, C.; Maas, J.

    2013-04-01

    Energy harvesting with EAPs requires an energy-efficient power electronics providing a bidirectional energy transfer and operating voltages of up to several kilovolts. A possibility to achieve a high energy-efficiency for high voltage conversion is the use of a modular converter system consisting of several bidirectional converter modules, which are connected in series on the converter output side and in parallel at the input side. Since each converter stage provides only a part of the overall converter output voltage, the converter module output voltages can effectively be reduced by choosing the number of cascaded converter modules appropriately. This allows the use of standard semiconductor switches with superior electrical characteristics compared to high voltage semiconductors, enabling a high energy-efficiency and smaller passive components. Since EAP devices exhibit a mainly capacitive behavior and a limitation of the operating current is required for electrode protection, the utilized converter structure/topology has to be operated as a controllable current source on the lowest control level, which is achieved by operating the converter modules of the modular converter system with a subordinate closed-looped current control scheme. In order to avoid voltage unbalances among the single converter modules, a method for voltage balancing is presented. For validation, experimental results of a realized bidirectional flyback converter prototype are presented and discussed.

  14. A 0.04 mm (2) Buck-Boost DC-DC Converter for Biomedical Implants Using Adaptive Gain and Discrete Frequency Scaling Control.

    PubMed

    George, Libin; Gargiulo, Gaetano Dario; Lehmann, Torsten; Hamilton, Tara Julia

    2016-06-01

    This paper presents the design of a reconfigurable buck-boost switched-capacitor DC-DC converter suitable for use in a wide range of biomedical implants. The proposed converter has an extremely small footprint and uses a novel control method that allows coarse and fine control of the output voltage. The converter uses adaptive gain control, discrete frequency scaling and pulse-skipping schemes to regulate the power delivered to a range of output voltages and loads. Adaptive gain control is used to implement variable switching gain ratios from a reconfigurable power stage and thereby make coarse steps in output voltage. A discrete frequency scaling controller makes discrete changes in switching frequency to vary the power delivered to the load and perform fine tuning when the output voltage is within 10% of the target output voltage. The control architecture is predominately digital and it has been implemented as part of a fully-integrated switched-capacitor converter design using a standard bulk CMOS 0.18 μm process. Measured results show that the converter has an output voltage range of 1.0 to 2.2 V, can deliver up to 7.5 mW of load power and efficiency up to 75% using an active area of only 0.04 mm (2), which is significantly smaller than that of other designs. This low-area, low-complexity reconfigurable power converter can support low-power circuits in biomedical implant applications. PMID:26600247

  15. A 0.04 mm (2) Buck-Boost DC-DC Converter for Biomedical Implants Using Adaptive Gain and Discrete Frequency Scaling Control.

    PubMed

    George, Libin; Gargiulo, Gaetano Dario; Lehmann, Torsten; Hamilton, Tara Julia

    2016-06-01

    This paper presents the design of a reconfigurable buck-boost switched-capacitor DC-DC converter suitable for use in a wide range of biomedical implants. The proposed converter has an extremely small footprint and uses a novel control method that allows coarse and fine control of the output voltage. The converter uses adaptive gain control, discrete frequency scaling and pulse-skipping schemes to regulate the power delivered to a range of output voltages and loads. Adaptive gain control is used to implement variable switching gain ratios from a reconfigurable power stage and thereby make coarse steps in output voltage. A discrete frequency scaling controller makes discrete changes in switching frequency to vary the power delivered to the load and perform fine tuning when the output voltage is within 10% of the target output voltage. The control architecture is predominately digital and it has been implemented as part of a fully-integrated switched-capacitor converter design using a standard bulk CMOS 0.18 μm process. Measured results show that the converter has an output voltage range of 1.0 to 2.2 V, can deliver up to 7.5 mW of load power and efficiency up to 75% using an active area of only 0.04 mm (2), which is significantly smaller than that of other designs. This low-area, low-complexity reconfigurable power converter can support low-power circuits in biomedical implant applications.

  16. A High Efficiency DC Bus Regulator / RPC for Spacecraft Applications

    NASA Astrophysics Data System (ADS)

    Birchenough, Arthur G.

    2004-02-01

    DC bus voltage regulation may be required in future high powered spacecraft due to the length of the busses or because they are not generated at precise voltage levels. In these cases the regulation range is often only a few percent increase or decrease, but conventional DC voltage regulators switch all the power passing through them, and this level of power switched determines the size and losses in the regulator. A recently developed concept uses a low power DC-DC converter in series with the bus to raise or lower the bus voltage over a small range. This partial power processing technique combines the small size and power losses of the low power converter with the ability to regulate, (over a small range) a high power bus. The Series Connected Buck Boost Regulator (SCBBR) described herein provides bus regulation with an efficiency of 98%. The circuit also provides bus switching and overcurrent limiting functions of a Remote Power Controller (RPC). This paper describes the circuit design and performance of a breadboard SCBBR configured as a bus voltage regulator providing +/- 40% voltage regulation range, bus switching, and overload limiting.

  17. Integrated Solar Power Converters: Wafer-Level Sub-Module Integrated DC/DC Converter

    SciTech Connect

    2012-02-09

    Solar ADEPT Project: CU-Boulder is developing advanced power conversion components that can be integrated into individual solar panels to improve energy yields. The solar energy that is absorbed and collected by a solar panel is converted into useable energy for the grid through an electronic component called an inverter. Many large, conventional solar energy systems use one, central inverter to convert energy. CU-Boulder is integrating smaller, microinverters into individual solar panels to improve the efficiency of energy collection. The University’s microinverters rely on electrical components that direct energy at high speeds and ensure that minimal energy is lost during the conversion process—improving the overall efficiency of the power conversion process. CU-Boulder is designing its power conversion devices for use on any type of solar panel.

  18. Design of Current Source Dc/Dc Converter for Interfacing a 5 Kw Pem Fuel Cell / Paaugstinošā Strāvas Avota Līdzsprieguma Pārveidotāja Izstrāde 5 Kw Ūdeņraža Degvielas Elementam

    NASA Astrophysics Data System (ADS)

    Andreičiks, A.; Steiks, I.; Krievs, O.

    2013-08-01

    In domestic applications the low DC output voltage of a hydrogen fuel cell used as the main power supply or a backup power source has to be matched to the level and frequency of the AC voltage of utility grid. The interfacing power converter system usually consists of a DC/DC converter and an inverter. In this work, a DC/DC step-up converter stage is designed for interfacing a 5kW proton exchange membrane (PEM) fuel cell. The losses of DC/DC conversion are estimated and, basing on the relevant analysis, the most appropriate configuration of converter modules is selected for a DC/DC converter stage of increased efficiency. The authors present the results of experimental analysis and simulation for the selected configuration of four double inductor step-up push-pull converter modules Ūdeņraža degvielas elementa invertoru sistēmas mājsaimniecības pielietojumiem parasti sastāv no līdzsprieguma paaugstināšanas un invertēšanas mezgliem. Šis raksts ir veltīts paaugstinošā līdzsprieguma pārveidotāja izstrādei 5 kW protonu apmaiņas membrānas degvielas elementam. Rakstā izpētīts divu induktoru divtaktu strāvas avota paaugstinošais līdzsprieguma pārveidotājs, aplūkojot gan datormodelēšanas, gan eksperimentālos rezultātus. Lai palielinātu DC/DC pārveidotāja efektivitāti var izmantot vairākus pārveidotāja moduļus, kam ieejas savienotas paralēli un izejās - virkne. Analīze Šajā raksta ir veikta analīze, balstoties uz kuras var izvēlieties skaitu pārveidotāj moduļu skaitu, kuri nodrošina vislabāko efektivitāti DC/DC pārveidotāja posmā. Kopējais eksperimentāli noteiktais izstrādātās degvielas elementa pārveidotāju sistēmas fizikālā modeļa lietderības koeficients ir 93%

  19. Efficiency and weight of voltage multiplier type ultra lightweight d.c.-d.c. converters

    NASA Technical Reports Server (NTRS)

    Harrigill, W. T., Jr.; Myers, I. T.

    1975-01-01

    This paper presents an analytical and experimental study of a capacitor-diode voltage multiplier without a transformer which offers the possibility of high efficiency with light weight. Dc-dc conversion efficiencies of about 94% were achieved at output powers of 150 watts at 1000 volts using 8x multiplication. A detailed identification of losses was made, including forward drop losses in component, switching losses, reverse junction capacitance charging losses, and charging losses in the main ladder capacitors.

  20. Low-to-Medium Power Single Chip Digital Controlled DC-DC Regulator for Point-of-Load Applications

    NASA Technical Reports Server (NTRS)

    Adell, Philippe C. (Inventor); Bakkaloglu, Bertan (Inventor); Vermeire, Bert (Inventor); Liu, Tao (Inventor)

    2015-01-01

    A DC-DC converter for generating a DC output voltage includes: a digitally controlled pulse width modulator (DPWM) for controlling a switching power stage to supply a varying voltage to an inductor; and a digital voltage feedback circuit for controlling the DPWM in accordance with a feedback voltage corresponding to the DC output voltage, the digital voltage feedback circuit including: a first voltage controlled oscillator for converting the feedback voltage into a first frequency signal and to supply the first frequency signal to a first frequency discriminator; a second voltage controlled oscillator for converting a reference voltage into a second frequency signal and to supply the second frequency signal to a second frequency discriminator; a digital comparator for comparing digital outputs of the first and second frequency discriminators and for outputting a digital feedback signal; and a controller for controlling the DPWM in accordance with the digital feedback signal.

  1. Current-fed Step-up DC/DC Converter for Fuel Cell Applications with Active Overvoltage Clamping

    NASA Astrophysics Data System (ADS)

    Andreiciks, Aleksandrs; Steiks, Ingars; Krievs, Oskars

    2010-01-01

    In order to use hydrogen fuel cells in domestic applications either as main power supply or backup source, their low DC output voltage has to be matched to the level and frequency of the utility grid AC voltage. Such power converter systems usually consist of a DC-DC converter and a DC-AC inverter. A double inductor step-up push-pull converter is investigated in this paper, presenting simulation and experimental results for passive and active overvoltage clamping. The prototype of the investigated converter is elaborated for 1200 W power to match the rated power of the proton exchange membrane (PEM) fuel cell located in hydrogen fuel cell research laboratory.

  2. Optimizing the dynamics of a two-cell DC-DC buck converter by time delayed feedback control

    NASA Astrophysics Data System (ADS)

    Feki, M.; El Aroudi, A.; Robert, B. G. M.; Martínez-Salamero, L.

    2011-11-01

    A study of the dynamical behavior of a two-cell DC-DC buck converter under a digital time delayed feedback control (TDFC) is presented. Various numerical simulations and dynamical aspects of this system are illustrated in the time domain and in the parameter space. Without TDFC, the system may present many undesirable behaviors such as sub-harmonics and chaotic oscillations. TDFC is able to widen the stability range of the system. Optimum values of parameters giving rise to fast response while maintaining stable periodic behavior are given in closed form. However, it is detected that in a certain region of the parameter space, the stabilized periodic orbit may coexist with a chaotic attractor. Boundary between basins of attraction are obtained by means of numerical simulations.

  3. Multiphase soft switched DC/DC converter and active control technique for fuel cell ripple current elimination

    DOEpatents

    Lai, Jih-Sheng; Liu, Changrong; Ridenour, Amy

    2009-04-14

    DC/DC converter has a transformer having primary coils connected to an input side and secondary coils connected to an output side. Each primary coil connects a full-bridge circuit comprising two switches on two legs, the primary coil being connected between the switches on each leg, each full-bridge circuit being connected in parallel wherein each leg is disposed parallel to one another, and the secondary coils connected to a rectifying circuit. An outer loop control circuit that reduces ripple in a voltage reference has a first resistor connected in series with a second resistor connected in series with a first capacitor which are connected in parallel with a second capacitor. An inner loop control circuit that reduces ripple in a current reference has a third resistor connected in series with a fourth resistor connected in series with a third capacitor which are connected in parallel with a fourth capacitor.

  4. Fuel Cell/Electric Double Layer Capacitor Hybrid Power Source Using a Multi-port Bidirectional DC-DC Converter

    NASA Astrophysics Data System (ADS)

    Katayama, Noboru; Kogoshi, Sumio

    A fuel cell/electric double layer capacitor hybrid power source using a multi-port bidirectional DC-DC converter has been developed to reduce load variations for the purpose of extending fuel cell life. The proposed converter operates to maintain the fuel cell current, load voltage and bus voltage at constant values with a digital signal processor. The effect of the proposed converter is evaluated. The charging or discharging current of the EDLC rapidly changes along with step loading, and the voltage and current of the fuel cell are maintained at the constant values. Short-time transient responses show that the fuel cell current ripples 0.35 A at 1 A load change in 6 ms.

  5. Highly Efficient Amplifier for Ka-Band Communications

    NASA Technical Reports Server (NTRS)

    1996-01-01

    An amplifier developed under a Small Business Innovation Research (SBIR) contract will have applications for both satellite and terrestrial communications. This power amplifier uses an innovative series bias arrangement of active devices to achieve over 40-percent efficiency at Ka-band frequencies with an output power of 0.66 W. The amplifier is fabricated on a 2.0- by 3.8-square millimeter chip through the use of Monolithic Microwave Integrated Circuit (MMIC) technology, and it uses state-of-the-art, Pseudomorphic High-Electron-Mobility Transistor (PHEMT) devices. Although the performance of the MMIC chip depends on these high-performance devices, the real innovations here are a unique series bias scheme, which results in a high-voltage chip supply, and careful design of the on-chip planar output stage combiner. This design concept has ramifications beyond the chip itself because it opens up the possibility of operation directly from a satellite power bus (usually 28 V) without a dc-dc converter. This will dramatically increase the overall system efficiency. Conventional microwave power amplifier designs utilize many devices all connected in parallel from the bias supply. This results in a low-bias voltage, typically 5 V, and a high bias current. With this configuration, substantial I(sup 2) R losses (current squared times resistance) may arise in the system bias-distribution network. By placing the devices in a series bias configuration, the total current is reduced, leading to reduced distribution losses. Careful design of the on-chip planar output stage power combiner is also important in minimizing losses. Using these concepts, a two-stage amplifier was designed for operation at 33 GHz and fabricated in a standard MMIC foundry process with 0.20-m PHEMT devices. Using a 20-V bias supply, the amplifier achieved efficiencies of over 40 percent with an output power of 0.66 W and a 16-dB gain over a 2-GHz bandwidth centered at 33 GHz. With a 28-V bias, a power

  6. A study of DC-DC converters with MCT's for arcjet power supplies

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.

    1994-01-01

    Many arcjet DC power supplies use PWM full bridge converters with large arrays of parallel FET's. This report investigates an alternative supply using a variable frequency series resonant converter with small arrays of parallel MCT's (metal oxide semiconductor controlled thyristors). The reasons for this approach are to: increase reliability by reducing the number of switching devices; and decrease the surface mounting area of the switching arrays. The variable frequency series resonant approach is used because the relatively slow switching speed of the MCT precludes the use of PWM. The 10 kW converter operated satisfactorily with an efficiency of over 91 percent. Test results indicate this efficiency could be increased further by additional optimization of the series resonant inductor.

  7. Identifier-based adaptive neural dynamic surface control for uncertain DC-DC buck converter system with input constraint

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Ren, Xuemei; Oliver, Jesus Angel

    2012-04-01

    In this paper, an identifier-based adaptive neural dynamic surface control (IANDSC) is proposed for the uncertain DC-DC buck converter system with input constraint. Based on the analysis of the effect of input constraint in the buck converter, the neural network compensator is employed to ensure the controller output within the permissible range. Subsequently, the constrained adaptive control scheme combined with the neural network compensator is developed for the buck converter with uncertain load current. In this scheme, a newly presented finite-time identifier is utilized to accelerate the parameter tuning process and to heighten the accuracy of parameter estimation. By utilizing the adaptive dynamic surface control (ADSC) technique, the problem of "explosion of complexity" inherently in the traditional adaptive backstepping design can be overcome. The proposed control law can guarantee the uniformly ultimate boundedness of all signals in the closed-loop system via Lyapunov synthesis. Numerical simulations are provided to illustrate the effectiveness of the proposed control method.

  8. Cascaded transformerless DC-DC voltage amplifier with optically isolated switching devices

    NASA Technical Reports Server (NTRS)

    Sridharan, Govind (Inventor)

    1993-01-01

    A very high voltage amplifier is provided in which plural cascaded banks of capacitors are switched by optically isolated control switches so as to be charged in parallel from the preceding stage or capacitor bank and to discharge in series to the succeeding stage or capacitor bank in alternating control cycles. The optically isolated control switches are controlled by a logic controller whose power supply is virtually immune to interference from the very high voltage output of the amplifier by the optical isolation provided by the switches, so that a very high voltage amplification ratio may be attained using many capacitor banks in cascade.

  9. The 25 kW resonant dc/dc power converter

    NASA Technical Reports Server (NTRS)

    Robson, R. R.

    1983-01-01

    The feasibility of processing 25-kW of power with a single, transistorized, series resonant converter stage was demonstrated by the successful design, development, fabrication, and testing of such a device which employs four Westinghouse D7ST transistors in a full-bridge configuration and operates from a 250-to-350 Vdc input bus. The unit has an overall worst-case efficiency of 93.5% at its full rated output of 1000 V and 25 A dc. A solid-state dc input circuit breaker and output-transient-current limiters are included in and integrated into the design. Full circuit details of the converter are presented along with the test data.

  10. Integrated on-chip 0.35 μm BiCMOS current-mode DC-DC buck converter

    NASA Astrophysics Data System (ADS)

    Lee, Chan-Soo; Kim, Nam-Soo; Gendensuren, Munkhsuld; Choi, Jae-Ho; Choi, Joong-Ho

    2012-12-01

    A current-mode DC-DC buck converter with a fully integrated power module is presented in this article. The converter is implemented using BiCMOS technology in amplifier and power MOSFET in a current sensor. The current sensor is realised by the power lateral double-diffused MOSFET with the aspect ratio much larger than that of a matched p-MOSFET. In addition, BiCMOS technology is applied in the error amplifier for an accurate current sensing and a fast transient response. The DC-DC converter is fabricated with 0.35 µm BiCMOS process. Experimental results show that the fully integrated converter operates at 1.3 MHz switching frequency with a supply voltage of 5 V. The output DC voltage is obtained as expected and the output ripple is controlled to be within 2% with a 30 µH off-chip inductor and 100 µF off-chip capacitor.

  11. Technique for sensing inductor and dc output currents of PWM dc-dc converter

    SciTech Connect

    Ma, K.; Lee, Y. . Dept. of Electronic Engineering)

    1994-05-01

    The design, analysis and trade-offs of a novel method to sense the inductor and dc output currents of PWM converters are presented. By sensing and adding appropriately the currents in the transistor, rectifier and capacitors of a converter using current transformers, the waveforms of inductor and dc output currents can be reconstructed accurately while maintaining isolation. This method offers high bandwidth, clean waveform, practically zero power dissipation and simple circuit. The technique is applicable to all PWM converters in both continuous and discontinuous modes, and is most suitable for the implementation of current mode control schemes like hysteretic, PWM conductance control, and output current feedforward. This approach has been experimentally verified at a wide range of current levels, duty cycles, and switching frequencies up to 1.4 MHz.

  12. Transient Performance Improvement Circuit (TPIC)s for DC-DC converter applications

    NASA Astrophysics Data System (ADS)

    Lim, Sungkeun

    Gordon Moore famously predicted the exponential increase in transistor integration and computing power that has been witnessed in recent decades [1]. In the near future, it is expected that more than one billion transistors will be integrated per chip, and advanced microprocessors will require clock speeds in excess of several GHz. The increasing number of transistors and high clock speeds will necessitate the consumption of more power. By 2014, it is expected that the maximum power consumption of the microprocessor will reach approximately 150W, and the maximum load current will be around 150A. Today's trend in power and thermal management is to reduce supply voltage as low as possible to reduce delivered power. It is anticipated that the Intel cores will operate on 0.8V of supply voltage by 2014 [2]. A significant challenge in Voltage Regulator Module (VRM) development for next generation microprocessors is to regulate the supply voltage within a certain tolerance band during high slew rate load transitions, since the required supply voltage tolerance band will be much narrower than the current requirement. If VR output impedance is maintained at a constant value from DC to high frequency, large output voltage spikes can be avoided during load cur- rent transients. Based on this, the Adaptive Voltage Position (AVP) concept was developed to achieve constant VR output impedance to improve transient response performance [3]. However, the VR output impedance can not be made constant over the entire frequency range with AVP design, because the AVP design makes the VR output impedance constant only at low frequencies. To make the output impedance constant at high frequencies, many bulk capacitors and ceramic capacitors are required. The tight supply voltage tolerance for the next generation of microprocessors during high slew rate load transitions requires fast transient response power supplies. A VRM can not follow the high slew rate load current transients, because

  13. A Cryogenic Dc-Dc Power Converter for a 100 kW Synchronous HTS Generator at Liquid Nitrogen Temperatures

    NASA Astrophysics Data System (ADS)

    Bailey, Wendell; Wen, Hauming; Yang, Yifeng; Forsyth, Andrew; Jia, Chungjiang

    A dc-dc converter has been developed for retrofitting inside the vacuum space of the HTS rotor of a synchronous generator. The heavy copper sections of the current leads used for energising the HTS field winding were replaced by cryogenic power electronics; consisting of the converter and a rotor control unit. The converter board was designed using an H-bridge configuration with two 5A rated wires connecting the cryogenic boards to the stator control board located on the outside of the generator and drawing power from a (5A, 50 V) dc power source. The robustness of converter board was well demonstrated when it was powered up from a cold start at 82K. When charging the field winding with moderate currents (30A), the heat in-leak to the 'cold' rotor core was only 2W. It continued to function down to 74K, surviving several quenches. However, the quench protection function failed when injecting 75A into the field winding, resulting in the burn out of one of the DC-link capacitors. The magnitudes of the critical currents measured with the original current leads were compared to the quench currents, which was defined as the current which triggered quench protection protocol. The difference between the two currents was rather large, (∼20A). However, additional measurements using a single HTS coil in liquid nitrogen found that this reduction should not be so dramatic and in the region of 4A. Our conclusions identified the converter's switching voltage and its operating frequency as two parameters, which could have contributed to lowering the quench current. Magnetic fields and eddy currents are expected to be more prominent the field winding and its impact on the converter also need further investigation.

  14. Modeling, Dynamics, Bifurcation Behavior and Stability Analysis of a DC-DC Boost Converter in Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Zhioua, M.; El Aroudi, A.; Belghith, S.; Bosque-Moncusí, J. M.; Giral, R.; Al Hosani, K.; Al-Numay, M.

    A study of a DC-DC boost converter fed by a photovoltaic (PV) generator and supplying a constant voltage load is presented. The input port of the converter is controlled using fixed frequency pulse width modulation (PWM) based on the loss-free resistor (LFR) concept whose parameter is selected with the aim to force the PV generator to work at its maximum power point. Under this control strategy, it is shown that the system can exhibit complex nonlinear behaviors for certain ranges of parameter values. First, using the nonlinear models of the converter and the PV source, the dynamics of the system are explored in terms of some of its parameters such as the proportional gain of the controller and the output DC bus voltage. To present a comprehensive approach to the overall system behavior under parameter changes, a series of bifurcation diagrams are computed from the circuit-level switched model and from a simplified model both implemented in PSIM© software showing a remarkable agreement. These diagrams show that the first instability that takes place in the system period-1 orbit when a primary parameter is varied is a smooth period-doubling bifurcation and that the nonlinearity of the PV generator is irrelevant for predicting this phenomenon. Different bifurcation scenarios can take place for the resulting period-2 subharmonic regime depending on a secondary bifurcation parameter. The boundary between the desired period-1 orbit and subharmonic oscillation resulting from period-doubling in the parameter space is obtained by calculating the eigenvalues of the monodromy matrix of the simplified model. The results from this model have been validated with time-domain numerical simulation using the circuit-level switched model and also experimentally from a laboratory prototype. This study can help in selecting the parameter values of the circuit in order to delimit the region of period-1 operation of the converter which is of practical interest in PV systems.

  15. A High-Density, High-Efficiency, Isolated On-Board Vehicle Battery Charger Utilizing Silicon Carbide Power Devices

    SciTech Connect

    Whitaker, B; Barkley, A; Cole, Z; Passmore, B; Martin, D; McNutt, TR; Lostetter, AB; Lee, JS; Shiozaki, K

    2014-05-01

    This paper presents an isolated on-board vehicular battery charger that utilizes silicon carbide (SiC) power devices to achieve high density and high efficiency for application in electric vehicles (EVs) and plug-in hybrid EVs (PHEVs). The proposed level 2 charger has a two-stage architecture where the first stage is a bridgeless boost ac-dc converter and the second stage is a phase-shifted full-bridge isolated dc-dc converter. The operation of both topologies is presented and the specific advantages gained through the use of SiC power devices are discussed. The design of power stage components, the packaging of the multichip power module, and the system-level packaging is presented with a primary focus on system density and a secondary focus on system efficiency. In this work, a hardware prototype is developed and a peak system efficiency of 95% is measured while operating both power stages with a switching frequency of 200 kHz. A maximum output power of 6.1 kW results in a volumetric power density of 5.0 kW/L and a gravimetric power density of 3.8 kW/kg when considering the volume and mass of the system including a case.

  16. High efficiency incandescent lighting

    SciTech Connect

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  17. High efficiency magnetic bearings

    NASA Technical Reports Server (NTRS)

    Studer, Philip A.; Jayaraman, Chaitanya P.; Anand, Davinder K.; Kirk, James A.

    1993-01-01

    Research activities concerning high efficiency permanent magnet plus electromagnet (PM/EM) pancake magnetic bearings at the University of Maryland are reported. A description of the construction and working of the magnetic bearing is provided. Next, parameters needed to describe the bearing are explained. Then, methods developed for the design and testing of magnetic bearings are summarized. Finally, a new magnetic bearing which allows active torque control in the off axes directions is discussed.

  18. High Efficiency, Clean Combustion

    SciTech Connect

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous

  19. A High Efficiency DC Bus Regulator/RPC for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.

    2003-01-01

    DC bus voltage regulation may be required in future high powered spacecraft due to the length of the busses or because they are not generated at precise voltage levels. In these cases the regulation range is often only a few percent increase or decrease, but conventional DC voltage regulators switch all the power passing through them, and this level of power switched determines the size and losses in the regulator. A recently developed concept used a low power DC-DC converter in series with the bs to raise or lower the bus voltage over a small range. This partial power processing technique combines the small size and power losses of the low power converter with the ability to regulate, (over a small range) a high power bus. The Series Connected Buck Boost Regulator (SCBBR) described herein provides bus regulation with an efficiency of 98%. The circuit also provides bus switching and overcurrent limiting functions of a Remote Power Controller (RPC). This paper described the circuit design and performance of a breadboard SCBBR configured as a bus voltage regulator providing plus of minus 40% voltage regulation range, bus switching, and overload limiting.

  20. Superstructure high efficiency photovoltaics

    NASA Technical Reports Server (NTRS)

    Wagner, M.; So, L. C.; Leburton, J. P.

    1987-01-01

    A novel class of photovoltaic cascade structures is introduced which features multijunction upper subcells. These superstructure high efficiency photovoltaics (SHEP's) exhibit enhanced upper subcell spectral response because of the additional junctions which serve to reduce bulk recombination losses by decreasing the mean collection distance for photogenerated minority carriers. Two possible electrical configurations were studied and compared: a three-terminal scheme that allows both subcells to be operated at their individual maximum power points and a two-terminal configuration with an intercell ohmic contact for series interconnection. The three-terminal devices were found to be superior both in terms of beginning-of-life expectancy and radiation tolerance. Realistic simulations of three-terminal AlGaAs/GaAs SHEP's show that one sun AMO efficiencies in excess of 26 percent are possible.

  1. Experimental research of heavy ion and proton induced single event effects for a Bi-CMOS technology DC/DC converter

    NASA Astrophysics Data System (ADS)

    Anlin, He; Gang, Guo; Shuting, Shi; Dongjun, Shen; Jiancheng, Liu; Li, Cai; Hui, Fan

    2015-11-01

    This paper tested and analyzed heavy ion and proton induced single event effects (SEE) of a commercial DC/DC converter based on a 600 nm Bi-CMOS technology. Heavy ion induced single event transients (SET) testing has been carried out by using the Beijing HI-13 tandem accelerator at China Institute of Atomic Energy. Proton test has been carried out by using the Canadian TRIUMF proton accelerator. Both SET cross section versus linear energy transfer (LET) and proton energy has been measured. The main study conclusions are: (1) the DC/DC is both sensitive to heavy ion and proton radiations although at a pretty large feature size (600 nm), and threshold LET is about 0.06 MeV·mg/cm2 (2) heavy ion SET saturation cross section is about 5 magnitudes order larger than proton SET saturation cross section, which is consistent with the theory calculation result deduced by the RPP model and the proton nuclear reaction model; (3) on-orbit soft error rate (SER) prediction showed, on GEO orbit, proton induced SERs calculated by the heavy ion derived model are 4-5 times larger than those calculated by proton test data.

  2. High efficiency photoionization detector

    DOEpatents

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  3. High efficiency multifrequency feed

    NASA Technical Reports Server (NTRS)

    Ajioka, J. S.; Tsuda, G. I.; Leeper, W. A. (Inventor)

    1974-01-01

    Antenna systems and particularly compact and simple antenna feeds which can transmit and receive simultaneously in at least three frequency bands, each with high efficiency and polarization diversity are described. The feed system is applicable for frequency bands having nominal frequency bands with the ratio 1:4:6. By way of example, satellite communications telemetry bands operate in frequency bands 0.8 - 1.0 GHz, 3.7 - 4.2 GHz and 5.9 - 6.4 GHz. In addition, the antenna system of the invention has monopulse capability for reception with circular or diverse polarization at frequency band 1.

  4. High efficiency photoionization detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  5. HIGH EFFICIENCY SYNGAS GENERATION

    SciTech Connect

    Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

    2005-02-01

    This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the

  6. High-efficiency CARM

    SciTech Connect

    Bratman, V.L.; Kol`chugin, B.D.; Samsonov, S.V.; Volkov, A.B.

    1995-12-31

    The Cyclotron Autoresonance Maser (CARM) is a well-known variety of FEMs. Unlike the ubitron in which electrons move in a periodical undulator field, in the CARM the particles move along helical trajectories in a uniform magnetic field. Since it is much simpler to generate strong homogeneous magnetic fields than periodical ones for a relatively low electron energy ({Brit_pounds}{le}1-3 MeV) the period of particles` trajectories in the CARM can be sufficiently smaller than in the undulator in which, moreover, the field decreases rapidly in the transverse direction. In spite of this evident advantage, the number of papers on CARM is an order less than on ubitron, which is apparently caused by the low (not more than 10 %) CARM efficiency in experiments. At the same time, ubitrons operating in two rather complicated regimes-trapping and adiabatic deceleration of particles and combined undulator and reversed guiding fields - yielded efficiencies of 34 % and 27 %, respectively. The aim of this work is to demonstrate that high efficiency can be reached even for a simplest version of the CARM. In order to reduce sensitivity to an axial velocity spread of particles, a short interaction length where electrons underwent only 4-5 cyclotron oscillations was used in this work. Like experiments, a narrow anode outlet of a field-emission electron gun cut out the {open_quotes}most rectilinear{close_quotes} near-axis part of the electron beam. Additionally, magnetic field of a small correcting coil compensated spurious electron oscillations pumped by the anode aperture. A kicker in the form of a sloping to the axis frame with current provided a control value of rotary velocity at a small additional velocity spread. A simple cavity consisting of a cylindrical waveguide section restricted by a cut-off waveguide on the cathode side and by a Bragg reflector on the collector side was used as the CARM-oscillator microwave system.

  7. A Low-Cost Soft-Switched DC/DC Converter for Solid-Oxide Fuel Cells

    SciTech Connect

    Jason Lai

    2009-03-03

    A highly efficient DC to DC converter has been developed for low-voltage high-current solid oxide fuel cells. The newly developed 'V6' converter resembles what has been done in internal combustion engine that split into multiple cylinders to increase the output capacity without having to increase individual cell size and to smooth out the torque with interleaving operation. The development was started with topology overview to ensure that all the DC to DC converter circuits were included in the study. Efficiency models for different circuit topologies were established, and computer simulations were performed to determine the best candidate converter circuit. Through design optimization including topology selection, device selection, magnetic component design, thermal design, and digital controller design, a bench prototype rated 5-kW, with 20 to 50V input and 200/400V output was fabricated and tested. Efficiency goal of 97% was proven achievable through hardware experiment. This DC to DC converter was then modified in the later stage to converter 35 to 63 V input and 13.8 V output for automotive charging applications. The complete prototype was tested at Delphi with their solid oxide fuel cell test stand to verify the performance of the modified DC to DC converter. The output was tested up to 3-kW level, and the efficiency exceeded 97.5%. Multiple-phase interleaving operation design was proved to be reliable and ripple free at the output, which is desirable for the battery charging. Overall this is a very successful collaboration project between the SECA Core Technology Team and Industrial Team.

  8. High Efficiency Integrated Package

    SciTech Connect

    Ibbetson, James

    2013-09-15

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ≥ 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873

  9. Electrochemical treatment of tannery effluent using a battery integrated DC-DC converter and solar PV power supply--an approach towards environment and energy management.

    PubMed

    Iyappan, K; Basha, C Ahmed; Saravanathamizhan, R; Vedaraman, N; Tahiyah Nou Shene, C A; Begum, S Nathira

    2014-01-01

    Electrochemical oxidation of tannery effluent was carried out in batch, batch recirculation and continuous reactor configurations under different conditions using a battery-integrated DC-DC converter and solar PV power supply. The effect of current density, electrolysis time and fluid flow rate on chemical oxygen demand (COD) removal and energy consumption has been evaluated. The results of batch reactor show that a COD reduction of 80.85% to 96.67% could be obtained. The results showed that after 7 h of operation at a current density of 2.5 A dm(-2) and flow rate of 100 L h(-1) in batch recirculation reactor, the removal of COD is 82.14% and the specific energy consumption was found to be 5.871 kWh (kg COD)(-1) for tannery effluent. In addition, the performance of single pass flow reactors (single and multiple reactors) system of various configurations are analyzed.

  10. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    SciTech Connect

    Onar, Omer C

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  11. High-Voltage CMOS Controller for Microfluidics.

    PubMed

    Khorasani, M; Behnam, M; van den Berg, L; Backhouse, C J; Elliott, D G

    2009-04-01

    A high-voltage microfluidic controller designed using DALSA semiconductor's 0.8-mum low-voltage/high-voltage complementary metal-oxide semiconductor/double diffused metal-oxide semiconductor process is presented. The chip's four high-voltage output drivers can switch 300 V, and the dc-dc boost converter can generate up to 68 V using external passive components. This integrated circuit represents an advancement in microfluidic technology when used in conjunction with a charge coupling device (CCD)-based optical system and a glass microfluidic channel, enabling a portable and cost-efficient platform for genetic analysis.

  12. A study on thermal characteristics analysis model of high frequency switching transformer

    NASA Astrophysics Data System (ADS)

    Yoo, Jin-Hyung; Jung, Tae-Uk

    2015-05-01

    Recently, interest has been shown in research on the module-integrated converter (MIC) in small-scale photovoltaic (PV) generation. In an MIC, the voltage boosting high frequency transformer should be designed to be compact in size and have high efficiency. In response to the need to satisfy these requirements, this paper presents a coupled electromagnetic analysis model of a transformer connected with a high frequency switching DC-DC converter circuit while considering thermal characteristics due to the copper and core losses. A design optimization procedure for high efficiency is also presented using this design analysis method, and it is verified by the experimental result.

  13. High Efficiency Furnace

    SciTech Connect

    Hwang, K. S.; Koestler, D. J.

    1985-08-27

    Disclosed is a dwelling furnace having at least one clam-shell type primary heat exchanger in parallel orientation with a secondary heat exchanger, both the primary and secondary heat exchangers being vertically oriented relative to a furnace housing and parallel to the flow of air to be heated. The primary heat exchanger has a combustion chamber in the lower end thereof, and the lower end of the secondary heat exchanger exhausts into a tertiary heat exchanger oriented approximately perpendicular to the primary and secondary heat exchangers and horizontally relative to the housing, below the combustion chambers of the primary heat exchangers and below the exhaust outlet of the secondary heat exchanger. The tertiary heat exchanger includes a plurality of condensation tubes for retrieving the latent heat of condensation of the combustion gases. The furnace further comprises an induced draft blower for drawing combustion gases through the heat exchangers and inducting sufficient air to the combustion chamber of the primary heat exchanger for efficient combustion.

  14. High efficiency furnace

    SciTech Connect

    Hwang, K. S.; Koestler, D. J.

    1985-12-31

    Disclosed is a dwelling furnace having at least one clam-shell type primary heat exchanger in parallel orientation with a secondary heat exchanger, both the primary and secondary heat exchangers being vertically oriented relative to a furnace housing and parallel to the flow of air to be heated. The primary heat exchanger has a combustion chamber in the lower end thereof, and the lower end of the secondary heat exchanger exhausts into a tertiary heat exchanger oriented approximately perpendicular to the primary and secondary heat exchangers and horizontally relative to the housing, below the combustion chambers of the primary heat exchangers and below the exhaust outlet of the secondary heat exchanger. The tertiary heat exchanger includes a plurality of condensation tubes for retrieving the latent heat of condensation of the combustion gases. The furnace further comprises an induced draft blower for drawing combustion gases through the heat exchangers and inducting sufficient air to the combustion chamber of the primary heat exchanger for efficient combustion.

  15. High efficiency gas burner

    DOEpatents

    Schuetz, Mark A.

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  16. High efficiency solar cell processing

    NASA Technical Reports Server (NTRS)

    Ho, F.; Iles, P. A.

    1985-01-01

    At the time of writing, cells made by several groups are approaching 19% efficiency. General aspects of the processing required for such cells are discussed. Most processing used for high efficiency cells is derived from space-cell or concentrator cell technology, and recent advances have been obtained from improved techniques rather than from better understanding of the limiting mechanisms. Theory and modeling are fairly well developed, and adequate to guide further asymptotic increases in performance of near conventional cells. There are several competitive cell designs with promise of higher performance ( 20%) but for these designs further improvements are required. The available cell processing technology to fabricate high efficiency cells is examined.

  17. Multi-Purpose Low Voltage Dual Output DC-DC Converter For 100V Power Bus Telecom Platform

    NASA Astrophysics Data System (ADS)

    Galiana, D.; Mollard, J. M.

    2011-10-01

    The decreasing supply voltages of digital electronic and high speed ADC (Analog to Digital Converter) and DAC (Digital to Analog Converter) require flexible and high current secondary power distribution system. In the frame of the Inmarsat I-XL program, a 12 kW geomobile SatCom satellite, with 100 V regulated power bus, a multi purpose dual output converter was developed for the payload processor as a building block. After a short introduction on the main performance requirements, the baseline architecture is presented. The main drivers of the architecture are reliability, adjustability, radiation tolerant and single event free, volume and mass. The combination of all these constraints highlights the need of significant breakthrough in various domains. Many research results related to packaging and power electronic topics are brought up. These results directly drive the adopted solution presented in the next step followed by a description of the integration of the defined building block in the Inmarsat I-XL payload IP (Integrated Processor). Finally, the main electrical performances such as output ripple and spikes, load step transient and stability are summarized.

  18. Modular high voltage power supply for chemical analysis

    SciTech Connect

    Stamps, James F.; Yee, Daniel D.

    2010-05-04

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  19. Modular high voltage power supply for chemical analysis

    DOEpatents

    Stamps, James F.; Yee, Daniel D.

    2007-01-09

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC--DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC--DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  20. Modular high voltage power supply for chemical analysis

    SciTech Connect

    Stamps, James F.; Yee, Daniel D.

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  1. High efficiency SPS klystron design

    NASA Technical Reports Server (NTRS)

    Nalos, E. J.

    1980-01-01

    The most likely compact configuration to realize both high efficiency and high gain (approx. 40 dB) is a 5-6 cavity design focused by an electromagnet. The basic klystron efficiency cannot be expected to exceed 70-75% without collector depression. It was estimated that the net benefit of a 5 stage collector over a 2 stage collector is between 1.5 and 3.5 kW per tube. A modulating anode is incorporated in the design to enable rapid shutoff of the beam current in case the r.f. drive should be removed.

  2. High efficiency solar panel /HESP/

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Gay, C.; Uno, F.; Scott-Monck, J.

    1978-01-01

    A family of high efficiency, weldable silicon solar cells, incorporating nearly every feature of advanced cell technology developed in the past four years, was produced and subjected to space qualification testing. This matrix contained both field and non-field cells ranging in thickness from 0.10 mm to 0.30 mm, and in base resistivity from nominal two to one hundred ohm-cm. Initial power outputs as high as 20 mW/sq cm (14.8% AM0 efficiency) were produced by certain cell types within the matrix.

  3. Use Conditions and Efficiency Measurements of DC Power Optimizers for Photovoltaic Systems: Preprint

    SciTech Connect

    Deline, C.; MacAlpine, S.

    2013-10-01

    No consensus standard exists for estimating annual conversion efficiency of DC-DC converters or power optimizers in photovoltaic (PV) applications. The performance benefits of PV power electronics including per-panel DC-DC converters depend in large part on the operating conditions of the PV system, along with the performance characteristics of the power optimizer itself. This work presents acase study of three system configurations that take advantage of the capabilities of DC power optimizers. Measured conversion efficiencies of DC-DC converters are applied to these scenarios to determine the annual weighted operating efficiency. A simplified general method of reporting weighted efficiency is given, based on the California Energy Commission's CEC efficiency rating and severalinput / output voltage ratios. Efficiency measurements of commercial power optimizer products are presented using the new performance metric, along with a description of the limitations of the approach.

  4. High Efficiency Engine Technologies Program

    SciTech Connect

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in

  5. Enabling High Efficiency Ethanol Engines

    SciTech Connect

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  6. The Influence of the Construction of the Cooling System of Semiconductor Devices on the Watt-Hour Efficiency of DC-DC Converters

    NASA Astrophysics Data System (ADS)

    Zarębski, Janusz; Górecki, Krzysztof

    In the paper the influence of cooling conditions of semiconductor devices on the characteristics of a boost converter is considered. The form of the thermal model of semiconductor devices is proposed and some results of calculations and measurements of the characteristics of this converter are shown. The investigations were performed for the selected types of power MOSFETs operating at different cooling conditions.

  7. High Efficiency Room Air Conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  8. A simple, high efficiency, high resolution spectropolarimeter

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.

    2012-09-01

    A simple concept is described that uses volume phase holographic gratings as polarizing dispersers for a high efficiency, high resolution spectropolarimeter. Although the idea has previously been mentioned in the literature as possible, such a concept has not been explored in detail. Performance analysis is presented for a VPHG spectropolarimeter concept that could be utilized for both solar and night-time astronomy. Instrumental peak efficiency can approach 100% with spectral dispersions permitting R~200,000 spectral resolution with diffraction limited telescopes. The instrument has 3-channels: two dispersed image planes with orthogonal polarization and an undispersed image plane. The concept has a range of versatility where it could be configured (with appropriate half-wave plates) for slit-fed spectroscopy or without slits for snapshot/hyperspectral/tomographic spectroscopic imaging. Multiplex gratings could also be used for the simultaneous recording of two separate spectral bands or multiple instruments could be daisy chained with beam splitters for further spectral coverage.

  9. High Efficiency Germanium Immersion Gratings

    SciTech Connect

    Kuzmenko, P J; Davis, P J; Little, S L; Little, L M; Bixler, J V

    2006-05-01

    We have fabricated several germanium immersion gratings by single crystal, single point diamond flycutting on an ultra-precision lathe. Use of a dead sharp tool produces groove corners less than 0.1 micron in radius and consequently high diffraction efficiency. We measured first order efficiencies in immersion of over 80% at 10.6 micron wavelength. Wavefront error was low averaging 0.06 wave rms (at 633 nm) across the full aperture. The grating spectral response was free of ghosts down to our detection limit of 1 part in 10{sup 4}. Scatter should be low based upon the surface roughness. Measurement of the spectral line profile of a CO{sub 2} laser sets an upper bound on total integrated scatter of 0.5%.

  10. High-efficiency photovoltaic cells

    DOEpatents

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  11. High efficiency shale oil recovery

    SciTech Connect

    Adams, C.D.

    1992-07-18

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a larger continuous process kiln. For example, similar conditions of heatup rate, oxidation of the residue and cool-down prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The second quarter agenda consisted of (a) kiln modifications; (b) sample preparation; and (c) Heat Transfer calibration runs (part of proposal task number 3 -- to be completed by the end of month 7).

  12. High efficiency laser spectrum conditioner

    DOEpatents

    Greiner, Norman R.

    1980-01-01

    A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.

  13. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

  14. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  15. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  16. High Efficiency Cascade Solar Cells

    SciTech Connect

    Shuguang Deng, Seamus Curran, Igor Vasiliev

    2010-09-28

    This report summarizes the main work performed by New Mexico State University and University of Houston on a DOE sponsored project High Efficiency Cascade Solar Cells. The main tasks of this project include materials synthesis, characterization, theoretical calculations, organic solar cell device fabrication and test. The objective of this project is to develop organic nano-electronic-based photovoltaics. Carbon nanotubes and organic conjugated polymers were used to synthesize nanocomposites as the new active semiconductor materials that were used for fabricating two device architectures: thin film coating and cascade solar cell fiber. Chemical vapor deposition technique was employed to synthesized a variety of carbon nanotubes (single-walled CNT, doubled-walled CNT, multi-walled CNT, N-doped SWCNT, DWCNT and MWCNT, and B-doped SWCNT, DWCNT and MWCNT) and a few novel carbon structures (CNT-based nanolance, nanocross and supported graphene film) that have potential applications in organic solar cells. Purification procedures were developed for removing amorphous carbons from carbon nanotubes, and a controlled oxidation method was established for partial truncation of fullerene molecules. Carbon nanotubes (DWCNT and DWCNT) were functionalized with fullerenes and dyes covalently and used to form nanocomposites with conjugated polymers. Biologically synthesized Tellurium nanotubes were used to form composite with the conjugated polymers as well, which generated the highest reported optical limiting values from composites. Several materials characterization technique including SEM/TEM, Raman, AFM, UV-vis, adsorption and EDS were employed to characterize the physical and chemical properties of the carbon nanotubes, the functionalized carbon nanotubes and the nanocomposites synthesized in this project. These techniques allowed us to have a spectroscopic and morphological control of the composite formation and to understand the materials assembled. A parallel 136-CPU

  17. Highly efficient welding power supply

    NASA Astrophysics Data System (ADS)

    Thommes, J. M.

    1980-09-01

    The results and findings of an energy efficient welding power development project are presented. The power source developed is to be used for electric arc welding processes in which 3.5 trillion Btu of energy can be saved annually. The power source developed incorporates the use of switch mode power supply techniques in order to convert industrial supply mains to appropriate welding voltages and currents. A series capacitor switch mode power circuit was the circuit technique chosen in order to optimize energy efficiency, costs, reliability, size/weight, and welding performance. Test results demonstrated an effective efficiency (taking into account idle power consumption) of 80 to 91 percent for the energy efficient power source while the conventional types of power sources tested ranged from 41 to 74 percent efficiency. Line power factor was also improved for the energy efficient power source. Field tests indicated additional refinements of weld process performance and power source audible noise emission reduction could be beneficial.

  18. High efficiency, long life terrestrial solar panel

    NASA Technical Reports Server (NTRS)

    Chao, T.; Khemthong, S.; Ling, R.; Olah, S.

    1977-01-01

    The design of a high efficiency, long life terrestrial module was completed. It utilized 256 rectangular, high efficiency solar cells to achieve high packing density and electrical output. Tooling for the fabrication of solar cells was in house and evaluation of the cell performance was begun. Based on the power output analysis, the goal of a 13% efficiency module was achievable.

  19. High efficiency turbine blade coatings.

    SciTech Connect

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered

  20. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  1. High efficiency stationary hydrogen storage

    SciTech Connect

    Hynek, S.; Fuller, W.; Truslow, S.

    1995-09-01

    Stationary storage of hydrogen permits one to make hydrogen now and use it later. With stationary hydrogen storage, one can use excess electrical generation capacity to power an electrolyzer, and store the resultant hydrogen for later use or transshipment. One can also use stationary hydrogen as a buffer at fueling stations to accommodate non-steady fueling demand, thus permitting the hydrogen supply system (e.g., methane reformer or electrolyzer) to be sized to meet the average, rather than the peak, demand. We at ADL designed, built, and tested a stationary hydrogen storage device that thermally couples a high-temperature metal hydride to a phase change material (PCM). The PCM captures and stores the heat of the hydriding reaction as its own heat of fusion (that is, it melts), and subsequently returns that heat of fusion (by freezing) to facilitate the dehydriding reaction. A key component of this stationary hydrogen storage device is the metal hydride itself. We used nickel-coated magnesium powder (NCMP) - magnesium particles coated with a thin layer of nickel by means of chemical vapor deposition (CVD). Magnesium hydride can store a higher weight fraction of hydrogen than any other practical metal hydride, and it is less expensive than any other metal hydride. We designed and constructed an experimental NCM/PCM reactor out of 310 stainless steel in the form of a shell-and-tube heat exchanger, with the tube side packed with NCMP and the shell side filled with a eutectic mixture of NaCL, KCl, and MgCl{sub 2}. Our experimental results indicate that with proper attention to limiting thermal losses, our overall efficiency will exceed 90% (DOE goal: >75%) and our overall system cost will be only 33% (DOE goal: <50%) of the value of the delivered hydrogen. It appears that NCMP can be used to purify hydrogen streams and store hydrogen at the same time. These prospects make the NCMP/PCM reactor an attractive component in a reformer-based hydrogen fueling station.

  2. High Efficiency, High Performance Clothes Dryer

    SciTech Connect

    Peter Pescatore; Phil Carbone

    2005-03-31

    This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for both dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a

  3. High efficiency thermionic converter studies

    NASA Technical Reports Server (NTRS)

    Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, T. R.; Lieb, D.; Oettinger, P. E.; Goodale, D. B.

    1977-01-01

    Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion.

  4. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    Recent progress in the development of highly efficient coherent optical sources was reviewed. This work has focused on nonlinear frequency conversion of the highly coherent output of the non-planar ring laser oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  5. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    Recent progress in the development of highly efficient coherent optical sources is reviewed. This work focusses on nonlinear frequency conversion of the highly coherent output of the Non-Planar Ring Laser Oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  6. Efficient high density train operations

    DOEpatents

    Gordon, Susanna P.; Evans, John A.

    2001-01-01

    The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

  7. Highly Efficient Multilayer Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Boufelfel, Ali

    2006-01-01

    Multilayer thermoelectric devices now at the prototype stage of development exhibit a combination of desirable characteristics, including high figures of merit and high performance/cost ratios. These devices are capable of producing temperature differences of the order of 50 K in operation at or near room temperature. A solvent-free batch process for mass production of these state-of-the-art thermoelectric devices has also been developed. Like prior thermoelectric devices, the present ones have commercial potential mainly by virtue of their utility as means of controlled cooling (and/or, in some cases, heating) of sensors, integrated circuits, and temperature-critical components of scientific instruments. The advantages of thermoelectric devices for such uses include no need for circulating working fluids through or within the devices, generation of little if any noise, and high reliability. The disadvantages of prior thermoelectric devices include high power consumption and relatively low coefficients of performance. The present development program was undertaken in the hope of reducing the magnitudes of the aforementioned disadvantages and, especially, obtaining higher figures of merit for operation at and near room temperature. Accomplishments of the program thus far include development of an algorithm to estimate the heat extracted by, and the maximum temperature drop produced by, a thermoelectric device; solution of the problem of exchange of heat between a thermoelectric cooler and a water-cooled copper block; retrofitting of a vacuum chamber for depositing materials by sputtering; design of masks; and fabrication of multilayer thermoelectric devices of two different designs, denoted I and II. For both the I and II designs, the thicknesses of layers are of the order of nanometers. In devices of design I, nonconsecutive semiconductor layers are electrically connected in series. Devices of design II contain superlattices comprising alternating electron

  8. High efficiency solar photovoltaic power module concept

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1978-01-01

    The investigation of a preliminary concept for high efficiency solar power generation in space is presented. The concept was a synergistic combination of spectral splitting, tailored bandgap cells, high concentration ratios, and cool cell areas.

  9. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2015-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  10. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N (Inventor); Wintucky, Edwin G (Inventor)

    2013-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  11. High Efficiency Microwave Power Amplifier (HEMPA) Design

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert

    2004-01-01

    This paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  12. Multicolor, High Efficiency, Nanotextured LEDs

    SciTech Connect

    Jung Han; Arto Nurmikko

    2011-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and green for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) heteroepitaxy of nitrogen-polar LEDs on sapphire, (ii) heteroepitaxy of semipolar (11{bar 2}2) green LEDs on sapphire, (iii) synthesis of quantum-dot loaded nanoporous GaN that emits white light without phosphor conversion, (iv) demonstration of the highest quality semipolar (11{bar 2}2) GaN on sapphire using orientation-controlled epitaxy, (v) synthesis of nanoscale GaN and InGaN medium, and (vi) development of a novel liftoff process for manufacturing GaN thin-film vertical LEDs. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  13. Very High Efficiency Solar Cell Modules

    SciTech Connect

    Barnett, A.; Kirkpatrick, D.; Honsberg, C.; Moore, D.; Wanlass, M.; Emery, K.; Schwartz, R.; Carlson, D.; Bowden, S.; Aiken, D.; Gray, A.; Kurtz, S.; Kazmerski, L., et al

    2009-01-01

    The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system - PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42.7 {+-} 2.5% are described.

  14. Multi Band Gap High Efficiency Converter (RAINBOW)

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Lewis, C.; Phillips, W.; Shields, V.; Stella, P.

    1997-01-01

    The RAINBOW multi band gap system represents a unique combination of solar cells, concentrators and beam splitters. RAINBOW is a flexible system which can readily expand as new high efficiency components are developed.

  15. High-efficiency silicon solar cell research

    NASA Technical Reports Server (NTRS)

    Daud, T.

    1984-01-01

    Progress reports on research in high-efficiency silicon solar cells were presented by eight contractors and JPL. The presentations covered the issues of Bulk and Surface Loss, Modeling, Measurements, and Proof of Concept.

  16. High efficiency advanced absorption heat pump

    NASA Astrophysics Data System (ADS)

    Reid, E. A., Jr.

    1982-03-01

    A high efficiency absorption heat pump for the residential market is investigated. The performance targets established for this high efficiency absorption heat pump are a heating coefficient of performance of 1.5 and a cooling coefficient of performance of 0.8 at rating conditions, including parasitic electric power consumption. The resulting heat pump would have a space heating capacity of 68,000 BTU/hour, and a space cooling capacity of 36,000 BTU/hour at rating conditions. A very simplified schematic block diagram of the high efficiency absorption heat pump cycle is shown. High temperature, high pressure, refrigerant vapor is produced in the refrigerant generator and heat exchange system, is condensed to a liquid in the condenser, expanded to a low pressure vapor in the evaporator, and mixed with and reabsorbed into the weakened solution returned from the refrigerant generator and heat exchange system in the absorber.

  17. Highly sensitive vacuum ion pump current measurement system

    DOEpatents

    Hansknecht, John Christopher

    2006-02-21

    A vacuum system comprising: 1) an ion pump; 2) power supply; 3) a high voltage DC--DC converter drawing power from the power supply and powering the vacuum pump; 4) a feedback network comprising an ammeter circuit including an operational amplifier and a series of relay controlled scaling resistors of different resistance for detecting circuit feedback; 5) an optional power block section intermediate the power supply and the high voltage DC--DC converter; and 6) a microprocessor receiving feedback information from the feedback network, controlling which of the scaling resistors should be in the circuit and manipulating data from the feedback network to provide accurate vacuum measurement to an operator.

  18. Energy harvesting in high voltage measuring techniques

    NASA Astrophysics Data System (ADS)

    Żyłka, Pawel; Doliński, Marcin

    2016-02-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed.

  19. Technology Development for High Efficiency Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2012-01-01

    Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.

  20. High-efficiency solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Wallis, Robert E. (Inventor); Cheng, Sheng (Inventor)

    2005-01-01

    A high-efficiency solid state power amplifier (SSPA) for specific use in a spacecraft is provided. The SSPA has a mass of less than 850 g and includes two different X-band power amplifier sections, i.e., a lumped power amplifier with a single 11-W output and a distributed power amplifier with eight 2.75-W outputs. These two amplifier sections provide output power that is scalable from 11 to 15 watts without major design changes. Five different hybrid microcircuits, including high-efficiency Heterostructure Field Effect Transistor (HFET) amplifiers and Monolithic Microwave Integrated Circuit (MMIC) phase shifters have been developed for use within the SSPA. A highly efficient packaging approach enables the integration of a large number of hybrid circuits into the SSPA.

  1. Efficient Design in a DC to DC Converter Unit

    NASA Technical Reports Server (NTRS)

    Bruemmer, Joel E.; Williams, Fitch R.; Schmitz, Gregory V.

    2002-01-01

    Space Flight hardware requires high power conversion efficiencies due to limited power availability and weight penalties of cooling systems. The International Space Station (ISS) Electric Power System (EPS) DC-DC Converter Unit (DDCU) power converter is no exception. This paper explores the design methods and tradeoffs that were utilized to accomplish high efficiency in the DDCU. An isolating DC to DC converter was selected for the ISS power system because of requirements for separate primary and secondary grounds and for a well-regulated secondary output voltage derived from a widely varying input voltage. A flyback-current-fed push-pull topology or improved Weinberg circuit was chosen for this converter because of its potential for high efficiency and reliability. To enhance efficiency, a non-dissipative snubber circuit for the very-low-Rds-on Field Effect Transistors (FETs) was utilized, redistributing the energy that could be wasted during the switching cycle of the power FETs. A unique, low-impedance connection system was utilized to improve contact resistance over a bolted connection. For improved consistency in performance and to lower internal wiring inductance and losses a planar bus system is employed. All of these choices contributed to the design of a 6.25 KW regulated dc to dc converter that is 95 percent efficient. The methodology used in the design of this DC to DC Converter Unit may be directly applicable to other systems that require a conservative approach to efficient power conversion and distribution.

  2. [Design of a high-voltage insulation testing system of X-ray high frequency generators].

    PubMed

    Huang, Yong; Mo, Guo-Ming; Wang, Yan; Wang, Hong-Zhi; Yu, Jie-Ying; Dai, Shu-Guang

    2007-09-01

    In this paper, we analyze the transformer of X-ray high-voltage high-frequency generators and, have designed and implemented a high-voltage insulation testing system for its oil tank using full-bridge series resonant soft switching PFM DC-DC converter.

  3. Proposal for superstructure based high efficiency photovoltaics

    NASA Technical Reports Server (NTRS)

    Wagner, M.; Leburton, J. P.

    1986-01-01

    A novel class of cascade structures is proposed which features multijunction upper subcells, referred to as superstructure high-efficiency photovoltaics (SHEPs). The additional junctions enhance spectral response and improve radiation tolerance by reducing bulk recombination losses. This is important because ternary III-V alloys, which tend to have short minority-carrier diffusion lengths, are the only viable materials for the high-bandgap upper subcells required for cascade solar cells. Realistic simulations of AlGaAs SHEPs show that one-sun AM0 efficiencies in excess of 26 percent are possible.

  4. High-efficiency filtration meets IAQ goals

    SciTech Connect

    Aaronson, E.L. ); Fencl, F. )

    1994-12-01

    This article describes multi-stage filtration system which provided initial cost savings and is expected to save even more in energy costs while fulfilling IAQ requirements. The use of high-efficiency filtration has enabled the city of Kansas City, Mo., to save an estimated $500,000 in initial HVAC system costs for its Bartle Hall expansion project, which is currently under construction. Once operational, the new HVAC system, with its high-efficiency filters, is expected to save thousands of dollars per week more in energy costs while also delivering superior indoor air quality (IAQ).

  5. Measure Guideline. High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  6. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  7. Highly efficient heralding of entangled single photons.

    PubMed

    Ramelow, Sven; Mech, Alexandra; Giustina, Marissa; Gröblacher, Simon; Wieczorek, Witlef; Beyer, Jörn; Lita, Adriana; Calkins, Brice; Gerrits, Thomas; Nam, Sae Woo; Zeilinger, Anton; Ursin, Rupert

    2013-03-25

    Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupled bolometric transition-edge sensors. Without correcting for background, losses, or detection inefficiencies, we measure an overall heralding efficiency of 83%. By violating a Bell inequality, we confirm the single-photon character and high-quality entanglement of our heralded single photons which, in combination with the high heralding efficiency, are a necessary ingredient for advanced quantum communication protocols such as one-sided device-independent quantum key distribution.

  8. High efficiency novel window air conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  9. High efficiency novel window air conditioner

    DOE PAGESBeta

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  10. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok M. Srivastava

    2005-09-30

    This is the Yearly Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. Our chief achievement, during the current contract period, pertains to the successful synthesis and characterization of coated phosphors. We demonstrated several synthesis techniques for the coating of micron sized commercial phosphors with quantum-splitting and UV emitting nanophosphors. We have also continued our fundamental investigations into the physical processes that determine the quantum efficiency of the nanophosphors and this has further helped codify a set of rules for the host lattice that support efficient quantum splitting and UV emission at room temperature. In this report we summarize the technical work completed under the Program, summarize our findings about the performance limits of the various technologies we investigated, and outline promising paths for future work.

  11. Efficient circuit triggers high-current, high-voltage pulses

    NASA Technical Reports Server (NTRS)

    Green, E. D.

    1964-01-01

    Modified circuit uses diodes to effectively disconnect the charging resistors from the circuit during the discharge cycle. Result is an efficient parallel charging, high voltage pulse modulator with low voltage rating of components.

  12. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  13. High efficiency compound semiconductor concentrator photovoltaics

    NASA Technical Reports Server (NTRS)

    Borden, P.; Gregory, P.; Saxena, R.; Owen, R.; Moore, O.

    1980-01-01

    Special emphasis was given to the high yield pilot production of packaged AlGaAs/GaAs concentrator solar cells, using organometallic VPE for materials growth, the demonstration of a concentrator module using 12 of these cells which achieved 16.4 percent conversion efficiency at 50 C coolant inlet temperature, and the demonstration of a spectral splitting converter module that achieved in excess of 20 percent efficiency. This converter employed ten silicon and ten AlGaAs cells with a dichroic filter functioning as the beam splitter. A monolithic array of AlGaAs/GaAs solar cells is described.

  14. Highly efficient charged particle veto detector CUP

    NASA Astrophysics Data System (ADS)

    Palacz, M.; Nyberg, J.; Bednarczyk, P.; Dworski, J.; Górska, M.; Iwanicki, J.; Kapusta, M.; Kownacki, J.; Kulczycka, E.; Lagergren, K.; Moszyński, M.; Pieńkowski, L.; Stolarz, A.; Wolski, D.; Ziębliński, M.

    2005-09-01

    A novel, highly efficient, plastic scintillator detector has been constructed. The primary application of the detector is to act as a veto device in heavy-ion-induced fusion-evaporation reactions, in which the structure of proton-rich nuclides is investigated by γ-ray spectroscopy methods. The detector rejects events in which light charged particles, like protons and α particles, are emitted in the evaporation process, facilitating selection of reaction channels associated with emission of only neutrons. The detector was used in a EUROBALL experiment, with achieved efficiencies of 80% and 63% for protons and α particles, respectively. The design of the detector, its performance and limitations are discussed.

  15. High efficiency, low cost scrubber upgrades

    SciTech Connect

    Klingspor, J.S.; Walters, M.

    1998-07-01

    ABB introduced the LS-2 technology; a limestone based wet FGD system, which is capable of producing high purity gypsum from low grade limestone, in late 1995. Drawing from 30,000 MWe of worldwide wet FGD experience, ABB has incorporated several innovations in the new system designed to reduce the overall cost of SO{sub 2} compliance. Collectively, these improvements are referred to as LS-2. The improvements include a compact high efficiency absorber, a simple dry grinding system, a closed coupled flue gas reheat system, and a tightly integrated dewatering system. The compact absorber includes features such a high velocity spray zone, significantly improved gas-liquid contact system, compact reaction tank, and a high velocity mist eliminator. The LS-2 system is being demonstrated at Ohio Edison's Niles Plant at the 130 MWe level, and this turnkey installation was designed and erected in a 20-month period. At Niles, all of the gypsum is sold to a local wallboard manufacturer. Many of the features included in the LS-2 design and demonstrated at Niles can be used to improve the efficiency and operation of existing systems including open spray towers and tray towers. The SO{sub 2} removal efficiency can be significantly improved by installing the high efficiency LS-2 style spray header design and the unique wall rings. The absorber bypass can be eliminated or reduced by including the LS-2 style high velocity mist eliminator. Also, the LS-2 style spray header design combined with wall rings allow for an increase in absorber gas velocity at a maintained or improved performance without the need for costly upgrades of the absorber recycle pumps. the first upgrade using LS-2 technology was done at CPA's Coal Creek Station (2{times}545 MWe). The experience form the scrubber upgrade at Coal Creek is discussed along with operating results.

  16. Methodologies for high efficiency perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Park, Nam-Gyu

    2016-06-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  17. High efficiency low cost solar cell power

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Blocker, W.

    1978-01-01

    A concept for generating high-efficiency, low-cost, solar-cell power is outlined with reference to solar cell parameters, optical concentrators, and thermal control procedures. A design for a 12.5-kw power module for space operation is discussed noting the optical system, spectrum splitter, light conversion system, cell cooling, power conditioner, and tracking mechanism. It is found that for an unconcentrated array, efficiency approaches 60% when ten or more bandgaps are used. For a 12-band system, a computer program distributed bandgaps for maximum efficiency and equal cell currents. Rigid materials and thin films have been proposed for optical components and prisms, gratings, and dichroic mirrors have been recommended for spectrum splitting. Various radiator concepts are noted including that of Weatherston and Smith (1960) and Hedgepeth and Knapp (1978). The concept may be suitable for the Solar Power Satellite.

  18. High efficiency electrotransformation of Lactobacillus casei.

    PubMed

    Welker, Dennis L; Hughes, Joanne E; Steele, James L; Broadbent, Jeff R

    2015-01-01

    We investigated whether protocols allowing high efficiency electrotransformation of other lactic acid bacteria were applicable to five strains of Lactobacillus casei (12A, 32G, A2-362, ATCC 334 and BL23). Addition of 1% glycine or 0.9 M NaCl during cell growth, limitation of the growth of the cell cultures to OD600 0.6-0.8, pre-electroporation treatment of cells with water or with a lithium acetate (100 mM)/dithiothreitol (10 mM) solution and optimization of electroporation conditions all improved transformation efficiencies. However, the five strains varied in their responses to these treatments. Transformation efficiencies of 10(6) colony forming units μg(-1) pTRKH2 DNA and higher were obtained with three strains which is sufficient for construction of chromosomal gene knock-outs and gene replacements. PMID:25670703

  19. Creation of High Efficient Firefly Luciferase

    NASA Astrophysics Data System (ADS)

    Nakatsu, Toru

    Firefly emits visible yellow-green light. The bioluminescence reaction is carried out by the enzyme luciferase. The bioluminescence of luciferase is widely used as an excellent tool for monitoring gene expression, the measurement of the amount of ATP and in vivo imaging. Recently a study of the cancer metastasis is carried out by in vivo luminescence imaging system, because luminescence imaging is less toxic and more useful for long-term assay than fluorescence imaging by GFP. However the luminescence is much dimmer than fluorescence. Then bioluminescence imaging in living organisms demands the high efficient luciferase which emits near infrared lights or enhances the emission intensity. Here I introduce an idea for creating the high efficient luciferase based on the crystal structure.

  20. Breeding for high water-use efficiency.

    PubMed

    Condon, A G; Richards, R A; Rebetzke, G J; Farquhar, G D

    2004-11-01

    There is a pressing need to improve the water-use efficiency of rain-fed and irrigated crop production. Breeding crop varieties with higher water-use efficiency is seen as providing part of the solution. Three key processes can be exploited in breeding for high water-use efficiency: (i) moving more of the available water through the crop rather than it being wasted as evaporation from the soil surface or drainage beyond the root zone or being left behind in the root zone at harvest; (ii) acquiring more carbon (biomass) in exchange for the water transpired by the crop, i.e. improving crop transpiration efficiency; (iii) partitioning more of the achieved biomass into the harvested product. The relative importance of any one of these processes will vary depending on how water availability varies during the crop cycle. However, these three processes are not independent. Targeting specific traits to improve one process may have detrimental effects on the other two, but there may also be positive interactions. Progress in breeding for improved water-use efficiency of rain-fed wheat is reviewed to illustrate the nature of some of these interactions and to highlight opportunities that may be exploited in other crops as well as potential pitfalls. For C3 species, measuring carbon isotope discrimination provides a powerful means of improving water-use efficiency of leaf gas exchange, but experience has shown that improvements in leaf-level water-use efficiency may not always translate into higher crop water-use efficiency or yield. In fact, the reverse has frequently been observed. Reasons for this are explored in some detail. Crop simulation modelling can be used to assess the likely impact on water-use efficiency and yield of changing the expression of traits of interest. Results of such simulations indicate that greater progress may be achieved by pyramiding traits so that potential negative effects of individual traits are neutralized. DNA-based selection techniques may

  1. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.

  2. High Efficiency Thermoelectric Materials and Devices

    NASA Technical Reports Server (NTRS)

    Kochergin, Vladimir (Inventor)

    2013-01-01

    Growth of thermoelectric materials in the form of quantum well super-lattices on three-dimensionally structured substrates provide the means to achieve high conversion efficiency of the thermoelectric module combined with inexpensiveness of fabrication and compatibility with large scale production. Thermoelectric devices utilizing thermoelectric materials in the form of quantum well semiconductor super-lattices grown on three-dimensionally structured substrates provide improved thermoelectric characteristics that can be used for power generation, cooling and other applications..

  3. High efficiency silicon concentrator solar cells

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua

    1990-06-01

    Techniques were investigated for improving the energy conversion efficiency of silicon concentrator solar cells. This aim was achieved with the demonstration of bifacially contacted silicon concentrator solar cells of markedly superior performance. An additional achievement was the demonstration of substantial improvements in the performance of non-concentrating, one-sun cells. The improvements in the one-sun cell area were achieved by optimization of the Passivated Emitter Solar Cell (PESC) technology. Aluminum gettering and emitter surface oxide-passivation played key roles for the PESC cells. The optimized PESC one-sun cell demonstrated an independently confirmed efficiency of 21.4 percent. The optimized PESC technology was also successfully applied to the fabrication of silicon concentrator cells on low resistivity substrates. The effects of metal contact resistance and heavy phosphorus diffusion were areas requiring additional careful investigation in this case. A concentrator cell after optimization demonstrated 23.4 percent efficiency at 100 suns, again independently confirmed. Although very high by normal standards, the efficiency was limited by the trade-off of the resistance and the shading of the front metal fingers. The need for the trade-off was eliminated by the application of prismatic covers, which steer the incident light onto the cell active areas avoiding metal fingers. The Passivated Emitter and Rear Cells (PERC) incorporating TCA (trichloro-ethane) processing improved the one-sun cell efficiency further to 21.8 percent. The improvement came from low recombination at surfaces and in the bulk resulting from the TCA processing and from reduced rear contact area. Antireflection coatings and prismatic cover design were also theoretically optimized. When combined with light trapping techniques, 27 percent efficiency silicon concentrator cell will be obtained with this approach in the near future.

  4. High efficiency crystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Sah, C. Tang

    1986-01-01

    A review of the entire research program since its inception ten years ago is given. The initial effort focused on the effects of impurities on the efficiency of silicon solar cells to provide figures of maximum allowable impurity density for efficiencies up to about 16 to 17%. Highly accurate experimental techniques were extended to characterize the recombination properties of the residual imputities in the silicon solar cell. A numerical simulator of the solar cell was also developed, using the Circuit Technique for Semiconductor Analysis. Recent effort focused on the delineation of the material and device parameters which limited the silicon efficiency to below 20% and on an investigation of cell designs to break the 20% barrier. Designs of the cell device structure and geometry can further reduce recombination losses as well as the sensitivity and criticalness of the fabrication technology required to exceed 20%. Further research is needed on the fundamental characterization of the carrier recombination properties at the chemical impurity and physical defect centers. It is shown that only single crystalline silicon cell technology can be successful in attaining efficiencies greater than 20%.

  5. Highly efficient fully transparent inverted OLEDs

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.

    2007-09-01

    One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.

  6. High Efficiency Colloidal Quantum Dot Phosphors

    SciTech Connect

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of

  7. New high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1985-01-01

    A design for silicon solar cells was investigated as an approach to increasing the cell open-circuit voltage and efficiency for flat-plate terrestrial photovoltaic applications. This deviates from past designs, where either the entire front surface of the cell is covered by a planar junction or the surface is textured before junction formation, which results in an even greater (up to 70%) junction area. The heavily doped front region and the junction space charge region are potential areas of high recombination for generated and injected minority carriers. The design presented reduces junction area by spreading equidiameter dot junctions across the surface of the cell, spaced about a diffusion length or less from each other. Various dot diameters and spacings allowed variations in total junction area. A simplified analysis was done to obtain a first-order design optimization. Efficiencies of up to 19% can be obtained. Cell fabrication involved extra masking steps for selective junction diffusion, and made surface passivation a key element in obtaining good collection. It also involved photolithography, with line widths down to microns. A method is demonstrated for achieving potentially high open-circuit voltages and solar-cell efficiencies.

  8. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    SciTech Connect

    Baranec, Christoph; Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas; Law, Nicholas M.; Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit

    2014-07-20

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  9. High efficiency ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1981-01-01

    An ion accelerator system that successfully combines geometrical and electrostatic focusing principles is presented. This accelerator system uses thin, concave, multiple-hole, closely spaced graphite screen and focusing grids which are coupled to single slot accelerator and decelerator grids to provide high ion extraction efficiency and good focusing. Tests with the system showed a substantial improvement in ion beam current density and collimation as compared with a Pierce electrode configuration. Durability of the thin graphite screen and focusing grids has been proven, and tests are being performed to determine the minimum screen and focusing grid spacing and thickness required to extract the maximum reliable beam current density. Compared with present neutral beam injector accelerator systems, this one has more efficient ion extraction, easier grid alignment, easier fabrication, a less cumbersome design, and the capacity to be constructed in a modular fashion. Conceptual neutral beam injector designs using this modular approach have electrostatic beam deflection plates downstream of each module.

  10. Highly efficient Raman distributed feedback fibre lasers.

    PubMed

    Shi, Jindan; Alam, Shaif-ul; Ibsen, Morten

    2012-02-27

    We demonstrate highly efficient Raman distributed feedback (DFB) fibre lasers for the first time with up to 1.6 W of continuous wave (CW) output power. The DFB Bragg gratings are written directly into two types of commercially available passive germano-silica fibres. Two lasers of 30 cm length are pumped with up to 15 W of CW power at 1068 nm. The threshold power is ~2 W for a Raman-DFB (R-DFB) laser written in standard low-NA fibre, and only ~1 W for a laser written in a high-NA fibre, both of which oscillate in a narrow linewidth of <0.01 nm at ~1117 nm and ~1109 nm, respectively. The slope efficiencies are ~74% and ~93% with respect to absorbed pump power in the low-NA fibre and high-NA fibre respectively. Such high conversion efficiency suggests that very little energy is lost in the form of heat through inefficient energy transfer. Our results are supported by numerical simulations, and furthermore open up for the possibility of having narrow linewidth all-fibre laser sources in wavelength bands not traditionally covered by rare-earth doped silica fibres. Simulations also imply that this technology has the potential to produce even shorter R-DFB laser devices at the centimetre-level and with mW-level thresholds, if Bragg gratings formed in fibre materials with higher intrinsic Raman gain coefficient than silica are used. These materials include for example tellurite or chalcogenide glasses. Using glasses like these would also open up the possibility of having narrow linewidth fibre sources with DFB laser oscillating much further into the IR than what currently is possible with rare-earth doped silica glasses. PMID:22418313

  11. Highly efficient Raman distributed feedback fibre lasers.

    PubMed

    Shi, Jindan; Alam, Shaif-ul; Ibsen, Morten

    2012-02-27

    We demonstrate highly efficient Raman distributed feedback (DFB) fibre lasers for the first time with up to 1.6 W of continuous wave (CW) output power. The DFB Bragg gratings are written directly into two types of commercially available passive germano-silica fibres. Two lasers of 30 cm length are pumped with up to 15 W of CW power at 1068 nm. The threshold power is ~2 W for a Raman-DFB (R-DFB) laser written in standard low-NA fibre, and only ~1 W for a laser written in a high-NA fibre, both of which oscillate in a narrow linewidth of <0.01 nm at ~1117 nm and ~1109 nm, respectively. The slope efficiencies are ~74% and ~93% with respect to absorbed pump power in the low-NA fibre and high-NA fibre respectively. Such high conversion efficiency suggests that very little energy is lost in the form of heat through inefficient energy transfer. Our results are supported by numerical simulations, and furthermore open up for the possibility of having narrow linewidth all-fibre laser sources in wavelength bands not traditionally covered by rare-earth doped silica fibres. Simulations also imply that this technology has the potential to produce even shorter R-DFB laser devices at the centimetre-level and with mW-level thresholds, if Bragg gratings formed in fibre materials with higher intrinsic Raman gain coefficient than silica are used. These materials include for example tellurite or chalcogenide glasses. Using glasses like these would also open up the possibility of having narrow linewidth fibre sources with DFB laser oscillating much further into the IR than what currently is possible with rare-earth doped silica glasses.

  12. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect

    Shiang, Joseph

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  13. New line of high efficiency turbochargers

    SciTech Connect

    Chellini, R,

    1994-11-01

    The French firm Hispano Suiza has recently introduced the first of a new family of high-efficiency turbochargers. The design objectives for these turbochargers is to combine the most advanced technology in both the compressor and turbine components. The HS 5800 New Generation Turbocharger is suited for diesel engines in the 1700-3000 kW power range for a single turbocharger unit. When the HS 4800 and HS 6800 sizes are introduced the line will cover a range of engines from 1200 to 9000 kW. 5 figs.

  14. High-Aperture-Efficiency Horn Antenna

    NASA Technical Reports Server (NTRS)

    Pickens, Wesley; Hoppe, Daniel; Epp, Larry; Kahn, Abdur

    2005-01-01

    A horn antenna (see Figure 1) has been developed to satisfy requirements specific to its use as an essential component of a high-efficiency Ka-band amplifier: The combination of the horn antenna and an associated microstrip-patch antenna array is required to function as a spatial power divider that feeds 25 monolithic microwave integrated-circuit (MMIC) power amplifiers. The foregoing requirement translates to, among other things, a further requirement that the horn produce a uniform, vertically polarized electromagnetic field in its patches identically so that the MMICs can operate at maximum efficiency. The horn is fed from a square waveguide of 5.9436-mm-square cross section via a transition piece. The horn features cosine-tapered, dielectric-filled longitudinal corrugations in its vertical walls to create a hard boundary condition: This aspect of the horn design causes the field in the horn aperture to be substantially vertically polarized and to be nearly uniform in amplitude and phase. As used here, cosine-tapered signifies that the depth of the corrugations is a cosine function of distance along the horn. Preliminary results of finite-element simulations of performance have shown that by virtue of the cosine taper the impedance response of this horn can be expected to be better than has been achieved previously in a similar horn having linearly tapered dielectric- filled longitudinal corrugations. It is possible to create a hard boundary condition by use of a single dielectric-filled corrugation in each affected wall, but better results can be obtained with more corrugations. Simulations were performed for a one- and a three-corrugation cosine-taper design. For comparison, a simulation was also performed for a linear- taper design (see Figure 2). The three-corrugation design was chosen to minimize the cost of fabrication while still affording acceptably high performance. Future designs using more corrugations per wavelength are expected to provide better

  15. Vacuum MOCVD fabrication of high efficience cells

    NASA Technical Reports Server (NTRS)

    Partain, L. D.; Fraas, L. M.; Mcleod, P. S.; Cape, J. A.

    1985-01-01

    Vacuum metal-organic-chemical-vapor-deposition (MOCVD) is a new fabrication process with improved safety and easier scalability due to its metal rather than glass construction and its uniform multiport gas injection system. It uses source materials more efficiently than other methods because the vacuum molecular flow conditions allow the high sticking coefficient reactants to reach the substrates as undeflected molecular beams and the hot chamber walls cause the low sticking coefficient reactants to bounce off the walls and interact with the substrates many times. This high source utilization reduces the materials costs power device and substantially decreases the amounts of toxic materials that must be handled as process effluents. The molecular beams allow precise growth control. With improved source purifications, vacuum MOCVD has provided p GaAs layers with 10-micron minority carrier diffusion lengths and GaAs and GaAsSb solar cells with 20% AMO efficiencies at 59X and 99X sunlight concentration ratios. Mechanical stacking has been identified as the quickest, most direct and logical path to stacked multiple-junction solar cells that perform better than the best single-junction devices. The mechanical stack is configured for immediate use in solar arrays and allows interconnections that improve the system end-of-life performance in space.

  16. Efficient high-permeability fracturing offshore

    SciTech Connect

    Phillipi, M.; Farabee, M.

    1996-12-31

    Offshore operators can more efficiently and effectively perform high-permeability and conventional hydraulic fracture treatments by blending treatment slurries under microprocessor control, adding undiluted acid on-the-fly, and altering sand concentrations and other slurry properties instantaneously. A two-skid system has been designed with these considerations in mind. The system, which can be shipped efficiently in ISO containers, has been tested on fluids up to 210-cp viscosity and can step or ramp sand concentrations up to a maximum of 20 lb/gal. All additives, including acid treatments, are added on-the-fly; leftover additives and acids may be stored for future jobs. The system may be applied in most conditions, including offshore wells requiring conventional or high-permeability fracture treatments and certain land-based wells in remote areas where a compact skid is needed. Three significant benefits have resulted from using the compact-skid system: offshore operators have been able to ship the skid system at 20% of shipping costs of non-ISO equipment; on-the-fly mixing has prevented material waste associated with batch-mixing; and volumes pumped on actual jobs have closely matched job designs. Data have been collected from several Gulf of Mexico jobs run with the two-part skid system that has been designed for conducting hydraulic fracture treatments from offshore rigs.

  17. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In

  18. High-Efficiency Microwave Power Amplifier

    NASA Technical Reports Server (NTRS)

    Sims, Williams H.

    2005-01-01

    A high-efficiency power amplifier that operates in the S band (frequencies of the order of a few gigahertz) utilizes transistors operating under class-D bias and excitation conditions. Class-D operation has been utilized at lower frequencies, but, until now, has not been exploited in the S band. Nominally, in class D operation, a transistor is switched rapidly between "on" and "off" states so that at any given instant, it sustains either high current or high voltage, but not both at the same time. In the ideal case of zero "on" resistance, infinite "off" resistance, zero inductance and capacitance, and perfect switching, the output signal would be a perfect square wave. Relative to the traditional classes A, B, and C of amplifier operation, class D offers the potential to achieve greater power efficiency. In addition, relative to class-A amplifiers, class-D amplifiers are less likely to go into oscillation. In order to design this amplifier, it was necessary to derive mathematical models of microwave power transistors for incorporation into a larger mathematical model for computational simulation of the operation of a class-D microwave amplifier. The design incorporates state-of-the-art switching techniques applicable only in the microwave frequency range. Another major novel feature is a transmission-line power splitter/combiner designed with the help of phasing techniques to enable an approximation of a square-wave signal (which is inherently a wideband signal) to propagate through what would, if designed in a more traditional manner, behave as a more severely band-limited device (see figure). The amplifier includes an input, a driver, and a final stage. Each stage contains a pair of GaAs-based field-effect transistors biased in class D. The input signal can range from -10 to +10 dBm into a 50-ohm load. The table summarizes the performances of the three stages

  19. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok Srivatava

    2007-03-31

    This is the Final Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet (UV) emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. Our work started by investigating through modeling calculations the requirement for the particle size of the NCP. Our work to develop suitable nanocrystalline phosphors started with the known oxide quantum splitting and UV emitting phosphors. We demonstrated several synthesis techniques for the production of high quality nanocrystalline materials that crystallizes in the desired phase and with the desired particle size. In collaboration with our subcontractor we demonstrated the feasibility for the manufacture of NC phosphors. We also demonstrated novel techniques of coating the NCP on the surface of micron sized phosphors. Our chief achievement pertains to the successful testing of the coated hybrid phosphor systems in linear fluorescent lamps. In linear fluorescent lamp tests, we have demonstrated up to 7% increase in the efficacy of hybrid phosphors over the conventional (uncoated) phosphors. We have also demonstrated the improvement in the lumen maintenance of the coated phosphors. A hybrid phosphor system based on the commercial red emitting phosphor, Y{sub 2}O{sub 3}:Eu{sup 3+} did not show the anticipated improvement in lamp efficacy. We explored the reasons for this observation

  20. High efficiency recombineering in lactic acid bacteria

    PubMed Central

    van Pijkeren, Jan-Peter; Britton, Robert A.

    2012-01-01

    The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to Gram-positive bacteria has not been reported. Here we describe the development and application of ssDNA recombineering in lactic acid bacteria. Mutations were incorporated in the chromosome of Lactobacillus reuteri and Lactococcus lactis without selection at frequencies ranging between 0.4% and 19%. Whole genome sequence analysis showed that ssDNA recombineering is specific and not hypermutagenic. To highlight the utility of ssDNA recombineering we reduced the intrinsic vancomymycin resistance of L. reuteri >100-fold. By creating a single amino acid change in the d-Ala-d-Ala ligase enzyme we reduced the minimum inhibitory concentration for vancomycin from >256 to 1.5 µg/ml, well below the clinically relevant minimum inhibitory concentration. Recombineering thus allows high efficiency mutagenesis in lactobacilli and lactococci, and may be used to further enhance beneficial properties and safety of strains used in medicine and industry. We expect that this work will serve as a blueprint for the adaptation of ssDNA recombineering to other Gram-positive bacteria. PMID:22328729

  1. Tips for selecting highly efficient cyclones

    SciTech Connect

    Amrein, D.L.

    1995-05-01

    Cyclone dust collectors have been used--and misused--all over the world for more than 100 years. One reason for the misuse is a common perception among users that all cyclones are created equal--that is, as long as a cyclone resembles a cylinder with an attached cone, it will do its job. However, to maximize separation efficiency in a specific application requires a precise cyclone design, engineered to exact fit many possible variables. A well-designed cyclone, for instance, can achieve efficiencies as high s 99.9+% when operated properly within the envelope of its specifications. Nonetheless, cyclones are often used only as first-stage filters for performing crude separations, with final collections being carried out by more-costly baghouses and scrubbers. Compared with baghouses and scrubbers, cyclones have two important considerations in their favor. One, they are almost invariably safer--in terms of the potential for generating fires and explosions--than fabric filters. Second, cyclones have lower maintenance costs since there are no filter media to replace. The paper discusses the operation, design, and troubleshooting of cyclones.

  2. Highly Efficient Vector-Inversion Pulse Generators

    NASA Technical Reports Server (NTRS)

    Rose, Franklin

    2004-01-01

    Improved transmission-line pulse generators of the vector-inversion type are being developed as lightweight sources of pulsed high voltage for diverse applications, including spacecraft thrusters, portable x-ray imaging systems, impulse radar systems, and corona-discharge systems for sterilizing gases. In this development, more than the customary attention is paid to principles of operation and details of construction so as to the maximize the efficiency of the pulse-generation process while minimizing the sizes of components. An important element of this approach is segmenting a pulse generator in such a manner that the electric field in each segment is always below the threshold for electrical breakdown. One design of particular interest, a complete description of which was not available at the time of writing this article, involves two parallel-plate transmission lines that are wound on a mandrel, share a common conductor, and are switched in such a manner that the pulse generator is divided into a "fast" and a "slow" section. A major innovation in this design is the addition of ferrite to the "slow" section to reduce the size of the mandrel needed for a given efficiency.

  3. High efficiency francium trap for precision spectroscopy

    NASA Astrophysics Data System (ADS)

    Aubin, Seth Andre Morgan

    We cooled and trapped francium in a high efficiency magneto-optical trap. The francium is produced artificially in a nuclear fusion reaction using the Stony Brook superconducting LINAC. We observed an average trap population of 50,000 210Fr, corresponding to a trapping efficiency of 1.2%. The trapped atoms are cooled to a temperature of 75 muK. We used the new trapping apparatus for spectroscopic studies of the 9S 1/2 level of 210Fr to test the precision of atomic theory. We measured the hyperfine splitting of the 9S1/2 level, and with time-correlated single photon counting, we measured its radiative lifetime. We found a lifetime of 107.53 +/- 0.80 ns and a hyperfine splitting of 4045.1 +/- 1.1 MHz. We characterized the optical properties of a dipole trap based on an axicon lens to provide a low perturbation environment for precision spectroscopy. The axicon generates a region of darkness surrounded by light. For blue-detuned light, cold atoms are trapped in the dark region and experience almost no perturbing fields. This work continues the spectroscopic studies of francium for tests of atomic theory and opens the way for nuclear anapole moment measurements.

  4. High efficiency Brayton cycles using LNG

    DOEpatents

    Morrow, Charles W.

    2006-04-18

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  5. High power, high efficiency diode pumped Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Dahan, Asaf; Ter-Gabrielyan, Nikolay; Pattnaik, Radha K.; Dubinskii, Mark

    2016-06-01

    We demonstrate a high power high efficiency Raman fiber laser pumped directly by a laser diode module at 976 nm. 80 Watts of CW power were obtained at a wavelength of 1020 nm with an optical-to-optical efficiency of 53%. When working quasi-CW, at a duty cycle of 30%, 85 W of peak power was produced with an efficiency of 60%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the 2nd Stokes. In addition, significant brightness enhancement of the pump beam is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge, this is the highest power Raman fiber laser directly pumped by laser diodes, which also exhibits a record efficiency for such a laser. In addition, it is the highest power Raman fiber laser (regardless of pumping source) demonstrated based on a GRIN fiber.

  6. A high-efficiency superhydrophobic plasma separator.

    PubMed

    Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M; Yang, Shu; Bau, Haim H

    2016-02-01

    To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device's superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a "blood in-plasma out" capability, consistently extracting 65 ± 21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of >84.5 ± 25.8%. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method.

  7. A High-Efficiency Superhydrophobic Plasma Separator

    PubMed Central

    Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G.; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M.; Yang, Shu; Bau, Haim H.

    2016-01-01

    To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device’s superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a “blood in-plasma out” capability, consistently extracting 65±21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of > 84.5 ± 25.8 %. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method. PMID:26732765

  8. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Wang, Yi-Qing; Fan, Zhen; Taft, Charles; Maaref, Shahin; Bailey, Sheila (Technical Monitor)

    2003-01-01

    Solar energy is a renewable, nonpolluting, and most abundant energy source for human exploration of a remote site or outer space. In order to generate appreciable electrical power in space or on the earth, it is necessary to collect sunlight from large areas and with high efficiency due to the low density of sunlight. Future organic or polymer (plastic) solar cells appear very attractive due to their unique features such as light weight, flexible shape, tunability of energy band-gaps via versatile molecular or supramolecular design, synthesis, processing and device fabrication schemes, and much lower cost on large scale industrial production. It has been predicted that supramolecular and nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration due to improved electronic ultrastructure and morphology in comparison to polymer composite system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel block copolymer system containing donor and acceptor blocks covalently attached. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (RO-PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (SF-PPV). The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block has a strong PL emission at around 560 nm, and acceptor block has a strong PL emission at around 520 nm, the PL emissions of final block copolymers are severely quenched. This verifies the expected electron transfer and charge separation due to interfaces of donor and acceptor nano phase separated blocks. The system therefore has potential for variety light harvesting applications, including high efficient photovoltaic applications.

  9. A high-efficiency superhydrophobic plasma separator.

    PubMed

    Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M; Yang, Shu; Bau, Haim H

    2016-02-01

    To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device's superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a "blood in-plasma out" capability, consistently extracting 65 ± 21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of >84.5 ± 25.8%. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method. PMID:26732765

  10. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2014-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were

  11. White LED with High Package Extraction Efficiency

    SciTech Connect

    Yi Zheng; Matthew Stough

    2008-09-30

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W{sub e} using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat

  12. Tailored Materials for High Efficiency CIDI Engines

    SciTech Connect

    Grant, G.J.; Jana, S.

    2012-03-30

    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in

  13. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Fan, Zben; Taft, Charles; Wang, Yi-Qing; Maaref, Shahin; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    In man's mission to the outer space or a remote site, the most abundant, renewable, nonpolluting, and unlimited external energy source is light. Photovoltaic (PV) materials can convert light into electrical power. In order to generate appreciable electrical power in space or on the Earth, it is necessary to collect sunlight from large areas due to the low density of sunlight, and this would be very costly using current commercially available inorganic solar cells. Future organic or polymer based solar cells seemed very attractive due to several reasons. These include lightweight, flexible shape, ultra-fast optoelectronic response time (this also makes organic PV materials attractive for developing ultra-fast photo detectors), tunability of energy band-gaps via molecular design, versatile materials synthesis and device fabrication schemes, and much lower cost on large-scale industrial production. It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks will facilitate the charge separation and migration due to improved electronic ultrastructure and morphology in comparison to current polymer composite photovoltaic system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel donor-bridge-acceptor block copolymer system for potential high-efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene, the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene, and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes the holes, the acceptor block stabilizes the electrons. The bridge block is designed to hinder

  14. A high-efficiency aerothermoelastic analysis method

    NASA Astrophysics Data System (ADS)

    Wan, ZhiQiang; Wang, YaoKun; Liu, YunZhen; Yang, Chao

    2014-06-01

    In this paper, a high-efficiency aerothermoelastic analysis method based on unified hypersonic lifting surface theory is established. The method adopts a two-way coupling form that couples the structure, aerodynamic force, and aerodynamic thermo and heat conduction. The aerodynamic force is first calculated based on unified hypersonic lifting surface theory, and then the Eckert reference temperature method is used to solve the temperature field, where the transient heat conduction is solved using Fourier's law, and the modal method is used for the aeroelastic correction. Finally, flutter is analyzed based on the p-k method. The aerothermoelastic behavior of a typical hypersonic low-aspect ratio wing is then analyzed, and the results indicate the following: (1) the combined effects of the aerodynamic load and thermal load both deform the wing, which would increase if the flexibility, size, and flight time of the hypersonic aircraft increase; (2) the effect of heat accumulation should be noted, and therefore, the trajectory parameters should be considered in the design of hypersonic flight vehicles to avoid hazardous conditions, such as flutter.

  15. Highly Efficient Contactless Electrical Energy Transmission System

    NASA Astrophysics Data System (ADS)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  16. Multi-petascale highly efficient parallel supercomputer

    DOEpatents

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2015-07-14

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.

  17. High Power Switching Transistor

    NASA Technical Reports Server (NTRS)

    Hower, P. L.; Kao, Y. C.; Carnahan, D. C.

    1983-01-01

    Improved switching transistors handle 400-A peak currents and up to 1,200 V. Using large diameter silicon wafers with twice effective area as D60T, form basis for D7 family of power switching transistors. Package includes npn wafer, emitter preform, and base-contact insert. Applications are: 25to 50-kilowatt high-frequency dc/dc inverters, VSCF converters, and motor controllers for electrical vehicles.

  18. High efficiency transformation of E. coli by high voltage electroporation.

    PubMed

    Dower, W J; Miller, J F; Ragsdale, C W

    1988-07-11

    E. coli can be transformed to extremely high efficiencies by subjecting a mixture of cells and DNA to brief but intense electrical fields of exponential decay waveform (electroporation). We have obtained 10(9) to 10(10) transformants/micrograms with strains LE392 and DH5 alpha, and plasmids pUC18 and pBR329. The process is highly dependent on two characteristics of the electrical pulse: the electric field strength and the pulse length (RC time constant). The frequency of transformation is a linear function of the DNA concentration over at least six orders of magnitude; and the efficiency of transformation is a function of the cell concentration. Most of the surviving cells are competent with up to 80% transformed at high DNA concentration. The mechanism does not appear to include binding of the DNA to the cells prior to entry. Possible mechanisms are discussed and a simple procedure for the practical use of this technique is presented. PMID:3041370

  19. High-Efficiency Klystron For Television Transmitters

    NASA Technical Reports Server (NTRS)

    Ramins, Peter; Dayton, James; Mccune, Earl, Sr.; Kosmahl, Henry

    1990-01-01

    Improved klystron designed for use as final amplifier in ultrahigh-frequency (UHF) television transmitter. New device incorporates multistage depressed collector (MSDC) of advanced design to increase efficiency by recovering, from spent electron beam, some of residual kinetic energy otherwise dissipated as heat. Concept applied to increase efficiencies of microwave communication, equipment, radar systems, and particle-beam accelerators.

  20. High efficiency quasi-monochromatic infrared emitter

    SciTech Connect

    Brucoli, Giovanni; Besbes, Mondher; Benisty, Henri Greffet, Jean-Jacques; Bouchon, Patrick; Haïdar, Riad

    2014-02-24

    Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

  1. High Efficiency Submillimeter-Wave Imaging Array

    NASA Technical Reports Server (NTRS)

    Llombart, Nuria; Skalare, Anders; Gill, John J.; Siegel, Peter H.

    2008-01-01

    The period of a focal array is limited by the angular sampling and the f number of the system. This fact will limit the efficiency of imaging array systems to around 50%. Recently it been demonstrated that the use of a dielectric layer on top of an array of apertures can improve this efficiency limit. In this paper, we describe a similar structure that improves the efficiency in imaging applications and that it is easy to manufacture due to its compatibility with planar lithographic techniques.

  2. A high-efficiency energy conversion system

    SciTech Connect

    Belcher, A.E.

    1996-12-31

    A fundamentally new method for converting pressure into rotative motion is introduced. A historical background is given and an idealized non-turbine Brayton cycle engine and associated equations are described. Salient features are explained, together with suggested applications. Concerns over global warming, unacceptable levels of air pollution, and the need for more efficient utilization of nonrenewable energy resources, are issues which continue to plague us. The situation is further exacerbated by the possibility that underdeveloped countries, under pressure to expand their economies, might adopt power generating systems which could produce high levels of emissions. This scenario could easily develop if equipment, which once complied with stringent standards, failed to be adequately maintained through the absence of a reliable technical infrastructure. The Brayton cycle manometric engine has the potential for eliminating, or at least mitigating, many of the above issues. It is therefore of considerable importance to all populations, irrespective of demographic or economic considerations. This engine is inherently simple--the engine proper has only one moving part. It has no pistons, vanes, or other such conventional occlusive devices, yet it is a positive displacement machine. Sealing is achieved by what can best be described as a series of traveling U-tube manometers. Its construction does not require precision engineering nor the use of exotic materials, making it easy to maintain with the most rudimentary resources. Rotational velocity is low, and its normal life cycle is expected to extend to several decades. These advantages more than offset the machine`s large size. It is suited only to large and medium-scale stationary applications.

  3. High efficiency silicon solar cell review

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P. (Editor)

    1975-01-01

    An overview is presented of the current research and development efforts to improve the performance of the silicon solar cell. The 24 papers presented reviewed experimental and analytic modeling work which emphasizes the improvment of conversion efficiency and the reduction of manufacturing costs. A summary is given of the round-table discussion, in which the near- and far-term directions of future efficiency improvements were discussed.

  4. High Efficient Cryocooler for Liquid Hydrogen System

    NASA Astrophysics Data System (ADS)

    Nakagome, H.

    2006-04-01

    Conversion into Hydrogen Energy Society is advanced focusing on the application to a fuel cell electric vehicle. As volume and weight density of liquid hydrogen are large, it is the method which was most excellent as the storage method of hydrogen. However, in order to store liquid hydrogen stably over a long period of time, decreasing the loss of energy, development of an efficient small cryocooler becomes important. This paper reports the research about improvement in the refrigeration efficiency of a two-stage GM cryocooler. In order that the GM cryocooler may operate by the Simon expansion, it carries out asymptotic of the COP of the GM cryocooler to the Carnot COP as a compression ratio is lowered. When experimented based on this view, it was checked that refrigeration efficiency rises with reduction in a compression ratio. Furthermore, if the compression ratio is lowered, refrigeration efficiency will fall rapidly. The peak value of the refrigeration efficiency in 20K level attained 28%Carnot. It was verified by optimization of the compression ratio of the GM cryocooler that refrigeration efficiency can be improved significantly. Therefore, sharp reduction of the energy consumption of a liquid hydrogen system will be attained by applying the result of this research.

  5. High Efficiency Large Area Polysilicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.; Winter, C.

    1985-01-01

    Large area (100 sq cm) polysilicon solar cells having efficiencies of up to 14.1% (100 mW/sq cm, 25 C) were fabricated and a detailed analysis was performed to identify the efficiency loss mechanisms. The 1-5 characteristics of the best cell were dominated by recombination in the quasi-neutral base due to the combination of minority carrier diffusion length and base resistivity. An analysis of the microstructural defects present in the material and their effect on the electrical properties is presented.

  6. High efficiency germanium-assisted grating coupler.

    PubMed

    Yang, Shuyu; Zhang, Yi; Baehr-Jones, Tom; Hochberg, Michael

    2014-12-15

    We propose a fiber to submicron silicon waveguide vertical coupler utilizing germanium-on-silicon gratings. The germanium is epitaxially grown on silicon in the same step for building photodetectors. Coupling efficiency based on FDTD simulation is 76% at 1.55 µm and the optical 1dB bandwidth is 40 nm.

  7. Energy efficiency indicators for high electric-load buildings

    SciTech Connect

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  8. Highly Efficient Self-Replicating RNA Enzymes

    PubMed Central

    Robertson, Michael P.; Joyce, Gerald F.

    2014-01-01

    SUMMARY An RNA enzyme has been developed that catalyzes the joining of oligonucleotide substrates to form additional copies of itself, undergoing self-replication with exponential growth. The enzyme also can cross-replicate with a partner enzyme, resulting in their mutual exponential growth and enabling self-sustained Darwinian evolution. The opportunity for inventive evolution within this synthetic genetic system depends on the diversity of the evolving population, which is limited by the catalytic efficiency of the enzyme. Directed evolution was used to improve the efficiency of the enzyme and increase its exponential growth rate to 0.14 min−1, corresponding to a doubling time of 5 min. This is close to the limit of 0.21 min−1 imposed by the rate of product release, but sufficient to enable more than 80 logs of growth per day. PMID:24388759

  9. Highly Efficient Protein Misfolding Cyclic Amplification

    PubMed Central

    Ostapchenko, Valeriy G.; Savtchenk, Regina; Alexeeva, Irina; Rohwer, Robert G.; Baskakov, Ilia V.

    2011-01-01

    Protein misfolding cyclic amplification (PMCA) provides faithful replication of mammalian prions in vitro and has numerous applications in prion research. However, the low efficiency of conversion of PrPC into PrPSc in PMCA limits the applicability of PMCA for many uses including structural studies of infectious prions. It also implies that only a small sub-fraction of PrPC may be available for conversion. Here we show that the yield, rate, and robustness of prion conversion and the sensitivity of prion detection are significantly improved by a simple modification of the PMCA format. Conducting PMCA reactions in the presence of Teflon beads (PMCAb) increased the conversion of PrPC into PrPSc from ∼10% to up to 100%. In PMCAb, a single 24-hour round consistently amplified PrPSc by 600-700-fold. Furthermore, the sensitivity of prion detection in one round (24 hours) increased by 2-3 orders of magnitude. Using serial PMCAb, a 1012-fold dilution of scrapie brain material could be amplified to the level detectible by Western blotting in 3 rounds (72 hours). The improvements in amplification efficiency were observed for the commonly used hamster 263K strain and for the synthetic strain SSLOW that otherwise amplifies poorly in PMCA. The increase in the amplification efficiency did not come at the expense of prion replication specificity. The current study demonstrates that poor conversion efficiencies observed previously have not been due to the scarcity of a sub-fraction of PrPC susceptible to conversion nor due to limited concentrations of essential cellular cofactors required for conversion. The new PMCAb format offers immediate practical benefits and opens new avenues for developing fast ultrasensitive assays and for producing abundant quantities of PrPSc in vitro. PMID:21347353

  10. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  11. High efficiency pump for space helium transfer

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael G.; Swift, Walter L.; Sixsmith, Herbert

    1991-01-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space.

  12. Digitally Controlled 4-Phase Bi-Directional Interleaved Dc-Dc Converter with Coupled Inductors / Digitāli Vadāms 4 Fāžu Divvirziena Līdzstrāvas Pārveidotājs Ar Saistītajām Droselēm

    NASA Astrophysics Data System (ADS)

    Kroics, K.; Sirmelis, U.; Grigans, L.

    2015-08-01

    The main advantages of multiphase interleaved DC-DC converters over single-phase converters are reduced current stress and reduced output current ripple. Nevertheless, inductor current ripple cannot be reduced only by an interleaving method. The integrated magnetic structure can be used to solve this problem. In this paper, the application of 2-phase coupled inductor designed in a convenient way by using commercially manufactured coil formers and ferrite cores is analysed to develop a 4-phase interleaved DC-DC converter. The steady state phase and output current ripple in a boost mode of the interleaved bidirectional DC-DC converter with integrated magnetics are analysed. The prototype of the converter has been built. The experimental results of the current ripple are presented in the paper. Šajā rakstā piedāvāta magnētiski saistīta drosele, kas izveidota, izmantojot plaša patēriņa ferrīta serdi un tinuma formētāju. Izmantojot šādas droseles, var tikt izveidots vairākfāžu pārveidotājs ar mazām izejas un iejas strāvas pulsācijām, kā arī samazinātām strāvas pulsācijām droselē. Rakstā sīkāk apskatīts līdzstrāvas pārveidotājs, kas sastāv no četrām fāzēm. Šim gadījumam izvestas teorētiskās formulas strāvas pulsāciju aprēķinam, kā arī rakstā parādīti eksperimentālie rezultāti, kas iegūti, testējot prototipu. Teorētiskie rezultāti sakrīt ar eksperimentālajiem

  13. A high-efficiency mode coupler autotracking feed

    NASA Astrophysics Data System (ADS)

    Cipolla, Frank; Seck, Gerry

    The design, construction, and installation of high-efficiency autotracking feeds using a tracking mode coupler at both S, C, and X band are presented. These feeds have shown greater than 65 percent efficiencies when mounted in a doubly shaped dual reflector antenna. The mode coupler feed attributes include high-efficiency in both the data and track channels, full waveguide bandwidth operation, good feed error gradients, high-power handling, and active cross talk correction.

  14. High Efficiency Thermoelectric Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed; Saber, Hamed; Caillat, Thierry

    2004-01-01

    The work performed and whose results presented in this report is a joint effort between the University of New Mexico s Institute for Space and Nuclear Power Studies (ISNPS) and the Jet Propulsion Laboratory (JPL), California Institute of Technology. In addition to the development, design, and fabrication of skutterudites and skutterudites-based segmented unicouples this effort included conducting performance tests of these unicouples for hundreds of hours to verify theoretical predictions of the conversion efficiency. The performance predictions of these unicouples are obtained using 1-D and 3-D models developed for that purpose and for estimating the actual performance and side heat losses in the tests conducted at ISNPS. In addition to the performance tests, the development of the 1-D and 3-D models and the development of Advanced Radioisotope Power systems for Beginning-Of-Life (BOM) power of 108 We are carried out at ISNPS. The materials synthesis and fabrication of the unicouples are carried out at JPL. The research conducted at ISNPS is documented in chapters 2-5 and that conducted at JP, in documented in chapter 5. An important consideration in the design and optimization of segmented thermoelectric unicouples (STUs) is determining the relative lengths, cross-section areas, and the interfacial temperatures of the segments of the different materials in the n- and p-legs. These variables are determined using a genetic algorithm (GA) in conjunction with one-dimensional analytical model of STUs that is developed in chapter 2. Results indicated that when optimized for maximum conversion efficiency, the interfacial temperatures between various segments in a STU are close to those at the intersections of the Figure-Of-Merit (FOM), ZT, curves of the thermoelectric materials of the adjacent segments. When optimizing the STUs for maximum electrical power density, however, the interfacial temperatures are different from those at the intersections of the ZT curves, but

  15. A high-efficiency double quantum dot heat engine

    NASA Astrophysics Data System (ADS)

    Liu, Y. S.; Yang, X. F.; Hong, X. K.; Si, M. S.; Chi, F.; Guo, Y.

    2013-08-01

    High-efficiency heat engine requires a large output power at the cost of less input heat energy as possible. Here we propose a heat engine composed of serially connected two quantum dots sandwiched between two metallic electrodes. The efficiency of the heat engine can approach the maximum allowable Carnot efficiency ηC. We also find that the strong intradot Coulomb interaction can induce additional work regions for the heat engine, whereas the interdot Coulomb interaction always suppresses the efficiency. Our results presented here indicate a way to fabricate high-efficiency quantum-dot thermoelectric devices.

  16. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.

    1985-01-01

    High-efficiency dendritic cells were discussed. The influence of twin planes and heat treatment on the location and effect of trace impurities was of particular interest. Proper heat treatment often increases efficiency by causing impurities to pile up at twin planes. Oxide passivation had a beneficial effect on efficiency. A very efficient antireflective (AR) coating of zinc selenide and magnesium fluoride was designed and fabricated. An aluminum back-surface reflector was also effective.

  17. Efficient high-capacity steganography technique

    NASA Astrophysics Data System (ADS)

    Abdulla, Alan A.; Jassim, Sabah A.; Sellahewa, Harin

    2013-05-01

    Performance indicators characterizing modern steganographic techniques include capacity (i.e. the quantity of data that can be hidden in the cover medium), stego quality (i.e. artifacts visibility), security (i.e. undetectability), and strength or robustness (intended as the resistance against active attacks aimed to destroy the secret message). Fibonacci based embedding techniques have been researched and proposed in the literature to achieve efficient steganography in terms of capacity with respect to stego quality. In this paper, we investigated an innovative idea that extends Fibonacci-like steganography by bit-plane(s) mapping instead of bit-plane(s) replacement. Our proposed algorithm increases embedding capacity using bit-plane mapping to embed two bits of the secret message in three bits of a pixel of the cover, at the expense of a marginal loss in stego quality. While existing Fibonacci embedding algorithms do not use certain intensities of the cover for embedding due to the limitation imposed by the Zeckendorf theorem, our proposal solve this problem and make all intensity values candidates for embedding. Experimental results demonstrate that the proposed technique double the embedding capacity when compared to existing Fibonacci methods, and it is secure against statistical attacks such as RS, POV, and difference image histogram (DIH).

  18. High Efficiency, High Density Terrestrial Panel. [for solar cell modules

    NASA Technical Reports Server (NTRS)

    Wohlgemuth, J.; Wihl, M.; Rosenfield, T.

    1979-01-01

    Terrestrial panels were fabricated using rectangular cells. Packing densities in excess of 90% with panel conversion efficiencies greater than 13% were obtained. Higher density panels can be produced on a cost competitive basis with the standard salami panels.

  19. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Technical Reports Server (NTRS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-01-01

    250 Watts of heat input, we expect this prototype to produce over 300 Watts of electrical energy output for a system energy conversion efficiency of over 12%. This low risk, near term design provides advances relative to present radioisotope thermophotovoltaic generators and has the additional advantage of allowing component and system development and testing to begin immediately. Improved cells and filters can easily be incorporated in this baseline system if they should become available in the future.

  20. Biologically inspired highly efficient buoyancy engine

    NASA Astrophysics Data System (ADS)

    Akle, Barbar; Habchi, Wassim; Abdelnour, Rita; Blottman, John, III; Leo, Donald

    2012-04-01

    Undersea distributed networked sensor systems require a miniaturization of platforms and a means of both spatial and temporal persistence. One aspect of this system is the necessity to modulate sensor depth for optimal positioning and station-keeping. Current approaches involve pneumatic bladders or electrolysis; both require mechanical subsystems and consume significant power. These are not suitable for the miniaturization of sensor platforms. Presented in this study is a novel biologically inspired method that relies on ionic motion and osmotic pressures to displace a volume of water from the ocean into and out of the proposed buoyancy engine. At a constant device volume, the displaced water will alter buoyancy leading to either sinking or floating. The engine is composed of an enclosure sided on the ocean's end by a Nafion ionomer and by a flexible membrane separating the water from a gas enclosure. Two electrodes are placed one inside the enclosure and the other attached to the engine on the outside. The semi-permeable membrane Nafion allows water motion in and out of the enclosure while blocking anions from being transferred. The two electrodes generate local concentration changes of ions upon the application of an electrical field; these changes lead to osmotic pressures and hence the transfer of water through the semi-permeable membrane. Some aquatic organisms such as pelagic crustacean perform this buoyancy control using an exchange of ions through their tissue to modulate its density relative to the ambient sea water. In this paper, the authors provide an experimental proof of concept of this buoyancy engine. The efficiency of changing the engine's buoyancy is calculated and optimized as a function of electrode surface area. For example electrodes made of a 3mm diameter Ag/AgCl proved to transfer approximately 4mm3 of water consuming 4 Joules of electrical energy. The speed of displacement is optimized as a function of the surface area of the Nafion

  1. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Astrophysics Data System (ADS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-10-01

    250 Watts of heat input, we expect this prototype to produce over 300 Watts of electrical energy output for a system energy conversion efficiency of over 12%. This low risk, near term design provides advances relative to present radioisotope thermophotovoltaic generators and has the additional advantage of allowing component and system development and testing to begin immediately. Improved cells and filters can easily be incorporated in this baseline system if they should become available in the future.

  2. High efficiency low cost GaAs/Ge cell technology

    NASA Technical Reports Server (NTRS)

    Ho, Frank

    1990-01-01

    Viewgraphs on high efficiency low cost GaAs/Ge cell technology are presented. Topics covered include: high efficiency, low cost GaAs/Ge solar cells; advantages of Ge; comparison of typical production cells for space applications; panel level comparisons; and solar cell technology trends.

  3. Vacuum testing of high efficiency AMTEC cells

    SciTech Connect

    Schuller, M.; Phillips, P.H.; Reiners, E.; Merrill, J.; Crowley, C.; Izenson, M.

    1996-12-31

    The Phillips Laboratory Power and Thermal Management Division (PL/VTP), in cooperation with JPL, AMPS, Creare, and ORION, is performing vacuum testing of high performance Alkali Metal Thermal to Electric Conversion (AMTEC) cells, including the Micro-Machined Evaporator (MME) and PL-9A cells. The MME cell was designed to test an improved evaporator, which should allow long term operation at evaporator temperatures as high as 1,100 K. The PL-9A cell was designed and built by AMPS under contract to ORION to test an improved heat shield assembly. The testing at Phillips Lab is done in a vacuum test stand which simulates the environment of an AMTEC cell operating as part of a spacecraft power system. The test configuration consists of the MME cell (later replaced by by the PL-9A cell) in the center of an array of six other AMTEC cells. The seven cells are encased in multifoil insulation. Testing shows that there is little difference between cell current/voltage performance when measured in vacuum tests compared to guard heater tests. The author are also examining the differences between fast I-V curve sweeps, recorded manually, with the cell operating at constant heat input, over a period of five minutes or less, and equilibrium I-V curve sweeps, in which the cell reaches thermal equilibrium at each data point.

  4. Compact and highly efficient laser pump cavity

    DOEpatents

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  5. 2250-MHz High Efficiency Microwave Power Amplifier (HEMPA)

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Tnis paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  6. Energy efficient engine high-pressure turbine detailed design report

    NASA Technical Reports Server (NTRS)

    Thulin, R. D.; Howe, D. C.; Singer, I. D.

    1982-01-01

    The energy efficient engine high-pressure turbine is a single stage system based on technology advancements in the areas of aerodynamics, structures and materials to achieve high performance, low operating economics and durability commensurate with commercial service requirements. Low loss performance features combined with a low through-flow velocity approach results in a predicted efficiency of 88.8 for a flight propulsion system. Turbine airfoil durability goals are achieved through the use of advanced high-strength and high-temperature capability single crystal materials and effective cooling management. Overall, this design reflects a considerable extension in turbine technology that is applicable to future, energy efficient gas-turbine engines.

  7. High efficiency in human muscle: an anomaly and an opportunity?

    PubMed Central

    Nelson, Frank E.; Ortega, Justus D.; Jubrias, Sharon A.; Conley, Kevin E.; Kushmerick, Martin J.

    2011-01-01

    Summary Can human muscle be highly efficient in vivo? Animal muscles typically show contraction-coupling efficiencies <50% in vitro but a recent study reports that the human first dorsal interosseous (FDI) muscle of the hand has an efficiency value in vivo of 68%. We examine two key factors that could account for this apparently high efficiency value: (1) transfer of cross-bridge work into mechanical work and (2) the use of elastic energy to do external work. Our analysis supports a high contractile efficiency reflective of nearly complete transfer of muscular to mechanical work with no contribution by recycling of elastic energy to mechanical work. Our survey of reported contraction-coupling efficiency values puts the FDI value higher than typical values found in small animals in vitro but within the range of values for human muscle in vivo. These high efficiency values support recent studies that suggest lower Ca2+ cycling costs in working contractions and a decline in cost during repeated contractions. In the end, our analysis indicates that the FDI muscle may be exceptional in having an efficiency value on the higher end of that reported for human muscle. Thus, the FDI muscle may be an exception both in contraction-coupling efficiency and in Ca2+ cycling costs, which makes it an ideal muscle model system offering prime conditions for studying the energetics of muscle contraction in vivo. PMID:21795559

  8. High efficiency in human muscle: an anomaly and an opportunity?

    PubMed

    Nelson, Frank E; Ortega, Justus D; Jubrias, Sharon A; Conley, Kevin E; Kushmerick, Martin J

    2011-08-15

    Can human muscle be highly efficient in vivo? Animal muscles typically show contraction-coupling efficiencies <50% in vitro but a recent study reports that the human first dorsal interosseous (FDI) muscle of the hand has an efficiency value in vivo of 68%. We examine two key factors that could account for this apparently high efficiency value: (1) transfer of cross-bridge work into mechanical work and (2) the use of elastic energy to do external work. Our analysis supports a high contractile efficiency reflective of nearly complete transfer of muscular to mechanical work with no contribution by recycling of elastic energy to mechanical work. Our survey of reported contraction-coupling efficiency values puts the FDI value higher than typical values found in small animals in vitro but within the range of values for human muscle in vivo. These high efficiency values support recent studies that suggest lower Ca(2+) cycling costs in working contractions and a decline in cost during repeated contractions. In the end, our analysis indicates that the FDI muscle may be exceptional in having an efficiency value on the higher end of that reported for human muscle. Thus, the FDI muscle may be an exception both in contraction-coupling efficiency and in Ca(2+) cycling costs, which makes it an ideal muscle model system offering prime conditions for studying the energetics of muscle contraction in vivo.

  9. High efficiency IMPATT diodes for 60 GHz intersatellite link applications

    NASA Technical Reports Server (NTRS)

    Haugland, E. J.

    1984-01-01

    Intersatellite links are expected to play an increasingly important role in future satellite systems. Improved components are required to properly utilize the wide bandwidth allocated for intersatellite link applications around 60 GHz. IMPATT diodes offer the highest potential performance as solid state power sources for a 60 GHz transmitter. Presently available devices do not have the desired power and efficiency. High efficiency, high power IMPATT diodes for intersatellite link applications are being developed by NASA and other government agencies. The development of high efficiency 60 GHz IMPATT diodes by NASA is described.

  10. A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles

    SciTech Connect

    Onar, Omer C

    2011-01-01

    This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

  11. Development of an Improved High Efficiency Thin Solar Cell

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.; Wrigley, C.; Storti, G.

    1979-01-01

    High efficiency cells (up to 14 AMO at 25 C)were fabricated from 10 - 15 ohm-cm silicon by using screen printed aluminum paste as the alloy source for the production of back surface fields. Thick consistency pastes that have been cured prior to a short heat treatment at 850 C were most effective in achieving these efficiency levels.

  12. Efficient High Performance Collective Communication for Distributed Memory Environments

    ERIC Educational Resources Information Center

    Ali, Qasim

    2009-01-01

    Collective communication allows efficient communication and synchronization among a collection of processes, unlike point-to-point communication that only involves a pair of communicating processes. Achieving high performance for both kernels and full-scale applications running on a distributed memory system requires an efficient implementation of…

  13. High efficiency hydrocarbon-free resonance transition potassium laser

    NASA Astrophysics Data System (ADS)

    Zweiback, Jason; Hager, Gordon; Krupke, William F.

    2009-05-01

    We experimentally demonstrate a high efficiency potassium laser using a 0.15 nm bandwidth alexandrite laser as the pump source. The laser uses naturally occurring helium as the buffer gas. We achieve a 64% slope efficiency and a 57% optical to optical conversion. A pulsed laser model shows good agreement with the data.

  14. Regenerative fuel cell combines high efficiency with low cost

    NASA Technical Reports Server (NTRS)

    Doyle, H.; Frank, H.; Stephens, C. W.

    1965-01-01

    Hydrogen/oxygen regenerative fuel cell stores electrical energy efficiently and inexpensively. The fuel cell has a high energy-to-weight ratio, and is adapted for a large number of cycles with deep discharge.

  15. III-V High-Efficiency Multijunction Photovoltaics (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for III-V High-Efficiency Multijunction Photovoltaics at the National Center for Photovoltaics.

  16. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.

    1984-01-01

    The development of high efficiency solar cells on a silicon web is discussed. Heat treatment effects on web quality; the influence of twin plane lamellae, trace impurities and stress on minority carrier lifetime; and the fabrication of cells are discussed.

  17. High efficiency solar cell research for space applications

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1985-01-01

    A review is given of NASA photovoltaic research with emphasis on the activities of the Lewis Research Center. High efficiency solar cell research is discussed, as well as solar arrays, multi-junction cell bandgaps, and plasmon coupling.

  18. Global climate change: Mitigation opportunities high efficiency large chiller technology

    SciTech Connect

    Stanga, M.V.

    1997-12-31

    This paper, comprised of presentation viewgraphs, examines the impact of high efficiency large chiller technology on world electricity consumption and carbon dioxide emissions. Background data are summarized, and sample calculations are presented. Calculations show that presently available high energy efficiency chiller technology has the ability to substantially reduce energy consumption from large chillers. If this technology is widely implemented on a global basis, it could reduce carbon dioxide emissions by 65 million tons by 2010.

  19. Energy efficient engine: High pressure turbine uncooled rig technology report

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1979-01-01

    Results obtained from testing five performance builds (three vane cascades and two rotating rigs of the Energy Efficient Engine uncooled rig have established the uncooled aerodynamic efficiency of the high-pressure turbine at 91.1 percent. This efficiency level was attained by increasing the rim speed and annulus area (AN(2)), and by increasing the turbine reaction level. The increase in AN(2) resulted in a performance improvement of 1.15 percent. At the design point pressure ratio, the increased reaction level rig demonstrated an efficiency of 91.1 percent. The results of this program have verified the aerodynamic design assumptions established for the Energy Efficient Engine high-pressure turbine component.

  20. High-efficiency silicon concentrator solar cell research

    NASA Astrophysics Data System (ADS)

    Greene, M. A.; Blakers, A. W.; Zhao, Jianhua; Wang, Ahua; Milne, A. M.; Ximing, Dai; Chong, C. M.

    1989-12-01

    This project continued the development of high efficiency silicon concentrator solar cells with the goal of achieving a 24% efficient module ready cell. This target was comfortably achieved with efficiencies as high as 25.2% at 125 suns concentration measured at Sandia National Laboratories. In outdoor testing at Sandia, cells of this type but of more modest performance resulted in lens/cell efficiency above 20% for the first time. Exciting results were obtained with a new cell structure, the PERC cell (passivated emitter and rear cell) which demonstrated an efficiency of 21.8% for a nonconcentrating cell and creditable performance out to 20 suns for concentrator cells. Progress was also reported for cells fabricated on n-type substrates and for plasma grooved, buried contact solar cells.

  1. High-efficiency silicon concentrator solar cell research

    SciTech Connect

    Green, M.A.; Blakers, A.W.; Jianhua, Zhao; Aihua, Wang; Milne, A.M.; Dai, Ximing; Chong, C.M. . Solar Photovoltaic Lab.)

    1989-12-01

    This project continued the development of high efficiency silicon concentrator solar cells with the goal of achieving a 24% efficient module ready'' cell. This target was comfortably achieved with efficiencies as high as 25.2% at 125 suns concentration measured at Sandia National Laboratories. In outdoor testing at Sandia, cells of this type but of more modest performance resulted in lens/cell efficiency above 20% for the first time. Exciting results were obtained with a new cell structure, the PERC cell (passivated emitter and rear cell) which demonstrated an efficiency of 21.8% for a nonconcentrating cell and creditable performance out to 20 suns for concentrator cells. Progress was also reported for cells fabricated on n-type substrates and for plasma grooved, buried contact solar cells. 22 refs., 23 figs., 9 tabs.

  2. The emerging High Efficiency Video Coding standard (HEVC)

    NASA Astrophysics Data System (ADS)

    Raja, Gulistan; Khan, Awais

    2013-12-01

    High definition video (HDV) is becoming popular day by day. This paper describes the performance analysis of latest upcoming video standard known as High Efficiency Video Coding (HEVC). HEVC is designed to fulfil all the requirements for future high definition videos. In this paper, three configurations (intra only, low delay and random access) of HEVC are analyzed using various 480p, 720p and 1080p high definition test video sequences. Simulation results show the superior objective and subjective quality of HEVC.

  3. High-pressure microhydraulic actuator

    DOEpatents

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  4. High Efficiency Adsorption Chillers: High Efficiency Adsorption Cooling Using Metal Organic Heat Carriers

    SciTech Connect

    2010-10-01

    BEETIT Project: PNNL is incorporating significant improvements in materials that adsorb liquids or gases to design more efficient adsorption chillers. An adsorption chiller is a type of air conditioner that is powered by heat, solar or waste heat, or combustion of natural gas. Unlike typical chillers, this type has few moving parts and uses almost no electricity to operate. PNNL is designing adsorbent materials at the molecular level with at least 3 times higher refrigerant capacity and up to 20 times faster kinetics than adsorbents used in current chillers. By using the new adsorbent, PNNL is able to create a chiller that is significantly smaller, has twice the energy efficiency, and lower costs for materials and assembly time compared to conventional adsorption chillers.

  5. A high efficiency architecture for cascaded Raman fiber lasers.

    PubMed

    Supradeepa, V R; Nichsolson, Jeffrey W; Headley, Clifford E; Yan, Man F; Palsdottir, Bera; Jakobsen, Dan

    2013-03-25

    We demonstrate a new high efficiency architecture for cascaded Raman fiber lasers based on a single pass cascaded amplifier configuration. Conversion is seeded at all intermediate Stokes wavelengths using a multi-wavelength seed source. A lower power Raman laser based on the conventional cascaded Raman resonator architecture provides a convenient seed source providing all the necessary wavelengths simultaneously. In this work we demonstrate a 1480nm laser pumped by an 1117nm Yb-doped fiber laser with maximum output power of 204W and conversion efficiency of 65% (quantum-limited efficiency is ~75%). We believe both the output power and conversion efficiency (relative to quantum-limited efficiency) are the highest reported for cascaded Raman fiber lasers.

  6. High efficiency tantalum-based ceramic composite structures

    NASA Technical Reports Server (NTRS)

    Stewart, David A. (Inventor); Leiser, Daniel B. (Inventor); DiFiore, Robert R. (Inventor); Katvala, Victor W. (Inventor)

    2010-01-01

    Tantalum-based ceramics are suitable for use in thermal protection systems. These composite structures have high efficiency surfaces (low catalytic efficiency and high emittance), thereby reducing heat flux to a spacecraft during planetary re-entry. These ceramics contain tantalum disilicide, molybdenum disilicide and borosilicate glass. The components are milled, along with a processing aid, then applied to a surface of a porous substrate, such as a fibrous silica or carbon substrate. Following application, the coating is then sintered on the substrate. The composite structure is substantially impervious to hot gas penetration and capable of surviving high heat fluxes at temperatures approaching 3000.degree. F. and above.

  7. Mid-infrared interband cascade photodetectors with high quantum efficiency

    NASA Astrophysics Data System (ADS)

    Tian, Zhao-Bing; Singh, Anjali; Rigg, Kevin; Krishna, Sanjay

    2016-02-01

    Antimony-based Interband Cascade (IC) photodetectors are emerging as viable candidates for highperformance infrared applications, especially at high operating temperatures. In our previous IC detector designs using InAs/GaSb Type-II superlattices, the quantum efficiency was relatively low as the designs were optimized for high signal to noise ratio. Here we report our recent development of low-noise mid-IR IC photodetectors with high external quantum efficiency. By adopting IC detectors with thicker absorber designs, the quantum efficiency of these mid-IR IC detectors has been increased up to 35%. These IC devices continue to have low-dark current and high temperature operations. Some further analysis on the device characteristics is also presented.

  8. Metal–Dielectric Waveguides for High Efficiency Fluorescence Imaging

    PubMed Central

    Zhu, Liangfu; Zhang, Douguo; Wang, Ruxue; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Du, Luping; Yuan, Xiaocong; Lakowicz, Joseph R.

    2015-01-01

    We demonstrate that Metal–Dielectric Waveguide structures (MDWs) with high efficiency of fluorescence coupling can be suitable as substrates for fluorescence imaging. This hybrid MDWs consists of a continuous metal film and a dielectric top layer. The optical modes sustaining inside this structure can be excited with a high numerical aperture (N.A) objective, and then focused into a virtual optical probe with high intensity, leading to efficient excitation of fluorophores deposited on top of the MDWs. The emitted fluorophores couple with the optical modes thus enabling the directional emission, which is verified by the back focal plane (BFP) imaging. These unique properties of MDWs have been adopted in a scanning laser confocal optical microscopy, and show the merit of high efficiency fluorescence imaging. MDWs can be easily fabricated by vapor deposition and/or spin coating, the silica surface of the MDWs is suitable for biomolecule tethering, and will offer new opportunities for cell biology and biophysics research. PMID:26525494

  9. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Greggi, J.; Okeeffe, T. W.; Rai-Choudhury, P.

    1986-01-01

    Work was performed to improve web base material with a goal of obtaining solar cell efficiencies in excess of 18% (AM1). Efforts in this program are directed toward identifying carrier loss mechanisms in web silicon, eliminating or reducing these mechanisms, designing a high efficiency cell structure with the aid of numerical models, and fabricating high efficiency web solar cells. Fabrication techniques must preserve or enhance carrier lifetime in the bulk of the cell and minimize recombination of carriers at the external surfaces. Three completed cells were viewed by cross-sectional transmission electron microscopy (TEM) in order to investigate further the relation between structural defects and electrical performance of web cells. Consistent with past TEM examinations, the cell with the highest efficiency (15.0%) had no dislocations but did have 11 twin planes.

  10. Conversion efficiency of high-Z backlighter materials

    SciTech Connect

    Keiter, Paul A.; Tierney, Heidi; Workman, Jonathan; Comely, Andrew; Morton, John; Taylor, Mark

    2008-10-15

    High-Z backlighter materials are commonly used as x-ray sources for diagnosing laser-driven experiments. In order to properly plan for experiments and analyze the data, it is important to understand both the number and distribution of photons emitted by the x-ray source when it is irradiated by a laser. The conversion efficiency of L-shell and M-shell emitters is not as well understood as K-shell emitters. The conversion efficiency of the former is typically presented in terms of the entire L- or M-shell spectral region. However, for some applications, one may only want to use a subset of this spectral region. Laser conversion efficiency for L-shell and M-shell emitters suitable for high-energy (>3 keV) absorption spectroscopy is presented at multiple laser intensities. The measured conversion efficiency of the materials ranges from 0.2% to 0.6%.

  11. Development of an Improved High Efficiency Thin Silicon Solar Cell

    NASA Technical Reports Server (NTRS)

    Storti, G.; Wrigley, C.

    1979-01-01

    Breakage and front contact failure in high efficiency, textured ultrathin cells was reduced as a consequence of the introduction of process modifications. In a small production run, over one hundred ultrathin cells, having an average AMO efficiency of 13%, were fabricated from 10-25 ohm cm silicon. An in-house aluminum paste for back surface field formation was developed that resulted in cell efficiencies equivalent to those from commercial pastes. The quality of the back surface field was found to be dependent on the orientation of the silicon slice during alloying.

  12. High efficiency cw laser-pumped tunable alexandrite laser

    SciTech Connect

    Lai, S.T.; Shand, M.L.

    1983-10-01

    High efficiency cw alexandrite laser operation has been achieved. With longitudinal pumping by a krypton laser in a nearly concentric cavity, a 51% output power slope efficiency has been measured. Including the transmission at the input coupler mirror, a quantum yield of 85% has been attained above threshold. Tunability from 726 to 802 nm has also been demonstrated. The low loss and good thermal properties make alexandrite ideal for cw laser operation.

  13. Design of dense transmission diffraction gratings for high efficiency.

    PubMed

    Golub, Michael A

    2015-01-01

    We propose a design method for dense surface-relief diffraction gratings with high efficiency in transmission mode. Closed-form analytical relations between diffraction efficiency, polarization, and grating parameters are derived and verified in the resonance domain of diffraction under general three-dimensional angles of incidence traditionally termed conical mounting. A powerful tool for rigorous design of computer-generated holograms and diffractive optical elements with spectroscopic scale periods is now enabled.

  14. High efficiency inorganic/organic hybrid tandem solar cells.

    PubMed

    Seo, Ji Hoon; Kim, Dong-Ho; Kwon, Se-Hun; Song, Myungkwan; Choi, Min-Seung; Ryu, Seung Yoon; Lee, Hyung Woo; Park, Yun Chang; Kwon, Jung-Dae; Nam, Kee-Seok; Jeong, Yongsoo; Kang, Jae-Wook; Kim, Chang Su

    2012-08-28

    Hybrid tandem solar cells comprising an inorganic bottom cell and an organic top cell have been designed and fabricated. The interlayer combination and thickness matching were optimized in order to increase the overall photovoltaic conversion efficiency. A maximum power conversion efficiency of 5.72% was achieved along with a V(oc) of 1.42 V, reaching as high as 92% of the sum of the subcell V(oc) values. PMID:22807214

  15. High Efficiency Solar Power via Separated Photo and Voltaic Pathways

    SciTech Connect

    Michael J. Naughton

    2009-02-17

    This project demonstrates a novel nanostructured solar cell architecture capable of achieving high efficiency levels that is relatively simple and inexpensive to manufacture. The high efficiency will be achieved by the novel structure that separates the path of the photons from the path of the generated charge carriers. In this way, the photon path can be long for maximum light absorption, while the path for carriers can be short for maximum electronic energy harvesting. The combination of maximum light absorption coupled with maximum carrier harvesting is the basis for the expected high efficiency. The project will develop high efficiency solar cell prototypes utilizing this unique nanostructured architecture. The project addresses the fundamental limitation inherent in all current solar cell designs, and which opens a pathway to development for high efficiency solar cells at low cost. Realizing this goal will result in a levelized cost of electricity in the range of 10¢/kWh, which would achieve the long-sought goal of making photovoltaic electricity cost competitive with fossil-fuel generated electricity without any governmental subsidies. This breakthrough would spur the already rapid growth in the photovoltaic industry to an explosive pace, with significant, widespread benefit to the national economy and the nation’s energy security. The initial target of the program is to develop single-junction solar cells using ultrathin amorphous silicon with the performance approaching that of single crystal silicon cells.

  16. Multiple Exciton Generation for Highly Efficient Solar Cells

    NASA Astrophysics Data System (ADS)

    Nozik, Arthur

    2007-03-01

    In order to utilize solar power for the production of electricity and fuel on a massive scale, it will be necessary to develop solar photon conversion systems that have an appropriate combination of high efficiency and low capital cost (/m^2). One new potential approach to high solar cell efficiency is to utilize the unique properties of semiconductor quantum dot nanostructures to control the relaxation dynamics of photogenerated carriers to produce either enhanced photocurrent through efficient multiple exciton generation (MEG) or enhanced photopotential through hot electron transport and transfer processes. To achieve these desirable effects it is necessary to understand and control the dynamics of electron relaxation, cooling, multiple exciton generation , transport, and interfacial electron transfer of the photogenerated carriers with fs to ns time resolution. We have been studying these fundamental dynamics in bulk and nanoscale semiconductors (quantum dots, quantum wires, and quantum wells) using femtosecond transient absorption, photoluminescence, and THz spectroscopy. This work will be summarized and recent advances in creating multiple excitons from a single photon will be discussed, including a unique model to explain efficient MEG based on the coherent superposition of multiple excitonic states. Various possible configurations for quantum dot solar cells that could produce ultra-high conversion efficiencies for the production of electricity, as well as for producing solar fuels (for example, hydrogen from water splitting), will be discussed, along with associated thermodynamic calculations that show the increase in the maximum theoretical gain in solar photon conversion efficiency for both electricity and fuel production.

  17. High-speed, efficient metal - semiconductor - metal photodetectors

    SciTech Connect

    Collin, St; Pardo, F; Bardou, N; Pelouard, J.-L.; Averin, S V

    2010-08-03

    Design principles and the fabrication technique of highly efficient, high-speed photodetectors based on MSM nanostructures are developed. To efficiently confine light in the region of the strong field as well as to decrease light losses due to reflection from the diode contacts, use is made of a nanoscale interdigital diffraction grating and a multilayer Bragg grating. Measurements of the reflection coefficients and the quantum efficiency for a multilayer structure are in good agreement with theoretical estimates. A record-high quantum efficiency (QE = 46 %) is obtained for high speed MSM photodetectors. The detector has a high spectral selectivity ({Delta}{lambda}{sub 1/2} = 17 nm) at a wavelength of 800 nm. Taking into account the diode capacitance and the drift time of photogenerated carriers, the performance of the detectors under study is {approx} 500 GHz. The low level of the dark current density in the structures under study (j={sup 1} pA {mu}m{sup -2}) makes it possible to realise on their basis highly sensitive, high-speed selective detectors of optical radiation.

  18. High Efficient Synthesis of Iron-based Superconductors

    NASA Astrophysics Data System (ADS)

    Fang, Ai-Hua; Huang, Fu-Qiang; Xie, Xiao-Ming; Jiang, Mian-Heng

    We have performed systematic investigations aimed at high efficient synthesis of the 1111 family iron-based superconductors. By using meta-stable reactive starting materials of LnAs and FeO, assisted by mechanical alloying and fast heating, high purity samples with Tconset greater than 50K can be made with sintering temperatures between 1433K-1073K, and sintering time from 20 min to 40 h. High purity phase with sintering temperature as low as 973K was demonstrated successfully although Tconset fall below 50K and weak grain boundary suppressed greatly the zero resistance temperature. Ultra fast microwave sintering brings the sintering time further down to 5 min. Samples prepared by the above high efficient methods typically posses submicron grain and very high upper critical field, indicating very high pinning power. Besides offering cost advantages, the developed methods may play important roles in the exploit of novel superconductors.

  19. High efficiency, high temperature separations on silica based monolithic columns.

    PubMed

    Rogeberg, Magnus; Wilson, Steven Ray; Malerod, Helle; Lundanes, Elsa; Tanaka, Nobuo; Greibrokk, Tyge

    2011-10-14

    The effect of temperature on separation using reversed-phase monolithic columns has been investigated using a nano-LC pumping system for gradient separation of tryptic peptides with MS detection. A goal of this study was to find optimal conditions for high-speed separations. The chromatographic performance of the columns was evaluated by peak capacity and peak capacity per time unit. Column lengths ranging from 20 to 100 cm and intermediate gradient times from 10 to 30 min were investigated to assess the potential of these columns in a final step separation, e.g. after fractionation or specific sample preparation. Flow rates from 250 to 2000 nL/min and temperatures from 20 to 120°C were investigated. Temperature had a significant effect on fast separations, and a flow rate of 2000 nL/min and a temperature of 80°C gave the highest peak capacity per time unit. These settings produced 70% more protein identifications in a biological sample compared to a conventional packed column. Alternatively, an equal amount of protein identifications was obtained with a 40% reduction in run time compared to the conventional packed column.

  20. A high-efficiency thermoelectric converter for space applications

    SciTech Connect

    Metzger, J.D.; El-Genk, M.S.

    1990-12-31

    This paper presents a concept for using high-temperature superconducting materials in thermoelectric generators (SCTE) to produce electricity at conversion efficiencies approaching 50% of the Carrot efficiency. The SCTE generator is applicable to systems operating in temperature ranges of high-temperature superconducting materials and thus would be a low-grade converter. Operating in cryogenic temperature ranges provides the advantage of inherently increasing the limits of the Carrot efficiency. Potential applications are for systems operating in space where the ambient temperatures are in the cryogenic temperature range. The advantage of using high-temperature superconducting material in a thermoelectric converter is that it would significantly reduce or eliminate the Joule heating losses in a thermoelectric element. This paper investigates the system aspects and the material requirements of the SCTE converter concept, and presents a conceptual design and an application for a space power system.

  1. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    SciTech Connect

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  2. Enabling High Efficiency Nanoplasmonics with Novel Nanoantenna Architectures

    PubMed Central

    Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev

    2015-01-01

    Surface plasmon polaritons (SPPs) are propagating excitations that arise from coupling of light with collective electron oscillations. Characterized by high field intensity and nanometric dimensions, SPPs fashion rapid expansion of interest from fundamental and applicative perspectives. However, high metallic losses at optical frequencies still make nanoplasmonics impractical when high absolute efficiency is paramount, with major challenge is efficient plasmon generation in deep nanoscale. Here we introduce the Plantenna, the first reported nanodevice with the potential of addressing these limitations utilizing novel plasmonic architecture. The Plantenna has simple 2D structure, ultracompact dimensions and is fabricated on Silicon chip for future CMOS integration. We design the Plantenna to feed channel (20 nm × 20 nm) nanoplasmonic waveguides, achieving 52% coupling efficiency with Plantenna dimensions of λ3/17,000. We theoretically and experimentally show that the Plantenna enormously outperforms dipole couplers, achieving 28 dB higher efficiency with broad polarization diversity and huge local field enhancement. Our findings confirm the Plantenna as enabling device for high efficiency plasmonic technologies such as quantum nanoplasmonics, molecular strong coupling and plasmon nanolasers. PMID:26620270

  3. Enabling High Efficiency Nanoplasmonics with Novel Nanoantenna Architectures.

    PubMed

    Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev

    2015-01-01

    Surface plasmon polaritons (SPPs) are propagating excitations that arise from coupling of light with collective electron oscillations. Characterized by high field intensity and nanometric dimensions, SPPs fashion rapid expansion of interest from fundamental and applicative perspectives. However, high metallic losses at optical frequencies still make nanoplasmonics impractical when high absolute efficiency is paramount, with major challenge is efficient plasmon generation in deep nanoscale. Here we introduce the Plantenna, the first reported nanodevice with the potential of addressing these limitations utilizing novel plasmonic architecture. The Plantenna has simple 2D structure, ultracompact dimensions and is fabricated on Silicon chip for future CMOS integration. We design the Plantenna to feed channel (20 nm × 20 nm) nanoplasmonic waveguides, achieving 52% coupling efficiency with Plantenna dimensions of λ(3)/17,000. We theoretically and experimentally show that the Plantenna enormously outperforms dipole couplers, achieving 28 dB higher efficiency with broad polarization diversity and huge local field enhancement. Our findings confirm the Plantenna as enabling device for high efficiency plasmonic technologies such as quantum nanoplasmonics, molecular strong coupling and plasmon nanolasers. PMID:26620270

  4. Efficiency enhancement in high power backward-wave oscillators

    SciTech Connect

    Goebel, D.M.; Feicht, J.R. Adler, E.A. ); Ponti, E.S. ); Eisenhart, R.L. ); Lemke, R.W. )

    1999-06-01

    High power microwave (HPM) sources based on the backward-wave oscillator (BWO) have been investigated for the past two decades primarily because of their potential for very high efficiency (15 to 40%) operation. Several different effects have been proposed to explain this high efficiency compared to conventional BWO's. One of the major contributors to the high efficiency of the plasma-filled Pasotron HPM BWO source is the presence of optimally phased end reflections. The Pasotron uses a long pulse ([ge]100 [micro]s) plasma-cathode electron-gun and plasma-filled slow-wave structure to produce microwave pulses in the range of 1 to 10 MW without the use of externally produced magnetic fields. The efficiency of the Pasotron can be enhanced by up to a factor of two when the device is configured as a standing-wave oscillator in which properly phased reflections from the downstream collector end of the finite length SWS constructively interfere with the fundamental backward-wave modes and improve the coupling of the beam to the circuit. Operation in this configuration increases the efficiency up to 30% but causes the frequency to vary in discrete steps and the output power to change strongly with beam parameters and oscillation frequency.

  5. High power, high efficiency millimeter wavelength traveling wave tubes for high rate communications from deep space

    NASA Technical Reports Server (NTRS)

    Dayton, James A., Jr.

    1991-01-01

    The high-power transmitters needed for high data rate communications from deep space will require a new class of compact, high efficiency traveling wave tubes (TWT's). Many of the recent TWT developments in the microwave frequency range are generically applicable to mm wave devices, in particular much of the technology of computer aided design, cathodes, and multistage depressed collectors. However, because TWT dimensions scale approximately with wavelength, mm wave devices will be physically much smaller with inherently more stringent fabrication tolerances and sensitivity to thermal dissipation.

  6. Investigation of beat-waves generation with high efficiency

    SciTech Connect

    Song, W.; Shi, Y. C.; Deng, Y. Q.; Zhu, X. X.; Zhang, Z. Q.; Hu, X. G.

    2013-10-21

    A method for generating high power beating radio-frequency wave with high conversion efficiency is proposed. Based on Cherenkov radiation, two longitudinal resonant modes are excited simultaneously and interacted with intense electron beam synchronously. An experiment was carried out and beat-waves with an average power of about 2.3 GW, frequencies of 9.29 GHz and 10.31 GHz, and efficiency of about 40% were obtained. Through controlling the electron energy, the amplitude proportions of the two resonant modes are altered, and different beat-wave patterns are formed.

  7. High-efficiency transmission gratings fabricated in bulk fused silica

    SciTech Connect

    Nguyen, H.T.; Shore, B.W.; Britten, J.A.; Bryan, S.J.; Falabella, S.; Boyd, R.D.; Perry, M.D.

    1996-03-01

    The authors present the design and performance of high-efficiency transmission gratings fabricated in bulk fused silica for use in ultraviolet high-power laser systems. The gratings exhibit a diffraction efficiency exceeding 95% in the m = {minus}1 order and damage threshold greater than 13 J/cm{sup 2} for 1 nsec pulses at 351 nm. Model calculations and experimental measurements are in good agreement. They describe the design and fabrication of these gratings based on the transfer ion etching of photoresist patterns produced by interference lithography.

  8. Investigation of beat-waves generation with high efficiency

    NASA Astrophysics Data System (ADS)

    Song, W.; Shi, Y. C.; Deng, Y. Q.; Zhu, X. X.; Zhang, Z. Q.; Hu, X. G.

    2013-10-01

    A method for generating high power beating radio-frequency wave with high conversion efficiency is proposed. Based on Cherenkov radiation, two longitudinal resonant modes are excited simultaneously and interacted with intense electron beam synchronously. An experiment was carried out and beat-waves with an average power of about 2.3 GW, frequencies of 9.29 GHz and 10.31 GHz, and efficiency of about 40% were obtained. Through controlling the electron energy, the amplitude proportions of the two resonant modes are altered, and different beat-wave patterns are formed.

  9. High efficiency III-nitride light-emitting diodes

    DOEpatents

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  10. A high voltage power converter for space astronomy applications

    NASA Technical Reports Server (NTRS)

    Ray, David C.; Lampton, Michael L.

    1988-01-01

    A dc-dc low-power, high-voltage converter for use in space is described which furnishes a commandable, low-noise dc output in the range of 0 to -7500 V. The converter is suitable for biasing of detectors commonly employed in space astronomy, microchannel plates, photomultipliers, and gas discharge detectors. The converter's reliability has been demonstrated by accelerated life testing under thermal vacuum. The electrical and mechanical design, packaging, layout and fabrication techniques, and tests employed are described.

  11. High efficiency silicon solar cell based on asymmetric nanowire

    PubMed Central

    Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M.; Baek, Chang-Ki

    2015-01-01

    Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm2 and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells. PMID:26152914

  12. High efficiency all-polymer tandem solar cells

    NASA Astrophysics Data System (ADS)

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-05-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells.

  13. High efficiency all-polymer tandem solar cells

    PubMed Central

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-01-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells. PMID:27226354

  14. High efficiency all-polymer tandem solar cells.

    PubMed

    Yuan, Jianyu; Gu, Jinan; Shi, Guozheng; Sun, Jianxia; Wang, Hai-Qiao; Ma, Wanli

    2016-01-01

    In this work, we have reported for the first time an efficient all-polymer tandem cell using identical sub-cells based on P2F-DO:N2200. A high power conversion efficiency (PCE) of 6.70% was achieved, which is among the highest efficiencies for all polymer solar cells and 43% larger than the PCE of single junction cell. The largely improved device performance can be mainly attributed to the enhanced absorption of tandem cell. Meanwhile, the carrier collection in device remains efficient by optimizing the recombination layer and sub-cell film thickness. Thus tandem structure can become an easy approach to effectively boost the performance of current all polymer solar cells. PMID:27226354

  15. High extraction efficiency ultraviolet light-emitting diode

    DOEpatents

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  16. Realization of highly efficient hexagonal boron nitride neutron detectors

    NASA Astrophysics Data System (ADS)

    Maity, A.; Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2016-08-01

    We report the achievement of highly efficient 10B enriched hexagonal boron nitride (h-10BN) direct conversion neutron detectors. These detectors were realized from freestanding 4-in. diameter h-10BN wafers 43 μm in thickness obtained from epitaxy growth and subsequent mechanical separation from sapphire substrates. Both sides of the film were subjected to ohmic contact deposition to form a simple vertical "photoconductor-type" detector. Transport measurements revealed excellent vertical transport properties including high electrical resistivity (>1013 Ω cm) and mobility-lifetime (μτ) products. A much larger μτ product for holes compared to that of electrons along the c-axis of h-BN was observed, implying that holes (electrons) behave like majority (minority) carriers in undoped h-BN. Exposure to thermal neutrons from a californium-252 (252Cf) source moderated by a high density polyethylene moderator reveals that 43 μm h-10BN detectors possess 51.4% detection efficiency at a bias voltage of 400 V, which is the highest reported efficiency for any semiconductor-based neutron detector. The results point to the possibility of obtaining highly efficient, compact solid-state neutron detectors with high gamma rejection and low manufacturing and maintenance costs.

  17. Evaluation of a high-efficiency, filter-bank system.

    PubMed

    Martin, Stephen B; Beamer, Bryan R; Moyer, Ernest S

    2006-04-01

    National Institute for Occupational Safety and Health (NIOSH) investigators evaluated filtration efficiencies at three U.S. Postal Service (USPS) facilities. Ventilation and filtration systems (VFSs) had been installed after the 2001 bioterrorist attacks when the USPS unknowingly processed letters laden with B. anthracis spores. The new VFS units included high-efficiency particulate air (HEPA) filters and were required by USPS contract specifications to provide an overall filtration efficiency of at least 99.97% for particles between 0.3 microm and 3.0 micro m. The USPS evaluation involved a modification of methodology used to test total filtration system efficiency in agricultural tractor cab enclosures. The modified sampling strategy not only proved effective for monitoring the total filtration system component of VFS performance but also distinguished between filtration systems performing to the high USPS performance criteria and those needing repair or replacement. The results clearly showed the importance of choosing a pair of optical particle counters that have been closely matched immediately prior to testing. The modified methodology is readily adaptable to any workplace wishing to evaluate air filtration systems, including high-efficiency systems. PMID:16531293

  18. Innovative-Simplified Nuclear Power Plant Efficiency Evaluation with High-Efficiency Steam Injector System

    SciTech Connect

    Shoji, Goto; Shuichi, Ohmori; Michitsugu, Mori

    2006-07-01

    It is possible to establish simplified system with reduced space and total equipment weight using high-efficiency Steam Injectors (SI) instead of low-pressure feedwater heaters in Nuclear Power Plant (NPP). The SI works as a heat exchanger through direct contact between feedwater from condensers and extracted steam from turbines. It can get higher pressure than supplied steam pressure. The maintenance and reliability are still higher than the feedwater ones because SI has no movable parts. This paper describes the analysis of the heat balance, plant efficiency and the operation of this Innovative-Simplified NPP with high-efficiency SI. The plant efficiency and operation are compared with the electric power of 1100 MWe-class BWR system and the Innovative-Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show that plant efficiencies of the Innovated-Simplified BWR system are almost equal to original BWR ones. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (authors)

  19. Potential high efficiency solar cells: Applications from space photovoltaic research

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  20. Overview of SERI's high efficiency solar cell research

    NASA Technical Reports Server (NTRS)

    Benner, J. P.; Cole, L. A.; Leboeuf, C. M.

    1985-01-01

    The bulk of the research efforts supported by the Solar Energy Research Institute (SERI) High Efficiency Concepts area has been directed towards establishing the feasibility of achieving very high efficiencies, 30% for concentrator and more than 20% for thin film flat plate, in solar cell designs which could possibly be produced competitively. The research has accomplished a great deal during the past two years. Even though the desired performance levels have not yet been demonstrated, based on the recent progress, a greater portion of the terrestrial photovoltaics community believes that these efficiencies are attainable. The program will now allocate a larger portion of resources to low cost, large area deposition technology. The program is currently shifting greater emphasis on to the study of crystal growth in order to provide the understanding and tools needed to design a large area process.

  1. Low Threshold and High Efficiency Nd:S-VAP Laser

    NASA Astrophysics Data System (ADS)

    Zhao, Shengzhi; Wang, Qingpu; Zhang, Xingyu; Wang, Xiaojie; Wang, Xiangtai; Sun, Lianke; Zhang, Shaojun

    1995-06-01

    The absorption spectrum of a new sort of crystal Nd:S-VAP was measured, which showed that Nd:S-VAP can be appropriately pumped at 583.0 and 809.0 nm. By using tunable dye-laser (570.0-600.0 nm) as pumping light, the performance of low threshold and high efficiency Nd:S-VAP laser has been realized. The characteristics of the output laser, such as 1.5 nm linewidth, 5 ns pulse width, almost total polarity, up to 50% conversion efficiency, down to 2 mJ threshold energy and so on, were presented. Meanwhile, the prospect of Nd:S-VAP crystal for low threshold, high efficiency miniature laser was discussed.

  2. Highly efficient light management for perovskite solar cells

    PubMed Central

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells. PMID:26733112

  3. High efficiency micro solar cells integrated with lens array

    NASA Astrophysics Data System (ADS)

    Fidaner, Onur; Suarez, Ferran A.; Wiemer, Michael; Sabnis, Vijit A.; Asano, Tetsuya; Itou, Akihiro; Inoue, Daijiro; Hayashi, Nobuhiko; Arase, Hidekazu; Matsushita, Akio; Nakagawa, Tohru

    2014-03-01

    We demonstrate high efficiency triple junction solar cells with submillimeter dimensions in an all-back-contact architecture. 550 × 550 μm2 cells flash at 41.3% efficiency under the air mass 1.5 direct normal spectrum at 50 W/cm2 at 25 °C. Compared to standard size production cells, the micro cells have reduced performance at 1-sun due to perimeter recombination, but the performance gap closes at higher concentrations. Micro cells integrated with lens arrays were tested on-sun with an efficiency of 34.7%. All-back-contact architecture and submillimeter dimensions are advantageous for module integration and heat dissipation, allowing for high-performance, compact, lightweight, and cost-effective concentrated photovoltaic modules.

  4. Highly efficient light management for perovskite solar cells.

    PubMed

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-06

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  5. Basic studies of 3-5 high efficiency cell components

    SciTech Connect

    Lundstrom, M.S.; Melloch, M.R.; Pierret, R.F.; Carpenter, M.S.; Chuang, H.L.; Dodd, P.E.; Keshavarzi, A.; Klausmeier-Brown, M.E.; Lush, G.B.; Stellwag, T.B. )

    1993-01-01

    This project's objective is to improve our understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research itself consists of fabricating and characterizing solar cell building blocks'' such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project's goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. This report describes our progress during the fifth and final year of the project. During the past five years, we've teamed a great deal about heavy doping effects in p[sup +] and n[sup +] GaAs and have explored their implications for solar cells. We have developed an understanding of the dominant recombination losses in present-day, high-efficiency cells. We've learned to appreciated the importance of recombination at the perimeter of the cell and have developed techniques for chemically passivating such edges. Finally, we've demonstrated that films grown by molecular beam epitaxy are suitable for high-efficiency cell research.

  6. Development of a high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1975-01-01

    Progress is reported in an attempt to realize higher specific power output and radiation resistance from thin solar cells for space applications. The efforts applied to establishing the technological base for fabricating high efficiency thin solar cells are described. Progress is characterized by continuous improvements in all parameters of the space cell.

  7. Development of a high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1975-01-01

    Specific power output and radiation resistance characteristics developed for thin film silicon solar cells are reported. The technological base for fabricating these high efficiency cells and limitations of cell photovoltage are included. In addition, optical and electronic measurement instrumentation and mathematical analyses aids are included. Antireflection coatings for these cells are discussed.

  8. Development of High Efficiency (14%) Solar Cell Array Module

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Khemthong, S.; Olah, S.; Sampson, W. J.; Ling, K. S.

    1979-01-01

    High efficiency solar cells required for the low cost modules was developed. The production tooling for the manufacture of the cells and modules was designed. The tooling consisted of: (1) back contact soldering machine; (2) vacuum pickup; (3) antireflective coating tooling; and (4) test fixture.

  9. Basic studies of 3-5 high efficiency cell components

    NASA Astrophysics Data System (ADS)

    Lundstrom, M. S.; Melloch, M. R.; Pierret, R. F.; Carpenter, M. S.; Chuang, H. L.; Dodd, P. E.; Keshavarzi, A.; Klausmeier-Brown, M. E.; Lush, G. B.; Stellwag, T. B.

    1993-01-01

    This project's objective is to improve our understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research itself consists of fabricating and characterizing solar cell 'building blocks' such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project's goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. This report describes our progress during the fifth and final year of the project. During the past five years, we've teamed a great deal about heavy doping effects in p(sup +) and n(sup +) GaAs and have explored their implications for solar cells. We have developed an understanding of the dominant recombination losses in present-day, high-efficiency cells. We've learned to appreciated the importance of recombination at the perimeter of the cell and have developed techniques for chemically passivating such edges. Finally, we've demonstrated that films grown by molecular beam epitaxy are suitable for high-efficiency cell research.

  10. High-efficiency K-band tracking antenna feed

    NASA Technical Reports Server (NTRS)

    Beavin, R. L.; Simanyi, A. I.

    1975-01-01

    Antenna feed features high aperture efficiency of multimode near-field horn and develops tracking signals without conventional monopulse bridge. Feed assembly is relatively simple and very compact. However, feed is sensitive to cross-polarized energy which couples into orthogonal error channel.

  11. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid... percent when PCBs are being burned. (iv) The mineral oil dielectric fluid does not comprise more than 10 percent (on a volume basis) of the total fuel feed rate. (v) The mineral oil dielectric fluid is not...

  12. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid... percent when PCBs are being burned. (iv) The mineral oil dielectric fluid does not comprise more than 10 percent (on a volume basis) of the total fuel feed rate. (v) The mineral oil dielectric fluid is not...

  13. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid... percent when PCBs are being burned. (iv) The mineral oil dielectric fluid does not comprise more than 10 percent (on a volume basis) of the total fuel feed rate. (v) The mineral oil dielectric fluid is not...

  14. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid... percent when PCBs are being burned. (iv) The mineral oil dielectric fluid does not comprise more than 10 percent (on a volume basis) of the total fuel feed rate. (v) The mineral oil dielectric fluid is not...

  15. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid... percent when PCBs are being burned. (iv) The mineral oil dielectric fluid does not comprise more than 10 percent (on a volume basis) of the total fuel feed rate. (v) The mineral oil dielectric fluid is not...

  16. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    SciTech Connect

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  17. High efficiency solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, G. A.

    1995-01-01

    Understanding solar cell response to pulsed laser outputs is important for the evaluation of power beaming applications. The time response of high efficiency GaAs and silicon solar cells to a 25 nS monochromatic pulse input is described. The PC-1D computer code is used to analyze the cell current during and after the pulse for various conditions.

  18. High-quantum efficiency, long-lived luminescing refractory oxides

    DOEpatents

    Chen, Yok; Gonzalez, Roberto; Summers, Geoffrey P.

    1984-01-01

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of an oxide selected from the group consisting of magnesium oxide and calcium oxide and possessing a concentration ratio of H.sup.- ions to F centers in the range of about 0.05 to about 10.

  19. High-quantum efficiency, long-lived luminescing refractory oxides

    DOEpatents

    Chen, Y.; Gonzalez, R.; Summers, G.P.

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of MgO or CaO and possessing a concentration ratio of H/sup -/ ions to F centers in the range of about 0.05 to about 10.

  20. High-efficiency heteroepitaxial solar cells for space power applications

    NASA Technical Reports Server (NTRS)

    Vernon, S. M.; Tobin, S. P.; Keavney, C. J.; Wojtczuk, S. J.

    1989-01-01

    The experimental results for several technical approaches aimed at achieving highly efficient solar cells for space-power applications are reported. Efficiencies of up to 24.5 percent (170X, AM0) and 21.7 percent (1X, AM0) have been achieved with homoepitaxial GaAs p/n cells. This one-sun AM0 efficiency value is believed to be the highest reported to date. Tandem solar cells utilizing GaAs-on-Ge structures have been fabricated and shown to have efficiencies up to 21.3 percent (1X, AM0), and a GaAs-on-Si cell at 15.2 percent (1X, AM0) is reported. Homoepitaxial n/p InP cells with an efficiency of 18.8 percent (1X, AM0) are also reported. The fabrication of heteroepitaxial InP solar cells with one-sun AM0 efficiency values of 9.4 percent (on GaAs) and 7.2 percent (on Si) is described.

  1. Ultra-Compact High-Efficiency Luminaire for General Illumination

    SciTech Connect

    Lowes, Ted

    2012-04-08

    Cree has developed a new ultra-compact light emitting diode (LED) luminaire capable of providing high efficacy with excellent color quality that can lead to significant energy savings in today's commercial and retail applications. This success was based on an integrated development effort tailoring the LED component characteristics, optics, thermal management and driver design for the small footprint to achieve an overall system efficiency of 70%. A new LED component was designed to provide high brightness and efficacy in a form factor that allowed for a small directional beam with a luminaire housing design able to dissipate the heat effectively using a small physical envelope. A very compact, 90% efficient driver was developed to meet the system performance while not taking away any thermal mass from the heat sink. A 91% efficient secondary optics was designed to maximize efficiency while providing a smooth beam. The reliability of the new LED component was robust under accelerated testing conditions. Luminaires were assembled integrating the novel LED component, secondary optics, heat sink and driver technology to demonstrate the system improvement. Cree has successfully completed this project by developing an ultra-compact LED luminaire that provided 380 lumens at a correlated color temperature (CCT) of 2822 K and color rendering index (CRI) of 94 with an efficacy of 94 lumens per watt (LPW) when operating at 4 W input power (steady state) with an overall system efficiency of 81%. At a higher input power of 9 Watts, the lamp provided 658 lumens at 71 LPW.

  2. Development of a high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Storti, G.; Culik, J.; Wrigley, C.

    1980-01-01

    Significant improvements in open-circuit voltage and conversion efficiency, even on relatively high bulk resistivity silicon, were achieved by using a screen-printed aluminum paste back surface field. A 4 sq cm 50 micron m thick cell was fabricated from textured 10 omega-cm silicon which had an open-circuit voltage of 595 mV and AMO conversion efficiency at 25 C of 14.3%. The best 4 sq cm 50 micron thick cell (2 omega-cm silicon) produced had an open-circuit voltage of 607 mV and an AMO conversion efficiency of 15%. Processing modifications are described which resulted in better front contact integrity and reduced breakage. These modifications were utilized in the thin cell pilot line to fabricate 4 sq cm cells with an average AMO conversion efficiency at 25 C of better than 12.5% and with lot yields as great as 51% of starts; a production rate of 10,000 cells per month was demonstrated. A pilot line was operated which produced large area (25 cm) ultra-thin cells with an average AMO conversion efficiency at 25 deg of better than 11.5% and a lot yield as high as 17%.

  3. Gettering and passivation of high efficiency multicrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Rohatgi, A.; Narasimha, S.; Cai, L.

    1997-02-01

    A detailed study was conducted on aluminum and phosphorus gettering in HEM mc-Si and defect passivation by PECVD SiN in EFG mc-Si to achieve high efficiency solar cells on these promising photovoltaic materials. Solar cells with efficiencies as high as 18.6% (1 cm2 area) were achieved on multicrystalline silicon (mc-Si) grown by the heat exchanger method (HEM) by a process which implements impurity gettering, an effective back surface field, front surface passivation, and forming gas annealing. This represents the highest reported solar cell efficiency on mc-Si to date. PCD analysis revealed that the bulk lifetime in certain HEM samples after phosphorus gettering can be as high as 135 μs. By incorporating a deeper aluminum back surface field (Al-BSF), the back surface recombination velocity (Sb) for 0.65 Ω-cm HEM mc-Si solar cells was lowered from 10,000 cm/s to 2,000 cm/s resulting in the 18.6% efficient device. It was also observed that a screen-printed/RTP alloyed Al-BSF process could raise the efficiency of both float zone and relatively defect-free mc-Si solar cells by lowering Sb. However, this process was found to increase the electrical activity of extended defects so that mc-Si devices with a significant defect density showed an overall degradation in performance. In the case of EFG mc-Si, neural network modeling in conjunction with a study of post deposition annealing was used to provide guidelines for effective defect passivation by PECVD SiN films. Appropriate deposition and annealing conditions resulted in a 45% increase in cell efficiency due to AR coating and another 25-30% increase due to defect passivation by atomic hydrogen.

  4. Improving the efficiency of high purity water systems

    SciTech Connect

    Bukay, M.; Youngberg, D.

    1994-05-01

    High purity water (HPW) production involves the consumption of substantial amounts of energy, precious potable water, harsh/hazardous chemicals, and other environmental/impact materials. The discharge of some of the waste products from HPW systems is also a concern. The purpose of this paper is to discuss techniques to improve the efficiency of HPW production and thereby reduce any negative effects on the environment. It provides specific examples of how end-users and equipment suppliers are increasing the efficiency of their pretreatment, reverse osmosis, ion-exchange, and sanitization technology while frequently citing capital and operating cost reductions.

  5. High efficiency fuel cell/advanced turbine power cycles

    SciTech Connect

    Morehead, H.

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  6. High efficiency low cost monolithic module for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Petersen, Wendell C.; Siu, Daniel P.

    1992-01-01

    The program objectives were to develop a highly efficient, low cost RF module for SARSAT beacons; achieve significantly lower battery current drain, amount of heat generated, and size of battery required; utilize MMIC technology to improve efficiency, reliability, packaging, and cost; and provide a technology database for GaAs based UHF RF circuit architectures. Presented in viewgraph form are functional block diagrams of the SARSAT distress beacon and beacon RF module as well as performance goals, schematic diagrams, predicted performances, and measured performances for the phase modulator and power amplifier.

  7. Biocleavable Polycationic Micelles as Highly Efficient Gene Delivery Vectors

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Xue, Ya-Nan; Liu, Min; Zhuo, Ren-Xi; Huang, Shi-Wen

    2010-11-01

    An amphiphilic disulfide-containing polyamidoamine was synthesized by Michael-type polyaddition reaction of piperazine to equimolar N, N'-bis(acryloyl)cystamine with 90% yield. The polycationic micelles (198 nm, 32.5 mV), prepared from the amphiphilic polyamidoamine by dialysis method, can condense foreign plasmid DNA to form nanosized polycationic micelles/DNA polyelectrolyte complexes with positive charges, which transfected 293T cells with high efficiency. Under optimized conditions, the transfection efficiencies of polycationic micelles/DNA complexes are comparable to, or even higher than that of commercially available branched PEI (Mw 25 kDa).

  8. High-efficiency heteroepitaxial InP solar cells

    NASA Technical Reports Server (NTRS)

    Wanlass, M. W.; Coutts, T. J.; Ward, J. S.; Emery, K. A.

    1991-01-01

    High-efficiency, thin-film InP solar cells grown heteroepitaxially on GaAs and Si single-crystal bulk substrates are being developed as a means of eliminating the problems associated with using single-crystal InP substrates. A novel device structure employing a compositionally graded Ga(x)In(1-x)As layer between the bulk substrate and the InP cell layers is used to reduce the dislocation density and improve the minority carrier properties in the InP. The structures are grown in a continuous sequence of steps using computer-controlled atmospheric pressure metalorganic vapor phase epitaxy (APMOVPE). Dislocation densities as low as 3 x 10(exp 7) sq cm and minority carrier lifetimes as high as 3.3 ns are achieved in the InP layers with this method using both GaAs or Si substrates. Structures prepared in this fashion are also completely free of microcracks. These results represent a substantial improvement in InP layer quality when compared to heteroepitaxial InP prepared using conventional techniques such as thermally cycled growth and post-growth annealing. The present work is is concerned with the fabrication and characterization of high-efficiency, thin-film InP solar cells. Both one-sun and concentrator cells were prepared for device structures grown on GaAs substrates. One-cell cells have efficiencies as high as 13.7 percent at 25 C. However, results for the concentrator cells are emphasized. The concentrator cell performance is characterized as a function of the air mass zero (AM0) solar concentration ratio and operating temperature. From these data, the temperature coefficients of the cell performance parameters are derived as a function of the concentration ratio. Under concentration, the cells exhibit a dramatic increase in efficiency and an improved temperature coefficient of efficiency. At 25 C, a peak conversion efficiency of 18.9 percent is reported. At 80 C, the peak AM0 efficiency is 15.7 percent at 75.6 suns. These are the highest efficiencies yet

  9. Analytic scaling analysis of high harmonic generation conversion efficiency.

    PubMed

    Falcão-Filho, E L; Gkortsas, M; Gordon, Ariel; Kärtner, Franz X

    2009-06-22

    Closed form expressions for the high harmonic generation (HHG) conversion efficiency are obtained for the plateau and cutoff regions. The presented formulas eliminate most of the computational complexity related to HHG simulations, and enable a detailed scaling analysis of HHG efficiency as a function of drive laser parameters and material properties. Moreover, in the total absence of any fitting procedure, the results show excellent agreement with experimental data reported in the literature. Thus, this paper opens new pathways for the global optimization problem of extreme ultraviolet (EUV) sources based on HHG.

  10. Development of high efficiency (14 percent) solar cell array module

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Khemthong, S.; Olah, S.; Sampson, W. J.; Ling, K. S.

    1980-01-01

    Most effort was concentrated on development of procedures to provide large area (3 in. diameter) high efficiency (16.5 percent AM1, 28 C) P+NN+ solar cells. Intensive tests with 3 in. slices gave consistently lower efficiency (13.5 percent). The problems were identified as incomplete formation of and optimum back surface field (BSF), and interaction of the BSF process and the shallow P+ junction. The problem was shown not to be caused by reduced quality of silicon near the edges of the larger slices.

  11. High-efficiency, 200 watt, 12-gigahertz traveling wave tube

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G.; Mcnary, B. D.; Sauseng, O.

    1974-01-01

    Design and performance of a highly efficient experimental 200-watt traveling wave tube for space communications are described. The tube uses a coupled cavity slow wave structure with periodic permanent magnet focusing. A two-step velocity taper is incorporated in the slow wave structure for velocity resynchronization with the modulated beam. The spent beam is reconditioned in a refocusing section before it is collected in a novel multistage depressed collector. The collector is radiation cooled and heat insulated from the tube body. At saturation the tube provides peak output power of 240 watts with a 35-db gain and an overall maximum efficiency of 56 percent.

  12. High Efficiency LED Lamp for Solid-State Lighting

    SciTech Connect

    James Ibbetson

    2006-12-31

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  13. High Efficiency Microwave Power Amplifier: From the Lab to Industry

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Since the beginnings of space travel, various microwave power amplifier designs have been employed. These included Class-A, -B, and -C bias arrangements. However, shared limitation of these topologies is the inherent high total consumption of input power associated with the generation of radio frequency (RF)/microwave power. The power amplifier has always been the largest drain for the limited available power on the spacecraft. Typically, the conversion efficiency of a microwave power amplifier is 10 to 20%. For a typical microwave power amplifier of 20 watts, input DC power of at least 100 watts is required. Such a large demand for input power suggests that a better method of RF/microwave power generation is required. The price paid for using a linear amplifier where high linearity is unnecessary includes higher initial and operating costs, lower DC-to-RF conversion efficiency, high power consumption, higher power dissipation and the accompanying need for higher capacity heat removal means, and an amplifier that is more prone to parasitic oscillation. The first use of a higher efficiency mode of power generation was described by Baxandall in 1959. This higher efficiency mode, Class-D, is achieved through distinct switching techniques to reduce the power losses associated with switching, conduction, and gate drive losses of a given transistor.

  14. High Quality Down Lighting Luminaire with 73% Overall System Efficiency

    SciTech Connect

    Robert Harrison; Steven C. Allen; Joseph Bernier; Robert Harrison

    2010-08-31

    This report summarizes work to develop a high flux, high efficiency LED-based downlight at OSRAM SYLVANIA under US Department of Energy contract DE-FC26-08NT01582. A new high power LED and electronic driver were developed for these downlights. The LED achieved 100 lumens per watt efficacy and 1700 lumen flux output at a correlated color temperature of 3500K. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.99, and total harmonic distortion <10%. Two styles of downlights using the LED and driver were shown to exceed the project targets for steady-state luminous efficacy and flux of 70 lumens per watt and 1300 lumens, respectively. Compared to similar existing downlights using compact fluorescent or LED sources, these downlights had much higher efficacy at nearly the same luminous flux.

  15. Broadband high-efficiency dielectric metasurfaces for the visible spectrum.

    PubMed

    Devlin, Robert C; Khorasaninejad, Mohammadreza; Chen, Wei Ting; Oh, Jaewon; Capasso, Federico

    2016-09-20

    Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to extend dielectric metasurfaces across the visible spectrum and to enable applications such as high numerical aperture lenses, color holograms, and wearable optics. Here, we demonstrate high performance dielectric metasurfaces in the form of holograms for red, green, and blue wavelengths with record absolute efficiency (>78%). We use atomic layer deposition of amorphous titanium dioxide with surface roughness less than 1 nm and negligible optical loss. We use a process for fabricating dielectric metasurfaces that allows us to produce anisotropic, subwavelength-spaced dielectric nanostructures with shape birefringence. This process is capable of realizing any high-efficiency metasurface optical element, e.g., metalenses and axicons. PMID:27601634

  16. A Perspective on the Future of High Efficiency Engines

    SciTech Connect

    Wagner, Robert M; Curran, Scott; Green Jr, Johney Boyd

    2013-01-01

    New fuel economy standards and emissions regulations are accelerating the development of new engine technologies, sensors, and on-board computing. These developments will enable unprecedented engine control, which will in turn enable real-world implementations of low temperature combustion, high-speed controls, and other high efficiency engine technologies. With this expanded flexibility in engine design and control, the challenge will now be the exponential increase in the design and calibration space and the need for the development of new simulations, optimization methods, and self-learning control methodologies. This manuscript provides historical and future perspectives on the opportunities and challenges of this unparalleled technology growth on the next generation of high efficiency engines.

  17. Broadband high-efficiency dielectric metasurfaces for the visible spectrum.

    PubMed

    Devlin, Robert C; Khorasaninejad, Mohammadreza; Chen, Wei Ting; Oh, Jaewon; Capasso, Federico

    2016-09-20

    Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to extend dielectric metasurfaces across the visible spectrum and to enable applications such as high numerical aperture lenses, color holograms, and wearable optics. Here, we demonstrate high performance dielectric metasurfaces in the form of holograms for red, green, and blue wavelengths with record absolute efficiency (>78%). We use atomic layer deposition of amorphous titanium dioxide with surface roughness less than 1 nm and negligible optical loss. We use a process for fabricating dielectric metasurfaces that allows us to produce anisotropic, subwavelength-spaced dielectric nanostructures with shape birefringence. This process is capable of realizing any high-efficiency metasurface optical element, e.g., metalenses and axicons.

  18. Broadband high-efficiency dielectric metasurfaces for the visible spectrum

    PubMed Central

    Devlin, Robert C.; Khorasaninejad, Mohammadreza; Chen, Wei Ting; Oh, Jaewon; Capasso, Federico

    2016-01-01

    Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to extend dielectric metasurfaces across the visible spectrum and to enable applications such as high numerical aperture lenses, color holograms, and wearable optics. Here, we demonstrate high performance dielectric metasurfaces in the form of holograms for red, green, and blue wavelengths with record absolute efficiency (>78%). We use atomic layer deposition of amorphous titanium dioxide with surface roughness less than 1 nm and negligible optical loss. We use a process for fabricating dielectric metasurfaces that allows us to produce anisotropic, subwavelength-spaced dielectric nanostructures with shape birefringence. This process is capable of realizing any high-efficiency metasurface optical element, e.g., metalenses and axicons. PMID:27601634

  19. Optically Thin Metallic Films for High-Radiative-Efficiency Plasmonics

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Zhen, Bo; Hsu, Chia Wei; Miller, Owen D.; Joannopoulos, John D.; Soljačić, Marin

    2016-07-01

    Plasmonics enables deep-subwavelength concentration of light and has become important for fundamental studies as well as real-life applications. Two major existing platforms of plasmonics are metallic nanoparticles and metallic films. Metallic nanoparticles allow efficient coupling to far field radiation, yet their synthesis typically leads to poor material quality. Metallic films offer substantially higher quality materials, but their coupling to radiation is typically jeopardized due to the large momentum mismatch with free space. Here, we propose and theoretically investigate optically thin metallic films as an ideal platform for high-radiative-efficiency plasmonics. For far-field scattering, adding a thin high-quality metallic substrate enables a higher quality factor while maintaining the localization and tunability that the nanoparticle provides. For near-field spontaneous emission, a thin metallic substrate, of high quality or not, greatly improves the field overlap between the emitter environment and propagating surface plasmons, enabling high-Purcell (total enhancement > $10^4$), high-quantum-yield (> 50 %) spontaneous emission, even as the gap size vanishes (3$\\sim$5 nm). The enhancement has almost spatially independent efficiency and does not suffer from quenching effects that commonly exist in previous structures.

  20. Optically Thin Metallic Films for High-Radiative-Efficiency Plasmonics.

    PubMed

    Yang, Yi; Zhen, Bo; Hsu, Chia Wei; Miller, Owen D; Joannopoulos, John D; Soljačić, Marin

    2016-07-13

    Plasmonics enables deep-subwavelength concentration of light and has become important for fundamental studies as well as real-life applications. Two major existing platforms of plasmonics are metallic nanoparticles and metallic films. Metallic nanoparticles allow efficient coupling to far field radiation, yet their synthesis typically leads to poor material quality. Metallic films offer substantially higher quality materials, but their coupling to radiation is typically jeopardized due to the large momentum mismatch with free space. Here, we propose and theoretically investigate optically thin metallic films as an ideal platform for high-radiative-efficiency plasmonics. For far-field scattering, adding a thin high-quality metallic substrate enables a higher quality factor while maintaining the localization and tunability that the nanoparticle provides. For near-field spontaneous emission, a thin metallic substrate, of high quality or not, greatly improves the field overlap between the emitter environment and propagating surface plasmons, enabling high-Purcell (total enhancement >10(4)), high-quantum-yield (>50%) spontaneous emission, even as the gap size vanishes (3-5 nm). The enhancement has almost spatially independent efficiency and does not suffer from quenching effects that commonly exist in previous structures.

  1. Efficiency and Loading Evaluation of High Efficiency Mist Eliminators (HEME) - 12003

    SciTech Connect

    Giffin, Paxton K.; Parsons, Michael S.; Waggoner, Charles A.

    2012-07-01

    High efficiency mist eliminators (HEME) are filters primarily used to remove moisture and/or liquid aerosols from an air stream. HEME elements are designed to reduce aerosol and particulate load on primary High Efficiency Particulate Air (HEPA) filters and to have a liquid particle removal efficiency of approximately 99.5% for aerosols down to sub-micron size particulates. The investigation presented here evaluates the loading capacity of the element in the absence of a water spray cleaning system. The theory is that without the cleaning system, the HEME element will suffer rapid buildup of solid aerosols, greatly reducing the particle loading capacity. Evaluation consists of challenging the element with a waste surrogate dry aerosol and di-octyl phthalate (DOP) at varying intervals of differential pressure to examine the filtering efficiency of three different element designs at three different media velocities. Also, the elements are challenged with a liquid waste surrogate using Laskin nozzles and large dispersion nozzles. These tests allow the loading capacity of the unit to be determined and the effectiveness of washing down the interior of the elements to be evaluated. (authors)

  2. Predicting High Harmonic Ion Cyclotron Heating Efficiency in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Green, D. L.; Berry, L. A.; Chen, G.; Ryan, P. M.; Canik, J. M.; Jaeger, E. F.

    2011-09-01

    Observations of improved radio frequency (rf) heating efficiency in ITER relevant high-confinement (H-)mode plasmas on the National Spherical Tokamak Experiment are investigated by whole-device linear simulation. The steady-state rf electric field is calculated for various antenna spectra and the results examined for characteristics that correlate with observations of improved or reduced rf heating efficiency. We find that launching toroidal wave numbers that give fast-wave propagation in the scrape-off plasma excites large amplitude (˜kVm-1) coaxial standing modes between the confined plasma density pedestal and conducting vessel wall. Qualitative comparison with measurements of the stored plasma energy suggests that these modes are a probable cause of degraded heating efficiency.

  3. Invited Article: Broadband highly efficient dielectric metadevices for polarization control

    NASA Astrophysics Data System (ADS)

    Kruk, Sergey; Hopkins, Ben; Kravchenko, Ivan I.; Miroshnichenko, Andrey; Neshev, Dragomir N.; Kivshar, Yuri S.

    2016-06-01

    Metadevices based on dielectric nanostructured surfaces with both electric and magnetic Mie-type resonances have resulted in the best efficiency to date for functional flat optics with only one disadvantage: a narrow operational bandwidth. Here we experimentally demonstrate broadband transparent all-dielectric metasurfaces for highly efficient polarization manipulation. We utilize the generalized Huygens principle, with a superposition of the scattering contributions from several electric and magnetic multipolar modes of the constituent meta-atoms, to achieve destructive interference in reflection over a large spectral bandwidth. By employing this novel concept, we demonstrate reflectionless (˜90% transmission) half-wave plates, quarter-wave plates, and vector beam q-plates that can operate across multiple telecom bands with ˜99% polarization conversion efficiency.

  4. High efficiency particulate removal with sintered metal filters

    NASA Astrophysics Data System (ADS)

    Kirstein, B. E.; Paplawsky, W. J.; Pence, D. T.; Hedahl, T. G.

    Because of their particle removal efficiencies and durability, sintered metal filters have been chosen for high efficiency particulate air (HEPA) filter protection in the off gas treatment system for a proposed transuranic waste treatment facility. Process evaluation of sintered metal filters indicated a lack of sufficient process design data to ensure trouble free operation. Subsequence pilot scale testing was performed with flyash as the test particulate. The test results showed that the sintered metal filters can have an efficiency greater than 0.9999999 for the specific test conditions used. Stable pressure drop characteristics were observed in pulsed and reversed flow blowback modes of operation. Over 4900 hours of operation were obtained with operating conditions ranging up to approximately 90 C and 24 vol % water vapor in the gas stream.

  5. Predicting high harmonic ion cyclotron heating efficiency in Tokamak plasmas.

    PubMed

    Green, D L; Berry, L A; Chen, G; Ryan, P M; Canik, J M; Jaeger, E F

    2011-09-30

    Observations of improved radio frequency (rf) heating efficiency in ITER relevant high-confinement (H-)mode plasmas on the National Spherical Tokamak Experiment are investigated by whole-device linear simulation. The steady-state rf electric field is calculated for various antenna spectra and the results examined for characteristics that correlate with observations of improved or reduced rf heating efficiency. We find that launching toroidal wave numbers that give fast-wave propagation in the scrape-off plasma excites large amplitude (∼kV m(-1)) coaxial standing modes between the confined plasma density pedestal and conducting vessel wall. Qualitative comparison with measurements of the stored plasma energy suggests that these modes are a probable cause of degraded heating efficiency.

  6. High-Efficiency Harmonically Terminated Diode and Transistor Rectifiers

    SciTech Connect

    Roberg, M; Reveyrand, T; Ramos, I; Falkenstein, EA; Popovic, Z

    2012-12-01

    This paper presents a theoretical analysis of harmonically terminated high-efficiency power rectifiers and experimental validation on a class-C single Schottky-diode rectifier and a class-F-1 GaN transistor rectifier. The theory is based on a Fourier analysis of current and voltage waveforms, which arise across the rectifying element when different harmonic terminations are presented at its terminals. An analogy to harmonically terminated power amplifier (PA) theory is discussed. From the analysis, one can obtain an optimal value for the dc load given the RF circuit design. An upper limit on rectifier efficiency is derived for each case as a function of the device on-resistance. Measured results from fundamental frequency source-pull measurement of a Schottky diode rectifier with short-circuit terminations at the second and third harmonics are presented. A maximal device rectification efficiency of 72.8% at 2.45 GHz matches the theoretical prediction. A 2.14-GHz GaN HEMT rectifier is designed based on a class-F-1 PA. The gate of the transistor is terminated in an optimal impedance for self-synchronous rectification. Measurements of conversion efficiency and output dc voltage for varying gate RF impedance, dc load, and gate bias are shown with varying input RF power at the drain. The rectifier demonstrates an efficiency of 85% for a 10-W input RF power at the transistor drain with a dc voltage of 30 V across a 98-Omega resistor.

  7. Advanced Klystrons for High Efficiency Accelerator Systems - Final Report

    SciTech Connect

    Read, Michael; Ives, Robert Lawrence

    2014-03-26

    This program explored tailoring of RF pulses used to drive accelerator cavities. Simulations indicated that properly shaping the pulse risetime to match accelerator cavity characteristics reduced reflected power and increased total efficiency. Tailoring the pulse requires a high power, gridded, klystron to shape the risetime while also controlling the beam current. The Phase I program generated a preliminary design of a gridded electron gun for a klystron producing 5-10 MW of RF power. This required design of a segmented cathode using Controlled Porosity Reservoir cathodes to limit power deposition on the grid. The program was successful in computationally designing a gun producing a high quality electron beam with grid control. Additional analysis of pulse tailoring indicated that technique would only be useful for cavity drive pulses that were less than approximately 2-3 times the risetime. Otherwise, the efficiency gained during the risetime of the pulse became insignificant when considering the efficiency over the entire pulse. Consequently, it was determined that a Phase II program would not provide sufficient return to justify the cost. Never the less, other applications for a high power gridded gun are currently being pursued. This klystron, for example, would facilitate development inverse Comptom x-ray sources by providing a high repetition rate (10 -100 kHz) RF source.

  8. High-efficiency nanostructured window GaAs solar cells.

    PubMed

    Liang, Dong; Kang, Yangsen; Huo, Yijie; Chen, Yusi; Cui, Yi; Harris, James S

    2013-10-01

    Nanostructures have been widely used in solar cells due to their extraordinary optical properties. In most nanostructured cells, high short circuit current has been obtained due to enhanced light absorption. However, most of them suffer from lowered open circuit voltage and fill factor. One of the main challenges is formation of good junction and electrical contact. In particular, nanostructures in GaAs only have shown unsatisfactory performances (below 5% in energy conversion efficiency) which cannot match their ideal material properties and the record photovoltaic performances in industry. Here we demonstrate a completely new design for nanostructured solar cells that combines nanostructured window layer, metal mesa bar contact with small area, high quality planar junction. In this way, we not only keep the advanced optical properties of nanostructures such as broadband and wide angle antireflection, but also minimize its negative impact on electrical properties. High light absorption, efficient carrier collection, leakage elimination, and good lateral conductance can be simultaneously obtained. A nanostructured window cell using GaAs junction and AlGaAs nanocone window demonstrates 17% energy conversion efficiency and 0.982 V high open circuit voltage.

  9. Scattering Efficiency of High-Voltage Tethers in Space

    NASA Technical Reports Server (NTRS)

    Krivorutsky, E. N.; Khazanov, G. V.; Gamayunov, K. V.; Avanov, L. A.

    2005-01-01

    Several concepts have been proposed to remediate the effect of artificial Radiation Belts (RB) in Space Plasma. Among them is the high-voltage electrostatic tether remediation technique. Preliminary analysis that has been carried out later by several groups showed, that this technique could be very efficient and is able to control relativistic electron energies of artificial RB population. The relativistic electron population is the one of the most important topic of US Space Weather studies and very dangerous to many civilian and military space assets, it is also important to study some fundamentals of scattering efficiency of high-voltage tethers in space plasma. There are several fundamental issues that should be examined in order to validate high-voltage tether artificial RB remediation concept. The most critical among them are: power consumption, the size and stability of the plasma sheath around the tether, and scattering efficiency of this high-voltage system that is ultimately related with the plasma sheath size. This study would be focused on the scattering process itself and artificial RB remediation assuming that power consumption and the size of the plasma sheath are known.

  10. Lightweight High Efficiency Electric Motors for Space Applications

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.; Tyler, Tony R.; Piper, P. J.

    2011-01-01

    Lightweight high efficiency electric motors are needed across a wide range of space applications from - thrust vector actuator control for launch and flight applications to - general vehicle, base camp habitat and experiment control for various mechanisms to - robotics for various stationary and mobile space exploration missions. QM Power?s Parallel Path Magnetic Technology Motors have slowly proven themselves to be a leading motor technology in this area; winning a NASA Phase II for "Lightweight High Efficiency Electric Motors and Actuators for Low Temperature Mobility and Robotics Applications" a US Army Phase II SBIR for "Improved Robot Actuator Motors for Medical Applications", an NSF Phase II SBIR for "Novel Low-Cost Electric Motors for Variable Speed Applications" and a DOE SBIR Phase I for "High Efficiency Commercial Refrigeration Motors" Parallel Path Magnetic Technology obtains the benefits of using permanent magnets while minimizing the historical trade-offs/limitations found in conventional permanent magnet designs. The resulting devices are smaller, lower weight, lower cost and have higher efficiency than competitive permanent magnet and non-permanent magnet designs. QM Power?s motors have been extensively tested and successfully validated by multiple commercial and aerospace customers and partners as Boeing Research and Technology. Prototypes have been made between 0.1 and 10 HP. They are also in the process of scaling motors to over 100kW with their development partners. In this paper, Parallel Path Magnetic Technology Motors will be discussed; specifically addressing their higher efficiency, higher power density, lighter weight, smaller physical size, higher low end torque, wider power zone, cooler temperatures, and greater reliability with lower cost and significant environment benefit for the same peak output power compared to typically motors. A further discussion on the inherent redundancy of these motors for space applications will be provided.

  11. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    SciTech Connect

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  12. High efficiency GaAs/Ge monolithic tandem solar cells

    NASA Technical Reports Server (NTRS)

    Tobin, S. P.; Vernon, S. M.; Bajgar, C.; Haven, V. E.; Geoffroy, L. M.; Sanfacon, M. M.; Lillington, D. R.; Hart, R. E., Jr.

    1988-01-01

    Two-terminal monolithic tandem cells consisting of a GaAs solar cell grown epitaxially on a Ge solar cell substrate are very attractive for space applications. Tandem cells of GaAs grown by metal-organic chemical vapor deposition on thin Ge were investigated to address both higher efficiency and reduced weight. Two materials growth issues associated with this heteroepitaxial system, autodoping of the GaAs layers by Ge and diffusion of Ga and As into the Ge substrate, were addressed. The latter appears to result in information of an unintentional p-n junction in the Ge. Early simulator measurements gave efficiencies as high as 21.7 percent for 4 cm2 GaAs/Ge cells, but recent high-altitude testing has given efficiencies of 18 percent. Sources of errors in simulator measurements of two-terminal tandem cells are discussed. A limiting efficiency of about 36 percent for the tandem cell at AMO was calculated. Ways to improve the performance of present cells, primarily by increasing the Isc and Voc of the Ge cell, are proposed.

  13. Efficiency Analysis of a High-Specific Impulse Hall Thruster

    NASA Technical Reports Server (NTRS)

    Jacobson, David (Technical Monitor); Hofer, Richard R.; Gallimore, Alec D.

    2004-01-01

    Performance and plasma measurements of the high-specific impulse NASA-173Mv2 Hall thruster were analyzed using a phenomenological performance model that accounts for a partially-ionized plasma containing multiply-charged ions. Between discharge voltages of 300 to 900 V, the results showed that although the net decrease of efficiency due to multiply-charged ions was only 1.5 to 3.0 percent, the effects of multiply-charged ions on the ion and electron currents could not be neglected. Between 300 to 900 V, the increase of the discharge current was attributed to the increasing fraction of multiply-charged ions, while the maximum deviation of the electron current from its average value was only +5/-14 percent. These findings revealed how efficient operation at high-specific impulse was enabled through the regulation of the electron current with the applied magnetic field. Between 300 to 900 V, the voltage utilization ranged from 89 to 97 percent, the mass utilization from 86 to 90 percent, and the current utilization from 77 to 81 percent. Therefore, the anode efficiency was largely determined by the current utilization. The electron Hall parameter was nearly constant with voltage, decreasing from an average of 210 at 300 V to an average of 160 between 400 to 900 V. These results confirmed our claim that efficient operation can be achieved only over a limited range of Hall parameters.

  14. Wide-Band, High-Quantum-Efficiency Photodetector

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah; Wilson, Daniel; Stern, Jeffrey

    2007-01-01

    A design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of optiA design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of opti-

  15. Laser doping for high-efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Jäger, Ulrich; Wolf, Andreas; Steinhauser, Bernd; Benick, Jan; Nekarda, Jan; Preu, Ralf

    2012-10-01

    Selective laser doping is a versatile tool for the local adaption of doping profiles in a silicon substrate. By adjusting the laser fluence as well as the pulse width the maximum melt depth in the silicon can be controlled. Longer pulses lead to lower temperatures in the material and can help to enlarge the process window as ablation sets in at higher fluencies. For the fabrication of highly efficient silicon solar cells, laser doping can be used for efficiency improvement and process simplification. In passivated emitter and rear cells (PERC), selective laser doping can be used for selective emitter formation. Employing such a process, an efficiency boost of Δ ƞ= 0.4%abs was observed on commercial Cz-Si material. Laser doping was also used for process simplification for the fabrication of locally doped point contacts at the rear of a solar cell. A simple approach employing a doped passivation layer and a laser doping process allows for efficiencies beyond 22% on high quality n-type silicon.

  16. High-efficiency solar cell and method for fabrication

    DOEpatents

    Hou, Hong Q.; Reinhardt, Kitt C.

    1999-01-01

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

  17. High-efficiency solar cell and method for fabrication

    DOEpatents

    Hou, H.Q.; Reinhardt, K.C.

    1999-08-31

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

  18. High voltage generator circuit with low power and high efficiency applied in EEPROM

    NASA Astrophysics Data System (ADS)

    Yan, Liu; Shilin, Zhang; Yiqiang, Zhao

    2012-06-01

    This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory (EEPROM). The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique. The high efficiency is dependent on the zero threshold voltage (Vth) MOSFET and the charge transfer switch (CTS) charge pump. The proposed high voltage generator circuit has been implemented in a 0.35 μm EEPROM CMOS process. Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48 μW and a higher pumping efficiency (83.3%) than previously reported circuits. This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation.

  19. High-efficiency silicon heterojunction solar cells: Status and perspectives

    SciTech Connect

    De Wolf, S.

    2015-04-27

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on n-type wafers, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short- wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long-wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metalisation grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical transport requirements. The

  20. High-efficiency silicon heterojunction solar cells: Status and perspectives

    SciTech Connect

    De Wolf, S.; Geissbuehler, J.; Loper, P.; Martin de Nicholas, S.; Seif, J.; Tomasi, A.; Ballif, C.

    2015-05-11

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on both-sides contacted n-type cells, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short-wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long- wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metallization grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical

  1. The high efficiency steel filters for nuclear air cleaning

    SciTech Connect

    Bergman, W.; Larsen, G.; Lopez, R.; Williams, K.; Violet, C.

    1990-08-01

    We have, in cooperation with industry, developed high-efficiency filters made from sintered stainless-steel fibers for use in several air-cleaning applications in the nuclear industry. These filters were developed to overcome the failure modes in present high-efficiency particulate air (HEPA) filters. HEPA filters are made from glass paper and glue, and they may fail when they get hot or wet and when they are overpressured. In developing our steel filters, we first evaluated the commercially available stainless-steel filter media made from sintered powder and sintered fiber. The sintered-fiber media performed much better than sintered-powder media, and the best media had the smallest fiber diameter. Using the best media, we then built prototype filters for venting compressed gases and evaluated them in our automated filter tester. 12 refs., 20 figs.

  2. Blanket options for high-efficiency fusion power

    SciTech Connect

    Usher, J L; Lazareth, O W; Fillo, J A; Horn, F L; Powell, J R

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500/sup 0/C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO/sub 2/ interior (cooled by argon) utilizing Li/sub 2/O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230/sup 0/C leading to an overall efficiency estimate of 55 to 60% for this reference case.

  3. Highly efficient reflective Dammann grating with a triangular structure.

    PubMed

    Wang, Jin; Zhou, Changhe; Ma, Jianyong; Zong, Yonghong; Jia, Wei

    2016-07-01

    A highly efficient reflective Dammann grating with a triangular structure operating at 1064 nm wavelength under normal incidence for TE polarization is designed and fabricated. Rigorous coupled wave analysis and particle swarm optimization algorithms are adopted to design and analyze the properties. The triangular reflective grating could cancel the 0th order, and the mechanism is clarified by the simplified modal method. The gratings are fabricated by direct laser writing lithography. The diffraction efficiency of fabricated grating is more than 86% at 1064 nm wavelength (97.6% in theory). This reflective grating should be a useful optical element in the field of high-power lasers as well as other reflective applications. PMID:27409211

  4. High Energy-Efficiency Retrofits to Baltimore's Row Homes

    SciTech Connect

    Chalk, J.; Johnson, A.L.; Lipscomb, L.; Wendt, R.

    1999-04-19

    The purpose of the research project is to develop high-perfommnce, energy-eflicient retrofits of existing row homes in Baltimore, Maryland. These efficiency enhancements are to optimize building envelope improvements, mechanical equipment improvements and operational improvements to the highest cost-effective level. Furthermore, this project is to investigate and demonstrate the impact of high-performance energy-efficiency retrofit improvements on row homes in the Historic East area of Baltimore. Three homes awaiting renovation are planned to receive building envelope, mechanical system, and electrical system improvements that will improve their energy petiormance. An incremental additional cost ceiling of $4000 for the energy eftlciency improvements, beyond those normally installed, has been set by the project.

  5. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Greggi, J.; Rai-Choudhury, P.

    1986-01-01

    Work is reported aimed at identifying and reducing sources of carrier recombination both in the starting web silicon material and in the processed cells. Cross-sectional transmission electron microscopy measurements of several web cells were made and analyzed. The effect of the heavily twinned region on cell efficiency was modeled, and the modeling results compared to measured values for processed cells. The effects of low energy, high dose hydrogen ion implantation on cell efficiency and diffusion length were examined. Cells were fabricated from web silicon known to have a high diffusion length, with a new double layer antireflection coating being applied to these cells. A new contact system, to be used with oxide passivated cells and which greatly reduces the area of contact between metal and silicon, was designed. The application of DLTS measurements to beveled samples was further investigated.

  6. High efficiency thin-film GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Zwerdling, S.; Wang, K. L.; Yeh, Y. C. M.

    1981-01-01

    The paper demonstrates the feasibility of producing high-efficiency GaAs solar cells with high power-to-weight ratios by organic metallic chemical vapor deposition (OM-CVD) growth of thin epi-layers on suitable substrates. An AM1 conversion efficiency of 18% (14% AM0), or 17% (13% AM0) with a 5% grid coverage is achieved for a single-crystal GaAs n(+)/p cell grown by OM-CVD on a Ge wafer. Thin GaAs epi-layers OM-CVD grown can be fabricated with good crystallographic quality using a Si-substrate on which a thin Ge epi-interlayer is first deposited by CVD from GeH4 and processed for improved surface morphology

  7. High-efficiency GaAs concentrator space cells

    NASA Technical Reports Server (NTRS)

    Werthen, J. G.; Virshup, G. F.; Macmillan, H. F.; Ford, C. W.; Hamaker, H. C.

    1987-01-01

    High efficiency Al sub x Ga sub 1-x As/GaAs heteroface solar concentrator cells have been developed for space applications. The cells, which were grown using metalorganic chemical vapor deposition (MOCVD), have been fabricated in both the p-n and n-p configurations. Magnesium and zinc are used as the p-type dopants, and Se is used as the n-type dopant. The space cells, which are designed for use in a Cassegrainian concentrator operating at 100 suns, AMO, have a circular illuminated area 4 mm in diameter on a 5 mm by 5 mm cell. These cells have exhibited flash-tested efficiencies as high as 23.6 percent at 28 C and 21.6 percent at 80 C.

  8. Highly Efficient Perovskite Solar Cells with Tunable Structural Color

    PubMed Central

    2015-01-01

    The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the color gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here, we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tunable color across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment and encourages design of sustainable colorful buildings and iridescent electric vehicles as future power generation sources. PMID:25650872

  9. High resolution PET breast imager with improved detection efficiency

    DOEpatents

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  10. Modelling and fabrication of high-efficiency silicon solar cells

    SciTech Connect

    Rohatgi, A.; Smith, A.W.; Salami, J.

    1991-10-01

    This report covers the research conducted on modelling and development of high-efficiency silicon solar cells during the period May 1989 to August 1990. First, considerable effort was devoted toward developing a ray-tracing program for the photovoltaic community to quantify and optimize surface texturing for solar cells. Second, attempts were made to develop a hydrodynamic model for device simulation. Such a model is somewhat slower than drift-diffusion type models like PC-1D, but it can account for more physical phenomena in the device, such as hot carrier effects, temperature gradients, thermal diffusion, and lattice heat flow. In addition, Fermi-Dirac statistics have been incorporated into the model to deal with heavy doping effects more accurately. Third and final component of the research includes development of silicon cell fabrication capabilities and fabrication of high-efficiency silicon cells. 84 refs., 46 figs., 10 tabs.

  11. Highly efficient perovskite solar cells with tunable structural color.

    PubMed

    Zhang, Wei; Anaya, Miguel; Lozano, Gabriel; Calvo, Mauricio E; Johnston, Michael B; Míguez, Hernán; Snaith, Henry J

    2015-03-11

    The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the color gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here, we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tunable color across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment and encourages design of sustainable colorful buildings and iridescent electric vehicles as future power generation sources.

  12. High-efficiency multi-colored photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Hovel, H. J.

    1983-09-01

    The objective of this project was to explore tandem/solar cell structures and methods to produce them. One was made with amorphous Si on crystalline Si. Other combinations of well-established materials such as Ge, Si, GaAs, and GaAiAs have a potential of producing solar cell efficiency in a high range (30 to 50%). The theoretical performances of several material combinations were computed under single load operation, and the effects of series and shunt resistances are shown. Computations also were made of optimal optical coatings and ohmic grid designs that are needed to construct high efficiency working devices. The epitaxial growth of GaAs, Ge AlAs and Si are then described for use in several configurations. Additionally, measurements of individual solar cells and tandem solar cells at several suns intensity (starting at one sun) are described.

  13. Development of an improved high efficiency thin silicon solar cell

    NASA Technical Reports Server (NTRS)

    Wrigley, C.; Storti, G.

    1978-01-01

    Efforts were directed towards investigating means of producing more effective high-low junctions at the back of the cell. Cells with output power up to 77 mW (AM0 efficiency of 14.2 percent) were fabricated. Some reflectivity studies were also made. Deliveries of 2 cm x 2 cm experimental cells included a number having AM0 outputs greater than 70 mW.

  14. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    SciTech Connect

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  15. HEPA (high efficiency particulate air) filter optimization/implementation

    SciTech Connect

    Nenni, J.A.

    1988-02-10

    Prefilters were installed in high efficiency particularly air (HEPA) filter plenums at the Rocky Flats Plant. It was determined that prefiltration systems would extend the life of first-stage HEPA filters and reduce the amount of HEPA filter waste in the transuranic waste category. A remote handling system was designed to remove prefilters without entry into the plenum to reduce secondary waste and decrease exposure to Filter Technicians. 3 figs., 4 tabs.

  16. Chemical beam epitaxy for high efficiency photovoltaic devices

    NASA Technical Reports Server (NTRS)

    Bensaoula, A.; Freundlich, A.; Vilela, M. F.; Medelci, N.; Renaud, P.

    1994-01-01

    InP-based multijunction tandem solar cells show great promise for the conversion efficiency (eta) and high radiation resistance. InP and its related ternary and quanternary compound semiconductors such as InGaAs and InGaAsP offer desirable combinations for energy bandgap values which are very suitable for multijunction tandem solar cell applications. The monolithically integrated InP/In(0.53)Ga(0.47)As tandem solar cells are expected to reach efficiencies above 30 percent. Wanlass, et.al., have reported AMO efficiencies as high as 20.1% for two terminal cells fabricated using atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). The main limitations in their technique are first related to the degradation of the intercell ohmic contact (IOC), in this case the In(0.53)Ga(0.47)As tunnel junction during the growth of the top InP subcell structure, and second to the current matching, often limited by the In(0.53)Ga(0.47)As bottom subcell. Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450 C - 530 C). In a recent report it was shown that cost-wise CBE is a breakthrough technology for photovoltaic (PV) solar energy progress in the energy conversion efficiency of InP-based solar cells fabricated using chemical beam epitaxy. This communication summarizes our recent results on PV devices and demonstrates the strength of this new technology.

  17. Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion

    NASA Astrophysics Data System (ADS)

    Kelly, Nelson A.; Gibson, Thomas L.

    There are an increasing number of vehicle choices available that utilize batteries and electric motors to reduce tailpipe emissions and increase fuel economy. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe environmental impact, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. In this report we will demonstrate the solar-powered charging of the high-voltage nickel-metal hydride (NiMH) battery used in the GM 2-mode hybrid system. In previous studies we have used low-voltage solar modules to produce hydrogen via the electrolysis of water and to directly charge lithium-ion battery modules. Our strategy in the present work was to boost low-voltage PV voltage to over 300 V using DC-DC converters in order to charge the high-voltage NiMH battery, and to regulate the battery charging using software to program the electronic control unit supplied with the battery pack. A protocol for high-voltage battery charging was developed, and the solar to battery charging efficiency was measured under a variety of conditions. We believe this is the first time such high-voltage batteries have been charged using solar energy in order to prove the concept of efficient, solar-powered charging for battery-electric vehicles.

  18. Flexible, highly efficient all-polymer solar cells

    PubMed Central

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J.

    2015-01-01

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices. PMID:26449658

  19. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  20. 4-GHz high-efficiency broadband FET power amplifiers

    NASA Astrophysics Data System (ADS)

    Chou, S.; Chang, C.

    1982-11-01

    The development and performance of a 4-GHz high-efficiency broadband FET power amplifier module for use in communications satellite transponders is discussed. The design, which is based on the parameters of a commercially available 7.2-mm multicell FET device, was optimized by the use of a CAD program, with broader bandwidth achieved by the addition of two open stubs to the input matching circuit. Six single-ended amplifier modules have been fabricated, tuned and tested, two being high-gain, 17.5% bandwidth designs and four being lower-gain, 25% bandwidth designs. The higher-gain modules, with a 0.5-dB bandwidth of 700 MHz (3.6 to 4.3 GHz) show a 6-dB gain and 3.23-W output power at the maximum efficiency of 48.6%, while broadband modules (0.5-dB bandwidth 900 MHz) deliver 5-W RF power at the maximum efficiency of 36%. The high-performance amplifiers may thus be used in satellite solid-state power amplifiers as replacements for traveling wave tubes.

  1. High efficiency neutron sensitive amorphous silicon pixel detectors

    SciTech Connect

    Mireshghi, A.; Cho, G.; Drewery, J.S.; Hong, W.S.; Jing, T.; Lee, H.; Kaplan, S.N.; Perez-Mendez, V.

    1993-11-01

    A multi-layer a-Si:H based thermal neutron detector was designed, fabricated and simulated by Monte Carlo method. The detector consists of two PECVD deposited a-Si:H pin detectors interfaced with coated layers of Gd, as a thermal neutron converter. Simulation results indicate that a detector consisting of 2 Gd films with thicknesses of 2 and 4 {mu}m, sandwiched properly with two layers of sufficiently thick ({approximately}30{mu}m) amorphous silicon diodes, has the optimum parameters. The detectors have an intrinsic efficiency of about 42% at a threshold setting of 7000 electrons, with an expected average signal size of {approximately}12000 electrons which is well above the noise. This efficiency will be further increased to nearly 63%, if we use Gd with 50% enrichment in {sup 157}Gd. We can fabricate position sensitive detectors with spatial resolution of 300 {mu}m with gamma sensitivity of {approximately}1 {times} 10{sup {minus}5}. These detectors are highly radiation resistant and are good candidates for use in various application, where high efficiency, high resolution, gamma insensitive position sensitive neutron detectors are needed.

  2. Flexible, highly efficient all-polymer solar cells.

    PubMed

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J

    2015-01-01

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices.

  3. High efficiency of collisional Penrose process requires heavy particle production

    NASA Astrophysics Data System (ADS)

    Ogasawara, Kota; Harada, Tomohiro; Miyamoto, Umpei

    2016-02-01

    The center-of-mass energy of two particles can become arbitrarily large if they collide near the event horizon of an extremal Kerr black hole, which is called the Bañados-Silk-West effect. We consider such a high-energy collision of two particles which started from infinity and follow geodesics in the equatorial plane and investigate the energy extraction from such a high-energy particle collision and the production of particles in the equatorial plane. We analytically show that, on the one hand, if the produced particles are as massive as the colliding particles, the energy-extraction efficiency is bounded by 2.19 approximately. On the other hand, if a very massive particle is produced as a result of the high-energy collision, which has negative energy and necessarily falls into the black hole, the upper limit of the energy-extraction efficiency is increased to (2 +√{3 })2≃13.9 . Thus, higher efficiency of the energy extraction, which is typically as large as 10, provides strong evidence for the production of a heavy particle.

  4. Flexible, highly efficient all-polymer solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J.

    2015-10-01

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices.

  5. Efficient Hole-Transporting Materials with Triazole Core for High-Efficiency Perovskite Solar Cells.

    PubMed

    Choi, Hyeju; Jo, Hyeonjun; Paek, Sanghyun; Koh, Kyungkuk; Ko, Haye Min; Lee, Jae Kwan; Ko, Jaejung

    2016-02-18

    Efficient hole-transporting materials (HTMs), TAZ-[MeOTPA]2 and TAZ-[MeOTPATh]2 incorporating two electron-rich diphenylamino side arms, through direct linkage or thiophen bridges, respectively, on the C3- and C5-positions of a 4-phenyl-1,2,4-triazole core were synthesized. These synthetic HTMs with donor-acceptor type molecular structures exhibited effective intramolecular charge transfer for improving the hole-transporting properties. The structural modification of HTMs by thiophene bridging might increase intermolecular π-π stacking in the solid state and afford a better spectral response because of their increased π-conjugation length. Perovskite-based cells using TAZ-[MeOTPA]2 and TAZ-[MeOTPATh]2 as HTMs afforded high power conversion efficiencies of 10.9 % and 14.4 %, respectively, showing a photovoltaic performance comparable to that obtained using spiro-OMeTAD. These synthetically simple and inexpensive HTMs hold promise for replacing the more expensive spiro-OMeTAD in high-efficiency perovskite solar cells. PMID:26573775

  6. High-Efficiency Absorber for Damping the Transverse Wake Fields

    SciTech Connect

    Novokhatski, A.; Seeman, J.; Weathersby, S.; /SLAC

    2007-02-28

    Transverse wake fields generated by intense beams may propagate long distances in the vacuum chamber and dissipate power in different shielded elements such as bellows, vacuum valves or vacuum pumps. Induced heating in these elements may be high enough to deteriorate vacuum conditions. We have developed a broadband water-cooled bellows-absorber to capture and damp these harmful transverse fields without impacting the longitudinal beam impedance. Experimental results at the PEP-II SLAC B-factory demonstrate high efficiency of this device. This absorber may be useful in other machines like synchrotron light sources or International Linear Collider.

  7. High-efficiency absorber for damping transverse wakefields

    NASA Astrophysics Data System (ADS)

    Novokhatski, A.; Seeman, J.; Weathersby, S.

    2007-04-01

    Transverse wakefields generated by intense beams may propagate long distances in a vacuum chamber and dissipate power in different shielded elements such as bellows, vacuum valves, or vacuum pumps. Induced heating in these elements may be high enough to deteriorate vacuum conditions. We have developed a broadband water-cooled bellows absorber to capture and damp these harmful transverse fields without impacting the longitudinal beam impedance. Experimental results at the PEP-II SLAC B-factory demonstrate a high efficiency for this device. This absorber may be useful in super B-factories, the International Linear Collider, the Large Hadron Collider, or synchrotron light sources.

  8. High efficiency, low cost thin GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1982-01-01

    The feasibility of fabricating space-resistant, high efficiency, light-weight, low-cost GaAs shallow-homojunction solar cells for space application is demonstrated. This program addressed the optimal preparation of ultrathin GaAs single-crystal layers by AsCl3-GaAs-H2 and OMCVD process. Considerable progress has been made in both areas. Detailed studies on the AsCl3 process showed high-quality GaAs thin layers can be routinely grown. Later overgrowth of GaAs by OMCVD has been also observed and thin FaAs films were obtained from this process.

  9. High efficiency CIP 10-I personal inhalable aerosol sampler

    NASA Astrophysics Data System (ADS)

    Görner, P.; Wrobel, R.; Simon, X.

    2009-02-01

    The CIP 10 personal aerosol sampler was first developed by Courbon for sampling the respirable fraction of mining dust. This respirable aerosol sampler was further improved by Fabries, then selectors for sampling thoracic and inhalable aerosols were designed. Kenny et al. evaluated the particle-size dependent sampling efficiency of the inhalable version in a large-scale wind tunnel using a life-size dummy. The authors found that the overall sampling efficiency decreases more rapidly than the CEN-ISO-ACGIH target efficiency curve. Görner and Witschger measured the aspiration efficiency of the CIP 10 omni-directional inlet. They found that the aspiration efficiency was high enough for inhalable aerosol sampling. This result led to the conclusion that the low sampling efficiency is due to some internal losses of the aspirated particles before they reach the final sampling stage, namely the CIP 10 rotating filter. Based on the assumption that the inhalable particles are selected at selector aspiration level, an experimental research project was conducted to improve particle transmission to the collection stage of the sampler. Two different inhalable selectors were designed by Görner and tested in a laboratory wind tunnel. The transmission efficiency of both models was measured by Roger following an experimental protocol described by Witschger. The T-shaped air flow circuit was finally adopted to draw the aspirated particles into the final collection stage of the CIP 10. Actually, in this selector, the almost horizontally aspirated particles should be conducted vertically to the rotating cup. In two previous prototypes, particles could be deposited in certain places by inertia (where the aerosol was forced to deviate drastically) or by sedimentation (where the aerosol decelerated). The aerodynamic behaviour of the adopted solution causes the particles to accelerate radially between two horizontal plates before they enter a vertical tube. This acceleration avoids the

  10. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications.

    PubMed

    Yassine, Omar; Zaher, Amir; Li, Er Qiang; Alfadhel, Ahmed; Perez, Jose E; Kavaldzhiev, Mincho; Contreras, Maria F; Thoroddsen, Sigurdur T; Khashab, Niveen M; Kosel, Jurgen

    2016-01-01

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads. PMID:27335342

  11. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    NASA Astrophysics Data System (ADS)

    Yassine, Omar; Zaher, Amir; Li, Er Qiang; Alfadhel, Ahmed; Perez, Jose E.; Kavaldzhiev, Mincho; Contreras, Maria F.; Thoroddsen, Sigurdur T.; Khashab, Niveen M.; Kosel, Jurgen

    2016-06-01

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.

  12. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    PubMed Central

    Yassine, Omar; Zaher, Amir; Li, Er Qiang; Alfadhel, Ahmed; Perez, Jose E.; Kavaldzhiev, Mincho; Contreras, Maria F.; Thoroddsen, Sigurdur T.; Khashab, Niveen M.; Kosel, Jurgen

    2016-01-01

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads. PMID:27335342

  13. High efficiency, multiterawatt x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Emma, C.; Fang, K.; Wu, J.; Pellegrini, C.

    2016-02-01

    In this paper we present undulator magnet tapering methods for obtaining high efficiency and multiterawatt peak powers in x-ray free electron lasers (XFELs), a key requirement for enabling 3D atomic resolution single molecule imaging and nonlinear x-ray science. The peak power and efficiency of tapered XFELs is sensitive to time dependent effects, like synchrotron sideband growth. To analyze this dependence in detail we perform a comparative numerical optimization for the undulator magnetic field tapering profile including and intentionally disabling these effects. We show that the solution for the magnetic field taper profile obtained from time independent optimization does not yield the highest extraction efficiency when time dependent effects are included. Our comparative optimization is performed for a novel undulator designed specifically to obtain TW power x-ray pulses in the shortest distance: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. We determine that after a fully time dependent optimization of a 100 m long Linac coherent light source-like XFEL we can obtain a maximum efficiency of 7%, corresponding to 3.7 TW peak radiation power. Possible methods to suppress the synchrotron sidebands, and further enhance the FEL peak power, up to about 6 TW by increasing the seed power and reducing the electron beam energy spread, are also discussed.

  14. In-Plant Testing of High-Efficiency Hydraulic Separators

    SciTech Connect

    G. H. Luttrell; R. Q. Honaker; R. C. Bratton; T. C. Westerfield; J. N. Kohmuench

    2006-06-30

    Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

  15. IN-PLANT TESTING OF HIGH-EFFICIENCY HYDRAULIC SEPARATORS

    SciTech Connect

    G.H. Luttrell; R.Q. Honaker; R.C. Bratton; T.C. Westerfield; J.N. Kohmuench

    2006-05-22

    Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

  16. High Efficiency CVD Graphene-lead (Pb) Cooper Pair Splitter

    PubMed Central

    Borzenets, I. V.; Shimazaki, Y.; Jones, G. F.; Craciun, M. F.; Russo, S.; Yamamoto, M.; Tarucha, S.

    2016-01-01

    Generation and manipulation of quantum entangled electrons is an important concept in quantum mechanics, and necessary for advances in quantum information processing; but not yet established in solid state systems. A promising device is a superconductor-two quantum dots Cooper pair splitter. Early nanowire based devices, while efficient, are limited in scalability and further electron manipulation. We demonstrate an optimized, high efficiency, CVD grown graphene-based Cooper pair splitter. Our device is designed to induce superconductivity in graphene via the proximity effect, resulting in both a large superconducting gap Δ = 0.5 meV, and coherence length ξ = 200 nm. The flat nature of the device lowers parasitic capacitance, increasing charging energy EC. Our design also eases geometric restrictions and minimizes output channel separation. As a result we measure a visibility of up to 86% and a splitting efficiency of up to 62%. This will pave the way towards near unity efficiencies, long distance splitting, and post-splitting electron manipulation. PMID:26971450

  17. High Efficiency CVD Graphene-lead (Pb) Cooper Pair Splitter.

    PubMed

    Borzenets, I V; Shimazaki, Y; Jones, G F; Craciun, M F; Russo, S; Yamamoto, M; Tarucha, S

    2016-01-01

    Generation and manipulation of quantum entangled electrons is an important concept in quantum mechanics, and necessary for advances in quantum information processing; but not yet established in solid state systems. A promising device is a superconductor-two quantum dots Cooper pair splitter. Early nanowire based devices, while efficient, are limited in scalability and further electron manipulation. We demonstrate an optimized, high efficiency, CVD grown graphene-based Cooper pair splitter. Our device is designed to induce superconductivity in graphene via the proximity effect, resulting in both a large superconducting gap Δ = 0.5 meV, and coherence length ξ = 200 nm. The flat nature of the device lowers parasitic capacitance, increasing charging energy EC. Our design also eases geometric restrictions and minimizes output channel separation. As a result we measure a visibility of up to 86% and a splitting efficiency of up to 62%. This will pave the way towards near unity efficiencies, long distance splitting, and post-splitting electron manipulation. PMID:26971450

  18. High Efficiency CVD Graphene-lead (Pb) Cooper Pair Splitter

    NASA Astrophysics Data System (ADS)

    Borzenets, I. V.; Shimazaki, Y.; Jones, G. F.; Craciun, M. F.; Russo, S.; Yamamoto, M.; Tarucha, S.

    2016-03-01

    Generation and manipulation of quantum entangled electrons is an important concept in quantum mechanics, and necessary for advances in quantum information processing; but not yet established in solid state systems. A promising device is a superconductor-two quantum dots Cooper pair splitter. Early nanowire based devices, while efficient, are limited in scalability and further electron manipulation. We demonstrate an optimized, high efficiency, CVD grown graphene-based Cooper pair splitter. Our device is designed to induce superconductivity in graphene via the proximity effect, resulting in both a large superconducting gap Δ = 0.5 meV, and coherence length ξ = 200 nm. The flat nature of the device lowers parasitic capacitance, increasing charging energy EC. Our design also eases geometric restrictions and minimizes output channel separation. As a result we measure a visibility of up to 86% and a splitting efficiency of up to 62%. This will pave the way towards near unity efficiencies, long distance splitting, and post-splitting electron manipulation.

  19. Evaluation of Parameters for High Efficiency Transformation of Acinetobacter baumannii

    PubMed Central

    Yildirim, Suleyman; Thompson, Mitchell G.; Jacobs, Anna C.; Zurawski, Daniel V.; Kirkup, Benjamin C.

    2016-01-01

    Acinetobacter baumannii is an emerging, nosocomial pathogen that is poorly characterized due to a paucity of genetic tools and methods. While whole genome sequence data from several epidemic and environmental strains have recently become available, the functional characterization of genes is significantly lagging. Efficient transformation is one of the first steps to develop molecular tools that can be used to address these shortcomings. Here we report parameters allowing high efficiency transformation of A. baumannii. Using a multi-factorial experimental design we found that growth phase, voltage, and resistance all significantly contribute to transformation efficiency. The highest efficiency (4.3 × 108 Transformants/μg DNA) was obtained at the stationary growth phase of the bacterium (OD 6.0) using 25 ng of plasmid DNA under 100 Ohms resistance and 1.7 kV/cm voltage. The optimized electroporation parameters reported here provide a useful tool for genetic manipulation of A. baumannii. PMID:26911658

  20. Fabrication of High power, High-Efficiency Linear Array Diode Lasers by Pulse Anodic Oxidation

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Zhang, Jing; Li, Hui; Qu, Yi; Bo, Baoxue

    2006-09-01

    InGaAlAs/AlGaAs/GaAs double-quantum-well (DQW) linear array diode lasers with asymmetric wide waveguide have been successfully fabricated by pulse anodic oxidation upon molecular beam epitaxy material growth. High-efficiency and high-power quasi-continuous-wave (QCW) output has been realized at 808 nm wavelength. The threshold current and slope efficiency of the prepared high-fill-factor QCW devices are 24 A and 1.25 A/W, respectively, and a maximum wall-plug efficiency of 51% has been achieved.

  1. Highly efficient baculovirus-mediated multigene delivery in primary cells.

    PubMed

    Mansouri, Maysam; Bellon-Echeverria, Itxaso; Rizk, Aurélien; Ehsaei, Zahra; Cianciolo Cosentino, Chiara; Silva, Catarina S; Xie, Ye; Boyce, Frederick M; Davis, M Wayne; Neuhauss, Stephan C F; Taylor, Verdon; Ballmer-Hofer, Kurt; Berger, Imre; Berger, Philipp

    2016-01-01

    Multigene delivery and subsequent cellular expression is emerging as a key technology required in diverse research fields including, synthetic and structural biology, cellular reprogramming and functional pharmaceutical screening. Current viral delivery systems such as retro- and adenoviruses suffer from limited DNA cargo capacity, thus impeding unrestricted multigene expression. We developed MultiPrime, a modular, non-cytotoxic, non-integrating, baculovirus-based vector system expediting highly efficient transient multigene expression from a variety of promoters. MultiPrime viruses efficiently transduce a wide range of cell types, including non-dividing primary neurons and induced-pluripotent stem cells (iPS). We show that MultiPrime can be used for reprogramming, and for genome editing and engineering by CRISPR/Cas9. Moreover, we implemented dual-host-specific cassettes enabling multiprotein expression in insect and mammalian cells using a single reagent. Our experiments establish MultiPrime as a powerful and highly efficient tool, to deliver multiple genes for a wide range of applications in primary and established mammalian cells. PMID:27143231

  2. High-Efficiency Hall Thruster Discharge Power Converter

    NASA Technical Reports Server (NTRS)

    Jaquish, Thomas

    2015-01-01

    Busek Company, Inc., is designing, building, and testing a new printed circuit board converter. The new converter consists of two series or parallel boards (slices) intended to power a high-voltage Hall accelerator (HiVHAC) thruster or other similarly sized electric propulsion devices. The converter accepts 80- to 160-V input and generates 200- to 700-V isolated output while delivering continually adjustable 300-W to 3.5-kW power. Busek built and demonstrated one board that achieved nearly 94 percent efficiency the first time it was turned on, with projected efficiency exceeding 97 percent following timing software optimization. The board has a projected specific mass of 1.2 kg/kW, achieved through high-frequency switching. In Phase II, Busek optimized to exceed 97 percent efficiency and built a second prototype in a form factor more appropriate for flight. This converter then was integrated with a set of upgraded existing boards for powering magnets and the cathode. The program culminated with integrating the entire power processing unit and testing it on a Busek thruster and on NASA's HiVHAC thruster.

  3. Highly efficient baculovirus-mediated multigene delivery in primary cells

    PubMed Central

    Mansouri, Maysam; Bellon-Echeverria, Itxaso; Rizk, Aurélien; Ehsaei, Zahra; Cianciolo Cosentino, Chiara; Silva, Catarina S.; Xie, Ye; Boyce, Frederick M.; Davis, M. Wayne; Neuhauss, Stephan C. F.; Taylor, Verdon; Ballmer-Hofer, Kurt; Berger, Imre; Berger, Philipp

    2016-01-01

    Multigene delivery and subsequent cellular expression is emerging as a key technology required in diverse research fields including, synthetic and structural biology, cellular reprogramming and functional pharmaceutical screening. Current viral delivery systems such as retro- and adenoviruses suffer from limited DNA cargo capacity, thus impeding unrestricted multigene expression. We developed MultiPrime, a modular, non-cytotoxic, non-integrating, baculovirus-based vector system expediting highly efficient transient multigene expression from a variety of promoters. MultiPrime viruses efficiently transduce a wide range of cell types, including non-dividing primary neurons and induced-pluripotent stem cells (iPS). We show that MultiPrime can be used for reprogramming, and for genome editing and engineering by CRISPR/Cas9. Moreover, we implemented dual-host-specific cassettes enabling multiprotein expression in insect and mammalian cells using a single reagent. Our experiments establish MultiPrime as a powerful and highly efficient tool, to deliver multiple genes for a wide range of applications in primary and established mammalian cells. PMID:27143231

  4. Highly efficient metallic optical incouplers for quantum well infrared photodetectors.

    PubMed

    Liu, Long; Chen, Yu; Huang, Zhong; Du, Wei; Zhan, Peng; Wang, Zhenlin

    2016-01-01

    Herein, we propose a highly efficient metallic optical incoupler for a quantum well infrared photodetector (QWIP) operating in the spectrum range of 14~16 μm, which consists of an array of metal micropatches and a periodically corrugated metallic back plate sandwiching a semiconductor active layer. By exploiting the excitations of microcavity modes and hybrid spoof surface plasmons (SSPs) modes, this optical incoupler can convert infrared radiation efficiently into the quantum wells (QWs) layer of semiconductor region with large electrical field component (Ez) normal to the plane of QWs. Our further numerical simulations for optimization indicate that by tuning microcavity mode to overlap with hybrid SSPs mode in spectrum, a coupled mode is formed, which leads to 33-fold enhanced light absorption for QWs centered at wavelength of 14.5 μm compared with isotropic absorption of QWs without any metallic microstructures, as well as a large value of coupling efficiency (η) of |Ez|(2) ~ 6. This coupled mode shows a slight dispersion over ~40° and weak polarization dependence, which is quite beneficial to the high performance infrared photodetectors. PMID:27456691

  5. Highly efficient metallic optical incouplers for quantum well infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Long; Chen, Yu; Huang, Zhong; Du, Wei; Zhan, Peng; Wang, Zhenlin

    2016-07-01

    Herein, we propose a highly efficient metallic optical incoupler for a quantum well infrared photodetector (QWIP) operating in the spectrum range of 14~16 μm, which consists of an array of metal micropatches and a periodically corrugated metallic back plate sandwiching a semiconductor active layer. By exploiting the excitations of microcavity modes and hybrid spoof surface plasmons (SSPs) modes, this optical incoupler can convert infrared radiation efficiently into the quantum wells (QWs) layer of semiconductor region with large electrical field component (Ez) normal to the plane of QWs. Our further numerical simulations for optimization indicate that by tuning microcavity mode to overlap with hybrid SSPs mode in spectrum, a coupled mode is formed, which leads to 33-fold enhanced light absorption for QWs centered at wavelength of 14.5 μm compared with isotropic absorption of QWs without any metallic microstructures, as well as a large value of coupling efficiency (η) of |Ez|2 ~ 6. This coupled mode shows a slight dispersion over ~40° and weak polarization dependence, which is quite beneficial to the high performance infrared photodetectors.

  6. Cascaded parametric amplification for highly efficient terahertz generation.

    PubMed

    Ravi, Koustuban; Hemmer, Michael; Cirmi, Giovanni; Reichert, Fabian; Schimpf, Damian N; Mücke, Oliver D; Kärtner, Franz X

    2016-08-15

    A highly efficient, practical approach to high-energy multi-cycle terahertz (THz) generation based on spectrally cascaded optical parametric amplification (THz-COPA) is introduced. Feasible designs are presented that enable the THz wave, initially generated by difference frequency generation between a narrowband optical pump and optical seed (0.1-10% of pump energy), to self-start a cascaded (or repeated) energy downconversion of pump photons in a single pass through a single crystal. In cryogenically cooled, periodically poled lithium niobate, unprecedented energy conversion efficiencies >8% achievable with existing pump laser technology are predicted using realistic simulations. The calculations account for cascading effects, absorption, dispersion, and laser-induced damage. Due to the simultaneous, coupled nonlinear evolution of multiple phase-matched three-wave mixing processes, THz-COPA exhibits physics distinctly different from conventional three-wave mixing parametric amplifiers. This, in turn, governs optimal phase-matching conditions, evolution of optical spectra, and limitations of the nonlinear process. Circumventing these limitations is shown to yield conversion efficiencies ≫10%. PMID:27519094

  7. Highly efficient molybdenum-based catalysts for enantioselective alkene metathesis

    PubMed Central

    Malcolmson, Steven J.; Meek, Simon J.; Sattely, Elizabeth S.; Schrock, Richard R.; Hoveyda, Amir H.

    2009-01-01

    Discovery of efficient catalysts is one of the most compelling objectives of modern chemistry. Chiral catalysts are in particularly high demand, as they facilitate synthesis of enantiomerically enriched small molecules that are critical to developments in medicine, biology and materials science1. Especially noteworthy are catalysts that promote—with otherwise inaccessible efficiency and selectivity levels—reactions demonstrated to be of great utility in chemical synthesis. Here we report a class of chiral catalysts that initiate alkene metathesis1 with very high efficiency and enantioselectivity. Such attributes arise from structural fluxionality of the chiral catalysts and the central role that enhanced electronic factors have in the catalytic cycle. The new catalysts have a stereogenic metal centre and carry only monodentate ligands; the molybdenum-based complexes are prepared stereoselectively by a ligand exchange process involving an enantiomerically pure aryloxide, a class of ligands scarcely used in enantioselective catalysis2,3. We demonstrate the application of the new catalysts in an enantioselective synthesis of the Aspidosperma alkaloid, quebrachamine, through an alkene metathesis reaction that cannot be promoted by any of the previously reported chiral catalysts. PMID:19011612

  8. Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells.

    PubMed

    Zhao, Yixin; Zhu, Kai

    2014-12-01

    Organic and inorganic hybrid perovskites (e.g., CH3NH3PbI3) have emerged as a revolutionary class of light-absorbing semiconductors that has demonstrated a rapid increase in efficiency within a few years of active research. Controlling perovskite morphology and composition has been found critical to developing high-performance perovskite solar cells. The recent development of solution chemistry engineering has led to fabrication of greater than 15-17%-efficiency solar cells by multiple groups, with the highest certified 17.9% efficiency that has significantly surpassed the best-reported perovskite solar cell by vapor-phase growth. In this Perspective, we review recent progress on solution chemistry engineering processes and various control parameters that are critical to the success of solution growth of high-quality perovskite films. We discuss the importance of understanding the impact of solution-processing parameters and perovskite film architectures on the fundamental charge carrier dynamics in perovskite solar cells. The cost and stability issues of perovskite solar cells will also be discussed.

  9. Highly efficient metallic optical incouplers for quantum well infrared photodetectors

    PubMed Central

    Liu, Long; Chen, Yu; Huang, Zhong; Du, Wei; Zhan, Peng; Wang, Zhenlin

    2016-01-01

    Herein, we propose a highly efficient metallic optical incoupler for a quantum well infrared photodetector (QWIP) operating in the spectrum range of 14~16 μm, which consists of an array of metal micropatches and a periodically corrugated metallic back plate sandwiching a semiconductor active layer. By exploiting the excitations of microcavity modes and hybrid spoof surface plasmons (SSPs) modes, this optical incoupler can convert infrared radiation efficiently into the quantum wells (QWs) layer of semiconductor region with large electrical field component (Ez) normal to the plane of QWs. Our further numerical simulations for optimization indicate that by tuning microcavity mode to overlap with hybrid SSPs mode in spectrum, a coupled mode is formed, which leads to 33-fold enhanced light absorption for QWs centered at wavelength of 14.5 μm compared with isotropic absorption of QWs without any metallic microstructures, as well as a large value of coupling efficiency (η) of |Ez|2 ~ 6. This coupled mode shows a slight dispersion over ~40° and weak polarization dependence, which is quite beneficial to the high performance infrared photodetectors. PMID:27456691

  10. Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells.

    PubMed

    Zhao, Yixin; Zhu, Kai

    2014-12-01

    Organic and inorganic hybrid perovskites (e.g., CH3NH3PbI3) have emerged as a revolutionary class of light-absorbing semiconductors that has demonstrated a rapid increase in efficiency within a few years of active research. Controlling perovskite morphology and composition has been found critical to developing high-performance perovskite solar cells. The recent development of solution chemistry engineering has led to fabrication of greater than 15-17%-efficiency solar cells by multiple groups, with the highest certified 17.9% efficiency that has significantly surpassed the best-reported perovskite solar cell by vapor-phase growth. In this Perspective, we review recent progress on solution chemistry engineering processes and various control parameters that are critical to the success of solution growth of high-quality perovskite films. We discuss the importance of understanding the impact of solution-processing parameters and perovskite film architectures on the fundamental charge carrier dynamics in perovskite solar cells. The cost and stability issues of perovskite solar cells will also be discussed. PMID:26278951

  11. High-efficiency ballistic electrostatic generator using microdroplets.

    PubMed

    Xie, Yanbo; Bos, Diederik; de Vreede, Lennart J; de Boer, Hans L; van der Meulen, Mark-Jan; Versluis, Michel; Sprenkels, Ad J; van den Berg, Albert; Eijkel, Jan C T

    2014-01-01

    The strong demand for renewable energy promotes research on novel methods and technologies for energy conversion. Microfluidic systems for energy conversion by streaming current are less known to the public, and the relatively low efficiencies previously obtained seemed to limit the further applications of such systems. Here we report a microdroplet-based electrostatic generator operating by an acceleration-deceleration cycle ('ballistic' conversion), and show that this principle enables both high efficiency and compact simple design. Water is accelerated by pumping it through a micropore to form a microjet breaking up into fast-moving charged droplets. Droplet kinetic energy is converted to electrical energy when the charged droplets decelerate in the electrical field that forms between membrane and target. We demonstrate conversion efficiencies of up to 48%, a power density of 160 kW m(-2) and both high- (20 kV) and low- (500 V) voltage operation. Besides offering striking new insights, the device potentially opens up new perspectives for low-cost and robust renewable energy conversion. PMID:24709899

  12. High-efficiency ballistic electrostatic generator using microdroplets

    NASA Astrophysics Data System (ADS)

    Xie, Yanbo; Bos, Diederik; de Vreede, Lennart J.; de Boer, Hans L.; van der Meulen, Mark-Jan; Versluis, Michel; Sprenkels, Ad J.; van den Berg, Albert; Eijkel, Jan C. T.

    2014-04-01

    The strong demand for renewable energy promotes research on novel methods and technologies for energy conversion. Microfluidic systems for energy conversion by streaming current are less known to the public, and the relatively low efficiencies previously obtained seemed to limit the further applications of such systems. Here we report a microdroplet-based electrostatic generator operating by an acceleration-deceleration cycle (‘ballistic’ conversion), and show that this principle enables both high efficiency and compact simple design. Water is accelerated by pumping it through a micropore to form a microjet breaking up into fast-moving charged droplets. Droplet kinetic energy is converted to electrical energy when the charged droplets decelerate in the electrical field that forms between membrane and target. We demonstrate conversion efficiencies of up to 48%, a power density of 160 kW m-2 and both high- (20 kV) and low- (500 V) voltage operation. Besides offering striking new insights, the device potentially opens up new perspectives for low-cost and robust renewable energy conversion.

  13. Design Strategies for Ultra-high Efficiency Photovoltaics

    NASA Astrophysics Data System (ADS)

    Warmann, Emily Cathryn

    While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches. This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems. Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired

  14. Tunable C2N Membrane for High Efficient Water Desalination.

    PubMed

    Yang, Yanmei; Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2016-07-07

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently reported graphene-like carbon nitride (g-C2N) monolayer can serve as high efficient filters for water desalination. Taking the advantages of the intrisic nanoporous structure and excellent mechanical properties of g-C2N, high water transparency and strong salt filtering capability have been demonstrated in our simulations. More importantly, the "open" and "closed" states of the g-C2N filter can be precisely regulated by tensile strain. It is found that the water permeability of g-C2N is significantly higher than that reported for graphene filters by almost one order of magnitude. In the light of the abundant family of graphene-like carbon nitride monolayered materials, our results thus offer a promising approach to the design of high efficient filteration architectures.

  15. Tunable C2N Membrane for High Efficient Water Desalination.

    PubMed

    Yang, Yanmei; Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2016-01-01

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently reported graphene-like carbon nitride (g-C2N) monolayer can serve as high efficient filters for water desalination. Taking the advantages of the intrisic nanoporous structure and excellent mechanical properties of g-C2N, high water transparency and strong salt filtering capability have been demonstrated in our simulations. More importantly, the "open" and "closed" states of the g-C2N filter can be precisely regulated by tensile strain. It is found that the water permeability of g-C2N is significantly higher than that reported for graphene filters by almost one order of magnitude. In the light of the abundant family of graphene-like carbon nitride monolayered materials, our results thus offer a promising approach to the design of high efficient filteration architectures. PMID:27384666

  16. Tunable C2N Membrane for High Efficient Water Desalination

    PubMed Central

    Yang, Yanmei; Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2016-01-01

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently reported graphene-like carbon nitride (g-C2N) monolayer can serve as high efficient filters for water desalination. Taking the advantages of the intrisic nanoporous structure and excellent mechanical properties of g-C2N, high water transparency and strong salt filtering capability have been demonstrated in our simulations. More importantly, the “open” and “closed” states of the g-C2N filter can be precisely regulated by tensile strain. It is found that the water permeability of g-C2N is significantly higher than that reported for graphene filters by almost one order of magnitude. In the light of the abundant family of graphene-like carbon nitride monolayered materials, our results thus offer a promising approach to the design of high efficient filteration architectures. PMID:27384666

  17. Tunable C2N Membrane for High Efficient Water Desalination

    NASA Astrophysics Data System (ADS)

    Yang, Yanmei; Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2016-07-01

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently reported graphene-like carbon nitride (g-C2N) monolayer can serve as high efficient filters for water desalination. Taking the advantages of the intrisic nanoporous structure and excellent mechanical properties of g-C2N, high water transparency and strong salt filtering capability have been demonstrated in our simulations. More importantly, the “open” and “closed” states of the g-C2N filter can be precisely regulated by tensile strain. It is found that the water permeability of g-C2N is significantly higher than that reported for graphene filters by almost one order of magnitude. In the light of the abundant family of graphene-like carbon nitride monolayered materials, our results thus offer a promising approach to the design of high efficient filteration architectures.

  18. Highly-efficient electrotransformation of the yeast Hansenula polymorpha.

    PubMed

    Faber, K N; Haima, P; Harder, W; Veenhuis, M; AB, G

    1994-04-01

    A highly-efficient method for transformation of the methylotrophic yeast Hansenula polymorpha has been developed. Routinely, transformation frequencies of up to 1.7 x 10(6)/micrograms plasmid DNA were obtained by applying an electric pulse of the exponential decay type of 7.5 kV/cm to a highly-concentrated cell mixture during 5 ms. Efficient transformation was dependent on: (1) pretreatment of the cells with the reducing agent dithiotreitol, (2) the use of sucrose as an osmotic stabilizer in an ionic electroporation buffer, and (3) the use of cells grown to the mid-logarithmic phase. Important parameters for optimizing the transformation frequencies were field strength, pulse duration, and cell concentration during the electric pulse. In contrast to electrotransformation protocols described for Saccharomyces cerevisiae and Candida maltosa, transformation frequencies (transformants per microgram DNA) for H. polymorpha remained high when large amounts (up to 10 micrograms) of plasmid DNA were added. This feature renders this procedure pre-eminently advantageous for gene cloning experiments when high numbers of transformants are needed.

  19. High efficiency >26 W diode end-pumped Alexandrite laser.

    PubMed

    Teppitaksak, Achaya; Minassian, Ara; Thomas, Gabrielle M; Damzen, Michael J

    2014-06-30

    We show for the first time that multi-ten Watt operation of an Alexandrite laser can be achieved with direct red diode-pumping and with high efficiency. An investigation of diode end-pumped Alexandrite rod lasers demonstrates continuous-wave output power in excess of 26W, more than an order of magnitude higher than previous diode end-pumping systems, and slope efficiency 49%, the highest reported for a diode-pumped Alexandrite laser. Wavelength tuning from 730 to 792nm is demonstrated using self-seeding feedback from an external grating. Q-switched laser operation based on polarization-switching to a lower gain axis of Alexandrite has produced ~mJ-pulse energy at 1kHz pulse rate in fundamental TEM(00) mode.

  20. Generating clean energy at high efficiency and low cost

    NASA Astrophysics Data System (ADS)

    Chang, Yan P.

    1991-06-01

    This paper is related to thermal energy conversion with particular attention to the utilization of thermal energy from environmental fluids according to concepts in equilibrium and nonequilibrium thermodynamics. The first step is to prove that a single fluid heat source can produce useful work, so that thermal energy of environmental fluids is not at 'dead state.' An ocean thermal energy conversion (OTEC) system can be easily constructed at higher efficiency and lower cost than existing OTEC systems. An atmosphere thermal energy conversion (ATEC) system of high efficiency and low cost is more sophisticated. It requires open or closed counter-clockwise cycles comprising isothermal compressible flow with or without heat transfer. Combination of one of such ATEC System and a cyclic system, and supplementation of fossil or nuclear fission fuel as an additional heat source are discussed for particular applications.