29 CFR 1910.134 - Respiratory protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... impact and penetration. High efficiency particulate air (HEPA) filter means a filter that is at least 99... as a high efficiency particulate air (HEPA) filter, or an air-purifying respirator equipped with a... frequency of respirator use (including use for rescue and escape); (C) The expected physical work effort; (D...
29 CFR 1910.134 - Respiratory protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... impact and penetration. High efficiency particulate air (HEPA) filter means a filter that is at least 99... as a high efficiency particulate air (HEPA) filter, or an air-purifying respirator equipped with a... frequency of respirator use (including use for rescue and escape); (C) The expected physical work effort; (D...
29 CFR 1910.134 - Respiratory protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... impact and penetration. High efficiency particulate air (HEPA) filter means a filter that is at least 99... as a high efficiency particulate air (HEPA) filter, or an air-purifying respirator equipped with a... frequency of respirator use (including use for rescue and escape); (C) The expected physical work effort; (D...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffey, D. E.
2002-02-28
High Efficiency Particulate Air filtration is an essential component of the containment and ventilation systems supporting the research and development activities at the Oak Ridge National Laboratory. High Efficiency Particulate Air filters range in size from 7.6cm (3 inch) by 10.2 cm (4 inch) cylindrical shape filters to filter array assemblies up to 2.1 m (7 feet) high by 1.5 m (5 feet) wide. Spent filters are grouped by contaminates trapped in the filter media and become one of the components in the respective waste stream. Waste minimization and pollution prevention efforts are applied for both radiological and non-radiological applications.more » Radiological applications include laboratory hoods, glove boxes, and hot cells. High Efficiency Particulate Air filters also are generated from intake or pre-filtering applications, decontamination activities, and asbestos abatement applications. The disposal avenues include sanitary/industrial waste, Resource Conservation and Recovery Act and Toxic Substance Control Act, regulated waste, solid low-level waste, contact handled transuranic, and remote handled transuranic waste. This paper discusses characterization and operational experiences associated with the disposal of the spent filters across multiple applications.« less
Jeong, Seongmin; Cho, Hyunmin; Han, Seonggeun; Won, Phillip; Lee, Habeom; Hong, Sukjoon; Yeo, Junyeob; Kwon, Jinhyeong; Ko, Seung Hwan
2017-07-12
Air quality has become a major public health issue in Asia including China, Korea, and India. Particulate matters are the major concern in air quality. We present the first environmental application demonstration of Ag nanowire percolation network for a novel, electrical type transparent, reusable, and active PM2.5 air filter although the Ag nanowire percolation network has been studied as a very promising transparent conductor in optoelectronics. Compared with previous particulate matter air filter study using relatively weaker short-range intermolecular force in polar polymeric nanofiber, Ag nanowire percolation network filters use stronger long-range electrostatic force to capture PM2.5, and they are highly efficient (>99.99%), transparent, working on an active mode, low power consumption, antibacterial, and reusable after simple washing. The proposed new particulate matter filter can be applied for a highly efficient, reusable, active and energy efficient filter for wearable electronics application.
Water washable stainless steel HEPA filter
Phillips, Terrance D.
2001-01-01
The invention is a high efficiency particulate (HEPA) filter apparatus and system, and method for assaying particulates. The HEPA filter provides for capture of 99.99% or greater of particulates from a gas stream, with collection of particulates on the surface of the filter media. The invention provides a filter system that can be cleaned and regenerated in situ.
Particulate generation and control in the PREPP (Process Experimental Pilot Plant) incinerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stermer, D.L.; Gale, L.G.
1989-03-01
Particulate emissions in radioactive incineration systems using a wet scrubbing system are generally ultimately controlled by flowing the process offgas stream through a high-efficiency filter, such as a High Efficient Particulate Air (HEPA) filter. Because HEPA filters are capable of reducing particulate emissions over an order of magnitude below regulatory limits, they consequently are vulnerable to high loading rates. This becomes a serious handicap in radioactive systems when filter change-out is required at an unacceptably high rate. The Process Experimental Pilot Plant (PREPP) incineration system is designed for processing retrieved low level mixed hazardous waste. It has a wet offgasmore » treatment system consisting of a Quencher, Venturi Scrubber, Entrainment Eliminator, Mist Eliminator, two stages of HEPA filters, and induced draft fans. During previous tests, it was noted that the offgas filters loaded with particulate at a rate requiring replacement as often as every four hours. During 1988, PREPP conducted a series of tests which included an investigation of the causes of heavy particulate accumulation on the offgas filters in relation to various operating parameters. This was done by measuring the particulate concentrations in the offgas system, primarily as a function of scrub solution salt concentration, waste feed rate, and offgas flow rate. 2 figs., 9 tabs.« less
TEST METHODS TO CHARACTERIZE PARTICULATE MATTER EMISSIONS AND DEPOSITION RATES IN A RESEARCH HOUSE
The paper discusses test methods to characterize particulate matter (PM) emissions and deposition rates in a research house. In a room in the research house, specially configured for PM source testing, a high-efficiency particulate air (HEPA)-filtered air supply system, used for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, P.R.; Gregory, W.S.
1985-04-01
Pressure transients in nuclear facility air cleaning systems can originate from natural phenomena such as tornadoes or from accident-induced explosive blast waves. This study was concerned with the effective efficiency of high-efficiency particulate air (HEPA) filters during pressure surges resulting from simulated tornado and explosion transients. The primary objective of the study was to examine filter efficiencies at pressure levels below the point of structural failure. Both standard and high-capacity 0.61-m by 0.61-m HEPA filters were evaluated, as were several 0.2-m by 0.2-m HEPA filters. For a particular manufacturer, the material release when subjected to tornado transients is the samemore » (per unit area) for both the 0.2-m by 0.2-m and the 0.61-m by 0.61-m filters. For tornado transients, the material release was on the order of micrograms per square meter. When subjecting clean HEPA filters to simulated tornado transients with aerosol entrained in the pressure pulse, all filters tested showed a degradation of filter efficiency. For explosive transients, the material release from preloaded high-capacity filters was as much as 340 g. When preloaded high-capacity filters were subjected to shock waves approximately 50% of the structural limit level, 1 to 2 mg of particulate was released.« less
Advanced particulate matter control apparatus and methods
Miller, Stanley J [Grand Forks, ND; Zhuang, Ye [Grand Forks, ND; Almlie, Jay C [East Grand Forks, MN
2012-01-10
Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.
EVALUATION OF FOUR NOVEL FINE PARTICULATE COLLECTION DEVICES
The report gives results of an experimental performance evaluation of four novel fine particulate control devices: the Johns-Manville Cleanable High-Efficiency Air Filtration (CHEAF) System, the APS Electrostatic Scrubber, the APS Electrotube, and the TRW Charged Droplet Scrubber...
Code of Federal Regulations, 2011 CFR
2011-07-01
... to monitor relative particulate matter loadings. Battery breaking area means the plant location at which lead-acid batteries are broken, crushed, or disassembled and separated into components. Blast...) Casting operations occur. High efficiency particulate air (HEPA) filter means a filter that has been...
Code of Federal Regulations, 2010 CFR
2010-07-01
... to monitor relative particulate matter loadings. Battery breaking area means the plant location at which lead-acid batteries are broken, crushed, or disassembled and separated into components. Blast...) Casting operations occur. High efficiency particulate air (HEPA) filter means a filter that has been...
42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...
42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...
42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 1 2012-10-01 2012-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...
42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 1 2014-10-01 2014-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...
42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 1 2013-10-01 2013-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...
Maniquiz-Redillas, Marla C; Kim, Lee-Hyung
2016-09-01
Low-impact development (LID) and green infrastructure (GI) have recently become well-known methods to capture, collect, retain, and remove pollutants in stormwater runoff. The research was conducted to assess the efficiency of LID/GI systems applied in removing the particulate and dissolved heavy metals (Zn, Pb, Cu, Ni, Cr, Cd, and Fe) from urban stormwater runoff. A total of 82 storm events were monitored over a four-year period (2010-2014) on six LID/GI systems including infiltration trenches, tree box filter, rain garden, and hybrid constructed wetlands employed for the management of road, parking lot, and roof runoff. It was observed that the heavy metal concentration increased proportionally with the total suspended solids concentration. Among the heavy metal constituents, Fe appeared to be highly particulate-bound and was the easiest to remove followed by Zn and Pb; while metals such as Cr, Ni, Cu, and Cd were mostly dissolved and more difficult to remove. The mass fraction ratios of metal constituents at the effluent were increased relative to the influent. All the systems performed well in the removal of particulate-bound metals and were more efficient for larger storms greater than 15 mm wherein more particulate-bound metals were generated compared to smaller storms less than 5 mm that produced more dissolved metals. The efficiency of the systems in removing the particulate-bound metals was restricted during high average/peak flows; that is, high-intensity storms events and when heavy metals have low concentration levels.
Mukhopadhyay, N; Bose, P K
2009-10-01
Soot particulate emission reduction from diesel engine is one of the most emerging problems associated with the exhaust pollution. Diesel particulate filters (DPF) hold out the prospects of substantially reducing regulated particulate emissions but the question of the reliable regeneration of filters still remains a difficult hurdle to overcome. Many of the solutions proposed to date suffer from design complexity, cost, regeneration problem and energy demands. This study presents a computer aided theoretical analysis for controlling diesel soot particulate emission by cyclone separator--a non contact type particulate removal system considering outer vortex flow, inner vortex flow and packed ceramic fiber filter at the end of vortex finder tube. Cyclone separator with low initial cost, simple construction produces low back pressure and reasonably high collection efficiencies with reduced regeneration problems. Cyclone separator is modified by placing a continuous ceramic packed fiber filter placed at the end of the vortex finder tube. In this work, the grade efficiency model of diesel soot particulate emission is proposed considering outer vortex, inner vortex and the continuous ceramic packed fiber filter. Pressure drop model is also proposed considering the effect of the ceramic fiber filter. Proposed model gives reasonably good collection efficiency with permissible pressure drop limit of diesel engine operation. Theoretical approach is predicted for calculating the cut size diameter considering the effect of Cunningham molecular slip correction factor. The result shows good agreements with existing cyclone and DPF flow characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, R.A.
1997-05-01
The availability of reliable, low-cost electricity is a cornerstone for the United States` ability to compete in the world market. The Department of Energy (DOE) projects the total consumption of electricity in the US to rise from 2.7 trillion kilowatt-hours in 1990 to 3.5 trillion in 2010. Although energy sources are diversifying, fossil fuel still produces 90 percent of the nation`s energy. Coal is our most abundant fossil fuel resource and the source of 56 percent of our electricity. It has been the fuel of choice because of its availability and low cost. A new generation of high-efficiency power systemsmore » has made it possible to continue the use of coal while still protecting the environment. Such power systems greatly reduce the pollutants associated with cola-fired plants built before the 1970s. To realize this high efficiency and superior environmental performance, advanced coal-based power systems will require gas stream cleanup under high-temperature and high-pressure (HTHP) process conditions. Presented in this paper are the HTHP particulate capture requirements for the Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized-Bed Combustion (PFBC) power systems, the HTHP particulate cleanup systems being implemented in the PFBC and IGCC Clean Coal Technology (CCT) Projects, and the currently available particulate capture performance results.« less
Advanced Hybrid Particulate Collector Project Management Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, S.J.
As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the bestmore » method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting« less
NASA Astrophysics Data System (ADS)
Tekale, S. U.; Tekale, A. B.; Kanhe, N. S.; Bhoraskar, S. V.; Pawar, R. P.
2011-12-01
Nano-particulate aluminium nitride/Al (7:1) is reported as a new heterogeneous solid acid catalyst for the synthesis of 3, 4-dihydroxypyrimidi-2-(1H)-ones and their sulphur analogues using the Biginelli reaction. This method involves short reaction time, easy separation, high yields and purity of products.
NASA Technical Reports Server (NTRS)
Green, Robert D.; Agui, Juan H.; Vijayakumar, R.
2017-01-01
The air revitalization system aboard the International Space Station (ISS) provides the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation due to the microgravity environment in Low Earth Orbit (LEO). The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) media filters deployed at multiple locations in each U.S. Segment module; these filters are referred to as Bacterial Filter Elements, or BFEs. These filters see a replacement interval, as part of maintenance, of 2-5 years dependent on location in the ISS. In this work, we present particulate removal efficiency, pressure drop, and leak test results for a sample set of 8 BFEs returned from the ISS after filter replacement. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS beyond 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.
Filter-based control of particulate matter from a lean gasoline direct injection engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parks, II, James E; Lewis Sr, Samuel Arthur; DeBusk, Melanie Moses
New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDImore » PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal. In addition, lean GDI engine exhaust temperatures are generally higher than diesel engines which results in more continuous regeneration of the GPF and less presence of the soot cake layer common to diesel particulate filters. Since the soot layer improves filtration efficiency, this distinction is important to consider. Research on the emission control of PM from a lean GDI engine with a GPF was conducted on an engine dynamometer. PM, after dilution, was characterized with membrane filters, organic vs. elemental carbon characterization, and size distribution techniques at various steady state engine speed and load points. The engine was operated in three primary combustion modes: stoichiometric, lean homogeneous, and lean stratified. In addition, rich combustion was utilized to simulate PM from engine operation during active regeneration of lean NOx control technologies. High (>95%) PM filtration efficiencies were observed over a wide range of conditions; however, some PM was observed to slip through the GPF at high speed and load conditions. The PM characterization at various engine speeds and loads will help enable optimized GPF design and control to achieve more fuel efficient lean GDI vehicles with low PM emissions.« less
NASA Technical Reports Server (NTRS)
Green, Robert D.; Agui, Juan H.; Vijayakumar, R.; Berger, Gordon M.; Perry, Jay L.
2017-01-01
The air quality control equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provide the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Air (HEPA) filters deployed at multiple locations in each U.S. Seg-ment module; these filters are referred to as Bacterial Filter Elements, or BFEs. In our previous work, we presented results of efficiency and pressure drop measurements for a sample set of two returned BFEs with a service life of 2.5 years. In this follow-on work, we present similar efficiency, pressure drop, and leak tests results for a larger sample set of six returned BFEs. The results of this work can aid the ISS Program in managing BFE logistics inventory through the stations planned lifetime as well as provide insight for managing filter element logistics for future exploration missions. These results also can provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.
Filter Efficiency and Pressure Testing of Returned ISS Bacterial Filter Elements (BFEs)
NASA Technical Reports Server (NTRS)
Green, Robert D.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Perry, Jay L.
2017-01-01
The air quality control equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provide the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Air (HEPA) filters deployed at multiple locations in each U.S. Seg-ment module; these filters are referred to as Bacterial Filter Elements, or BFEs. In our previous work, we presented results of efficiency and pressure drop measurements for a sample set of two returned BFEs with a service life of 2.5 years. In this follow-on work, we present similar efficiency, pressure drop, and leak tests results for a larger sample set of six returned BFEs. The results of this work can aid the ISS Program in managing BFE logistics inventory through the stations planned lifetime as well as provide insight for managing filter element logistics for future exploration missions. These results also can provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.
Settling Efficiency of Urban Particulate Matter Transported by Stormwater Runoff.
Carbone, Marco; Penna, Nadia; Piro, Patrizia
2015-09-01
The main purpose of control measures in urban areas is to retain particulate matter washed out by stormwater over impermeable surfaces. In stormwater control measures, particulate matter removal typically occurs via sedimentation. Settling column tests were performed to examine the settling efficiency of such units using monodisperse and heterodisperse particulate matter (for which the particle size distributions were measured and modelled by the cumulative gamma distribution). To investigate the dependence of settling efficiency from the particulate matter, a variant of the evolutionary polynomial regression (EPR), a Microsoft Excel function based on multi-objective EPR technique (EPR-MOGA), called EPR MOGA XL, was used as a data-mining strategy. The results from this study have shown that settling efficiency is a function of the initial total suspended solids (TSS) concentration and of the median diameter (d50 index), obtained from the particle size distributions (PSDs) of the samples.
Shang, Jer-Yu; Mei, Joseph S.; Slagle, Frank D.; Notestein, John E.
1984-01-01
The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.
Ando, Masaki; Imadzu, Sakiyo; Kitagawa, Shinya; Ohtani, Hajime
2010-08-06
A particulate formation-laser scattering detector (PFLSD) was developed and used for evaluating the crystallization efficiency of inorganic polyphosphates (PPs) that reacted with either magnesium or calcium cations. As the solutions for reactive crystallization, 0.5 M ammonium buffer (pH 9.6) containing either 0.15 M MgCl(2) or 0.15 M CaCl(2) (MAP: magnesium ammonium phosphate and HAP: hydroxyapatite solution) were used. In the case of mono- and diphosphate (P1 and P2), the significant dependences of the particulate formation efficiency on various types of both P1/P2 and MAP/HAP reaction solutions were observed with the direct sample injection mode. The PFLSD was hyphenated with the anion-exchange chromatography and the dependence of the particulate formation efficiency on the polymerization degree (n(p)) of PP oligomers, separated chromatographically, was evaluated sequentially. The significant suppression of the particulate formation for PP oligomers was clearly confirmed, i.e., the MAP and HAP reaction solutions did not produce the particulates of the PP oligomers having an n(p) value of more than 3 and 5, respectively. As the overall tendency, the particulate formation efficiency in the case of the HAP solution was superior to that in the case of the MAP solution. Copyright 2010 Elsevier B.V. All rights reserved.
VIEW OF THE INTERIOR OF BUILDING 442 OF THE HIGH ...
VIEW OF THE INTERIOR OF BUILDING 442 OF THE HIGH EFFICIENCY PARTICULATE AIR FILTERS TESTING EQUIPMENT - Rocky Flats Plant, Filter Test Laboratory & Warehouse, Southeast corner of Central Avenue & Fifth Street, Golden, Jefferson County, CO
Guan, Bin; Zhan, Reggie; Lin, He; Huang, Zhen
2015-05-01
The increasingly stringent emission regulations, such as US 2010, Tier 2 Bin 5 and beyond, off-road Tier 4 final, and Euro V/5 for particulate matter (PM) reduction applications, will mandate the use of the diesel particulate filters (DPFs) technology, which is proven to be the only way that can effectively control the particulate emissions. This paper covers a comprehensive overview of the state-of-the-art DPF technologies, including the advanced filter substrate materials, the novel catalyst formulations, the highly sophisticated regeneration control strategies, the DPF uncontrolled regenerations and their control methodologies, the DPF soot loading prediction, and the soot sensor for the PM on-board diagnostics (OBD) legislations. Furthermore, the progress of the highly optimized hybrid approaches, which involves the integration of diesel oxidation catalyst (DOC) + (DPF, NOx reduction catalyst), the selective catalytic reduction (SCR) catalyst coated on DPF, as well as DPF in the high-pressure exhaust gas recirculation (EGR) loop systems, is well discussed. Besides, the impacts of the quality of fuel and lubricant on the DPF performance and the maintenance and retrofit of DPF are fully elaborated. Meanwhile, the high efficiency gasoline particulate filter (GPF) technology is being required to effectively reduce the PM and particulate number (PN) emissions from the gasoline direct injection (GDI) engines to comply with the future increasingly stricter emissions regulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Regulation of suspended particulate matter (SPM) in Indian coal-based thermal power plants
NASA Astrophysics Data System (ADS)
Sengupta, Ishita
Air borne particulate matter, in major Indian cities is at least three times the standard prescribed by the WHO. Coal-based thermal power plants are the major emitters of particulate matter in India. The lack of severe penalty for non-compliance with the standards has worsened the situation and thus calls for an immediate need for investment in technologies to regulate particulate emissions. My dissertation studies the optimal investment decisions in a dynamic framework, for a random sample of forty Indian coal-based power plants to abate particulate emissions. I used Linear Programming to solve the double cost minimization problem for the optimal choices of coal, boiler and pollution-control equipment. A policy analysis is done to choose over various tax policies, which would induce the firms to adopt the energy efficient as well as cost efficient technology. The aim here is to reach the WHO standards. Using the optimal switching point model I show that in a dynamic set up, switching the boiler immediately is always the cost effective option for all the power plants even if there is no policy restriction. The switch to a baghouse depends upon the policy in place. Theoretically, even though an emission tax is considered the most efficient tax, an ash tax or a coal tax can also be considered to be a good substitute especially in countries like India where monitoring costs are very high. As SPM is a local pollutant the analysis here is mainly firm specific.
Bio-Defense Now: 56 Suggestions for Immediate Improvements
2005-05-01
Air Education and Training Command HVAC Heating, Ventilation and Air Conditioning ICAM Improved Chemical Agent Monitor ICD-9-CM Internal...conditioning ( HVAC ) system capabilities, making a big difference in removal of many BW agents. High Efficiency Particulate Air (HEPA) filters are also...agents. This program has developed biological sensor-activated heating, ventilation, and air conditioning ( HVAC ) control sys- tems, high efficiency
McClellan, Roger O; Hesterberg, Thomas W; Wall, John C
2012-07-01
Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Green, Robert D.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Perry, Jay L.
2016-01-01
The atmosphere revitalization equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provides the vital functions of maintaining a habitable environment for the crew as well as protecting the hardware from fouling by suspended particulate matter. Providing these functions are challenging in pressurized spacecraft cabins because no outside air ventilation is possible and a larger particulate load is imposed on the filtration system due to lack of sedimentation in reduced gravity conditions. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) filters deployed at multiple locations in each module. These filters are referred to as Bacteria Filter Elements (BFEs). As more experience has been gained with ISS operations, the BFE service life, which was initially one year, has been extended to two to five years, dependent on the location in the U.S. Segment. In previous work we developed a test facility and test protocol for leak testing the ISS BFEs. For this work, we present results of leak testing a sample set of returned BFEs with a service life of 2.5 years, along with particulate removal efficiency and pressure drop measurements. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS to 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.
Characterization of Dust on Solar Devices in Southern Nevada =
NASA Astrophysics Data System (ADS)
Sylva, Jason R.
Dust can impact the efficiency of solar energy collection devices, and in some arid environments, dust can reduce solar energy efficiency up to 30%. Reducing the impact of dust is therefore critical in the expansion of solar technology throughout regions where solar energy is utilized. Characterization of suspended and settled particulate matter can assist in developing strategies for dust mitigation. With the characterization of suspended and settled particulate in remote, rural, and urban environments, more informed decisions can be made regarding the selection of coating material on solar panels as well as developing cleaning and maintenance procedures. Particulate matter that deposits on a solar surface can potentially interact with solar radiation, precipitation, or even directly with the surface material itself. These interactions could lead to the formation of coatings that reduce/block radiation and/or degrade the integrity of the surface. When you extrapolate these possibilities to a larger scale preliminary characterization of dust will play a vital role when planning the construction of a solar energy facility. A variety of sampling techniques were employed to obtain particulate matter for characterization. These included direct collection of particulates from solar surfaces: via vacuum and wipe sample collection on panels, tacky dot adhesive slides and plain slides that were exposed at different intervals, desert vugs that are natural particulate collectors, as well as high volume air sampling for collection of suspended particulates. High volume air sampling was performed using glass fiber filters and 2 micron stainless steel screens. Direct collection of settled particulates was performed by sampling from solar surfaces, vugs, and by collection on exposed glass surfaces. Collection onto glass surfaces was achieved by setting up a plain microscope slide, tacky dot slides, and panes of glass. The sampling methodology allowed for the collection of samples for analyses using various analytical methods that included Raman microspectroscopy, pyrolysis gas chromatography mass spectrometry, ion chromatography and inductively coupled plasma mass spectrometry. These various methods allow for identification of organic and inorganic components as well the mineral distribution of suspended and settled particulate material. None None None None None
Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts.
Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf
2017-02-18
Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.
Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts
Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf
2017-01-01
Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor. PMID:28218700
... small-particle or high-efficiency particulate air (HEPA) filter. Shampoo the carpet frequently. Curtains and blinds. Use ... dander they shed. Air filtration. Choose an air filter that has a small-particle or HEPA filter. ...
Method for improved gas-solids separation
Kusik, C.L.; He, B.X.
1990-11-13
Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from where it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel. 4 figs.
Method for improved gas-solids separation
Kusik, Charles L.; He, Bo X.
1990-01-01
Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from when it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel.
Summary of Martian Dust Filtering Challenges and Current Filter Development
NASA Technical Reports Server (NTRS)
O'Hara, William J., IV
2017-01-01
Traditional air particulate filtering in manned spaceflight (Apollo, Shuttle, ISS, etc.) has used cleanable or replaceable catch filters such as screens and High-Efficiency Particulate Arrestance (HEPA) filters. However, the human mission to Mars architecture will require a new approach. It is Martian dust that is the particulate of concern but the need also applies to particulates generated by crew. The Mars Exploration Program Analysis Group (MEPAG) high-lighted this concern in its Mars Science, Goals, Objectives, Investigations and Priorities document [7], by saying specifically that one high priority investigation will be to "Test ISRU atmospheric processing systems to measure resilience with respect to dust and other environmental challenge performance parameters that are critical to the design of a full-scale system." By stating this as high priority the MEPAG is acknowledging that developing and adequately verifying this capability is critical to success of a human mission to Mars. This architecture will require filtering capabilities that are highly reliable, will not restrict the flow path with clogging, and require little to no maintenance. This paper will summarize why this is the case, the general requirements for developing the technology, and the status of the progress made in this area.
Stay away from asthma triggers
... cleaner with a HEPA (high-efficiency particulate arrestor) filter. Replace wall-to-wall carpet with wood or ... a central air conditioning system, use a HEPA filter to remove pet allergens from indoor air. Use ...
Wang, Haolun; Lin, Sen; Yang, Shen; Yang, Xudong; Song, Jianan; Wang, Dong; Wang, Haiyang; Liu, Zhenglian; Li, Bo; Fang, Minghao; Wang, Ning; Wu, Hui
2018-05-01
Particulate matter (PM) is a major air pollutant in many regions, jeopardizing ecosystems and public health. Filtration at pollutant source is one of the most important ways to protect the environment, however, considering the high-temperature exhaust gas emissions, effective removal of PM and related pollutants from their sources remains a major challenge. In this study, a resilient, heat-resisting, and high-efficiency PM filter based on yttria-stabilized ZrO 2 (YSZ) nanofiber sponge produced with a scalable solution blow spinning process is reported. The porous 3D sponge composed of YSZ nanofibers is lightweight (density of 20 mg cm -3 ) and resilient at both room temperature and high temperatures. At room-temperature conditions, the YSZ nanofiber sponge exhibits 99.4% filtration efficiency for aerosol particles with size in the range of 20-600 nm, associated with a low pressure drop of only 57 Pa under an airflow velocity of 4.8 cm s -1 . At a high temperature of 750 °C, the ceramic sponge maintains a high filtration efficiency of 99.97% for PM 0.3-2.5 under a high airflow velocity of 10 cm s -1 . A practical vehicle exhaust filter to capture particles with filtration efficiency of >98.3% is also assembled. Hence, the YSZ nanofiber sponge has enormous potential to be applied in industry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2010 CFR
2010-07-01
... from that process. High-efficiency Particulate Air [HEPA] filter means a filter capable of trapping and...) expected to have the highest cadmium exposures. (2) Specific. (i) Initial monitoring. Except as provided... 1926.354, where applicable. (3) Prohibitions. (i) High speed abrasive disc saws and similar abrasive...
Code of Federal Regulations, 2013 CFR
2013-07-01
... from that process. High-efficiency Particulate Air [HEPA] filter means a filter capable of trapping and...) expected to have the highest cadmium exposures. (2) Specific. (i) Initial monitoring. Except as provided... 1926.354, where applicable. (3) Prohibitions. (i) High speed abrasive disc saws and similar abrasive...
Code of Federal Regulations, 2014 CFR
2014-07-01
... from that process. High-efficiency Particulate Air [HEPA] filter means a filter capable of trapping and...) expected to have the highest cadmium exposures. (2) Specific. (i) Initial monitoring. Except as provided... 1926.354, where applicable. (3) Prohibitions. (i) High speed abrasive disc saws and similar abrasive...
Code of Federal Regulations, 2012 CFR
2012-07-01
... from that process. High-efficiency Particulate Air [HEPA] filter means a filter capable of trapping and...) expected to have the highest cadmium exposures. (2) Specific. (i) Initial monitoring. Except as provided... 1926.354, where applicable. (3) Prohibitions. (i) High speed abrasive disc saws and similar abrasive...
Jimenez, Jose; Miller, Mark; Bott, Charles; Murthy, Sudhir; De Clippeleir, Haydee; Wett, Bernhard
2015-12-15
The high-rate activated sludge (HRAS) process is a technology suitable for the removal and redirection of organics from wastewater to energy generating processes in an efficient manner. A HRAS pilot plant was operated under controlled conditions resulting in concentrating the influent particulate, colloidal, and soluble COD to a waste solids stream with minimal energy input by maximizing sludge production, bacterial storage, and bioflocculation. The impact of important process parameters such as solids retention time (SRT), hydraulic residence time (HRT) and dissolved oxygen (DO) levels on the performance of a HRAS system was demonstrated in a pilot study. The results showed that maximum removal efficiencies of soluble COD were reached at a DO > 0.3 mg O2/L, SRT > 0.5 days and HRT > 15 min which indicates that minimizing the oxidation of the soluble COD in the high-rate activated sludge process is difficult. The study of DO, SRT and HRT exhibited high degree of impact on the colloidal and particulate COD removal. Thus, more attention should be focused on controlling the removal of these COD fractions. Colloidal COD removal plateaued at a DO > 0.7 mg O2/L, SRT > 1.5 days and HRT > 30 min, similar to particulate COD removal. Concurrent increase in extracellular polymers (EPS) production in the reactor and the association of particulate and colloidal material into sludge flocs (bioflocculation) indicated carbon capture by biomass. The SRT impacted the overall mass and energy balance of the high-rate process indicating that at low SRT conditions, lower COD mineralization or loss of COD content occurred. In addition, the lower SRT conditions resulted in higher sludge yields and higher COD content in the WAS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Emission reduction from diesel engine using fumigation methanol and diesel oxidation catalyst.
Zhang, Z H; Cheung, C S; Chan, T L; Yao, C D
2009-07-15
This study is aimed to investigate the combined application of fumigation methanol and a diesel oxidation catalyst for reducing emissions of an in-use diesel engine. Experiments were performed on a 4-cylinder naturally-aspirated direct-injection diesel engine operating at a constant speed of 1800 rev/min for five engine loads. The experimental results show that at low engine loads, the brake thermal efficiency decreases with increase in fumigation methanol; but at high loads, it slightly increases with increase in fumigation methanol. The fumigation method results in a significant increase in hydrocarbon (HC), carbon monoxide (CO), and nitrogen dioxide (NO(2)) emissions, but decrease in nitrogen oxides (NO(x)), smoke opacity and the particulate mass concentration. For the submicron particles, the total number of particles decreases. In all cases, there is little change in geometrical mean diameter of the particles. After catalytic conversion, the HC, CO, NO(2), particulate mass and particulate number concentrations were significantly reduced at medium to high engine loads; while the geometrical mean diameter of the particles becomes larger. Thus, the combined use of fumigation methanol and diesel oxidation catalyst leads to a reduction of HC, CO, NO(x), particulate mass and particulate number concentrations at medium to high engine loads.
Fumigation of Alcohol in a Light Duty Automotive Diesel Engine
NASA Technical Reports Server (NTRS)
Broukhiyan, E. M. H.; Lestz, S. S.
1981-01-01
A light-duty automotive Diesel engine was fumigated with methanol in amounts up to 35% and 50% of the total fuel energy respectively in order to determine the effect of alcohol fumigation on engine performance at various operating conditons. Engine fuel efficiency, emissions, smoke, and the occurrence of severe knock were the parameters used to evaluate performance. Raw exhaust particulate and its soluble organic extract were screened for biological activity using the Ames Salmonella typhimurium assay. Results are given for a test matrix made up of twelve steady-state operating conditions. For all conditions except the 1/4 rack (light load) condition, modest thermal efficiency gains were noted upon ethanol fumigation. Methanol showed the same increase at 3/4 and full rack (high load) conditions. However, engine roughness or the occurrence of severe knock limited the maximum amount of alcohol that could be fumigated. Brake specific nitrogen oxide concentrations were found to decrease for all ethanol conditions tested. Oxides of nitrogen emissions, on a volume basis, decreased for all alcohol conditions tested. Based on the limited particulate data analyzed, it appears that ethanol fumigation, like methanol fumigation, while lowering the mass of particulated emitted, does enhance the biological activity of that particulate.
Developing particulate thin filter using coconut fiber for motor vehicle emission
NASA Astrophysics Data System (ADS)
Wardoyo, A. Y. P.; Juswono, U. P.; Riyanto, S.
2016-03-01
Amounts of motor vehicles in Indonesia have been recognized a sharply increase from year to year with the increment reaching to 22 % per annum. Meanwhile motor vehicles produce particulate emissions in different sizes with high concentrations depending on type of vehicles, fuels, and engine capacity. Motor Particle emissions are not only to significantly contribute the atmosphric particles but also adverse to human health. In order to reduce the particle emission, it is needed a filter. This study was aimed to develop a thin filter using coconut fiber to reduce particulate emissions for motor vehicles. The filter was made of coconut fibers that were grinded into power and mixed with glues. The filter was tested by the measurements of particle concentrations coming out from the vehicle exhaust directly and the particle concentrations after passing through the filter. The efficiency of the filter was calculated by ratio of the particle concentrations before comming in the filter to the particle conentrations after passing through the filter. The results showed that the efficiency of the filter obtained more than 30 %. The efficiency increases sharply when a number of the filters are arranged paralelly.
40 CFR 721.10279 - Multi-walled carbon nanotubes (generic) (P-10-246).
Code of Federal Regulations, 2014 CFR
2014-07-01
... a loose-fitting hood or helmet and high efficiency particulate air (HEPA) filters; or (C) NIOSH... in § 721.80(f), (k) (conductivity additive to resins, rubber, and to battery electrodes), and (q...
Novel diesel exhaust filters for underground mining vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickel, K.L.; Taubert, T.R.
1995-12-31
The U.S. Bureau of Mines (USBM) pioneered the development of disposable filters for reducing diesel particulate emissions from permissible mining machines. The USBM is now evaluating filter media that can withstand the high exhaust temperatures on nonpermissible machines. The goal of the evaluation is to find an inexpensive medium that can be cleaned or disposed of after use, and will reduce particulate emissions by 50 % or more. This report summarizes the results from screening tests of a lava rock and woven fiberglass filter media. The lava rock media exhibited low collection efficiencies, but with very low increases in exhaustmore » back pressure. Preliminary results indicate a collection efficiency exceeding 80 % for the woven fiber media. Testing of both media is continuing.« less
Noll, J.D.; Cecala, A.B.; J.A.Organiscak; Rider, J.P.
2015-01-01
An effective technique to minimize miners’ respirable dust and diesel exposure on mobile mining equipment is to place mine operators in enclosed cabs with designed filtration and pressurization systems. Many factors affect the performance of these enclosed cab systems, and one of the most significant factors is the effectiveness of the filtration system. High-efficiency particulate air (HEPA)-type filters are typically used because they are highly efficient at capturing all types and sizes of particles, including those in the submicron range such as diesel particulate matter (DPM). However, in laboratory tests, minimum efficiency reporting value (MERV) 16 filters have proven to be highly efficient for capturing DPM and respirable dust. Also, MERV 16 filters can be less restrictive to cab airflow and less expensive than HEPA filters. To verify their effectiveness in the field, MERV 16 filters were used in the enclosed cab filtration system on a face drill and roof bolting mining machine and tested at an underground limestone mine. Test results showed that DPM and respirable dust concentrations were reduced by more than 90% when the cabs were properly sealed. However, when the cab door was opened periodically throughout the shift, the reduction efficiency of the MERV 16 filters was reduced to 80% on average. PMID:26236044
Cometary particulate analyzer. [mass spectrometry of laser plasmas
NASA Technical Reports Server (NTRS)
Friichtenicht, J. F.; Miller, D. J.; Utterback, N. G.
1979-01-01
A concept for determining the relative abundance of elements contained in cometary particulates was evaluated. The technique utilizes a short, high intensity burst of laser radiation to vaporize and ionize collected particulate material. Ions extracted from this laser produced plasma are analyzed in a time of flight mass spectrometer to yield an atomic mass spectrum representative of the relative abundance of elements in the particulates. Critical aspects of the development of this system are determining the ionization efficiencies for various atomic species and achieving adequate mass resolution. A technique called energy-time focus, which utilizes static electric fields to alter the length of the ion flight path in proportion to the ion initial energy, was used which results in a corresponding compression to the range of ion flight times which effectively improves the inherent resolution. Sufficient data were acquired to develop preliminary specifications for a flight experiment.
Reducing diesel NOx and PM emissions of diesel buses and trucks.
DOT National Transportation Integrated Search
2008-07-01
The objective of the present investigation was development of a high efficiency : selective catalytic reduction (SCR) system for reducing diesel nitrogen oxides (NOx) and : particulate matters of diesel trucks. The investigation was divided into two ...
40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...
40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...
40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...
40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...
40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...
75 FR 42132 - Notice of Lodging of Consent Decree Pursuant to the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-20
... particulate filters. The hydraulic launch assist refuse collection vehicle is designed to be more efficient by... economy. The diesel particulate filters are aimed to reduce particulate matter emissions as well as carbon...
75 FR 42131 - Notice of Lodging of Consent Decree Pursuant to the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-20
... particulate filters. The hydraulic launch assist refuse collection vehicle is designed to be more efficient by... economy. The diesel particulate filters are aimed to reduce particulate matter emissions as well as carbon...
Tang, Tao; Zhang, Jun; Cao, Dongxiao; Shuai, Shijin; Zhao, Yanguang
2014-12-01
This study investigated the filtration and continuous regeneration of a particulate filter system on an engine test bench, consisting of a diesel oxidation catalyst (DOC) and a catalyzed diesel particulate filter (CDPF). Both the DOC and the CDPF led to a high conversion of NO to NO2 for continuous regeneration. The filtration efficiency on solid particle number (SPN) was close to 100%. The post-CDPF particles were mainly in accumulation mode. The downstream SPN was sensitively influenced by the variation of the soot loading. This phenomenon provides a method for determining the balance point temperature by measuring the trend of SPN concentration. Copyright © 2014. Published by Elsevier B.V.
Efficacy of photocatalytic HEPA filter on microorganism removal.
Chuaybamroong, P; Chotigawin, R; Supothina, S; Sribenjalux, P; Larpkiattaworn, S; Wu, C-Y
2010-06-01
This study assessed the application of photocatalytic oxidation (PCO) to the high efficiency particulate air (HEPA) filter for disinfection of airborne microorganisms. Experiments were conducted at two TiO2 loadings (1870 +/- 169 and 3140 +/- 67 mg/m(2)) on the HEPA filter irradiated with UV-A at the intensity of 0.85 +/- 0.18 or 4.85 +/- 0.09 mW/cm(2) under two relative humidity conditions (45 +/- 5% and 75 +/- 5%). Inactivation and penetration of four microorganisms were tested, including Aspergillus niger, Penicillium citrinum, Staphylococcus epidermidis, and Bacillus subtilis. It was found that microorganisms retained on a photocatalytic filter were inactivated around 60-80% and even 100% for S. epidermidis when the PCO reactions occurred. Lower penetration was also found from the photocatalytic filter for all airborne microorganisms. High humidity decreased photocatalysis efficacy. Increasing TiO2 loading or irradiance intensity did not substantially affect its disinfection capability. The high efficiency particulate air filter is used widely to remove particulates and microorganisms from the air stream. However, the filter may become a source of microbes if those retained microorganisms proliferate and re-entrain back into the filtered air. This study demonstrates that such a problem can be handled effectively by using photocatalytic reactions to inactivate those confined microorganisms. A 60-100% microbe reduction can be achieved for a wide variety of microorganisms to provide better indoor air quality for hospitals, offices, and domestic applications.
Cheng, C H; Cheung, C S; Chan, T L; Lee, S C; Yao, C D
2008-01-15
Experiments were conducted on a 4-cylinder direct-injection diesel engine with fumigation methanol injected into the air intake of each cylinder. The fumigation methanol was injected to top up 10%, 20% and 30% of the power output under different engine operating conditions. The effects of fumigation methanol on engine performance, gaseous emissions and particulate emission were investigated. The experimental results show that there is a decrease in the brake thermal efficiency when fumigation methanol is applied, except at the highest load of 0.67 MPa. At low loads, the brake thermal efficiency decreases with increase in fumigation methanol; but at high loads, it increases with increase in fumigation methanol. The fumigation method results in a significant increase in hydrocarbon (HC), carbon monoxide (CO), and nitrogen dioxide (NO(2)) emissions. The concentration of nitrogen oxides (NOx) is significantly reduced except at close to full load condition. There is also a reduction in the smoke opacity and the particulate matter (PM) mass concentration. For the submicron particles, the total number of particles decreases at low and medium loads but increases at high loads. In all cases, there is a shift of the particles towards smaller geometrical mean diameter, especially at high loads. The increase in nano-sized particles and the increase in NO(2) emission could have serious impact on human health.
Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J
2017-10-03
Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.
Wang, Qian; Hisatomi, Takashi; Suzuki, Yohichi; Pan, Zhenhua; Seo, Jeongsuk; Katayama, Masao; Minegishi, Tsutomu; Nishiyama, Hiroshi; Takata, Tsuyoshi; Seki, Kazuhiko; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari
2017-02-01
Development of sunlight-driven water splitting systems with high efficiency, scalability, and cost-competitiveness is a central issue for mass production of solar hydrogen as a renewable and storable energy carrier. Photocatalyst sheets comprising a particulate hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) embedded in a conductive thin film can realize efficient and scalable solar hydrogen production using Z-scheme water splitting. However, the use of expensive precious metal thin films that also promote reverse reactions is a major obstacle to developing a cost-effective process at ambient pressure. In this study, we present a standalone particulate photocatalyst sheet based on an earth-abundant, relatively inert, and conductive carbon film for efficient Z-scheme water splitting at ambient pressure. A SrTiO 3 :La,Rh/C/BiVO 4 :Mo sheet is shown to achieve unassisted pure-water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency (STH) of 1.2% at 331 K and 10 kPa, while retaining 80% of this efficiency at 91 kPa. The STH value of 1.0% is the highest among Z-scheme pure water splitting operating at ambient pressure. The working mechanism of the photocatalyst sheet is discussed on the basis of band diagram simulation. In addition, the photocatalyst sheet split pure water more efficiently than conventional powder suspension systems and photoelectrochemical parallel cells because H + and OH - concentration overpotentials and an IR drop between the HEP and OEP were effectively suppressed. The proposed carbon-based photocatalyst sheet, which can be used at ambient pressure, is an important alternative to (photo)electrochemical systems for practical solar hydrogen production.
USDA-ARS?s Scientific Manuscript database
Particulate matter emitted from tunnel-ventilated animal feeding operations (AFOs) is known to transport malodorous compounds. As a mitigation strategy, vegetative environmental buffers (VEBs) are often installed surrounding AFOs to capture particulates and induce lofting and dispersion. Currently, ...
Straight-Pore Microfilter with Efficient Regeneration
NASA Technical Reports Server (NTRS)
Liu, Han; LaConti, Anthony B.; McCallum. Thomas J.; Schmitt, Edwin W.
2010-01-01
A novel, high-efficiency gas particulate filter has precise particle size screening, low pressure drop, and a simple and fast regeneration process. The regeneration process, which requires minimal material and energy consumption, can be completely automated, and the filtration performance can be restored within a very short period of time. This filter is of a novel material composite that contains the support structure and a novel coating.
Code of Federal Regulations, 2013 CFR
2013-07-01
... filters used are specified to have a minimum collection efficiency of 99 percent for 0.3 µm (DOP... electronic timers have much better set-point resolution than mechanical timers, but require a battery backup... Collection efficiency: 99 percent minimum as measured by the DOP test (ASTM-2986) for particles of 0.3 µm...
Code of Federal Regulations, 2014 CFR
2014-07-01
... filters used are specified to have a minimum collection efficiency of 99 percent for 0.3 µm (DOP... electronic timers have much better set-point resolution than mechanical timers, but require a battery backup... Collection efficiency: 99 percent minimum as measured by the DOP test (ASTM-2986) for particles of 0.3 µm...
NASA Astrophysics Data System (ADS)
Gaston, Cassandra J.; Lopez-Hilfiker, Felipe D.; Whybrew, Lauren E.; Hadley, Odelle; McNair, Fran; Gao, Honglian; Jaffe, Daniel A.; Thornton, Joel A.
2016-08-01
We present on-line molecular composition measurements of wintertime particulate matter (PM) during 2014 using an iodide-adduct high-resolution, time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO). These measurements were part of an intensive effort to characterize PM in the region with a focus on ultrafine particle sources. The technique was used to detect and quantify different classes of wood burning tracers, including levoglucosan, methoxyphenols, and nitrocatechols, among other compounds in near real-time. During the campaign, particulate mass concentrations of compounds with the same molecular composition as levoglucosan ranged from 0.002 to 19 μg/m3 with a median mass concentration of 0.9 μg/m3. Wood burning markers, in general, showed a strong diurnal pattern peaking at night and in the early morning. This diurnal profile combined with cold, stagnant conditions, wind directions from predominantly residential areas, and observations of lower combustion efficiency at night support residential wood burning as a dominant source of wintertime PM in Port Angeles. This finding has implications for improving wintertime air quality in the region by encouraging the use of high efficiency wood-burning stoves or other cleaner home heating options throughout the relevant domain.
High-throughput liquid-absorption air-sampling apparatus and methods
Zaromb, Solomon
2000-01-01
A portable high-throughput liquid-absorption air sampler [PHTLAAS] has an asymmetric air inlet through which air is drawn upward by a small and light-weight centrifugal fan driven by a direct current motor that can be powered by a battery. The air inlet is so configured as to impart both rotational and downward components of motion to the sampled air near said inlet. The PHTLAAS comprises a glass tube of relatively small size through which air passes at a high rate in a swirling, highly turbulent motion, which facilitates rapid transfer of vapors and particulates to a liquid film covering the inner walls of the tube. The pressure drop through the glass tube is <10 cm of water, usually <5 cm of water. The sampler's collection efficiency is usually >20% for vapors or airborne particulates in the 2-3.mu. range and >50% for particles larger than 4.mu.. In conjunction with various analyzers, the PHTLAAS can serve to monitor a variety of hazardous or illicit airborne substances, such as lead-containing particulates, tritiated water vapor, biological aerosols, or traces of concealed drugs or explosives.
Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways
Luoma, S.N.; Johns, C.; Fisher, N.S.; Steinberg, N.A.; Oremland, R.S.; Reinfelder, J.R.
1992-01-01
Particulate organo-Se was assimilated with 86% efficiency by the deposit feeding bivalve Macoma balthica, when the clam was fed 75Se-labeled diatoms. Absorption efficiencies of participate elemental Se were 22%, when the animals were fed 75Se-labeled sediments in which elemental Se was precipitated by microbial dissimilatory reduction. Precipitation of elemental Se did not eliminate biological availability of the element. Selenite was taken up from solution slowly by M. balthica (mean concentration factor was 712). Concentrations of selenite high enough to influence Se bioaccumulation by M. balthica did not occur in the oxidized water column of San Francisco Bay. However, 98-99% of the Se observed in M. balthica could be explained by ingestion of the concentrations of participate Se found in the bay. The potential for adverse biological effects occurred at much lower concentrations of environmental Se when food web transfer was considered than when predictions of effects were based upon bioassays with solute forms of the element. Selenium clearly requires a protective criterion based upon particulate concentrations or food web transfer. ?? 1992 American Chemical Society.
Mathaes, Roman; Winter, Gerhard; Siahaan, Teruna J; Besheer, Ahmed; Engert, Julia
2015-08-01
Modern subunit vaccines have many benefits compared to live vaccines such as convenient and competitive large scale production, better reproducibility and safety. However, the poor immunogenicity of subunit vaccines usually requires the addition of potent adjuvants or drug delivery vehicles. Accordingly, researchers are investigating different adjuvants and particulate vaccine delivery vehicles to boost the immunogenicity of subunit vaccines. Despite the rapidly growing knowledge in this field, a comparison of different adjuvants is sparsely found. Until today, little is known about efficient combinations of the different adjuvants and particulate vaccine delivery vehicles. In this study we compared three adjuvants with respect to their immune stimulatory potential and combined them with different particulate vaccine delivery vehicles. For this reason, we investigated two types of polyI:C and a CL264 base analogue and combined these adjuvants with differently sized and shaped particulate vaccine delivery vehicles. A high molecular weight polyI:C combined with a spherical nano-sized particulate vaccine delivery vehicle promoted the strongest dendritic cells activation. Copyright © 2015 Elsevier B.V. All rights reserved.
Jernigan, J A; Adal, K A; Anglim, A M; Byers, K E; Farr, B M
1994-12-01
In 1990, the Centers for Disease Control and Prevention recommended substituting dust-mist particulate respirators for simple isolation masks in acid-fast bacillus isolation rooms, reasoning that air leaks around the simple masks could result in a higher rate of purified protein derivative skin-test conversion. In 1993, a Centers for Disease Control and Prevention draft guideline proposed that high-efficiency particulate air filter respirators be used instead of dust-mist particulate respirators. Epidemiologic data were not available to assess the importance of these changes or their cost-effectiveness. The University of Virginia was affiliated with a tuberculosis hospital from 1979 until 1987. We surveyed physicians who had served as residents in internal medicine during this period regarding purified protein derivative skin-test history. duration of work at the tuberculosis sanatorium, and any history of unprotected exposures to patients with active pulmonary or laryngeal tuberculosis. Patients with active tuberculosis at the sanatorium were isolated in negative-pressure rooms with UV lights. Physicians wore simple isolation masks in these rooms. Responses were received from 83 former resident physicians. Fifty-two physicians had worked on the tuberculosis wards for a total of 420 weeks, with no subsequent skin-test conversions (95% CI 0 to 1 conversion/8 physician-years). These data document a low risk of occupational transmission of Mycobacterium tuberculosis to physicians who wear simple isolation masks in negative-pressure ventilation rooms with UV lights. This low rate predicts that the additional protective efficacy and cost-effectiveness of the more expensive high-efficiency particulate air filter respirators and the respiratory protection program will be low.
Barn, Prabjit K; Elliott, Catherine T; Allen, Ryan W; Kosatsky, Tom; Rideout, Karen; Henderson, Sarah B
2016-11-25
Landscape fires can produce large quantities of smoke that degrade air quality in both remote and urban communities. Smoke from these fires is a complex mixture of fine particulate matter and gases, exposure to which is associated with increased respiratory and cardiovascular morbidity and mortality. The public health response to short-lived smoke events typically advises people to remain indoors with windows and doors closed, but does not emphasize the use of portable air cleaners (PAC) to create private or public clean air shelters. High efficiency particulate air filters and electrostatic precipitators can lower indoor concentrations of fine particulate matter and improve respiratory and cardiovascular outcomes. We argue that PACs should be at the forefront of the public health response to landscape fire smoke events.
NASA Astrophysics Data System (ADS)
Lam, Phoebe J.; Doney, Scott C.; Bishop, James K. B.
2011-09-01
We have compiled a global data set of 62 open ocean profiles of particulate organic carbon (POC), CaCO3, and opal concentrations collected by large volume in situ filtration in the upper 1000 m over the last 30 years. We define concentration-based metrics for the strength (POC concentration at depth) and efficiency (attenuation of POC with depth in the mesopelagic) of the biological pump. We show that the strength and efficiency of the biological pump are dynamic and are characterized by a regime of constant and high transfer efficiency at low to moderate surface POC and a bloom regime where the height of the bloom is characterized by a weak deep biological pump and low transfer efficiency. The variability in POC attenuation length scale manifests in a clear decoupling between the strength of the shallow biological pump (e.g., POC at the export depth) and the strength of the deep biological pump (POC at 500 m). We suggest that the paradigm of diatom-driven export production is driven by a too restrictive perspective on upper mesopelagic dynamics. Indeed, our full mesopelagic analysis suggests that large, blooming diatoms have low transfer efficiency and thus may not export substantially to depth; rather, our analysis suggests that ecosystems characterized by smaller cells and moderately high %CaCO3 have a high mesopelagic transfer efficiency and can have higher POC concentrations in the deep mesopelagic even with relatively low surface or near-surface POC. This has negative implications for the carbon sequestration prospects of deliberate iron fertilization.
Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02160.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, M.; Bergman, W.
2017-08-25
The technical objective of this project was to develop a ceramic HEPA filter technology, by initially producing and testing coupon ceramics, small scale prototypes, and full scale prototype HEPA filters, and to address relevant manufacturing and commercialization technical issues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... respirators when they experience eye irritation. (C) Provide HEPA filters for powered and non-powered air.... High-efficiency particulate air (HEPA) filter means a filter capable of trapping and retaining at least..., the employer shall sample the employee(s) expected to have the highest cadmium exposures. (2) Specific...
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Emergency lighting. Emergency lighting units with at least an 8-hour battery power supply shall be provided..., combustible and flammable gases and liquids, high efficiency particulate air and charcoal filters, dry ion...
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Emergency lighting. Emergency lighting units with at least an 8-hour battery power supply shall be provided..., combustible and flammable gases and liquids, high efficiency particulate air and charcoal filters, dry ion...
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Emergency lighting. Emergency lighting units with at least an 8-hour battery power supply shall be provided..., combustible and flammable gases and liquids, high efficiency particulate air and charcoal filters, dry ion...
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Emergency lighting. Emergency lighting units with at least an 8-hour battery power supply shall be provided..., combustible and flammable gases and liquids, high efficiency particulate air and charcoal filters, dry ion...
EVALUATION OF TWO CLEANING METHODS FOR THE REMOVAL OF ASBESTOS FIBERS FROM CARPET
This research study examined the effectiveness of dry vacuuming and wet cleaning for the removal of asbestos fibers from carpet, and evaluated the potential for fiber reentrainment during carpet cleaning activities. outine carpet cleaning operations using high-efficiency particul...
Fleischman, Rafael; Amiel, Ran; Czerwinski, Jan; Mayer, Andreas; Tartakovsky, Leonid
2018-05-01
Retrofitting older vehicles with diesel particulate filter (DPF) is a cost-effective measure to quickly and efficiently reduce particulate matter emissions. This study experimentally analyzes real-world performance of buses retrofitted with CRT DPFs. 18 in-use Euro III technology urban and intercity buses were investigated for a period of 12months. The influence of the DPF and of the vehicle natural aging on buses fuel economy are analyzed and discussed. While the effect of natural deterioration is about 1.2%-1.3%, DPF contribution to fuel economy penalty is found to be 0.6% to 1.8%, depending on the bus type. DPF filtration efficiency is analyzed throughout the study and found to be in average 96% in the size range of 23-560nm. Four different load and non-load engine operating modes are investigated on their appropriateness for roadworthiness tests. High idle is found to be the most suitable regime for PN diagnostics considering particle number filtration efficiency. Copyright © 2017. Published by Elsevier B.V.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., that has end-use functions that depend in whole or in part on its shape or design during end use, and... Element delegates his or her functions under this part. High-efficiency particulate air (HEPA) filter... in this part: Action level means the level of airborne concentration of beryllium established...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., that has end-use functions that depend in whole or in part on its shape or design during end use, and... Element delegates his or her functions under this part. High-efficiency particulate air (HEPA) filter... in this part: Action level means the level of airborne concentration of beryllium established...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., that has end-use functions that depend in whole or in part on its shape or design during end use, and... Element delegates his or her functions under this part. High-efficiency particulate air (HEPA) filter... in this part: Action level means the level of airborne concentration of beryllium established...
ERIC Educational Resources Information Center
Rathey, Allen
2006-01-01
Poor indoor air quality in school facilities can detract from the health and productivity of students, teachers and other employees. Asthma--often triggered or aggravated by dust--is the No. 1 cause of chronic absenteeism in schools. Using vacuum cleaners equipped with high-efficiency particulate air (HEPA) filters to clean education institutions…
NASA Astrophysics Data System (ADS)
Roca-Martí, Montserrat; Puigcorbé, Viena; Iversen, Morten H.; van der Loeff, Michiel Rutgers; Klaas, Christine; Cheah, Wee; Bracher, Astrid; Masqué, Pere
2017-04-01
Carbon fixation by phytoplankton plays a key role in the uptake of atmospheric CO2 in the Southern Ocean. Yet, it still remains unclear how efficiently the particulate organic carbon (POC) is exported and transferred from ocean surface waters to depth during phytoplankton blooms. In addition, little is known about the processes that control the flux attenuation within the upper twilight zone. Here, we present results of downward POC and particulate organic nitrogen fluxes during the decline of a vast diatom bloom in the Atlantic sector of the Southern Ocean in summer 2012. We used thorium-234 (234Th) as a particle tracer in combination with drifting sediment traps (ST). Their simultaneous use evidenced a sustained high export rate of 234Th at 100 m depth in the weeks prior to and during the sampling period. The entire study area, of approximately 8000 km2, showed similar vertical export fluxes in spite of the heterogeneity in phytoplankton standing stocks and productivity, indicating a decoupling between production and export. The POC fluxes at 100 m were high, averaging 26±15 mmol C m-2 d-1, although the strength of the biological pump was generally low. Only <20% of the daily primary production reached 100 m, presumably due to an active recycling of carbon and nutrients. Pigment analyses indicated that direct sinking of diatoms likely caused the high POC transfer efficiencies ( 60%) observed between 100 and 300 m, although faecal pellets and transport of POC linked to zooplankton vertical migration might have also contributed to downward fluxes.
NASA Astrophysics Data System (ADS)
Lemaitre, N.; Planquette, H.; Dehairs, F.; van der Merwe, P.; Bowie, A. R.; Trull, T. W.; Laurenceau-Cornec, E. C.; Davies, D.; Bollinger, C.; Le Goff, M.; Grossteffan, E.; Planchon, F.
2016-11-01
The Kerguelen Plateau is characterized by a naturally Fe-fertilized phytoplankton bloom that extends more than 1000 km downstream in the Antarctic Circumpolar Current. During the KEOPS2 study, in austral spring, we measured particulate nitrogen (PN), biogenic silica (BSi) and particulate iron (PFe) export fluxes in order to investigate how the natural fertilization impacts the stoichiometry and the magnitude of export fluxes and therefore the efficiency of the biological carbon pump. At 9 stations, we estimated elemental export fluxes based on element concentration to 234Th activity ratios for particulate material collected with in-situ pumps and 234Th export fluxes (Planchon et al., 2015). This study revealed that the natural Fe-fertilization increased export fluxes but to variable degrees. Export fluxes for the bloom impacted area were compared with those of a high-nutrient, low-chlorophyll (HNLC), low-productive reference site located to the south-west of Kerguelen and which had the lowest BSi and PFe export fluxes (2.55 mmol BSi m-2 d-1 and 1.92 μmol PFem-2 d-1) and amongst the lowest PN export flux (0.73 mmol PN m-2 d-1). The impact of the Fe fertilization was the greatest within a meander of the polar front (PF), to the east of Kerguelen, with fluxes reaching 1.26 mmol PN m-2 d-1; 20.4 mmol BSi m-2 d-1 and 22.4 μmol PFe m-2 d-1. A highly productive site above the Kerguelen Plateau, on the contrary, was less impacted by the fertilization with export fluxes reaching 0.72 mmol PN m-2 d-1; 4.50 mmol BSi m-2 d-1 and 21.4 μmol PFe m-2 d-1. Our results suggest that ecosystem features (i.e. type of diatom community) could play an important role in setting the magnitude of export fluxes of these elements. Indeed, for the PF meander, the moderate productivity was sustained by the presence of large and strongly silicified diatom species while at the higher productivity sites, smaller and slightly silicified diatoms dominated. Interestingly, our results suggest that PFe export fluxes can be driven by the lithogenic pool of particles, especially over the Plateau where such inputs from the sediments are important. Finally, for the Plateau and the PF meander, the comparison between PFe export and the particulate PFe stock integrated over the mixed layer depth revealed an efficient PFe export out of the mixed layer at these sites. Export efficiencies (i.e. the ratio between export and uptake) exhibit a very efficient silica pump especially at the HNLC reference station where heavily silicified diatoms were present. On the contrary, the increase with depth of the C:N ratio and the low nitrogen export efficiencies support the idea of a strong remineralization and nitrification activity.
Zhao, Dan; Azimi, Parham; Stephens, Brent
2015-01-01
Much of human exposure to fine particulate matter (PM2.5) of outdoor origin occurs in residences. High-efficiency particle air filtration in central heating, ventilating, and air-conditioning (HVAC) systems is increasingly being used to reduce concentrations of particulate matter inside homes. However, questions remain about the effectiveness of filtration for reducing exposures to PM2.5 of outdoor origin and adverse health outcomes. Here we integrate epidemiology functions and mass balance modeling to estimate the long-term health and economic impacts of HVAC filtration for reducing premature mortality associated with indoor PM2.5 of outdoor origin in residences. We evaluate 11 classifications of filters (MERV 5 through HEPA) using six case studies of single-family home vintages and ventilation system combinations located in 22 U.S. cities. We estimate that widespread use of higher efficiency filters would reduce premature mortality by 0.002–2.5% and increase life expectancy by 0.02–1.6 months, yielding annual monetary benefits ranging from $1 to $1348 per person in the homes and locations modeled herein. Large differences in the magnitude of health and economic impacts are driven largely by differences in rated filter efficiency and building and ventilation system characteristics that govern particle infiltration and persistence, with smaller influences attributable to geographic location. PMID:26197328
Zhao, Dan; Azimi, Parham; Stephens, Brent
2015-07-21
Much of human exposure to fine particulate matter (PM2.5) of outdoor origin occurs in residences. High-efficiency particle air filtration in central heating, ventilating, and air-conditioning (HVAC) systems is increasingly being used to reduce concentrations of particulate matter inside homes. However, questions remain about the effectiveness of filtration for reducing exposures to PM2.5 of outdoor origin and adverse health outcomes. Here we integrate epidemiology functions and mass balance modeling to estimate the long-term health and economic impacts of HVAC filtration for reducing premature mortality associated with indoor PM2.5 of outdoor origin in residences. We evaluate 11 classifications of filters (MERV 5 through HEPA) using six case studies of single-family home vintages and ventilation system combinations located in 22 U.S. cities. We estimate that widespread use of higher efficiency filters would reduce premature mortality by 0.002-2.5% and increase life expectancy by 0.02-1.6 months, yielding annual monetary benefits ranging from $1 to $1348 per person in the homes and locations modeled herein. Large differences in the magnitude of health and economic impacts are driven largely by differences in rated filter efficiency and building and ventilation system characteristics that govern particle infiltration and persistence, with smaller influences attributable to geographic location.
Lam, K S; Chan, F S; Fung, W Y; Lui, B S S; Lau, L W L
2006-04-01
A study was carried out to investigate the feasibility of achieving ultra low respirable suspended particulates (RSP) in commercial offices without major modification of existing ventilation systems by enhancing the particulates removal efficiency of existing central ventilation systems. Four types of filters which include pre-filters, cartridge filters, bag filters and high efficiency particulates air (HEPA) filters were tested in a commercial building in Causeway Bay. The results show that an RSP objective of <20 microg/m3 could be met by removing RSP from both the return air and outdoor air supply simultaneously. This level of performance is classed as 'excellent' by the Hong Kong Government, Environmental Protection Department. Filters with efficiency that exceed 80% placed both in the return air and outdoor air were sufficient to meet the objective. It is not necessary to install HEPA filters to achieve the 'excellent' class. The outdoor air filter has great influence on the steady state indoor RSP concentration while the effective cleaning rate is governed by the return air filter. Higher efficiency filters increased the static drop but the volume flow of the air fan was not affected significantly. The additional cost incurred was <5% of the existing operation cost. This paper reports a field study of RSP control for an indoor office environment. The results are directly applicable to building service engineering in the design of ventilation systems using air-handling units. Field observations indicated that indoor RSP in an office environment could be suppressed below 20 microg/m3 within 1 h by the simultaneous filtration of outdoor air and return air. Outdoor air filtration has a great influence on the steady state indoor concentration and return air filtration governs the cleaning rate. It is believed that the results of this study could be extended to the cleaning of other indoor pollutants such as volatile organic compounds.
ERIC Educational Resources Information Center
Rathey, Allen
2005-01-01
In this article, the author discusses several myths about vacuum cleaners and offers tips on evaluating and purchasing this essential maintenance tool. These myths are: (1) Amps mean performance; (2) Everyone needs high-efficiency particulate air (HEPA): (3) Picking up a "bowling ball" shows cleaning power; (4) All vacuum bags are the same; (5)…
NASA Astrophysics Data System (ADS)
Kabrein, H.; Hariri, A.; Leman, A. M.; Noraini, N. M. R.; Yusof, M. Z. M.; Afandi, A.
2017-09-01
Heating ventilation and air conditioning system (HVAC) is very important for offices building and human health. The combining filter method was used to reduce the air pollution indoor such as that particulate matter and gases pollution that affected in health and productivity. Using particle filters in industrial HVAC systems (factories and manufacturing process) does not enough to remove all the indoor pollution. The main objective of this study is to investigate the impact of combination filters for particle and gases removal efficiency. The combining method is by using two filters (particulate filter pre-filter and carbon filter) to reduce particle matter and gases respectively. The purpose of this study is to use minimum efficiency reporting value (MERV filter) rating 13 and activated carbon filter (ACF) to remove indoor air pollution and controlling the air change rate to enhance the air quality and energy saving. It was concluded that the combination filter showed good removal efficiency of particle up to 90.76% and 89.25% for PM10 and PM2.5 respectively. The pressure drop across the filters was small compared with the high-efficiency filters. The filtration efficiency of combination filters after three months’ was better than efficiency by the new MERV filter alone.
Chang, Chang-Tang; Chang, Yu-Min; Lin, Wen-Yinn; Wu, Ming-Ching
2010-10-01
Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (< 100 microm) concentrations at the boundary of gravel sites ranged from 280 to 1290 microg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 microg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 microg/m3, were also above the daily air quality standard of 125 microg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 microg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 microm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.
Schantz, Michele M; McGaw, Elizabeth; Wise, Stephen A
2012-10-02
Four particulate matter Standard Reference Materials (SRMs) available from the National Institute of Standards and Technology (NIST) were used to evaluate the effect of solvent, number of static cycles and static times, pressure, and temperature when using pressurized liquid extraction (PLE) for the extraction of polycyclic aromatic hydrocarbons (PAHs) and nitrated-PAHs. The four materials used in the study were SRM 1648a Urban Particulate Matter, SRM 1649b Urban Dust, SRM 1650b Diesel Particulate Matter, and SRM 2975 Diesel Particulate Matter (Industrial Forklift). The results from the study indicate that the choice of solvent, dichloromethane compared to toluene and toluene/methanol mixtures, had little effect on the extraction efficiency. With three to five extraction cycles, increasing the extraction time for each cycle from 5 to 30 min had no significant effect on the extraction efficiency. The differences in extraction efficiency were not significant (with over 95% of the differences being <10%) when the pressure was increased from 13.8 to 20.7 MPa. The largest increase in extraction efficiency occurred for selected PAHs when the temperature of extraction was increased from 100 to 200 °C. At 200 °C naphthalene, biphenyl, fluorene, dibenzothiophene, and anthracene show substantially higher mass fractions (>30%) than when extracted at 100 °C in all the SRMs studied. For SRM 2975, large increases (>100%) are also observed for some other PAHs including benz[a]anthracene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, benzo[ghi]perylene, and benzo[b]chrysene when extracted at the higher temperatures; however, similar trends were not observed for the other diesel particulate sample, SRM 1650b. The results are discussed in relation to the use of the SRMs for evaluating analytical methods.
Fan, Yuchen; Moon, James J.
2016-01-01
Bioterrorism agents that can be easily transmitted with high mortality rates and cause debilitating diseases pose major threats to national security and public health. The recent Ebola virus outbreak in West Africa and ongoing Zika virus outbreak in Brazil, now spreading throughout Latin America, are case examples of emerging infectious pathogens that have incited widespread fear and economic and social disruption on a global scale. Prophylactic vaccines would provide effective countermeasures against infectious pathogens and biological warfare agents. However, traditional approaches relying on attenuated or inactivated vaccines have been hampered by their unacceptable levels of reactogenicity and safety issues, whereas subunit antigen-based vaccines suffer from suboptimal immunogenicity and efficacy. In contrast, particulate vaccine delivery systems offer key advantages, including efficient and stable delivery of subunit antigens, co-delivery of adjuvant molecules to bolster immune responses, low reactogenicity due to the use of biocompatible biomaterials, and robust efficiency to elicit humoral and cellular immunity in systemic and mucosal tissues. Thus, vaccine nanoparticles and microparticles are promising platforms for clinical development of biodefense vaccines. In this review, we summarize the current status of research efforts to develop particulate vaccine delivery systems against bioterrorism agents and emerging infectious pathogens. PMID:27038091
NASA Astrophysics Data System (ADS)
Chen, Liping; Guo, Yi; Peng, Xinsheng
2017-10-01
Particulate matter (PM2.5) pollution in air seriously affects public health. However, both bulk thickness and the accumulation of PM particles typically lead to a quick decline in the air permeability and large pressure drops of the conventional air clean membranes. In this work, we choose cellulose nanofibers (CNFs, a low cost, biodegradable and sustainable material) to form a hydrophobic and porous CNF thin layer on a stainless steel screen (300 mesh with pore size of 48 µm) through a simple filtration-assisted gelation process and subsequent polydimethylsiloxane modification. The prepared hydrophobic CNFs/stainless steel screen demonstrates highly efficient PM2.5 blocking based on size-sieving effect, fast air permeability and long-term durability under natural ventilation conditions in the relative humidity range from 45% to 93%. This technique holds great potential for indoor PM2.5 blocking under natural ventilation conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jiying; Reardon, Patrick; McKinley, James P.
Particulate phosphorus (PP) in the water column is an essential component of phosphorus (P) cycling in aquatic ecosystems yet its composition and transformations remain largely uncharacterized. To understand the roles of suspended particulates on regeneration of inorganic P (Pi) into the water column as well as sequestration into more stable mineral precipitates, we studied seasonal variation in both organic and inorganic P speciation in suspended particles in three sites in the Chesapeake Bay using sequential P extraction, 1D (31P) and 2D (1H-31P) nuclear magnetic resonance (NMR) spectroscopies, and electron microprobe analyses (EMPA). Remineralization efficiency of particulate P average 8% andmore » 56% in shallow and deep sites respectively, suggesting the importance of PP remineralization is in resupplying water column Pi. Strong temporal and spatial variability of organic P composition, distributions, and remineralization efficiency were observed relating to water column parameters such as temperature and redox conditions: concentration of orthophosphate monoesters and diesters, and diester-to-monoester (D/M) ratios decreased with depth. Both esters and the D/M ratios were lower in the hypoxic July and September. In contrast, pyrophosphate and orthophosphate increased with depth, and polyphosphates was high in the anoxic water column. Sequential extraction and EMPA analyses of the suspended particles suggest presence of Ca-bound phosphate in the water column. We hypothesize authigenic precipitation of carbonate fluorapatite and/or its precursor mineral(s) in Pi rich water column, supported by our thermodynamic calculations. Our results, overall, reveal the important role suspended particles play in P remineralization and P sequestration in the Chesapeake Bay water column, provide important implications on P bioavailability and P sinks in similar eutrophic coastal environments.« less
Flight prototype regenerative particulate filter system development
NASA Technical Reports Server (NTRS)
Green, D. C.; Garber, P. J.
1974-01-01
The effort to design, fabricate, and test a flight prototype Filter Regeneration Unit used to regenerate (clean) fluid particulate filter elements is reported. The design of the filter regeneration unit and the results of tests performed in both one-gravity and zero-gravity are discussed. The filter regeneration unit uses a backflush/jet impingement method of regenerating fluid filter elements that is highly efficient. A vortex particle separator and particle trap were designed for zero-gravity use, and the zero-gravity test results are discussed. The filter regeneration unit was designed for both inflight maintenance and ground refurbishment use on space shuttle and future space missions.
Microbiological evaluation of the mobile biological isolator system
NASA Technical Reports Server (NTRS)
Taylor, D. M.; Morelli, F.; Neiderheiser, W.; Tratz, W. M.
1979-01-01
Evaluations on critical components of the mobile biological isolation system were performed. High efficiency particulate air filter efficiency and suit integrity were found to withstand repeated ethylene oxide (ETO) sterilizations. The minimum ETO sterilization time required to inactivate all contaminant organisms was established at four hours. Two days of aerating at 120 F was found to dissipate all harmful ETO residuals from the suit. Donning and doffing procedures were clarified and written specifically for isolation rooms.
40 CFR 721.10411 - Alkanenitrile, bis(cyanoalkyl)amino (generic) (P-07-537).
Code of Federal Regulations, 2012 CFR
2012-07-01
... with N100 (if oil aerosols absent), R100, or P100 filters; NIOSH-certified powered air-purifying respirator equipped with a loose- fitting hood or helmet and high efficiency particulate air (HEPA) filters... HEPA filters; or NIOSH-certified supplied-air respirator operated in pressure demand or continuous flow...
40 CFR 721.10411 - Alkanenitrile, bis(cyanoalkyl)amino (generic) (P-07-537).
Code of Federal Regulations, 2013 CFR
2013-07-01
... with N100 (if oil aerosols absent), R100, or P100 filters; NIOSH-certified powered air-purifying respirator equipped with a loose- fitting hood or helmet and high efficiency particulate air (HEPA) filters... HEPA filters; or NIOSH-certified supplied-air respirator operated in pressure demand or continuous flow...
40 CFR 721.10411 - Alkanenitrile, bis(cyanoalkyl)amino (generic) (P-07-537).
Code of Federal Regulations, 2014 CFR
2014-07-01
... with N100 (if oil aerosols absent), R100, or P100 filters; NIOSH-certified powered air-purifying respirator equipped with a loose- fitting hood or helmet and high efficiency particulate air (HEPA) filters... HEPA filters; or NIOSH-certified supplied-air respirator operated in pressure demand or continuous flow...
Hepa filter dissolution process
Brewer, Ken N.; Murphy, James A.
1994-01-01
A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.
Particulate emissions from diesel engines: correlation between engine technology and emissions.
Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian
2014-03-07
In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the particulate emissions without a negative impact on the particulate-size distribution towards smaller particles. The residual particles can be trapped in a diesel particulate trap independent of their size or the engine operating mode. The usage of a wall-flow diesel particulate filter leads to an extreme reduction of the emitted particulate mass and number, approaching 100%. A reduced particulate mass emission is always connected to a reduced particle number emission.
Particulate emissions from diesel engines: correlation between engine technology and emissions
2014-01-01
In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted. Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions. Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the particulate emissions without a negative impact on the particulate-size distribution towards smaller particles. The residual particles can be trapped in a diesel particulate trap independent of their size or the engine operating mode. The usage of a wall-flow diesel particulate filter leads to an extreme reduction of the emitted particulate mass and number, approaching 100%. A reduced particulate mass emission is always connected to a reduced particle number emission. PMID:24606725
[Removal of volatile organic compounds in soils by soil vapor extraction (SVE)].
Yin, Fu-xiang; Zhang, Sheng-tian; Zhao, Xin; Feng, Ke; Lin, Yu-suo
2011-05-01
An experiment study has been carried out to investigate effects of the diameter of soil columns, the size of soil particulate and different contaminants on efficiency of simulated soil vapor extraction (SVE). Experiments with benzene, toluene, ethylbenzene and n-propylbenzene contaminated soils showed that larger bottom area/soil height (S/H) of the columns led to higher efficiency on removal of contaminants. Experiments with contaminated soils of different particulate size showed that the efficiency of SVE decreased with increases in soil particulate size, from 10 mesh to between 20 mesh and 40 mesh and removal of contaminants in soils became more difficult. Experiments with contaminated soils under different ventilation rates suggested that soil vapor extraction at a ventilation rate of 0.10 L x min(-1) can roughly remove most contaminants from the soils. Decreasing of contaminants in soils entered tailing stages after 12 h, 18 h and 48 h for benzene, toluene and ethylbenzene, respectively. Removal rate of TVOCs (Total VOCs) reached a level as high as 99.52%. The results of the experiment have indicated that molecule structure and properties of the VOCs are also important factors which have effects on removal rates of the contaminants. Increases in carbon number on the benzene ring, decreases in vapor pressure and volatile capability resulted in higher difficulties in soil decontamination. n-propylbenzene has a lower vapor pressure than toluene and ethylbenzene which led to a significant retard effect on desorption and volatilization of benzene and ethylbenzene.
Performance of a Retrofitted Multicyclone for PM2.5 Emission Control
NASA Astrophysics Data System (ADS)
Dewika, M.; Rashid, M.; Ammar, M. R.
2018-03-01
This paper presents on the performance of a retrofitted multicyclone system, which aims to increase the collection efficiency of PM2.5 (i.e. particulate size fraction ≤ 2.5 μm) emission. The multicyclone was retrofitted by extracting 15% and 20% of the total volumetric air flow rate at the dust hopper of the unit using an additional Induced Draft Fan. The total collection efficiency with and without the extraction was measured at various air volumetric flow rates and particulate mass inlet concentration. The results showed that there was a reduction of 12% to 54% depending on the inlet concentration of PM2.5 emission in the stack with compared to without extraction increasing the collection efficiency of the retrofitted multicyclone. The finding suggests that a simple technique of applying gas extraction at the dust hopper of a multicyclone as reported in this study able to increase the overall performance in fine particulate collection.
Liu, Zhihua; Ge, Yunshan; Tan, Jianwei; He, Chao; Shah, Asad Naeem; Ding, Yan; Yu, Linxiao; Zhao, Wei
2012-01-01
Two continuously regenerating diesel particulate filter (CRDPF) with different configurations and one particles oxidation catalyst (POC) were employed to perform experiments in a controlled laboratory setting to evaluate their effects on NO2, smoke and particle number emissions. The results showed that the application of the after-treatments increased the emission ratios of NO2/NOx significantly. The results of smoke emissions and particle number (PN) emissions indicated that both CRDPFs had sufficient capacity to remove more than 90% of total particulate matter (PM) and more than 97% of solid particles. However, the POC was able to remove the organic components of total PM, and only partially to remove the carbonaceous particles with size less than 30 nm. The negligible effects of POC on larger particles were observed due to its honeycomb structure leads to an inadequate residence time to oxidize the solid particles or trap them. The particles removal efficiencies of CRDPFs had high degree of correlations with the emission ratio of NO2/NOx. The PN emission results from two CRDPFs indicated that more NO2 generating in diesel oxidation catalyst section could obtain the higher removal efficiency of solid particles. However this also increased the risk of NO2 exposure in atmosphere.
Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla; ...
2018-01-03
The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla
The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less
Angela Romito; Susan Eggert; Jeffrey Diez; J. Wallace
2010-01-01
Despite their high abundance, secondary production, and known reliance on detrital material, the role of chironomids (Diptera) in fine particulate organic matter (FPOM) dynamics has not been well quantified. We conducted field trials using fluorescent pigment markers to estimate seasonal rates of consumption, annual secondary production, assimilation efficiency (AE),...
HEPA filter dissolution process
Brewer, K.N.; Murphy, J.A.
1994-02-22
A process is described for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal. 4 figures.
40 CFR 721.10583 - Benzenamine, 4,4′-[1,3-phenylenebis(1-methylethylidene)]bis-.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., tight-fitting half-face respirator equipped with N100 (if oil aerosols absent), R100, or P100 filters... aerosols absent), R100, or P100 filters. (C) NIOSH-certified powered air-purifying respirator equipped with a loose-fitting hood or helmet and high efficiency particulate air (HEPA) filters. (D) NIOSH...
40 CFR 721.10583 - Benzenamine, 4,4′-[1,3-phenylenebis(1-methylethylidene)]bis-.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., tight-fitting half-face respirator equipped with N100 (if oil aerosols absent), R100, or P100 filters... aerosols absent), R100, or P100 filters. (C) NIOSH-certified powered air-purifying respirator equipped with a loose-fitting hood or helmet and high efficiency particulate air (HEPA) filters. (D) NIOSH...
Pei, Si-Lu; Pan, Shu-Yuan; Li, Ye-Mei; Chiang, Pen-Chi
2017-09-19
A high-gravity carbonation process was deployed at a petrochemical plant using petroleum coke fly ash and blowdown wastewater to simultaneously mineralized CO 2 and remove nitrogen oxides and particulate matters from the flue gas. With a high-gravity carbonation process, the CO 2 removal efficiency was found to be 95.6%, corresponding to a capture capacity of 600 kg CO 2 per day, at a gas flow rate of 1.47 m 3 /min under ambient temperature and pressure. Moreover, the removal efficiency of nitrogen oxides and particulate matters was 99.1% and 83.2%, respectively. After carbonation, the reacted fly ash was further utilized as supplementary cementitious materials in the blended cement mortar. The results indicated that cement with carbonated fly ash exhibited superior compressive strength (38.1 ± 2.5 MPa at 28 days in 5% substitution ratio) compared to the cement with fresh fly ash. Furthermore, the environmental benefits for the high-gravity carbonation process using fly ash were critically assessed. The energy consumption of the entire high-gravity carbonation ranged from 80 to 169 kWh/t-CO 2 (0.29-0.61 GJ/t-CO 2 ). Compared with the scenarios of business-as-usual and conventional carbon capture and storage plant, the economic benefit from the high-gravity carbonation process was approximately 90 and 74 USD per ton of CO 2 fixation, respectively.
Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian
2016-07-01
Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for respirator users against DPM under all circumstances of diesel generated particles. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Development of super-clean diesel engine and combustor using nonthermal plasma hybrid aftertreatment
NASA Astrophysics Data System (ADS)
Okubo, Masaaki
2015-10-01
One of important and successful environmental applications of atmospheric-pressure corona discharge or plasma is electrostatic precipitator (ESP), which have been widely used for coal- or oil-fired boilers in electric power plants and particulate matter control emitted from industries such as glass melting furnace system, etc. In the ESPs, steady high voltage is usually applied to a pair of electrodes (at least, one of these has sharp edge). Unsteady pulsed high voltage is often applied for the collection of high-resistivity particulate matter (PM) to avoid reverse corona phenomena which reduce the collection efficiency of the ESPs. It was found that unsteady high voltage can treat hazardous gaseous components (NOx, SOx, hydrocarbon, and CO, etc.) in the exhaust gas, and researches were shifted from PM removal to hazardous gases aftertreatment with unsteady corona discharge induced plasmas. In the paper, recent results on diesel engine and industrial boiler emission controls are mainly reviewed among these our research topics.
Investigation of the biofuel flue and producer gases cleaning efficiency using ESP
NASA Astrophysics Data System (ADS)
Poškas, Robertas; Sirvydas, Arūnas; Poškas, Povilas; Striūgas, Nerijus; Pedišius, Nerijus; Valinčius, Vitas
2017-11-01
The use of biofuel has been increasing in Europe over the last years, and the reason for that is acceptable cost and the least negative impact on the environment. However, NOx and emissions of fine particulates are important, and biofuel is still a disadvantage compared to oil and natural gas fired systems. Usually, flue gas is filtered in multicyclones or fibre filters before discharge into the atmosphere. Yet, in the case of fine particulates, the filters of such type do not show high effectiveness, thus electrostatic precipitators are used. In this comparative study on biofuel (wood pellets), the collection efficiency of solid particles from a class 3 boiler (50 kW) and from a gasification unit (100 kW) was investigated. Although releases of solid particles from modern boilers are low, a combination of such a boiler with an electrostatic precipitator may reduce the releases of particles to the minimum, and the collection efficiency of the electrostatic precipitator obtained during the investigation was 98-99%. There is a big difference in particle concentrations comparing the systems with flue gas and producer gas. As the working conditions in the test section with producer gas were harder, it led to lower efficiency of the electrostatic precipitator ( 75%).
Cheung, C S; Zhu, Ruijun; Huang, Zuohua
2011-01-01
The effect of dimethyl carbonate (DMC) on the gaseous and particulate emissions of a diesel engine was investigated using Euro V diesel fuel blended with different proportions of DMC. Combustion analysis shows that, with the blended fuel, the ignition delay and the heat release rate in the premixed combustion phase increase, while the total combustion duration and the fuel consumed in the diffusion combustion phase decrease. Compared with diesel fuel, with an increase of DMC in the blended fuel, the brake thermal efficiency is slightly improved but the brake specific fuel consumption increases. On the emission side, CO increases significantly at low engine load but decreases at high engine load while HC decreases slightly. NO(x) reduces slightly but the reduction is not statistically significant, while NO(2) increases slightly. Particulate mass and number concentrations decrease upon using the blended fuel while the geometric mean diameter of the particles shifts towards smaller size. Overall speaking, diesel-DMC blends lead to significant improvement in particulate emissions while the impact on CO, HC and NO(x) emissions is small. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Suzuki, Yoshinari; Sato, Hikaru; Hiyoshi, Katsuhiro; Furuta, Naoki
2012-10-01
A new calibration system for real-time determination of trace elements in airborne particulates was developed. Airborne particulates were directly introduced into an inductively coupled plasma mass spectrometer, and the concentrations of 15 trace elements were determined by means of an external calibration method. External standard solutions were nebulized by an ultrasonic nebulizer (USN) coupled with a desolvation system, and the resulting aerosol was introduced into the plasma. The efficiency of sample introduction via the USN was calculated by two methods: (1) the introduction of a Cr standard solution via the USN was compared with introduction of a Cr(CO)6 standard gas via a standard gas generator and (2) the aerosol generated by the USN was trapped on filters and then analyzed. The Cr introduction efficiencies obtained by the two methods were the same, and the introduction efficiencies of the other elements were equal to the introduction efficiency of Cr. Our results indicated that our calibration method for introduction efficiency worked well for the 15 elements (Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Sn, Sb, Ba, Tl and Pb). The real-time data and the filter-collection data agreed well for elements with low-melting oxides (V, Co, As, Mo, Sb, Tl, and Pb). In contrast, the real-time data were smaller than the filter-collection data for elements with high-melting oxides (Ti, Cr, Mn, Ni, Cu, Zn, Sn, and Ba). This result implies that the oxides of these 8 elements were not completely fused, vaporized, atomized, and ionized in the initial radiation zone of the inductively coupled plasma. However, quantitative real-time monitoring can be realized after correction for the element recoveries which can be calculated from the ratio of real-time data/filter-collection data.
Further Examination of Biogeochemical Consequences of Mesoscale Eddies in the Sargasso Sea
NASA Astrophysics Data System (ADS)
Marquez, I. A., Jr.; Krause, J. W.; Lomas, M. W.
2016-02-01
The Bermuda Atlantic Time Series (BATS) is an ongoing 25-year biogeochemical record in the North Atlantic subtropical gyre. Contemporaneous data on the particulate phases of four major bioreactive elements, C, N, P, and Si only exist during two years and also for a companion project (Trophic BATS, i.e. TBATS). A combined dataset from BATS and TBATS was used to better understand the coupling of C, N, P, and Si in the Sargasso Sea by analyzing particulate phases of each element in the water column and exported material. Three conclusions are inferred: first, the effect of mesoscale eddies on standing stocks, export rates, and elemental coupling of C, N, P, and Si displays strong seasonality. Statistically significant differences between particulate water column and export ratios using internal and between site comparisons were robust in the summer only. Second, N, Si and particularly P were more efficiently recycled within the euphotic zones of eddies as elemental ratios in export material were greater than the corresponding ratios in the water column. This suggests that P may have a more critical biogeochemical role and its supply rate to the euphotic zone may control primary production in these closed systems. Third, the trends seen in these eddies do not support that export production was enhanced, instead these features had more efficient recycling of N, P, and Si relative to the BATS site. This decrease in export efficiency suggests a stimulation of export production above 'normal' BATS conditions within eddies would require significantly higher autotrophic standing stock and correspondingly high rates of organic matter production.
Phelps, T J; Palumbo, A V; Bischoff, B L; Miller, C J; Fagan, L A; McNeilly, M S; Judkins, R R
2008-07-01
Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 microm in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 microm filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 microm filters can potentially outperform the commercial filter by factors of 100-1,000 fold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Huifang; Lam, William; Remias, Joseph
Mobile source emissions standards are becoming more stringent and particulate emissions from gasoline direct injection (GDI) engines represent a particular challenge. Gasoline particulate filter (GPF) is deemed as one possible technical solution for particulate emissions reduction. In this work, a study was conducted on eight formulations of lubricants to determine their effect on GDI engine particulate emissions and GPF performance. Accelerated ash loading tests were conducted on a 2.4L GDI engine with engine oil injection in gasoline fuel by 2%. The matrix of eight formulations was designed with changing levels of sulfated ash (SASH) level, Zinc dialkyldithiophosphates (ZDDP) level andmore » detergent type. Comprehensive evaluations of particulates included mass, number, size distribution, composition, morphology and soot oxidation properties. GPF performance was assessed through filtration efficiency, back pressure and morphology. It was determined that oil formulation affects the particulate emission characteristics and subsequent GPF performance.« less
40 CFR 721.10575 - 1-Propanone, 1,1'-(oxydi-4,1-phenylene)bis[2-hydroxy-2-methyl-.
Code of Federal Regulations, 2013 CFR
2013-07-01
...), R100, or P100 filters. (B) NIOSH-certified air-purifying, tight-fitting full-face respirator equipped with N100 (if oil aerosols absent), R100, or P100 filters. (C) NIOSH-certified powered air-purifying respirator equipped with a loose-fitting hood or helmet and high efficiency particulate air (HEPA) filters...
40 CFR 721.10575 - 1-Propanone, 1,1'-(oxydi-4,1-phenylene)bis[2-hydroxy-2-methyl-.
Code of Federal Regulations, 2014 CFR
2014-07-01
...), R100, or P100 filters. (B) NIOSH-certified air-purifying, tight-fitting full-face respirator equipped with N100 (if oil aerosols absent), R100, or P100 filters. (C) NIOSH-certified powered air-purifying respirator equipped with a loose-fitting hood or helmet and high efficiency particulate air (HEPA) filters...
Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei
2014-11-01
Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Day, D B; Xiang, J; Mo, J; Clyde, M A; Weschler, C J; Li, F; Gong, J; Chung, M; Zhang, Y; Zhang, J
2018-05-01
High-efficiency particulate air (HEPA) filtration in combination with an electrostatic precipitator (ESP) can be a cost-effective approach to reducing indoor particulate exposure, but ESPs produce ozone. The health effect of combined ESP-HEPA filtration has not been examined. We conducted an intervention study in 89 volunteers. At baseline, the air-handling units of offices and residences for all subjects were comprised of coarse, ESP, and HEPA filtration. During the 5-week long intervention, the subjects were split into 2 groups, 1 with just the ESP removed and the other with both the ESP and HEPA removed. Each subject was measured for cardiopulmonary risk indicators once at baseline, twice during the intervention, and once 2 weeks after baseline conditions were restored. Measured indoor and outdoor PM 2.5 and ozone concentrations, coupled with time-activity data, were used to calculate exposures. Removal of HEPA filters increased 24-hour mean PM 2.5 exposure by 38 (95% CI: 31, 45) μg/m 3 . Removal of ESPs decreased 24-hour mean ozone exposure by 2.2 (2.0, 2.5) ppb. No biomarkers were significantly associated with HEPA filter removal. In contrast, ESP removal was associated with a -16.1% (-21.5%, -10.4%) change in plasma-soluble P-selectin and a -3.0% (-5.1%, -0.8%) change in systolic blood pressure, suggesting reduced cardiovascular risks. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana
2017-10-01
To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.
Koo, Won-Tae; Jang, Ji-Soo; Qiao, Shaopeng; Hwang, Wontae; Jha, Gaurav; Penner, Reginald M; Kim, Il-Doo
2018-06-13
Here, we propose heterogeneous nucleation-assisted hierarchical growth of metal-organic frameworks (MOFs) for efficient particulate matter (PM) removal. The assembly of two-dimensional (2D) Zn-based zeolite imidazole frameworks (2D-ZIF-L) in deionized water over a period of time produced hierarchical ZIF-L (H-ZIF-L) on hydrophilic substrates. During the assembly, the second nucleation and growth of ZIF-L occurred on the surface of the first ZIF-L, leading to the formation of flowerlike H-ZIF-L on the substrate. The flowerlike H-ZIF-L was easily synthesized on various substrates, namely, glass, polyurethane three-dimensional foam, nylon microfibers, and nonwoven fabrics. We demonstrated H-ZIF-L-assembled polypropylene microfibers as a washable membrane filter with highly efficient PM removal property (92.5 ± 0.8% for PM 2.5 and 99.5 ± 0.2% for PM 10 ), low pressure drop (10.5 Pa at 25 L min -1 ), long-term stability, and superior recyclability. These outstanding particle filtering properties are mainly attributed to the unique structure of the 2D-shaped H-ZIF-L, which is tightly anchored on individual fibers comprising the membrane.
Adam, T W; Chirico, R; Clairotte, M; Elsasser, M; Manfredi, U; Martini, G; Sklorz, M; Streibel, T; Heringa, M F; Decarlo, P F; Baltensperger, U; De Santi, G; Krasenbrink, A; Zimmermann, R; Prevot, A S H; Astorga, C
2011-01-01
The European Commission recently established a novel test facility for heavy-duty vehicles to enhance more sustainable transport. The facility enables the study of energy efficiency of various fuels/scenarios as well as the chemical composition of evolved exhaust emissions. Sophisticated instrumentation for real-time analysis of the gas and particulate phases of exhaust has been implemented. Thereby, gas-phase characterization was carried out by a Fourier transform infrared spectrometer (FT-IR; carbonyls, nitrogen-containing species, small hydrocarbons) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-TOFMS; monocyclic and polycyclic aromatic hydrocarbons). For analysis of the particulate phase, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS; organic matter, chloride, nitrate), a condensation particle counter (CPC; particle number), and a multiangle absorption photometer (MAAP; black carbon) were applied. In this paper, the first application of the new facility in combination with the described instruments is presented, whereby a medium-size truck was investigated by applying different driving cycles. The goal was simultaneous chemical characterization of a great variety of gaseous compounds and particulate matter in exhaust on a real-time basis. The time-resolved data allowed new approaches to view the results; for example, emission factors were normalized to time-resolved consumption of fuel and were related to emission factors evolved during high speeds. Compounds could be identified that followed the fuel consumption, others showed very different behavior. In particular, engine cold start, engine ignition (unburned fuel), and high-speed events resulted in unique emission patterns.
Reducing indoor air pollutants with air filtration units in wood stove homes.
McNamara, Marcy L; Thornburg, Jonathon; Semmens, Erin O; Ward, Tony J; Noonan, Curtis W
2017-08-15
Biomass burning has been shown to be a major source of poor indoor air quality (IAQ) in developing and higher income countries across the world. Specifically, wood burning for cooking and heating contributes to high indoor concentrations of fine (particles with aerodynamic diameters<2.5μm; PM 2.5 ) and coarse (particles with aerodynamic diameters <10μm and >2.5μm; PMc) particulate matter. Endotoxin, predominantly found within the coarse fraction of airborne particulate matter, is associated with proinflammatory effects and adverse outcomes among susceptible populations. The aim of this study was to assess the efficacy of air filter interventions in reducing indoor PM 2.5 , PMc, and PMc-associated endotoxin concentrations in homes using a wood stove for primary heating. Homes (n=48) were randomized to receive in-room air filtration units with either a high efficiency filter (i.e. active) or a lower efficiency fiberglass filter (i.e., placebo). The active filter intervention showed a 66% reduction in indoor PM 2.5 concentrations (95% CI: 42.2% to 79.7% reduction) relative to the placebo intervention. Both the active and the placebo filters were effective in substantially reducing indoor concentrations of PMc (63.3% and 40.6% average reduction for active and placebo filters, respectively) and PMc-associated endotoxin concentrations (91.8% and 80.4% average reductions, respectively). These findings support the use of high efficiency air filtration units for reducing indoor PM 2.5 in homes using a wood stove for primary heating. We also discovered that using lower efficiency, lower cost filter alternatives can be effective for reducing PMc and airborne endotoxin in homes burning biomass fuel. Copyright © 2017. Published by Elsevier B.V.
Lee, Ji Yeon
2016-10-01
Transmission of tuberculosis (TB) is a recognized risk to patients and healthcare workers in healthcare settings. The literature review suggests that implementation of combination control measures reduces the risk of TB transmission. Guidelines suggest a three-level hierarchy of controls including administrative, environmental, and respiratory protection. Among environmental controls, installation of ventilation systems is a priority because ventilation reduces the number of infectious particles in the air. Natural ventilation is cost-effective but depends on climatic conditions. Supplemented intervention such as air-cleaning methods including high efficiency particulate air filtration and ultraviolet germicidal irradiation should be considered in areas where adequate ventilation is difficult to achieve. Personal protective equipment including particulate respirators provides additional benefit when administrative and environmental controls cannot assure protection.
Choi, Dong Yun; Heo, Ki Joon; Kang, Juhee; An, Eun Jeong; Jung, Soo-Ho; Lee, Byung Uk; Lee, Hye Moon; Jung, Jae Hee
2018-06-05
Here, we introduce a reusable bifunctional polyester/aluminum (PET/Al) air filter for the high efficiency simultaneous capture and inactivation of airborne microorganisms. Both bacteria of Escherichia coli and Staphylococcus epidermidis were collected on the PET/Al filter with a high efficiency rate (∼99.99%) via the electrostatic interactions between the charged bacteria and fibers without sacrificing pressure drop. The PET/Al filter experienced a pressure drop approximately 10 times lower per thickness compared with a commercial high-efficiency particulate air filter. As the Al nanograins grew on the fibers, the antimicrobial activity against airborne E. coli and S. epidermidis improved to ∼94.8% and ∼96.9%, respectively, due to the reinforced hydrophobicity and surface roughness of the filter. Moreover, the capture and antimicrobial performances were stably maintained during a cyclic washing test of the PET/Al filter, indicative of its reusability. The PET/Al filter shows great potential for use in energy-efficient bioaerosol control systems suitable for indoor environments. Copyright © 2018 Elsevier B.V. All rights reserved.
Saiyasitpanich, Phirun; Keener, Tim C; Lu, Mingming; Khang, Soon-Jai; Evans, Douglas E
2006-12-15
Long-term exposures to diesel particulate matter (DPM) emissions are linked to increasing adverse human health effects due to the potential association of DPM with carcinogenicity. Current diesel vehicular particulate emission regulations are based solely upon total mass concentration, albeit it is the submicrometer particles that are highly respirable and the most detrimental to human health. In this study, experiments were performed with a tubular single-stage wet electrostatic precipitator (wESP) to evaluate its performance for the removal of number-based DPM emissions. A nonroad diesel generator utilizing a low sulfur diesel fuel (500 ppmw) operating under varying load conditions was used as a stationary DPM emission source. An electrical low-pressure impactor (ELPI) was used to quantify the number concentration distributions of diesel particles in the diluted exhaust gas at each tested condition. The wESP was evaluated with respect to different operational control parameters such as applied voltage, gas residence time, etc., to determine their effect on overall collection efficiency, as well as particle size dependent collection efficiency. The results show that the total DPM number concentrations in the untreated diesel exhaust are in the magnitude of approximately108/cm(3) at all engine loads with the particle diameter modes between 20 and 40 nm. The measured collection efficiency of the wESP operating at 70 kV based on total particle numbers was 86% at 0 kW engine load and the efficiency decreased to 67% at 75 kW due to a decrease in gas residence time and an increase in particle concentrations. At a constant wESP voltage of 70 kV and at 75 kW engine load, the variation of gas residence time within the wESP from approximately 0.1 to approximately 0.4 s led to a substantial increase in the collection efficiency from 67% to 96%. In addition, collection efficiency was found to be directly related to the applied voltage, with increasing collection efficiency measured for increases in applied voltage. The collection efficiency based on particle size had a minimum for sizes between 20 and 50 nm, but at optimal wESP operating conditions it was possible to remove over 90% of all particle sizes. A comparison of measured and calculated collection efficiencies reveals that the measured values are significantly higher than the predicted values based on the well-known Deutsch equation.
Measured particulate behavior in a subscale solid propellant rocket motor
NASA Astrophysics Data System (ADS)
Brennan, W. D.; Hovland, D. L.; Netzer, D. W.
1992-10-01
Particulate matter are sized in the exhaust nozzle and plume of small rocket motors of varying geometry to assess the effects of the expansion process on particle size. Both converging and converging-diverging nozzles are considered, and particle sizing is accomplished at pressures of up to 4.36 MPa with aluminum loadings of 2.0 and 4.7 percent. An instrument based on Fraunhofer diffraction is used to measure the particle-size distributions showing that: (1) high burning rates reduce particle agglomeration and increase C* efficiency; (2) high pressures lead to small and monomodal D32 entering the nozzle; and (3) D32 sizes increase appreciably at the tailoff. Some variations in plume signature are theorized to be caused by the tailoff phenomenon, and particle collisions and/or surface effects in the nozzle convergence are suggested by the reduced number of larger particles at the nozzle convergence.
42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.
Code of Federal Regulations, 2011 CFR
2011-10-01
...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...
42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.
Code of Federal Regulations, 2013 CFR
2013-10-01
...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...
42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.
Code of Federal Regulations, 2010 CFR
2010-10-01
...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...
42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.
Code of Federal Regulations, 2012 CFR
2012-10-01
...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...
42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.
Code of Federal Regulations, 2014 CFR
2014-10-01
...; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH...-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of the application for certification, shall specify the filter series and the filter efficiency level (i.e., “N95...
Masala, Silvia; Ahmed, Trifa; Bergvall, Christoffer; Westerholm, Roger
2011-12-01
The efficiency of extraction of polycyclic aromatic hydrocarbons (PAHs) with molecular masses of 252, 276, 278, 300, and 302 Da from standard reference material diesel particulate matter (SRM 2975) has been investigated using accelerated solvent extraction (ASE) with dichloromethane, toluene, methanol, and mixtures of toluene and methanol. Extraction of SRM 2975 using toluene/methanol (9:1, v/v) at maximum instrumental settings (200 °C, 20.7 MPa, and five extraction cycles) with 30-min extraction times resulted in the following elevations of the measured concentration when compared with the certified and reference concentrations reported by the National Institute of Standards and Technology (NIST): benzo[b]fluoranthene, 46%; benzo[k]fluoranthene, 137%; benzo[e]pyrene, 103%; benzo[a]pyrene, 1,570%; perylene, 37%; indeno[1,2,3-cd]pyrene, 41%; benzo[ghi]perylene, 163%; and coronene, 361%. The concentrations of the following PAHs were comparable to the reference values assigned by NIST: indeno[1,2,3-cd]fluoranthene, dibenz[a,h]anthracene, and picene. The measured concentration of dibenzo[a,e]-pyrene was lower than the information value reported by the NIST. The measured concentrations of other highly carcinogenic PAHs (dibenzo[a,l]pyrene, dibenzo[a,i]pyrene, and dibenzo[a,h]pyrene) in SRM 2975 are also reported. Comparison of measurements using the optimized ASE method and using similar conditions to those applied by the NIST for the assignment of PAH concentrations in SRM 2975 indicated that the higher values obtained in the present study were associated with more complete extraction of PAHs from the diesel particulate material. Re-extraction of the particulate samples demonstrated that the deuterated internal standards were more readily recovered than the native PAHs, which may explain the lower values reported by the NIST. The analytical results obtained in the study demonstrated that the efficient extraction of PAHs from SRM 2975 is a critical requirement for the accurate determination of PAHs with high molecular masses in this standard reference material and that the optimization of extraction conditions is essential to avoid underestimation of the PAH concentrations. The requirement is especially relevant to the human carcinogen benzo[a]pyrene, which is commonly used as an indicator of the carcinogenic risk presented by PAH mixtures.
Understanding the factors influencing the removal of heavy metals in urban stormwater runoff.
Maniquiz-Redillas, Marla C; Kim, Lee-Hyung
2016-01-01
In this research, an infiltration trench equipped with an extensive pretreatment and filter bed consisting of woodchip, sand and gravel was utilized as a low impact development technique to manage stormwater runoff from a highly impervious road with particular emphasis on heavy metal removal. Findings revealed that the major factors influencing the removal of heavy metals were the concentration of the particulate matters and heavy metals in runoff, runoff volume and flow rates. The reduction of heavy metals was enhanced by sedimentation of particulates through pretreatment. Fine particles (<2 mm) had the most significant amount of heavy metals, thus, enhanced adsorption and filtration using various filter media were important design considerations. Sediment was most highly attached on the surface area of woodchip than to other filter media like sand, gravel and geotextile. It is suggested that maintenance must be performed after the end of the winter season wherein high sediment rate was observed to maintain the efficiency of the treatment system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla
The state-of-the-art multiscale modeling of GPFs including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtration on a singlemore » channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. The microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less
Yoon, Seong-Hoon; Lee, Sangho
2005-09-01
Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results found in literatures.
Spray scrubbing of particulate-laden SO(2) using a critical flow atomizer.
Bandyopadhyay, Amitava; Biswas, Manindra Nath
2008-08-01
The performance of a spray tower using an energy efficient two-phase critical flow atomizer on the scrubbing of particulate-laden SO(2) using water and dilute NaOH is reported in this article. Experimentation revealed that SO(2) removal was enhanced due to presence of particles (fly-ash) and almost 100% removal efficiency was achieved in water scrubbing. The removal efficiency is elucidated in reference to atomizing air pressure, droplet diameter and droplet velocity besides other pertinent variables of the system studied. The presence of fly-ash particles improved the removal efficiency to about 20% within the range of variables studied. Empirical and semi-empirical correlations were developed for predicting the removal efficiency in water and dilute NaOH respectively. Predicted data fitted excellently well with experimental values. The performance of the spray tower is compared with the performances of existing systems and very encouraging results are obtained.
Clack, Herek L
2012-07-03
The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.
International Space Station Bacteria Filter Element Service Life Evaluation
NASA Technical Reports Server (NTRS)
Perry, J. L.
2005-01-01
The International Space Station (ISS) uses high-efficiency particulate air filters to remove particulate matter from the cabin atmosphere. Known as bacteria filter elements (BFEs), there are 13 elements deployed on board the ISS's U.S. segment in the flight 4R assembly level. The preflight service life prediction of 1 yr for the BFEs is based upon engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS program resources. Testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are provided.
Sun, Hui; Lai, Jia-Ping; Fung, Ying Sing
2014-09-05
A novel method coupling molecular imprinting solid-phase extraction (MISPE) and micellar electrokinetic capillary chromatography (MEKC) was developed to enable the hourly determination of low level of ambient carbonyls, and study their partition between gaseous phase and particulate phase. With 2,4-dinitroaniline (DNAN) as dummy imprinting template, the unreacted 2,4-Dinitrophenylhydrazine (DNPH) in sampling solution could be removed effectively using MISPE, and an average recovery of 97±5.3% (n=5) for the carbonyl-DNPH derivatives was achieved. Owing to the high enrichment due to sample clean-up, and the improvement of MEKC separation efficiency, many low abundant carbonyls could be detected by hourly in the field study. Copyright © 2014 Elsevier B.V. All rights reserved.
Recuperation de la matiere organique biodegradable presente dans l'effluent d'un MBBR a forte charge
NASA Astrophysics Data System (ADS)
Brosseau, Catherine
High-rate processes are receiving great interest due to their potential to favor the energy balance of water resource recovery facilities (WRRFs) either for their design or retrofit. Anaerobic digestion is a process that allows the valorization of organic biodegradable matter contained in sludge into biogas. This process also produces a stabilized sludge named digestate or biosolids that can be reused for agriculture purposes. This project proposed a secondary treatment train composed of a high-rate moving bed biofilm reactor (HR-MBBR) to biotransform colloidal and soluble biodegradable organics into particulate matter followed by an enhanced and compact physico-chemical separation process to recover mainly particulate organics and a part of the colloidal matter. A high-rate biological process operated at a low hydraulic retention time aimed at transforming colloidal and soluble fractions of organic matter into a particulate fraction for recovery by downstream separation process. The HR-MBBR effluent solids are known for their poor settleability, therefore requiring an efficient separation process downstream to ensure their recovery and to meet the effluent discharge regulations. The global objective of this project was to maximize the recovery of organic biodegradable matter for valorization into biogas by anaerobic digestion with an innovative treatment train combining an HR-MBBR and a separation process. The specific objectives of this report were 1) to characterize the HR-MBBR effluent solids and 2) to determine the efficiency of several physico-chemical separation processes combined with unbiodegradable or natural based coagulants and polymers. Effluents of lab-scale HR-MBBR fed with a synthetic soluble or domestic wastewater influent and the effluent of a full-scale HR-MBBR were used to evaluate the efficiency of separation processes adapted at bench-scale in jar-tests experiments. The processes studied were conventionnal settling, ballasted flocculation, dissolved air flotation and an innovative enhanced flotation process. Unlike conventional settling and dissolved air flotation, ballasted flocculation and enhanced flotation use a ballasted or flotation agent to accelerate the sludge settling or flotation rate. The original scientific hypothesis of this project is that the combination of enhanced flotation and natural based chemicals can meet a target total suspended solids (TSS) concentration of less or equal to 10 mg TSS/L in the clarified effluent of an HR-MBBR. The separation processes efficiencies were evaluated based on their TSS recoveries. Monitoring the chemical oxygen demand (COD) fractions allowed to better understand the underlying mechanisms of organic matter biotransformation and capture throughout the proposed treatment train. The concentration of solids expressed in TSS concentration in the MBBR effluent with a synthetic soluble influent was kept very low, from 27 to 61 mg TSS/L, which is about 2 to 9 times less than the expected concentration for an MBBR fed with domestic wastewater. Without the presence of particulate matter in the influent, the particulate matter in the MBBR effluent represented only the production of biomass detached by the shearing forces between the carriers. The TSS concentration and the efficiency of colloidal and soluble matter biotransformation into particulate matter increased with the MBBR hydraulic retention time. Wide volumetric particle size distributions ranging from 5 to 1000 mum in the lab-scale MBBR effluent were observed with a higher proportion of particles larger than 100 mum for a synthetic feed, and a higher proportion of small size particles of 30 mum for a domestic wastewater feed. The presence of lots of small size particles was attributed to unsettleable solids in the influent unchanged in the reactor. Despite the high proportion of large size particles for the MBBR with a synthetic feed, poor settleability of effluent solids was observed as static settling could only achieve TSS recoveries between 35 to 78%. Hence, coagulating agents were necessary to enhance the solids recovery. The combination of the innovative enhanced flotation process and unbiodegradable chemicals allowed to achieve TSS recovery efficiencies up to 97%. The enhanced flotation efficiency was reduced when using natural based chemicals, especially the natural based polymer which was not suited to treat waters with such high TSS concentrations. The hypothesis of the residual TSS concentration of 10 mg TSS/L was verified for half of the HR-MBBR operating conditions and the recovery efficiency did not seem to be influenced by the reactor hydraulic retention time, organic loading rate and temperature. More experiments are needed to confirm the effect of these parameters on TSS recovery efficiency. Although natural based chemicals reduced the coagulation and flocculation efficiency, they allowed a decrease in sludge production, which can represent a significant cost benefit. These chemicals resulted in an increase of 33 to 60% of the total COD of the MBBR effluent, compared to the unbiodegradable chemicals which only contributed about 2%. Natural based chemicals are recommended over unbiodegradable ones to promote the use of high biodegradability potential chemicals and to reduce the production of chemical sludge. However, to offset the increase of total COD, it may be required to add a treatment downstream to meet target secondary treatment COD concentration. Conventionnal settling and ballasted flocculation offered similar TSS recovery efficiencies to enhanced flottation (88% TSS recovery efficiency). The efficiency was reduced by 34% when using the dissolved air flotation process, much lower than the ones expected for such a separation process. The efficiency reduction was attributed to non-optimized and unadapted flotation lab-scale setups to treat medium strength wastewater. A similar innovative treatment train is currently being tested at pilot-scale in order to evaluate its carbon footprint and its potential to be eventually transposed to full-scale. Furthermore, the biodegradability and the biochemical methane production of the natural based chemicals are being determined. This project allowed to determine the potential of the innovative enhanced flotation process to recover the HR-MBBR solids when combined with natural based chemicals which are currently not often used in wastewater treatment for resource recovery.
NASA Technical Reports Server (NTRS)
Laicer, Castro; Rasimick, Brian; Green, Zachary
2012-01-01
Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of dust particles on the filter surface and to facilitate dust removal with pulse or back airflow.
Singh, Varun Kumar; Ravi, Sai Kishore; Sun, Wanxin; Tan, Swee Ching
2017-02-01
Alarming levels of particulate matter pollution in air pose a serious health threat in several countries, therefore intriguing a strong need for an economic and a viable technology of air filtration. Current air purification technology is rather expensive with certain types even having the risk of emitting hazardous by-products. The authors have developed a multifunctional air filter inspired from the nasal hairs possessing an ability to specifically trap/exhale the foreign particles and allergens while still letting the air flow. This design is achieved by introducing different functionalities at different dimensional scale employing a bottom-up approach starting with an organic molecule which is further self-organized to form nanoparticles and ultimately to a nanofibrous mesh. While the molecular building block inherently possesses the property of shielding Ultraviolet (UV) rays, the nanofibrous mesh built up from it aids in trapping the particulate matter while maintaining good air flow. By controlling the concentration of the organic molecule, the formation of fibers has been enabled in the nanoscale regime to obtain high particle-capture possibilities. The self-assembled nanofibrous filter thus designed has achieved a high filtration efficiency of ≈90% for the PM 2.5 particle in congruence with the ability to block the harmful UV radiations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qin, Wenjun; Dekermenjian, Manuel; Martin, Richard J
2006-08-01
Loss of filtration efficiency in a fabric filter baghouse is typically caused by bag failure, in one form or another. The degree of such failure can be as minor as a pinhole leak or as major as a fully involved baghouse fire. In some cases, local air pollution regulations or federal hazardous waste laws may require estimation of the total quantity of particulate matter released to the environment as a result of such failures. In this paper, a technique is presented for computing the dust loading in the baghouse exhaust when one or more bags have failed. The algorithm developed is shown to be an improvement over a previously published result, which requires empirical knowledge of the variation in baghouse pressure differential with bag failures. An example calculation is presented for a baghouse equipped with 200 bags. The prediction shows that a small percentage of failed bags can cause a relatively large proportion of the gas flow to bypass the active bags, which, in turn, leads to high outlet dust loading and low overall collection efficiency from the baghouse.
Code of Federal Regulations, 2012 CFR
2012-07-01
... site, draws a measured quantity of ambient air into a covered housing and through a filter during a 24... filters used are specified to have a minimum collection efficiency of 99 percent for 0.3 µm (DOP) particles (see Section 7.1.4). 2.2 The filter is weighed (after moisture equilibration) before and after use...
40 CFR Appendix D to Part 61 - Methods for Estimating Radionuclide Emissions
Code of Federal Regulations, 2014 CFR
2014-07-01
... for decay Xenon 0.5/wk Based on xenon half-life of 5.3 days; Douglas bags: Released within one week Xenon 1 Provides no reduction of exposure to general public. Venturi scrubbers ParticulatesGases 0.051... precipitators Particulates 0.05 Not applicable for gaseous radionuclides Xenon traps Xenon 0.1 Efficiency is...
40 CFR Appendix D to Part 61 - Methods for Estimating Radionuclide Emissions
Code of Federal Regulations, 2012 CFR
2012-07-01
... for decay Xenon 0.5/wk Based on xenon half-life of 5.3 days; Douglas bags: Released within one week Xenon 1 Provides no reduction of exposure to general public. Venturi scrubbers ParticulatesGases 0.051... precipitators Particulates 0.05 Not applicable for gaseous radionuclides Xenon traps Xenon 0.1 Efficiency is...
High-efficiency particulate air filter test stand and aerosol generator for particle loading studies
NASA Astrophysics Data System (ADS)
Arunkumar, R.; Hogancamp, Kristina U.; Parsons, Michael S.; Rogers, Donna M.; Norton, Olin P.; Nagel, Brian A.; Alderman, Steven L.; Waggoner, Charles A.
2007-08-01
This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30×30×29cm3 nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5to12standardm3/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150°C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7standardm3/min, high mass concentrations (˜25mg/m3) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.
Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A
2007-08-01
This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.
Zhu, Lei; Cheung, C S; Zhang, W G; Huang, Zhen
2010-01-15
Euro V diesel fuel, pure biodiesel and biodiesel blended with 5%, 10% and 15% of ethanol or methanol were tested on a 4-cylinder naturally-aspirated direct-injection diesel engine. Experiments were conducted under five engine loads at a steady speed of 1800 r/min. The study aims to investigate the effects of the blended fuels on reducing NO(x) and particulate. On the whole, compared with Euro V diesel fuel, the blended fuels could lead to reduction of both NO(x) and PM of a diesel engine, with the biodiesel-methanol blends being more effective than the biodiesel-ethanol blends. The effectiveness of NO(x) and particulate reductions is more effective with increase of alcohol in the blends. With high percentage of alcohol in the blends, the HC, CO emissions could increase and the brake thermal efficiency might be slightly reduced but the use of 5% blends could reduce the HC and CO emissions as well. With the diesel oxidation catalyst (DOC), the HC, CO and particulate emissions can be further reduced. Copyright 2009 Elsevier B.V. All rights reserved.
D'Agostino, H B; Park, Y; Moyers, J P; vanSonnenberg, E; Sanchez, R B; Goodacre, B W; Kim, Y H; Vieira, M V
1992-08-01
The effects of stopcocks on percutaneous fluid drainage were tested in a laboratory model by using a standard stopcock (6-French inner diameter) and a prototype stopcock (9-French inner diameter) connected to 8-, 10-, 12-, 14-, and 16-French catheters. Catheters were immersed in water alone or in viscous fluid with particulate matter, and the system was connected to low wall suction or gravity drainage. The average volume of fluid aspirated in a given period with and without a stopcock was compared for each catheter. The standard stopcock decreased drainage efficiency for these catheters by 13-42%. This decreased drainage efficiency was worse with the larger catheters. Particulate fluid blocked the stopcock connection for all catheters. With the prototype stopcock, drainage of water alone was reduced by 0-9% for the catheters of different sizes. Particulate fluid did not obstruct the prototype stopcock with any size catheter. With gravity drainage, the volume of water aspirated was reduced by 12-42% with the standard stopcock and by 3-6% with the prototype stopcock. These data suggest that stopcock connections greatly influence the efficiency of the percutaneous drainage systems. Stopcocks with larger inner diameters may improve drainage over that achievable with the stopcocks that are currently available.
Using a mathematical model to evaluate the efficacy of TB control measures.
Gammaitoni, L.; Nucci, M. C.
1997-01-01
We evaluated the efficacy of recommended tuberculosis (TB) infection control measures by using a deterministic mathematical model for airborne contagion. We examined the percentage of purified protein derivative conversions under various exposure conditions, environmental controlstrategies, and respiratory protective devices. We conclude that environmental control cannot eliminate the risk for TB transmission during high-risk procedures; respiratory protective devices, and particularly high-efficiency particulate air masks, may provide nearly complete protection if used with air filtration or ultraviolet irradiation. Nevertheless, the efficiency of these control measures decreases as the infectivity of the source case increases. Therefore, administrative control measures (e.g., indentifying and isolating patients with infectious TB) are the most effective because they substantially reduce the rate of infection. PMID:9284378
Analysis of the high-temperature particulate collection problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razgaitis, R.
1977-10-01
Particulate agglomeration and separation at high temperatures and pressures are examined, with particular emphasis on the unique features of the direct-cycle application of fluidized-bed combustion. The basic long-range mechanisms of aerosol separation are examined, and the effects of high temperature and high pressure on usable collection techniques are assessed. Primary emphasis is placed on those avenues that are not currently attracting widespread research. The high-temperature, particulate-collection problem is surveyed, together with the peculiar requirements associated with operation of turbines with particulate-bearing gas streams. 238 references.
Technology Base Enhancement Program. Metal Matrix Composites
1993-08-30
efficiency, improved structural reliability, and reduced maintenance when compared to carbon fiber reinforced composites . Aerospace engines (in particular...different materials. The composite consists of a metal matrix reinforced with particulates, flakes, whiskers,3 continuous fibers , filaments, wires, or...graphite and carbon to metals. They come in three general forms: particulates (or particles) with a length to diameter ratio of about 1; chopped fibers or
Removal of particulate matter emitted from a subway tunnel using magnetic filters.
Son, Youn-Suk; Dinh, Trieu-Vuong; Chung, Sang-Gwi; Lee, Jai-Hyo; Kim, Jo-Chun
2014-01-01
We removed particulate matter (PM) emitted from a subway tunnel using magnetic filters. A magnetic filter system was installed on the top of a ventilation opening. Magnetic field density was increased by increasing the number of permanent magnet layers to determine PM removal characteristics. Moreover, the fan's frequency was adjusted from 30 to 60 Hz to investigate the effect of wind velocity on PM removal efficiency. As a result, PM removal efficiency increased as the number of magnetic filters or fan frequency increased. We obtained maximum removal efficiency of PM10 (52%), PM2.5 (46%), and PM1 (38%) at a 60 Hz fan frequency using double magnetic filters. We also found that the stability of the PM removal efficiency by the double filter (RSD, 3.2-5.8%) was higher than that by a single filter (10.9-24.5%) at all fan operating conditions.
International Space Station Bacteria Filter Element Post-Flight Testing and Service Life Prediction
NASA Technical Reports Server (NTRS)
Perry, J. L.; von Jouanne, R. G.; Turner, E. H.
2003-01-01
The International Space Station uses high efficiency particulate air (HEPA) filters to remove particulate matter from the cabin atmosphere. Known as Bacteria Filter Elements (BFEs), there are 13 elements deployed on board the ISS's U.S. Segment. The pre-flight service life prediction of 1 year for the BFEs is based upon performance engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS Program resources. Thus testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are discussed. Recommendations for realizing significant savings to the ISS Program are presented.
Burd, B; Macdonald, T; Bertold, S
2013-09-15
We examine effects of high river particulate flux and municipal wastewater effluent on heterotrophic organic carbon cycling in coastal subtidal sediments. Heterotrophic production was a predictable (r(2)=0.95) proportion (56%) of oxidized OC flux and strongly correlated with organic/inorganic flux. Consistent growth efficiencies (36%) occurred at all stations. Organic biomass was correlated with total, OC and buried OC fluxes, but not oxidized OC flux. Near the river, production was modest and biomass high, resulting in low P/B. Outfall deposition resulted in depleted biomass and high bacterial production, resulting in the highest P/B. These patterns explain why this region is production "saturated". The δ(15)N in outfall effluent, sediments and dominant taxa provided insight into where, and which types of organisms feed directly on fresh outfall particulates, on older, refractory material buried in sediments, or utilize chemosynthetic symbiotic bacteria. Results are discussed in the context of declining bottom oxygen conditions along the coast. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
High temperature alkali corrosion of ceramics in coal gas: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickrell, G.R.; Sun, T.; Brown, J.J. Jr.
1994-12-31
There are several ceramic materials which are currently being considered for use as structural elements in coal combustion and coal conversion systems because of their thermal and mechanical properties. These include alumina (refractories, membranes, heat engines); silicon carbide and silicon nitride (turbine engines, internal combustion engines, heat exchangers, particulate filters); zirconia (internal combustion engines, turbine engines, refractories); and mullite and cordierite (particulate filters, refractories, heat exchangers). High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and highmore » efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, and zirconia. The study consists of identification of the alkali reaction products and determination of the kinetics of the alkali reactions as a function of temperature and time. 145 refs., 29 figs., 12 tabs.« less
3D printed magnetic polymer composite transformers
NASA Astrophysics Data System (ADS)
Bollig, Lindsey M.; Hilpisch, Peter J.; Mowry, Greg S.; Nelson-Cheeseman, Brittany B.
2017-11-01
The possibility of 3D printing a transformer core using fused deposition modeling methods is explored. With the use of additive manufacturing, ideal transformer core geometries can be achieved in order to produce a more efficient transformer. In this work, different 3D printed settings and toroidal geometries are tested using a custom integrated magnetic circuit capable of measuring the hysteresis loop of a transformer. These different properties are then characterized, and it was determined the most effective 3D printed transformer core requires a high fill factor along with a high concentration of magnetic particulate.
Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels.
Xu, Yuxing; Li, Ailong; Yao, Tingting; Ma, Changtong; Zhang, Xianwen; Shah, Jafar Hussain; Han, Hongxian
2017-11-23
Converting sunlight to solar fuels by artificial photosynthesis is an innovative science and technology for renewable energy. Light harvesting, photogenerated charge separation and transfer (CST), and catalytic reactions are the three primary steps in the processes involved in the conversion of solar energy to chemical energy (SE-CE). Among the processes, CST is the key "energy pump and delivery" step in determining the overall solar-energy conversion efficiency. Efficient CST is always high priority in designing and assembling artificial photosynthesis systems for solar-fuel production. This Review not only introduces the fundamental strategies for CST but also the combinatory application of these strategies to five types of the most-investigated semiconductor-based artificial photosynthesis systems: particulate, Z-scheme, hybrid, photoelectrochemical, and photovoltaics-assisted systems. We show that artificial photosynthesis systems with high SE-CE efficiency can be rationally designed and constructed through combinatory application of these strategies, setting a promising blueprint for the future of solar fuels. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
High particulate iron(II) content in glacially sourced dusts enhances productivity of a model diatom
Shoenfelt, Elizabeth M.; Sun, Jing; Winckler, Gisela; Kaplan, Michael R.; Borunda, Alejandra L.; Farrell, Kayla R.; Moreno, Patricio I.; Gaiero, Diego M.; Recasens, Cristina; Sambrotto, Raymond N.; Bostick, Benjamin C.
2017-01-01
Little is known about the bioavailability of iron (Fe) in natural dusts and the impact of dust mineralogy on Fe utilization by photosynthetic organisms. Variation in the supply of bioavailable Fe to the ocean has the potential to influence the global carbon cycle by modulating primary production in the Southern Ocean. Much of the dust deposited across the Southern Ocean is sourced from South America, particularly Patagonia, where the waxing and waning of past and present glaciers generate fresh glaciogenic material that contrasts with aged and chemically weathered nonglaciogenic sediments. We show that these two potential sources of modern-day dust are mineralogically distinct, where glaciogenic dust sources contain mostly Fe(II)-rich primary silicate minerals, and nearby nonglaciogenic dust sources contain mostly Fe(III)-rich oxyhydroxide and Fe(III) silicate weathering products. In laboratory culture experiments, Phaeodactylum tricornutum, a well-studied coastal model diatom, grows more rapidly, and with higher photosynthetic efficiency, with input of glaciogenic particulates compared to that of nonglaciogenic particulates due to these differences in Fe mineralogy. Monod nutrient accessibility models fit to our data suggest that particulate Fe(II) content, rather than abiotic solubility, controls the Fe bioavailability in our Fe fertilization experiments. Thus, it is possible for this diatom to access particulate Fe in dusts by another mechanism besides uptake of unchelated Fe (Fe′) dissolved from particles into the bulk solution. If this capability is widespread in the Southern Ocean, then dusts deposited to the Southern Ocean in cold glacial periods are likely more bioavailable than those deposited in warm interglacial periods. PMID:28691098
Control of diesel soot and NOx emissions with a particulate trap and EGR.
Liu, Rui-xiang; Gao, Xi-yan; Yang, De-sheng; Xu, Xiao-guang
2005-01-01
The exhaust gas recirculation (EGR), coupled with a high-collection efficiency particulate trap to simultaneously control smoke and NOx emissions from diesel engines were studied. This ceramic trap developed previously provided the soot cleaning efficiency of 99%, the regeneration efficiency reaches 80% and the ratio of success reaches 97%, which make EGR used in diesel possible. At the presence of EGR, opening of the regeneration control valve of the trap was over again optimized to compensate for the decrease of the oxygen concentration in the exhaust gas resulted from EGR. The results indicated the cleaning efficiency and regeneration performance of the trap were maintained at the same level except that the back pressure increased faster. A new EGR system was developed, which is based on a wide range oxygen (UEGO) sensor. Experiments were carried out under steady state conditions while maintaining the engine speed at 1600 r/min, setting the engine loads at 0%, 25%, 50%, 75% and 100% respectively. Throughout each test the EGR rate was kept at nine different settings and data were taken with the gas analyzer and UEGO sensor. Then, the EGR rate and engine load maps, which showed the tendencies of NOx, CO and HC emissions from diesel engine, were made using the measured data. Using the maps, the author set up the EGR regulation, the relationship between the optimal amounts of EGR flow and the equivalence ratio, sigma, where sigma = 14.5/AFR.
Transparent air filter for high-efficiency PM2.5 capture.
Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi
2015-02-16
Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m(-3)). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.
Transparent air filter for high-efficiency PM2.5 capture
NASA Astrophysics Data System (ADS)
Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi
2015-02-01
Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m-3). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.
Recent Progress in Monolithic Silica Columns for High-Speed and High-Selectivity Separations.
Ikegami, Tohru; Tanaka, Nobuo
2016-06-12
Monolithic silica columns have greater (through-pore size)/(skeleton size) ratios than particulate columns and fixed support structures in a column for chemical modification, resulting in high-efficiency columns and stationary phases. This review looks at how the size range of monolithic silica columns has been expanded, how high-efficiency monolithic silica columns have been realized, and how various methods of silica surface functionalization, leading to selective stationary phases, have been developed on monolithic silica supports, and provides information on the current status of these columns. Also discussed are the practical aspects of monolithic silica columns, including how their versatility can be improved by the preparation of small-sized structural features (sub-micron) and columns (1 mm ID or smaller) and by optimizing reaction conditions for in situ chemical modification with various restrictions, with an emphasis on recent research results for both topics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sappok, Alexander; Ragaller, Paul; Bromberg, Leslie
This project developed a radio frequencybased sensor for accurate measurement of diesel particulate filter (DPF) loading with advanced low pressuredrop aftertreatment systems. The resulting technology demonstrated engine efficiency improvements through optimization of the combined engineaftertreatment system while reducing emissions, system cost, and complexity to meet the DOE program objectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, P.; Sengupta, D.; CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research
Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effectmore » of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.« less
Shu, Shi; Lin, Yan; She, Jianwen; Ip, Ho Sai Simon; Qiu, Xinghua; Zhu, Yifang
2017-01-01
Commuters who spend long hours on roads are exposed to high levels of traffic related air pollutants (TRAPs). Despite some well-known multiple adverse effects of TRAPs on human health, limited studies have focused on mitigation strategies to reduce these effects. In this study, we measured fine particulate matter (PM2.5) and ultrafine particle (UFP) concentrations inside and outside 17 taxis simultaneously while they were driven on roadways. The drivers’ urinary monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and malondialdehyde (MDA) concentrations just before and right after the driving tests were also determined. Data were collected under three driving conditions (i.e. no mitigation (NM), window closed (WC), and window closed plus using high efficiency cabin air filters (WC+HECA)) for each taxi and driver. The results show that, compared to NM, the WC+HECA reduced in-cabin PM2.5 and UFP concentrations, by 37% and 47% respectively (p < 0.05), whereas the reductions on PAH exposures were insignificant. Although nonsignificant, a reduction of 17% was also observed in the drivers’ urinary MDA under WC+HECA. The MDA concentrations were found to be significantly associated with the in-cabin PM2.5 and UFP concentrations, suggesting the reduction of the drivers’ lipid peroxidation can be at least partially attributed to the PM2.5 and UFP reduction by WC+HECA. Overall, these results suggest HECA filters have potential to reduce particle levels inside taxis and protect drivers’ health. PMID:29176859
Yu, Nu; Shu, Shi; Lin, Yan; She, Jianwen; Ip, Ho Sai Simon; Qiu, Xinghua; Zhu, Yifang
2017-01-01
Commuters who spend long hours on roads are exposed to high levels of traffic related air pollutants (TRAPs). Despite some well-known multiple adverse effects of TRAPs on human health, limited studies have focused on mitigation strategies to reduce these effects. In this study, we measured fine particulate matter (PM2.5) and ultrafine particle (UFP) concentrations inside and outside 17 taxis simultaneously while they were driven on roadways. The drivers' urinary monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and malondialdehyde (MDA) concentrations just before and right after the driving tests were also determined. Data were collected under three driving conditions (i.e. no mitigation (NM), window closed (WC), and window closed plus using high efficiency cabin air filters (WC+HECA)) for each taxi and driver. The results show that, compared to NM, the WC+HECA reduced in-cabin PM2.5 and UFP concentrations, by 37% and 47% respectively (p < 0.05), whereas the reductions on PAH exposures were insignificant. Although nonsignificant, a reduction of 17% was also observed in the drivers' urinary MDA under WC+HECA. The MDA concentrations were found to be significantly associated with the in-cabin PM2.5 and UFP concentrations, suggesting the reduction of the drivers' lipid peroxidation can be at least partially attributed to the PM2.5 and UFP reduction by WC+HECA. Overall, these results suggest HECA filters have potential to reduce particle levels inside taxis and protect drivers' health.
Results from Evaluation of Proposed ASME AG-1 Section FI Metal Media Filters - 13063
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, John A.; Giffin, Paxton K.; Parsons, Michael S.
High efficiency particulate air (HEPA) filtration technology is commonly used in Department of Energy (DOE) facilities that require control of radioactive particulate matter (PM) emissions due to treatment or management of radioactive materials. Although HEPA technology typically makes use of glass fiber media, metal and ceramic media filters are also capable of filtering efficiencies beyond the required 99.97%. Sintered metal fiber filters are good candidates for use in DOE facilities due to their resistance to corrosive environments and resilience at high temperature and elevated levels of relative humidity. Their strength can protect them from high differential pressure or pressure spikesmore » and allow for back pulse cleaning, extending filter lifetime. Use of these filters has the potential to reduce the cost of filtration in DOE facilities due to life cycle cost savings. ASME AG-1 section FI has not been approved due to a lack of protocols and performance criteria for qualifying section FI filters. The Institute for Clean Energy Technology (ICET) with the aid of the FI project team has developed a Section FI test stand and test plan capable of assisting in the qualification ASME AG-1 section FI filters. Testing done at ICET using the FI test stand evaluates resistance to rated air flow, test aerosol penetration and resistance to heated air of the section FI filters. Data collected during this testing consists of temperature, relative humidity, differential pressure, flow rate, upstream particle concentration, and downstream particle concentration. (authors)« less
Wang, Ruwei; Liu, Guijian; Sun, Ruoyu; Yousaf, Balal; Wang, Jizhong; Liu, Rongqiong; Zhang, Hong
2018-07-01
The partitioning behavior of polycyclic aromatic hydrocarbons (PAHs) between gaseous and particulate phases from coal-fired power plants (CFPPs) is critically important to predict PAH removal by dust control devices. In this study, 16 US-EPA priority PAHs in gaseous and size-segregated particulate phases at the inlet and outlet of the fabric filter unit (FFs) of a circulating fluidized bed (CFB) boiler were analyzed. The partitioning mechanisms of PAHs between gaseous and particulate phases and in particles of different size classes were investigated. We found that the removal efficiencies of PAHs are 45.59% and 70.67-89.06% for gaseous and particulate phases, respectively. The gaseous phase mainly contains low molecular weight (LMW) PAHs (2- and 3-ring PAHs), which is quite different from the particulate phase that mainly contains medium and high molecular weight (MMW and HMW) PAHs (4- to 6-ring PAHs). The fractions of LMW PAHs show a declining trend with the decrease of particle size. The gas-particle partitioning of PAHs is primarily controlled by organic carbon absorption, in addition, it has a clear dependence on the particle sizes. Plot of log (TPAH/PM) against logD p shows that all slope values were below -1, suggesting that PAHs were mainly adsorbed to particulates. The adsorption effect of PAHs in size-segregated PMs for HMW PAHs is more evident than LMW PAHs. The particle size distributions (PSDs) of individual PAHs show that most of PAHs exhibit bi-model structures, with one mode peaking in the accumulation size range (2.1-1.1 μm) and another mode peaking in coarse size range (5.8-4.7 μm). The intensities of these two peaks vary in function of ring number of PAHs, which is likely attributed to Kelvin effect that the less volatile HMW PAH species preferentially condense onto the finer particulates. The emission factor of PAHs was calculated as 3.53 mg/kg of coal burned, with overall mean EF PAH of 0.55 and 2.98 mg/kg for gaseous and particulate phase, respectively. Moreover, the average emission amount of PAHs for the investigated CFPP was 1016.6 g/day and 371073.6 g/y, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Engineering evaluation of the use of the Timberline condensing economizer for particulate collection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butcher, T.; Serry, H.
1980-12-01
The possible use of the Timberline Industries condensing economizer as a particulate collection device on commercial sector boilers which are being converted to coal-oil mixture (COM) firing has been considered. The saturation temperature of the water vapor in the flue gas has been estimated as a function of excess air and ambient relative humidity. Also, boiler stack losses have been estimated for a variety of operating conditions including stack temperatures below the dew point. The condensing economizer concept will be limited to applications which can use the low temperature heat including water heating and forced air space heating. The potentialmore » particulate collection efficiency, water disposal, and similar heat recovery devices are discussed. A cost analysis is presented which indicates that the economizer system is not competitive with a cyclone but is competitive with a baghouse. The use of the cyclone is limited by collection efficiency. The measurement of COM flyash particle size distribution is recommended.« less
Performance and emissions characteristics of aqueous alcohol fumes in a DI diesel engine
NASA Technical Reports Server (NTRS)
Heisey, J. B.; Lestz, S. S.
1981-01-01
A single cylinder DI Diesel engine was fumigated with ethanol and methanol in amounts up to 55% of the total fuel energy. The effects of aqueous alcohol fumigation on engine thermal efficiency, combustion intensity and gaseous exhaust emissions were determined. Assessment of changes in the biological activity of raw particulate and its soluble organic fraction were also made using the Salmonella typhimurium test. Alcohol fumigation improved thermal efficiency slightly at moderate and heavy loads, but increased ignition delay at all operating conditions. Carbon monoxide and unburned hydrocarbon emission generally increased with alcohol fumigation and showed no dependence on alcohol type or quality. Oxide of nitrogen emission showed a strong dependence on alcohol quality; relative emission levels decreased with increasing water content of the fumigant. Particulate mass loading rates were lower for ethanol fueled conditions. However, the biological activity of both the raw particulate and its soluble organic fraction was enhanced by ethanol fumigation at most operating conditions.
Kuwaiti oil fires—Particulate monitoring
NASA Astrophysics Data System (ADS)
Husain, Tahir; Amin, Mohamed B.
The total suspended particulate (TSP) matters using a high-volume sampler and inhalable particulate matters using PM-10 samplers were collected at various locations in the Eastern Province of Saudi Arabia during and after the Kuwaiti oil fires. The collected samples were analysed for toxic metals and oil hydrocarbon concentrations including some carcinogenic organic compounds in addition to gravimetric analysis. The concentration values of particulate matters were determined on a daily basis at Dhahran. Abqaiq, Rahima, Tanajib and Jubail locations. The analyses of the filters show a high concentration of the inhalable particulate at various locations, especially when north or northwest winds were blowing. It was found that the inhalable particulate concentration exceeded the Meteorology and Environmental Protection Administration (MEPA) permissible limit of 340 μg m- 3 at most of these locations during May-October 1991. A trend between the total suspended particulate and inhalable particulate measured concurrently at the same locations was observed and a regression equation was developed to correlate PM-10 data with the total suspended particulate data.
Li, Manqing; Feng, Yingnan; Wang, Kaiyu; Yong, Wai Fen; Yu, Liya; Chung, Tai-Shung
2017-09-05
Severe air pollution has become a global concern, and there is a pressing need to develop effective and efficient air filters for removing airborne particulate matters (PMs). In this work, a highly permeable poly(ether sulfone) (PES) based hollow fiber membrane was developed via a one-step dry-jet wet spinning. For the first time, a hollow fiber membrane was used in removing the ultrafine particles (PMs with aerodynamic equivalent diameters of less than 100 nm) in PM 2.5 . The novel air filter was designed to possess the synergistic advantages of porous filters and fibrous filters with a sievelike outer surface and a fibrouslike porous substrate. A filtration efficiency of higher than 99.995% could be easily achieved when the self-support hollow fiber was challenged with less than 300 nm particulates. Without losses of the structural advantages, we have demonstrated that the permeation properties of the hollow fiber membrane can be facilely tailored via manipulation of the dope and bore fluid formulations. Various cleaning strategies were explored to regenerate the membrane performance after fouling. Both water rinse and backwash showed effectiveness to restore the membrane permeance for repetitive usage.
A new installation for treatment of road runoff: up-flow filtration by porous polypropylene media.
Lee, B C; Matsui, S; Shimizu, Y; Matsuda, T; Tanaka, Y
2005-01-01
We installed a new device on a paved road to treat runoff from a roadway surface. All the stormwater runoff was transferred into the device and the runoff equivalent to 10 mm/hr or less was treated. The treatment method consists of sedimentation and up-flow filtration with porous polypropylene (PPL) processes. The treated runoff was discharged into the existing storm drainage pipe. The average removal efficiency of the initial runoff at the beginning of rainfall which has high pollution intensity was about 90% for SS, about 70% for COD, about 40% for total phosphorus (T-P), about 80% for Pb and Cd, about 70% for Zn, Cu, Mn and Cr, and about 60% for polycyclic aromatic hydrocarbons (PAHs). The overall removal efficiencies of the experiment that ran for four months remained > 60% of SS, > 40% of COD, > 60% of heavy metals, and > 40% of PAHs. The PPL is excellent for removing smaller size particulates of suspended solids, which originate basically from diesel exhaust, as well as larger size particulates from automobile tires, asphalt roads, and other accumulated source(s) of clay and sand, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenjun Qin; Manuel Dekermenjian; Richard J. Martin
2006-08-15
Loss of filtration efficiency in a fabric filter baghouse is typically caused by bag failure, in one form or another. The degree of such failure can be as minor as a pinhole leak or as major as a fully involved baghouse fire. In some cases, local air pollution regulations or federal hazardous waste laws may require estimation of the total quantity of particulate matter released to the environment as a result of such failures. In this paper, a technique is presented for computing the dust loading in the baghouse exhaust when one or more bags have failed. The algorithm developedmore » is shown to be an improvement over a previously published result, which requires empirical knowledge of the variation in baghouse pressure differential with bag failures. An example calculation is presented for a baghouse equipped with 200 bags. The prediction shows that a small percentage of failed bags can cause a relatively large proportion of the gas flow to bypass the active bags, which, in turn, leads to high outlet dust loading and low overall collection efficiency from the baghouse. 10 refs., 5 figs., 3 tabs.« less
Sabah, A; Bancon-Montigny, C; Rodier, C; Marchand, P; Delpoux, S; Ijjaali, M; Tournoud, M-G
2016-02-01
The aim of this study was to investigate the fate and behaviour of butyltin pollutants, including monobutyltin (MBT), dibutylin (DBT), and tributyltin (TBT), in waste stabilisation ponds (WSP). The study was conducted as part of a baseline survey and included five sampling campaigns comprising bottom sludge and the water column from each pond from a typical WSP in France. Butyltins were detected in all raw wastewater and effluents, reflecting their widespread use. Our results revealed high affinity between butyltins and particulate matter and high accumulation of butyltins in the sludge taken from anaerobic ponds. The dissolved butyltins in the influent ranged from 21.5 to 28.1 ng(Sn).L(-1) and in the effluent, from 8.8 to 29.3 ng(Sn).L(-1). The butyltin concentrations in the sludge ranged from 45.1 to 164 and 3.6-8.1 ng(Sn).g(-1) respectively in the first and last ponds. Our results showed an average treatment efficiency of 71% for MBT, 47% for DBT, 55% for TBT. Laboratory sorption experiments enabled the calculation of a distribution coefficient (Kd = 75,000 L.kg-1) between TBT and particulate matter from the WSPs. The Kd explained the accumulation and persistence of the TBT in the sludge after settling of particulate matter. The continuous supply of contaminated raw wastewater and the sorption-desorption processes in the ponds led to incomplete bio- and photolytic degradation and to the persistence of butyltins in dissolved and particulate matrices throughout the survey period. It is thus recommended to use shallow ponds and to pay particular attention when sludge is used for soil amendment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Simplified particulate model for coarse-grained hemodynamics simulations
NASA Astrophysics Data System (ADS)
Janoschek, F.; Toschi, F.; Harting, J.
2010-11-01
Human blood flow is a multiscale problem: in first approximation, blood is a dense suspension of plasma and deformable red cells. Physiological vessel diameters range from about one to thousands of cell radii. Current computational models either involve a homogeneous fluid and cannot track particulate effects or describe a relatively small number of cells with high resolution but are incapable to reach relevant time and length scales. Our approach is to simplify much further than existing particulate models. We combine well-established methods from other areas of physics in order to find the essential ingredients for a minimalist description that still recovers hemorheology. These ingredients are a lattice Boltzmann method describing rigid particle suspensions to account for hydrodynamic long-range interactions and—in order to describe the more complex short-range behavior of cells—anisotropic model potentials known from molecular-dynamics simulations. Paying detailedness, we achieve an efficient and scalable implementation which is crucial for our ultimate goal: establishing a link between the collective behavior of millions of cells and the macroscopic properties of blood in realistic flow situations. In this paper we present our model and demonstrate its applicability to conditions typical for the microvasculature.
The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leah J.; Holmes, Amie L.; Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300
Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobaltmore » ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.« less
Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge
2017-07-01
In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from local wood species and wood stove performance would help to identify better biomass fuels and wood stove technologies in order to reduce air pollution from residential wood burning.
Precipitation scavenging of polychlorinated biphenyl congeners in the great lakes region
NASA Astrophysics Data System (ADS)
Murray, Michael W.; Andren, Anders W.
Ten precipitation events were sampled in the fall of 1986 in Madison, WI and analyzed for individual congener and total polychlorinated biphenyl (PCB) levels in both the dissolved and particulate phases. Total PCB concentrations were generally at the lower end of ranges recently reported for precipitation. Operationally defined dissolved and particulate phase congener distribution patterns for the two events of highest concentration were qualitatively similar to gas-phase and particle-bound patterns for northern Wisconsin air samples. Higher than predicted dissolved-phase concentrations may indicate non-equilibrium processes during scavenging and/or sample processing, the presence of colloids and micro-particulates, and/or more efficient gas-phase transfer to hydrometeors with organic coatings. Observed organic carbon-normalized distribution coefficients increased slightly with increasing octanol-water partition coefficient, giving the relationship log Koc = 0.22 log Kow + 4.64. The data indicate that a third organic-rich colloidal phase could be influencing partitioning, and could explain the higher than expected apparent gas scavenging efficiency for PCBs from the atmosphere. Precipitation-weighted mean fluxes of PCBs in the dissolved and particulate phases were 1.2 and 1.4 μg m -2 year -1, respectively, indicating that precipitation remains a significant source of PCBs to the upper Great Lakes.
Role of modifiers for analytical-scale supercritical fluid extraction of environmental samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langenfeld, J.J.; Hawthorne, S.B.; Miller, D.J.
1994-03-15
Supercritical fluid extraction (SFE) using eight different CO[sub 2] + organic modifier mixtures and one ternary mixture (CO[sub 2] + methanol/toluene) at two different concentrations (1 and 10% v/v) was performed on two certified reference materials including polychlorinated biphenyls (PCBs) from river sediment and polycyclic aromatic hydrocarbons (PAHs) from urban air particulate matter. The modifier identity was more important than modifier concentration for increasing extraction efficiencies. Acidic/basic modifiers including methanol, acetic acid, and aniline greatly enhanced the extraction of PCBs. Low molecular weight PAHs were best extracted with modifiers including aniline, acetic acid, acetonitrile, methanol/toluene, hexane, and diethylamine. In contrast,more » modifiers capable of dipole-induced dipole interactions and [pi]-[pi] interactions such as toluene, diethylamine, and methylene chloride were the best modifiers to use for SFE of high molecular weight PAHs from air particulates. 37 refs., 6 tabs.« less
NASA Astrophysics Data System (ADS)
Schleicher, N. J.; Schäfer, J.; Chen, Y.; Blanc, G.; Chen, Y.; Chai, F.; Cen, K.; Norra, S.
2016-01-01
Atmospheric particulate mercury (HgP) was studied before, during, and after the Olympic Summer Games in Beijing, China, in August 2008 in order to investigate the efficiency of the emission control measures implemented by the Chinese Government. These source control measures comprised traffic reductions, increase in public transportation, planting of vegetation, establishment of parks, building freeze at construction sites, cleaner production techniques for industries and industry closures in Beijing and also in the surrounding areas. Strictest measures including the ;odd-even ban; to halve the vehicle volume were enforced from the 20th of July to the 20th of September 2008. The Olympic period provided the unique opportunity to investigate the efficiency of these comprehensive actions implemented in order to reduce air pollution on a large scale. Therefore, the sampling period covered summer (August, September) and winter (December and January) samples over several years from December 2005 to September 2013. Average HgP concentrations in total suspended particulates (TSP) sampled in August 2008 were 81 ± 39 pg/m3 while TSP mass concentrations were 93 ± 49 μg/m3. This equals a reduction by about 63% for TSP mass and 65% for HgP, respectively, compared to the previous two years demonstrating the short-term success of the measures. However, after the Olympic Games, HgP concentrations increased again to pre-Olympic levels in August 2009 while values in August 2010 decreased again by 30%. Moreover, winter samples, which were 2- to 11-fold higher than corresponding August values, showed decreasing concentrations over the years indicating a long-term improvement of HgP pollution in Beijing. However, regarding adverse health effects, comparisons with soil guideline values and studies from other cities highlighted that HgP concentrations in TSP remained high in Beijing despite respective control measures. Consequently, future mitigation measures need to be tailored more specifically to further reduce HgP concentrations in Beijing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.
The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore » used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less
Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; ...
2014-12-18
The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore » used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less
Conductometric Soot Sensor for Automotive Exhausts: Initial Studies
Hagen, Gunter; Feistkorn, Constanze; Wiegärtner, Sven; Heinrich, Andreas; Brüggemann, Dieter; Moos, Ralf
2010-01-01
In order to reduce the tailpipe particulate matter emissions of Diesel engines, Diesel particulate filters (DPFs) are commonly used. Initial studies using a conductometric soot sensor to monitor their filtering efficiency, i.e., to detect a malfunction of the DPF, are presented. The sensors consist of a planar substrate equipped with electrodes on one side and with a heater on the other. It is shown that at constant speed-load points, the time until soot percolation occurs or the resistance itself are reproducible means that can be well correlated with the filtering efficiency of a DPF. It is suggested to use such a sensor setup for the detection of a DPF malfunction. PMID:22294888
Conductometric soot sensor for automotive exhausts: initial studies.
Hagen, Gunter; Feistkorn, Constanze; Wiegärtner, Sven; Heinrich, Andreas; Brüggemann, Dieter; Moos, Ralf
2010-01-01
In order to reduce the tailpipe particulate matter emissions of Diesel engines, Diesel particulate filters (DPFs) are commonly used. Initial studies using a conductometric soot sensor to monitor their filtering efficiency, i.e., to detect a malfunction of the DPF, are presented. The sensors consist of a planar substrate equipped with electrodes on one side and with a heater on the other. It is shown that at constant speed-load points, the time until soot percolation occurs or the resistance itself are reproducible means that can be well correlated with the filtering efficiency of a DPF. It is suggested to use such a sensor setup for the detection of a DPF malfunction.
Sturman, Andrew; Titov, Mikhail; Zawar-Reza, Peyman
2011-01-15
Installation of temporary or long term monitoring sites is expensive, so it is important to rationally identify potential locations that will achieve the requirements of regional air quality management strategies. A simple, but effective, numerical approach to selecting ambient particulate matter (PM) monitoring site locations has therefore been developed using the MM5-CAMx4 air pollution dispersion modelling system. A new method, 'site efficiency,' was developed to assess the ability of any monitoring site to provide peak ambient air pollution concentrations that are representative of the urban area. 'Site efficiency' varies from 0 to 100%, with the latter representing the most representative site location for monitoring peak PM concentrations. Four heavy pollution episodes in Christchurch (New Zealand) during winter 2005, representing 4 different aerosol dispersion patterns, were used to develop and test this site assessment technique. Evaluation of the efficiency of monitoring sites was undertaken for night and morning aerosol peaks for 4 different particulate material (PM) spatial patterns. The results demonstrate that the existing long term monitoring site at Coles Place is quite well located, with a site efficiency value of 57.8%. A temporary ambient PM monitoring site (operating during winter 2006) showed a lower ability to capture night and morning peak aerosol concentrations. Evaluation of multiple site locations used during an extensive field campaign in Christchurch (New Zealand) in 2000 indicated that the maximum efficiency achieved by any site in the city would be 60-65%, while the efficiency of a virtual background site is calculated to be about 7%. This method of assessing the appropriateness of any potential monitoring site can be used to optimize monitoring site locations for any air pollution measurement programme. Copyright © 2010 Elsevier B.V. All rights reserved.
Establishing the origin of particulate matter across Europe
NASA Astrophysics Data System (ADS)
Schaap, Martijn; Kranenburg, Richard; Hendriks, Carlijn; Kuenen, Jeroen
2016-04-01
Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. In this paper we like to provide an overview of recent source apportionment studies aimed at PM and its precursors carried out at TNO. The source apportionment module that tracks the origin of modelled particulate matter distributions throughout a LOTOS-EUROS simulation will be explained. To optimally apply this technology dedicated emission inventories, e.g. fuel type specific, need to be generated. Applications to Europe shows that in northwestern Europe the contribution of transport and agricultural emissions dominate the PM mass concentrations, especially during episodic events. In eastern Europe, the domestic and energy sector are much more important. In southern Europe the picture is more mixed, although the frequent high levels of desert dust stand out. Evaluation of the source allocation against experimental data and PMF analyses is challenging as there is only a limited availability of source specific tracers or factors that can be used for direct comparison. Nonetheless, for the available tracers such as vanadium for heavy fuel oil combustion an evaluation is very well possible. The source apportionment technique can also be used to interpret particulate matter formation efficiencies. It will be shown that the conversion rates for the secondary inorganic aerosol precursors (NOx, NH3 and SO2) have changed during the last 20 years. A particular problem is related to the fact that CTMs systematically underestimate observed PM levels, which means that the contribution of certain source categories (natural, agriculture, combustion) are underestimated. Future developments needed to improve the source apportionment information concerning process knowledge, data assimilation as well as model implementation will be discussed. Specific challenges concerning the underlying emission information will be highlighted.
NASA Astrophysics Data System (ADS)
Armin, W.; Mueller, M.; Klinger, A.; Striednig, M.
2017-12-01
A quantitative characterization of the organic fraction of atmospheric particulate matter is still challenging. Herein we present the novel modular "Chemical Analysis of Aerosol Online" (CHARON) particle inlet system coupled to a new-generation proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF 6000 X2, Ionicon Analytik, Austria) that quantitatively detects organic analytes in real-time and sub-pptV levels by chemical ionization with hydronium reagent ions. CHARON consists of a gas-phase denuder for stripping off gas-phase analytes (efficiency > 99.999%), an aerodynamic lens for particle collimation combined with an inertial sampler for the particle-enriched flow and a thermodesorption unit for particle volatilization prior to chemical analysis. With typical particle enrichment factors of around 30 for particle diameters (DP) between 120 nm and 1000 nm (somewhat reduced enrichment for 60 nm < DP < 120 nm) we boost the already excellent limits of detection of the PTR-TOF 6000 X2 system to unprecedented levels. We demonstrate that particulate organic analytes of mass concentrations down to 100 pg m-3 can be detected on-line and in single-minute time-resolutions. In addition, PTR-MS allows for a quantitative detection of almost the full range of particulate organics of intermediate to low volatility. With the high mass resolution (R > 6000) and excellent mass accuracies (< 10 ppm) chemical compositions can be assigned and included in further analyses. In addition to a detailed characterization of the CHARON PTR-TOF 6000 X2 we will present first results on the chemical composition of sub-µm particulate organic matter in the urban atmosphere in Innsbruck (Austria).
Apple, J; Vicente, R; Yarberry, A; Lohse, N; Mills, E; Jacobson, A; Poppendieck, D
2010-10-01
Over one-quarter of the world's population relies on fuel-based lighting. Kerosene lamps are often located in close proximity to users, potentially increasing the risk for respiratory illnesses and lung cancer. Particulate matter concentrations resulting from cook stoves have been extensively studied in the literature. However, characterization of particulate concentrations from fuel-based lighting has received minimal attention. This research demonstrates that vendors who use a single simple wick lamp in high-air-exchange market kiosks will likely be exposed to PM(2.5) concentrations that are an order of magnitude greater than ambient health guidelines. Using a hurricane lamp will reduce exposure to PM(2.5) and PM(10) concentrations by an order of magnitude compared to using a simple wick lamp. Vendors using a single hurricane or pressure lamp may not exceed health standards or guidelines for PM(2.5) and PM(10), but will be exposed to elevated 0.02-0.3 μm particle concentrations. Vendors who change from fuel-based lighting to electric lighting technology for enhanced illumination will likely gain the ancillary health benefit of reduced particulate matter exposure. Vendors exposed only to ambient and fuel-based lighting particulate matter would see over an 80% reduction in inhaled PM(2.5) mass if they switched from a simple wick lamp to an electric lighting technology. Changing lighting technologies to achieve increased efficiency and energy service levels can provide ancillary health benefits. The cheapest, crudest kerosene lamps emit the largest amounts of PM(2.5). Improving affordability and access to better lighting options (hurricane or pressure lamps and lighting using grid or off-grid electricity) can deliver health benefits for a large fraction of the world's population, while reducing the economic and environmental burden of the current fuel-based lighting technologies.
Sintered composite medium and filter
Bergman, Werner
1987-01-01
A particulate filter medium is formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers. A preferred composition is about 40 vol. % quartz and about 60 vol. % stainless steel fibers. The media is sintered at about 1100.degree. C. to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550.degree. C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.
Bergman, W.
1986-05-02
A particulate filter medium formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers is described. Preferred composition is about 40 vol.% quartz and about 60 vol.% stainless steel fibers. The media is sintered at about 1100/sup 0/C to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550/sup 0/C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.
Surawski, Nicholas C; Miljevic, Branka; Bodisco, Timothy A; Brown, Richard J; Ristovski, Zoran D; Ayoko, Godwin A
2013-02-19
Compression ignition (CI) engine design is subject to many constraints, which present a multicriteria optimization problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient but must also deliver low gaseous, particulate, and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming is minimized. Consequently, this study undertakes a multicriteria analysis, which seeks to identify alternative fuels, injection technologies, and combustion strategies that could potentially satisfy these CI engine design constraints. Three data sets are analyzed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of (1) an ethanol fumigation system, (2) alternative fuels (20% biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and (3) various biodiesel fuels made from 3 feedstocks (i.e., soy, tallow, and canola) tested at several blend percentages (20-100%) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20% by energy) at moderate load, high percentage soy blends (60-100%), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most "preferred" solutions to this multicriteria engine design problem. Further research is, however, required to reduce reactive oxygen species (ROS) emissions with alternative fuels and to deliver technologies that do not significantly reduce the median diameter of particle emissions.
Viral Penetration of High Efficiency Particulate Air (HEPA) Filters (PREPRINT)
2009-09-01
US Plastics, Lima , 155 Ohio). Each path runs through a test article and thence through one AGI-30 all-glass 156 impinger (Chemglass, Vineland, N.J...rotameter (Blue–White 400, Huntington Beach , California, or PMR1-159 101346, Cole–Parmer, Vernon Hills, Illinois). At the end of the sampling path...fibrous Filters." J. Air Pollution Control Assoc. 30 [4]: 501 377–381. 502 Leenders, G.J.M, A.C. Bolle, and J. Stadhouders. 1984. “A Study of the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arndt, T.E., Fluor Daniel Hanford
A previous evaluation documented in report WHC-SD-GN-RPT-30005, Rev. 0, titled ``Evaluation on Self-Contained High Efficiency Particulate Filters,`` revealed that the SCHEPA filters do not have required documentation to be in compliance with the design, testing, and fabrication standards required in ASME N-509, ASME N-510, and MIL-F-51068. These standards are required by DOE Order 6430.IA. Without this documentation, filter adequacy cannot be verified. The existing SCHEPA filters can be removed and replaced with new filters and filter housing which meet current codes and standards.
Self-Cleaning Particulate Prefilter Media
NASA Technical Reports Server (NTRS)
Weber, Olivia; Lalwani, San-jiv; Sharma, Anjal
2012-01-01
A long-term space mission requires efficient air revitalization performance to sustain the crew. Prefilter and particulate air filter media are susceptible to rapid fouling that adversely affects their performance and can lead to catastrophic failure of the air revitalization system, which may result in mission failure. For a long-term voyage, it is impractical to carry replacement particulate prefilter and filter modules due to the usual limitations in size, volume, and weight. The only solution to this problem is to reagentlessly regenerate prefilter and filter media in place. A method was developed to modify the particulate prefilter media to allow them to regenerate reagentlessly, and in place, by the application of modest thermocycled transverse or reversed airflows. The innovation may allow NASA to close the breathing air loop more efficiently, thereby sustaining the vision for manned space exploration missions of the future. A novel, self-cleaning coatings technology was developed for air filter media surfaces that allows reagentless in-place regeneration of the surface. The technology grafts thermoresponsive and nonspecific adhesion minimizing polymer nanolayer brush coatings from the prefilter media. These polymer nanolayer brush architectures can be triggered to contract and expand to generate a "pushing-off" force by the simple application of modestly thermocycled (i.e. cycling from ambient cabin temperature to 40 C) air streams. The nonspecific adhesion-minimizing properties of the coatings do not allow the particulate foulants to adhere strongly to the filter media, and thermocycled air streams applied to the media allow easy detachment and in-place regeneration of the media with minimal impact in system downtime or astronaut involvement in overseeing the process.
Performance of biomorphic Silicon Carbide as particulate filter in diesel boilers.
Orihuela, M Pilar; Gómez-Martín, Aurora; Becerra, José A; Chacartegui, Ricardo; Ramírez-Rico, Joaquín
2017-12-01
Biomorphic Silicon Carbide (bioSiC) is a novel porous ceramic material with excellent mechanical and thermal properties. Previous studies have demonstrated that it may be a good candidate for its use as particle filter media of exhaust gases at medium or high temperature. In order to determine the filtration efficiency of biomorphic Silicon Carbide, and its adequacy as substrate for diesel particulate filters, different bioSiC-samples have been tested in the flue gases of a diesel boiler. For this purpose, an experimental facility to extract a fraction of the boiler exhaust flow and filter it under controlled conditions has been designed and built. Several filter samples with different microstructures, obtained from different precursors, have been tested in this bench. The experimental campaign was focused on the measurement of the number and size of particles before and after placing the samples. Results show that the initial efficiency of filters made from natural precursors is severely determined by the cutting direction and associated microstructure. In biomorphic Silicon Carbide derived from radially cut wood, the initial efficiency of the filter is higher than 95%. Nevertheless, when the cut of the wood is axial, the efficiency depends on the pore size and the permeability, reaching in some cases values in the range 70-90%. In this case, the presence of macropores in some of the samples reduces their efficiency as particle traps. In continuous operation, the accumulation of particles within the porous media leads to the formation of a soot cake, which improves the efficiency except in the case when extra-large pores exist. For all the samples, after a few operation cycles, capture efficiency was higher than 95%. These experimental results show the potential for developing filters for diesel boilers based on biomorphic Silicon Carbide. Copyright © 2017 Elsevier Ltd. All rights reserved.
Removal efficiency of particulate matters at different underlying surfaces in Beijing.
Liu, Jiakai; Mo, Lichun; Zhu, Lijuan; Yang, Yilian; Liu, Jiatong; Qiu, Dongdong; Zhang, Zhenming; Liu, Jinglan
2016-01-01
Particulate matter (PM) pollution has been increasingly becoming serious in Beijing and has drawn the attention of the local government and general public. This study was conducted during early spring of 2013 and 2014 to monitor the concentration of PM at three different land surfaces (bare land, urban forest, and lake) in the Olympic Park in Beijing and to analyze its effect on the concentration of meteorological factors and the dry deposition onto different land cover types. The results showed that diurnal variation of PM concentrations at the three different land surfaces had no significant regulations, and sharp short-term increases in PM10 (particulate matter having an aerodynamic diameter <10 μm) occurred occasionally. The concentrations also differed from one land cover type to another at the same time, but the regulation was insignificant. The most important meteorological factor influencing the PM concentration is relative humidity; it is positively correlated with the PM concentration. While in the forests, the wind speed and irradiance also influenced the PM concentration by affecting the capture capacity of trees and dry deposition velocity. Other factors were not correlated with or influenced by the PM concentration. In addition, the hourly dry deposition in unit area (μg/m(2)) onto the three types of land surfaces and the removal efficiency based on the ratio of dry deposition and PM concentration were calculated. The results showed that the forest has the best removal capacity for both PM2.5 (particulate matter having an aerodynamic diameter <2.5 μm) and PM10 because of the faster deposition velocity and relatively low resuspension rate. The lake's PM10 removal efficiency is higher than that of the bare land because of the relatively higher PM resuspension rates on the bare land. However, the PM2.5 removal efficiency is lower than that of the bare land because of the significantly lower dry deposition velocity.
High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction
Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.
1991-08-27
A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.
Multiyear Program Plan for the High Temperature Materials Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arvid E. Pasto
2000-03-17
Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly,more » the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.« less
HIGH-TEMPERATURE AND HIGH-PRESSURE PARTICULATE CONTROL REQUIREMENTS
The report reviews and evaluates high-temperature and high-pressure particulate cleanup requirements of existing and proposed energy processes. The study's aims are to define specific high-temperature and high-pressure particle removal problems, to indicate potential solutions, a...
NASA Astrophysics Data System (ADS)
Nji, Jones; Li, Guoqiang
2012-02-01
The purpose of this study is to investigate the potential of a shape-memory-polymer (SMP)-based particulate composite to heal structural-length scale damage with small thermoplastic additive contents through a close-then-heal (CTH) self-healing scheme that was introduced in a previous study (Li and Uppu 2010 Comput. Sci. Technol. 70 1419-27). The idea is to achieve reasonable healing efficiencies with minimal sacrifice in structural load capacity. By first closing cracks, the gap between two crack surfaces is narrowed and a lesser amount of thermoplastic particles is required to achieve healing. The particulate composite was fabricated by dispersing copolyester thermoplastic particles in a shape memory polymer matrix. It is found that, for small thermoplastic contents of less than 10%, the CTH scheme followed in this study heals structural-length scale damage in the SMP particulate composite to a meaningful extent and with less sacrifice of structural capacity.
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Zakharova, Nadia T.
1999-01-01
Many remote sensing applications rely on accurate knowledge of the bidirectional reflection function (BRF) of surfaces composed of discrete, randomly positioned scattering particles. Theoretical computations of BRFs for plane-parallel particulate layers are usually reduced to solving the radiative transfer equation (RTE) using one of existing exact or approximate techniques. Since semi-empirical approximate approaches are notorious for their low accuracy, violation of the energy conservation law, and ability to produce unphysical results, the use of numerically exact solutions of RTE has gained justified popularity. For example, the computation of BRFs for macroscopically flat particulate surfaces in many geophysical publications is based on the adding-doubling (AD) and discrete ordinate (DO) methods. A further saving of computer resources can be achieved by using a more efficient technique to solve the plane-parallel RTE than the AD and DO methods. Since many natural particulate surfaces can be well represented by the model of an optically semi-infinite, homogeneous scattering layer, one can find the BRF directly by solving the Ambartsumian's nonlinear integral equation using a simple iterative technique. In this way, the computation of the internal radiation field is avoided and the computer code becomes highly efficient and very accurate and compact. Furthermore, the BRF thus obtained fully obeys the fundamental physical laws of energy conservation and reciprocity. In this paper, we discuss numerical aspects and the computer implementation of this technique, examine the applicability of the Henyey-Greenstein phase function and the sigma-Eddington approximation in BRF and flux calculations, and describe sample applications demonstrating the potential effect of particle shape on the bidirectional reflectance of flat regolith surfaces. Although the effects of packing density and coherent backscattering are currently neglected, they can also be incorporated. The FORTRAN implementation of the technique is available on the World Wide Web, and can be applied to a wide range of remote sensing problems. BRF computations for undulated (macroscopically rough) surfaces are more complicated and often rely on time consuming Monte Carlo procedures. This approach is especially inefficient for optically thick, weakly absorbing media (e.g., snow and desert surfaces at visible wavelengths since a photon may undergo many internal scattering events before it exists the medium or is absorbed. However, undulated surfaces can often be represented as collections of locally flat tilted facets characterized by the BRF found from the traditional plane parallel RTE. In this way the MOnte Carlo procedure could be used only to evaluate the effects of surface shadowing and multiple surface reflections, thereby bypassing the time-consuming ray tracing inside the medium and providing a great savings of CPU time.
Present and Past Impact of Glacially Sourced Dust on Iron Fertilization of the Southern Ocean
NASA Astrophysics Data System (ADS)
Shoenfelt, E. M.; Winckler, G.; Kaplan, M. R.; Sambrotto, R.; Bostick, B. C.
2016-12-01
An increase in iron-containing dust flux and a more efficient biological pump in the Southern Ocean have been associated with the CO2 drawdown and global cooling of the Last Glacial Maximum (LGM). While iron (Fe) mineralogy is known to affect Fe bioavailability through its impact on Fe solubility, there are limited studies investigating the importance of Fe mineralogy in dust fluxes to the Southern Ocean, and no previous studies investigating interactions between eukaryotic phytoplankton and particulate-phase Fe in natural dusts applicable to Southern Ocean environments. Since physically weathered bedrock becomes less soluble as it becomes weathered and oxidized, we hypothesized that glacially sourced dusts would contain more Fe(II)-rich primary minerals and would be more bioavailable than dusts from areas not impacted by glaciers. We used a series of natural dusts from Patagonia as the sole Fe source in incubation experiments with the model diatom Phaeodactylum tricornutum, and evaluated Fe bioavailability using culture growth rates, cell density, and variable fluorescence. Monod curves were also used to evaluate the efficiency of the different particulates as sources of nutrient Fe. Using these Monod curves fit to growth rates plotted against particulate Fe concentrations, we observed that 1) Fe(II)-rich primary silicates were significantly more effective as an Fe source to diatoms than Fe(III)-rich oxides, that 2) Fe(II) content itself was responsible for the difference in Fe bioavailability/efficiency of the Fe nutrient source, and that 3) surface interactions with the particulates were important. In an effort to explore the possibility that Fe mineralogy impacted Fe bioavailability in past oceans, we will present our hypotheses regarding productivity and Fe mineralogy/bioavailability through the last glacial cycle.
NASA Astrophysics Data System (ADS)
Li, Peng; Zong, Yichen; Zhang, Yingying; Yang, Mengmeng; Zhang, Rufan; Li, Shuiqing; Wei, Fei
2013-03-01
We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions.We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions. Electronic supplementary information (ESI) available: Schematic of the synthesis process of the CNT/QF filter; typical size distribution of atomized polydisperse NaCl aerosols used for air filtration testing; images of a QF filter and a CNT/QF filter; SEM image of a CNT/QF filter after 5 minutes of sonication in ethanol; calculation of porosity and filter specific area. See DOI: 10.1039/c3nr34325a
High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction
Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.
1991-08-27
A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.
Bayat Tork, Mahya; Khalilzadeh, Rasoul; Kouchakzadeh, Hasan
2017-11-01
Harvesting involves nearly thirty percent of total production cost of microalgae that needs to be done efficiently. Utilizing inexpensive and highly available biopolymer-based flocculants can be a solution for reducing the harvest costs. Herein, flocculation process of Chlorella vulgaris microalgae using cationic starch nanoparticles (CSNPs) was evaluated and optimized through the response surface methodology (RSM). pH, microalgae and CSNPs concentrations were considered as the main independent variables. Under the optimum conditions of microalgae concentration 0.75gdry weight/L, CSNPs concentration 7.1mgdry weight/L and pH 11.8, the maximum flocculation efficiency (90%) achieved. Twenty percent increase in flocculation efficiency observed with the use of CSNPs instead of the non-particulate starch which can be due to the more electrostatic interactions between the cationic nanoparticles and the microalgae. Therefore, the synthesized CSNPs can be employed as a convenient and economical flocculants for efficient harvest of Chlorella vulgaris microalgae at large scale. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zimmerman, Marc J.; Waldron, Marcus C.; DeSimone, Leslie A.
2015-01-01
Analysis of the representative constituents (total phosphorus, total chromium, and suspended sediment) upstream and downstream of impoundments indicated that the existing impoundments, such as Rice City Pond, can be sources of particulate contaminant loads in the Blackstone River. Loads of particulate phosphorus, particulate chromium, and suspended sediment were consistently higher downstream from Rice City Pond than upstream during high-flow events, and there was a positive, linear relation between streamflow and changes in these constituents from upstream to downstream of the impoundment. Thus, particulate contaminants were mobilized from Rice City Pond during high-flow events and transported downstream. In contrast, downstream loads of particulate phosphorus, particulate chromium, and suspended sediment were generally lower than or equal to upstream loads for the former Rockdale Pond impoundment. Sediments associated with the former impoundment at Rockdale Pond, breached in the late 1960s, did not appear to be mobilized during the high-flow events monitored during this study.
Effect of Thermal Storage on the Performance of a Wood Pellet-fired Residential Boiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Butcher
Interest in the direct use of biomass for thermal applications as a renewable technology is increasing as is also focus on air pollutant emissions from these sources and methods to minimize the impact. This work has focused on wood pellet-fired residential boilers, which are the cleanest fuel in this category. In the residential application the load varies strongly over the course of a year and a high fraction of the load is typically under 15% of the maximum boiler capacity. Thermal storage can be used even with boilers which have modulation capacity typically to 30% of the boiler maximum. Onemore » common pellet boiler was tested at full load and also at the minimum load used in the U.S. certification testing (15%). In these tests the load was steady over the test period. Testing was also done with an emulated load profile for a home in Albany, N.Y. on a typical January, March, and April day. In this case the load imposed on the boiler varied hourly under computer control, based on the modeled load for the example case used. The boiler used has a nominal output of 25 kW and a common mixed hardwood/softwood commercial pellet was used. Moisture content was 3.77%. A dilution tunnel approach was used for the measurement of particulate emissions, in accordance with U.S. certification testing requirements. The test results showed that the use of storage strongly reduces cycling rates under part load conditions. The transients which occur as these boilers cycle contribute to increased particulate emissions and reduced efficiency. The time period of a full cycle at a given load condition can be increased by increasing the storage tank volume and/or increasing the control differential range. It was shown that increasing the period strongly increased the measured efficiency and reduced the particulate emission (relative to the no storage case). The impact was most significant at the low load levels. Storage tank heat loss is shown to be a significant factor in thermal efficiency, particularly at low load. Different methods to measure this heat loss were explored. For one of the tanks evaluated the efficiency loss at the 15% load point was found to be as high as 7.9%. Where storage is used good insulation on the tank, insulation on the piping, and attention to fittings are recommended.« less
Does microbial biomass affect pelagic ecosystem efficiency? An experimental study.
Wehr, J D; Le, J; Campbell, L
1994-01-01
Bacteria and other microorganisms in the pelagic zone participate in the recycling of organic matter and nutrients within the water column. The microbial loop is thought to enhance ecosystem efficiency through rapid recycling and reduced sinking rates, thus reducing the loss of nutrients contained in organisms remaining within the photic zone. We conducted experiments with lake communities in 5400-liter mesocosms, and measured the flux of materials and nutrients out of the water column. A factorial design manipulated 8 nutrient treatments: 4 phosphorus levels × 2 nitrogen levels. Total sedimentation rates were greatest in high-N mesocosms; within N-surplus communities, [Symbol: see text]1 µM P resulted in 50% increase in total particulate losses. P additions without added N had small effects on nutrient losses from the photic zone; +2 µM P tanks received 334 mg P per tank, yet after 14 days lost only 69 mg more particulate-P than did control communities. Nutrient treatments resulted in marked differences in phytoplankton biomass (twofold N effect, fivefold P effect in +N mesocosms only), bacterioplankton densities (twofold N-effect, twofold P effects in -N and +N mesocosms), and the relative importance of autotrophic picoplankton (maximum in high NY mesocosms). Multiple regression analysis found that of 8 plankton and water chemistry variables, the ratio of autotrophic picoplankton to total phytoplankton (measured as chlorophyll α) explained the largest portion of the total variation in sedimentation loss rates (65% of P-flux, 57% of N-flux, 26% of total flux). In each case, systems with greater relative importance of autotrophic picoplankton had significantly reduced loss rates. In contrast, greater numbers of planktonic bacteria were associated with increased sedimentation rates and lower system efficiency. We suggest that different microbial components may have contrasting effects on the presumed enhanced efficiency provided by the microbial loop.
Seemayer, N H; Hadnagy, W; Tomingas, R
1987-03-01
Extract of particulate matter (EPM) of gasoline engine exhaust induced only a slight loss of cell viability of mouse macrophages (line IC-21) in vitro, while a strong dose-dependent reduction of plating efficiency of human cell line A-549 and of Syrian hamster line 14-1b occurred. Cytological investigations of exposed macrophages of line IC-21 revealed an increase in the mitotic index from 1.5% of control values up to 14.6% at the highest tested concentration of EPM. Mitotic arrest is based almost exclusively on C-type mitoses occurring dose-dependently in the presence of EPM. Results indicate disturbances of the spindle apparatus in the presence of EPM.
Birger, Nicholas; Gould, Timothy; Stewart, James; Miller, Mark R; Larson, Timothy; Carlsten, Chris
2011-03-01
The Air Pollution Exposure Laboratory (APEL) was designed for the controlled inhalation of human subjects to aged and diluted diesel exhaust (DE) to mimic "real-world" occupational and environmental conditions. An EPA Tier 3-compliant, 6.0 kW diesel generator is operated under discrete cyclic loads to simulate diesel on-road emissions. The engine accepts standard ultra-low sulfur diesel or a variety of alternative fuels (such as biodiesel) via a partitioned tank. A portion of raw exhaust is drawn into the primary dilution system and is diluted 9:1 with compressed air at standard temperature (20°C) and humidity (40%) levels. The exhaust is further diluted approximately 25:1 by high efficiency particulate air (HEPA)-filtered air (FA) and then aged for 4 min before entering the 4 × 6 × 7-foot exposure booth. An optional HEPA filter path immediately proximal to the booth can generate a particle-reduced (gas-enriched) exposure. In-booth particulate is read by a nephelometer to provide an instantaneous light scattering coefficient for closed-loop system control. A Scanning Mobility Particle Sizer and multi-stage impactor measures particle size distribution. Filter sampling allows determination of sessional average concentrations of size-fractionated and unfractionated particulate oxidative potential, elemental carbon, organic carbon and trace elements. Approximately 300 μg/m(3) PM(2.5) is routinely achievable at APEL and is well characterized in terms of oxidative potential and elemental components. APEL efficiently creates fresh DE, appropriately aged and diluted for human experimentation at safe yet realistic concentrations. Description of exposure characteristics allows comparison to other international efforts to deepen the current evidence base regarding the health effects of DE.
NASA Astrophysics Data System (ADS)
Kumar, Amit; Narayan, Bastola; Pachat, Rohit; Ranjan, Rajeev
2018-02-01
Ferroelectric-ferromagnetic multiferroic composites are of great interest both from the scientific and technological standpoints. The extent of coupling between polarization and magnetization in such two-phase systems depends on how efficiently the magnetostrictive and electrostrictive/piezoelectric strain gets transferred from one phase to the other. This challenge is most profound in the easy to make 0-3 ferroelectric-ferromagnetic particulate composites. Here we report a self-grown ferroelectric-ferromagnetic 0-3 particulate composite through controlled spontaneous precipitation of ferrimagnetic barium hexaferrite phase (BaF e12O19 ) amid ferroelectric grains in the multiferroic alloy system BiFe O3-BaTi O3 . We demonstrate that a composite specimen exhibiting merely ˜1% hexaferrite phase exhibits ˜34% increase in saturation polarization in a dc magnetic field of ˜10 kOe. Using modified Rayleigh analysis of the polarization field loop in the subcoercive field region we argue that the substantial enhancement in the ferroelectric switching is associated with the reduction in the barrier heights of the pinning centers of the ferroelectric-ferroelastic domain walls in the stress field generated by magnetostriction in the hexaferrite grains when the magnetic field is turned on. Our study proves that controlled precipitation of the magnetic phase is a good strategy for synthesis of 0-3 ferroelectric-ferromagnetic particulate multiferroic composite as it not only helps in ensuring a good electrical insulating character of the composite, enabling it to sustain high enough electric field for ferroelectric switching, but also the factors associated with the spontaneity of the precipitation process ensure efficient transfer of the magnetostrictive strain/stress to the surrounding ferroelectric matrix making domain wall motion easy.
NASA Astrophysics Data System (ADS)
Dijkstra, N.; Kraal, P.; Séguret, M. J. M.; Flores, M. R.; Gonzalez, S.; Rijkenberg, M. J. A.; Slomp, C. P.
2018-02-01
Marine basins with oxygen-depleted deep waters provide a natural laboratory to investigate the consequences of anoxic and sulfidic (i.e. euxinic) conditions for biogeochemical processes in seawater and sediments. In this study, we investigate the dynamics of the key nutrient phosphorus (P) and associated elements such as manganese (Mn), iron (Fe) and calcium (Ca) in the euxinic deep basin of the Black Sea. By examining water column particles with scanning electron microscope - energy dispersive spectroscopy and synchrotron-based X-ray absorption spectroscopy, we show that Mn(III/IV)-P is the key form of particulate P in the redoxcline. Other forms of particulate P include organic P, Fe(III)-P, and inorganic polyphosphates. Most inorganic P particles that are formed in the redoxcline subsequently dissolve in the underlying sulfidic waters, with the exception of some particulate Fe(III)-P that accounts for <1% of all P settling onto the seafloor. Organic P is the dominant source of P to the sediment. Most of this organic P is degraded in the upper 2 cm of the sediment. Results of sequential extractions and a 33P radiotracer experiment point towards the formation of labile Ca-P and P adsorbed onto calcium-carbonate and clays and a role of these phases as a major sink of P in the sediment. The total P burial efficiency in the sediments is ∼27%, which is relatively high when compared to estimates for sediments in other euxinic basins such as the Baltic Sea (<12%). We suggest that the abundant presence of calcium carbonate may contribute to the more efficient sequestration of P in Black Sea sediments.
Direct and Quantitative Photothermal Absorption Spectroscopy of Individual Particulates
2013-01-01
1(a). By taking the ratio of the spectral absorption efficiency of the microwire to the corresponding volumetri - cally equivalent thin film, an...of D¼ 983 nm. For further comparison, the theoretical spectral absorption efficiency for a volumetri - cally equivalent (t¼ 983p/4 nm) thin film, Qabs
Liu, Qichen; Huang, Jing; Guo, Bin; Guo, Xinbiao
2016-12-28
Background : The Asia-Pacific Economic Cooperation (APEC) meeting was held from 5 November to 11 November 2014 in Beijing, and comprehensive emission control measures were implemented. The efficiency of these measures on particulate matter-related health impacts and economic cost need to be evaluated. Methods : The influences of emission control measures during APEC on particulate matter were evaluated, and health economic effects were assessed. Results : Average concentrations of PM 2.5 and PM 10 during APEC were reduced by 57.0%, and 50.6% respectively, compared with pre-APEC period. However, the concentrations of particulate matter rebounded after APEC. Compared with the pre-APEC and post-APEC periods, the estimated number of deaths caused by non-accidental, cardiovascular and respiratory diseases that could be attributed to PM 2.5 and PM 10 during the APEC were the lowest. The economic cost associated with mortality caused by PM 2.5 and PM 10 during the APEC were reduced by (61.3% and 66.6%) and (50.3% and 60.8%) respectively, compared with pre-APEC and post-APEC. Conclusions : The emission control measures were effective in improving short term air quality and reducing health risks and medical expenses during 2014 APEC, but more efforts is needed for long term and continuous air quality improvement and health protection.
Liu, Qichen; Huang, Jing; Guo, Bin; Guo, Xinbiao
2016-01-01
Background: The Asia-Pacific Economic Cooperation (APEC) meeting was held from 5 November to 11 November 2014 in Beijing, and comprehensive emission control measures were implemented. The efficiency of these measures on particulate matter-related health impacts and economic cost need to be evaluated. Methods: The influences of emission control measures during APEC on particulate matter were evaluated, and health economic effects were assessed. Results: Average concentrations of PM2.5 and PM10 during APEC were reduced by 57.0%, and 50.6% respectively, compared with pre-APEC period. However, the concentrations of particulate matter rebounded after APEC. Compared with the pre-APEC and post-APEC periods, the estimated number of deaths caused by non-accidental, cardiovascular and respiratory diseases that could be attributed to PM2.5 and PM10 during the APEC were the lowest. The economic cost associated with mortality caused by PM2.5 and PM10 during the APEC were reduced by (61.3% and 66.6%) and (50.3% and 60.8%) respectively, compared with pre-APEC and post-APEC. Conclusions: The emission control measures were effective in improving short term air quality and reducing health risks and medical expenses during 2014 APEC, but more efforts is needed for long term and continuous air quality improvement and health protection. PMID:28036006
Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun
2017-01-01
The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.
Xiong, Jin Wen; Wan, Man Pun
2017-01-01
The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency. PMID:28594862
Assessing the Capacity of Plant Species to Accumulate Particulate Matter in Beijing, China
Mo, Li; Ma, Zeyu; Xu, Yansen; Sun, Fengbin; Lun, Xiaoxiu; Liu, Xuhui; Chen, Jungang; Yu, Xinxiao
2015-01-01
Air pollution causes serious problems in spring in northern China; therefore, studying the ability of different plants to accumulate particulate matter (PM) at the beginning of the growing season may benefit urban planners in their attempts to control air pollution. This study evaluated deposits of PM on the leaves and in the wax layer of 35 species (11 shrubs, 24 trees) in Beijing, China. Differences in the accumulation of PM were observed between species. Cephalotaxus sinensis, Euonymus japonicus, Broussonetia papyriferar, Koelreuteria paniculata and Quercus variabilis were all efficient in capturing small particles. The plants exhibiting high amounts of total PM accumulation (on leaf surfaces and/or in the wax layer), also showed comparatively high levels of PM accumulation across all particle sizes. A comparison of shrubs and trees did not reveal obvious differences in their ability to accumulate particles based on growth form; a combination of plantings with different growth forms can efficiently reduce airborne PM concentrations near the ground. To test the relationships between leaf traits and PM accumulation, leaf samples of selected species were observed using a scanning electron microscope. Growth forms with greater amounts of pubescence and increased roughness supported PM accumulation; the adaxial leaf surfaces collected more particles than the abaxial surfaces. The results of this study may inform the selection of species for urban green areas where the goal is to capture air pollutants and mitigate the adverse effects of air pollution on human health. PMID:26506104
Kim, Seong Hwan; Ahn, Geum Ran; Son, Seung Yeol; Bae, Gwi-Nam
2014-01-01
Fungi are the known sources of irritation associated with atopic diseases (e.g., asthma, allergic rhinoconjunctivitis, and atopic eczema). To quantitatively estimate their presence in the indoor environment of atopic dermatitis-inflicted child patient's houses (ADCPHs), the high-efficiency particulate air (HEPA) filters installed inside the air cleaners of three different ADCPHs were investigated for the presence of mold. The air cleaner HEPA filters obtained from the three different ADCPHs were coded as HEPA-A, -B, and -C, respectively, and tested for the presence of mold. The colony forming units (CFUs) corresponding to the HEPA-A, -B, and -C filters were estimated to be 6.51 × 102 ± 1.50 × 102 CFU/cm2, 8.72 × 102 ± 1.69 × 102 CFU/cm2, and 9.71 × 102 ± 1.35 × 102 CFU/cm2, respectively. Aspergillus, Penicillium, Alternaria, Cladosporium, Trichoderma, and other fungal groups were detected in the 2,494 isolates. The distribution of these fungal groups differed among the three filters. Cladosporium was the major fungal group in filters HEPA-A and -C, whereas Penicillium was the major fungal group in the filter HEPA-B. Nine fungal species, including some of the known allergenic species, were identified in these isolates. Cladosporium cladosporioides was the most common mold among all the three filters. This is the first report on the presence of fungi in the air cleaner HEPA filters from ADCPHs in Korea. PMID:25346608
Flux of particulate matter through copepods in the Northeast water polynya
NASA Astrophysics Data System (ADS)
Daly, Kendra L.
1997-01-01
Particulate organic carbon (POC) and nitrogen (PON) production by large calanoid copepods was investigated on the northeast Greenland shelf during August 1992 and May to August 1993. Both Calanus hyperboreus and C. glacialis females, when suspended in seawater collected from the chlorophyll maximum, produced about 40 pellets per day, which contained a carbon and nitrogen content equivalent to 8% and 6% of body carbon, respectively, and 2% of body nitrogen. In experiments, the carbon:nitrogen (C:N) ratio by weight of suspended particulates, C. hyperboreus, and fecal pellets was 6.7, 7.7 and 28.5, respectively. The unusually high C:N ratio for pellets, in part, may be attributed to elevated ratios of > 20μm size fractions of particulate organic matter, the size fraction more common in the diet of these large copepods and the fraction dominated by diatoms according to microscopic and pigment data. The implied elevated C:N ratios of large phytoplankton cells were probably due to nitrogen deficiency, as shown by other studies in this region. In addition, female C. hyperboreus appeared to be more efficient in assimilating nitrogen than carbon, which also would have contributed to high C:N ratios in egested pellets. Unfractionated POC concentrations explained 54% of the variability in carbon egestion and 70% of the variability in nitrogen egestion in copepods, whereas copepod body content accounted for little of the variation on the short time scales of the experiments. Carbon egestion by C. hyperboreus was positively correlated with POC concentrations at the depth of the chlorophyll maximum, while nitrogen egestion was negatively correlated with PON concentrations in the euphotic zone. Estimates of potential community egestion rates for the upper water column indicate that copepods represent a major pathway of organic carbon transformation in this Arctic shelf system. On average, copepods may have ingested 45% of the primary production and egested fecal matter equivalent to 20% of the carbon and 12% of the nitrogen particulate flux sedimenting from the surface layer. However, several lines of evidence suggest that pellets were remineralized in the water column and, hence, may have contributed little organic carbon and nitrogen to the benthos.
NASA Astrophysics Data System (ADS)
Tseng, Tung-Tse
In this research the interferences with the on -line detection of radioiodines, under nuclear accident conditions, were studied. The special tool employed for this research is the developed on-line radioiodine monitor (the Penn State Radioiodine Monitor), which is capable of detecting low levels of radioiodine on-line in air containing orders of magnitude higher levels of radioactive noble gases. Most of the data reported in this thesis were collected during a series of experiments called "Source -Term Experiment Program (STEP)." The experiments were conducted at the Argonne National Laboratory's TREAT reactor located at the Idaho National Engineering Laboratory (INEL). In these tests, fission products were released from the Light Water Reactor (LWR) test fuels as a result of simulating a reactor accident. The Penn State Monitor was then used to sample the fission products accumulated in a large container which simulated the reactor containment building. The test results proved that the Penn State Monitor was not affected significantly by the passage of large amounts of noble gases through the system. Also, it confirmed the predicted results that the operation of conventional on-line radioiodine detectors would, under nuclear accident conditions, be seriously impaired by the passage of high concentrations of radioactive noble gases through such systems. This work also demonstrated that under conditions of high noble gas concentrations and low radioiodine concentrations, the formation of noble-gas-decayed alkali metals can seriously interfere with the on-line detection of radioiodine, especially during the 24 hours immediately after the accident. The decayed alkali metal particulates were also found to be much more penetrating than the ordinary type of particulates, since a large fraction (15%) of the particulates were found to penetrate through the commonly used High Efficiency Particulate Air (HEPA) filter (rated >99.97% for 0.3 (mu)m particulate). Also, a significant fraction ((TURN)40%) of these particles became deposited on silver zeolite iodine filters inside the counting chamber. Finally, the Penn State Monitor proved itself to be a powerful research tool for the on-line source term studies since it can easily produce near noble-gas-free spectra during the real time studies occurring under simulated nuclear accident conditions.
PERFORMANCE AND DURABILITY OF THE PSA PEUGEOT CITROEN'S DPF SYSTEM ON A TAXI FLEET IN THE PARIS AREA
DOE Office of Scientific and Technical Information (OSTI.GOV)
COROLLER, P; PLASSAT, G
The use of Diesel engines has strongly increased during the last years and now represents 40% of the sales in Europe and up to 50% of the number of cars in circulation for some countries. This success is linked not only to the economical aspect of the use of such vehicles, but also to the recent technological improvements of these engines. The new technical solutions (high pressure direct injection, turbocharger) have indeed allowed the increase of these engine performances while decreasing their fuel consumption, pollutant emissions and noise level. From an environment point of view, Diesel engines are nevertheless penalizedmore » by their particulates and NOx emissions. The study and the treatment of the particulate, highly criticized for their potential impact on health, are the subject of numerous works of characterizations and developments. PSA Peugeot Citroen has recently (2000) launched its particulate filter technology on several types of vehicles (500,000 vehicles with DPF have been sold today). In order to evaluate the durability of this technology over a long period of time, a study program has been set-up by ADEME (French Environmental Agency), IFP Powertrain, PSA Peugeot Citroen and Taxis G7 (a Parisian taxis Company). The objective is to study the evolution of five taxis and their after-treatment system performances over 80,000km mileage--which corresponds to the recommended mileage before the first DPF maintenance--in hard urban driving conditions, as well over 120,000km, after the DPF maintenance and remanufacturing. More specifically, the following evaluations are being performed at regular intervals (around 20,000km): regulated gaseous pollutant emissions on NEDC cycle, particulate emissions and unregulated pollutant emissions. The results obtained until now have not shown any degradation of the particulate filter efficiency (more than 90%). This paper presents the methodology set-up, and the explanation of the first results obtained. Indeed, a more specific study has shown that most of the aerosols, measured with SMPS are composed of liquid fractions, mainly sulfates due to the sulphur coming from the fuel but also from the lubricant. The impact of sulfates stored on the catalyst surface during low temperature running phases and removed during high temperature running phases has been also outlined.« less
Sampling and data handling methods for inhalable particulate sampling. Final report nov 78-dec 80
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, W.B.; Cushing, K.M.; Johnson, J.W.
1982-05-01
The report reviews the objectives of a research program on sampling and measuring particles in the inhalable particulate (IP) size range in emissions from stationary sources, and describes methods and equipment required. A computer technique was developed to analyze data on particle-size distributions of samples taken with cascade impactors from industrial process streams. Research in sampling systems for IP matter included concepts for maintaining isokinetic sampling conditions, necessary for representative sampling of the larger particles, while flowrates in the particle-sizing device were constant. Laboratory studies were conducted to develop suitable IP sampling systems with overall cut diameters of 15 micrometersmore » and conforming to a specified collection efficiency curve. Collection efficiencies were similarly measured for a horizontal elutriator. Design parameters were calculated for horizontal elutriators to be used with impactors, the EPA SASS train, and the EPA FAS train. Two cyclone systems were designed and evaluated. Tests on an Andersen Size Selective Inlet, a 15-micrometer precollector for high-volume samplers, showed its performance to be with the proposed limits for IP samplers. A stack sampling system was designed in which the aerosol is diluted in flow patterns and with mixing times simulating those in stack plumes.« less
R'Mili, Badr; Boréave, Antoinette; Meme, Aurelie; Vernoux, Philippe; Leblanc, Mickael; Noël, Ludovic; Raux, Stephane; D'Anna, Barbara
2018-03-06
Diesel particulate filters (DPFs) are commonly employed in modern passenger cars to comply with current particulate matter (PM) emission standards. DPFs requires periodic regeneration to remove the accumulated matter. During the process, high-concentration particles, in both nucleation and accumulation modes, are emitted. Here, we report new information on particle morphology and chemical composition of fine (FPs) and ultrafine particles (UFPs) measured downstream of the DPF during active regeneration of two Euro 5 passenger cars. The first vehicle was equipped with a close-coupled diesel oxidation catalyst (DOC) and noncatalyzed DPF combined with fuel borne catalyst and the second one with DOC and a catalyzed-diesel particle filter (CDPF). Differences in PM emission profiles of the two vehicles were related to different after treatment design, regeneration strategies, and vehicle characteristics and mileage. Particles in the nucleation mode consisted of ammonium bisulfate, sulfate and sulfuric acid, suggesting that the catalyst desulfation is the key process in the formation of UFPs. Larger particles and agglomerates, ranging from 90 to 600 nm, consisted of carbonaceous material (soot and soot aggregates) coated by condensable material including organics, ammonium bisulfate and sulfuric acid. Particle emission in the accumulation mode was due to the reduced filtration efficiency (soot cake oxidation) throughout the regeneration process.
Fractal and spectroscopic analysis of soot from internal combustion engines
NASA Astrophysics Data System (ADS)
Swapna, M. S.; Saritha Devi, H. V.; Raj, Vimal; Sankararaman, S.
2018-03-01
Today diesel engines are used worldwide for various applications and very importantly in transportation. Hydrocarbons are the most widespread precursors among carbon sources employed in the production of carbon nanotubes (CNTs). The aging of internal combustion engine is an important parameter in deciding the carbon emission and particulate matter due to incomplete combustion of fuel. In the present work, an attempt has been made for the effective utilization of the aged engines for potential applicationapplications in fuel cells and nanoelectronics. To analyze the impact of aging, the particulate matter rich in carbon content areis collected from diesel engines of different ages. The soot with CNTs is purified by the liquid phase oxidation method and analyzed by Field Emission Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, Energy Dispersive Spectroscopy, UV-Visible spectroscopy, Raman spectroscopy and Thermogravimetric analysis. The SEM image contains self-similar patterns probing fractal analysis. The fractal dimensions of the samples are determined by the box counting method. We could find a greater amount of single-walled carbon nanotubes (SWCNTs) in the particulate matter emitted by aged diesel engines and thereby giving information about the combustion efficiency of the engine. The SWCNT rich sample finds a wide range of applicationapplications in nanoelectronics and thereby pointing a potential use of these aged engines.
Analysis of contaminants in factor VIII preparations administered to patients with hemophilia.
Rock, G. A.; Farrah, G.; Rozon, G.; Smiley, R. K.; Cole, R.; Villeneuve, D.; Tittley, P.
1983-01-01
Cryoprecipitate and the more purified factor VIII concentrates are all heterogeneous preparations that contain not only a high concentration of factor VIII but also various other materials, some of which might be injurious, causing liver damage after long-term exposure. The efficiency of three standard cryoprecipitate filters, two microaggregate filters and the appropriate factor VIII concentrate filters in reducing the amount of particulate matter delivered to the patient was assessed. Filtration of cryoprecipitate through the standard filters removed less than 20% of the contaminating microaggregates and very few of the large number of intact platelets, although the total dose of factor VIII was delivered. Microaggregate filters were no better in reducing the platelet contamination, although the total number of particles delivered was halved. However, 25% of the factor VIII was retained in the bed volume of the filter. The concentrate preparations also contained significant amounts of particulate matter that was unrelated to factor VIII and was not removed following filtration through the designated filter. These findings indicate that a new filter should be developed for administration of factor VIII concentrate that would remove the particulate matter while delivering all of the factor VIII to the patient. Images FIG. 1 FIG. 2 FIG. 3 FIG. 5 PMID:6401585
Herndon, J Marvin
2015-08-11
The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1) Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2) Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA) filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test) and identical variances (F-test); and (2) the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selck, H.; Forbes, V.E.; Decho, A.W.
1999-06-01
Organic matter such as humic acid and bacterial slime exopolymer are common in estuarine and coastal sediments, where they are ingested by animals that process particulate detritus. Both humic acid (HA; refractory) and exopolymer (EPS; easily digestible) bind metals and therefore might represent a source of particulate-bound metals to deposit-feeding organisms. This study examined how cadmium preexposure, gut passage time (GPT), and quality and quantity of the organic coating on sediment particles interact to determine cadmium absorption efficiency (Cd-AE) in Capitella sp. I. Pulse-chase experiments using [sup 109]Cd and [sup 51]Cr were used to determine Cd-AE in individual worms. Wormsmore » were given a pulse of carbon-cleaned, HA-coated or EPS-coated sediment particles. The third treatment was divided into three EPS concentrations (high, medium, and low). A 5-d preexposure to cadmium did not affect the egestion rates during either the preexposure period or the chase phase. Worms given a pulse of carbon-cleaned particles exhibited higher egestion rates during the chase phase than worms given a pulse of organic-coated particles, and no differences were seen in egestion rate between worms exposed to HA- and high-EPS-coated particles. Egestion rates decreased with increasing EPS concentration. The presence of refractory organic material decreased the absorption efficiency of cadmium from sediment relative to Cd-AE from carbon-cleaned sediment but not relative to Cd-AE from sediment coated with a high concentration of EPS. The Cd-AE increased linearly with increasing exopolymer coating on sediment particles. Overall, Cd-AE increased with increasing gut passage time in worms that were not preexposed, although Cd-AE from HA-coated particles was independent of gut passage time. Preexposure to cadmium reversed the relationship between gut passage time and cadmium absorption efficiency. Thus, the implications are that sedimentary organic matter and worm physiology might be especially important in controlling metal bioavailability in deposit-feeding organisms and should be considered in sediment quality approaches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottney, T.C.
Filtration systems that are incorrectly selected, installed and maintained can cause excessive particulates in occupied spaces. This article describes how to identify and correct problems. Particulate matter can be removed from ventilation air at several sites within a building. These sites include: on heat exchanger surfaces; inside ductwork, ceiling tiles and diffusers; and in the air filter. The cost associated with removing these unwanted contaminants is unavoidable. However, this removal cost varies depending on where the particulates have been deposited. Not all particulates that are generated by work-related activities are transported to the filter bank by return air currents beforemore » being deposited on other surfaces. Accordingly, walls still have to be repainted at varying intervals and carpeting vacuumed. Ceiling tiles will discolor at a rate that is influenced by their texture, the air outlet velocity, the amount of dirt in the ventilation air and how much contaminant is being generated in the room. It is estimated that 15% of ventilation air escapes the air filtration process. This leakage results in higher utility, janitorial and redecorating costs as well as contributing to employee absenteeism. When building management does not prevent it, air-conditioning coils and ductwork become an unintended part of the building's air filtration system. In time, this is much more expensive both in energy and cleaning costs than the steps available to keep them clean. Good particulate control can lower the total cost of building operation. However, a building operator may not have to upgrade to a higher efficiency filter to achieve higher system efficiency. Simply eliminating the source of leaks and better management of the existing filters may be all that is necessary.« less
NASA Astrophysics Data System (ADS)
Swamy, S.; Power, J.; Pham, D.; Preston, K. B.; Iqbal, A.
2007-12-01
Human and animal activity that occurs on gravel and dirt roads tends to contribute to high levels of particulate matter in the atmosphere. Birds molt their feathers, automobiles emit unused residues, and humans and animals stir up debris on the ground. Not only do these activities generate particulate matter, but they also generate noise. The aim of our study was to determine if a direct correlation exists between the amount of particulate matter and the noise levels in select areas within the Lake Merritt Park region of downtown Oakland, California. In addition, our research was aimed at determining if the level of noise at various locations conforms to City of Oakland regulations. Over a four-week period we measured noise levels and particulate matter concentrations at 27 different sites within the Park region. Preliminary results indicate that at a construction site and a residential area near the lake a direct correlation between our two variables existed; high noise level accompanied high particulate matter while low noise level accompanied low particulate matter, respectively. However, at the majority of the areas around the lake either indirect or no correlation was observed. Based on our results thus far, we conclude that noise levels are not indicative of particulate matter levels and that noise levels around Lake Merritt do conform to the city's regulations.
Langrish, Jeremy P; Li, Xi; Wang, Shengfeng; Lee, Matthew M Y; Barnes, Gareth D; Miller, Mark R; Cassee, Flemming R; Boon, Nicholas A; Donaldson, Ken; Li, Jing; Li, Liming; Mills, Nicholas L; Newby, David E; Jiang, Lixin
2012-03-01
Air pollution exposure increases cardiovascular morbidity and mortality and is a major global public health concern. We investigated the benefits of reducing personal exposure to urban air pollution in patients with coronary heart disease. In an open randomized crossover trial, 98 patients with coronary heart disease walked on a predefined route in central Beijing, China, under different conditions: once while using a highly efficient face mask, and once while not using the mask. Symptoms, exercise, personal air pollution exposure, blood pressure, heart rate, and 12-lead electrocardiography were monitored throughout the 24-hr study period. Ambient air pollutants were dominated by fine and ultrafine particulate matter (PM) that was present at high levels [74 μg/m³ for PM(2.5) (PM with aerodynamic diamater <2.5 µm)]. Consistent with traffic-derived sources, this PM contained organic carbon and polycyclic aromatic hydrocarbons and was highly oxidizing, generating large amounts of free radicals. The face mask was well tolerated, and its use was associated with decreased self-reported symptoms and reduced maximal ST segment depression (-142 vs. -156 μV, p = 0.046) over the 24-hr period. When the face mask was used during the prescribed walk, mean arterial pressure was lower (93 ± 10 vs. 96 ± 10 mmHg, p = 0.025) and heart rate variability increased (high-frequency power: 54 vs. 40 msec², p = 0.005; high-frequency normalized power: 23.5 vs. 20.5 msec, p = 0.001; root mean square successive differences: 16.7 vs. 14.8 msec, p = 0.007). However, mask use did not appear to influence heart rate or energy expenditure. Reducing personal exposure to air pollution using a highly efficient face mask appeared to reduce symptoms and improve a range of cardiovascular health measures in patients with coronary heart disease. Such interventions to reduce personal exposure to PM air pollution have the potential to reduce the incidence of cardiovascular events in this highly susceptible population.
Hoover, D.J.; MacKenzie, F.T.
2009-01-01
Baseflow and storm runoff fluxes of water, suspended particulate matter (SPM), and nutrients (N and P) were assessed in conservation, urban, and agricultural streams discharging to coastal waters around the tropical island of Oahu, Hawai'i. Despite unusually low storm frequency and intensity during the study, storms accounted for 8-77% (median 30%) of discharge, 57-99% (median 93%) of SPM fluxes, 11-79% (median 36%) of dissolved nutrient fluxes and 52-99% (median 85%) of particulate nutrient fluxes to coastal waters. Fluvial nutrient concentrations varied with hydrologic conditions and land use; land use also affected water and particulate fluxes at some sites. Reactive dissolved N:P ratios typically were ???16 (the 'Redfield ratio' for marine phytoplankton), indicating that inputs could support new production by coastal phytoplankton, but uptake of dissolved nutrients is probably inefficient due to rapid dilution and export of fluvial dissolved inputs. Particulate N and P fluxes were similar to or larger than dissolved fluxes at all sites (median 49% of total nitrogen, range 22-82%; median 69% of total phosphorus, range 49-93%). Impacts of particulate nutrients on coastal ecosystems will depend on how efficiently SPM is retained in nearshore areas, and on the timing and degree of transformation to reactive dissolved forms. Nevertheless, the magnitude of particulate nutrient fluxes suggests that they represent a significant nutrient source for many coastal ecosystems over relatively long time scales (weeks-years), and that reductions in particulate nutrient loading actually may have negative impacts on some coastal ecosystems.
Yi, Honghong; Hao, Jiming; Duan, Lei; Li, Xinghua; Guo, Xingming
2006-09-01
In this investigation, the collection efficiency of particulate emission control devices (PECDs), particulate matter (PM) emissions, and PM size distribution were determined experimentally at the inlet and outlet of PECDs at five coal-fired power plants. Different boilers, coals, and PECDs are used in these power plants. Measurement in situ was performed by an electrical low-pressure impactor with a sampling system, which consisted of an isokinetic sampler probe, precut cyclone, and two-stage dilution system with a sample line to the instruments. The size distribution was measured over a range from 0.03 to 10 microm. Before and after all of the PECDs, the particle number size distributions display a bimodal distribution. The PM2.5 fraction emitted to atmosphere includes a significant amount of the mass from the coarse particle mode. The controlled and uncontrolled emission factors of total PM, inhalable PM (PM10), and fine PM P(M2.5) were obtained. Electrostatic precipitator (ESP) and baghouse total collection efficiencies are 96.38-99.89% and 99.94%, respectively. The minimum collection efficiency of the ESP and the baghouse both appear in the particle size range of 0.1-1 microm. In this size range, ESP and baghouse collection efficiencies are 85.79-98.6% and 99.54%. Real-time measurement shows that the mass and number concentration of PM10 will be greatly affected by the operating conditions of the PECDs. The number of emitted particles increases with increasing boiler load level because of higher combustion temperature. During test run periods, the data reproducibility is satisfactory.
High particle export over the continental shelf of the west Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Buesseler, Ken O.; McDonnell, Andrew M. P.; Schofield, Oscar M. E.; Steinberg, Deborah K.; Ducklow, Hugh W.
2010-11-01
Drifting cylindrical traps and the flux proxy 234Th indicate more than an order of magnitude higher sinking fluxes of particulate carbon and 234Th in January 2009 than measured by a time-series conical trap used regularly on the shelf of the west Antarctic Peninsula (WAP). The higher fluxes measured in this study have several implications for our understanding of the WAP ecosystem. Larger sinking fluxes result in a revised export efficiency of at least 10% (C flux/net primary production) and a requisite lower regeneration efficiency in surface waters. High fluxes also result in a large supply of sinking organic matter to support subsurface and benthic food webs on the continental shelf. These new findings call into question the magnitude of seasonal and interannual variability in particle flux and reaffirm the difficulty of using moored conical traps as a quantitative flux collector in shallow waters.
NASA Astrophysics Data System (ADS)
Ho, R. J.; Yusoff, M. Z.; Palanisamy, K.
2013-06-01
Stringent emission policy has put automotive research & development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R&D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.
Exposure to Particulate Hexavalent Chromium Exacerbates Allergic Asthma Pathology
Schneider, Brent C.; Constant, Stephanie L.; Patierno, Steven R.; Jurjus, Rosalyn A.; Ceryak, Susan M.
2011-01-01
Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. PMID:22178736
Van Oostende, Nicolas; Moerdijk-Poortvliet, Tanja C W; Boschker, Henricus T S; Vyverman, Wim; Sabbe, Koen
2013-05-01
The coccolithophore Emiliania huxleyi plays a pivotal role in the marine carbon cycle. However, we have only limited understanding of how its life cycle and bacterial interactions affect the production and composition of dissolved extracellular organic carbon and its transfer to the particulate pool. We traced the fate of photosynthetically fixed carbon during phosphate-limited stationary growth of non-axenic, calcifying E. huxleyi batch cultures, and more specifically the transfer of this carbon to bacteria and to dissolved high molecular weight neutral aldoses (HMW NAld) and extracellular particulate carbon. We then compared the dynamics of dissolved carbohydrates and transparent exopolymer particles (TEP) between cultures of non-axenic and axenic diploid E. huxleyi. In addition, we present the first data on extracellular organic carbon in (non-axenic) haploid E. huxleyi cultures. Bacteria enhanced the accumulation of dissolved polysaccharides and altered the composition of dissolved HMW NAld, while they also stimulated the formation of TEP containing high densities of charged polysaccharides in diploid E. huxleyi cultures. In haploid E. huxleyi cultures we found a more pronounced accumulation of dissolved carbohydrates, which had a different NAld composition than the diploid cultures. TEP formation was significantly lower than in the diploid cultures, despite the presence of bacteria. In diploid E. huxleyi cultures, we measured a high level of extracellular release of organic carbon (34-76%), retrieved mainly in the particulate pool instead of the dissolved pool. Enhanced formation of sticky TEP due to bacteria-alga interactions, in concert with the production of coccoliths, suggests that especially diploid E. huxleyi blooms increase the efficiency of export production in the ocean during dissolved phosphate-limited conditions. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Viral Penetration of High Efficiency Particulate Air (HEPA) Filters
2007-02-01
ml. For aerosol studies the MS2 coli phage was either diluted in sterile distilled water or 0.5% tryptone to a concentration ~108 PFU/mL. Collison...increased to 38%; an increase of 30.5% over MS2 suspended in water . The mass curve is not complete, and thus the fraction of particles in the 100–300 nm...a decrease of 14% over what is observed for MS2 suspended in water . The overall number of particles generated by MS2 + 0.5% tryptone and MS2 in
2006-08-01
Biotech QCount® Colony Counter G.2 MS2 Phage G.2.1 Growth of E . coli E . co/i serves as the host for MS2 replication and was needed for the MS2...quantification assay. Before culturing, the E . coli (American Type Culture Collection [ATCC] No. 15597, Rockville, MD) stock was tested for purity by streaking on...pure, a working solution of E . coli was prepared by inoculating nutrient broth (NB) media and incubating in a shaking incubator at 37°C and 150
Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Brent C.; Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037; Constant, Stephanie L.
Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory responsemore » in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr(VI) may augment severity and alter phenotype of ongoing allergic asthma.« less
Application of microwave energy in the control of DPM, oxides of nitrogen and VOC emissions
NASA Astrophysics Data System (ADS)
Pallavkar, Sameer M.
The emissions of DPM (diesel particulate matter), NOx (oxides of nitrogen), and toxic VOCs (volatile organic compounds) from diesel engine exhaust gases and other sources such as chemical process industry and manufacturing industry have been a great environmental and health concern. Most control technologies for these emissions require elevated temperatures. The use of microwave energy as a source of heat energy, however, has not been fully explored. In this study, the microwave energy was used as the energy source in three separate emission control processes, namely, the regeneration of diesel particulate filter (DPF) for DPM control, the NOx reduction using a platinum catalyst, and the VOC destruction involving a ceramic based material. The study has demonstrated that microwave heating is an effective method in providing heat for the studied processes. The control efficiencies associated with the microwave-assisted processes have been observed to be high and acceptable. Further research, however, is required for the commercial use of these technologies.
Phytoplankton Do Not Produce Carbon-Rich Organic Matter in High CO2 Oceans
NASA Astrophysics Data System (ADS)
Kim, Ja-Myung; Lee, Kitack; Suh, Young-Sang; Han, In-Seong
2018-05-01
The ocean is a substantial sink for atmospheric carbon dioxide (CO2) released as a result of human activities. Over the coming decades the dissolved inorganic C concentration in the surface ocean is predicted to increase, which is expected to have a direct influence on the efficiency of C utilization (consumption and production) by phytoplankton during photosynthesis. Here we evaluated the generality of C-rich organic matter production by examining the elemental C:N ratio of organic matter produced under conditions of varying pCO2. The data used in this analysis were obtained from a series of pelagic in situ pCO2 perturbation studies that were performed in the diverse ocean regions and involved natural phytoplankton assemblages. The C:N ratio of the resulting particulate and dissolved organic matter did not differ across the range of pCO2 conditions tested. In particular, the ratio for particulate organic C and N was found to be 6.58 ± 0.05, close to the theoretical value of 6.6.
Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephenson, M.
1994-03-01
Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because ofmore » the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.« less
NASA Astrophysics Data System (ADS)
Myers-Pigg, A.; Teisserenc, R.; Tananaev, N.; Louchouarn, P.
2015-12-01
Arctic Rivers transport vast amounts of terrestrial organic material (TOM) to the Arctic Ocean. The Yenisei River delivers ~18% of total dissolved organic carbon (DOC) exported to the Arctic Ocean each year during peak river discharge (May-June), known as the spring freshet. Previously published DOC fluxes for the freshet period extrapolate from relatively few data points, due to the uniquely difficult sampling conditions during this dynamic period. Here, we present new high resolution data collected from an extensive sampling campaign from April-July 2014 using a reverse osmosis system for DOC isolation. The similarity between the calculated DOC load delivered during the 2014 freshet (2.94 TgC) and the ten-year average from the previous decade (2.92 TgC for 1999-2008) validates the methodological approach used here. In contrast, the total measured load of polymeric lignin phenols (∑8: 643 Gg), an indicator of TOM input, was one order of magnitude higher than a previously estimated load (42 Gg) for May-June. Hence, we may need to re-evaluate the magnitude of terrestrial carbon exported, including the efficiencies of different sampling methods. Additionally, we present the first simultaneous particulate and dissolved lignin analyses in a major Arctic river. Approximately 30% of the total lignin flux in the Yenisei River is delivered in the particulate phase. Particulate lignin export is decoupled from dissolved lignin during the freshet; the initial flush is dominated by dissolved lignin, while the latter portion of the freshet is dominated by particulate lignin. The chemical signatures of lignin in both phases are similar throughout the freshet, suggesting a mobilization of the same source of carbon each spring. This conclusion is at odds with reported isotopic sources signatures (14C age) of bulk organic matter and lignin in these rivers, requiring a multi-faceted approach to fully understand the sources and ages of terrestrial organic matter in Arctic rivers.
Lies, K H; Hartung, A; Postulka, A; Gring, H; Schulze, J
1986-01-01
For particulate emissions, standards were established by the US EPA in February 1980. Regulations limiting particulates from new light duty diesel vehicles are valid by model year 1982. The corresponding standards on a pure mass basis do not take into account any chemical character of the diesel particulate matter. Our investigation of the material composition shows that diesel particulates consist mainly of soot (up to 80% by weight) and adsorptively bound organics including polycyclic aromatic hydrocarbons (PAH). The qualitative and quantitative nature of hydrocarbon compounds associated with the particulates is dependent not only on the combustion parameters of the engine but also to an important degree on the sampling conditions when the particulates are collected (dilution ratio, temperature, filter material, sampling time etc.). Various methods for the analyses of PAH and their oxy- and nitro-derivatives are described including sampling, extraction, fractionation and chemical analysis. Quantitative comparison of PAH, nitro-PAH and oxy-PAH from different engines are given. For assessing mutagenicity of particulate matter, short-term biological tests are widely used. These biological tests often need a great amount of particulate matter requiring prolonged filter sampling times. Since it is well known that facile PAH oxidation can take place under the conditions used for sampling and analysis, the question rises if these PAH-derivates found in particle extracts partly or totally are produced during sampling (artifacts). Various results concerning nitro- and oxy-PAH are presented characterizing artifact formation as a minor problem under the conditions of the Federal Test Procedure. But results show that under other sampling conditions, e.g. electrostatic precipitation, higher NO2-concentrations and longer sampling times, artifact formation can become a bigger problem. The more stringent particulate standard of 0.2 g/mi for model years 1986 and 1987 respectively requires particulate trap technology. Preliminary investigations of the efficiency of ceramic filters used reveal that the reduction of the adsorptively bound organics is lower than the decrease of the solid carbonaceous fractions.
Filtration of Carbon Particulate Emissions from a Plasma Pyrolysis Assembly
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Green, Robert; Vijayakumar, R.; Berger, Gordon; Greenwood, Zach; Abney, Morgan; Peterson, Elspeth
2016-01-01
NASA is investigating plasma pyrolysis as a candidate technology that will enable the recovery of hydrogen from the methane produced by the ISS Sabatier Reactor. The Plasma Pyrolysis Assembly (PPA) is the current prototype of this technology which converts the methane product from the Carbon Dioxide Reduction Assembly (CRA) to acetylene and hydrogen with 90% or greater conversion efficiency. A small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on several options for filtering out the carbon particulate emissions from the PPA exit gas stream. The filtration technologies and concepts investigated range from fibrous media to monolithic ceramic and sintered metal media. This paper describes the different developed filter prototypes and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC. In addition, characterization data on the generated carbon particulates, that help to define filter requirements, are also presented.
NASA Technical Reports Server (NTRS)
Green, Robert D.; Meyer, Marit E.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Abney, Morgan B.; Greenwood, Zachary
2015-01-01
The ISS presently recovers oxygen from crew respiration via a Carbon Dioxide Reduction Assembly (CRA) that utilizes the Sabatier chemical process to reduce captured carbon dioxide to methane (CH4) and water. In order to recover more of the hydrogen from the methane and increase oxygen recovery, NASA Marshall Space Flight Center (MSFC) is investigating a technology, plasma pyrolysis, to convert the methane to acetylene. The Plasma Pyrolysis Assembly (or PPA), achieves 90% or greater conversion efficiency, but a small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. In this work, we present the experimental results of an initial characterization of the carbon particulates in the PPA exit gas stream. We also present several potential options to remove these carbon particulates via carbon traps and filters to minimize resupply mass and required downtime for regeneration.
Masson, M; Angot, H; Le Bescond, C; Launay, M; Dabrin, A; Miège, C; Le Coz, J; Coquery, M
2018-05-10
Monitoring hydrophobic contaminants in surface freshwaters requires measuring contaminant concentrations in the particulate fraction (sediment or suspended particulate matter, SPM) of the water column. Particle traps (PTs) have been recently developed to sample SPM as cost-efficient, easy to operate and time-integrative tools. But the representativeness of SPM collected with PTs is not fully understood, notably in terms of grain size distribution and particulate organic carbon (POC) content, which could both skew particulate contaminant concentrations. The aim of this study was to evaluate the representativeness of SPM characteristics (i.e. grain size distribution and POC content) and associated contaminants (i.e. polychlorinated biphenyls, PCBs; mercury, Hg) in samples collected in a large river using PTs for differing hydrological conditions. Samples collected using PTs (n = 74) were compared with samples collected during the same time period by continuous flow centrifugation (CFC). The grain size distribution of PT samples shifted with increasing water discharge: the proportion of very fine silts (2-6 μm) decreased while that of coarse silts (27-74 μm) increased. Regardless of water discharge, POC contents were different likely due to integration by PT of high POC-content phytoplankton blooms or low POC-content flood events. Differences in PCBs and Hg concentrations were usually within the range of analytical uncertainties and could not be related to grain size or POC content shifts. Occasional Hg-enriched inputs may have led to higher Hg concentrations in a few PT samples (n = 4) which highlights the time-integrative capacity of the PTs. The differences of annual Hg and PCB fluxes calculated either from PT samples or CFC samples were generally below 20%. Despite some inherent limitations (e.g. grain size distribution bias), our findings suggest that PT sampling is a valuable technique to assess reliable spatial and temporal trends of particulate contaminants such as PCBs and Hg within a river monitoring network. Copyright © 2018 Elsevier B.V. All rights reserved.
Pollution reduction technologies being applied to small coal-fired boiler systems in Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markussen, J.M.; Gyorke, D.F.
1997-12-31
To help in alleviating air pollution problems in Poland, various US environmental technologies are being installed in the city of Krakow to reduce emissions from short-stack coal- and coke-fired boilers. Introduction of low-cost, effective US pollution abatement and energy efficiency technologies is being completed through the US-Polish Krakow Clean Fossil Fuels and Energy Efficiency Program. Seven US firms are currently participating in the program; five projects are well under way and two are in the design phase. The technologies being applied in Krakow include modern district heating equipment and controls, coal preparation techniques, micronized coal combustion, automatic combustion controls, andmore » high-efficiency particulate control equipment. These technologies will be discussed along with pollutant reduction results obtained to date. Applications of these technologies are providing some efficient and economical answers to Krakow`s severe air pollution problems. Certainly, these technologies could be equally effective in many industrial cities throughout the world with similar air pollution concerns.« less
Water-in-diesel emulsions and related systems.
Lif, Anna; Holmberg, Krister
2006-11-16
Water-in-diesel emulsions are fuels for regular diesel engines. The advantages of an emulsion fuel are reductions in the emissions of nitrogen oxides and particulate matters, which are both health hazardous, and reduction in fuel consumption due to better burning efficiency. An important aspect is that diesel emulsions can be used without engine modifications. This review presents the influence of water on the emissions and on the combustion efficiency. Whereas there is a decrease in emissions of nitrogen oxides and particulate matters, there is an increase in the emissions of hydrocarbons and carbon monoxide with increasing water content of the emulsion. The combustion efficiency is improved when water is emulsified with diesel. This is a consequence of the microexplosions, which facilitate atomization of the fuel. The review also covers related fuels, such as diesel-in-water-in-diesel emulsions, i.e., double emulsions, water-in-diesel microemulsions, and water-in-vegetable oil emulsions, i.e., biodiesel emulsions. A brief overview of other types of alternative fuels is also included.
Airborne emissions in the harbour and port of Cork.
Sodeau, John R; Hellebust, Stig; Allanic, Arnaud; O'Connor, Ian; Healy, David A; Healy, Robert; Wenger, John
2009-07-01
It is now accepted that the transport sector is responsible for a large and growing share of global emissions affecting both health and climate. The quantification of these effects requires, as an essential first step, a comprehensive analysis and characterization of the contributing subsectors, i.e. road transport, shipping, aviation and rail. The shipping contribution in dock/harbour areas is of particular interest because many vessels use old engines powered with old technology giving rise to high levels of particulate emissions mainly because the fuel employed contains high levels of sulphur, up to 4.5%. Large amounts of polyaromatic hydrocarbons and varying contents of transition metals are also detected. Few studies on the physicochemical composition of direct emissions from ship fuels have been performed; none have been compared to actual contents in local harbour or port atmospheres. The transformation of these ship-related materials to toxicologically active species may be much more efficient than corresponding road emission or domestic sources because of the expected highly acidic nature of the particulates. Surface, toxic material may therefore become readily bioavailable under such conditions but such studies have not been performed hitherto. This mini-review outlines in detail the issues raised above in the context of measurements made in Cork, Ireland.
Pipan-Tkalec, Ziva; Drobne, Damjana; Jemec, Anita; Romih, Tea; Zidar, Primoz; Bele, Marjan
2010-03-10
A number of reports on potential toxicity of nanoparticles are available, but there is still a lack of knowledge concerning bioaccumulation. The aim of this work was to investigate how different sources of zinc, such as uncoated and unmodified ZnO nanoparticles, ZnCl(2) in solution, and macropowder ZnO influence the bioaccumulation of this metal in the terrestrial isopod Porcellio scaber. After exposure to different sources of Zn in the diet, the amount of assimilated Zn in whole body, the efficiency of zinc assimilation, and bioaccumulation factors (BAFs) were assessed. The bioaccumulation potential of Zn was found to be the same regardless of Zn source. The amount of assimilated Zn and BAF were dose-dependent, and Zn assimilation efficiency was independent of exposure concentrations. The Zn assimilation capacity was found to be up to 16% of ingested Zn. It is known that as much as approximately 20% of Zn can be accreted from ZnO particles by dissolution. We conclude that bioaccumulation of Zn in isopods exposed to particulate ZnO depends most probably on Zn dissolution from ZnO particles and not on bioaccumulation of particulate ZnO.
Environmental Issues in Managing Asthma
Diette, Gregory B; McCormack, Meredith C; Hansel, Nadia N; Breysse, Patrick N; Matsui, Elizabeth C
2008-01-01
Management of asthma requires attention to environmental exposures both indoors and outdoors. Americans spend most of their time indoors, where they have a greater ability to modify their environment. The indoor environment contains both pollutants (eg, particulate matter, nitrogen dioxide, secondhand smoke, and ozone) and allergens from furred pets, dust mites, cockroaches, rodents, and molds. Indoor particulate matter consists of particles generated from indoor sources such as cooking and cleaning activities, and particles that penetrate from the outdoors. Nitrogen dioxide sources include gas stoves, furnaces, and fireplaces. Indoor particulate matter and nitrogen dioxide are linked to asthma morbidity. The indoor ozone concentration is mainly influenced by the outdoor ozone concentration. The health effects of indoor ozone exposure have not been well studied. In contrast, there is substantial evidence of detrimental health effects from secondhand smoke. Guideline recommendations are not specific for optimizing indoor air quality. The 2007 National Asthma Education and Prevention Program asthma guidelines recommend eliminating indoor smoking and improving the ventilation. Though the guidelines state that there is insufficient evidence to recommend air cleaners, air cleaners and reducing activities that generate indoor pollutants may be sound practical approaches for improving the health of individuals with asthma. The guidelines are more specific about allergen avoidance; they recommend identifying allergens to which the individual is immunoglobin E sensitized and employing a multifaceted, comprehensive strategy to reduce exposure. Outdoor air pollutants that impact asthma include particulate matter, ozone, nitrogen dioxide, and sulfur dioxide, and guidelines recommend that individuals with asthma avoid exertion outdoors when these pollutants are elevated. Outdoor allergens include tree, grass, and weed pollens, which vary in concentration by season. Recommendations to reduce exposure include staying indoors, keeping windows and doors closed, using air conditioning and perhaps high-efficiency particulate arrestor (HEPA) air filters, and thorough daily washing to remove allergens from one’s person. PMID:18426614
NASA Astrophysics Data System (ADS)
Muir, D. M.; Akeredolu, F.
The high collection efficiencies that are required nowadays to meet the stricter pollution control standards necessitate the use of high-energy scrubbers, such as the venturi scrubber, for the arrestment of fine particulate matter from exhaust gas streams. To achieve more energy-efficient particle collection, several venturi stages may be used in series. This paper is principally a theoretical investigation of the performance of a multiple-stage venturi scrubber, the main objective of the study being to establish the best venturi design configuration for any given set of operating conditions. A mathematical model is used to predict collection efficiency vs pressure drop relationships for particle sizes in the range 0.2-5.0 μm for one-, two-, three- and four-stage scrubbers. The theoretical predictions are borne out qualitatively by experimental work. The paper shows that the three-stage venturi produces the highest collection efficiencies over the normal operating range except for the collection of very fine particles at low pressure drops, when the single-stage venturi is best. The significant improvement in performance achieved by the three-stage venturi when compared with conventional single-stage operation increases as both the particle size and system pressure drop increase.
Surgical smoke and ultrafine particles
Brüske-Hohlfeld, Irene; Preissler, Gerhard; Jauch, Karl-Walter; Pitz, Mike; Nowak, Dennis; Peters, Annette; Wichmann, H-Erich
2008-01-01
Background Electrocautery, laser tissue ablation, and ultrasonic scalpel tissue dissection all generate a 'surgical smoke' containing ultrafine (<100 nm) and accumulation mode particles (< 1 μm). Epidemiological and toxicological studies have shown that exposure to particulate air pollution is associated with adverse cardiovascular and respiratory health effects. Methods To measure the amount of generated particulates in 'surgical smoke' during different surgical procedures and to quantify the particle number concentration for operation room personnel a condensation particle counter (CPC, model 3007, TSI Inc.) was applied. Results Electro-cauterization and argon plasma tissue coagulation induced the production of very high number concentration (> 100000 cm-3) of particles in the diameter range of 10 nm to 1 μm. The peak concentration was confined to the immediate local surrounding of the production side. In the presence of a very efficient air conditioning system the increment and decrement of ultrafine particle occurrence was a matter of seconds, with accumulation of lower particle number concentrations in the operation room for only a few minutes. Conclusion Our investigation showed a short term very high exposure to ultrafine particles for surgeons and close assisting operating personnel – alternating with longer periods of low exposure. PMID:19055750
Delattre, François; Cazier-Dennin, Francine; Leleu, Ludovic; Dewaele, Dorothée; Landy, David; Mallard, Isabelle; Danjou, Pierre-Edouard
2015-11-01
This work reports on an efficient microwave irradiation synthesis of a new fluorescent chemosensor based on desferrioxamine B (DFO-B) and carbazole moiety. Furthermore, this novel chemosensor was employed for a comparative study of real environmental samples of airbone particulate matter collected from Dunkirk (Northern of France). Among selected relevant metal cations present in its airbone particulate matter, such as Na(+), K(+), Mg(2+), Ca(2+), Al(3+), Cr(3+), Mn(2+) and Zn(2+), this molecular device proved to be outstandingly sensitive toward Fe(3+) with a limit of detection of 1.49 ppb (2.1×10(-8) M) in methanol allowing the estimation of total iron in atmospheric particles. Copyright © 2015 Elsevier B.V. All rights reserved.
Bioengineering towards self-assembly of particulate vaccines.
Rehm, Bernd H A
2017-12-01
There is an unmet demand for safe and efficient vaccines for prevention of various infectious diseases. Subunit vaccines comprise selected pathogen specific antigens are a safe alternative to whole organism vaccines. However they often lack immunogenicity. Natural and synthetic self-assembling polymers and proteins will be reviewed in view their use to encapsulate and/or display antigens to serve as immunogenic antigen carriers for induction of protective immunity. Recent advances made in in vivo assembly of antigen-displaying polyester inclusions will be a focus. Particulate vaccines are inherently immunogenic due to enhanced uptake by antigen presenting cells which process antigens mediating adaptive immune responses. Bioengineering approaches enable the design of tailor-made particulate vaccines to fine tune immune responses towards protective immunity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Flue gas desulfurization method and apparatus
Madden, Deborah A.; Farthing, George A.
1998-08-18
A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.
Flue gas desulfurization method and apparatus
Madden, Deborah A.; Farthing, George A.
1998-09-29
A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.
Hexachloroethane Obscurant Replacement
2012-01-01
were not totally dispersed in aerosol form; significant solid slag formation was observed. Thus, smoke density efficiency was only one quarter of that...determine smoke density and analyze for toxicity of combustion gases and particulates. Results: Compositions containing divalent zinc and...solid slag formation was observed. Thus, smoke density efficiency was only one quarter of that of the hexachloroethane containing baseline. The
40 CFR 63.11465 - What are the standards for new and existing sources?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Metals Processing Area Sources Standards, Compliance, and Monitoring Requirements § 63.11465 What are the... through a fabric filter or baghouse that achieves a particulate matter (PM) control efficiency of at least... affected source through a fabric filter or baghouse that achieves a PM control efficiency of at least 99.5...
EPA AND ERDA HIGH-TEMPERATURE/HIGH-PRESSURE PARTICULATE CONTROL PROGRAMS
The report describes and compares current projects sponsored by EPA and the U.S. Energy Research and Development Administration (ERDA), relating to the control of particulate matter in fuel gas streams at high temperatures (1000 to 2000F) and high pressures (5 atm and greater). T...
Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing
Sappok, Alexander; Ragaller, Paul; Herman, Andrew; ...
2018-04-03
Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means formore » interrogating the condition of the filter itself. Here, this study investigated the use of RF sensors for the continuous measurement of filter trapping efficiency, which was compared to downstream measurements with an AVL Microsoot Sensor, and a PM sampling probe simulating the geometry and installation configuration of a conventional PM sensor. The study included several particulate filter failure modes, both above and below the OBD threshold. Finally, the results confirmed the use of RF sensors to provide a direct and continuous measure of the particulate filter’s state of health over a range of typical in-use operating conditions, thereby significantly increasing the time window over which filter failures may be detected.« less
Plasma regenerated particulate trap and NO.sub.x reduction system
Penetrante, Bernardino M.; Vogtlin, George E.; Merritt, Bernard T.; Brusasco, Raymond M.
2000-01-01
A non-catalytic two-stage process for removal of NO.sub.x and particulates from engine exhaust comprises a first stage that plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, and a second stage, which preferably occurs simultaneously with the first stage, that converts NO.sub.2 and carbon soot particles to respective environmentally benign gases that include N.sub.2 and CO.sub.2. By preconverting NO to NO.sub.2 in the first stage, the efficiency of the second stage for NO.sub.x reduction is enhanced while carbon soot from trapped particulates is simultaneously converted to CO.sub.2 when reacting with the NO.sub.2 (that converts to N.sub.2). For example, an internal combustion engine exhaust is connected by a pipe to a chamber where carbon-containing particulates are electrostatically trapped or filtered and a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. Volatile hydrocarbons (C.sub.x H.sub.y) from the trapped particulates are oxidized in the plasma and the remaining soot from the particulates reacts with the NO.sub.2 to convert NO.sub.2 to N.sub.2, and the soot to CO.sub.2. The nitrogen exhaust components remain in the gas phase throughout the process, with no accompanying adsorption.
Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sappok, Alexander; Ragaller, Paul; Herman, Andrew
Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means formore » interrogating the condition of the filter itself. Here, this study investigated the use of RF sensors for the continuous measurement of filter trapping efficiency, which was compared to downstream measurements with an AVL Microsoot Sensor, and a PM sampling probe simulating the geometry and installation configuration of a conventional PM sensor. The study included several particulate filter failure modes, both above and below the OBD threshold. Finally, the results confirmed the use of RF sensors to provide a direct and continuous measure of the particulate filter’s state of health over a range of typical in-use operating conditions, thereby significantly increasing the time window over which filter failures may be detected.« less
Real-time measurements of jet aircraft engine exhaust.
Rogers, Fred; Arnott, Pat; Zielinska, Barbara; Sagebiel, John; Kelly, Kerry E; Wagner, David; Lighty, JoAnn S; Sarofim, Adel F
2005-05-01
Particulate-phase exhaust properties from two different types of ground-based jet aircraft engines--high-thrust and turboshaft--were studied with real-time instruments on a portable pallet and additional time-integrated sampling devices. The real-time instruments successfully characterized rapidly changing particulate mass, light absorption, and polycyclic aromatic hydrocarbon (PAH) content. The integrated measurements included particulate-size distributions, PAH, and carbon concentrations for an entire test run (i.e., "run-integrated" measurements). In all cases, the particle-size distributions showed single modes peaking at 20-40nm diameter. Measurements of exhaust from high-thrust F404 engines showed relatively low-light absorption compared with exhaust from a turboshaft engine. Particulate-phase PAH measurements generally varied in phase with both net particulate mass and with light-absorbing particulate concentrations. Unexplained response behavior sometimes occurred with the real-time PAH analyzer, although on average the real-time and integrated PAH methods agreed within the same order of magnitude found in earlier investigations.
Wang, Shige; Li, Kai; Chen, Yu; Chen, Hangrong; Ma, Ming; Feng, Jingwei; Zhao, Qinghua; Shi, Jianlin
2015-01-01
Two-dimensional transition metal dichalcogenides, particularly MoS2 nanosheets, have been deemed as a novel category of NIR photothermal transducing agent. Herein, an efficient and versatile one-pot solvothermal synthesis based on "bottom-up" strategy has been, for the first time, proposed for the controlled synthesis of PEGylated MoS2 nanosheets by using a novel "integrated" precursor containing both Mo and S elements. This facile but unique PEG-mediated solvothermal procedure endowed MoS2 nanosheets with controlled size, increased crystallinity and excellent colloidal stability. The photothermal performance of nanosheets was optimized via modulating the particulate size and surface PEGylation. PEGylated MoS2 nanosheets with desired photothermal conversion performance and excellent colloidal and photothermal stability were further utilized for highly efficient photothermal therapy of cancer in a tumor-bearing mouse xenograft. Without showing observable in vitro and in vivo hemolysis, coagulation and toxicity, the optimized MoS2-PEG nanosheets showed promising in vitro and in vivo anti-cancer efficacy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Space solar cell research: Problems and potential
NASA Technical Reports Server (NTRS)
Flood, D. J.
1986-01-01
The value of a passive, maintenance-free, renewable energy source was apparent in the early days of the space program, and the silicon solar cell was pressed into service. Efficiencies of those early space solar arrays were low, and lifetimes shorter than hoped for, but within a decade significant advances had been made in both areas. Better performance was achieved through improvements in silicon single crystal material, better device designs, and a better understanding of the factors that affect the performance of a solar cell in space. Chief among the latter, particularly for the mid-to-high altitude (HEO) and geosynchronous (GEO) orbits, are the effects of the naturally occurring particulate radiation environment. Although not as broadly important to the photovoltaic community at large as increased efficiency, the topic of radiation damage is critically important to use of solar cells in space, and is a major component of the NASA research program in space photovoltaics. A brief overview of some of the opportunities and challenges for space photovoltaic applications is given, and some of the current research directed at achieving high efficiency and controlling radiation damage in space solar cells is discussed.
Liu, Mengjia; Li, Jinghong
2016-01-27
The development of efficient and low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts for renewable-energy conversion techniques is highly desired. A kind of hollow polyhedral cobalt phosphide (CoP hollow polyhedron) is developed as efficient bifunctional electrocatalysts for HER and OER templated by Co-centered metal-organic frameworks. The as-prepared CoP hollow polyhedron, which have large specific surface area and high porosity providing rich catalytic active sites, show excellent electrocatalytic performances for both HER and OER in acidic and alkaline media, respectively, with onset overpotentials of 35 and 300 mV, Tafel slopes of 59 and 57 mV dec(-1), and a current density of 10 mA cm(-2) at overpotentials of 159 and 400 mV for HER and OER, respectively, which are remarkably superior to those of particulate CoP (CoP particles) and comparable to those of commercial noble-metal catalysts. In addition, the CoP hollow polyhedron also show good durability after long-term operations.
Zhou, S Steve; Lukula, Salimatu; Chiossone, Cory; Nims, Raymond W; Suchmann, Donna B; Ijaz, M Khalid
2018-03-01
Prevention of infection with airborne pathogens and exposure to airborne particulates and aerosols (environmental pollutants and allergens) can be facilitated through use of disposable face masks. The effectiveness of such masks for excluding pathogens and pollutants is dependent on the intrinsic ability of the masks to resist penetration by airborne contaminants. This study evaluated the relative contributions of a mask, valve, and Micro Ventilator on aerosol filtration efficiency of a new N95 respiratory face mask. The test mask was challenged, using standardized methods, with influenza A and rhinovirus type 14, bacteriophage ΦΧ174, Staphylococcus aureus ( S . aureus ), and model pollutants. The statistical significance of results obtained for different challenge microbial agents and for different mask configurations (masks with operational or nonoperational ventilation fans and masks with sealed Smart Valves) was assessed. The results demonstrate >99.7% efficiency of each test mask configuration for exclusion of influenza A virus, rhinovirus 14, and S . aureus and >99.3% efficiency for paraffin oil and sodium chloride (surrogates for PM 2.5 ). Statistically significant differences in effectiveness of the different mask configurations were not identified. The efficiencies of the masks for excluding smaller-size (i.e., rhinovirus and bacteriophage ΦΧ174) vs. larger-size microbial agents (influenza virus, S . aureus ) were not significantly different. The masks, with or without features intended for enhancing comfort, provide protection against both small- and large-size pathogens. Importantly, the mask appears to be highly efficient for filtration of pathogens, including influenza and rhinoviruses, as well as the fine particulates (PM 2.5 ) present in aerosols that represent a greater challenge for many types of dental and surgical masks. This renders this individual-use N95 respiratory mask an improvement over the former types of masks for protection against a variety of environmental contaminants including PM 2.5 and pathogens such as influenza and rhinoviruses.
Zhou, S. Steve; Lukula, Salimatu; Chiossone, Cory; Nims, Raymond W.; Suchmann, Donna B.
2018-01-01
Background Prevention of infection with airborne pathogens and exposure to airborne particulates and aerosols (environmental pollutants and allergens) can be facilitated through use of disposable face masks. The effectiveness of such masks for excluding pathogens and pollutants is dependent on the intrinsic ability of the masks to resist penetration by airborne contaminants. This study evaluated the relative contributions of a mask, valve, and Micro Ventilator on aerosol filtration efficiency of a new N95 respiratory face mask. Methods The test mask was challenged, using standardized methods, with influenza A and rhinovirus type 14, bacteriophage ΦΧ174, Staphylococcus aureus (S. aureus), and model pollutants. The statistical significance of results obtained for different challenge microbial agents and for different mask configurations (masks with operational or nonoperational ventilation fans and masks with sealed Smart Valves) was assessed. Results The results demonstrate >99.7% efficiency of each test mask configuration for exclusion of influenza A virus, rhinovirus 14, and S. aureus and >99.3% efficiency for paraffin oil and sodium chloride (surrogates for PM2.5). Statistically significant differences in effectiveness of the different mask configurations were not identified. The efficiencies of the masks for excluding smaller-size (i.e., rhinovirus and bacteriophage ΦΧ174) vs. larger-size microbial agents (influenza virus, S. aureus) were not significantly different. Conclusions The masks, with or without features intended for enhancing comfort, provide protection against both small- and large-size pathogens. Importantly, the mask appears to be highly efficient for filtration of pathogens, including influenza and rhinoviruses, as well as the fine particulates (PM2.5) present in aerosols that represent a greater challenge for many types of dental and surgical masks. This renders this individual-use N95 respiratory mask an improvement over the former types of masks for protection against a variety of environmental contaminants including PM2.5 and pathogens such as influenza and rhinoviruses. PMID:29707364
Revolutionary systems for catalytic combustion and diesel catalytic particulate traps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuecker, John Nicholas; Witze, Peter O.; Ferrizz, Robert Matthew
2004-12-01
This report is a summary of an LDRD project completed for the development of materials and structures conducive to advancing the state of the art for catalyst supports and diesel particulate traps. An ancillary development for bio-medical bone scaffolding was also realized. Traditionally, a low-pressure drop catalyst support, such as a ceramic honeycomb monolith, is used for catalytic reactions that require high flow rates of gases at high-temperatures. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. ''Robocasting'' is a unique process developed at Sandia Nationalmore » Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low-pressure drops. These alternative 3-dimensional geometries may also provide a foundation for the development of self-regenerating supports capable of trapping and combusting soot particles from a diesel engine exhaust stream. This report describes the structures developed and characterizes the improved catalytic performance that can result. The results show that, relative to honeycomb monolith supports, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application. Practical applications include the combustion of natural gas for power generation, production of syngas, and hydrogen reforming reactions. The robocast lattice structures also show practicality for diesel particulate trapping. Preliminary results for trapping efficiency are reported as well as the development of electrically resistive lattices that can regenerate the structure by combusting the trapped soot. During this project an ancillary bio-medical application was discovered for lattices of hydroxyapatite. These structures show promise as bone scaffolds for the reparation of damaged bone. A case study depicting the manufacture of a customized device that fits into a damaged mandible is described.« less
Eck, E K; Vannier, A
1997-02-01
To quantify specific factors believed to increase healthcare worker (HCW) risk for contaminated sharps injuries (eg, visibility, communication, and range of motion); to quantify the degree to which respirators of various designs impacted those same factors; and to assess HCW opinions about the suitability of selected respirators with respect to patient care and user compliance criteria. Sharps injury data from seven hospitals were analyzed to determine the potential contribution of visibility, communication, and range of motion to reported injuries. Healthcare workers representing various clinical specialties and physical characteristics were examined at baseline and while wearing five different respirators to quantify the impact of respirator design on visibility, communication, and range of motion. Healthcare workers were interviewed and completed a survey assessing each respirator. Hospital and ambulatory-care settings. Population-based and convenience sample. Communication, visibility, and range of motion were found to affect contaminated sharps injuries significantly. Selected high-efficiency particulate air (HEPA) respirators were found to have a negative impact on each of these variables. Healthcare workers involved in the study also reported compliance criteria problems with selected HEPA respirators, which may effect implementation of respiratory precautions adversely. Current HEPA respirators, because of their design, potentially increase the risk of bloodborne pathogen exposure through sharps injuries. We conclude that mandating respirators without regard to the potential impact of their design to the sharps injuries may be counterproductive to HCW safety, because they may increase, rather than decrease, overall occupational risk to HCWs.
Kim, Seong Hwan; Ahn, Geum Ran; Son, Seung Yeol; Bae, Gwi-Nam; Yun, Yeo Hong
2014-09-01
Fungi are the known sources of irritation associated with atopic diseases (e.g., asthma, allergic rhinoconjunctivitis, and atopic eczema). To quantitatively estimate their presence in the indoor environment of atopic dermatitis-inflicted child patient's houses (ADCPHs), the high-efficiency particulate air (HEPA) filters installed inside the air cleaners of three different ADCPHs were investigated for the presence of mold. The air cleaner HEPA filters obtained from the three different ADCPHs were coded as HEPA-A, -B, and -C, respectively, and tested for the presence of mold. The colony forming units (CFUs) corresponding to the HEPA-A, -B, and -C filters were estimated to be 6.51 × 10(2) ± 1.50 × 10(2) CFU/cm(2), 8.72 × 10(2) ± 1.69 × 10(2) CFU/cm(2), and 9.71 × 10(2) ± 1.35 × 10(2) CFU/cm(2), respectively. Aspergillus, Penicillium, Alternaria, Cladosporium, Trichoderma, and other fungal groups were detected in the 2,494 isolates. The distribution of these fungal groups differed among the three filters. Cladosporium was the major fungal group in filters HEPA-A and -C, whereas Penicillium was the major fungal group in the filter HEPA-B. Nine fungal species, including some of the known allergenic species, were identified in these isolates. Cladosporium cladosporioides was the most common mold among all the three filters. This is the first report on the presence of fungi in the air cleaner HEPA filters from ADCPHs in Korea.
Radiant energy absorption studies for laser propulsion. [gas dynamics
NASA Technical Reports Server (NTRS)
Caledonia, G. E.; Wu, P. K. S.; Pirri, A. N.
1975-01-01
A study of the energy absorption mechanisms and fluid dynamic considerations for efficient conversion of high power laser radiation into a high velocity flow is presented. The objectives of the study are: (1) to determine the most effective absorption mechanisms for converting laser radiation into translational energy, and (2) to examine the requirements for transfer of the absorbed energy into a steady flow which is stable to disturbances in the absorption zone. A review of inverse Bremsstrahlung, molecular and particulate absorption mechanisms is considered and the steady flow and stability considerations for conversion of the laser power to a high velocity flow in a nozzle configuration is calculated. A quasi-one-dimensional flow through a nozzle was formulated under the assumptions of perfect gas.
Particulate and Gaseous Emissions Measurement System (PAGEMS) Project
NASA Technical Reports Server (NTRS)
Kostic, Milivoje
2003-01-01
Professor Kostic will work on the current UEET program of the Aerosol and Particulate task. This task will focus on: how to acquire experimental data through Labview software how to make the data acquisition system more efficient trouble existing problem of the labview software recommend a better system improve existing system with better data and usually friendly.Three different assignments in this project included:Particle-Size Distribution Data Presentation;Error or Uncertainty Analysis of Measurement Results; and Enhancement of LabVlRN Data Acquisition Program for GRC PAGEMS Project.
NASA Astrophysics Data System (ADS)
Bharathkumar, S.; Sakar, M.; Balakumar, S.
2018-04-01
We made an attempt to construct a photocatalytic and biosensor platform by using bismuth ferrite (BiFeO3/BFO) particulates and fibers nanostructures towards the degradation of dye and electrochemical sensing of ascorbic acid. The crystal phase and morphology of the BFO nanostructures were confirmed using XRD and FESEM respectively. Further, their photocatalytic activity was tested under sunlight. The BFO fibers showed relatively an enhanced degradation property and an efficient electrochemical sensing property compared to the Particulates.
NASA Technical Reports Server (NTRS)
Horio, M.; Wen, C. Y.
1976-01-01
A chemical engineering analysis is made of fluidized-bed combustor (FBC) performance, with FBC models developed to aid estimation of combustion efficiency and axial temperature profiles. The FBC is intended for combustion of pulverized coal and a pressurized FBC version is intended for firing gas turbines by burning coal. Transport phenomena are analyzed at length: circulation, mixing models, drifting, bubble wake lift, heat transfer, division of the FB reactor into idealized mixing cells. Some disadvantages of a coal FBC are pointed out: erosion of immersed heat-transfer tubing, complex feed systems, carryover of unburned coal particles, high particulate emission in off-streams. The low-temperature bed (800-950 C) contains limestone, and flue-gas-entrained SO2 and NOx can be kept within acceptable limits.
Kim, Jong-Ho; Yoo, Hee-Jung; Hwang, You-Seong; Kim, Hyeok-Gyu
2012-01-01
As one of the effective control devices of air pollutants, the wet electrostatic precipitator (ESP) is an effective technique to eliminate acid mist and fine particles that are re-entrained in a collection electrode. However, its collection efficiency can deteriorate, as its operation is subject to water-induced corrosion of the collection electrode. To overcome this drawback, we modified the wet ESP system with the installation of a PVC dust precipitator wherein water is supplied as a replacement of the collection electrode. With this modification, we were able to construct a compact wet ESP with a small specific collection area (SCA, 0.83 m2/(m3/min)) that can acquire a high collection efficiency of fine particles (99.7%). PMID:22577353
Apparatus and method for removing particulate deposits from high temperature filters
Nakaishi, Curtis V.; Holcombe, Norman T.; Micheli, Paul L.
1992-01-01
A combustion of a fuel-air mixture is used to provide a high-temperature and high-pressure pulse of gaseous combustion products for the back-flush cleaning of ceramic filter elements contained in a barrier filter system and utilized to separate particulates from particulate-laden process gases at high temperature and high pressure. The volume of gaseous combustion products provided by the combustion of the fuel-air mixture is preferably divided into a plurality of streams each passing through a sonic orifice and conveyed to the open end of each filter element as a high pressure pulse which passes through the filter elements and dislodges dust cake supported on a surface of the filter element.
Low Pressure Experimental Simulation of Electrical Discharges Above and Inside a Cloud
NASA Technical Reports Server (NTRS)
Jarzembski, Maurice A.; Srivastava, Vandana
1996-01-01
A low pressure laboratory experiment to generate sporadic electrical discharges in either a particulate dielectric or air, representing a competing path of preferred electrical breakdown, was investigated. At high pressures, discharges occurred inside the dielectric particulate; at low pressures, discharges occurred outside the dielectric particulate; at a transition pressure regime, which depends on conductivity of the dielectric particulate, discharges were simultaneously generated in both particulate dielectric and air. Unique use of a particulate dielectric was critical for sporadic discharges at lower pressures which were not identical in character to discharges without the particulate dielectric. Application of these experimental results to the field of atmospheric electricity and simulation of the above-cloud type discharges that have recently been documented, called jets and sprites, are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, H M; Young, T M; Buchholz, B A
2009-04-16
This study was motivated by a desire to improve understanding of the sources contributing to the carbon that is an important component of airborne particulate matter (PM). The ultimate goal of this project was to lay a ground work for future tools that might be easily implemented with archived or routinely collected samples. A key feature of this study was application of radiocarbon measurement that can be interpreted to indicate the relative contributions from fossil and non-fossil carbon sources of atmospheric PM. Size-resolved PM and time-resolved PM{sub 10} collected from a site in Sacramento, CA in November 2007 (Phase I)more » and March 2008 (Phase II) were analyzed for radiocarbon and source markers such as levoglucosan, cholesterol, and elemental carbon. Radiocarbon data indicates that the contributions of non-fossil carbon sources were much greater than that from fossil carbon sources in all samples. Radiocarbon and source marker measurements confirm that a greater contribution of non-fossil carbon sources in Phase I samples was highly likely due to residential wood combustion. The present study proves that measurement of radiocarbon and source markers can be readily applied to archived or routinely collected samples for better characterization of PM sources. More accurate source apportionment will support ARB in developing more efficient control strategies.« less
Herndon, J. Marvin
2015-01-01
The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1) Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2) Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA) filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test) and identical variances (F-test); and (2) the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction. PMID:26270671
Lee, Kyeong-Ryoon; Chae, Yoon-Jee; Cho, Sung-Eel; Chung, Suk-Jae
2011-12-01
A single-dose glass ampoule was developed for ease of administration. When glass ampoules are opened, resulting in contamination by particulate matter. Reducing its contamination may minimize the risk in patients due to particulates. This study reports on an attempt to reduce insoluble particulate contamination by developing methods for the precise measurement of this. A vacuum machine (VM) was used to reduce the level of insoluble particulate contamination, and a microscopy, scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDS) and inductively coupled plasma-atomic emission spectrometer (ICP-AES) were used to evaluate the level of reduction. The method permitted the insoluble particle content to be reduced by up to 87.8 and 89.3% after opening 1 and 2 mL-ampoules, respectively. The morphology of the glass particulate contaminants was very sharp and rough, a condition that can be harmful to human health. The total weight of glass particles in the opened ampoules was determined to be 104 ± 72.9 μg and 30.5 ± 1.00 μg after opening 1 and 2 mL-ampoules when the VM was operated at highest power. The total weights were reduced to 53.6 and 50.6%, respectively for 1 and 2 mL-ampoules, compared to opening by hand. The loss of ampoule contents on opening by the VM was 6.50 and 4.67% for 1 and 2 mL-ampoules, respectively. As a result, the VM efficiently reduced glass particulate contamination and the evaluation methods used were appropriate for quantifying these levels of contamination.
Modeling particulate matter emissions during mineral loading process under weak wind simulation.
Zhang, Xiaochun; Chen, Weiping; Ma, Chun; Zhan, Shuifen
2013-04-01
The quantification of particulate matter emissions from mineral handling is an important problem for the quantification of global emissions on industrial sites. Mineral particulate matter emissions could adversely impact environmental quality in mining regions, transport regions, and even on a global scale. Mineral loading is an important process contributing to mineral particulate matter emissions, especially under weak wind conditions. Mathematical models are effective ways to evaluate particulate matter emissions during the mineral loading process. The currently used empirical models based on the form of a power function do not predict particulate matter emissions accurately under weak wind conditions. At low particulate matter emissions, the models overestimated, and at high particulate matter emissions, the models underestimated emission factors. We conducted wind tunnel experiments to evaluate the particulate matter emission factors for the mineral loading process. A new approach based on the mathematical form of a logistical function was developed and tested. It provided a realistic depiction of the particulate matter emissions during the mineral loading process, accounting for fractions of fine mineral particles, dropping height, and wind velocity. Copyright © 2013 Elsevier B.V. All rights reserved.
Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean
Marsay, Chris M.; Sanders, Richard J.; Henson, Stephanie A.; Pabortsava, Katsiaryna; Achterberg, Eric P.; Lampitt, Richard S.
2015-01-01
The biological carbon pump, which transports particulate organic carbon (POC) from the surface to the deep ocean, plays an important role in regulating atmospheric carbon dioxide (CO2) concentrations. We know very little about geographical variability in the remineralization depth of this sinking material and less about what controls such variability. Here we present previously unpublished profiles of mesopelagic POC flux derived from neutrally buoyant sediment traps deployed in the North Atlantic, from which we calculate the remineralization length scale for each site. Combining these results with corresponding data from the North Pacific, we show that the observed variability in attenuation of vertical POC flux can largely be explained by temperature, with shallower remineralization occurring in warmer waters. This is seemingly inconsistent with conclusions drawn from earlier analyses of deep-sea sediment trap and export flux data, which suggest lowest transfer efficiency at high latitudes. However, the two patterns can be reconciled by considering relatively intense remineralization of a labile fraction of material in warm waters, followed by efficient downward transfer of the remaining refractory fraction, while in cold environments, a larger labile fraction undergoes slower remineralization that continues over a longer length scale. Based on the observed relationship, future increases in ocean temperature will likely lead to shallower remineralization of POC and hence reduced storage of CO2 by the ocean. PMID:25561526
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strzelec, Andrea; Vander Wal, Randy L.; Lewis, Samuel A.
The nanostructure of diesel particulates has been shown to impact its oxidation rate and burnout trajectory. Additionally, this nanostructure can evolve during the oxidation process, furthering its influence on the burnout process. For this paper, exhaust particulates were generated on a light-duty diesel engine with conventional diesel fuel, biodiesel, and intermediate blends of the two at a single load-speed point. Despite the singular engine platform and operating point, the different fuels created particulates with varied nanostructure, thereby greatly expanding the window for observing nanostructure evolution and oxidation. The physical and chemical properties of the particulates in the nascent state andmore » at partial oxidation states were measured in a laboratory reactor and by high-resolution transmission electron microscopy as a function of the degree of oxidation in O 2. X-ray photoacoustic spectroscopy analysis, thermal desorption, and solvent extraction of the nascent particulate samples reveal a significant organic content in the biodiesel-derived particulates, likely accounting for differences in the nanostructure. This study reports the nanoscale structural changes in the particulate with biofuel blend level and during O 2 oxidation as observed by high-resolution transmission electron microscopy and quantitated by fringe analysis and Brunnauer–Emmet–Teller total surface area measurements. It was observed that initial fuel-related differences in the lamella lengths, spacing, and curvature disappear when the particulate reaches approximately 50% burnout. Specifically, the initial ordered, fullerenic, and amorphous nanostructures converge during the oxidation process and the surface areas of these particulates appear to grow through these complex changes in internal particle structure. The specific surface area, measured at several points along the burnout trajectory, did not match the shrinking core projection and in contrast suggested that internal porosity was increasing. Thus, the appropriate burnout model for these particulates is significantly different from the standard shrinking core assumption, which does not account for any internal structure. Finally, an alternative burnout model is supported by high-resolution transmission electron microscopy image analysis.« less
Strzelec, Andrea; Vander Wal, Randy L.; Lewis, Samuel A.; ...
2017-01-18
The nanostructure of diesel particulates has been shown to impact its oxidation rate and burnout trajectory. Additionally, this nanostructure can evolve during the oxidation process, furthering its influence on the burnout process. For this paper, exhaust particulates were generated on a light-duty diesel engine with conventional diesel fuel, biodiesel, and intermediate blends of the two at a single load-speed point. Despite the singular engine platform and operating point, the different fuels created particulates with varied nanostructure, thereby greatly expanding the window for observing nanostructure evolution and oxidation. The physical and chemical properties of the particulates in the nascent state andmore » at partial oxidation states were measured in a laboratory reactor and by high-resolution transmission electron microscopy as a function of the degree of oxidation in O 2. X-ray photoacoustic spectroscopy analysis, thermal desorption, and solvent extraction of the nascent particulate samples reveal a significant organic content in the biodiesel-derived particulates, likely accounting for differences in the nanostructure. This study reports the nanoscale structural changes in the particulate with biofuel blend level and during O 2 oxidation as observed by high-resolution transmission electron microscopy and quantitated by fringe analysis and Brunnauer–Emmet–Teller total surface area measurements. It was observed that initial fuel-related differences in the lamella lengths, spacing, and curvature disappear when the particulate reaches approximately 50% burnout. Specifically, the initial ordered, fullerenic, and amorphous nanostructures converge during the oxidation process and the surface areas of these particulates appear to grow through these complex changes in internal particle structure. The specific surface area, measured at several points along the burnout trajectory, did not match the shrinking core projection and in contrast suggested that internal porosity was increasing. Thus, the appropriate burnout model for these particulates is significantly different from the standard shrinking core assumption, which does not account for any internal structure. Finally, an alternative burnout model is supported by high-resolution transmission electron microscopy image analysis.« less
Murari, Vishnu; Kumar, Manish; Mhawish, Alaa; Barman, S C; Banerjee, Tirthankar
2017-04-01
The variation in particulate mass and particulate types (PM 2.5 and PM 10 ) with respect to local/regional meteorology was analyzed from January to December 2014 (n = 104) for an urban location over the middle Indo-Gangetic Plain (IGP). Both coarser (mean ± SD; PM 10 161.3 ± 110.4 μg m -3 , n = 104) and finer particulates (PM 2.5 81.78 ± 66.4 μg m -3 ) revealed enormous mass loading with distinct seasonal effects (range: PM 10 12-535 μg m -3 ; PM 2.5 8-362 μg m -3 ). Further, 56% (for PM 2.5 ) to 81% (for PM 10 ) of monitoring events revealed non-attainment national air quality standard especially during winter months. Particulate types (in terms of PM 2.5 /PM 10 0.49 ± 0.19) also exhibited temporal variations with high PM 2.5 loading particularly during winter (0.62) compared to summer months (0.38). Local meteorology has clear distinguishing trends in terms of dry summer (March to June), wet winter (December to February), and monsoon (July to September). Among all the meteorological variables (average temperature, rainfall, relative humidity (RH), wind speed (WS)), temperature was found to be inversely related with particulate loading (r PM10 -0.79; r PM2.5 -0.87) while RH only resulted a significant association with PM 2.5 during summer (r PM10 0.07; r PM2.5 0.55) and with PM 10 during winter (r PM10 0.53; r PM2.5 0.24). Temperature, atmospheric boundary layer (ABL), and RH were cumulatively recognized as the dominant factors regulating particulate concentration as days with high particulate loading (PM 2.5 >150 μg m -3 ; PM 10 >260 μg m -3 ) appeared to have lower ABL (mean 660 m), minimum temperature (<22.6 °C), and high RH (∼79%). The diurnal variations of particulate ratio were mostly insignificant except minor increases during night having a high wintertime ratio (0.58 ± 0.07) over monsoon (0.34 ± 0.05) and summer (0.30 ± 0.07). Across the region, atmospheric visibility appeared to be inversely associated with particulate (r PM2.5 -0.84; r PM10 -0.79) for all humid conditions, while at RH ≥80%, RH appeared as the most dominant factor in regulating visibility compared to particulate loading. The Lagrangian particle dispersion model was further used to identify possible regions contributing particulate loading through regional/transboundary movement.
Behavior of radioactive iodine and technetium in the spray calcination of high-level waste
NASA Astrophysics Data System (ADS)
Knox, C. A.; Farnsworth, R. K.
1981-08-01
The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In facility, installed in a radiochemical cell, is described in which installed in a radiochemical cell is described in which small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. During the spray calcination of commercial high-level liquid waste spiked with Tc-99 and I-131 and 31 wt% loss of I-131 past the sintered-metal filters. These filters and venturi scrubber were very efficient in removing particulates and Tc-99 from the the off-gas stream. Liquid scrubbers were not efficient in removing I-131 as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents are needed to remove iodine. For all future operations where iodine is present, a silver zeolite adsorber is to be used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hicks, Michael; Erickson, Paul; Lawrence, Richard
Off-road concerns are related to the effects of shock and vibration and air quality on fuel cell power requirements. Mechanical stresses on differing material makeup and mass distribution within the system may render some components susceptible to impulse trauma while others may show adverse effects from harmonic disturbances or broad band mechanical agitation. One of the recognized challenges in fuel cell systems air purification is in providing a highly efficient particulate and chemical filter with minimal pressure drop. PEM integrators do not want additional parasitic loads added to the system as compensation for a highly efficient yet highly restrictive filter.more » Additionally, there is challenge in integrating multiple functions into a single air intake module tasked with effectively filtering high dust loads, diesel soot, pesticides, ammonias, and other anticipated off-road contaminants. This project has investigated both off-road associated issues cumulating in the prototype build and testing of two light duty off-road vehicles with integrated fuel cell power plant systems.« less
McLeod, Pamela B.; van den Heuvel-Greve, Martine J.; Allen-King, Richelle M.; Luoma, Samuel N.; Luthy, Richard G.
2004-01-01
We investigated the bioavailability via diet of spiked benzo[a]pyrene (BaP) and 2,2‘,5,5‘-tetrachlorobiphenyl (PCB-52) from different carbonaceous (non-carbonate, carbon containing) particle types to clams (Macoma balthica) collected from San Francisco Bay. Our results reveal significant differences in absorption efficiency between compounds and among carbonaceous particle types. Absorption efficiency for PCB-52 was always greater than that for BaP bound to a given particle type. Among particles, absorption efficiency was highest from wood and diatoms and lowest from activated carbon. Large differences in absorption efficiency could not be simply explained by comparatively small differences in the particles' total organic carbon content. BaP and PCB-52 bound to activated carbon exhibited less than 2% absorption efficiency and were up to 60 times less available to clams than the same contaminants associated with other types of carbonaceous matter. These results suggest that variations in the amount and type of sediment particulate carbonaceous matter, whether naturally occurring or added as an amendment, will have a strong influence on the bioavailability of hydrophobic organic contaminants. This has important implications for environmental risk assessment, sediment management, and development of novel remediation techniques.
McLeod, Pamela B.; van den Heuvel-Greve, Martine J.; Allen-King, Richelle M.; Luoma, Samuel N.; Luthy, Richard G.
2004-01-01
We investigated the bioavailability via diet of spiked benzo[a]pyrene (BaP) and 2,2‘,5,5‘-tetrachlorobiphenyl (PCB-52) from different carbonaceous (non-carbonate, carbon containing) particle types to clams (Macoma balthica) collected from San Francisco Bay. Our results reveal significant differences in absorption efficiency between compounds and among carbonaceous particle types. Absorption efficiency for PCB-52 was always greater than that for BaP bound to a given particle type. Among particles, absorption efficiency was highest from wood and diatoms and lowest from activated carbon. Large differences in absorption efficiency could not be simply explained by comparatively small differences in the particles' total organic carbon content. BaP and PCB-52 bound to activated carbon exhibited less than 2% absorption efficiency and were up to 60 times less available to clams than the same contaminants associated with other types of carbonaceous matter. These results suggest that variations in the amount and type of sediment particulate carbonaceous matter, whether naturally occurring or added as an amendment, will have a strong influence on the bioavailability of hydrophobic organic contaminants. This has important implications for environmental risk assessment, sediment management, and development of novel remediation techniques.
Design and Calibration of a High Volume Cascade Impactor
ERIC Educational Resources Information Center
Gussman, R. A.; And Others
1973-01-01
This study was to develop an air sampling device capable of classifying large quantities of airborne particulate matter into discrete size fractions. Such fractionation will facilitate chemical analysis of the various particulate pollutants and thereby provide a more realistic assessment of the effects of particulate matter on human beings. (BL)
Testing Students' Use of the Particulate Theory
ERIC Educational Resources Information Center
Williamson, Vickie; Huffman, Jason; Peck, Larry
2004-01-01
High School students' understanding about the particulate theory of matter and their use of particulate terminology is investigated. The Physical Changes Concepts Test (PCCT) was administered in two forms, an applied version and a theoretical version, to determine whether students scientifically understood the concepts well enough to apply them to…
Flue gas desulfurization method and apparatus
Madden, D.A.; Farthing, G.A.
1998-08-18
A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.
Flue gas desulfurization method and apparatus
Madden, D.A.; Farthing, G.A.
1998-09-29
A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.
Liu, Jinqiang; Cao, Zhiguo; Zou, Songyan; Liu, Huanhuan; Hai, Xiao; Wang, Shihua; Duan, Jie; Xi, Benye; Yan, Guangxuan; Zhang, Shaowei; Jia, Zhongkui
2018-03-01
Urban trees have the potential to reduce air pollution, but the retention capacity and efficiency of different tree species for atmospheric particulate matter (PM) accumulation and the underlying mechanism hasn't been well understood. To select tree species with high air purification abilities, the supplementing ultrasonic cleaning (UC) procedure was first introduced into the conventional leaf cleaning methods [single water cleaning (WC) or plus brush cleaning (BC)] for eluting the leaf-retained PM. Further updates to the methodology were applied to investigate the retention capacity, efficiency, and mechanism for PM of five typical greening tree species in Beijing, China. Meanwhile, the particle size distribution of PM on the leaves, the PM retention efficiencies of easily removable (ERP), difficult-to-remove (DRP) and totally removable (TRP) particles on the leaf (AE leaf ), and the individual tree scales were estimated. The experimental leaf samples were collected from trees with similar sizes 4 (SDR) and 14days (LDR) after rainfall. When the leaves were cleaned by WC+BC, there was, on average, 29%-46% of the PM remaining on the leaves of different species, which could be removed almost completely if UC was supplemented. From SDR to LDR, the mass of the leaf-retained PM increased greatly, and the particle size distribution changed markedly for all species except for Sophorajaponica. Pinus tabuliformis retains particles with the largest average diameter (34.2μm), followed by Ginkgo biloba (20.5μm), Sabina chinensis (16.4μm), Salix babylonica (16.0μm), and S. japonica (13.1μm). S. japonica and S. chinensis had the highest AE leaf to retain the TRP and ERP of both PM 1 and PM 1-2.5 , respectively. Conversely, S. babylonica and P. tabuliformis could retain both TRP and ERP of PM 2.5-5 and PM 5-10 , and PM >10 and TSP with the highest AE leaf , respectively. In conclusion, our results could be useful in selecting greening tree species with high air purification abilities. Copyright © 2017 Elsevier B.V. All rights reserved.
Experimental interaction of magma and “dirty” coolants
NASA Astrophysics Data System (ADS)
Schipper, C. Ian; White, James D. L.; Zimanowski, Bernd; Büttner, Ralf; Sonder, Ingo; Schmid, Andrea
2011-03-01
The presence of water at volcanic vents can have dramatic effects on fragmentation and eruption dynamics, but little is known about how the presence of particulate matter in external water will further alter eruptions. Volcanic edifices are inherently “dirty” places, where particulate matter of multiple origins and grainsizes typically abounds. We present the results of experiments designed to simulate non-explosive interactions between molten basalt and various “coolants,” ranging from homogeneous suspensions of 0 to 30 mass% bentonite clay in pure water, to heterogeneous and/or stratified suspensions including bentonite, sand, synthetic glass beads and/or naturally-sorted pumice. Four types of data are used to characterise the interactions: (1) visual/video observations; (2) grainsize and morphology of resulting particles; (3) heat-transfer data from a network of eight thermocouples; and (4) acoustic data from three force sensors. In homogeneous coolants with <~10% bentonite, heat transfer is by convection, and the melt is efficiently fragmented into blocky particles through multiple thermal granulation events which produce associated acoustic signals. For all coolants with >~20% sediment, heat transfer is by forced convection and conduction, and thermal granulation is less efficient, resulting in fewer blocky particles, larger grainsizes, and weaker acoustic signals. Many particles are droplet-shaped or/and “vesicular,” containing bubbles filled with coolant. Both of these particle types indicate significant hydrodynamic magma-coolant mingling, and many of them are rewelded into compound particles. The addition of coarse material to heterogeneous suspensions further slows heat transfer thus reducing thermal granulation, and variable interlocking of large particles prevents efficient hydrodynamic mingling. This results primarily in rewelded melt piles and inefficient distribution of melt and heat throughout the coolant volume. Our results indicate that even modest concentrations of sediment in water will significantly limit heat transfer during non-explosive magma-water interactions. At high concentrations, the dramatic reduction in cooling efficiency and increase in mingling help to explain globular peperite, and provide information relevant to analyses of premixing associated with highly-explosive molten fuel-coolant interactions in debris-filled volcanic vents.
Carbon-Based Honeycomb Monoliths for Environmental Gas-Phase Applications
Moreno-Castilla, Carlos; Pérez-Cadenas, Agustín F.
2010-01-01
Honeycomb monoliths consist of a large number of parallel channels that provide high contact efficiencies between the monolith and gas flow streams. These structures are used as adsorbents or supports for catalysts when large gas volumes are treated, because they offer very low pressure drop, short diffusion lengths and no obstruction by particulate matter. Carbon-based honeycomb monoliths can be integral or carbon-coated ceramic monoliths, and they take advantage of the versatility of the surface area, pore texture and surface chemistry of carbon materials. Here, we review the preparation methods of these monoliths, their characteristics and environmental applications.
Schlosser, O; Huyard, A; Rybacki, D; Do Quang, Z
2012-06-01
Microbial quality of air inside vehicle cabs is a major occupational health risk management issue in composting facilities. Large differences and discrepancies in protection factors between vehicles and between biological agents have been reported. This study aimed at estimating the mean protection efficiency of the vehicle cab environment against bioaerosols with higher precision. In-cab measurement results were also analysed to ascertain whether or not these protection systems reduce workers' exposure to tolerable levels. Five front-end loaders, one mobile mixer and two agricultural tractors pulling windrow turners were investigated. Four vehicles were fitted with a pressurisation and high efficiency particulate air (HEPA) filtration system. The four others were only equipped with pleated paper filter without pressurisation. Bacteria, fungi and endotoxins were measured in 72 pairs of air samples, simultaneously collected inside the cab and on the outside of the cab with a CIP 10-M sampler. A front-end loader, purchased a few weeks previously, fitted with a pressurisation and high efficiency particulate air (HEPA) filtration system, and with a clean cab, exhibited a mean protection efficiency of between 99.47% CI 95% [98.58-99.97%] and 99.91% [99.78-99.98%] depending on the biological agent. It is likely that the lower protection efficiency demonstrated in other vehicles was caused by penetration through the only moderately efficient filters, by the absence of pressurisation, by leakage in the filter-sealing system, and by re-suspension of particles which accumulated in dirty cabs. Mean protection efficiency in regards to bacteria and endotoxins ranged between 92.64% [81.87-97.89%] and 98.61% [97.41-99.38%], and between 92.68% [88.11-96.08%] and 98.43% [97.44-99.22%], respectively. The mean protection efficiency was the lowest when confronted with fungal spores, from 59.76% [4.19-90.75%] to 94.71% [91.07-97.37%]. The probability that in-cab exposure to fungi exceeded the benchmark value for short-term respiratory effects suggests that front-end loaders and mobile mixers in composting facilities should be fitted with a pressurisation and HEPA filtration system, regardless of whether or not the facility is indoors or outdoors. Regarding the tractors, exposure inside the cabs was not significantly reduced. However, in this study, there was a less than 0.01% risk of exceeding the bench mark value associated with fungi related short-term respiratory effects during an 1-h per day windrow turning operation. Pressurisation and a HEPA filtration system can provide safe working conditions inside loaders and mobile mixer with regard to airborne bacteria, fungi and endotoxins in composting facilities. However, regular thorough cleaning of the vehicle cab, as well as overalls and shoes cleaning, and mitigation of leakage in the filter-sealing system are necessary to achieve high levels of protection efficiency. Copyright © 2012 Elsevier Ltd. All rights reserved.
Clark, R.N.; Lucey, P.G.
1984-01-01
The spectral properties of water ice-partitioning mixtures are studied for the purpose of deriving the ice and particulate abundances from remotely obtained spectra (particulates referring to non-icy materials in the form of grains). Reflectance levels and ice absorption band depths are a complex function of the single scattering albedo of the particulates embedded in the ice. The ice absorption band depths are related to the mean optical path length of photons in ice through Beers law, Fresnel reflection from the ice-crystal faces on the surface, and ice absorption coefficient as a function of wavelength. Laboratory spectra of many ice- particulate mixtures are studied with high-, medium-, and low-albedo particulates.-from Authors
Bhattacharya, Sanghita; Nayak, Aniruddh; Goel, Vijay K; Warren, Chris; Schlaegle, Steve; Ferrara, Lisa
2010-01-01
Dynamic stabilization systems are emerging as an alternative to fusion instrumentation. However, cyclic loading and micro-motion at various interfaces may produce wear debris leading to adverse tissue reactions such as osteolysis. Ten million cycles of wear test was performed for PercuDyn™ in axial rotation and the wear profile and the wear rate was mapped. A validation study was undertaken to assess the efficiency of wear debris collection which accounted for experimental errors. The mean wear debris measured at the end of 10 million cycles was 4.01 mg, based on the worst-case recovery rate of 68.2%. Approximately 40% of the particulates were less than 5 μm; 92% less than 10 μm. About 43% of particulates were spherical in shape, 27% particulates were ellipsoidal and the remaining particles were of irregular shapes. The PercuDyn™ exhibited an average polymeric wear rate of 0.4 mg/million cycles; substantially less than the literature derived studies for other motion preservation devices like the Bryan disc and Charité disc. Wear debris size and shape were also similar to these devices.
Storey, John Morse; Curran, Scott J.; Lewis, Samuel A.; ...
2016-08-04
Low-temperature compression ignition combustion can result in nearly smokeless combustion, as indicated by a smoke meter or other forms of soot measurement that rely on absorbance due to elemental carbon content. Highly premixed low-temperature combustion modes do not form particulate matter in the traditional pathways seen with conventional diesel combustion. Previous research into reactivity controlled compression ignition particulate matter has shown, despite a near zero smoke number, significant mass can be collected on filter media used for particulate matter certification measurement. In addition, particulate matter size distributions reveal that a fraction of the particles survive heated double-dilution conditions. This papermore » summarizes research completed at Oak Ridge National Laboratory to date on characterizing the nature, chemistry and aftertreatment considerations of reactivity controlled compression ignition particulate matter and presents new research highlighting the importance of injection strategy and fuel composition on reactivity controlled compression ignition particulate matter formation. Particle size measurements and the transmission electron microscopy results do show the presence of soot particles; however, the elemental carbon fraction was, in many cases, within the uncertainty of the thermal–optical measurement. Particulate matter emitted during reactivity controlled compression ignition operation was also collected with a novel sampling technique and analyzed by thermal desorption or pyrolysis gas chromatography mass spectroscopy. Particulate matter speciation results indicated that the high boiling range of diesel hydrocarbons was likely responsible for the particulate matter mass captured on the filter media. Finally, to investigate potential fuel chemistry effects, either ethanol or biodiesel were incorporated to assess whether oxygenated fuels may enhance particle emission reduction.« less
Peraza-Castro, M; Sauvage, S; Sánchez-Pérez, J M; Ruiz-Romera, E
2016-11-01
An understanding of the processes controlling sediment, organic matter and metal export is critical to assessing and anticipating risk situations in water systems. Concentrations of suspended particulate matter (SPM), dissolved (DOC) and particulate (POC) organic carbon and metals (Cu, Ni, Pb, Cr, Zn, Mn, Fe) in dissolved and particulate phases were monitored in a forest watershed in the Basque Country (Northern Spain) (31.5km(2)) over three hydrological years (2009-2012), to evaluate the effect of flood events on the transport of these materials. Good regression was found between SPM and particulate metal concentration, making it possible to compute the load during the twenty five flood events that occurred during the study period at an annual scale. Particulate metals were exported in the following order: Fe>Mn>Zn>Cr>Pb>Cu>Ni. Annual mean loads of SPM, DOC and POC were estimated at 2267t, 104t and 57t, respectively, and the load (kg) of particulate metals at 76 (Ni), 83 (Cu), 135 (Pb), 256 (Cr), 532 (Zn), 1783 (Mn) and 95170 (Fe). Flood events constituted 91%-SPM, 65%-DOC, 71%-POC, 80%-Cu, 85%-Ni, 72%-Pb, 84%-Cr, 74%-Zn, 87%-Mn and 88%-Fe of total load exported during the three years studied. Flood events were classified into three categories according to their capacity for transporting organic carbon and particulate metals. High intensity flood events are those with high transport capacity of SPM, organic carbon and particulate metals. Most of the SPM, DOC, POC and particulate metal load was exported by this type of flood event, which contributed 59% of SPM, 45% of organic carbon and 54% of metals. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storey, John Morse; Curran, Scott J.; Lewis, Samuel A.
Low-temperature compression ignition combustion can result in nearly smokeless combustion, as indicated by a smoke meter or other forms of soot measurement that rely on absorbance due to elemental carbon content. Highly premixed low-temperature combustion modes do not form particulate matter in the traditional pathways seen with conventional diesel combustion. Previous research into reactivity controlled compression ignition particulate matter has shown, despite a near zero smoke number, significant mass can be collected on filter media used for particulate matter certification measurement. In addition, particulate matter size distributions reveal that a fraction of the particles survive heated double-dilution conditions. This papermore » summarizes research completed at Oak Ridge National Laboratory to date on characterizing the nature, chemistry and aftertreatment considerations of reactivity controlled compression ignition particulate matter and presents new research highlighting the importance of injection strategy and fuel composition on reactivity controlled compression ignition particulate matter formation. Particle size measurements and the transmission electron microscopy results do show the presence of soot particles; however, the elemental carbon fraction was, in many cases, within the uncertainty of the thermal–optical measurement. Particulate matter emitted during reactivity controlled compression ignition operation was also collected with a novel sampling technique and analyzed by thermal desorption or pyrolysis gas chromatography mass spectroscopy. Particulate matter speciation results indicated that the high boiling range of diesel hydrocarbons was likely responsible for the particulate matter mass captured on the filter media. Finally, to investigate potential fuel chemistry effects, either ethanol or biodiesel were incorporated to assess whether oxygenated fuels may enhance particle emission reduction.« less
The NERL Particulate Matter Longitudinal Panel Studies were used to characterize temporal variations of personal exposure to PM and related co-pollutants, including that of PM measured at ambient sites. These studies were fundamental in understanding the associations between p...
Flocculent Settling of Food Wastes.
Chowdhury, Mohammad Monirul Islam; Kim, Mingu; Haroun, Basem Mikhaeil; Nakhla, George; Keleman, Michael
2016-07-01
This study evaluated the flocculent settling in water and municipal wastewater (MWW) in a 10.6 ft deep column. A total of eight runs at three different testing conditions involving MWW alone, food waste (FW) alone, and FW in MWW (FW+MWW) were conducted. Total suspended solid (TSS), total BOD (TBOD), total COD (TCOD), total nitrogen (TN), and total phosphorous (TP) removal efficiencies after 3 hours of settling were 62%, 46%, 49%, 46% and 62% for FW, and 50%, 43%, 39%, 37% and 24% for MWW. Removal efficiencies of particulate COD (PCOD) and particulate BOD (PBOD) at the lowest surface overflow rate (SOR) of 1.1 m3/m2/hr corresponding to the longest settling time of 3 hours were 59% and 64% for FW, and 65% and 70% for FW with MWW samples. On the other hand, no significant variation between FW and FW with MWW was observed for PN removal after 3 hours of settling.
Light-scattering efficiency of starch acetate pigments as a function of size and packing density.
Penttilä, Antti; Lumme, Kari; Kuutti, Lauri
2006-05-20
We study theoretically the light-scattering efficiency of paper coatings made of starch acetate pigments. For the light-scattering code we use a discrete dipole approximation method. The coating layer is assumed to consists of roughly equal-sized spherical pigments packed either at a packing density of 50% (large cylindrical slabs) or at 37% or 57% (large spheres). Because the scanning electron microscope images of starch acetate samples show either a particulate or a porous structure, we model the coatings in two complementary ways. The material can be either inside the constituent spheres (particulate case) or outside of those (cheeselike, porous medium). For the packing of our spheres we use either a simulated annealing or a dropping code. We can estimate, among other things, that the ideal sphere diameter is in the range 0.25-0.4 microm.
Light-scattering efficiency of starch acetate pigments as a function of size and packing density
NASA Astrophysics Data System (ADS)
Penttilä, Antti; Lumme, Kari; Kuutti, Lauri
2006-05-01
We study theoretically the light-scattering efficiency of paper coatings made of starch acetate pigments. For the light-scattering code we use a discrete dipole approximation method. The coating layer is assumed to consists of roughly equal-sized spherical pigments packed either at a packing density of 50% (large cylindrical slabs) or at 37% or 57% (large spheres). Because the scanning electron microscope images of starch acetate samples show either a particulate or a porous structure, we model the coatings in two complementary ways. The material can be either inside the constituent spheres (particulate case) or outside of those (cheeselike, porous medium). For the packing of our spheres we use either a simulated annealing or a dropping code. We can estimate, among other things, that the ideal sphere diameter is in the range 0.25-0.4 μm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirchstetter, Thomas; Preble, Chelsea; Hadley, Odelle
2010-11-05
Traditional methods of cooking in developing regions of the world emit pollutants that endanger the lives of billions of people and contribute to climate change. This study quantifies the emission of pollutants from the Berkeley-Darfur Stove and the traditional three-stone fire at the Lawrence Berkeley National Laboratory cookstove testing facility. The Berkeley-Darfur Stove was designed as a fuel efficient alternative to the three-stone fire to aid refugees in Darfur, who walk long distances from their camps and risk bodily harm in search of wood for cooking. A potential co-benefit of the more fuel efficient stove may be reduced pollutant emissions.more » This study measured emissions of carbon dioxide, carbon monoxide, particulate matter, and sunlight-absorbing black carbon. It also measured climate-relevant optical properties of the emitted particulate matter. Pollutant monitors were calibrated specifically for measuring cookstove smoke.« less
Leachable particulate iron in the Columbia River, estuary, and near-field plume
NASA Astrophysics Data System (ADS)
Lippiatt, Sherry M.; Brown, Matthew T.; Lohan, Maeve C.; Berger, Carolyn J. M.; Bruland, Kenneth W.
2010-03-01
This study examines the distribution of leachable particulate iron (Fe) in the Columbia River, estuary, and near-field plume. Surface samples were collected during late spring and summer of 2004-2006 as part of four River Influence on Shelf Ecosystems (RISE) cruises. Tidal amplitude and river flow are the primary factors influencing the estuary leachable particulate Fe concentrations, with greater values during high flow and/or spring tides. Near the mouth of the estuary, leachable particulate Fe [defined as the particulate Fe solubilized with a 25% acetic acid (pH 2) leach containing a weak reducing agent to reduce Fe oxyhydroxides and a short heating step to access intracellular Fe] averaged 770 nM during either spring tide or high flow, compared to 320 nM during neap tide, low flow conditions. In the near-field Columbia River plume, elevated leachable particulate Fe concentrations occur during spring tides and/or higher river flow, with resuspended shelf sediment as an additional source to the plume during periods of coastal upwelling and spring tides. Near-field plume concentrations of leachable particulate Fe (at a salinity of 20) averaged 660 nM during either spring tide or high flow, compared to 300 nM during neap tide, low flow conditions. Regardless of tidal amplitude and river flow, leachable particulate Fe concentrations in both the river/estuary and near-field plume are consistently one to two orders of magnitude greater than dissolved Fe concentrations. The Columbia River is an important source of reactive Fe to the productive coastal waters off Oregon and Washington, and leachable particulate Fe is available for solubilization following biological drawdown of the dissolved phase. Elevated leachable Fe concentrations allow coastal waters influenced by the Columbia River plume to remain Fe-replete and support phytoplankton production during the spring and summer seasons.
Emissions During and Real-world Frequency of Heavy-duty Diesel Particulate Filter Regeneration.
Ruehl, Chris; Smith, Jeremy D; Ma, Yilin; Shields, Jennifer Erin; Burnitzki, Mark; Sobieralski, Wayne; Ianni, Robert; Chernich, Donald J; Chang, M-C Oliver; Collins, John Francis; Yoon, Seungju; Quiros, David; Hu, Shaohua; Dwyer, Harry
2018-05-15
Recent tightening of particulate matter (PM) emission standards for heavy-duty engines has spurred the widespread adoption of diesel particulate filters (DPFs), which need to be regenerated periodically to remove trapped PM. The total impact of DPFs therefore depends not only on their filtering efficiency during normal operation, but also on the emissions during and the frequency of regeneration events. We performed active (parked and driving) and passive regenerations on two heavy-duty diesel vehicles (HDDVs), and report the chemical composition of emissions during these events, as well as the efficiency with which trapped PM is converted to gas-phase products. We also collected activity data from 85 HDDVs to determine how often regeneration occurs during real-world operation. PM emitted during regeneration ranged from 0.2 to 16.3 g, and the average time and distance between real-world active regenerations was 28.0 h and 599 miles. These results indicate that regeneration of real-world DPFs does not substantially offset the reduction of PM by DPFs during normal operation. The broad ranges of regeneration frequency per truck (3-100 h and 23-4078 miles) underscore the challenges in designing engines and associated aftertreatments that reduce emissions for all real-world duty cycles.
PDF-based heterogeneous multiscale filtration model.
Gong, Jian; Rutland, Christopher J
2015-04-21
Motivated by modeling of gasoline particulate filters (GPFs), a probability density function (PDF) based heterogeneous multiscale filtration (HMF) model is developed to calculate filtration efficiency of clean particulate filters. A new methodology based on statistical theory and classic filtration theory is developed in the HMF model. Based on the analysis of experimental porosimetry data, a pore size probability density function is introduced to represent heterogeneity and multiscale characteristics of the porous wall. The filtration efficiency of a filter can be calculated as the sum of the contributions of individual collectors. The resulting HMF model overcomes the limitations of classic mean filtration models which rely on tuning of the mean collector size. Sensitivity analysis shows that the HMF model recovers the classical mean model when the pore size variance is very small. The HMF model is validated by fundamental filtration experimental data from different scales of filter samples. The model shows a good agreement with experimental data at various operating conditions. The effects of the microstructure of filters on filtration efficiency as well as the most penetrating particle size are correctly predicted by the model.
Kim, Juyoung; Chan Hong, Seung; Bae, Gwi Nam; Jung, Jae Hee
2017-10-17
Filtration technology has been widely studied due to concerns about exposure to airborne dust, including metal oxide nanoparticles, which cause serious health problems. The aim of these studies has been to develop mechanisms for the continuous and efficient removal of metal oxide dusts. In this study, we introduce a novel air filtration system based on the magnetic attraction force. The filtration system is composed of a magnetic nanoparticle (MNP)-decorated nanofiber (MNP-NF) filter. Using a simple electrospinning system, we fabricated continuous and smooth electrospun nanofibers with evenly distributed Fe 3 O 4 MNPs. Our electrospun MNP-NF filter exhibited high particle collection efficiency (∼97% at 300 nm particle size) compared to the control filter (w/o MNPs, ∼ 68%), with a ∼ 64% lower pressure drop (∼17 Pa) than the control filter (∼27 Pa). Finally, the filter quality factors of the MNP-NF filter were 4.7 and 11.9 times larger than those of the control filter and the conventional high-efficiency particulate air filters (>99% and ∼269 Pa), respectively. Furthermore, we successfully performed a field test of our MNP-NF filter using dust from a subway station tunnel. This work suggests that our novel MNP-NF filter can be used to facilitate effective protection against hazardous metal oxide dust in real environments.
The importance of temporal inequality in quantifying vegetated filter strip removal efficiencies
NASA Astrophysics Data System (ADS)
Gall, H. E.; Schultz, D.; Mejia, A.; Harman, C. J.; Raj, C.; Goslee, S.; Veith, T.; Patterson, P. H.
2017-12-01
Vegetated filter strips (VFSs) are best management practices (BMPs) commonly implemented adjacent to row-cropped fields to trap overland transport of sediment and other constituents often present in agricultural runoff. VFSs are generally reported to have high sediment removal efficiencies (i.e., 70 - 95%); however, these values are typically calculated as an average of removal efficiencies observed or simulated for individual events. We argue that due to: (i) positively correlated sediment concentration-discharge relationships; (ii) strong temporal inequality exhibited by sediment transport; and (iii) decreasing VFS performance with increasing flow rates, VFS removal efficiencies over annual time scales may be significantly lower than the per-event values or averages typically reported in the literature and used in decision-making models. By applying a stochastic approach to a two-component VFS model, we investigated the extent of the disparity between two calculation methods: averaging efficiencies from each event over the course of one year, versus reporting the total annual load reduction. We examined the effects of soil texture, concentration-discharge relationship, and VFS slope to reveal the potential errors that may be incurred by ignoring the effects of temporal inequality in quantifying VFS performance. Simulation results suggest that errors can be as low as < 2% and as high as > 20%, with the differences between the two methods of removal efficiency calculations greatest for: (i) soils with high percentage of fine particulates; (ii) VFSs with higher slopes; and (iii) strongly positive concentration-discharge relationships. These results can aid in annual-scale decision making for achieving downstream water quality goals.
Effect of the Cedar River on the quality of the ground-water supply for Cedar Rapids, Iowa
Schulmeyer, P.M.
1995-01-01
Above-normal streamflow and precipitation during the study could have increased the effect the river had on the alluvial aquifer and on the possibility of contamination by a pathogen. Microscopic particulate analysis of 29 samples found no Giardia cysts or Crytosporidium oocysts in water collected from municipal wells. Data also indicate that the aquifer is filtering out large numbers of algae, diatoms, rotifers, and nematodes as well as filtering out Cryptosporidium, Giardia, and other protozoa. The number of algae, diatoms, rotifers, protozoa, and vegetative debris for selected municipal wells tested showed at least a reduction to 1 per 1,000 of the number found in the river. A relative risk factor and a log-reduction rate were determined for the aquifer in the vicinity of selected wells. One municipal well had a high-risk factor, three other wells had a moderate-risk factor, and four wells had a low-risk factor. The filtering efficiency of the aquifer is equivalent to a 3 log-reduction rate or 99.99-percent reduction in particulates.
Particle Collection Efficiency of a Lens-Liquid Filtration System
NASA Astrophysics Data System (ADS)
Wong, Ross Y. M.; Ng, Moses L. F.; Chao, Christopher Y. H.; Li, Z. G.
2011-09-01
Clinical and epidemiological studies have shown that indoor air quality has substantial impact on the health of building occupants [1]. Possible sources of indoor air contamination include hazardous gases as well as particulate matters (PMs) [2]. Experimental studies show that the size distribution of PMs in indoor air ranges from tens of nanometers to a few hundreds of micrometers [3]. Vacuum cleaners can be used as a major tool to collect PMs from floor/carpets, which are the main sources of indoor PMs. However, the particle collection efficiency of typical cyclonic filters in the vacuums drops significantly for particles of diameter below 10 μm. In this work, we propose a lens-liquid filtration system (see Figure 1), where the flow channel is formed by a liquid free surface and a planar plate with fin/lens structures. Computational fluid dynamics simulations are performed by using FLUENT to optimize the structure of the proposed system toward high particle collection efficiency and satisfactory pressure drop. Numerical simulations show that the system can collect 250 nm diameter particles with collection efficiency of 50%.
High aspect ratio catalytic reactor and catalyst inserts therefor
Lin, Jiefeng; Kelly, Sean M.
2018-04-10
The present invention relates to high efficient tubular catalytic steam reforming reactor configured from about 0.2 inch to about 2 inch inside diameter high temperature metal alloy tube or pipe and loaded with a plurality of rolled catalyst inserts comprising metallic monoliths. The catalyst insert substrate is formed from a single metal foil without a central supporting structure in the form of a spiral monolith. The single metal foil is treated to have 3-dimensional surface features that provide mechanical support and establish open gas channels between each of the rolled layers. This unique geometry accelerates gas mixing and heat transfer and provides a high catalytic active surface area. The small diameter, high aspect ratio tubular catalytic steam reforming reactors loaded with rolled catalyst inserts can be arranged in a multi-pass non-vertical parallel configuration thermally coupled with a heat source to carry out steam reforming of hydrocarbon-containing feeds. The rolled catalyst inserts are self-supported on the reactor wall and enable efficient heat transfer from the reactor wall to the reactor interior, and lower pressure drop than known particulate catalysts. The heat source can be oxygen transport membrane reactors.
Direct ultrasonic agitation for rapid extraction of organic matter from airborne particulate.
Lee, S C; Zou, S C; Ho, K F; Chan, L Y
2001-01-02
Direct ultrasonic extraction (DUE) is proposed as simple and rapid sample pretreatment method. This new approach is applied to the extraction of particulate organic matter (POM) from airborne particulate by using dichloromethane (DCM) or DCM/methanol (90/10, v/v) as extractant. The analytical determination was carried out by weighing the extractable POM on an electrobalance. Total recovery for POM could be obtained when the sample was extracted three times with 25-50 mL extractant each for about 5 min at 50 W ultrasonic power. In comparison with conventional Soxhlet extraction, less extraction time (total 15 min only) and solvent consumption (100 mL) were required by DUE. The efficiency of the DUE was similar or even higher than the routine Soxhlet method. Additionally, the new extractor is very simple and easy to use and can accelerate the extraction procedures of organic components from various solid samples.
Diesel particulate abatement via wall-flow traps based on perovskite catalysts.
Fino, Debora; Russo, Nunzio; Saracco, Guido; Specchia, Vito
2003-01-01
It is probably redundant to stress how extensive are nowadays the attempts to reduce the diesel particulate emissions from automotive and stationary sources. The present paper looks into a technology relied on a catalytic trap based on a SiC wall-flow monolith lined with suitable catalysts for the sake of promoting a more complete and faster regeneration after particulate capture. All the major steps of the catalytic filter preparation are dealt with, including: the synthesis and choice of the proper catalyst and trap materials, the development of an in situ catalyst deposition technique, the bench testing of the derived catalytic wall-flow. The best catalyst selected was the perovskite La0.9K0.1Cr0.9O3-delta. The filtration efficiency and the pressure drop of the catalytic and non-catalytic monoliths were evaluated on a diesel engine bench under various operating conditions.
Evaluation of the Multi-Chambered Treatment Train, a retrofit water-quality management device
Corsi, Steven R.; Greb, Steven R.; Bannerman, Roger T.; Pitt, Robert E.
1999-01-01
This paper presents the results of an evaluation of the benefits and efficiencies of a device called the Multi-Chambered Treatment Train (MCTT), which was installed below the pavement surface at a municipal maintenance garage and parking facility in Milwaukee, Wisconsin. Flow-weighted water samples were collected at the inlet and outlet of the device during 15 storms, and the efficiency of the device was based on reductions in the loads of 68 chemical constituents and organic compounds. High reduction efficiencies were achieved for all particulate-associated constituents, including total suspended solids (98 percent), total phosphorus (88 percent), and total recoverable zinc (91 percent). Reduction rates for dissolved fractions of the constituents were substantial, but somewhat lower (dissolved solids, 13 percent; dissolved phosphorus, 78 percent; dissolved zinc, 68 percent). The total dissolved solids load, which originated from road salt storage, was more than four times the total suspended solids load. No appreciable difference was detected between particle-size distributions in inflow and outflow samples.
Lopes, J H; Leão-Neto, J P; Silva, G T
2017-11-01
Analytical expressions of the absorption, scattering, and elastic radiation force efficiency factors are derived for the longitudinal plane wave scattering by a small viscoelastic particle in a lossless solid matrix. The particle is assumed to be much smaller than the incident wavelength, i.e., the so-called long-wavelength (Rayleigh) approximation. The efficiencies are dimensionless quantities that represent the absorbed and scattering powers and the elastic radiation force on the particle. In the quadrupole approximation, they are expressed in terms of contrast functions (bulk and shear moduli, and density) between the particle and solid matrix. The results for a high-density polyethylene particle embedded in an aluminum matrix agree with those obtained with the partial wave expansion method. Additionally, the connection between the elastic radiation force and forward scattering function is established through the optical theorem. The present results should be useful for ultrasound characterization of particulate composites, and the development of implanted devices activated by radiation force.
NASA Astrophysics Data System (ADS)
Gérin, C.; Goutx, M.
1994-08-01
The Chromarod-Iatroscan system was used to measure dissolved and particulate lipids at six sites representative of the main hydrological zones of the Almeria-Oran frontal system in May 1991. Concentrations ranged from 9 to 113 μg 1 -1 and from 3 to 84 μg 1 -1 respectively. Particulate carbon was estimated on a CHN Leco analyzer. Dissolved lipid concentrations were highly variable with depth and exhibited clear signatures of phytoplankton degradation throughout the profiles. In the 300-400 m layer, particulate wax esters denoted the presence of deep zooplankton which may be benefit from the downward fluxes of organic matter from the frontal zone. In surface water, high concentrations of dissolved lipids and particulate carbon marked the presence of the jet front. Particulate lipid classes in samples were related to the presence of zooplankton and to the physiological state of cells rather than to phytoplankton biomass. Particulate triglyceride concentrations (storage lipids in phytoplankton) increased from the left to the right border of the jet core and further southwards, culminating in the Atlantic anticyclonic gyre. The distribution of particulate lipids to carbon and chlorophyllatios and the increasing level of triglycerides from the jet and southwards suggested a rapid removal of the frontal production by physical transports. The ability of anticyclonic structures to enhance accumulations of energetically rich compounds and thus to play a role as fertilizers of the oligotrophic waters of the Mediterranean Sea is discussed.
Internalized compartments encapsulated nanogels for targeted drug delivery
NASA Astrophysics Data System (ADS)
Yu, Jicheng; Zhang, Yuqi; Sun, Wujin; Wang, Chao; Ranson, Davis; Ye, Yanqi; Weng, Yuyan; Gu, Zhen
2016-04-01
Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system.Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system. Electronic supplementary information (ESI) available: Synthesis of m-HA; synthesis of rhodamine-HA derivative; supplementary data on relative fluorescence intensity of DOX-EN-NGs on HeLa cells. See DOI: 10.1039/c5nr08895j
Workplace Exposure to Titanium Dioxide Nanopowder Released from a Bag Filter System
Ji, Jun Ho; Kim, Jong Bum; Lee, Gwangjae; Noh, Jung-Hun; Yook, Se-Jin; Cho, So-Hye; Bae, Gwi-Nam
2015-01-01
Many researchers who use laboratory-scale synthesis systems to manufacture nanomaterials could be easily exposed to airborne nanomaterials during the research and development stage. This study used various real-time aerosol detectors to investigate the presence of nanoaerosols in a laboratory used to manufacture titanium dioxide (TiO2). The TiO2 nanopowders were produced via flame synthesis and collected by a bag filter system for subsequent harvesting. Highly concentrated nanopowders were released from the outlet of the bag filter system into the laboratory. The fractional particle collection efficiency of the bag filter system was only 20% at particle diameter of 100 nm, which is much lower than the performance of a high-efficiency particulate air (HEPA) filter. Furthermore, the laboratory hood system was inadequate to fully exhaust the air discharged from the bag filter system. Unbalanced air flow rates between bag filter and laboratory hood systems could result in high exposure to nanopowder in laboratory settings. Finally, we simulated behavior of nanopowders released in the laboratory using computational fluid dynamics (CFD). PMID:26125024
NASA Astrophysics Data System (ADS)
Van Wambeke, F.; Pfreundt, U.; Barani, A.; Berthelot, H.; Moutin, T.; Rodier, M.; Hess, W. R.; Bonnet, S.
2015-12-01
N2 fixation fuels ~ 50 % of new primary production in the oligotrophic South Pacific Ocean. The VAHINE mesocosm experiment designed to track the fate of diazotroph derived nitrogen (DDN) in the New Caledonia lagoon. Here, we examined the temporal dynamics of heterotrophic bacterial production during this experiment. Three replicate large-volume (~ 50 m3) mesocosms were deployed and were intentionally fertilized with dissolved inorganic phosphorus (DIP) to stimulate N2 fixation. We specifically examined relationships between N2 fixation rates and primary production, determined bacterial growth efficiency and established carbon budgets of the system from the DIP fertilization to the end of the experiment (days 5-23). Heterotrophic bacterioplankton production (BP) and alkaline phosphatase activity (APA) were statistically higher during the second phase of the experiment (P2: days 15-23), when chlorophyll biomass started to increase compared to the first phase (P1: days 5-14). Among autotrophs, Synechococcus abundances increased during P2, possibly related to its capacity to assimilate leucine and to produce alkaline phosphatase. Bacterial growth efficiency based on the carbon budget was notably higher than generally cited for oligotrophic environments (27-43 %), possibly due to a high representation of proteorhodopsin-containing organisms within the picoplanctonic community. The carbon budget showed that the main fate of gross primary production (particulate + dissolved) was respiration (67 %), and export through sedimentation (17 %). BP was highly correlated with particulate primary production and chlorophyll biomass during both phases of the experiment but slightly correlated, and only during P2 phase, with N2 fixation rates. Our results suggest that most of the DDN reached the heterotrophic bacterial community through indirect processes, like mortality, lysis and grazing.
Adal, K A; Anglim, A M; Palumbo, C L; Titus, M G; Coyner, B J; Farr, B M
1994-07-21
After outbreaks of multidrug-resistant tuberculosis, the Centers for Disease Control and Prevention proposed the use of respirators with high-efficiency particulate air filters (HEPA respirators) as part of isolation precautions against tuberculosis, along with a respiratory-protection program for health care workers that includes medical evaluation, training, and tests of the fit of the respirators. Each HEPA respirator costs between $7.51 and $9.08, about 10 times the cost of respirators currently used. We conducted a cost-effectiveness analysis using data from the University of Virginia Hospital on exposure to patients with tuberculosis and rates at which the purified-protein-derivative (PPD) skin test became positive in hospital workers. The costs of a respiratory-protection program were based on those of an existing program for workers dealing with hazardous substances. During 1992, 11 patients with documented tuberculosis were admitted to our hospital. Eight of 3852 workers (0.2 percent) had PPD tests that became positive. Five of these conversions were believed to be due to the booster phenomenon; one followed unprotected exposure to a patient not yet in isolation; the other two occurred in workers who had never entered a tuberculosis isolation room. These data suggest that it will take more than one year for the use of HEPA respirators to prevent a single conversion of the PPD test. Assuming that one conversion is prevented per year, however, it would take 41 years at out hospital to prevent one case of occupationally acquired tuberculosis, at a cost of $1.3 million to $18.5 million. Given the effectiveness of currently recommended measures to prevent nosocomial transmission of tuberculosis, the addition of HEPA respirators would offer negligible protective efficacy at great cost.
ANALYSIS OF VAPORS FROM METHYLENE CHLORIDE EXTRACTS OF NUCLEAR GRADE HEPA FILTER FIBERGLASS SAMPLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
FRYE JM; ANASTOS HL; GUTIERREZ FC
2012-06-07
While several organic compounds were detected in the vapor samples used in the reenactment of the preparation of mounts from the extracts of nuclear grade high-efficiency particulate air filter fiberglass samples, the most significant species present in the samples were methylene chloride, phenol, phenol-d6, and 2-fluorophenol. These species were all known to be present in the extracts, but were expected to have evaporated during the preparation of the mounts, as the mounts appeared to be dry before any vapor was collected. These species were present at the following percentages of their respective occupational exposure limits: methylene chloride, 2%; phenol, 0.4%;more » and phenol-d6, 0.6%. However, there is no established limit for 2-fluorophenol. Several other compounds were detected at low levels for which, as in the case of 2-fluorophenol, there are no established permissible exposure limits. These compounds include 2-chlorophenol; N-nitroso-1-propanamine; 2-fluoro-1,1{prime}-biphenyl; 1,2-dihydroacenaphthylene; 2,5-cyclohexadiene-1,4-dione,2,6-bis(1,1-dimethylethyl); trimethyl oxirane; n-propylpropanamine; 2-(Propylamino)ethanol; 4-methoxy-1-butene; 6-methyl-5-hepten-2-one; and 3,4-dimethylpyridine. Some of these were among those added as surrogates or spike standards as part ofthe Advanced Technologies and Laboratories International, Inc. preparation ofthe extract of the HEPA filter media and are indicated as such in the data tables in Section 2, Results; other compounds found were not previously known to be present. The main inorganic species detected (sulfate, sodium, and sulfur) are also consistent with species added in the preparation of the methylene chloride extract of the high-efficiency particulate air sample.« less
NASA Astrophysics Data System (ADS)
Zhang, Z. H.; Cheung, C. S.; Chan, T. L.; Yao, C. D.
2010-03-01
Experiments were conducted on a four-cylinder direct-injection diesel engine with part of the engine load taken up by fumigation methanol injected into the air intake of each cylinder to investigate the regulated and unregulated gaseous emissions and particulate emission of the engine under five engine loads at an engine speed of 1920 rev min -1. The fumigation methanol was injected to top up 10%, 20% and 30% of the engine load under different engine operating conditions. The experimental results show that at low engine loads, the brake thermal efficiency (BTE) decreases with increase in fumigation methanol; but at high engine loads, the BTE is not significantly affected by fumigation methanol. The fumigation methanol results in significant increase in hydrocarbon (HC), carbon monoxide (CO) and nitrogen dioxide (NO 2) emissions, but decrease in nitrogen oxides (NO x). For the unregulated gaseous emissions, unburned methanol, formaldehyde and BTX (benzene, toluene and xylene) emissions increase but ethyne, ethene and 1,3-butadiene emissions decrease. Particulate mass and number concentrations also decrease with increase in fumigation methanol. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics, when the exhaust gas temperature is sufficiently high.
Biolabile ferrous iron bearing nanoparticles in glacial sediments
NASA Astrophysics Data System (ADS)
Hawkings, Jon R.; Benning, Liane G.; Raiswell, Rob; Kaulich, Burkhard; Araki, Tohru; Abyaneh, Majid; Stockdale, Anthony; Koch-Müller, Monika; Wadham, Jemma L.; Tranter, Martyn
2018-07-01
Glaciers and ice sheets are a significant source of nanoparticulate Fe, which is potentially important in sustaining the high productivity observed in the near-coastal regions proximal to terrestrial ice cover. However, the bioavailability of particulate iron is poorly understood, despite its importance in the ocean Fe inventory. We combined high-resolution imaging and spectroscopy to investigate the abundance, morphology and valence state of particulate iron in glacial sediments. Our results document the widespread occurrence of amorphous and Fe(II)-rich and Fe(II)-bearing nanoparticles in Arctic glacial meltwaters and iceberg debris, compared to Fe(III)-rich dominated particulates in an aeolian dust sample. Fe(II) is thought to be highly biolabile in marine environments. Our work shows that glacially derived Fe is more labile than previously assumed, and consequently that glaciers and ice sheets are therefore able to export potentially bioavailable Fe(II)-containing nanoparticulate material to downstream ecosystems, including those in a marine setting. Our findings provide further evidence that Greenland Ice Sheet meltwaters may provide biolabile particulate Fe that may fuel the large summer phytoplankton bloom in the Labrador Sea, and that Fe(II)-rich particulates from a region of very high productivity downstream of a polar ice sheet may be glacial in origin.
NASA Astrophysics Data System (ADS)
Wu, Zhengchao; Li, Qian P.
2016-09-01
This study reports the first comprehensive exploration of the spatial patterns of dissolved and particulate polyunsaturated aldehydes (PUAs), their physical and biological controlling factors, and their potential biogeochemical influences in the Pearl River Estuary (PRE) of the northern South China Sea (NSCS). High levels of total particulate PUAs (0-41 nM) and dissolved PUAs (0.10-0.37 nM) were observed with substantial spatial variation during an intense summer phytoplankton bloom outside the PRE mouth. We found the particulate PUAs strongly correlated with temperature within the high chlorophyll bloom, while showing a generally positive correlation with chlorophyll-a for the entire region. Additionally, the Si/N ratio significantly correlated with the particulate PUAs along the estuary suggesting the important role of silica on PUA production in this region. The dissolved PUAs counterparts exhibited a positive correlation with chlorophyll-a within the high chlorophyll bloom, but a negatively one with temperature outside, reflecting the essential bio-physical coupling effects on the dissolved PUAs distributions in the ocean. Biogeochemical implications of PUAs on the coastal ecosystem include not only the deleterious restriction of high PUAs-producing diatom bloom on copepod population, but also the profound influence of particulate PUAs on the microbial cycling of organic carbon in the NSCS.
Promoted decomposition of NOx in automotive diesel-like exhausts by electro-catalytic honeycombs.
Huang, Ta-Jen; Chiang, De-Yi; Shih, Chi; Lee, Cheng-Chin; Mao, Chih-Wei; Wang, Bo-Chung
2015-03-17
NO and NO2 (collectively called NOx) are major air pollutants in automotive emissions. More effective and easier treatments of NOx than those achieved by the present methods can offer better protection of human health and higher fuel efficiency that can reduce greenhouse gas emissions. However, currently commercialized technologies for automotive NOx emission control cannot effectively treat diesel-like exhausts with high NOx concentrations. Thus, exhaust gas recirculation (EGR) has been used extensively, which reduces fuel efficiency and increases particulate emission considerably. Our results show that the electro-catalytic honeycomb (ECH) promotes the decomposition of NOx to nitrogen and oxygen, without consuming reagents or other resources. NOx can be converted to nitrogen and oxygen almost completely. The ECHs are shown to effectively remove NOx from gasoline-fueled diesel-like exhausts. A very high NO concentration is preferred in the engine exhaust, especially during engine cold-start. Promoted NOx decomposition (PND) technology for real-world automotive applications is established in this study by using the ECH. With PND, EGR is no longer needed. Diesel-like engines can therefore achieve superior fuel efficiency, and all major automotive pollutants can be easily treated due to high concentration of oxygen in the diesel-like exhausts, leading to zero pollution.
NASA Technical Reports Server (NTRS)
Allton, J. H.; Zeigler, R. A.; Calaway, M. J.
2016-01-01
The Lunar Receiving Laboratory (LRL) was planned and constructed in the 1960s to support the Apollo program in the context of landing on the Moon and safely returning humans. The enduring science return from that effort is a result of careful curation of planetary materials. Technical decisions for the first facility included sample handling environment (vacuum vs inert gas), and instruments for making basic sample assessment, but the most difficult decision, and most visible, was stringent biosafety vs ultra-clean sample handling. Biosafety required handling of samples in negative pressure gloveboxes and rooms for containment and use of sterilizing protocols and animal/plant models for hazard assessment. Ultra-clean sample handling worked best in positive pressure nitrogen environment gloveboxes in positive pressure rooms, using cleanable tools of tightly controlled composition. The requirements for these two objectives were so different, that the solution was to design and build a new facility for specific purpose of preserving the scientific integrity of the samples. The resulting Lunar Curatorial Facility was designed and constructed, from 1972-1979, with advice and oversight by a very active committee comprised of lunar sample scientists. The high precision analyses required for planetary science are enabled by stringent contamination control of trace elements in the materials and protocols of construction (e.g., trace element screening for paint and flooring materials) and the equipment used in sample handling and storage. As other astromaterials, especially small particles and atoms, were added to the collections curated, the technical tension between particulate cleanliness and organic cleanliness was addressed in more detail. Techniques for minimizing particulate contamination in sample handling environments use high efficiency air filtering techniques typically requiring organic sealants which offgas. Protocols for reducing adventitious carbon on sample handling surfaces often generate particles. Further work is needed to achieve both minimal particulate and adventitious carbon contamination. This paper will discuss these facility topics and others in the historical context of nearly 50 years' curation experience for lunar rocks and regolith, meteorites, cosmic dust, comet particles, solar wind atoms, and asteroid particles at Johnson Space Center.
Method for immobilizing particulate materials in a packed bed
Even, W.R. Jr.; Guthrie, S.E.; Raber, T.N.; Wally, K.; Whinnery, L.L.; Zifer, T.
1999-02-02
The present invention pertains generally to immobilizing particulate matter contained in a packed bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that (a) the particulate retains its essential chemical nature, (b) the local movement of the particulate particles is not unduly restricted, (c) bulk powder migration and is prevented, (d) physical and chemical access to the particulate is unchanged over time, and (e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of an individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport. 4 figs.
Method for immobilizing particulate materials in a packed bed
Even, Jr., William R.; Guthrie, Stephen E.; Raber, Thomas N.; Wally, Karl; Whinnery, LeRoy L.; Zifer, Thomas
1999-01-01
The present invention pertains generally to immobilizing particulate matter contained in a "packed" bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that a) the particulate retains its essential chemical nature, b) the local movement of the particulate particles is not unduly restricted, c) bulk powder migration and is prevented, d) physical and chemical access to the particulate is unchanged over time, and e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport.
Atkins, A; Bignal, K L; Zhou, J L; Cazier, F
2010-03-01
An investigation was made into the emissions of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) as well as inorganic gases (e.g. CO) from a wood fired combustion boiler using wood pellets, under two different boiler operating modes. Levels of total PAHs varied from 6.4 and 154 microg m(-3), and were found to be dominating in the gas phase (>80%), regardless of pellet type and boiler operating mode. In addition to this, PAH concentrations were higher in slumber mode than in full flame, and increased with the moisture content of pellets, consistent with the lower combustion efficiency in slumber mode (58.6-64.3%) than in full flame (74.4-82.3%). PAHs in the gas phase comprised mainly of low molecular mass compounds, while PAHs in the particulate phase were mostly composed of high molecular mass compounds, consistent with the physicochemical properties of such compounds. In comparison to PAHs, significantly lower concentrations of PCBs (a maximum of 2.5 microg m(-3)) were released from pellet combustion, consistent with the virgin nature of the pellets. The PCBs in both the gas and particulate phases were dominated by hexachlorinated congeners, although congeners with more chlorine substitution were more abundant in the particulate phase than in gas phase. Significant relationships were established between CO and organic pollutants, and between PAHs and PCBs, which are useful tools for prediction purposes. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Development of Test Protocols for International Space Station Particulate Filters
NASA Technical Reports Server (NTRS)
Green, Robert D.; Vijayakumar, R.; Agui, Juan H.
2014-01-01
Air quality control on the International Space Station (ISS) is a vital requirement for maintaining a clean environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of gravitational settling. The ISS Environmental Control and Life Support System (ECLSS) uses a filtration system that has been in use for over 14 years and has proven to meet this challenge. The heart of this system is a traditional High- Efficiency Particulate Air (HEPA) filter configured to interface with the rest of the life support elements and provide effective cabin filtration. Over the years, the service life of these filters has been re-evaluated based on limited post-flight tests of returned filters and risk factors. On earth, a well designed and installed HEPA filter will last for several years, e.g. in industrial and research clean room applications. Test methods for evaluating these filters are being developed on the basis of established test protocols used by the industry and the military. This paper will discuss the test methods adopted and test results on prototypes of the ISS filters. The results will assist in establishing whether the service life can be extended for these filters. Results from unused filters that have been in storage will also be presented to ascertain the shelf life and performance deterioration, if any and determine if the shelf life may be extended.
NASA Astrophysics Data System (ADS)
Zhang, Boen; Jiao, Limin; Xu, Gang; Zhao, Suli; Tang, Xin; Zhou, Yue; Gong, Chen
2018-06-01
Though it is recognized that meteorology has a great impact on the diffusion, accumulation and transport of air pollutants, few studies have investigated the impacts on different-sized particulate matter concentrations. We conducted a systematic comparative analysis and used the framework of generalized additive models (GAMs) to explore the influences of critical meteorological parameters, wind and precipitation, on PM2.5, PM10 and PM2.5-10 concentrations in Wuhan during 2013-2016. Overall, results showed that the impacts of wind and precipitation on different-sized PM concentrations are significantly different. The fine PM concentrations decreased gradually with the increase of wind speed, while coarse PM concentrations would increase due to dust resuspension under strong wind. Wind direction exerts limited influence on coarse PM concentrations. Wind speed was linearly correlated with log-transformed PM2.5 concentrations, but nonlinearly correlated with log-transformed PM10 and PM2.5-10 concentrations. We also found the PM2.5 and PM2.5-10 concentrations decreased by nearly 60 and 15% when the wind speed was up to 6 m/s, respectively, indicating a stronger negative impact of wind-speed on fine PM than coarse PM. The scavenging efficiency of precipitation on PM2.5-10 was over twice as high as on PM2.5. Our findings may help to understand the impacts of meteorology on different PM concentrations as well as discriminate and forecast variation in particulate matter concentrations.
Modeling of submicrometer aerosol penetration through sintered granular membrane filters.
Marre, Sonia; Palmeri, John; Larbot, André; Bertrand, Marielle
2004-06-01
We present a deep-bed aerosol filtration model that can be used to estimate the efficiency of sintered granular membrane filters in the region of the most penetrating particle size. In this region the capture of submicrometer aerosols, much smaller than the filter pore size, takes place mainly via Brownian diffusion and direct interception acting in synergy. By modeling the disordered sintered grain packing of such filters as a simple cubic lattice, and mapping the corresponding 3D connected pore volume onto a discrete cylindrical pore network, the efficiency of a granular filter can be estimated, using new analytical results for the efficiency of cylindrical pores. This model for aerosol penetration in sintered granular filters includes flow slip and the kinetics of particle capture by the pore surface. With a unique choice for two parameters, namely the structural tortuosity and effective kinetic coefficient of particle adsorption, this semiempirical model can account for the experimental efficiency of a new class of "high-efficiency particulate air" ceramic membrane filters as a function of particle size over a wide range of filter thickness and texture (pore size and porosity) and operating conditions (face velocity).
Particulate contamination spectrometer. Volume 1: Technical report
NASA Technical Reports Server (NTRS)
Schmitt, R. J.; Boyd, B. A.; Linford, R. M. F.
1975-01-01
A laser particulate spectrometer (LPS) system was developed to measure the size and speed distributions of particulate (dusts, aerosols, ice particles, etc.) contaminants. Detection of the particulates was achieved by means of light scattering and extinction effects using a single laser beam to cover a size range of 0.8 to 275 microns diameter and a speed range of 0.2 to 20 meter/second. The LPS system was designed to operate in the high vacuum environment of a space simulation chamber with cold shroud temperatures ranging from 77 to 300 K.
Epidemiology studies associate increased pulmonary morbidity with episodes of high particulate air pollution (size range 0.1-10 microm diameter, PM10). Pneumonia, often viral in origin, is increased following episodes of high PM10 pollution. Therefore, this study was undertaken t...
NASA Technical Reports Server (NTRS)
Turner, Mark; Zhou, Wei-Jia; Doty, Laura (Technical Monitor)
2000-01-01
To maximize the use of available resources provided onboard the International Space Station, the development of an efficient lighting 1 system is critical to the overall performance of the CPBF. Not only is it important to efficiently generate photon energy, but thermal loads on the CPBF Temperature and Humidity Control System must be minimized. By utilizing optical coatings designed to produce highly diffuse reflectance in the visible wavelengths while minimizing reflectance in the infrared region, the design of the fluorescent light module for the CPBF is optimized for maximum photon flux, spatial uniformity and energy efficiency. Since the Fluorescent Light Module must be fully enclosed to meet (ISS) requirements for containment of particulates and toxic materials, heat removal from the lights presented some unique design challenges. By using the Express Rack moderate C, temperature-cooling loop, heat is rejected by means of a liquid/air coolant manifold. Heat transfer to the manifold is performed by conduction using copper fins, by forced air convection using miniature fans, and by radiation using optically selective coatings that absorb in the infrared wavelengths. Using this combination of heat transfer mechanisms builds in redundancy to prevent thermal build up and premature bulb failure.
Local ventilation solution for large, warm emission sources.
Kulmala, Ilpo; Hynynen, Pasi; Welling, Irma; Säämänen, Arto
2007-01-01
In a foundry casting line, contaminants are released from a large area. Casting fumes include both volatile and particulate compounds. The volatile fraction contains hydrocarbons, whereas the particulate fraction mostly comprises a mixture of vaporized metal fumes. Casting fumes lower the air quality in foundries. The design of local ventilation for the casting area is a challenging task, because of the large casting area and convection plumes from warm moulds. A local ventilation solution for the mould casting area was designed and dimensioned with the aid of computational fluid dynamic (CFD) calculations. According to the calculations, the most efficient solution was a push-pull ventilation system. The prototype of the push-pull system was built and tested in actual operation at the foundry. The push flow was generated by a free plane jet that blew across the 10 m wide casting area towards an exhaust hood on the opposite side of the casting lines. The capture efficiency of the prototype was determined by the tracer gas method. The measured capture efficiencies with push jet varied between 40 and 80%, depending on the distance between the source and the exhaust. With the aid of the push flow, the average capture efficiency was increased from 40 (without jet) to 60%.
Experimental Characterization of Microfabricated VirtualImpactor Efficiency
The Air-Microfluidics Group is developing a microelectromechanical systems-based direct reading particulate matter (PM) mass sensor. The sensor consists of two main components: a microfabricated virtual impactor (VI) and a PM mass sensor. The VI leverages particle inertia to sepa...
SR-52 PROGRAMMABLE CALCULATOR PROGRAMS FOR VENTURI SCRUBBERS AND ELECTROSTATIC PRECIPITATORS
The report provides useful tools for estimating particulate removal by venturi scrubbers and electrostatic precipitators. Detailed descriptions are given for programs to predict the penetration (one minus efficiency) for each device. These programs are written specifically for th...
NASA Technical Reports Server (NTRS)
Shouse, D. T.; Hendricks, R. C.; Lynch, A.; Frayne, C. W.; Stutrud, J. S.; Corporan, E.; Hankins, T.
2012-01-01
Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as "drop-in" fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of processing and assumed to be feedstock agnostic. Adherence to alternate fuels and fuel blends requires "smart fueling systems" or advanced fuel-flexible systems, including combustors and engines, without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data. The data are for nominal inlet conditions at 225 psia and 800 F (1.551 MPa and 700 K), for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling. Assessments are made of the change in combustor efficiency, wall temperatures, emissions, and luminosity with SPK of 0%, 50%, and 100% fueling composition at 3% combustor pressure drop. The performance results (Part A) indicate no quantifiable differences in combustor efficiency, a general trend to lower liner and higher core flow temperatures with increased FT fuel blends. In general, emissions data (Part B) show little differences, but with percent increase in FT-SPK-type fueling, particulate emissions and wall temperatures are less than with baseline JP-8. High-speed photography illustrates both luminosity and combustor dynamic flame characteristics.
Electrostatic precipitator performance and trace element emissions from two Kraft recovery boilers.
Lind, Terttaliisa; Hokkinen, Jouni; Jokiniemi, Jorma K; Hillamo, Risto; Makkonen, Ulla; Raukola, Antti; Rintanen, Jaakko; Saviharju, Kari
2006-01-15
Fine particle emissions from combustion sources have gained attention recently due to their adverse effects on human health. The emission depends on the combustion process, fuel, and particulate removal technology. Particle concentrations at Kraft recovery boiler exits are very high, and the boilers are typically equipped with electrostatic precipitators (ESP). However, little data are available on the ESP performance in recovery boilers. Particle concentrations and size distributions were determined at two modern, operating recovery boilers. In addition, we determined the fractional collection efficiency of the ESPs by simultaneous measurements at the ESP inlet and outlet and the particulate emissions of trace metals. The particle mass concentration atthe ESP inlet was 11-24 g/Nm3 at the two boilers. Particle emissions were 30-40 mg/ Nm3 at boiler A and 12-15 mg/Nm3 at boiler B. The particle size distributions had a major particle mode at around 1 microm. These fume particles contained most of the particle mass. The main components in the particles were sodium and sulfate with minor amounts of chloride, potassium, and presumably some carbonate. The ESP collection efficiency was 99.6-99.8% at boiler A and 99.9% at boiler B. The particle penetration through the ESP was below 0.6% in the entire fume particle size range of 0.3-3 microm. Trace element emissions from both boilers were well below the limit values set by EU directive for waste incineration.
Time-resolved molecular characterization of organic aerosols by PILS + UPLC/ESI-Q-TOFMS
NASA Astrophysics Data System (ADS)
Zhang, X.; Dalleska, N. F.; Huang, D. D.; Bates, K. H.; Sorooshian, A.; Flagan, R. C.; Seinfeld, J. H.
2016-04-01
Real-time and quantitative measurement of particulate matter chemical composition represents one of the most challenging problems in the field of atmospheric chemistry. In the present study, we integrate the Particle-into-Liquid Sampler (PILS) with Ultra Performance Liquid Chromatography/Electrospray ionization Quadrupole Time-of-Flight High-Resolution/Mass Spectrometry (UPLC/ESI-Q-TOFMS) for the time-resolved molecular speciation of chamber-derived secondary organic aerosol (SOA). The unique aspect of the combination of these two well-proven techniques is to provide quantifiable molecular-level information of particle-phase organic compounds on timescales of minutes. We demonstrate that the application of the PILS + UPLC/ESI-Q-TOFMS method is not limited to water-soluble inorganic ions and organic carbon, but is extended to slightly water-soluble species through collection efficiency calibration together with sensitivity and linearity tests. By correlating the water solubility of individual species with their O:C ratio, a parameter that is available for aerosol ensembles as well, we define an average aerosol O:C ratio threshold of 0.3, above which the PILS overall particulate mass collection efficiency approaches ∼0.7. The PILS + UPLC/ESI-Q-TOFMS method can be potentially applied to probe the formation and evolution mechanism of a variety of biogenic and anthropogenic SOA systems in laboratory chamber experiments. We illustrate the application of this method to the reactive uptake of isoprene epoxydiols (IEPOX) on hydrated and acidic ammonium sulfate aerosols.
NASA Astrophysics Data System (ADS)
Schichtel, Bret A.; Gebhart, Kristi A.; Barna, Michael G.; Malm, William C.
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) study was initiated to understand the causes of haze at Big Bend National Park. BRAVO included the measurement of aerosols throughout Texas from July to October 1999 and extensive modeling of these aerosols. In support of BRAVO, the potential contributions from source regions to particulate sulfur at Big Bend during the BRAVO period were examined via an airmass history analysis. This was done using residence time analysis and a new technique of decomposing the residence time probability density function into its basic components, an airmass transport directional frequency and inverse characteristic transport speed. Trajectory heights over potential source regions were also examined. The system was validated using inert perfluorocarbon tracers that were released from four Texas sites. Airmass transport to Big Bend was examined on days with high (>80th percentile), and days with low (<20th percentile), particulate sulfur. High particulate sulfur concentrations were associated with low-level and low-speed airmass transport from the eastern United States, eastern Texas, and northeastern Mexico. All three of these regions have high SO 2 emissions that could contribute to Big Bend's haze. Examination of individual trajectories showed that the highest particulate sulfur concentrations occurred when transport over several of these regions coincided. Low particulate sulfur concentrations coincided with low-level but high-speed airmass transport from the Gulf of Mexico and along the Mexico-Texas border. Precipitation often occurred along these trajectories. Low sulfur was also associated with transport from low SO 2 emission regions north and west of Big Bend. Days with high SO 2 or selenium concentrations were also examined. High SO 2 concentrations were associated with prior transport from nearby sources, particularly the Carbón power plants located in Mexico ˜230 km southeast of Big Bend. High selenium concentrations were associated with prior transport over Carbón and eastern Texas.
Ni, Yang; Tu, Xing-ying; Zhu, Yi-dan; Guo, Xin-biao; Deng, Fu-rong
2014-06-18
To study the concentrations of fine particulate matters and ultrafine particles and influenced factors during winter in an area of Beijing. Real-time monitoring of particles' mass and number concentrations were conducted in an area of Beijing from February 7(th) to 27(th), 2013. At the same time, the meteorological data were also collected from the Beijing meteorological website. Differences of the particles' mass and number concentrations during different periods were analyzed using Mann-Whitney U test. Meanwhile, the influenced factors were also analyzed. The mean concentrations of fine particulate matters and ultrafine particles were (157.2 ± 142.8) μg/m³ and (25 018 ± 9 309) particles/cm³, respectively. The particles' number and mass concentrations in haze days were 1.27 times and 2.91 times higher than those in non-haze days, respectively. The mass concentrations of fine particulate matters in the self-monitoring site were higher than those in the nearest central monitoring sites, and the hourly-average concentrations of particles were significantly consistent with those at the commuter times. Meanwhile, the setting off of fireworks/firecrackers during the Spring Festival could lead to short-term increases of the particles' number and mass concentrations. When the wind speed was low and the related humidity was high, the concentrations of particulate matters were relatively high, and the mass concentrations of fine particulate matters were lagged about 1-2 d. The level of the particulate matters in this area was high. Heavy traffic, setting off of fireworks/firecrackers and meteorological factors may be some of the main factors affecting the concentrations of the particulate matters in this area. Among those factors, the effect of setting off of fireworks/firecrackers didn't last long and the effect of the meteorological factors had a hysteresis effect.
High efficiency virtual impactor
Loo, B.W.
1980-03-27
Environmental monitoring of atmospheric air is facilitated by a single stage virtual impactor for separating an inlet flow (Q/sub 0/) having particulate contaminants into a coarse particle flow (Q/sub 1/) and a fine particle flow (Q/sub 2/) to enable collection of such particles on different filters for separate analysis. An inlet particle acceleration nozzle and coarse particle collection probe member having a virtual impaction opening are aligned along a single axis and spaced apart to define a flow separation region at which the fine particle flow (Q/sub 2/) is drawn radially outward into a chamber while the coarse particle flow (Q/sub 1/) enters the virtual impaction opening.
NASA Technical Reports Server (NTRS)
Peddie, Catherine
2001-01-01
Aircraft emissions are deposited throughout the atmosphere, and at the lower stratosphere and upper troposphere they have greater potential to change ozone abundance and affect climate. There are significant uncertainties arising from the incomplete knowledge of the composition and evolution of the exhaust emissions, particularly regarding reactive trace species, particles, and their gaseous precursors. NASA Glenn Research Center at Lewis Field has considered its role in answering these challenges and has been committed to strengthening its aerosol/particulate research capabilities with initial emphasis on establishing advanced measurement systems and a particulate database. Activities currently supported by the NASA Ultra-Efficient Engine Technology (UEET) Program and accomplishment up to date will be described.
PM Removal Efficiency from Diesel Gensets Equipped with Aftermarket Control Devices
Diesel particulate matter (PM) has been associated with adverse health effects in humans and is classified as a human carcinogen. Additionally, diesel PM, particularly the strongly light absorbing fraction, black carbon (BC), is an important climate forcer. These adverse impact...
Emissions Removal Efficiency from Diesel Gensets Using Aftermarket PM Controls
Diesel particulate matter (PM) has been associated with adverse health effects in humans and is classified as a human carcinogen. Additionally, diesel PM, particularly the strongly light absorbing fraction, black carbon (BC), is an important climate forcer. The adverse impacts ...
COMPUTATIONS ON THE PERFORMANCE OF PARTICLE FILTERS AND ELECTRONIC AIR CLEANERS
The paper discusses computations on the performance of particle filters and electronic air cleaners (EACs). The collection efficiency of particle filters and ACs is calculable if certain factors can be assumed or calibrated. For fibrous particulate filters, measurement of colle...
Chiang, Ta-Kuan; Straub, Douglas L.; Dennis, Richard A.
2000-01-01
The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.
Holographic investigation of solid propellant particulates
NASA Astrophysics Data System (ADS)
Gillespie, T. R.
1981-12-01
The investigation completed the development process to establish a technique to obtain holographic recordings of particulate behavior during the combustion process of solid propellants in a two-dimensional rocket motor. Holographic and photographic recordings were taken in a crossflow environment using various compositions of metallized propellants. The reconstructed holograms are used to provide data on the behavior of aluminum/aluminum oxide particulates in a steady state combustion environment as a function of the initial aluminum size cast into the propellant. High speed, high resolution motion pictures were taken to compare the cinematic data with that available from the holograms.
Seagrave, JeanClare; Gigliotti, Andrew; McDonald, Jacob D; Seilkop, Steven K; Whitney, Kevin A; Zielinska, Barbara; Mauderly, Joe L
2005-09-01
Particulate matter (PM) and vapor-phase semivolatile organic compounds (SVOC) were collected from three buses fueled by compressed natural gas. The bus engines included a well-functioning, conventional engine; a "high emitter" engine; and a new technology engine with an oxidation catalyst. Chemical analysis of the emissions showed differences among these samples, with the high emitter sample containing markers of engine oil constituents. PM + SVOC samples were also collected for mutagenicity and toxicity testing. Extraction efficiencies from the collection media were lower than for similarly collected samples from gasoline or diesel vehicles. Responses to the recovered samples were compared on the basis of exhaust volume, to incorporate the emission rates into the potency factors. Mutagenicity was assessed by Salmonella reverse mutation assay. Mutagenicity was greatest for the high emitter sample and lowest for the new technology sample. Metabolic activation reduced mutagenicity in strain TA100, but not TA98. Toxicity, including inflammation, cytotoxicity, and parenchymal changes, was assessed 24 h after intratracheal instillation into rat lungs. Lung responses were generally mild, with little difference between the responses to equivalent volumes of emissions from the normal emitter and the new technology, but greater responses for the high emitter. These emission sample potencies are further compared on the basis of recovered mass with previously reported samples from normal and high-emitter gasoline and diesel vehicles. While mutagenic potencies for the CNG emission samples were similar to the range observed in the gasoline and diesel emission samples, lung toxicity potency factors were generally lower than those for the gasoline and diesel samples.
Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources
NASA Astrophysics Data System (ADS)
Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.
Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.
Kramschuster, Adam; Turng, Lih-Sheng
2010-02-01
In this research, injection molding was combined with a novel material combination, supercritical fluid processing, and particulate leaching techniques to produce highly porous and interconnected structures that have the potential to act as scaffolds for tissue engineering applications. The foamed structures, molded with polylactide (PLA) and polyvinyl alcohol (PVOH) with salt as the particulate, were processed without the aid of organic solvents, which can be detrimental to tissue growth. The pore size in the scaffolds is controlled by salt particulates and interconnectivity is achieved by the co-continuous blending morphology of biodegradable PLA matrix with water-soluble PVOH. Carbon dioxide (CO(2)) at the supercritical state is used to serve as a plasticizer, thereby imparting moldability of blends even with an ultra high salt particulate content, and allows the use of low processing temperatures, which are desirable for temperature-sensitive biodegradable polymers. Interconnected pores of approximately 200 microm in diameter and porosities of approximately 75% are reported and discussed.
ERIC Educational Resources Information Center
Aydeniz, Mehmet; Kotowski, Erin Leigh
2012-01-01
This study explores middle and high school students' understanding of the particulate nature of matter after they were taught the concept. A total of 87 students (41 high school and 46 middle school) participated in the study. Findings suggest that students held misconceptions about the law of conservation of matter, chemical composition of matter…
Cocurrent scrubber evaluation TVA's Colbert Lime--Limestone Wet-Scrubbing Pilot Plant. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robards, R.F.; Moore, N.D.; Kelso, T.M.
1979-01-01
The Tennessee Valley Authority (TVA) is actively engaged in a pilot plant program to develop and/or evaluate wet-scrubbing processes for removing sulfur dioxide (SO/sub 2/) from boiler flue gas. The physical size and general arrangement of flue gas scrubbing systems have a major impact on capital investment and operating cost, as do potential operating and maintenance advantages inherent to some systems. The equipment configuration for a cocurrent scrubber reflects some of these advantages. EPRI funded TVA to perform preliminary screening tests of TVA's 1 MW pilot plant (Colbert Steam Plant) to develop operating data on the cocurrent design for usemore » in designing and operating a 10 MW prototype cocurrent scrubber at TVA's Shawnee Scrubber Test Facility. Results of the Colbert tests showed excellent sulfur dioxide removal efficiencies, generally greater than 85%, low pressure drop, and high particulate removal efficiencies. This report covers these screening tests.« less
Exploiting virus-like particles as innovative vaccines against emerging viral infections.
Jeong, Hotcherl; Seong, Baik Lin
2017-03-01
Emerging viruses pose a major threat to humans and livestock with global public health and economic burdens. Vaccination remains an effective tool to reduce this threat, and yet, the conventional cell culture often fails to produce sufficient vaccine dose. As an alternative to cell-culture based vaccine, virus-like particles (VLPs) are considered as a highpriority vaccine strategy against emerging viruses. VLPs represent highly ordered repetitive structures via macromolecular assemblies of viral proteins. The particulate nature allows efficient uptake into antigen presenting cells stimulating both innate and adaptive immune responses towards enhanced vaccine efficacy. Increasing research activity and translation opportunity necessitate the advances in the design of VLPs and new bioprocessing modalities for efficient and cost-effective production. Herein, we describe major achievements and challenges in this endeavor, with respect to designing strategies to harnessing the immunogenic potential, production platforms, downstream processes, and some exemplary cases in developing VLP-based vaccines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ispen, J.; Deane, M.; Ingenito, F.E.
Comparison was made of industrial morbidity and absenteeism from upper respiratory disease with various measures of pollution and weather. Tests were conducted of workers visiting dispensaries of two plants in metropolitan Philadelphia and those working for the telephone company. Weekly morbidity was significantly correlated with temperature (r = -0.614), smoke shade (r = 0.556), particulate SO/sub 4/ (r = 0.289), and particulate matter (r = 0.264). Seasonal variation was in all variables. Pollution measures were inversely related to temperature. Particulate and SO/sub 4/ were inversely related to rainfall. SO/sub 4/ was inversely related to wind velocity. Daily correlations show day-of-weekmore » effect with lower morbidity and pollution on weekends. Higher prevalence/incidence ratio in winter was found. High morbidity was preceded by a week with low temperatures, high relative humidity, high wind velocity, and high pollutant levels, and accompanied by low temperatures, high relative humidity, and high wind.« less
Ciccarello, Annalisa; Bolognesi, Andrea; Maglionico, Marco; Artina, Sandro
2012-01-01
Roadside gully pots are the connecting points between surface runoff and the underground drainage network; therefore they can be considered as the most superficial component of urban drainage systems. Gully pots are supposed to trap particulate matter washed off the catchment surface, but also to collect and convey stormwater into the network. The continuous accumulation of particulate matter results in a progressive loss of the gully pot hydraulic conveyance, thereby increasing the probability of urban flooding during rainstorm events. This study has therefore the objective to determine which variables influence the gully pot capability of retaining solids (efficiency), both experimentally and analytically. Several laboratory tests have been performed on a simple plastic gully pot, with different inflow rates and using both mono and hetero-disperse particle samples. Particular attention has been given to the influence exerted by the way particle settling velocity is expressed: efficiency has been analytically determined by means of multiple settling velocity formulas proposed by various authors and eventually compared to experimental data. Results deriving from the adoption of each single settling velocity formula have been extensively analysed, showing fairly different outcomes.
Production of Dissolved Organic Matter During Doliolid Feeding
NASA Astrophysics Data System (ADS)
Castellane, N. J.; Paffenhofer, G. A.; Stubbins, A.
2016-02-01
The biological carbon pump (BCP) draws carbon dioxide out of the atmosphere and buries it at the seafloor. The efficiency of the BCP is determined in part by the sinking rates of particulate organic carbon (POC) from ocean surface waters. Zooplankton can package POC into fecal pellets with higher sinking rates than their food source (e.g. phytoplankton), increasing the efficiency of the BCP. However, dissolved organic carbon (DOC) is also produced as zooplankton ingest and egest food, reducing the efficiency of BCP. The pelagic tunicate Dolioletta gegenbauri (doliolid) is a gelatinous zooplankton found at high concentrations in shelf waters, including our study site: the South Atlantic Bight. Doliolids are efficient grazers capable of stripping large quantities of phytoplankton from the water column. To determine the balance between pellet formation and DOC production during feeding, doliolids (6-7 mm gonozooids) were placed in natural seawater amended with a live phytoplankton food source and incubated on a plankton wheel. Dissolved organic matter (DOM) released directly to the water as well as the water soluble fraction of pellet organic matter were quantified and optically characterized. Colored dissolved organic matter (CDOM) absorbance and fluorescence spectra revealed that doliolid feeding produces DOM with optical properties that are commonly indicative of newly produced, highly biolabile DOM of microbial origin. Based upon these optical characteristics, doliolid-produced DOM is expected to be highly bio-labile in the environment and therefore rapidly degraded by surface ocean microbes shunting phytoplankton-derived organic carbon out of the BCP and back to dissolved inorganic carbon.
Vladimir A Kovalev; Wei Min Hao; Cyle Wold
2007-01-01
A new method is considered that can be used for inverting data obtained from a combined elastic-inelastic lidar or a high spectral resolution lidar operating in a one-directional mode, or an elastic lidar operating in a multiangle mode. The particulate extinction coefficient is retrieved from the simultaneously measured profiles of the particulate backscatter...
NASA Technical Reports Server (NTRS)
DSa, E. J.; Miller, R. L.; DelCastillo, C.
2003-01-01
The Mississippi River Bight is a highly dynamic region influenced by the seasonally variable outflow from the Mississippi River. In an effort to characterize the distribution of particulate and dissolved organic matter in the region, we conducted a two-year field program in the spring and fall (high and low flow river discharge) of 2000 and 2002. We collected a comprehensive set of bio-optical measurements consisting of vertical profiles (absorption, scattering, chlorophyll fluorescence and radiometry) and discrete measurements (pigment concentrations, particulate and CDOM absorption) that enabled us to obtain better insight into the seasonal and spatial variability of some important biogeochemical parameters. Our field measurements generally showed higher phytoplankton clorophyll concentrations in the plume waters (associated with lower surface salinities) and confirmed the high biological activity abserved in other studies. The seasonal flow of river discharge and advective currents due to wind forcing exerted a strong influence on the biological and optical properties of the region. An examination of absorption at 440 nm by the algal and non-algal fraction of the particulate pool and of CDOM revealed that at nearshore stations, contributions by the non-algal particles were high (about 40%) and decresed with increasing salinities. While CDOM absorption exhibited conservative mixing, its relative contribution to the total absorption was variable. Surface waters at most stations had lower salinities that generalliy increased with dept. Particulate matter and CDOM also decreased with depth as evidenced by absorption and scattering measurements. Good correlations in surface waters between concentrations of particulate and dissolved matter, the inherent optical properties of absorption and ackscattering and remote sensing reflectance values has allowed the development of robust empirical algorithms for phytoplankton chlorophyll and CDOM absorption.
Summary of Ambient Air Monitoring in Southeast Chicago - Oct. 28, 2013
The monitoring station at George Washington High School reports pollutants including fine particulate matter, inhalable particulate matter, lead, and toxic metals. Data suggests sources including Beemsterboer and KCBX petcoke (petroleum coke) facilities.
NASA Astrophysics Data System (ADS)
Berthelot, H.; Benavides, M.; Moisander, P. H.; Grosso, O.; Bonnet, S.
2017-08-01
Dinitrogen (N2) fixation rates were investigated in the euphotic layer of the Bismarck and Solomon Seas using 15N2 incubation assays taking into account both the particulate and the dissolved pools. Average depth-integrated particulate N2 fixation rates were 203 (range 43-399) and 1396 (range 176-3132) μmol N m-2 d-1 in the Bismarck and Solomon Seas, respectively. In both seas, N2 fixation measured in the dissolved pool was similar to particulate N2 fixation, highlighting the potentially substantial underestimation of N2 fixation in oceanic budgets when only particulate N2 fixation is considered. Among the diazotroph phylotypes targeted using quantitative polymerase chain reaction amplification of nifH genes, Trichodesmium was the most abundant. Regression analyses suggest that it accounted for the major proportion of N2 fixation. However, unicellular cyanobacterial and non-cyanobacterial diazotrophs were also occasionally abundant. This study reports high pelagic N2 fixation rates and confirms that the Western Tropical South Pacific is a hot spot for marine N2 fixation.
TEST QA PLAN FOR THE VERIFICATION TESTING OF BAGHOUSE FILTRATION PRODUCTS
Baghouses and their accompanying filter media are a leading particulate control technique for industrial sources. Increasingly emphasis on higher removal efficiencies has helped the baghouse to be even more competitive when compared to other control devices. At present there is n...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirby J. Baumgard; Richard E. Winsor
2009-12-31
The objectives of the reported work were: to apply the stoichiometric compression ignition (SCI) concept to a 9.0 liter diesel engine; to obtain engine-out NO{sub x} and PM exhaust emissions so that the engine can meet 2010 on-highway emission standards by applying a three-way catalyst for NO{sub x} control and a particulate filter for PM control; and to simulate an optimize the engine and air system to approach 50% thermal efficiency using variable valve actuation and electric turbo compounding. The work demonstrated that an advanced diesel engine can be operated at stoichiometric conditions with reasonable particulate and NOx emissions atmore » full power and peak torque conditions; calculated that the SCI engine will operate at 42% brake thermal efficiency without advanced hardware, turbocompounding, or waste heat recovery; and determined that EGR is not necessary for this advanced concept engine, and this greatly simplifies the concept.« less
Huang, Hann-Sheng; Gorski, Anthony J.
1999-01-01
An apparatus and process that utilize a low temperature nonequilibrium plasma reactor, for improving the particulate removal efficiency of an electrostatic precipitator (ESP) are disclosed. A portion of the flue gas, that contains a low level of SO.sub.2 O.sub.2 H.sub.2 O, and particulate matter, is passed through a low temperature plasma reactor, which defines a plasma volume, thereby oxidizing a portion of the SO.sub.2 present in the flue gas into SO.sub.3. An SO.sub.2 rich flue gas is thereby generated. The SO.sub.3 rich flue gas is then returned to the primary flow of the flue gas in the exhaust treatment system prior to the ESP. This allows the SO.sub.3 to react with water to form H.sub.2 SO.sub.4 that is in turn is absorbed by fly ash in the gas stream in order to improve the removal efficiency of the EPS.
Hamad, Samera Hussein; Schauer, James Jay; Shafer, Martin Merrill; Abed Al-Raheem, Esam; Satar, Hyder
2012-01-01
The distribution of dissolved and particulate forms of 49 elements was investigated along transect of the Tigris River (one of the major rivers of the world) within Baghdad city and in its major tributary (Diyala River) from 11 to 28 July 2011. SF-ICP-MS was used to measure total and filterable elements at 17 locations along the Tigris River transect, two samples from the Diyala River, and in one sample from the confluence of the two rivers. The calculated particulate forms were used to determine the particle-partition coefficients of the metals. No major changes in the elements concentrations down the river transect. Dissolved phases dominated the physical speciation of many metals (e.g., As, Mo, and Pt) in the Tigris River, while Al, Fe, Pb, Th, and Ti were exhibiting high particulate fractions, with a trend of particle partition coefficients of [Ti(40) > Th(35) > Fe(15) > Al(13) > Pb(4.5)] ∗ 106 L/kg. Particulate forms of all metals exhibited high concentrations in the Diyala River, though the partition coefficients were low due to high TSS (~270 mg/L). A comparison of Tigris with the major rivers of the world showed that Tigris quality in Baghdad is comparable to Seine River quality in Paris. PMID:23304083
ERIC Educational Resources Information Center
Adadan, Emine; Irving, Karen E.; Trundle, Kathy C.
2009-01-01
This quasi-experimental study examined 42 high school introductory chemistry students' conceptual understandings of the particulate nature of matter (PNM) before and immediately after instruction. Two groups of students, who were taught by the same teacher, received one of two possible instructional interventions: Reform-Based Teaching (RBT) or…
Methods of hydrolyzing pretreated densified biomass particulates and systems related thereto
Bals, Bryan; Teymouri, Farzaneh; Campbell, Tim; Dale, Bruce
2015-02-03
A method is provided in which pretreated and densified cellulosic biomass particulates can be hydrolyzed at a high solids loading rate as compared with the solids loading rate of loose hydrolysable cellulosic biomass fibers. The resulting high concentration sugar-containing stream can be easily converted to biofuels or an entire suite of other useful bioproducts.
Methods of hydrolyzing pretreated densified biomass particulates and systems related thereto
Bals, Bryan; Teymouri, Farzaneh; Campbell, Timothy J.; Dale, Bruce E.
2016-10-04
A method is provided in which pretreated and densified cellulosic biomass particulates can be hydrolyzed at a high solids loading rate as compared with the solids loading rate of loose hydrolysable cellulosic biomass fibers. The resulting high concentration sugar-containing stream can be easily converted to biofuels or to an entire suite of other useful bioproducts.
NASA Astrophysics Data System (ADS)
Turnewitsch, Robert; Falahat, Saeed; Stehlikova, Jirina; Oguri, Kazumasa; Glud, Ronnie N.; Middelboe, Mathias; Kitazato, Hiroshi; Wenzhöfer, Frank; Ando, Kojiro; Fujio, Shinzou; Yanagimoto, Daigo
2014-08-01
In addition to high hydrostatic pressure, scarcity of food is viewed as a factor that limits the abundance and activity of heterotrophic organisms at great ocean depths, including hadal trenches. Supply of nutritious food largely relies on the flux of organic-rich particulate matter from the surface ocean. It has been speculated that the shape of hadal trenches helps to ‘funnel' particulate matter into the deeper parts of the trench, leading to sediment ‘focussing' and improved benthic food supply. Here we investigate for five Northwest Pacific trenches the efficiency of sediment focussing by evaluating ratios of measured (sediment-derived) and expected (water-column-derived) sedimentary inventories of the naturally occurring and radioactive particulate-matter tracer 210Pbxs. The sites comprise a broad range of surface-ocean productivity and physical-oceanographic regimes. Across the five trench-axis settings the inventory ratio varies between 0.5 and 4.1, with four trench-axis settings having ratios>1 (sediment focussing) and one trench-axis setting a ratio<1 (sediment winnowing). Although the fluid- and sediment-dynamical forcing behind sediment focussing remains unclear, this study finds evidence for another mechanism that is superimposed on, and counteracts, the focussing mechanism. This superimposed mechanism is related to higher-frequency (tidal, near-inertial) fluid dynamics. In particular, there is evidence for a strong and negative relation between the intensity of propagating internal tides and the extent of sediment focussing in the trench-axis. The relation can be approximated by a power function and the most intense drop in sediment focussing already occurs at moderate internal-tide intensities. This suggests that propagating internal tides may have a subtle but significant influence on particulate-matter dynamics and food supply in hadal trenches in particular, but possibly also in the deep seas in general. A mechanism for the influence of internal tides on sediment dynamics is proposed.
Tahara, I; Kinouchi, T; Kataoka, K; Ohnishi, Y
1994-06-01
Organic materials were extracted from particulates exhausted from a small diesel engine (displacement 269 ml) by the ultrasonic extraction method with three different solvent systems, methanol, dichloromethane and a 4:1 (v:v) mixture of benzene and ethanol. These solvent-extracted materials were tested for mutagenic activity by the Ames Salmonella/microsome assay system using Salmonella typhimurium strains TA98, TA100, TA98NR and TA98/1,8-DNP6. The concentrations of 1-nitropyrene (1-NP) and 1,6-dinitropyrene (1,6-diNP) in these extracted materials were also measured after nitroreduction by high pressure liquid chromatography. The methanol-extracted and benzene-ethanol-extracted materials showed the lowest and the highest mutagenic activity, respectively. The methanol-extracted, dichloromethane-extracted and benzene-ethanol-extracted materials induced 260, 1,570 and 3,240 His+ revertants per plate per mg of extracted materials, respectively, from strain TA98 in the absence of S9 mix. These materials showed decreased mutagenicity for strains TA98NR and TA98/1,8-DNP6, indicating that the particulates in the diesel engine exhaust contained 1-NP and diNPs. Actually, the amount of 1-NP and 1,6-diNP in the methanol-extracted, dichloromethane-extracted and benzene-ethanol-extracted materials were 17.0 and 0.03 ng, 37.5 and 0.97 ng, and 71.3 and 1.03 ng per mg of extracted materials, respectively, accounting for 11.9 and 3.2%, 4.4 and 17.3%, and 4.0 and 8.9%, respectively, of the total mutagenicity of the extracted materials. From these results it is concluded that a mixture of benzene-ethanol (4:1, v/v) is the most suitable solvent for extraction of organic matter containing nitrated polycyclic aromatic hydrocarbons such as NPs from particulates in diesel engine exhaust.
NASA Astrophysics Data System (ADS)
Clark, K. E.; Plante, A. F.; Willenbring, J. K.; Jerolmack, D. J.; Gonzalez, G.; Stallard, R. F.; Murphy, S. F.; Vann, D. R.; Leon, M.; McDowell, W. H.
2015-12-01
Physical erosion in mountain catchments mobilizes large amounts of sediment, while exporting carbon and nutrients from forest ecosystems. This study expands from previous studies quantifying river suspended sediment and particulate organic carbon loads in the Luquillo Critical Zone Observatory, in Puerto Rico. We evaluate the influences on river suspended load due to i) underlying basin geology, ii) hillslope debris and biomass supply, and iii) hurricanes and large storms. In the Mameyes and Icacos catchments of the Luquillo Mountains, we estimate suspended sediment and particulate organic carbon yields over a 25-year period using streamflow discharge determined from stage measurements at 15-intervals, with estimates of discharge replacing gaps in data, and over 3000 suspended sediment samples. We estimate variation in suspended sediment loads over time, and examine variation in particulate organic carbon loads. Mass spectrometry was used to determine organic carbon concentrations. We confirm that higher suspended sediment fluxes occurred i) in the highly weathered quartz diorite catchment rather than the predominantly volcaniclastic catchment, ii) on the rising limb of the hydrograph once a threshold discharge had been reached, and iii) during hurricanes and other storm events, and we explore these influences on particulate organic carbon transport. Transport of suspended sediment and particulate organic carbon in the rivers shows considerable hysteresis, and we evaluate the extent to which hysteresis affects particulate fluxes over time and between catchments. Because particulate organic carbon is derived from the critical zone and transported during high flow, our research highlights the role of major tropical storms in controlling carbon storage in the critical zone and the coastal ocean.
Bugarski, Aleksandar D; Schnakenberg, George H; Hummer, Ion A; Cauda, Emanuele; Janisko, Samuel I; Patts, Larry D
2009-09-01
Three types of uncatalyzed diesel particulate filter (DPF) systems, three types of high-temperature disposable filter elements (DFEs), and one diesel oxidation catalytic converter (DOC) were evaluated in underground mine conditions for their effects on the concentrations and size distributions of diesel aerosols. Those effects were compared with the effects of a standard muffler. The experimental work was conducted directly in an underground environment using a unique diesel laboratory developed in an underground experimental mine. The DPF systems reduced total mass of aerosols in the mine air approximately 10-fold for light-load and 20-fold or more for high-load test conditions. The DFEs offered similar reductions in aerosol mass concentrations. The efficiency of the new DFEs significantly increased with accumulation of operating time and buildup of diesel particulate matter in the porous structure of the filter elements. A single laundering process did not exhibit substantial effects on performance of the filter element The effectiveness of DPFs and DFEs in removing aerosols by number was strongly influenced by engine operating mode. The concentrations of nucleation mode aerosols in the mine air were found to be substantially higher for both DPFs and DFEs when the engine was operated at high-load modes than at low-load modes. The effects of the DOC on mass and number concentrations of aerosols in mine air were relatively minor when compared to those of the DPF and DFE systems.
Kuki, Kacilda Naomi; Oliva, Marco Antônio; Pereira, Eduardo Gusmão; Costa, Alan Carlos; Cambraia, José
2008-09-15
Particulate matter is a natural occurrence in the environment, but some industries, such as the iron ore sector, can raise the total amount of particles in the atmosphere. This industry is primarily a source of iron and sulfur dioxide particulates. The effects of the pollutants from the iron ore industries on representatives of restinga vegetation in a Brazilian coastal ecosystem were investigated using physiological and biochemical measures. Two species, Schinus terebinthifolius and Sophora tomentosa, were exposed to simulated deposition of acid mist and iron ore particulate matter in acrylic chambers in a greenhouse. Parameters such as gas exchange, fluorescence emission, chlorophyll content, total iron content, antioxidant enzyme activity and malondialdehyde content were assessed in order to evaluate the responses of the two species. Neither treatment was capable of inducing oxidative stress in S. terebinthifolius. Nevertheless, the deposition of iron ore particulates on this species increased chlorophyll content, the maximum quantum efficiency of photosystem II and the electron transport rate, while iron content was unaltered. On the other hand, S. tomentosa showed a greater sensitivity to the treatments. Plants of S. tomentosa that were exposed to acid mist had a decrease in photosynthesis, while the deposition of iron particulate matter led to an increase in iron content and membrane permeability of the leaves. The activities of antioxidant enzymes, such as catalases and superoxide dismutase, were enhanced by both treatments. The results suggested that the two restinga species use different strategies to overcome the stressful conditions created by the deposition of particulate matter, either solid or wet. It seems that while S. terebinthifolius avoided stress, S. tomentosa used antioxidant enzyme systems to partially neutralize oxidative stress. The findings also point to the potential use of S. tomentosa as a biomarker species under field conditions.
Kimbal, Kyle C; Pahler, Leon; Larson, Rodney; VanDerslice, Jim
2012-01-01
Currently, there is no Mine Safety and Health Administration (MSHA)-approved sampling method that provides real-time results for ambient concentrations of diesel particulates. This study investigated whether a commercially available aerosol spectrometer, the Grimm Portable Aerosol Spectrometer Model 1.109, could be used during underground mine operations to provide accurate real-time diesel particulate data relative to MSHA-approved cassette-based sampling methods. A subset was to estimate size-specific diesel particle densities to potentially improve the diesel particulate concentration estimates using the aerosol monitor. Concurrent sampling was conducted during underground metal mine operations using six duplicate diesel particulate cassettes, according to the MSHA-approved method, and two identical Grimm Model 1.109 instruments. Linear regression was used to develop adjustment factors relating the Grimm results to the average of the cassette results. Statistical models using the Grimm data produced predicted diesel particulate concentrations that highly correlated with the time-weighted average cassette results (R(2) = 0.86, 0.88). Size-specific diesel particulate densities were not constant over the range of particle diameters observed. The variance of the calculated diesel particulate densities by particle diameter size supports the current understanding that diesel emissions are a mixture of particulate aerosols and a complex host of gases and vapors not limited to elemental and organic carbon. Finally, diesel particulate concentrations measured by the Grimm Model 1.109 can be adjusted to provide sufficiently accurate real-time air monitoring data for an underground mining environment.
Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea
2016-04-01
Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice.
The size distribution of organic carbon in headwater streams in the Amazon basin.
de Paula, Joana D'Arc; Luizão, Flávio Jesus; Piedade, Maria Teresa Fernandez
2016-06-01
Despite the strong representativeness of streams in the Amazon basin, their role in the accumulation of coarse particulate organic carbon (CPOC), fine particulate organic carbon (FPOC), and dissolved organic carbon (DOC) in transport, an important energy source in these environments, is poorly known. It is known that the arboreal vegetation in the Amazon basin is influenced by soil fertility and rainfall gradients, but would these gradients promote local differences in organic matter in headwater streams? To answer this question, 14 low-order streams were selected within these gradients along the Amazon basin, with extensions that varied between 4 and 8 km. The efficiency of the transformation of particulate into dissolved carbon fractions was assessed for each stream. The mean monthly benthic organic matter storage ranged between 1.58 and 9.40 t ha(-1) month(-1). In all locations, CPOC was the most abundant fraction in biomass, followed by FPOC and DOC. Rainfall and soil fertility influenced the distribution of the C fraction (p = 0.01), showing differentiated particulate organic carbon (POC) storage and DOC transportation along the basin. Furthermore, the results revealed that carbon quantification at the basin level could be underestimated, ultimately influencing the global carbon calculations for the region. This is especially due to the fact that the majority of studies consider only fine particulate organic matter and dissolved organic matter, which represent less than 50 % of the stored and transported carbon in streambeds.
Propulsion and trapping of microparticles by active cilia arrays.
Bhattacharya, Amitabh; Buxton, Gavin A; Usta, O Berk; Balazs, Anna C
2012-02-14
We model the transport of a microscopic particle via a regular array of beating elastic cilia, whose tips experience an adhesive interaction with the particle's surface. At optimal adhesion strength, the average particle velocity is maximized. Using simulations spanning a range of cilia stiffness and cilia-particle adhesion strength, we explore the parameter space over which the particle can be "released", "propelled", or "trapped" by the cilia. We use a lower-order model to predict parameters for which the cilia are able to "propel" the particle. This is the first study that shows how both stiffness and adhesion strength are crucial for manipulation of particles by active cilia arrays. These results can facilitate the design of synthetic cilia that integrate adhesive and hydrodynamic interactions to selectively repel or trap particulates. Surfaces that are effective at repelling particulates are valuable for antifouling applications, while surfaces that can trap and, thus, remove particulates from the solution are useful for efficient filtration systems.
Nanoparticulate-catalyzed oxygen transfer processes
Hunt, Andrew T [Atlanta, GA; Breitkopf, Richard C [Dunwoody, GA
2009-12-01
Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen. Stages can be alone or combined. Parallel reactors can provide continuous reactant flow. Each of the processes can be carried out individually.
Diesel particulate emissions from used cooking oil biodiesel.
Lapuerta, Magín; Rodríguez-Fernández, José; Agudelo, John R
2008-03-01
Two different biodiesel fuels, obtained from waste cooking oils with different previous uses, were tested in a DI diesel commercial engine either pure or in 30% and 70% v/v blends with a reference diesel fuel. Tests were performed under a set of engine operating conditions corresponding to typical road conditions. Although the engine efficiency was not significantly affected, an increase in fuel consumption with the biodiesel concentration was observed. This increase was proportional to the decrease in the heating value. The main objective of the work was to study the effect of biodiesel blends on particulate emissions, measured in terms of mass, optical effect (smoke opacity) and size distributions. A sharp decrease was observed in both smoke and particulate matter emissions as the biodiesel concentration was increased. The mean particle size was also reduced with the biodiesel concentration, but no significant increases were found in the range of the smallest particles. No important differences in emissions were found between the two tested biodiesel fuels.
Deshommes, Elise; Laroche, Laurent; Deveau, Dominique; Nour, Shokoufeh; Prévost, Michèle
2017-09-05
Thirty-three households were monitored in a full-scale water distribution system, to investigate the impact of recent (<2 yr) or old partial lead service line replacements (PLSLRs). Total and particulate lead concentrations were measured using repeat sampling over a period of 1-20 months. Point-of-entry filters were installed to capture sporadic release of particulate lead from the lead service lines (LSLs). Mean concentrations increased immediately after PLSLRs and erratic particulate lead spikes were observed over the 18 month post-PLSLR monitoring period. The mass of lead released during this time frame indicates the occurrence of galvanic corrosion and scale destabilization. System-wide, lead concentrations were however lower in households with PLSLRs as compared to those with no replacement, especially for old PLSLRs. Nonetheless, 61% of PLSLR samples still exceeded 10 μg/L, reflecting the importance of implementing full LSL replacement and efficient risk communication. Acute concentrations measured immediately after PLSLRs demonstrate the need for appropriate flushing procedures to prevent lead poisoning.
Evaluating efficiency-equality tradeoffs for mobile source control strategies in an urban area
Levy, Jonathan I.; Greco, Susan L.; Melly, Steven J.; Mukhi, Neha
2013-01-01
In environmental risk management, there are often interests in maximizing public health benefits (efficiency) and addressing inequality in the distribution of health outcomes. However, both dimensions are not generally considered within a single analytical framework. In this study, we estimate both total population health benefits and changes in quantitative indicators of health inequality for a number of alternative spatial distributions of diesel particulate filter retrofits across half of an urban bus fleet in Boston, Massachusetts. We focus on the impact of emissions controls on primary fine particulate matter (PM2.5) emissions, modeling the effect on PM2.5 concentrations and premature mortality. Given spatial heterogeneity in baseline mortality rates, we apply the Atkinson index and other inequality indicators to quantify changes in the distribution of mortality risk. Across the different spatial distributions of control strategies, the public health benefits varied by more than a factor of two, related to factors such as mileage driven per day, population density near roadways, and baseline mortality rates in exposed populations. Changes in health inequality indicators varied across control strategies, with the subset of optimal strategies considering both efficiency and equality generally robust across different parametric assumptions and inequality indicators. Our analysis demonstrates the viability of formal analytical approaches to jointly address both efficiency and equality in risk assessment, providing a tool for decision-makers who wish to consider both issues. PMID:18793281
Jin, Huafang; Liebezeit, Gerd
2013-01-01
In this study, we evaluate the nature of the relationship between particulate matter and total mercury concentrations. For this purpose, we estimate both of the two values in water column over 12-h tidal cycles of the Jade Bay, southern North Sea. Total particulate mercury in 250 mL water samples was determined by oxygen combustion-gold amalgamation. Mercury contents varied from 63 to 259 ng/g suspended particulate matter (SPM) or 3.5-52.8 ng/L in surface waters. Total particulate mercury content (THg(p)) was positively correlated with (SPM), indicating that mercury in tidal waters is mostly associated with (SPM), and that tidal variations of total particulate mercury are mainly due to changes in (SPM) content throughout the tidal cycle. Maximum values for THg(p) were observed during mid-flood and mid-ebb, while the lowest values were determined at low tide and high tide. These data suggest that there are no mercury point sources in the Jade Bay. Moreover, the THg(p) content at low tide and high tide were significantly lower than the values recorded in the bottom sediment of the sampling site (>200 ng/g DW), while THg(p) content during the mid-flood and mid-ebb were comparable to the THg content in the surface bottom sediments. Therefore, changes in THg(p) content in the water column due to tidal forcing may have resulted from re-suspension of underlying surface sediments with relatively high mercury content.
NASA Astrophysics Data System (ADS)
Matsumoto, Kiyoshi; Minami, Hideki; Hayano, Teruaki; Uyama, Yukiko; Tanimoto, Hiroshi; Uematsu, Mitsuo
2007-12-01
A year-round observation of atmospheric aerosols and their associated species was conducted from March 2001 to May 2002 on Rishiri Island in the northern area of the east Asian Pacific rim region. Asian outflows brought continental air masses to this area during the period from the autumn to the spring although marine air masses from the high-latitudinal ocean often broke into this area during the midwinter. In contrast, marine air masses were predominant over this area in the summer. Particulate elemental carbon (EC) would be mainly transported with biomass smoke particles, and seasonal variation in its concentrations was well correlated with the air mass alternation, showing higher concentrations during the period from the autumn to the spring with some decreases in the midwinter. The concentrations of particulate organic carbon (OC) showed a similar seasonal trend with those of the particulate EC, but relatively high concentrations were found in the summer due to photochemical secondary productions. The particulate OC that is vaporized by heating at higher temperatures (OCHT) would be mainly carried with the biomass smoke, and the particulate OC that is vaporized at lower temperatures (OCLT) would be mainly caused by secondary production processes. Summer enhancements of the secondary species, such as OC and nss-SO42-, caused decreases in the ratio of EC/PM2.5, which would contribute to the high single scattering albedo of fine aerosols in the summer. Aerosols in the Asian outflows in this area are relatively "black" in the winter, although the aerosol mass loading increases in the spring.
Project Profile: Hydrogen Fuel Cell Mobile Lighting Tower (HFCML)
NASA Technical Reports Server (NTRS)
McLaughlin, Russell
2013-01-01
NASA is committed to finding innovative solutions that improve the operational performance of ground support equipment while providing environment and cost benefits, as well. Through the Hydrogen Fuel Cell Mobile Lighting Tower (HFCML) project, NASA gained operational exposure to a novel application of high efficiency technologies. Traditionally, outdoor lighting and auxiliary power at security gates, launch viewing sites, fallback areas, outage support, and special events is provided by diesel generators with metal halide lights. Diesel generators inherently contribute to C02, NOx, particulate emissions, and are very noisy. In 2010, engineers from NASA's Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) introduced KSC operations to a novel technology for outdoor lighting needs. Developed by a team led by Sandia National Laboratory (SNL), the technology pairs a 5kW hydrogen fuel cell with robust high efficiency plasma lights in a towable trailer. Increased efficiency, in both the fuel cell power source and lighting load, yields longer run times between fueling operations while providing greater auxiliary power. Because of the unit's quiet operation and no exhaust fumes, it is capable of being used indoors and in emergency situations, and meets the needs of all other operational roles for metal halide/diesel generators. The only discharge is some water and warm air. Environmental benefits include elimination of diesel particulate emissions and estimated 73% greenhouse gas emissions savings when the hydrogen source is natural gas (per GREET model). As the technology matures the costs could become competitive for the fuel cell units which are approximately 5 times diesel units. Initial operational . concerns included the hydrogen storage tanks and valves, lightning safety/grounding, and required operating and refueling procedures. TEERM facilitated technical information exchange (design drawings, technical standards, and operations manuals) necessary for KSC hydrogen system experts to approve use of the HFCML unit, including initiating the environmental checklist (i.e. exterior lighting waiver due to sea turtles), and development of operations and maintenance instructions. TEERM worked with SNL to establish a bailment agreement for KSC to utilize a Beta unit as part of normal Center Operations for a period of twelve months.
High-energy laser tactical decision aid (HELTDA) for mission planning and predictive avoidance
NASA Astrophysics Data System (ADS)
Burley, Jarred L.; Fiorino, Steven T.; Randall, Robb M.; Bartell, Richard J.; Cusumano, Salvatore J.
2012-06-01
This study demonstrates the development of a high energy laser tactical decision aid (HELTDA) by the AFIT/CDE for mission planning High Energy Laser (HEL) weapon system engagements as well as centralized, decentralized, or hybrid predictive avoidance (CPA/DPA/HPA) assessments. Analyses of example HEL mission engagements are described as well as how mission planners are expected to employ the software. Example HEL engagement simulations are based on geographic location and recent/current atmospheric weather conditions. The atmospheric effects are defined through the AFIT/CDE Laser Environmental Effects Definition and Reference (LEEDR) model or the High Energy Laser End-to-End Operational Simulation (HELEEOS) model upon which the HELTDA is based. These models enable the creation of vertical profiles of temperature, pressure, water vapor content, optical turbulence, and atmospheric particulates and hydrometeors as they relate to line-by-line layer extinction coefficient magnitude at wavelengths from the UV to the RF. Seasonal and boundary layer variations (summer/winter) and time of day variations for a range of relative humidity percentile conditions are considered to determine optimum efficiency in a specific environment. Each atmospheric particulate/hydrometeor is evaluated based on its wavelength-dependent forward and off-axis scattering characteristics and absorption effects on the propagating environment to and beyond the target. In addition to realistic vertical profiles of molecular and aerosol absorption and scattering, correlated optical turbulence profiles in probabilistic (percentile) format are included. Numerical weather model forecasts are incorporated in the model to develop comprehensive understanding of HEL weapon system performance.
Reed, Mike; Kimberger, Oliver; McGovern, Paul D; Albrecht, Mark C
2013-08-01
Forced-air warming devices are effective for the prevention of surgical hypothermia. However, these devices intake nonsterile floor-level air, and it is unknown whether they have adequate filtration measures to prevent the internal buildup or emission of microbial contaminants. We rated the intake filtration efficiency of a popular current-generation forced-air warming device (Bair Hugger model 750, Arizant Healthcare) using a monodisperse sodium chloride aerosol in the laboratory. We further sampled 23 forced-air warming devices (same model) in daily hospital use for internal microbial buildup and airborne-contamination emissions via swabbing and particle counting. Laboratory testing found the intake filter to be 63.8% efficient. Swabbing detected microorganisms within 100% of the forced-air warming blowers sampled, with isolates of coagulase-negative staphylococci, mold, and micrococci identified. Particle counting showed 96% of forced-air warming blowers to be emitting significant levels of internally generated airborne contaminants out of the hose end. These findings highlight the need for upgraded intake filtration, preferably high-efficiency particulate air filtration (99.97% efficient), on current-generation forced-air warming devices to reduce contamination buildup and emission risks.
Dimethyl ether (DME) as an alternative fuel
NASA Astrophysics Data System (ADS)
Semelsberger, Troy A.; Borup, Rodney L.; Greene, Howard L.
With ever growing concerns on environmental pollution, energy security, and future oil supplies, the global community is seeking non-petroleum based alternative fuels, along with more advanced energy technologies (e.g., fuel cells) to increase the efficiency of energy use. The most promising alternative fuel will be the fuel that has the greatest impact on society. The major impact areas include well-to-wheel greenhouse gas emissions, non-petroleum feed stocks, well-to-wheel efficiencies, fuel versatility, infrastructure, availability, economics, and safety. Compared to some of the other leading alternative fuel candidates (i.e., methane, methanol, ethanol, and Fischer-Tropsch fuels), dimethyl ether appears to have the largest potential impact on society, and should be considered as the fuel of choice for eliminating the dependency on petroleum. DME can be used as a clean high-efficiency compression ignition fuel with reduced NO x, SO x, and particulate matter, it can be efficiently reformed to hydrogen at low temperatures, and does not have large issues with toxicity, production, infrastructure, and transportation as do various other fuels. The literature relevant to DME use is reviewed and summarized to demonstrate the viability of DME as an alternative fuel.
Wendland, C; Deegener, S; Behrendt, J; Toshev, P; Otterpohl, R
2007-01-01
The objective of this research was mesophilic anaerobic digestion of blackwater from vacuum toilets (BW) and kitchen refuse (KR) in a CSTR within an ecological sanitation system. A detailed investigation of the BW characteristics was carried out. Research on anaerobic digestion was performed with CSTR of 101 volume at HRT of 10, 15 and 20 days. The digestion of BW at 20 days HRT showed stable performance without inhibition effects, in spite of relatively high ammonium concentrations. The removal of total and particulate COD was 61% and 53%, respectively, and the methane yield 10/CH4/cap/day. The addition of kitchen refuse (KR) improved the performance of the CSTR in terms of COD removal efficiency and methane yield. At 20 days HRT the removal of total and particulate COD increased up to 71% and 67%, respectively, and the methane yield to 27/CH4/cap/day. The results at 15 days HRT showed similar performance. At HRT of 10 days, the anaerobic treatment was limited but reached steady state conditions at higher VFA concentrations in the effluent, with a decrease of COD removal of 30 to 33% and of methane yields of 19 to 21%.
Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil
NASA Astrophysics Data System (ADS)
Karthikeyan, A.; Jayaprabakar, J.; Dude Williams, Richard
2017-05-01
The aim of the study is to use fish oil methyl ester (FME) and Jatropha oil methyl ester (JME) as a substitute for diesel in compression ignition engine. Experiments were conducted when the engine was fuelled with Diesel, Fish oil methyl ester and Jatropha oil methyl ester. The experiment covered a range of loads. An AVL smoke meter was used to measure the smoke density in HSU (Hatridge Smoke Unit). The exhaust emissions were measured using exhaust gas analyzer. High volume sampler was employed to measure the particulate matter in exhaust. The performance of the engine was evaluated in terms of brake specific fuel consumption, brake thermal efficiency. The combustion characteristics of the engine were studied in terms of cylinder pressure with respect to crank angle. The emissions of the engine were studied in terms of concentration of CO, NOx, particulate matter and smoke density. The results obtained for Fish oil methyl ester, Jatropha oil methyl ester, were compared with the results of diesel. Bio-diesel, which can be used as an alternate diesel fuel, is made from vegetable oil and animal fats. It is renewable, non-toxic and possesses low emission profiles.
Wu, Dawei; Roskilly, Anthony P.; Yu, Hongdong
2013-01-01
According to the International Energy Agency's World Energy Outlook 2011, 60 per cent of the population in Africa, some 587 million people, mostly in sub-Saharan Africa, lacked access to electricity in 2009. We developed a 6.5 kWe micro-trigeneration prototype, on the basis of internal combustion engine with pure Croton megalocarpus oil (CMO) fuelling, which configures a distributed energy system to generate power, heating and cooling from a single sustainable fuel source for remote users. Croton megalocarpus is an indigenous tree in East and South Africa which has recently attracted lots of interests as a biofuel source because of its high oil-yield rate. The direct and local use of CMO, instead of CMO biodiesel converted by the transesterification process, minimizes the carbon footprints left behind because of the simple fuel production of CMO. The experimental assessment proves that the prototype fuelled with CMO achieves similar efficiency as with diesel. Also, with the elevation of the oil injection temperature, the gaseous and particulate emissions of CMO could be ameliorated to some extent as improvement of the atomization in the spray and the combustion in the engine cylinder. PMID:24427514
Analysis of an MCU HEPA filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T. B.; Fondeur, F. F.
A series of direct analyses on three portions (inlet, center, and outlet) of the High Efficiency Particulate Air (HEPA) filter material from the Modular Caustic-Side Solvent Extraction Unit (MCU) have been performed; this includes x-ray methods such as X-Ray Diffraction (XRD), Contained Scanning Electron Microscopy (CSEM) and X-Ray Fluorescence (XRF), as well as Fourier Transform InfraRed spectroscopy (FTIR). Additionally, two leaching studies (one with water, one with dichloromethane) have been performed on three portions (inlet, center, and outlet) of the HEPA filter material, with the leachates being analyzed by Inductively-coupled plasma emission spectroscopy (ICPES), Semi-Volatile Organic Analysis (SVOA) and gammascan.more » From the results of the analyses, SRNL feels that cesium-depleted solvent is being introduced into the HEPA filter. The most likely avenue for this is mechanical aerosolization of solvent, where the aerosol is then carried along an airstream into the HEPA filter. Once introduced into the HEPA filter media, the solvent wicks throughout the material, and migrates towards the outlet end. Once on the outlet end, continual drying could cause particulate flakes to exit the filter and travel farther down the airstream path.« less
Kettleson, Eric M.; Schriewer, Jill M.; Buller, R. Mark L.
2013-01-01
Protection of the human lung from infectious agents, allergens, and ultrafine particles is difficult with current technologies. High-efficiency particulate air (HEPA) filters remove airborne particles of >0.3 μm with 99.97% efficiency, but they are expensive to maintain. Electrostatic precipitation has been used as an inexpensive approach to remove large particles from airflows, but it has a collection efficiency minimum in the submicrometer size range, allowing for a penetration window for some allergens and ultrafine particles. Incorporating soft X-ray irradiation as an in situ component of the electrostatic precipitation process greatly improves capture efficiency of ultrafine particles. Here we demonstrate the removal and inactivation capabilities of soft-X-ray-enhanced electrostatic precipitation technology targeting infectious agents (Bacillus anthracis, Mycobacterium bovis BCG, and poxviruses), allergens, and ultrafine particles. Incorporation of in situ soft X-ray irradiation at low-intensity corona conditions resulted in (i) 2-fold to 9-fold increase in capture efficiency of 200- to 600-nm particles and (ii) a considerable delay in the mean day of death as well as lower overall mortality rates in ectromelia virus (ECTV) cohorts. At the high-intensity corona conditions, nearly complete protection from viral and bacterial respiratory infection was afforded to the murine models for all biological agents tested. When optimized for combined efficient particle removal with limited ozone production, this technology could be incorporated into stand-alone indoor air cleaners or scaled for installation in aircraft cabin, office, and residential heating, ventilating, and air-conditioning (HVAC) systems. PMID:23263945
Kettleson, Eric M; Schriewer, Jill M; Buller, R Mark L; Biswas, Pratim
2013-02-01
Protection of the human lung from infectious agents, allergens, and ultrafine particles is difficult with current technologies. High-efficiency particulate air (HEPA) filters remove airborne particles of >0.3 μm with 99.97% efficiency, but they are expensive to maintain. Electrostatic precipitation has been used as an inexpensive approach to remove large particles from airflows, but it has a collection efficiency minimum in the submicrometer size range, allowing for a penetration window for some allergens and ultrafine particles. Incorporating soft X-ray irradiation as an in situ component of the electrostatic precipitation process greatly improves capture efficiency of ultrafine particles. Here we demonstrate the removal and inactivation capabilities of soft-X-ray-enhanced electrostatic precipitation technology targeting infectious agents (Bacillus anthracis, Mycobacterium bovis BCG, and poxviruses), allergens, and ultrafine particles. Incorporation of in situ soft X-ray irradiation at low-intensity corona conditions resulted in (i) 2-fold to 9-fold increase in capture efficiency of 200- to 600-nm particles and (ii) a considerable delay in the mean day of death as well as lower overall mortality rates in ectromelia virus (ECTV) cohorts. At the high-intensity corona conditions, nearly complete protection from viral and bacterial respiratory infection was afforded to the murine models for all biological agents tested. When optimized for combined efficient particle removal with limited ozone production, this technology could be incorporated into stand-alone indoor air cleaners or scaled for installation in aircraft cabin, office, and residential heating, ventilating, and air-conditioning (HVAC) systems.
Rowan-Carroll, Andrea; Halappanavar, Sabina; Williams, Andrew; Somers, Christophers M; Yauk, Carole L
2013-05-01
It is clear that particulate air pollution poses a serious risk to human health; however, the underlying mechanisms are not completely understood. We investigated pulmonary transcriptional responses in mice following in-situ exposure to ambient air in a heavily industrialized urban environment. Mature C57BL/CBA male mice were caged in sheds near two working steel mills and a major highway in Hamilton, Ontario, Canada in the spring/summer of 2004. Control mice were housed in the same environment, but received only high-efficiency particle filtered air (HEPA). Whole lung tissues were collected from mice exposed for 3, 10, or for 10 weeks followed by 6 weeks recovery in the laboratory (16 weeks). DNA microarrays were used to profile changes in pulmonary gene expression. Transcriptional profiling revealed changes in the expression of genes implicated in the lipid droplet synthesis (Plin I, Dgat2, Lpl, S3-12, and Agpat2), and antioxidant defense (Ucp1) pathways in mice breathing unfiltered air. We postulate that exposure to urban air, containing an abundance of particulate matter adsorbed with polycyclic aromatic hydrocarbons, triggers lipid droplet (holding depots for lipids and malformed/excess proteins tagged for degradation) synthesis in the lungs, which may act to sequester particulates. Increased lipid droplet synthesis could lead to endogenous/stressor-induced production of reactive oxygen species and activation of antioxidant mechanisms. Further investigation into the stimulation of lipid droplet synthesis in the lung in response to air pollution and the resulting health implications is warranted. Copyright © 2013 Wiley Periodicals, Inc.
NASA photovoltaic research and technology
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1988-01-01
NASA photovoltaic R and D efforts address future Agency space mission needs through a comprehensive, integrated program. Activities range from fundamental studies of materials and devices to technology demonstrations of prototype hardware. The program aims to develop and apply an improved understanding of photovoltaic energy conversion devices and systems that will increase the performance, reduce the mass, and extend the lifetime of photovoltaic arrays for use in space. To that end, there are efforts aimed at improving cell efficiency, reducing the effects of space particulate radiation damage (primarily electrons and protons), developing ultralightweight cells, and developing advanced ray component technology for high efficiency concentrator arrays and high performance, ultralightweight arrays. Current goals that have been quantified for the program are to develop cell and array technology capable of achieving 300 watts/kg for future missions for which mass is a critical factor, or 300 watts/sq m for future missions for which array size is a major driver (i.e., Space Station). A third important goal is to develop cell and array technology which will survive the GEO space radiation environment for at least 10 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bache, C.A.; Reid, C.M.; Hoffman, D.
In the work reported, filter and nonfilter cigarettes were prepared from high-cadmium tobacco grown on a municipal sludge-amended soil or a low-cadmium tobacco grown on untreated soil alone. These were smoked by machine to determine the effectiveness of the cigarette filters in possibly reducing the quantities of cadmium in the mainstream smoke particulates.
Determination of particulate lead during MILAGRO / MCMA-2006 using Aerosol Mass Spectrometry
NASA Astrophysics Data System (ADS)
Salcedo, Dara; Onasch, T. B.; Aiken, A. C.; Williams, L. R.; de Foy, B.; Cubison, M. J.; Worsnop, D. R.; Molina, L. T.; Jimenez, J. L.
2010-05-01
We report the first measurements of particulate lead (Pb) from Aerodyne Aerosol Mass Spectrometers, which were deployed in and around Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO) / Mexico City Metropolitan Area 2006 (MCMA-2006) field campaigns. The high resolution mass spectrometer of one of the AMS instruments (HR-AMS) and the measured isotopic ratios unequivocally prove the detection of Pb in ambient particles. A substantial fraction of the lead evaporated slowly from the vaporizer of the instruments, which is indicative of species with low volatility at 600oC. A model was developed in order to estimate the ambient particulate Pb entering the AMS from the signals in the "open" and the "closed" (or "background") mass spectrum modes of the AMS. The model suggests the presence of at least two lead fractions with ~25% of the Pb signal exhibiting rapid evaporation (1/e decay constant, τ < 0.1 s) and ~75% exhibiting slow evaporation (τ ~2.4 min) at T0 and a different fraction (70% prompt and 30% slow evaporation) at a site northwest from the metropolitan area (PEMEX32 site). From laboratory experiments with pure Pb(NO3)2 particles, we estimated that the Pb ionization efficiency relative to nitrate (RIEPb) is 0.5. Comparison of time series of AMS Pb with other measurements carried out at the T0 urban supersite during MILAGRO (using Proton Induced X-ray Emission (PIXE), Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) and single-particle counts from an Aerosol Time-of-Fight Mass Spectrometer (ATOFMS)) shows similar levels (for PIXE and ICP-MS) and substantial correlation. During part of the campaign, sampling at T0 was alternated every 10 minutes with an Aerosol Concentrator, which enabled the detection of signals for PbCl+ and PbS+ ions. PbS+ displays the signature of a slowly evaporating species, while PbCl+ appears to arise only from fast evaporation, which is likely due to the higher vapor pressure of the compounds generating PbCl+. This is consistent with the evaporation model results. Levels of particulate Pb measured during MILAGRO at T0 were similar to previous studies in Mexico City. Pb shows a diurnal cycle with a maximum in the early morning, which is typical of primary urban pollutants. Pb shows correlation with Zn, consistent with previous studies, while the sources of Pb appear to be at least partially disjoint from those of particulate chloride. Back trajectory analysis of the T0 Pb data suggests the presence of sources inside the urban area SSW and N of T0, with different chemical forms of Pb being associated with different source locations. High signals due to particulate lead were also detected in the PEMEX site; again, no correlation between Pb and chloride plumes was observed, suggesting mostly different sources for both species.
Determination of particulate lead during MILAGRO/MCMA-2006 using Aerosol Mass Spectrometry
NASA Astrophysics Data System (ADS)
Salcedo, D.; Onasch, T. B.; Aiken, A. C.; Williams, L. R.; de Foy, B.; Cubison, M. J.; Worsnop, D. R.; Molina, L. T.; Jimenez, J. L.
2010-02-01
We report the first measurements of particulate lead (Pb) from Aerodyne Aerosol Mass Spectrometers, which were deployed in and around Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO)/Mexico City Metropolitan Area 2006 (MCMA-2006) field campaigns. The high resolution mass spectrometer of one of the AMS instruments (HR-AMS) and the measured isotopic ratios unequivocally prove the detection of Pb in ambient particles. A substantial fraction of the lead evaporated slowly from the vaporizer of the instruments, which is indicative of species with low volatility at 600 °C. A model was developed in order to estimate the ambient particulate Pb entering the AMS from the signals in the "open" and the "closed" (or "background") mass spectrum modes of the AMS. The model suggests the presence of at least two lead fractions with ~25% of the Pb signal exhibiting rapid evaporation (1/e decay constant, τ<0.1 s) and ~75% exhibiting slow evaporation (τ~2.4 min) at the T0 urban supersite and a different fraction (70% prompt and 30% slow evaporation) at a site northwest from the metropolitan area (PEMEX site). From laboratory experiments with pure Pb(NO3)2 particles, we estimated that the Pb ionization efficiency relative to nitrate (RIEPb) is 0.5. Comparison of time series of AMS Pb with other measurements carried out at T0 (using Proton Induced X-ray Emission (PIXE), Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) and single-particle counts from an Aerosol Time-of-Fight Mass Spectrometer (ATOFMS)) shows similar levels (for PIXE and ICP-MS) and substantial correlation. During part of the campaign, sampling at T0 was alternated every 10 min with an Aerosol Concentrator, which enabled the detection of signals for PbCl+ and PbS+ ions. PbS+ displays the signature of a slowly evaporating species, while PbCl+ appears to arise only from fast evaporation, which is likely due to the higher vapor pressure of the compounds generating PbCl+. This is consistent with the evaporation model results. Levels of particulate Pb measured at T0 were similar to previous studies in Mexico City. Pb shows a diurnal cycle with a maximum in the early morning, which is typical of primary urban pollutants. Pb shows correlation with Zn, consistent with previous studies, while the sources of Pb appear to be at least partially disjoint from those of particulate chloride. Back trajectory analysis of the T0 Pb data suggests the presence of sources inside the urban area SSW and N of T0, with different chemical forms of Pb being associated with different source locations. High signals due to particulate lead were also detected in the PEMEX site; again, no correlation between Pb and chloride plumes was observed, suggesting mostly different sources for both species.
Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations
NASA Astrophysics Data System (ADS)
Salcedo, D.; Onasch, T. B.; Aiken, A. C.; Williams, L. R.; de Foy, B.; Cubison, M. J.; Worsnop, D. R.; Molina, L. T.; Jimenez, J. L.
2010-06-01
We report the first measurements of particulate lead (Pb) from Aerodyne Aerosol Mass Spectrometers, which were deployed in and around Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO)/Mexico City Metropolitan Area 2006 (MCMA-2006) field campaigns. The high resolution mass spectrometer of one of the AMS instruments (HR-AMS) and the measured isotopic ratios unequivocally prove the detection of Pb in ambient particles. A substantial fraction of the lead evaporated slowly from the vaporizer of the instruments, which is indicative of species with low volatility at 600 °C. A model was developed in order to estimate the ambient particulate Pb entering the AMS from the signals in the "open" and the "closed" (or "background") mass spectrum modes of the AMS. The model suggests the presence of at least two lead fractions with ~25% of the Pb signal exhibiting rapid evaporation (1/e decay constant, τ<0.1 s) and ~75% exhibiting slow evaporation (τ~2.4 min) at the T0 urban supersite and a different fraction (70% prompt and 30% slow evaporation) at a site northwest from the metropolitan area (PEMEX site). From laboratory experiments with pure Pb(NO3)2 particles, we estimated that the Pb ionization efficiency relative to nitrate (RIEPb) is 0.5. Comparison of time series of AMS Pb with other measurements carried out at the T0 supersite during MILAGRO (using Proton Induced X-ray Emission (PIXE), Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) and single-particle counts from an Aerosol Time-of-Fight Mass Spectrometer (ATOFMS)) shows similar levels (for PIXE and ICP-MS) and substantial correlation. During part of the campaign, sampling at T0 was alternated every 10 min with an Aerosol Concentrator, which enabled the detection of signals for PbCl+ and PbS+ ions. PbS+ displays the signature of a slowly evaporating species, while PbCl+ appears to arise only from fast evaporation, which is likely due to the higher vapor pressure of the compounds generating PbCl+. This is consistent with the evaporation model results. Levels of particulate Pb measured at T0 were similar to previous studies in Mexico City. Pb shows a diurnal cycle with a maximum in the early morning, which is typical of primary urban pollutants. Pb shows correlation with Zn, consistent with previous studies, while the sources of Pb appear to be at least partially disjoint from those of particulate chloride. Back trajectory analysis of the T0 Pb data suggests the presence of sources inside the urban area SSW and N of T0, with different chemical forms of Pb being associated with different source locations. High signals due to particulate lead were also detected in the PEMEX site; again, no correlation between Pb and chloride plumes was observed, suggesting mostly different sources for both species.
The impact of total suspended particulate concentration on workers’ health at ceramic industry
NASA Astrophysics Data System (ADS)
Sintorini, M. M.
2018-01-01
Ceramic production process pollutes the air with particulate matter at high concentration and has negative impact on the workers. The objective of this research was to determine the particulate concentration in the air and to analyse its impact on the workers. This research used cross sectional method to correlate the particulate concentration, temperature, humidity, smoke level and level of workers’ compliance with safety regulations. Sampling was conducted from April to May 2012 in three locations, i.e. exposure area (Mass Preparation I, II) and non-exposure area (Forming area). In the exposure area (Mass Preparation I and II) where the particulate concentrations were 22.3673 mg/m3 and 14.8277 mg/m3, and 58.33%, the workers had bad health status. In the non-exposure area, where the particulate concentration was 3.2185 mg/m3 and 25% the workers had bad health status. The Odds Ratio among the workers in exposure area was 4.2 times higher than the workers in the non-exposure area.
Umaiyakunjaram, R; Shanmugam, P
2016-09-01
This study deals with the treatment of high suspended solids raw tannery wastewater using flat sheet Submerged Anaerobic Membrane (0.4μm) Bioreactor (SAMBR) acclimatized with hypersaline anaerobic seed sludge for recovering biogas. The treatability of SAMBR achieved higher CODremoval efficiency (90%) and biogas yield (0.160L.g(-1) CODremoved) coincided with high r(2) values between permeate flux and TSS (0.95), biogas and COD removed (0.96). The acidification of hypersaline influent wastewater by biogas mixing with high CO2, achieved quadruplet benefit of gas liquid and solid separation, in-situ pH and NH3 control, in-situ CH4 enrichment, and prevention of membrane fouling. The initial high VFA became stable as time elapsed reveals the hydrolysing ability of particulate COD into soluble COD and into biogas, confirms the suitability of SAMBR for high suspended solids tannery wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Lin; Yan, Jingli; Ma, Keming; Zhou, Weiqi; Chen, Guojian; Tang, Rongli; Zhang, Yuxin
2017-12-01
Plants can mitigate ambient particulate matter by cleaning the air, which is crucial to urban environments. A novel approach was presented to quantitatively characterize particulate matter deposited on urban tree foliage. This approach could accurately quantify the number, size, shape, and spatial distribution of particles with different diameters on leaves. Spatial distribution is represented by proximity, which measures the closeness of particles. We sampled three common broadleaf species and obtained images through field emission scanning electron microscopy. We conducted the object-based method to extract particles from images. We then used Fragstats to analyze the landscape characteristics of these particles in term of selected metrics. Results reveal that Salix matsudana is more efficient than Ailanthus altissima and Fraxinus chinensis in terms of the number and area of particles per unit area and the proportion of fine particulate matter. The shape complexity of the particles increases with their size. Among the three species, S. matsudana and A. altissima particles respectively yield the highest and lowest proximity. PM1 in A. altissima and PM10 in F. chinensis and S. matsudana show the highest proximity, which may influence subsequent particle retention. S. matsudana should be generally considered to collect additional small particles. Different species and particle sizes exhibit various proximities, which should be further examined to elucidate the underlying mechanism.
Processing and Analysis of Multibeam Sonar Data and Images near the Yellow River Estuary
NASA Astrophysics Data System (ADS)
Tang, Q.
2017-12-01
Yellow River Estuary is a typical high-suspended particulate matter estuary in the world. A lot of sediments from Yellow River and other substances produced by human activity cause high-concentration suspended matter and depositional system in the estuary and adjacent water area. Multibeam echo sounder (MBES) was developed in the 1970s, and it not only provided high-precision bathymetric data, but also provided seabed backscatter strength data and water column data with high temporal and spatial resolution. Here, based on high-precision sonar data of the seabed and water column collected by SeaBat7125 MBES system near the Yellow River Estuary, we use advanced data and image processing methods to generate seabed sonar images and water suspended particulate matter acoustic images. By analyzing these data and images, we get a lot of details of the seabed and whole water column features, and we also acquire their shape, size and basic physical characteristics of suspended particulate matters in the experiment area near the Yellow River Estuary. This study shows great potential for monitoring suspended particulate matter use MBES, and the research results will contribute to a comprehensive understanding of sediment transportation, evolution of river trough and shoal in Yellow River Estuary.
NASA Astrophysics Data System (ADS)
Catalano, G.; Povero, P.; Fabiano, M.; Benedetti, F.; Goffart, A.
1997-01-01
The relationships among vertical stability, estimated nutrient utilisation and particulate organic matter in the Ross Sea are analysed from data collected during two cruises in the summers of 1987-1988 and 1989-1990. In the upper mixed layer (UML), identified through the vertical stability E( Z(UML)), nutrient consumption is calculated as the difference between the "diluted" nutrient value and the mean calculated from the integrated value in the UML. The nutrient utilisation ratio and E( Z(UML)) are linearly related for E( Z(UML))≤25, whereas for values > 25, the distribution pattern is more scattered and independent of E( Z(UML)). For E( Z(UML))≥25, utilisation values were ≥4, 0.4 and 10 mmol m -3 for nitrate, phosphate and silicate, respectively. Significant relationships between nutrient depletion and both particulate organic carbon (POC) and particulate protein/particulate carbohydrate ratios (PPRT/PCHO) are found. The analysis of particulate matter distribution vs nutrient utilisation shows that the stations could be divided into two groups having different characteristics. The first group includes coastal stations, where high nutrient utilisation, POC and PPRT/PCHO are typical of areas with high production. In the second group (pelagic stations), nutrient utilisation, POC and PPRT/PCHO are lower. The vertical stability can be used to discriminate among the factors that influence primary production.
NASA Technical Reports Server (NTRS)
Murugan, Muthuvel; Ghoshal, Anindya; Walock, Michael; Nieto, Andy; Bravo, Luis; Barnett, Blake; Pepi, Marc; Swab, Jeffrey; Pegg, Robert Tyler; Rowe, Chris;
2017-01-01
Gas turbine engines for military/commercial fixed-wing and rotary wing aircraft use thermal barrier coatings in the high-temperature sections of the engine for improved efficiency and power. The desire to further make improvements in gas turbine engine efficiency and high power-density is driving the research and development of thermal barrier coatings and the effort of improving their tolerance to fine foreign particulates that may be contained in the intake air. Both commercial and military aircraft engines often are required to operate over sandy regions such as in the Middle-East nations, as well as over volcanic zones. For rotorcraft gas turbine engines, the sand ingestion is adverse during take-off, hovering near ground, and landing conditions. Although, most of the rotorcraft gas turbine engines are fitted with inlet particle separators, they are not 100 percent efficient in filtering fine sand particles of size 75 microns or below. The presence of these fine solid particles in the working fluid medium has an adverse effect on the durability of turbine blade thermal barrier coatings and overall performance of the engine. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The objective of this research is to understand the fine particle interactions with typical ceramic coatings of turbine blades at the microstructure level. A finite-element based microstructure modeling and analysis has been performed to investigate particle-surface interactions, and restitution characteristics. Experimentally, a set of tailored thermal barrier coatings and surface treatments were down-selected through hot burner rig tests and then applied to first stage nozzle vanes of the Gas Generator Turbine of a typical rotorcraft gas turbine engine. Laser Doppler velocity measurements were performed during hot burner rig testing to determine sand particle incoming velocities and their rebound characteristics upon impact on coated material targets. Further, engine sand ingestion tests were carried out to test the CMAS tolerance of the coated nozzle vanes. The findings from this on-going collaborative research to develop the next-gen sand tolerant coatings for turbine blades are presented in this paper.
Predicting the Effects of Nano-Scale Cerium Additives in Diesel Fuel on Regional-Scale Air Quality
Diesel vehicles are a major source of air pollutant emissions. Fuel additives containing nanoparticulate cerium (nCe) are currently being used in some diesel vehicles to improve fuel efficiency. These fuel additives also reduce fine particulate matter (PM2.5) emissio...
DIESEL ENGINE EFFICIENCY AND EMISSIONS IMPROVEMENT VIA PISTON TEMPERATURE CONTROL - PHASE I
Human placental indanol dehydrogenase: some properties of the microsomal enzyme.
Kulkarni, A P; Strohm, B H; Houser, W H
1985-06-01
Indanol dehydrogenase activity of human placenta was examined in vitro. The enzyme, primarily localized in the particulate fractions of placenta, catalysed conversion of 1-indanol to 1-indanone in the presence of oxidized pyridine nucleotides. Both NAD+ and NADP+ supported the reaction with nearly equal efficiency.
ASSESSMENT OF HUMAN EXPOSURE TO AMBIENT PARTICULATE MATTER.
Recent epidemiological studies have consistently shown that the acute mortality effects of high concentrations of ambient particulate matter (PM), documented in historic air pollution episodes, may also be occurring at the low to moderate concentrations of ambient PM found in mod...
Space solar cell research - Problems and potential
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1986-01-01
The value of a passive, maintenance-free, renewable energy source was immediately recognized in the early days of the space program, and the silicon solar cell, despite its infancy, was quickly pressed into service. Efficiencies of those early space solar arrays were low, and lifetimes shorter than hoped for, but within a decade significant advances had been made in both areas. Better performance was achieved because of a variety of factors, ranging from improvements in silicon single crystal material, to better device designs, to a better understanding of the factors that affect the performance of a solar cell in space. Chief among the latter, particularly for the mid-to-high altitude (HEO) and geosynchronous (GEO) orbits, are the effects of the naturally occurring particulate radiation environment. Although not as broadly important to the photovoltaic community at large as increased efficiency, the topic of radiation damage is critically important to use of solar cells in space, and is a major component of the NASA research program in space photovoltaics. This paper will give a brief overview of some of the opportunities and challenges for space photovoltaic applications, and will discuss some of the current reseach directed at achieving high efficiency and controlling the effects of radiation damage in space solar cells.
Influencing factors on particle-bound contaminant transport in the Elbe estuary
NASA Astrophysics Data System (ADS)
Kleisinger, Carmen; Haase, Holger; Schubert, Birgit
2016-04-01
Particulate matter, i.e. suspended particulate matter and sediments in rivers and estuaries, often are contaminated with trace metals and selected organic contaminants and are mainly associated with fine-grained fractions. Transport processes and fate of particles in estuaries are influenced by several factors, e.g. freshwater discharge, tide, flow velocity and dredging activities (Kappenberg et al., 2007). Understanding the transport processes in estuaries may help to achieve the objectives of the Water Framework Directive and the Marine Strategy Framework Directive. The German Federal Institute of Hydrology (BfG) operates for more than 20 years five monitoring sites in the Elbe estuary in order to monitor the development of particle-bound contaminant concentrations over time and to understand their transport mechanisms. Results of the monitoring revealed freshwater discharge as an important influencing factor on the transport of contaminated particulate matter (Ackermann et al., 2007). The bidirectional transport of marine and fluvial water and particulate matter in estuaries results in a turbidity zone where large amounts of particulate matter are temporarily retained and thus in a delayed transport of particulate matter towards the sea. The extent and the location of the turbidity zone as well as the ratio of highly contaminated fluvial and less contaminated marine sediments at a given location are mainly influenced by the freshwater discharge (Kowalewska et al., 2011). Furthermore, at high freshwater discharge conditions the highly contaminated particulate matter from fluvial origin are transported downstream the estuary, whereas at low freshwater discharges, upstream transport of less contaminated marine sediments prevails. Hence, residence times of particulate matter in the estuary are difficult to estimate. Furthermore, sedimentation areas with flow reduced conditions, e.g. wadden areas or branches of the Elbe estuary, may act as sinks for particle bound contaminants and remove them temporarily or in long term from further transport. In the past, highly contaminated sediments were deposited in these retention areas. The estimated total contamination load in these areas exceeds the annual contamination load entering the estuary by a factor up to 11 (BfG, 2014). Monitoring in sedimentation areas by the means of sediment cores gave no indications for current distinct sedimentation or erosion. It is assumed that the highly contaminated sediments in greater depths are most likely to be resuspended only due to extreme events or human intervention (BfG, 2014). Additionally, dredging and depositing of dredged sediments in the Elbe estuary influence the transport of contaminated sediments. Deposition of dredged material further downstream the dredging site accelerates the transport of particulate matter towards the sea. As the residence time of particulate matter within the estuary varies by many influencing factors, mass balances are associated with large uncertainties and accordingly, annual particle-bound contaminant loads released into the North Sea cannot be calculated reliable. Ackermann, F. and Schubert, B. (2007): Trace metals as indicators for the dynamics of (suspended) particulate matter in the tidal reach of the River Elbe. Sediment Dynamics and Pollutant Mobility in Rivers. U. Förstner and B. Westrich. Heidelberg, Springer Verlag, 296-304. BfG (2014). Sedimentmanagement Tideelbe - Strategien und Potenziale - Systemstudie II. Ökologische Auswirkungen der Unterbringung von Feinmaterial. BfG-1763. Kappenberg, J. and Fanger, H.-U. (2007): "Sedimenttransportgeschehen in der tidebeeinflussten Elbe, der Deutschen Bucht und in der Nordsee." 2007/20, 123. Kowalewska, G., Belzunce-Segarra, M. J., Schubert, B., Heininger, P. and Heise, S. (2011): The Role of Sediments in Coastal Monitoring. Chemical Marine Monitoring. P. Quevauviller, P. Roose and G. Verreet. Chichester, West Sussex, UK, John Wiley & Sons Ltd., 384-388.
Ljungqvist, Bengt; Reinmüller, Berit
2007-01-01
In pharmaceutical manufacturing, freeze-drying processes can be adversely affected by temperature differences relative to the surrounding air. Loading and unloading of freeze-dryers are performed either without or with temperature differences between the cleanroom and the chamber of the freeze-dryer. This operation can cause a flow of room air through the opening, creating a contamination risk, especially when manual handling of material is performed in this area. To minimize this risk, a high-efficiency particulate air (HEPA) filter unit should be installed above the opening to provide clean air and protect the opening. Here the theoretical relationships are discussed and design criteria are presented.
Leinweber, Felix C; Tallarek, Ulrich
2003-07-18
Monolithic chromatographic support structures offer, as compared to the conventional particulate materials, a unique combination of high bed permeability, optimized solute transport to and from the active surface sites and a high loading capacity by the introduction of hierarchical order in the interconnected pore network and the possibility to independently manipulate the contributing sets of pores. While basic principles governing flow resistance, axial dispersion and adsorption capacity are remaining identical, and a similarity to particulate systems can be well recognized on that basis, a direct comparison of sphere geometry with monolithic structures is less obvious due, not least, to the complex shape of theskeleton domain. We present here a simple, widely applicable, phenomenological approach for treating single-phase incompressible flow through structures having a continuous, rigid solid phase. It relies on the determination of equivalent particle (sphere) dimensions which characterize the corresponding behaviour in a particulate, i.e. discontinuous bed. Equivalence is then obtained by dimensionless scaling of macroscopic fluid dynamical behaviour, hydraulic permeability and hydrodynamic dispersion in both types of materials, without needing a direct geometrical translation of their constituent units. Differences in adsorption capacity between particulate and monolithic stationary phases show that the silica-based monoliths with a bimodal pore size distribution provide, due to the high total porosity of the material of more than 90%, comparable maximum loading capacities with respect to random-close packings of completely porous spheres.
Helenius, Laura K; Aymà Padrós, Anna; Leskinen, Elina; Lehtonen, Hannu; Nurminen, Leena
2015-01-01
Planktivorous fish can exert strong top-down control on zooplankton communities. By incorporating different feeding strategies, from selective particulate feeding to cruising filter feeding, fish species target distinct prey. In this study, we investigated the effects of two species with different feeding strategies, the three-spined stickleback (Gasterosteus aculeatus (L.)) and roach (Rutilus rutilus (L.)), on a low-diversity brackish water zooplankton community using a 16-day mesocosm experiment. The experiment was conducted on a small-bodied spring zooplankton community in high-nutrient conditions, as well as a large-bodied summer community in low-nutrient conditions. Effects were highly dependent on the initial zooplankton community structure and hence seasonal variation. In a small-bodied community with high predation pressure and no dispersal or migration, the selective particulate-feeding stickleback depleted the zooplankton community and decreased its diversity more radically than the cruising filter-feeding roach. Cladocerans rather than copepods were efficiently removed by predation, and their removal caused altered patterns in rotifer abundance. In a large-bodied summer community with initial high taxonomic and functional diversity, predation pressure was lower and resource availability was high for omnivorous crustaceans preying on other zooplankton. In this community, predation maintained diversity, regardless of predator species. During both experimental periods, predation influenced the competitive relationship between the dominant calanoid copepods, and altered species composition and size structure of the zooplankton community. Changes also occurred to an extent at the level of nontarget prey, such as microzooplankton and rotifers, emphasizing the importance of subtle predation effects. We discuss our results in the context of the adaptive foraging mechanism and relate them to the natural littoral community. PMID:26045953
The application of an improved gas and aerosol collector for ambient air pollutants in China
NASA Astrophysics Data System (ADS)
Dong, Huabin; Zeng, Limin; Zhang, Yuanhang; Hu, Min; Wu, Yusheng
2016-04-01
An improved Gas and Aerosol Collector (GAC) equipped with a newly designed aerosol collector and a set of dull-polished wet annular denuder (WAD) was developed by Peking University based on a Steam Jet Aerosol Collector (SJAC) sampler. Combined with Ion Chromatography (IC) the new sampler performed well in laboratory tests with high collection efficiencies for SO2 (above 98 %) and particulate sulfate (as high as 99.5 %). An inter-comparison between the GAC-IC system and the filter-pack method was performed and the results indicated that the GAC-IC system could supply reliable particulate sulfate, nitrate, chloride, and ammonium data in field measurement with a much wider range of ambient concentrations. From 2008 to 2015, dozens of big field campaigns (rural and coastal sites) were executed in different parts of China, the GAC-IC system took the chance having its field measurement performance checked repeatedly and provided high quality data in ambient conditions either under high loadings of pollutants or background area. Its measurements were highly correlated with data by other commercial instruments such as the SO2 analyzer, the HONO analyzer, a filter sampler, Aerosol Mass Spectrometer (AMS), etc. over a wide range of concentrations and proved particularly useful in future intensive campaigns or long-term monitoring stations to study various environmental issues such as secondary aerosol and haze formation. During these years of applications of GAC-IC in those field campaigns, we found some problems of several instruments running under field environment and some interesting results could also be drew from the large amount of data measured in near 20 provinces of China. Detail results will be demonstrated on the poster afterwards.
PCBs, PCDD/Fs and PAHs in dissolved, suspended and settling particulate matrixes from the Baltic Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naef, C.; Broman, D.; Zebuehr, Y.
The occurrence and dynamics of polychlorinated biphenyls (PCBs), dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) are discussed on the basis of results from samples taken at pristine coastal and off shore locations in the Baltic Sea. The sampling techniques used were high volume cross flow filtration and sediment traps for suspended and settling particulate matter, respectively, and polyurethane foam adsorbents for the compounds associated with the apparently dissolved fractions. All samples were Soxhlet extracted with toluene and separated on a HPLC system followed by quantification on GS/MS. The importance of parameters such as concentrations of particulate lipids, particulatemore » organic carbon and dissolved organic carbon, etc. for the distribution of the compounds between the suspended and settling particulate matrixes and the dissolved phase in the water are discussed. In situ determined particulate organic carbon-water partition coefficients as well as predicted dissolved organic carbon-water partition coefficients and approximations of the average ``truly`` dissolved concentrations are presented. The particulate and dissolved concentrations in the mixed surface layer are discussed in perspective to the particulate flux of PCBs, PCDD/Fs and PAHs.« less
NASA Astrophysics Data System (ADS)
Bowie, A. R.; van der Merwe, P.; Quéroué, F.; Trull, T.; Fourquez, M.; Planchon, F.; Sarthou, G.; Chever, F.; Townsend, A. T.; Obernosterer, I.; Sallée, J.-B.; Blain, S.
2015-07-01
Iron availability in the Southern Ocean controls phytoplankton growth, community composition and the uptake of atmospheric CO2 by the biological pump. The KEOPS-2 (KErguelen Ocean and Plateau compared Study 2) "process study", took place around the Kerguelen Plateau in the Indian sector of the Southern Ocean. This is a region naturally fertilised with iron on the scale of hundreds to thousands of square kilometres, producing a mosaic of spring blooms which show distinct biological and biogeochemical responses to fertilisation. This paper presents biogeochemical iron budgets (incorporating vertical and lateral supply, internal cycling, and sinks) for three contrasting sites: an upstream high-nutrient low-chlorophyll reference, over the plateau and in the offshore plume east of the Kerguelen Islands. These budgets show that distinct regional environments driven by complex circulation and transport pathways are responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. Iron supply from "new" sources (diffusion, upwelling, entrainment, lateral advection, atmospheric dust) to the surface waters of the plume was double that above the plateau and 20 times greater than at the reference site, whilst iron demand (measured by cellular uptake) in the plume was similar to that above the plateau but 40 times greater than at the reference site. "Recycled" iron supply by bacterial regeneration and zooplankton grazing was a relatively minor component at all sites (< 8 % of new supply), in contrast to earlier findings from other biogeochemical iron budgets in the Southern Ocean. Over the plateau, a particulate iron dissolution term of 2.5 % was invoked to balance the budget; this approximately doubled the standing stock of dissolved iron in the mixed layer. The exchange of iron between dissolved, biogenic particulate and lithogenic particulate pools was highly dynamic in time and space, resulting in a decoupling of the iron supply and carbon export and, importantly, controlling the efficiency of fertilisation.
NASA Astrophysics Data System (ADS)
Snider, G.; Weagle, C. L.; Martin, R. V.; van Donkelaar, A.; Conrad, K.; Cunningham, D.; Gordon, C.; Zwicker, M.; Akoshile, C.; Artaxo, P.; Anh, N. X.; Brook, J.; Dong, J.; Garland, R. M.; Greenwald, R.; Griffith, D.; He, K.; Holben, B. N.; Kahn, R.; Koren, I.; Lagrosas, N.; Lestari, P.; Ma, Z.; Vanderlei Martins, J.; Quel, E. J.; Rudich, Y.; Salam, A.; Tripathi, S. N.; Yu, C.; Zhang, Q.; Zhang, Y.; Brauer, M.; Cohen, A.; Gibson, M. D.; Liu, Y.
2015-01-01
Ground-based observations have insufficient spatial coverage to assess long-term human exposure to fine particulate matter (PM2.5) at the global scale. Satellite remote sensing offers a promising approach to provide information on both short- and long-term exposure to PM2.5 at local-to-global scales, but there are limitations and outstanding questions about the accuracy and precision with which ground-level aerosol mass concentrations can be inferred from satellite remote sensing alone. A key source of uncertainty is the global distribution of the relationship between annual average PM2.5 and discontinuous satellite observations of columnar aerosol optical depth (AOD). We have initiated a global network of ground-level monitoring stations designed to evaluate and enhance satellite remote sensing estimates for application in health-effects research and risk assessment. This Surface PARTiculate mAtter Network (SPARTAN) includes a global federation of ground-level monitors of hourly PM2.5 situated primarily in highly populated regions and collocated with existing ground-based sun photometers that measure AOD. The instruments, a three-wavelength nephelometer and impaction filter sampler for both PM2.5 and PM10, are highly autonomous. Hourly PM2.5 concentrations are inferred from the combination of weighed filters and nephelometer data. Data from existing networks were used to develop and evaluate network sampling characteristics. SPARTAN filters are analyzed for mass, black carbon, water-soluble ions, and metals. These measurements provide, in a variety of regions around the world, the key data required to evaluate and enhance satellite-based PM2.5 estimates used for assessing the health effects of aerosols. Mean PM2.5 concentrations across sites vary by more than 1 order of magnitude. Our initial measurements indicate that the ratio of AOD to ground-level PM2.5 is driven temporally and spatially by the vertical profile in aerosol scattering. Spatially this ratio is also strongly influenced by the mass scattering efficiency.
INVESTIGATING THE PREFERENTIAL DISSOLUTION OF LEAD FROM SOLDER PARTICULATES
During a building corrosion control study, bottles containing acid-preserved water samples with high levels of lead often had particulate material on the bottom. Scanning electron microscope analysis of the particles showed the presence of tin and the absence of lead, indicating ...
SAMPLING ARTIFACT ESTIMATES FOR ALKANES, HOPANES, AND ALIPHATIC CARBOXYLIC ACIDS
Sampling artifacts for molecular markers from organic speciation of particulate matter were investigated by analyzing forty-one samples collected in Philadelphia as a part of the Northeast Oxidant and Particulate Study (NEOPS). Samples were collected using a high volume sampler ...
Repair of tegmen defect using cranial particulate bone graft.
Greene, Arin K; Poe, Dennis S
2015-01-01
Bone paté is used to repair cranial bone defects. This material contains bone-dust collected during the high-speed burring of the cranium. Clinical and experimental studies of bone dust, however, have shown that it does not have biological activity and is resorbed. We describe the use of bone paté using particulate bone graft. Particulate graft is harvested with a hand-driven brace and 16mm bit; it is not subjected to thermal injury and its large size resists resorption. Bone paté containing particulate graft is much more likely than bone dust to contain viable osteoblasts capable of producing new bone. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Guiying; Yang, Huan; An, Taicheng; Lu, Yujuan
2018-04-20
Safe drinking water is essential for the wellbeing of people around the world. In this work, the occurrence, distribution, and elimination of four groups of antibiotics including fluoroquinolones, sulfonamides, chloramphenicols and macrolides (21 antibiotics total), were studied in two drinking water treatment plants during the wet and dry seasons. In the drinking water source (river), the most abundant group was fluoroquinolones. In contrast, chloramphenicols were all under the limitation of detection. Total concentration of all investigated antibiotics was higher in dissolved phase (62-3.3 × 10 2 ng L -1 ) than in particulate phase (2.3-7.1 ng L -1 ) during both wet and dry seasons in two plants. With the treatment process of flocculation → horizontal flow sedimentation → V type filtration → liquid Cl 2 chlorination, approximately 57.5% (the dry season) and 73.6% (the wet season) of total antibiotics in dissolved phase, and 46.3% (the dry season) and 51.0% (the wet season) in particulate phase were removed. In contrast, the removal efficiencies of total antibiotics were obtained as -49.6% (the dry season) and 52.3% (the wet season) in dissolved phase, and -15.5% (the dry season) and 44.3% (the wet season) in particulate phase, during the process of grille flocculation→ tube settler sedimentation → siphon filtration → ClO 2 chlorination. Sulfonamides were found to be typically easily removed antibiotics from the dissolved and particulate phases during both seasons. Through a human health risk assessment, we found that the former treatment technologies were much better than the later for risk reduction. Overall, it can be concluded that the treatment processes currently used should be modified to increase emerging contaminant elimination efficiency and ensure maintenance of proper water quality. Copyright © 2018. Published by Elsevier Inc.
An LES-PBE-PDF approach for modeling particle formation in turbulent reacting flows
NASA Astrophysics Data System (ADS)
Sewerin, Fabian; Rigopoulos, Stelios
2017-10-01
Many chemical and environmental processes involve the formation of a polydispersed particulate phase in a turbulent carrier flow. Frequently, the immersed particles are characterized by an intrinsic property such as the particle size, and the distribution of this property across a sample population is taken as an indicator for the quality of the particulate product or its environmental impact. In the present article, we propose a comprehensive model and an efficient numerical solution scheme for predicting the evolution of the property distribution associated with a polydispersed particulate phase forming in a turbulent reacting flow. Here, the particulate phase is described in terms of the particle number density whose evolution in both physical and particle property space is governed by the population balance equation (PBE). Based on the concept of large eddy simulation (LES), we augment the existing LES-transported probability density function (PDF) approach for fluid phase scalars by the particle number density and obtain a modeled evolution equation for the filtered PDF associated with the instantaneous fluid composition and particle property distribution. This LES-PBE-PDF approach allows us to predict the LES-filtered fluid composition and particle property distribution at each spatial location and point in time without any restriction on the chemical or particle formation kinetics. In view of a numerical solution, we apply the method of Eulerian stochastic fields, invoking an explicit adaptive grid technique in order to discretize the stochastic field equation for the number density in particle property space. In this way, sharp moving features of the particle property distribution can be accurately resolved at a significantly reduced computational cost. As a test case, we consider the condensation of an aerosol in a developed turbulent mixing layer. Our investigation not only demonstrates the predictive capabilities of the LES-PBE-PDF model but also indicates the computational efficiency of the numerical solution scheme.
NASA Astrophysics Data System (ADS)
Gašparović, Blaženka; Penezić, Abra; Frka, Sanja; Kazazić, Saša; Lampitt, Richard S.; Holguin, F. Omar; Sudasinghe, Nilusha; Schaub, Tanner
2018-04-01
There are major gaps in our understanding of the distribution and role of lipids in the open ocean especially with regard to sulfur-containing lipids (S-lipids). Here, we employ a powerful analytical approach based on high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to elucidate depth-related S-lipid production and molecular transformations in suspended particulate matter from the Northeast Atlantic Ocean in this depth range. We show that within the open-ocean environment S-lipids contribute up to 4.2% of the particulate organic carbon, and that up to 95% of these compounds have elemental compositions that do not match those found in the Nature Lipidomics Gateway database (termed "novel"). Among the remaining 5% of lipids that match the database, we find that sulphoquinovosyldiacylglycerol (SQDG) are efficiently removed while sinking through the mesopelagic zone. The relative abundance of other assigned lipids (sulphoquinovosylmonoacylglycerol (SQMG), sulfite and sulfate lipids, Vitamin D2 and D3 derivatives, and sphingolipids) did not change substantially with depth. The novel S-lipids, represented by hundreds of distinct elemental compositions (160-300 molecules at any one depth), contribute increasingly to the lipid and particulate organic matter pools with increased depth. Depth-related transformations cause (i) incomplete degradation/transformation of unsaturated S-lipids which leads to the depth-related accumulation of the refractory saturated compounds with reduced molecular weight (average 455 Da) and (ii) formation of highly unsaturated S-lipids (average abyssopelagic molecular double bond equivalents, DBE=7.8) with lower molecular weight (average 567 Da) than surface S-lipids (average 592 Da). A depth-related increase in molecular oxygen content is observed for all novel S-lipids and indicates that oxidation has a significant role in their transformation while (bio)hydrogenation possibly impacts the formation of saturated compounds. The instrumentation approach applied here represents a step change in our comprehension of marine S-lipid diversity and the potential role of these compounds in the oceanic carbon cycle. We describe a very much higher number of compounds than previously reported, albeit at the level of elemental composition and fold-change quantitation with depth, rather than isomeric confirmation and absolute quantitation of individual lipids. We emphasize that saturated S-lipids have the potential to transfer carbon from the upper ocean to depth and hence are significant vectors for carbon sequestration.
Compliance Testing of the Eglin AFB Asphalt Concrete Batch Plant, Eglin AFB, Florida
1989-06-01
the fan, contactor and separator. A schematic of the scrubber showing these components is presented in Figure 4. Particulate-laden air is blown into...the contactor at high speed by the scrubber fan. In the contactor , the gas stream passes through a fine water mist where particulates are wetted and...and wetted particulates are separated from the gas stream by centrifugal action and drain to the bottom of the separator. Water and sludge are drained
NASA Astrophysics Data System (ADS)
Zhang, Yunhua; Lou, Diming; Tan, Piqiang; Hu, Zhiyuan
2018-03-01
The increasingly stringent emission regulations will mandate the retrofit of after-treatment devices for in-use diesel vehicles, in order to reduce their substantial particulate matter and nitrogen oxides (NOX) emissions. In this paper, a combination of DOC (diesel oxidation catalyst), CDPF (catalytic diesel particulate filter) and SCR (selective catalytic reduction) retrofit for a heavy-duty diesel engine was employed to perform experiment on the engine test bench to evaluate the effects on the particulate matter emissions including particle number (PN), particle mass (PM), particle size distributions and nitrogenous compounds emissions including NOX, nitrogen dioxide (NO2)/NOX, nitrous oxide (N2O) and ammonia (NH3) slip. In addition, the urea injection was also of our concern. The results showed that the DOC+CDPF+SCR retrofit almost had no adverse effect on the engine power and fuel consumption. Under the test loads, the upstream DOC and CDPF reduced the PN and PM by an average of 91.6% and 90.9%, respectively. While the downstream SCR brought about an average decrease of 85% NOX. Both PM and NOX emission factors based on this retrofit were lower than China-Ⅳ limits (ESC), and even lower than China-Ⅴ limits (ESC) at medium and high loads. The DOC and CDPF changed the particle size distributions, leading to the increase in the proportion of accumulation mode particles and the decrease in the percentage of nuclear mode particles. This indicates that the effect of DOC and CDPF on nuclear mode particles was better than that of accumulation mode ones. The upstream DOC could increase the NO2/NOX ratio to 40%, higher NO2/NOX ratio improved the efficiency of CDPF and SCR. Besides, the N2O emission increased by an average of 2.58 times after the retrofit and NH3 slip occurred with the average of 26.7 ppm. The rate of urea injection was roughly equal to 8% of the fuel consumption rate. The DOC+CDPF+SCR retrofit was proved a feasible and effective measurement in terms of reducing particulate emissions and NOX simultaneously for in-use engine. However, it also resulted in higher N2O emission, NH3 slip as well as urea injecting strategy problem which should be of further concern.
Seasonal and diurnal variation in concentrations of gaseous and particulate phase endosulfan
NASA Astrophysics Data System (ADS)
Li, Qingbo; Wang, Xianyu; Song, Jing; Sui, Hongqi; Huang, Lei; Li, Lu
2012-12-01
Successive 52-week air monitoring of α-endosulfan (α-E), β-endosulfan (β-E) and endosulfan sulfate (E.S) in the gaseous and particulate phases was conducted in Dalian city, northeast China by using an active high-volume sampler. Significant seasonal and diurnal variations in endosulfan concentrations were observed. It was found that the concentration of gaseous-phase α-E peaked in the summer and the concentration of particulate phase α-E peaked in the winter. For E.S, both gaseous and particulate phase concentrations peaked in the summer. α-E was distributed predominantly in the gas phase in the summer but was distributed mainly in the particulate phase in the winter. β-E was distributed mainly in the gas phase in the summer and in the particulate phase at other times of the year. E.S was distributed mainly in the particulate phase throughout the year. Elevated temperatures facilitated the volatilization of α-E from particle surfaces but exerted little effect on β-E and had almost no effect on E.S. Trajectory-based analysis indicates that the seasonal variation in atmospheric concentrations of endosulfan in Dalian city was influenced strongly by the land and sea air masses. In addition, differences in endosulfan concentrations in the particulate phase between day and night were likely due to the circulation of sea/land breezes. The 'cold-condensation' effect occurring during the night may result in the attachment of endosulfan to the particulate phase.
Regulatory effects on particulate pollution in the early hours of Chinese New Year, 2015.
Lai, Yonghang; Brimblecombe, Peter
2017-08-23
Human activities are a key driver of air pollution, so it is hardly surprising that celebrations affect air quality. The use of fireworks contributes to high particulate concentrations in many parts of the world, with the Chinese Lunar New Year (spring festival) particularly noticeable, as firecrackers are traditionally used to drive off evil spirits. Fireworks lead to short-term peaks in the concentration of PM10, PM2.5 and SO 2 . Regulatory actions that restrict the use of fireworks have been evident in China since the 1990s. This paper investigates the particulate concentrations in nine Chinese cities (Beijing, Chengdu, Chongqing, Tianjin, Xi'an, Nanjing, Shanghai, Guangzhou and Shenzhen, along with Hong Kong (a Special Administrative Region) and Taipei and Kaohsiung (Taiwan) with a particular focus on the celebrations of 2015. Extremely high concentrations of particulate matter were observed, with some sites revealing peak PM10 concentrations in excess of 1000 μg m -3 in the early hours of the New Year. In Beijing, Tianjin and Chongqing, the activities caused high particulate matter concentrations at most sites throughout the city. These peaks in particulate load in the early hours of Chinese New Year do not appear to be closely related to meteorological parameters. However, in cities where fireworks appear to be better regulated, there are fewer sharp pollution peaks just after midnight, although lowered air quality can still be found in the outer parts of some cities, remote from regulatory pressures. A few cities seem to have been effective at reducing the impact of the celebrations on air quality, with Nanjing a recent example. An increasing focus on light displays and electric lanterns also seems to offer a sense of celebration with much reduced impacts on air quality.
A comparative study on laser induced shock cleaning of radioactive contaminants in air and water
NASA Astrophysics Data System (ADS)
Kumar, Aniruddha; Prasad, Manisha; Bhatt, R. B.; Behere, P. G.; Biswas, D. J.
2018-03-01
Efficient removal of Uranium-di-oxide (UO2) particulates from stainless steel surface was effected by Nd-YAG laser induced plasma shock waves in air as well as in water environment. The propagation velocity of the generated shock wave was measured by employing the photo-acoustic probe deflection method. Monitoring of the alpha activity of the sample with a ZnS (Ag) scintillation detector before and after the laser exposure allowed the estimation of decontamination efficiency defined as the percentage removal of the initial activity. Experiments were carried out to study the effect of laser pulse energy, number of laser exposures, orientation of the sample, the separation between the substrate surface and the onset point of the shock wave on the de-contamination efficiency. The most optimised cleaning was found to occur when the laser beam impinged normally on the sample that was immersed in water and placed at a distance of ∼0.7 mm from the laser focal spot. Analysis of the cleaned surface by optical microscopes established that laser induced shock cleaning in no way altered the surface property. The shock force generated in both air and water has been estimated theoretically and has been found to exceed the Van der Waal's binding force for spherical contaminant particulate.
Baskaran, M.; Swarzenski, P.W.; Biddanda, B.A.
2009-01-01
[1] Large volume (102-103 L) seawater samples are routinely processed to investigate the partitioning of particle reactive radionuclides and Ra between solution and size-fractionated suspended particulate matter. One of the most frequently used methods to preconcentrate these nuclides from such large volumes involves extraction onto three filter cartridges (a prefilter for particulate species and two MnO2-coated filters for dissolved species) connected in series. This method assumes that the extraction efficiency is uniform for both MnO2-coated cartridges, that no dissolved species are removed by the prefilter, and that any adsorbed radionuclides are not desorbed from the MnO2-coated cartridges during filtration. In this study, we utilized 234Th-spiked coastal seawater and deionized water to address the removal of dissolved Th onto prefilters and MnO2-coated filter cartridges. Experimental results provide the first data that indicate (1) a small fraction of dissolved Th (<6%) can be removed by the prefilter cartridge; (2) a small fraction of dissolved Th (<5%) retained by the MnO2 surface can also be desorbed, which undermines the assumption of uniform extraction efficiency for Th; and (3) the absolute and relative extraction efficiencies can vary widely. These experiments provide insight on the variability of the extraction efficiency of MnO 2-coated filter cartridges by comparing the relative and absolute efficiencies and recommend the use of a constant efficiency on the combined activity from two filter cartridges connected in series for future studies of dissolved 234Th and other radionuclides in natural waters using sequential filtration/extraction methods. ?? 2009 by the American Geophysical Union.
[Impacts of airborne particulate matter and its components on respiratory system health].
Cao, L M; Zhou, Y; Zhang, Z; Sun, W W; Mu, G; Chen, W H
2016-12-06
Nowadays, particulate air pollution has been a global environmental problem. Numerous studies has shown that long-term exposure to high level of airborne particulate matter (PM) can damage human health. Respiratory system, as a direct portal to contact with particulate matter, can be more susceptible to airborne particulates. Summarizing latest five-year epidemiological research, the present review is focused on the effects of PM on respiratory system health in different age groups. In detail, we investigated the harmful effect of PM, or its components on three common respiratory diseases, including lung function decline, chronic obstructive pulmonary disease (COPD) and asthma. The result showed that, to a certain degree, PM could induce the decline of lung function, the development and the exacerbation of COPD and asthma by oxidative stress and inflammatory reaction. And it may prompt that exposure to PM can be an improtant risk factor for the respiratory system health.
Dang, Feng; Wan, Chunlei; Park, Nam-Hee; Tsuruta, Kazuki; Seo, Won-Seon; Koumoto, Kunihito
2013-11-13
Self-assembled particulate films with a uniform structure over a large area were prepared from La-SrTiO3 nanocubes for thermoelectric applications. UV irradiation was used to assist the formation of particulate film for decomposition of the organic phase in situ to obtain a mechanically robust structure at high temperature. The thermoelectric properties of the particulate film were measured after calcination at 1000 °C under a reductive atmosphere (Ar/H2 = 60/40). A Seebeck coefficient of S = -239 ± 24 μV/K, electrical conductivity of σ = 160 ± 5 S/cm, and thermal conductivity of κ ≈ 1.5 W/mK were obtained for a self-assembled particulate film (La: 5%) corresponding to a ZT value of 0.2 at room temperature, which exceeded that of a La-SrTiO3 single crystal with similar composition.
Experimental evaluation of oxygen-enriched air and emulsified fuels in a six-cylinder diesel engine
NASA Astrophysics Data System (ADS)
Sekar, R. R.; Marr, W. W.; Cole, R. L.; Marciniak, T. J.; Longman, D. E.
1993-01-01
The objectives of this investigation are to (1) determine the technical feasibility of using oxygen-enriched air to increase the efficiency of and reduce emissions from diesel engines, (2) examine the effects of water-emulsified fuel on the formation of nitrogen oxides in oxygen-enriched combustion, and (3) investigate the use of lower-grade fuels in high-speed diesel engines by emulsifying the fuel with water. These tests, completed on a Caterpillar model 3406B, six-cylinder engine are a scale-up from previous, single-cylinder-engine tests. The engine was tested with (1) intake-air oxygen levels up to 30%, (2) water content up to 20% of the fuel, (3) three fuel-injection timings, and (4) three fuel-flow rates (power levels). The Taguchi technique for experimental design was used to minimize the number of experimental points in the test matrix. Four separate test matrices were run to cover two different fuel-flow-rate strategies and two different fuels (No. 2 diesel and No. 6 diesel). A liquid-oxygen tank located outside the test cell supplied the oxygen for the tests. The only modification of the engine was installation of a pressure transducer in one cylinder. All tests were run at 1800 rpm, which corresponds to the synchronous speed of a 60-Hz generator. Test results show that oxygen enrichment results in power increases of 50% or more while significantly decreasing the levels of smoke and particulates emitted. The increase in power was accompanied by a small increase in thermal efficiency. Maximum engine power was limited by the test-cell dynamometer capacity and the capacity of the fuel-injection pump. Oxygen enrichment increases nitrogen-oxide emissions significantly. No adverse effects of oxygen enrichment on the turbocharger were observed. The engine operated successfully with No. 6 fuel, but it operated at a lower thermal efficiency and emitted more smoke and particulates than with No. 2 fuel.
HIGH VOLUME INJECTION FOR GCMS ANALYSIS OF PARTICULATE ORGANIC SPECIES IN AMBIENT AIR
Detection of organic species in ambient particulate matter typically requires large air sample volumes, frequently achieved by grouping samples into monthly composites. Decreasing the volume of air sample required would allow shorter collection times and more convenient sample c...
SENSOR FOR MONITORING OF PARTICULATE EMISSIONS IN DIESEL EXHAUST GASES - PHASE I
Active Spectrum, Inc., proposes a novel, low-cost soot sensor for on-board measurement of soot emissions in diesel exhaust gases. The proposed technology is differentiated from existing methods by excellent sensitivity, high specificity to carbon particulates, and robustness ...
Uncertainties in the Thermal and Mechanical Properties of Particulate Composites Quantified
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Mital, Subodh K.
2001-01-01
Particle-reinforced composites are candidate materials for a wide variety of aerospace and nonaerospace applications. The high costs and technical difficulties involved with the use of many fiber-reinforced composites often limit their use in many applications. Consequently, particulate composites have emerged as viable alternatives to conventional fiber-reinforced composites. Particulate composites can be processed to near net shapepotentially reducing the manufacturing costs. They are candidate materials where shock or impact properties are important. For example, particle-reinforced metal matrix composites have shown great potential for many automotive applications. Typically, these materials are aluminum matrix reinforced with SiC or TiC particles. Reinforced concrete can also be thought of as a particle-reinforced composite. In situ ceramics can be modeled as particulate composites and are candidate materials for many high-temperature applications. The characterization of these materials is fundamental to their reliable use. It has been observed that the overall properties of these composites exhibit scatter because of the uncertainty in the constituent material properties, and fabrication-related parameters.
Determination of biomass burning tracers in air samples by GC/MS
NASA Astrophysics Data System (ADS)
Janoszka, Katarzyna
2018-01-01
Levoglucosan (LG) as a main cellulose burning product at 300°C is a biomass burning tracer. LG characterize by relatively high molar mass and it is sorbed by particulate matter. In the study of air pollution monitoring LG is mainly analyzed in particulate matter, PM1 and PM2,5. The tracer create relatively high O-H…O bond and weaker C-H…O bond. Due to the hydrogen bond, LG dissolves very well in water. Analytical procedure of LG determination include: extraction, derivatization and analysis by gas chromatography coupled with mass spectrometry detector. In water samples levoglucosan is determined by liquid chromatography. The paper presents a methodology for particulate matter samples determination their analysis by gas chromatography coupled with a mass spectrometry detector. Determination of LG content in particulate matter was performed according to an analytical method based on simultaneous pyridine extraction and derivatization using N,O-bis (trimethylsilyl) trifluoroacetamide and trimethylchlorosilane mixture (BSTFA: TMCS, 99: 1).
Gupta, A K; Nag, Subhankar; Mukhopadhyay, U K
2006-04-01
In this study, the relationship between inhalable particulate (PM(10)), fine particulate (PM(2.5)), coarse particles (PM(2.5 - 10)) and meteorological parameters such as temperature, relative humidity, solar radiation, wind speed were statistically analyzed and modelled for urban area of Kolkata during winter months of 2003-2004. Ambient air quality was monitored with a sampling frequency of twenty-four hours at three monitoring sites located near traffic intersections and in an industrial area. The monitoring sites were located 3-5 m above ground near highly trafficked and congested areas. The 24 h average PM(10) and PM(2.5) samples were collected using Thermo-Andersen high volume samplers and exposed filter papers were extracted and analysed for benzene soluble organic fraction. The ratios between PM(2.5) and PM(10) were found to be in the range of 0.6 to 0.92 and the highest ratio was found in the most polluted urban site. Statistical analysis has shown a strong positive correlation between PM(10) and PM(2.5) and inverse correlation was observed between particulate matter (PM(10) and PM(2.5)) and wind speed. Statistical analysis of air quality data shows that PM(10) and PM(2.5) are showing poor correlation with temperature, relative humidity and solar radiation. Regression equations for PM(10) and PM(2.5) and meteorological parameters were developed. The organic fraction of particulate matter soluble in benzene is an indication of poly aromatic hydrocarbon (PAH) concentration present in particulate matter. The relationship between the benzene soluble organic fraction (BSOF) of inhalable particulate (PM(10)) and fine particulate (PM(2.5)) were analysed for urban area of Kolkata. Significant positive correlation was observed between benzene soluble organic fraction of PM(10) (BSM10) and benzene soluble organic fraction of PM(2.5) (BSM2.5). Regression equations for BSM10 and BSM2.5 were developed.
NASA Astrophysics Data System (ADS)
Mohddin, S. A.; Aminuddin, N. M.
2014-02-01
Airborne particulates have been recognized as a crucial pollutant of indoor air. These pollutants can contribute towards poor indoor air quality (IAQ), which may affect human health in immediate or long term. This study aims to determine the level of IAQ and the effects of particulate towards occupants of office buildings (the office buildings selected for the case study are SSM, KTMB and MRCB at KL Sentral). The objectives of study are (i) to measure the level of airborne particulates that contribute to the IAQ during working hours, (ii) to compare the level of airborne particulates with the existing guidelines and standards of IAQ in Malaysia and other Asian countries and (iii) to assess the symptoms associated with airborne particulates among the building occupants, which were achieved through primary data collection (case study or site survey, structured interview and questionnaire survey) and supported by literature reviews. The results showed that the mass concentration level of airborne particulates within the areas has exceeded the allowable limit of 0.15mg/m3 by IAQ Code of Practice, 2005 of the Department of Safety and Health (DOSH), Malaysia and 0.05mg/m3 by the Department of Environmental (DOE) (outdoor) of 8 hours continuous sampling. Based on the findings, the highest mass concentration values measured is 2.581 mg/m3 at lobby of SSM building which is the highest recorded 17 times higher from the maximum limit recommended by DOSH than the others. This is due to the nearby construction works and the high numbers of particulates are generated from various types of vehicles for transportation surrounding KL Sentral. Therefore, the development of Malaysian Ambient Air Quality Guidelines on PM2.5 as one of the crucial parameters is highly recommended.
NASA Astrophysics Data System (ADS)
Lungu, Mihai; Lungu, Antoanetta; Stefu, Nicoleta; Neculae, Adrian; Strambeanu, Nicolae
2017-01-01
Air pollution is known to have many adverse effects, among which those on human health are considered the most important. Healthy people of all ages can be adversely affected by high levels of air pollutants. Nanoparticles can be considered among the most harmful of all pollutants as they can penetrate straight into the lungs and blood stream. Their role in the aging process has also recently been revealed. In Romania, practically in all important urban areas (Bucureşti, Iaşi, Timişoara, Braşov, Baia Mare, etc.) the daily limit values for airborne particulate matter are exceeded, so more efforts in controlling air quality are required, along with more research and policies with positive impact on reducing the pollutants concentration in air. The approaches that have been developed to assess the air quality and health impacts of pollution sources are based on analytical methods such as source apportionment, factor analyses, and the measurement of source-relevant indicator compounds. The goal of the present study is to offer preliminary but relevant information on the particulate matter distribution in the city of Timisoara, Romania. Measurements of inhalable coarse and fine particles in two areas of the city, the most affected by industrial particulate emissions, were performed in days with various meteorological conditions. Meteorological parameters for the specific measurement days were recorded (wind speed and direction, humidity, temperature, pressure, etc.) and the influence of these parameters on the particulate matter dispersion was studied. The results show that the meteorological conditions cause differences between airborne particulate matter distributions in different days in the same zones. Measurements were made in northern and southern areas of the city of Timisoara because previous results have shown high levels of airborne particulate matter in these areas.
NASA Astrophysics Data System (ADS)
Sówka, Izabela; Chlebowska-Styś, Anna; Mathews, Barbara
2018-01-01
It is commonly known, that suspended particulate matter pose a threat to human life and health, negatively influence the flora, climate and also materials. Especially dangerous is the presence of high concentration of particulate matter in the area of cities, where density of population is high. The research aimed at determining the variability of suspended particulate matter concentration (PM1.0, PM2.5 and PM10) in two different thermal seasons, in the area of Poznań city. As a part of carried out work we analyzed the variability of concentrations and also performed a preliminary analysis of their correlation. Measured concentrations of particulate matter were contained within following ranges: PM10 - 8.7-69.6 μg/m3, PM2.5 - 2.2-88.5 μg/m3, PM1.0 - 2.5-22.9 μg/m3 in the winter season and 1.0-42.8 μg/m3 (PM10), 1.2-40.3 μg/m3 (PM2.5) and 2.7-10.4 (PM1.0) in the summer season. Preliminary correlative analysis indicated interdependence between the temperature of air, the speed of wind and concentration of particulate matter in selected measurement points. The values of correlation coefficients between the air temperature, speed of wind and concentrations of particulate matter were respectively equal to: for PM10: -0.59 and -0.55 (Jana Pawła II Street), -0.53 and -0.53 (Szymanowskiego Street), for PM2.5: -0.60 and -0.53 (Jana Pawła II Street) and for PM1.0 -0.40 and -0.59 (Jana Pawła II Street).
NASA Astrophysics Data System (ADS)
Simpson, W. R.; Nattinger, K.; Hooper, M.
2017-12-01
High latitude cities often experience severe pollution episodes during wintertime exacerbated by thermal inversion trapping of pollutant emissions. Fairbanks, Alaska is an extreme example of this problem, currently being classified by the US Environmental Protection Agency (EPA) as a "serious" non-attainment area for fine particulate matter (PM2.5). For this reason, we have studied the chemical composition of PM2.5 at multiple EPA monitoring sites in the non-attainment area from 2006 to the present. The chemical composition is dominated by organic carbon with lesser amounts of black carbon and inorganic ionic species such as ammonium, sulfate, and nitrate. We find large spatial differences in composition and amount of PM2.5 that indicate a different mix of sources in residential areas as compared to the city center. Specifically, the difference in composition is consistent with increased wood smoke source in the residential areas. The extent to which organic matter could be secondary (formed through conversion of emitted gases) is also an area needing study. Ammonium sulfate is responsible for about a fifth to a quarter of the particles mass during the darkest months, possibly indicating a non-photochemical source of sulfate, but the chemical mechanism for this possible transformation is unclear. Therefore, we quantified the relationship between particulate sulfate concentrations and gas-phase sulfur dioxide concentrations along with particulate metals and inferred particulate acidity with the hopes that these data can assist in elucidation of the mechanism of particulate sulfate formation. We also analyze temporal trends in PM2.5 composition in an attempt to understand how the problem is changing over time and find most trends are small despite regulatory changes. Improving mechanistic understanding of particulate formation under cold and dark conditions could assist in reducing air-quality-related health effects.
On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sappok, Alex; Ragaller, Paul; Herman, Andrew
The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directlymore » monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications. The testing included controlled engine dynamometer evaluations, which characterized soot slip from various filter failure modes, as well as on-road fleet vehicle tests. The results show a high sensitivity to detect conditions resulting in soot leakage from the particulate filter, as well as potential for direct detection of structural failures including internal cracks and melted regions within the filter media itself. Furthermore, the measurements demonstrate, for the first time, the capability to employ a direct and continuous monitor of particulate filter diagnostics to both prevent and detect potential failure conditions in the field.« less
Choi, Juwhan; Oh, Jee Youn; Lee, Young Seok; Min, Kyung Hoon; Hur, Gyu Young; Lee, Sung Yong; Kang, Kyung Ho; Shim, Jae Jeong
2018-01-01
Particulate matter and air pollution in Korea are becoming worse. There is a lack of research regarding the impact of particulate matter on patients with COPD. Therefore, the purpose of this study was to investigate the effects of various air pollution factors, including particulate matter, on the incidence rate of severe acute exacerbations of COPD (AECOPD) events. We analyzed the relationship between air pollutants and AECOPD events that required hospitalization at Guro Hospital in Korea from January 1, 2015 to May 31, 2017. We used general linear models with Poisson distribution and log-transformation to obtain adjusted relative risk (RR). We conducted further analysis through the Comprehensive Air-quality Index (CAI) that is used in Korea. Among various other air pollutants, particulate matter was identified as a major source of air pollution in Korea. When the CAI score was over 50, the incidence rate of severe AECOPD events was statistically significantly higher [RR 1.612, 95% CI, 1.065-2.440, P =0.024]. Additionally, the particulate matter levels 3 days before hospitalization were statistically significant [RR 1.003, 95% CI, 1.001-1.005, P =0.006]. Particulate matter and air pollution increase the incidence rate of severe AECOPD events. COPD patients should be cautioned against outdoor activities when particulate matter levels are high.
Penetration of diesel exhaust particles through commercially available dust half masks.
Penconek, Agata; Drążyk, Paulina; Moskal, Arkadiusz
2013-04-01
Half masks are certified by the competent, national institutions--National Institute for Occupational Safety and Health (NIOSH) in the USA and the respective European national institutions applying common European regulations. However, certification testing is conducted with particles of NaCl, paraffin oil, or dioctyl phthalate (DOP) and at the constant flow rate, whereas particles commonly found in workplaces may differ in size, shape, and morphology from these particles. Therefore, the aim of this study was to investigate filtration efficiency of commercially available filtering facepiece half masks under the condition of exposure to diesel fumes. In this study, we focused on the particulate phase [diesel exhaust particles (DEP)] of three (petroleum diesel, ecodiesel, and biodiesel) diesel fuel combustion types. Two types of European standard-certified half masks, FFP2 and FFP - Filtering Facepiece, and three types of popular diesel fuels were tested. The study showed that the filtration efficiencies for each examined half mask and for each of diesel exhaust fumes were lower than the minimum filtration efficiency required for the standard test aerosols by the European standards. For FFP2 and FFP3 particulate half masks, standard minimum filtration efficiency is 94 and 99%, respectively, whereas 84-89% of mass of DEP from various fuels were filtered by the tested FFP2 and only 75-86% by the FFP3. The study indicated that DEP is more penetrating for these filters than the standard salt or paraffin oil test aerosols. The study also showed that the most penetrating DEP are probably in the 30- to 300-nm size range, regardless of the fuel type and the half-mask model. Finally, the pressure drops across both half masks during the 80-min tests remained below an acceptable maximum of breathing resistance-regardless of the fuel types. The respiratory system, during 40-min test exposures, may be exposed to 12-16mg of DEP if a FFP2 or FFP3 particulate half mask is used. To conclude, commercially available half masks may not ensure a sufficient level of protection of the respiratory tract against diesel exhaust fumes.
Özen, Mehmet; Yılmaz, Gülden; Coşkun, Belgin; Topçuoğlu, Pervin; Öztürk, Bengi; Gündüz, Mehmet; Atilla, Erden; Arslan, Önder; Özcan, Muhit; Demirer, Taner; İlhan, Osman; Konuk, Nahide; Balık, İsmail; Gürman, Günhan; Akan, Hamdi
2016-01-01
Objective: The increased risk of infection for patients caused by construction and renovation near hematology inpatient clinics is a major concern. The use of high-efficiency particulate absorption (HEPA) filters can reduce the risk of infection. However, there is no standard protocol indicating the use of HEPA filters for patients with hematological malignancies, except for those who have undergone allogeneic hematopoietic stem cell transplantation. This quasi-experimental study was designed to measure the efficacy of HEPA filters in preventing infections during construction. Materials and Methods: Portable HEPA filters were placed in the rooms of patients undergoing treatment for hematological malignancies because of large-scale construction taking place near the hematology clinic. The rates of infection during the 6 months before and after the installation of the portable HEPA filters were compared. A total of 413 patients were treated during this 1-year period. Results: There were no significant differences in the antifungal prophylaxis and treatment regimens between the groups. The rates of infections, clinically documented infections, and invasive fungal infections decreased in all of the patients following the installation of the HEPA filters. When analyzed separately, the rates of invasive fungal infections were similar before and after the installation of HEPA filters in patients who had no neutropenia or long neutropenia duration. HEPA filters were significantly protective against infection when installed in the rooms of patients with acute lymphocytic leukemia, patients who were undergoing consolidation treatment, and patients who were neutropenic for 1-14 days. Conclusion: Despite the advent of construction and the summer season, during which environmental Aspergillus contamination is more prevalent, no patient or patient subgroup experienced an increase in fungal infections following the installation of HEPA filters. The protective effect of HEPA filters against infection was more pronounced in patients with acute lymphocytic leukemia, patients undergoing consolidation therapy, and patients with moderate neutropenia. PMID:26376622
Özen, Mehmet; Yılmaz, Gülden; Coşkun, Belgin; Topçuoğlu, Pervin; Öztürk, Bengi; Gündüz, Mehmet; Atilla, Erden; Arslan, Önder; Özcan, Muhit; Demirer, Taner; İlhan, Osman; Konuk, Nahide; Balık, İsmail; Gürman, Günhan; Akan, Hamdi
2016-03-05
The increased risk of infection for patients caused by construction and renovation near hematology inpatient clinics is a major concern. The use of high-efficiency particulate absorption (HEPA) filters can reduce the risk of infection. However, there is no standard protocol indicating the use of HEPA filters for patients with hematological malignancies, except for those who have undergone allogeneic hematopoietic stem cell transplantation. This quasi-experimental study was designed to measure the efficacy of HEPA filters in preventing infections during construction. Portable HEPA filters were placed in the rooms of patients undergoing treatment for hematological malignancies because of large-scale construction taking place near the hematology clinic. The rates of infection during the 6 months before and after the installation of the portable HEPA filters were compared. A total of 413 patients were treated during this 1-year period. There were no significant differences in the antifungal prophylaxis and treatment regimens between the groups. The rates of infections, clinically documented infections, and invasive fungal infections decreased in all of the patients following the installation of the HEPA filters. When analyzed separately, the rates of invasive fungal infections were similar before and after the installation of HEPA filters in patients who had no neutropenia or long neutropenia duration. HEPA filters were significantly protective against infection when installed in the rooms of patients with acute lymphocytic leukemia, patients who were undergoing consolidation treatment, and patients who were neutropenic for 1-14 days. Despite the advent of construction and the summer season, during which environmental Aspergillus contamination is more prevalent, no patient or patient subgroup experienced an increase in fungal infections following the installation of HEPA filters. The protective effect of HEPA filters against infection was more pronounced in patients with acute lymphocytic leukemia, patients undergoing consolidation therapy, and patients with moderate neutropenia.
Korves, T M; Piceno, Y M; Tom, L M; Desantis, T Z; Jones, B W; Andersen, G L; Hwang, G M
2013-02-01
Air travel can rapidly transport infectious diseases globally. To facilitate the design of biosensors for infectious organisms in commercial aircraft, we characterized bacterial diversity in aircraft air. Samples from 61 aircraft high-efficiency particulate air (HEPA) filters were analyzed with a custom microarray of 16S rRNA gene sequences (PhyloChip), representing bacterial lineages. A total of 606 subfamilies from 41 phyla were detected. The most abundant bacterial subfamilies included bacteria associated with humans, especially skin, gastrointestinal and respiratory tracts, and with water and soil habitats. Operational taxonomic units that contain important human pathogens as well as their close, more benign relatives were detected. When compared to 43 samples of urban outdoor air, aircraft samples differed in composition, with higher relative abundance of Firmicutes and Gammaproteobacteria lineages in aircraft samples, and higher relative abundance of Actinobacteria and Betaproteobacteria lineages in outdoor air samples. In addition, aircraft and outdoor air samples differed in the incidence of taxa containing human pathogens. Overall, these results demonstrate that HEPA filter samples can be used to deeply characterize bacterial diversity in aircraft air and suggest that the presence of close relatives of certain pathogens must be taken into account in probe design for aircraft biosensors. A biosensor that could be deployed in commercial aircraft would be required to function at an extremely low false alarm rate, making an understanding of microbial background important. This study reveals a diverse bacterial background present on aircraft, including bacteria closely related to pathogens of public health concern. Furthermore, this aircraft background is different from outdoor air, suggesting different probes may be needed to detect airborne contaminants to achieve minimal false alarm rates. This study also indicates that aircraft HEPA filters could be used with other molecular techniques to further characterize background bacteria and in investigations in the wake of a disease outbreak. © 2012 John Wiley & Sons A/S.
Checinska Sielaff, Aleksandra; Kumar, Rajendran Mathan; Pal, Deepika; Mayilraj, Shanmugam; Venkateswaran, Kasthuri
2017-04-01
A Gram-stain-positive, rod-shaped, endospore-forming, aerobic bacterial strain, designated ISSFR-015T, was isolated from a high-efficiency particulate arrestance filter in the International Space Station and was characterized by polyphasic taxonomy. A comparative analysis of the 16S rRNA gene sequence (1494 bp) of strain ISSFR-015T showed highest similarity to Solibacillus isronensis B3W22T (98.9 %), followed by Solibacillus silvestris HR3-23T (98.6 %) and Bacillus cecembensis PN5T (96.7 %). DNA-DNA hybridization analysis revealed that the DNA relatedness values of strain ISSFR-015T with other closely related species were in the range of 41-47 % [S. silvestrisMTCC 10789T (47 %), S. isronensis MTCC 7902T (41 %) and B. cecembensis MTCC 9127T (43 %)]. The DNA G+C content of strain ISSFR-015T was 45.4 mol%. The major fatty acids were iso-C15 : 0 (45.2 %) and C17 : 1ω10c (12.1 %). The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine and one unknown phospholipid. The isoprenoid quinones present in strain ISSFR-015T were MK-7 (86.8 %), MK-6 (11.6 %) and MK-8 (1.0 %). The peptidoglycan type of the cell wall was A4α l-Lys-d-Glu. Based on the phylogenetic analysis, strain ISSFR-015T belongs to the genus Solibacillus. The polyphasic taxonomic data, including low DNA-DNA hybridization values, and the chemotaxonomic analysis confirmed that strain ISSFR-015T represents a novel species, for which the name Solibacillus kalamii sp. nov. is proposed. The type strain for this proposed species is ISSFR-015T (=NRRL B-65388T=DSM 101595T).
Observations on particulate organic nitrates and unidentified components of NO y
NASA Astrophysics Data System (ADS)
Nielsen, Torben; Egeløv, Axel H.; Granby, Kit; Skov, Henrik
A method to determine the total content of particulate organic nitrates (PON) has been developed and ambient air measurements of PON, NO, N02, HNO3, peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), gas NOY and particulate inorganic nitrate have been performed in the spring and early summer at an agricultural site in Denmark and compared with measurements of ozone, H 2O 2, SO 2, formic acid, acetic acid and methane sulphonic acid. The gas NO y detector determines the sum NO + NO 2 + HNO 2 + HNO 3 + PAN + PPN + gas phase organic nitrates + 2 × N 2O 5 + NO 3. The content of residual gas NO y ( = gas NO y - NO - NO 2 - HNO 3 - PAN - PPN) was determined and a group of unidentified NO y compounds was found. The phenomenon was observed at a site with relatively high NO x/NO y ratios compared to previous observations in U.S.A. and Canada. The residual gas NO y made up 7 ± 6% of total NOY (total NO y = gas NO y + particulate inorganic nitrate). Residual gas NO y was much higher than the particulate fraction of organic nitrates (PON). PON was only 0.25 ± 0.11% of total NO y. Both residual gas NO y and particulate organic nitrates episodes occurred with elevated concentrations of photochemical oxidants in connection with high-pressure systems suggesting atmospheric processes being the major source. Clean marine air can be discarded as a source for PON and residual gas NO y.
Arrivabene, Hiulana Pereira; Souza, Iara da Costa; Có, Walter Luiz Oliveira; Conti, Melina Moreira; Wunderlin, Daniel Alberto; Milanez, Camilla Rozindo Dias
2015-05-01
In Brazil, some mangrove areas are subjected to air pollution by particulate iron from mining activities. However, the effect of this pollutant on mangrove plants is not well known. This study aimed to comparatively analyze the morphoanatomy, histochemistry, and iron accumulation in leaves of Avicennia schaueriana, Laguncularia racemosa, and Rhizophora mangle. Samples were collected from five mangrove sites of Espírito Santo state, each of which is exposed to different levels of particulate iron pollution. The amount of particulate material settled on the leaf surface was greater in A. schaueriana and L. racemosa, which contain salt glands. High iron concentrations were found in leaves of this species, collected from mangrove areas with high particulate iron pollution, which suggests the foliar absorption of this element. None of the samples from any of the sites showed morphological or structural damage on the leaves. Scanning electron microscopy (SEM) coupled to X-ray diffraction rendered a good method for evaluating iron on leaves surfaces. A histochemical test using Prussian blue showed to be an appropriate method to detect iron in plant tissue, however, proved to be an unsuitable method for the assessment of the iron bioaccumulation in leaves of A. schaueriana and R. mangle. So far, this study demonstrates the need of evaluating the pathway used by plants exposed to contaminated particulate matter to uptake atmospheric pollutants. Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 63.305 - Alternative standards for coke oven doors equipped with sheds.
Code of Federal Regulations, 2013 CFR
2013-07-01
... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries § 63.305 Alternative standards for coke oven doors equipped with sheds. (a) The owner or operator of a new or existing coke oven battery... the efficiency of the control device for removal of particulate matter by conducting measurements at...
40 CFR 63.305 - Alternative standards for coke oven doors equipped with sheds.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries § 63.305 Alternative standards for coke oven doors equipped with sheds. (a) The owner or operator of a new or existing coke oven battery... the efficiency of the control device for removal of particulate matter by conducting measurements at...
40 CFR 63.305 - Alternative standards for coke oven doors equipped with sheds.
Code of Federal Regulations, 2014 CFR
2014-07-01
... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries § 63.305 Alternative standards for coke oven doors equipped with sheds. (a) The owner or operator of a new or existing coke oven battery... the efficiency of the control device for removal of particulate matter by conducting measurements at...
40 CFR 63.305 - Alternative standards for coke oven doors equipped with sheds.
Code of Federal Regulations, 2012 CFR
2012-07-01
... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries § 63.305 Alternative standards for coke oven doors equipped with sheds. (a) The owner or operator of a new or existing coke oven battery... the efficiency of the control device for removal of particulate matter by conducting measurements at...
40 CFR 63.305 - Alternative standards for coke oven doors equipped with sheds.
Code of Federal Regulations, 2011 CFR
2011-07-01
... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries § 63.305 Alternative standards for coke oven doors equipped with sheds. (a) The owner or operator of a new or existing coke oven battery... the efficiency of the control device for removal of particulate matter by conducting measurements at...
Biodiesel (BD) is a renewable energy source and is readily substituted in diesel engines. Combustion of biodiesel is cleaner due to the efficiency of the fuel to completely combust. Biodiesel combustion emissions contain less CO, PAHs, aldehydes, and particulate matter (PM) mas...
Method for reducing pressure drop through filters, and filter exhibiting reduced pressure drop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sappok, Alexander; Wong, Victor
Methods for generating and applying coatings to filters with porous material in order to reduce large pressure drop increases as material accumulates in a filter, as well as the filter exhibiting reduced and/or more uniform pressure drop. The filter can be a diesel particulate trap for removing particulate matter such as soot from the exhaust of a diesel engine. Porous material such as ash is loaded on the surface of the substrate or filter walls, such as by coating, depositing, distributing or layering the porous material along the channel walls of the filter in an amount effective for minimizing ormore » preventing depth filtration during use of the filter. Efficient filtration at acceptable flow rates is achieved.« less
Development of the fine-particle agglomerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, P.; Balasic, P.
1999-07-01
This paper presents the current status of the commercial development of a new technology to more efficiently control fine particulate emissions. The technology is based on an invention by Environmental Elements Corporation (EEC) which utilizes laminar flow to promote contact of fine submicron particles with larger particles to form agglomerates prior to their removal in a conventional particulate control device, such as an ESP. As agglomerates the particles are easily captured in the control device, whereas a substantial amount would pass through if allowed to remain as fine particles. EEC has developed the laminar-flow agglomerator technology through the laboratory proof-of-conceptmore » stage, which was funded by a DOE SBIR grant, to pilot-scale and full-scale demonstrations.« less
Baek, Jong-Suep; Choo, Chee Chong; Tan, Nguan Soon; Loo, Say Chye Joachim
2017-10-06
Polymeric particulate delivery systems are vastly explored for the delivery of chemotherapeutic agents. However, the preparation of polymeric particulate systems with the capability of providing sustained release of two or more drugs is still a challenge. Herein, poly (D, L-lactic-co-glycolic acid, 50:50) hollow microparticles co-loaded with doxorubicin and paclitaxel were developed through double-emulsion solvent evaporation technique. Hollow microparticles were formed through the addition of an osmolyte into the fabrication process. The benefits of hollow over solid microparticles were found to be higher encapsulation efficiency and a more rapid drug release rate. Further modification of the hollow microparticles was accomplished through the introduction of methyl-β-cyclodextrin. With this, a higher encapsulation efficiency of both drugs and an enhanced cumulative release were achieved. Spheroid study further demonstrated that the controlled release of the drugs from the methyl-β-cyclodextrin -loaded hollow microparticles exhibited enhanced tumor regressions of MCF-7 tumor spheroids. Such hollow dual-drug-loaded hollow microparticles with sustained releasing capabilities may have a potential for future applications in cancer therapy.
Ye, Dan; Gao, Dengshan; Yu, Gang; Shen, Xianglin; Gu, Fan
2005-12-09
A plasma reactor with catalysts was used to treat exhaust gas from a gasoline engine in order to decrease particulate matter (PM) emissions. The effect of non-thermal plasma (NTP) of the dielectric discharges on the removal of PM from the exhaust gas was investigated experimentally. The removal efficiency of PM was based on the concentration difference in PM for particle diameters ranging from 0.3 to 5.0 microm as measured by a particle counter. Several factors affecting PM conversion, including the density of plasma energy, reaction temperature, flow rate of exhaust gas, were investigated in the experiment. The results indicate that PM removal efficiency ranged approximately from 25 to 57% and increased with increasing energy input in the reactor, reaction temperature and residence time of the exhaust gas in the reactor. Enhanced removal of the PM was achieved by filling the discharge gap of the reactor with Cu-ZSM-5 catalyst pellets. In addition, the removal of unburned hydrocarbons was studied. Finally, available approaches for PM conversion were analyzed involving the interactions between discharge and catalytic reactions.
Recent epidemiological studies have shown associations between proximity to highways and adverse health effects. Toxicology studies in animals are needed to examine the basis for these observations. Airborne particulate matter (PM) was collected for 2 weeks using a high-volume im...
SPATIO-TEMPORAL MODELING OF FINE PARTICULATE MATTER
Studies indicate that even short-term exposure to high concentrations of fine atmospheric particulate matter (PM2.5) can lead to long-term health effects. In this paper, we propose a random effects model for PM2.5 concentrations. In particular, we anticipa...
MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 2. MODEL EVALUATION
Ambient air concentrations of particulate matter (atmospheric suspensions of solid of liquid materials, i.e., aerosols) continue to be a major concern for the U.S. Environmental Protection Agency (EPA). High particulate matter (PM) concentrations are associated not only with adv...
RESPIRATORY TOXICOLOGCAL EFFECTS OF WORLD TRADE CENTER FINE PARTICULATE MATTER IN MICE
ABSTRACT BODY:
The destruction of the World Trade Center (WTC) caused the release of high levels of airborne pollutants which were reported to cause adverse respiratory responses in rescue workers and nearby residents. We examined whether WTC-derived fine particulate mat...
Saitoh, N; Wada, Y; Koizumi, A; Kamiyama, S
1990-10-01
Nitroarenes, potent rodent carcinogens, have attracted much attention as environmental contaminants. Recently, simultaneous exposure to dust have been found to potentiate tumorigenicity of nitroarenes in rats (14). We hypothesized that inhabitants of northwestern Japan may be exposed to such substances in winter. First, we sought to develop a sensitive yet time saving method to determine nitroarene concentrations in airborne particulate matter. The method developed used a high-performance liquid chromatograph equipped with a fluorescence detector. By on-column catalytic reduction, using silica coated with platinum and rhodium, 1-nitropyrene (1-NP), 1,3-dinitropyrene, 1,6-dinitropyrene, and 1,8-dinitropyrene were effectively reduced to their amino derivatives which were easily detectable with the fluorescence detector. The lowest detectable limits found using the present method were on the order of picograms for individual compounds. Subsequently, we sought to determine the concentrations of nitroarenes using the new method on airborne particulate matter during the period from November to April. Samples were collected at sampling sites on road with high-volume air samplers for 24 hours or 72 hours in four different rural areas in Iwate Prefecture. At one location in the city of Morioka, samples were collected at the height of 25 m from the ground. Among the four nitropyrenes mentioned above, only 1-NP was detected in the samples. The concentrations of 1-NP and airborne particulates changed significantly in all examined areas in parallel with the rise and fall of the frequencies of studded tire use. The highest 1-NP and airborne particulate concentrations were 1.210 pg/m3 and 1,291 micrograms/m3, respectively, being recorded at the busiest road in Kitakami. In contrast, the lowest values were 38 to 66 pg/m3 for 1-NP and 54 to 94 micrograms/m3 for airborne particulates in Morioka, being recorded in November and April, respectively. The mutagenicities of extracts of airborne particulate matter showed similar trends. Thus, exposure situations with high concentrations of dust and 1-NP were confirmed to occur in Iwate. Finally, the risk posed by 1-NP in airborne particulate matter was estimated using the equation proposed by Cuddihy and McClellan (37) and was found to range from 3.12 x 10(-2) to 24.2 x 10(-2) lung cancer/year/10(6) people. Although the estimated risk due to 1-NP is relatively small, further surveillance is highly recommended in those areas since heavy dust exposure also occurs there.
Method of producing particulate-reinforced composites and composites produced thereby
Han, Qingyou; Liu, Zhiwei
2013-12-24
A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.
Method of producing particulate-reinforced composites and composites produced thereby
Han, Qingyou; Liu, Zhiwei
2015-12-29
A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.
Method of producing particulate-reinforced composites and composties produced thereby
Han, Qingyou; Liu, Zhiwei
2013-12-24
A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intenisty acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaciton products comprise a solide particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particles-reinforced composite materials produced by such a process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toops, Todd J.; Bilheux, Hassina Z.; Voisin, Sophie
2013-08-19
This research describes the development and implementation of high-fidelity neutron imaging and the associated analysis of the images. This advanced capability allows the non-destructive, non-invasive imaging of particulate filters (PFs) and how the deposition of particulate and catalytic washcoat occurs within the filter. The majority of the efforts described here were performed at the High Flux Isotope Reactor (HFIR) CG-1D neutron imaging beamline at Oak Ridge National Laboratory; the current spatial resolution is approximately 50 μm. The sample holder is equipped with a high-precision rotation stage that allows 3D imaging (i.e., computed tomography) of the sample when combined with computerizedmore » reconstruction tools. What enables the neutron-based image is the ability of some elements to absorb or scatter neutrons where other elements allow the neutron to pass through them with negligible interaction. Of particular interest in this study is the scattering of neutrons by hydrogen-containing molecules, such as hydrocarbons (HCs) and/or water, which are adsorbed to the surface of soot, ash and catalytic washcoat. Even so, the interactions with this adsorbed water/HC is low and computational techniques were required to enhance the contrast, primarily a modified simultaneous iterative reconstruction technique (SIRT). Lastly, this effort describes the following systems: particulate randomly distributed in a PF, ash deposition in PFs, a catalyzed washcoat layer in a PF, and three particulate loadings in a SiC PF.« less