Sample records for high efficiency traction

  1. Solid-state transformer-based new traction drive system and control

    NASA Astrophysics Data System (ADS)

    Feng, Jianghua; Shang, Jing; Zhang, Zhixue; Liu, Huadong; Huang, Zihao

    2017-11-01

    A new type of traction drive system consisting of solid-state traction transformer (SSTT), inverter unit, auxiliary inverter, traction motor and other key components is built in order to suit the demand of developing the next-generation electric traction system which will be efficient and lightweight, with high power density. For the purpose of reducing system volume and weight and improving efficiency and grid-side power quality, an efficient SSTT optimized topology combining high-voltage cascaded rectifiers with high-power high-frequency LLC resonant converter is proposed. On this basis, an integrated control strategy built upon synchronous rotating reference frame is presented to achieve unified control over fundamental active, reactive and harmonic components. The carrier-interleaving phase shift modulation strategy is proposed to improve the harmonic performance of cascaded rectifiers. In view of the secondary pulsating existing in a single-phase system, the mathematical model of secondary power transfer is built, and the mechanism of pulsating voltage resulting in beat frequency of LLC resonant converter is revealed, so as to design optimum matching of system parameters. Simulation and experimental results have verified that the traction system and control scheme mentioned in this paper are reasonable and superior and that they meet the future application requirements for rail transit.

  2. Rapid, efficient charging of lead-acid and nickel-zinc traction cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1978-01-01

    Lead-acid and nickel-zinc traction cells were rapidly and efficiently charged using a high rate tapered direct current (HRTDC) charge method which could possibly be used for on-the-road service recharge of electric vehicles. The HRTDC method takes advantage of initial high cell charge acceptance and uses cell gassing rate and temperature as an indicator of charging efficiency. On the average, in these preliminary tests, 300 amp-hour nickel-zinc traction cells were given a HRTDC (initial current 500 amps, final current 100 amps) to 78 percent of rated amp-hour capacity within 53 minutes at an amp-hour efficiency of 92 percent and an energy efficiency of 52 percent. Three hundred amp-hour lead-acid traction cells were charged to 69 percent of rated amp-hour capacity within 46 minutes at an amp-hour efficiency of 91 percent with an energy efficiency of 64 percent. In order to find ways to further decrease the recharge times, the effect of periodically (0 to 400 Hz) pulse discharging cells during a constant current charging process (94% duty cycle) was investigated. Preliminary data indicate no significant effect of this type of pulse discharging during charge on charge acceptance of lead-acid or nickel-zinc cells.

  3. Measurement of the traction force of biological cells by digital holography

    PubMed Central

    Yu, Xiao; Cross, Michael; Liu, Changgeng; Clark, David C.; Haynie, Donald T.; Kim, Myung K.

    2011-01-01

    The traction force produced by biological cells has been visualized as distortions in flexible substrata. We have utilized quantitative phase microscopy by digital holography (DH-QPM) to study the wrinkling of a silicone rubber film by motile fibroblasts. Surface deformation and the cellular traction force have been measured from phase profiles in a direct and straightforward manner. DH-QPM is shown to provide highly efficient and versatile means for quantitatively analyzing cellular motility. PMID:22254175

  4. Energy efficiency analysis of two-sided feed scheme of DC traction network with high asymmetry of feeders parameters

    NASA Astrophysics Data System (ADS)

    Abramov, E. Y.; Sopov, V. I.

    2017-10-01

    In a given research using the example of traction network area with high asymmetry of power supply parameters, the sequence of comparative assessment of power losses in DC traction network with parallel and traditional separated operating modes of traction substation feeders was shown. Experimental measurements were carried out under these modes of operation. The calculation data results based on statistic processing showed the power losses decrease in contact network and the increase in feeders. The changes proved to be critical ones and this demonstrates the significance of potential effects when converting traction network areas into parallel feeder operation. An analytical method of calculation the average power losses for different feed schemes of the traction network was developed. On its basis, the dependences of the relative losses were obtained by varying the difference in feeder voltages. The calculation results showed unreasonableness transition to a two-sided feed scheme for the considered traction network area. A larger reduction in the total power loss can be obtained with a smaller difference of the feeders’ resistance and / or a more symmetrical sectioning scheme of contact network.

  5. Performance Comparison between a Permanent Magnet Synchronous Motor and an Induction Motor as a Traction Motor for High Speed Train

    NASA Astrophysics Data System (ADS)

    Kondo, Minoru; Kawamura, Junya; Terauchi, Nobuo

    Performance tests are carried out to demonstrate the superiority of a permanent magnet synchronous motor to an induction motor as a traction motor for high-speed train. A prototype motor was manufactured by replacing the rotor of a conventional induction motor. The test results show that the permanent magnet motor is lighter, efficient and more silent than the induction motor because of the different rotor structure.

  6. Candidate Coatings and Dry Traction Drives for Planetary Vehicles

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert; Oswald, Fred B.

    2002-01-01

    Robert Fusaro and Fred Oswald of the Mechanical Components Branch discussed 'Candidate Coatings and Dry Traction Drives for Planetary Vehicles'. Vehicles to be designed for exploration of planets and moons of the solar system will require reliable mechanical drives to operate efficiently. Long-term operation of these drives will be challenging because of extreme operating conditions. These extreme conditions include: very high and/or very cold temperatures, wide temperature ranges, dust, vacuum or low-pressure atmospheres, and corrosive environments. Most drives used on Earth involve oil-lubricated gears. However, due to the extreme conditions on planetary surfaces, it may not be advisable or even possible to use oil lubrication. Unfortunately, solid lubricants do not work well when applied to gears because of the high contact stress conditions and large sliding motion between the teeth, which cause wear and limit life. We believe traction drives will provide an attractive alternative to gear drives. Traction drives are composed of rollers that provide geometry more conducive to solid lubrication. Minimal slip occurs in this contact geometry and thus there is very low wear to the solid lubricant. The challenge for these solid-lubricated drives is finding materials or coatings that provide the required long-life while also providing high traction. We seek materials that provide low wear with high friction.

  7. Advanced dc motor controller for battery-powered electric vehicles

    NASA Technical Reports Server (NTRS)

    Belsterling, C. A.

    1981-01-01

    A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.

  8. Footwear traction and lower extremity noncontact injury.

    PubMed

    Wannop, John W; Luo, Geng; Stefanyshyn, Darren J

    2013-11-01

    Football is the most popular high school sport; however, it has the highest rate of injury. Speculation has been prevalent that foot fixation due to high footwear traction contributes to injury risk. Therefore, the purpose of the study was to determine whether a relationship exists between the athlete's specific footwear traction (measured with their own shoes on the field of play) and lower extremity noncontact injury in high school football. For 3 yr, 555 high school football athletes had their footwear traction measured on the actual field of play at the start of the season, and any injury the athletes suffered during a game was recorded. Lower extremity noncontact injury rates, grouped based on the athlete's specific footwear traction (both translational and rotational), were compared. For translational traction, injury rate reached a peak of 23.3 injuries/1000 game exposures within the midrange of translational traction, before decreasing to 5.0 injuries/1000 game exposures in the high range of traction. For rotational traction, there was a steady increase in injury rate as footwear traction increased, starting at 4.2 injuries/1000 game exposures at low traction and reaching 19.2 injuries/1000 game exposures at high traction. A relationship exists between footwear traction and noncontact lower extremity injury, with increases in rotational traction leading to a greater injury rate and increases in translational traction leading to a decrease in injury. It is recommended that athletes consider selecting footwear with the lowest rotational traction values for which no detriment in performance results.

  9. Counter traction makes endoscopic submucosal dissection easier.

    PubMed

    Oyama, Tsuneo

    2012-11-01

    Poor counter traction and poor field of vision make endoscopic submucosal dissection (ESD) difficult. Good counter traction allows dissections to be performed more quickly and safely. Position change, which utilizes gravity, is the simplest method to create a clear field of vision. It is useful especially for esophageal and colon ESD. The second easiest method is clip with line method. Counter traction made by clip with line accomplishes the creation of a clear field of vision and suitable counter traction thereby making ESD more efficient and safe. The author published this method in 2002. The name ESD was not established in those days; the name cutting endoscopic mucosal resection (EMR) or EMR with hook knife was used. The other traction methods such as external grasping forceps, internal traction, double channel scope, and double scopes method are introduced in this paper. A good strategy for creating counter traction makes ESD easier.

  10. Energy and wear optimisation of train longitudinal dynamics and of traction and braking systems

    NASA Astrophysics Data System (ADS)

    Conti, R.; Galardi, E.; Meli, E.; Nocciolini, D.; Pugi, L.; Rindi, A.

    2015-05-01

    Traction and braking systems deeply affect longitudinal train dynamics, especially when an extensive blending phase among different pneumatic, electric and magnetic devices is required. The energy and wear optimisation of longitudinal vehicle dynamics has a crucial economic impact and involves several engineering problems such as wear of braking friction components, energy efficiency, thermal load on components, level of safety under degraded or adhesion conditions (often constrained by the current regulation in force on signalling or other safety-related subsystem). In fact, the application of energy storage systems can lead to an efficiency improvement of at least 10% while, as regards the wear reduction, the improvement due to distributed traction systems and to optimised traction devices can be quantified in about 50%. In this work, an innovative integrated procedure is proposed by the authors to optimise longitudinal train dynamics and traction and braking manoeuvres in terms of both energy and wear. The new approach has been applied to existing test cases and validated with experimental data provided by Breda and, for some components and their homologation process, the results of experimental activities derive from cooperation performed with relevant industrial partners such as Trenitalia and Italcertifer. In particular, simulation results are referred to the simulation tests performed on a high-speed train (Ansaldo Breda Emu V250) and on a tram (Ansaldo Breda Sirio Tram). The proposed approach is based on a modular simulation platform in which the sub-models corresponding to different subsystems can be easily customised, depending on the considered application, on the availability of technical data and on the homologation process of different components.

  11. An Efficient Implementation of the GMC Micromechanics Model for Multi-Phased Materials with Complex Microstructures

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Bednarcyk, Brett A.

    1997-01-01

    An efficient implementation of the generalized method of cells micromechanics model is presented that allows analysis of periodic unidirectional composites characterized by repeating unit cells containing thousands of subcells. The original formulation, given in terms of Hill's strain concentration matrices that relate average subcell strains to the macroscopic strains, is reformulated in terms of the interfacial subcell tractions as the basic unknowns. This is accomplished by expressing the displacement continuity equations in terms of the stresses and then imposing the traction continuity conditions directly. The result is a mixed formulation wherein the unknown interfacial subcell traction components are related to the macroscopic strain components. Because the stress field throughout the repeating unit cell is piece-wise uniform, the imposition of traction continuity conditions directly in the displacement continuity equations, expressed in terms of stresses, substantially reduces the number of unknown subcell traction (and stress) components, and thus the size of the system of equations that must be solved. Further reduction in the size of the system of continuity equations is obtained by separating the normal and shear traction equations in those instances where the individual subcells are, at most, orthotropic. The reformulated version facilitates detailed analysis of the impact of the fiber cross-section geometry and arrangement on the response of multi-phased unidirectional composites with and without evolving damage. Comparison of execution times obtained with the original and reformulated versions of the generalized method of cells demonstrates the new version's efficiency.

  12. The relationship between accommodative amplitude and the ratio of central lens thickness to its equatorial diameter in vertebrate eyes

    PubMed Central

    Schachar, Ronald A; Pierscionek, Barbara K; Abolmaali, Ali; Le, Tri

    2007-01-01

    Aim To determine the relationship between accommodative amplitude and central lens thickness/equatorial lens diameter (CLT/ELD) ratio in vertebrates. Methods Midsagittal sections of lenses from fixed, post mortem eyes from 125 different vertebrate species were photographed. Their CLT/ELD ratios were correlated with independently published measurements of their accommodative amplitudes. Using the non‐linear finite element method (FEM), the efficiency of zonular traction (the absolute change in central radius of curvature per unit force [|ΔCR|/F]) for model lenses with CLT/ELD ratios from 0.45 to 0.9 was determined. Results Vertebrates with CLT/ELD ratios ⩽0.6 have high accommodative amplitudes. Zonular traction was found to be most efficient for those model lenses having CLT/ELD ratios ⩽0.6. Conclusions Vertebrates with lenses that have CLT/ELD ratios ⩽0.6 – i.e. “long oval” shapes – have the greatest accommodative amplitudes; e.g. primates, diving birds and diurnal birds of prey. Vertebrates that have oval or spherical shaped lenses, like owls and most mammals, have low accommodative amplitudes. Zonular traction was found to be most efficient when applied to model lenses with CLT/ELD ratios ⩽0.6. The implications of these findings on the mechanism of accommodation are discussed. PMID:17050574

  13. Effect of positive pulse charge waveforms on the energy efficiency of lead-acid traction cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1981-01-01

    The effects of four different charge methods on the energy conversion efficiency of 300 ampere hour lead acid traction cells were investigated. Three of the methods were positive pulse charge waveforms; the fourth, a constant current method, was used as a baseline of comparison. The positive pulse charge waveforms were: 120 Hz full wave rectified sinusoidal; 120 Hz silicon controlled rectified; and 1 kHz square wave. The constant current charger was set at the time average pulse current of each pulse waveform, which was 150 amps. The energy efficiency does not include charger losses. The lead acid traction cells were charged to 70 percent of rated ampere hour capacity in each case. The results of charging the cells using the three different pulse charge waveforms indicate there was no significant difference in energy conversion efficiency when compared to constant current charging at the time average pulse current value.

  14. Investigation of efficiency of electric drive control system of excavator traction mechanism based on feedback on load

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. K.; Iov, I. A.; Iov, A. A.

    2018-05-01

    The article presents the results of a study of the efficiency of the electric drive control system of the traction mechanism of a dragline based on the use of feedback on load in the traction cable. The investigations were carried out using a refined electromechanical model of the traction mechanism, which took into account not only the elastic elements of the gearbox, the backlashes in it and the changes in the kinematic parameters of the mechanism during operation, but also the mechanical characteristics of the electric drive and the features of its control system. By mathematical modeling of the transient processes of the electromechanical system, it is shown that the introduction of feedback on the load in the elastic element allows one to reduce the dynamic loads in the traction mechanism and to limit the elastic oscillations of the actuating mechanism in comparison with the standard control system. Fixed as a general decrease in the dynamic load of the nodes of traction mechanism in the modes of loading and latching of the bucket, and a decrease the operating time of the mechanism at maximum load. At the same time, undesirable phenomena in the operation of the electric drive were also associated with the increase in the recovery time of the steady-state value of the speed of the actuating mechanism under certain operating conditions, which can lead to a decrease in the reliability of the mechanical part and the productivity of the traction mechanism.

  15. Group traction drive as means to increase energy efficiency of lokomotives of open-pit transport

    NASA Astrophysics Data System (ADS)

    Antipin, D. Ya; Izmerov, O. V.; Bishutin, S. G.; Kobishchanov, V. V.

    2017-10-01

    Questions of possible use of a group drive for locomotives of an open-pit transport are considered. The possibility of a significant reduction of traction costs in the case of a combination of a group traction drive with devices for the non-inertial regulation of the coefficient of friction between the wheel and the rail has been shown, and new patentable solutions have been proposed.

  16. Traction free finite elements with the assumed stress hybrid model. M.S. Thesis, 1981

    NASA Technical Reports Server (NTRS)

    Kafie, Kurosh

    1991-01-01

    An effective approach in the finite element analysis of the stress field at the traction free boundary of a solid continuum was studied. Conventional displacement and assumed stress finite elements were used in the determination of stress concentrations around circular and elliptical holes. Specialized hybrid elements were then developed to improve the satisfaction of prescribed traction boundary conditions. Results of the stress analysis indicated that finite elements which exactly satisfy the free stress boundary conditions are the most accurate and efficient in such problems. A general approach for hybrid finite elements which incorporate traction free boundaries of arbitrary geometry was formulated.

  17. Intradiscal Pressure Changes during Manual Cervical Distraction: A Cadaveric Study

    PubMed Central

    Gudavalli, M. R.; Potluri, T.; Carandang, G.; Havey, R. M.; Voronov, L. I.; Cox, J. M.; Rowell, R. M.; Kruse, R. A.; Joachim, G. C.; Patwardhan, A. G.; Henderson, C. N. R.; Goertz, C.

    2013-01-01

    The objective of this study was to measure intradiscal pressure (IDP) changes in the lower cervical spine during a manual cervical distraction (MCD) procedure. Incisions were made anteriorly, and pressure transducers were inserted into each nucleus at lower cervical discs. Four skilled doctors of chiropractic (DCs) performed MCD procedure on nine specimens in prone position with contacts at C5 or at C6 vertebrae with the headpiece in different positions. IDP changes, traction forces, and manually applied posterior-to-anterior forces were analyzed using descriptive statistics. IDP decreases were observed during MCD procedure at all lower cervical levels C4-C5, C5-C6, and C6-C7. The mean IDP decreases were as high as 168.7 KPa. Mean traction forces were as high as 119.2 N. Posterior-to-anterior forces applied during manual traction were as high as 82.6 N. Intraclinician reliability for IDP decrease was high for all four DCs. While two DCs had high intraclinician reliability for applied traction force, the other two DCs demonstrated only moderate reliability. IDP decreases were greatest during moving flexion and traction. They were progressevely less pronouced with neutral traction, fixed flexion and traction, and generalized traction. PMID:24023587

  18. Design studies of continuously variable transmissions for electric vehicles

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Loewenthal, S. H.; Fischer, G. K.

    1981-01-01

    Preliminary design studies were performed on four continuously variable transmission (CVT) concepts for use with a flywheel equipped electric vehicle of 1700 kg gross weight. Requirements of the CVT's were a maximum torque of 450 N-m (330 lb-ft), a maximum output power of 75 kW (100 hp), and a flywheel speed range of 28,000 to 14,000 rpm. Efficiency, size, weight, cost, reliability, maintainability, and controls were evaluated for each of the four concepts which included a steel V-belt type, a flat rubber belt type, a toroidal traction type, and a cone roller traction type. All CVT's exhibited relatively high calculated efficiencies (68 percent to 97 percent) over a broad range of vehicle operating conditions. Estimated weight and size of these transmissions were comparable to or less than equivalent automatic transmission. The design of each concept was carried through the design layout stage.

  19. Systems Engineering Technology Readiness Assessment of Hybrid-Electric Technologies for Tactical Wheeled Vehicles

    DTIC Science & Technology

    2014-09-01

    reasonable yield within this decade. Similarly, the permanent magnet motors , which are desirable for traction due to their high efficiency, must also be...degrees C and 180 degrees C (RDECOM Public Affairs 2014). Current electric drive vehicles, using permanent magnet motors , have thermal limitations well...performance and their good efficiency, benefits particularly applicable to permanent magnet motors . Synchronous motors with permanent magnets, in

  20. Phase 1 of the near term hybrid passenger vehicle development program

    NASA Technical Reports Server (NTRS)

    Montalenti, P.; Piccolo, R.

    1979-01-01

    In order to meet project requirements and be competitive in the 1985 market, the proposed six-passenger vehicle incorporates a high power type Ni-Zn battery, which by making electric-only traction possible, permits the achievement of an optimized control strategy based on electric-only traction to a set battery depth of discharge, followed by hybrid operation with thermal primary energy. This results in a highly efficient hybrid propulsion subsystem. Technical solutions are available to contain energy waste by reducing vehicle weight, rolling resistance, and drag coefficient. Reproaching new 1985 full size vehicles of the conventional type with hybrids of the proposed type would result in a U.S. average gasoline saving per vehicle of 1,261 liters/year and an average energy saving per vehicle of 27,133 MJ/year.

  1. Surface temperatures and glassy state investigations in tribology, part 5

    NASA Technical Reports Server (NTRS)

    Bair, S.; Winer, W. O.

    1982-01-01

    Preliminary measurements of high shear rate viscosity at near atmospheric but variable pressure suggest the importance of low normal stress and cavitation or fluid fracture in the type of stress field existing in elastohydrodynam ic inlets and classical hydrodynamic configurations. An experimental basis is given for three regimes of traction in concentrated contacts: a thin film regime characterized by high traction and determined by lambda ratio, a thick film regime characterized by low traction and determined by the speed parameter, and the elastohydrodynamic regime for which traction is controlled by limiting shear stress. Traction measurements were performed with various liquids, two solid lubricants, and a grease. Film thickness and traction measurements of polymer blends and base oils are compared.

  2. Characterization of 109 Ah Ni-MH batteries charging with hydrogen sensing termination

    NASA Astrophysics Data System (ADS)

    Viera, J. C.; González, M.; Liaw, B. Y.; Ferrero, F. J.; Álvarez, J. C.; Campo, J. C.; Blanco, C.

    The use of Ni-MH batteries for traction applications in electric and hybrid vehicles is increasingly attractive and reliable. Besides the energy and power handling, and the cost issues, high tolerance to abuse is an important aspect of the Ni-MH technology. Thus, the ability to reduce charging time and to absorb regenerative breaking is highly desirable in these traction applications. This requires an accurate control of the charge termination. To facilitate an easy and reliable charging control and to avoid battery premature failure or ageing it is very important to know the behavior of the battery under a range of charging conditions. In this paper, we described the performance of high capacity commercial Ni-MH traction batteries (12 V, 109 Ah modules) when subjected to different charging rates (0.1, 0.2, 0.5, and 1.0 C) from 100% depth of discharge (DOD). Changes in battery voltage and temperature during charging were monitored, with a particular emphasis on the detection of the presence of hydrogen near the battery. This unique hydrogen detection outside the battery was used as the method for the end-of-charge termination to prevent overcharging of the battery. Relevant parameters, such as charge acceptance, energy efficiency, and charging time, were analyzed for comparison.

  3. Multiroller traction drive speed reducer: Evaluation for automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Rohn, D. A.; Anderson, N. E.; Loewenthal, S. H.

    1982-01-01

    Tests were conducted on a nominal 14:1 fixed-ratio Nasvytis multiroller traction drive retrofitted as the speed reducer in an automotive gas turbine engine. Power turbine speeds of 45,000 rpm and a drive output power of 102 kW (137 hp) were reached. The drive operated under both variable roller loading (proportional to torque) and fixed roller loading (automatic loading mechanism locked). The drive operated smoothly and efficiently as the engine speed reducer. Engine specific fuel consumption with the traction speed reducer was comparable to that with the original helical gearset.

  4. Review of factors affecting aircraft wet runway performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from investigations conducted at the Langley Aircraft Landing Loads and Traction Facility and from tests with instrumented ground vehicles and aircraft are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  5. A combined dislocation fan-finite element (DF-FE) method for stress field simulation of dislocations emerging at the free surfaces of 3D elastically anisotropic crystals

    NASA Astrophysics Data System (ADS)

    Balusu, K.; Huang, H.

    2017-04-01

    A combined dislocation fan-finite element (DF-FE) method is presented for efficient and accurate simulation of dislocation nodal forces in 3D elastically anisotropic crystals with dislocations intersecting the free surfaces. The finite domain problem is decomposed into half-spaces with singular traction stresses, an infinite domain, and a finite domain with non-singular traction stresses. As such, the singular and non-singular parts of the traction stresses are addressed separately; the dislocation fan (DF) method is introduced to balance the singular traction stresses in the half-spaces while the finite element method (FEM) is employed to enforce the non-singular boundary conditions. The accuracy and efficiency of the DF method is demonstrated using a simple isotropic test case, by comparing it with the analytical solution as well as the FEM solution. The DF-FE method is subsequently used for calculating the dislocation nodal forces in a finite elastically anisotropic crystal, which produces dislocation nodal forces that converge rapidly with increasing mesh resolutions. In comparison, the FEM solution fails to converge, especially for nodes closer to the surfaces.

  6. Economic Effects of Fascioliasis on Animal Traction Technology in Adamawa State, Nigeria

    NASA Astrophysics Data System (ADS)

    Jaafar-Furo, M. R.; Mshelia, S. I.; Suleiman, A.

    This study reports the results of a survey conducted in 2001 to investigate the economic effects of Fascioliasis (Liverflukes) on drought animals in Adamawa State, Nigeria. Data were collected from 60 and 74 farmers` owners of 148 non-infested and 204 infested drought animals, respectively, through a cost-route method using structured questionnaires and supplemented with interviews. Analysis using descriptive statistics and animal traction efficiency measure showed that the non-infested drought animals were efficiently utilized than the infested drought animals. It was concluded that the non-infested drought animals were more productive. The study therefore, recommend among others, the regular deworming of drought animals in order to improve their efficiency.

  7. Axial traction magnetic resonance imaging (MRI) of the glenohumeral joint in healthy volunteers: initial experience.

    PubMed

    Garwood, Elisabeth R; Souza, Richard B; Zhang, Amy; Zhang, Alan L; Ma, C Benjamin; Link, Thomas M; Motamedi, Daria

    Evaluate technical feasibility and potential applications of glenohumeral (GH) joint axial traction magnetic resonance imaging (MRI) in healthy volunteers. Eleven shoulders were imaged in neutral and with 4kg axial traction at 3T. Quantitative measurements were assessed. Axial traction was well tolerated. There was statistically significant widening of the superior GH joint space (p=0.002) and acromial angle (p=0.017) with traction. Inter-rater agreement was high. GH joint axial traction MRI is technically feasible and well tolerated in volunteers. Traction of the capsule, widening of the superior GH joint space and acromial angle were observed. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Development of a measurement system for the mechanical load of functional appliances.

    PubMed

    Shimazaki, Aya; Kimura, Hitoshi; Inou, Norio; Maki, Koutaro

    2017-10-03

    Devices called functional appliances are commonly used in orthodontics for treating maxillary protrusion. These devices mechanically force the mandible forward to apply traction force to the mandibular condyle. This promotes cartilaginous growth in the small mandible. However, no studies have clarified how much traction force is applied to the mandibular condyle. Moreover, it remains unknown as to how anatomical characteristics affect this traction force. Therefore, in this study, we developed a device for measuring the amount of force generated while individual patients wore functional appliances, and we investigated the relationship between forces with structures surrounding the mandibular condyle. We compared traction force values with cone-beam computed tomography image data in eight subjects. The functional appliance resulted in a traction force of 339-1477gf/mm, with a mean value of 196.5gf/mm for the elastic modulus of the mandible. A comparison with cone-beam computed tomography image data suggested that the mandibular traction force was affected by the mandibular condyle and shape of the articular eminence. This method can contribute to discovering efficient treatment techniques more suited to individual patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Simplified fatigue life analysis for traction drive contacts

    NASA Technical Reports Server (NTRS)

    Rohn, D. A.; Loewenthal, S. H.; Coy, J. J.

    1980-01-01

    A simplified fatigue life analysis for traction drive contacts of arbitrary geometry is presented. The analysis is based on the Lundberg-Palmgren theory used for rolling-element bearings. The effects of torque, element size, speed, contact ellipse ratio, and the influence of traction coefficient are shown. The analysis shows that within the limits of the available traction coefficient, traction contacts exhibit longest life at high speeds. Multiple, load-sharing roller arrangements have an advantageous effect on system life, torque capacity, power-to-weight ratio and size.

  10. An advanced pitch change mechanism incorporating a hybrid traction drive

    NASA Technical Reports Server (NTRS)

    Steinetz, B. M.; Loewenthal, S. H.; Sargisson, D. F.; White, G.

    1984-01-01

    A design of a propeller pitch control mechanism is described that meets the demanding requirements of a high-power, advanced turboprop. In this application, blade twisting moment torque can be comparable to that of the main reduction gearbox output: precise pitch control, reliability and compactness are all at a premium. A key element in the design is a compact, high-ratio hybrid traction drive which offers low torque ripple and high torsional stiffness. The traction drive couples a high speed electric motor/alternator unit to a ball screw that actuates the blade control links. The technical merits of this arrangement and the performance characteristics of the traction drive are discussed.

  11. Study on Stability of High Speed Traction Drive CVT for Aircraft Generator

    NASA Astrophysics Data System (ADS)

    Goi, Tatsuhiko; Tanaka, Hirohisa; Nakashima, Kenichi; Watanabe, Koji

    A half-toroidal traction drive CVT has a feature of small spin at traction pitch in whole speed ratio range of 1:4, which suits to transmit high rotational speed with minimum temperature increase of traction surface. Research activity on traction drive CVT has commenced in 1996 for applying it to an aircraft 24,000rpm constant-speed generator instead of a hydro-static transmission. This paper shows fundamental design of 90kW traction drive integrated drive generator, ``T-IDG", and stability analysis on a sensor-less electro-hydraulic speed control servo-mechanism by bond graphs. The performance test of T-IDG mounted on a test bench and an actual jet engine proved that the control system using sensor-less servomechanism can keep the generator speed within MIL-STD-704E allowable limit against steep changes of speed and load.

  12. Traction contact performance evaluation at high speeds

    NASA Technical Reports Server (NTRS)

    Tevaarwerk, J. L.

    1981-01-01

    The results of traction tests performed on two fluids are presented. These tests covered a pressure range of 1.0 to 2.5 GPa, an inlet temperature range of 30 'C to 70 'C, a speed range of 10 to 80 m/sec, aspect ratios of .5 to 5 and spin from 0 to 2.1 percent. The test results are presented in the form of two dimensionless parameters, the initial traction slope and the maximum traction peak. With the use of a suitable rheological fluid model the actual traction curves measured can now be reconstituted from the two fluid parameters. More importantly, the knowledge of these parameters together with the fluid rheological model, allow the prediction of traction under conditions of spin, slip and any combination thereof. Comparison between theoretically predicted traction under these conditions and those measured in actual traction tests shows that this method gives good results.

  13. Application of traction drives as servo mechanisms

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Rohn, D. A.; Steinetz, B. M.

    1985-01-01

    The suitability of traction drives for a wide class of aerospace control mechanisms is examined. Potential applications include antenna or solar array drive positioners, robotic joints, control moment gyro (CMG) actuators and propeller pitch change mechanisms. In these and similar applications the zero backlash, high torsional stiffness, low hysteresis and torque ripple characteristics of traction drives are of particular interest, as is the ability to run without liquid lubrication in certain cases. Wear and fatigue considerations for wet and dry operation are examined along with the tribological performance of several promising self lubricating polymers for traction contracts. The speed regulation capabilities of variable ratio traction drives are reviewed. A torsional stiffness analysis described suggests that traction contacts are relatively stiff compared to gears and are significantly stiffer than the other structural elements in the prototype CMG traction drive analyzed. Discussion is also given of an advanced turboprop propeller pitch change mechanism that incorporates a traction drive.

  14. Finite element analysis of maxillary incisor displacement during en-masse retraction according to orthodontic mini-implant position

    PubMed Central

    Song, Jae-Won; Lim, Joong-Ki; Lee, Kee-Joon; Sung, Sang-Jin; Chun, Youn-Sic

    2016-01-01

    Objective Orthodontic mini-implants (OMI) generate various horizontal and vertical force vectors and moments according to their insertion positions. This study aimed to help select ideal biomechanics during maxillary incisor retraction by varying the length in the anterior retraction hook (ARH) and OMI position. Methods Two extraction models were constructed to analyze the three-dimentional finite element: a first premolar extraction model (Model 1, M1) and a residual 1-mm space post-extraction model (Model 2, M2). The OMI position was set at a height of 8 mm from the arch wire between the second maxillary premolar and the first molar (low OMI traction) or at a 12-mm height in the mesial second maxillary premolar (high OMI traction). Retraction force vectors of 200 g from the ARH (-1, +1, +3, and +6 mm) at low or high OMI traction were resolved into X-, Y-, and Z-axis components. Results In M1 (low and high OMI traction) and M2 (low OMI traction), the maxillary incisor tip was extruded, but the apex was intruded, and the occlusal plane was rotated clockwise. Significant intrusion and counter-clockwise rotation in the occlusal plane were observed under high OMI traction and -1 mm ARH in M2. Conclusions This study observed orthodontic tooth movement according to the OMI position and ARH height, and M2 under high OMI traction with short ARH showed retraction with maxillary incisor intrusion. PMID:27478801

  15. Advances in traction drive technology

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Anderson, N. E.; Rohn, D. A.

    1983-01-01

    Traction drives are traced from early uses as main transmissions in automobiles at the turn of the century to modern, high-powered traction drives capable of transmitting hundreds of horsepower. Recent advances in technology are described which enable today's traction drive to be a serious candidate for off-highway vehicles and helicopter applications. Improvements in materials, traction fluids, design techniques, power loss and life prediction methods will be highlighted. Performance characteristics of the Nasvytis fixed-ratio drive are given. Promising future drive applications, such as helicopter main transmissions and servo-control positioning mechanisms are also addressed.

  16. An advanced pitch change mechanism incorporating a hybrid traction drive

    NASA Technical Reports Server (NTRS)

    Steinetz, B. M.; Sargisson, D. F.; White, G.; Loewenthal, S. H.

    1984-01-01

    A design of a propeller pitch control mechanism is described that meets the demanding requirements of a high-power, advanced turboprop. In this application, blade twisting moment torque can be comparable to that of the main reduction gearbox output: precise pitch control, reliability and compactness are all at a premium. A key element in the design is a compact, high-ratio hybrid traction drive which offers low torque ripple and high torsional stiffness. The traction drive couples a high speed electric motor/alternator unit to a ball screw that actuates the blade control links. The technical merits of this arrangement and the performance characteristics of the traction drive are discussed. Comparisons are made to the more conventional pitch control mechanisms.

  17. FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, Mitchell

    The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran frommore » 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. DOE's continuing R&D into advanced vehicle technologies for transportation offers the possibility of reducing the nation's dependence on foreign oil and the negative economic impacts of crude oil price fluctuations. It also supports the Administration's goal of deploying 1 million PHEVs by 2015.« less

  18. Influence of AC system design on the realisation of tractive efforts by high adhesion locomotives

    NASA Astrophysics Data System (ADS)

    Spiryagin, Maksym; Wolfs, Peter; Cole, Colin; Stichel, Sebastian; Berg, Mats; Manfred, Plöchl

    2017-08-01

    The main task for heavy haul railway operators is to reduce the cost of exported minerals and enhance the long-term viability of rail transport operations through increasing productivity by running longer and heavier trains. The common opinion is that this is achievable by means of implementation of high adhesion locomotives with advanced AC traction technologies. Modern AC high adhesion locomotives are very complex mechatronic systems and can be designed with two alternative traction topologies of either bogie or individual axle controls. This paper describes a modelling approach for these two types of AC traction systems with the application of an advanced co-simulation methodology, where an electrical system and a traction algorithm are modelled in Matlab/Simulink, and a mechanical system is modelled in a multibody software package. Although the paper concentrates on the analysis of the functioning for these two types of traction control systems, the choice of reference slip values also has an influence on the performance of both systems. All these design variations and issues have been simulated for various adhesion conditions at the wheel-rail interface and their influence on the high traction performance of a locomotive equipped with two three-axle bogies has been discussed.

  19. Microfabricated tissues for investigating traction forces involved in cell migration and tissue morphogenesis

    PubMed Central

    Nerger, Bryan A.; Siedlik, Michael J.; Nelson, Celeste M.

    2016-01-01

    Cell-generated forces drive an array of biological processes ranging from wound healing to tumor metastasis. Whereas experimental techniques such as traction force microscopy are capable of quantifying traction forces in multidimensional systems, the physical mechanisms by which these forces induce changes in tissue form remain to be elucidated. Understanding these mechanisms will ultimately require techniques that are capable of quantifying traction forces with high precision and accuracy in vivo or in systems that recapitulate in vivo conditions, such as microfabricated tissues and engineered substrata. To that end, here we review the fundamentals of traction forces, their quantification, and the use of microfabricated tissues designed to study these forces during cell migration and tissue morphogenesis. We emphasize the differences between traction forces in two- and three-dimensional systems, and highlight recently developed techniques for quantifying traction forces. PMID:28008471

  20. A Traction Control Strategy with an Efficiency Model in a Distributed Driving Electric Vehicle

    PubMed Central

    Lin, Cheng

    2014-01-01

    Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the two-dimensional design space composed of the acceleration pedal signal and the vehicle speed. The sliding mode control strategy for the joint roads and the efficiency model for the typical drive cycles were simulated. Simulation results show that the proposed driving control approach has the potential to apply to different road surfaces. It keeps the wheels' slip ratios within the stable zone and improves the fuel economy on the premise of tracking the driver's intention. PMID:25197697

  1. A traction control strategy with an efficiency model in a distributed driving electric vehicle.

    PubMed

    Lin, Cheng; Cheng, Xingqun

    2014-01-01

    Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the two-dimensional design space composed of the acceleration pedal signal and the vehicle speed. The sliding mode control strategy for the joint roads and the efficiency model for the typical drive cycles were simulated. Simulation results show that the proposed driving control approach has the potential to apply to different road surfaces. It keeps the wheels' slip ratios within the stable zone and improves the fuel economy on the premise of tracking the driver's intention.

  2. Home Cervical Traction to Reduce Neck Pain in Fighter Pilots.

    PubMed

    Chumbley, Eric M; O'Hair, Nicole; Stolfi, Adrienne; Lienesch, Christopher; McEachen, James C; Wright, Bruce A

    2016-12-01

    Most fighter pilots report cervical pain during their careers. Recommendations for remediation lack evidence. We sought to determine whether regular use of a home cervical traction device could decrease reported cervical pain in F-15C pilots. An institutional review board-approved, Health Insurance Portability and Accountability Act-compliant, controlled crossover study was undertaken with 21 male F-15C fighter pilots between February and June 2015. Of the 21 subjects, 12 completed 6 wk each of traction and control, while logging morning, postflying, and post-traction pain. Pain was compared with paired t-tests between the periods, from initial pain scores to postflying, and postflying to post-traction. In the traction phase, initial pain levels increased postflight, from 1.2 (0.7) to 1.6 (1.0) Subsequent post-traction pain levels decreased to 1.3 (0.9), with a corresponding linear decrease in pain relative to pain reported postflight. The difference in pain levels after traction compared to initial levels was not significant, indicating that cervical traction was effective in alleviating flying-related pain. Control pain increased postflight from 1.4 (0.9) to 1.9 (1.3). Daily traction phase pain was lower than the control, but insignificant. To our knowledge, this is the first study of home cervical traction to address fighter pilots' cervical pain. We found a small but meaningful improvement in daily pain rating when using cervical traction after flying. These results help inform countermeasure development for pilots flying high-performance aircraft. Further study should clarify the optimal traction dose and timing in relation to flying.Chumbley EM, O'Hair N, Stolfi A, Lienesch C, McEachen JC, Wright BA. Home cervical traction to reduce neck pain in fighter pilots. Aerosp Med Hum Perform. 2016; 87(12):1010-1015.

  3. Rigid two-axis MEMS force plate for measuring cellular traction force

    NASA Astrophysics Data System (ADS)

    Takahashi, Hidetoshi; Jung, Uijin G.; Kan, Tetsuo; Tsukagoshi, Takuya; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-10-01

    Cellular traction force is one of the important factors for understanding cell behaviors, such as spreading, migration and differentiation. Cells are known to change their behavior according to the mechanical stiffness of the environment. However, the measurement of cell traction forces on a rigid environment has remained difficult. This paper reports a micro-electromechanical systems (MEMS) force plate that provides a cellular traction force measurement on a rigid substrate. Both the high force sensitivity and high stiffness of the substrate were obtained using piezoresistive sensing elements. The proposed force plate consists of a 70 µm  ×  15 µm  ×  5 µm base as the substrate for cultivating a bovine aortic smooth muscle cell, and the supporting beams with piezoresistors on the sidewall and the surface were used to measure the forces in both the horizontal and vertical directions. The spring constant and force resolution of the fabricated force plate in the horizontal direction were 0.2 N m-1 and less than 0.05 µN, respectively. The cell traction force was measured, and the traction force increased by approximately 1 µN over 30 min. These results demonstrate that the proposed force plate is applicable as an effective traction force measurement.

  4. Performance and economic analysis of a plug and play regenerative brake for improving energy efficiency for traction elevators

    NASA Astrophysics Data System (ADS)

    Jeraputra, Chuttchaval; Tiptipakorn, Supun

    2017-05-01

    This paper presents performance and economic analysis of a plug and play regenerative brake for improving energy efficiency for traction elevators. The proposed regenerative brake recycles the energy loss of a dynamic brake and feeds into the grid while an elevator inverter is operating in the braking mode. According to field measurement of energy consumption, it reveals that the efficiency can be improved as much as 18%. The prototype of a regenerative brake 12 kW, 400V, 3ϕ is developed and tested on an elevator simulator. It is shown that it can transfer energy out of a DC capacitor before the dynamic brake kicks in. Further, an economic analysis is provided to carry out the payback period and the present worth equivalent to confirm economic feasibility.

  5. Testing of Lightweight Fuel Cell Vehicles System at Low Speeds with Energy Efficiency Analysis

    NASA Astrophysics Data System (ADS)

    Mustaffa, Muhammad Rizuwan B.; Mohamed, Wan Ahmad Najmi B. Wan

    2013-12-01

    A fuel cell vehicle power train mini test bench was developed which consists of a 1 kW open cathode hydrogen fuel cell, electric motor, wheel, gearing system, DC/DC converter and vehicle control system (VCS). Energy efficiency identification and energy flow evaluation is a useful tool in identifying a detail performance of each component and sub-systems in a fuel cell vehicle system configuration. Three artificial traction loads was simulated at 30 kg, 40 kg and 50 kg force on a single wheel drive configuration. The wheel speed range reported here covers from idle to 16 km/h (low speed range) as a preliminary input in the research work frame. The test result shows that the system efficiency is 84.5 percent when the energy flow is considered from the fuel cell to the wheel and 279 watts of electrical power was produced by the fuel cell during that time. Dynamic system responses was also identified as the load increases beyond the motor traction capabilities where the losses at the converter and motor controller increased significantly as it tries to meet the motor traction power demands. This work is currently being further expanded within the work frame of developing a road-worthy fuel cell vehicle.

  6. Rolling-element fatigue life with two synthetic cycloaliphatic traction fluids

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.

    1976-01-01

    The life potential of two synthetic cycloaliphatic hydrocarbon traction fluids in rolling element fatigue was evaluated in a five ball fatigue tester. Life comparisons with a MIL-L-23699 qualified tetraester oil showed that the traction test oils had good fatigue life performance, comparable to that of the tetraester oil. No statistically significant life differences between the traction fluids and the tetraester oil were exhibited under the accelerated fatigue test conditions. Erratic operating behavior was occasionally encountered during tests with the antiwear additive containing traction fluid for reasons thought to be related to excessive chemical activity under high contact pressure. This behavior occasionally resulted in premature test termination due to excessive surface distress and overheating.

  7. Safety and efficacy of endoscopic submucosal dissection using IT knife nano with clip traction method for early esophageal squamous cell carcinoma.

    PubMed

    Kitagawa, Yoshiyasu; Suzuki, Takuto; Hara, Taro; Yamaguchi, Taketo

    2018-01-01

    Although endoscopic submucosal dissection (ESD) is an accepted and established treatment for early esophageal squamous cell carcinoma (EESCC), it is technically difficult, time consuming, and less safe than endoscopic mucosal resection. To perform ESD safely and more efficiently, we proposed a new technique of esophageal ESD using an IT knife nano with the clip traction method. This study aimed to evaluate the efficacy and safety of ESD using this new technique. We retrospectively reviewed all consecutive cases of esophageal ESD performed using an IT knife nano with the clip traction method at our hospital between March 2013 and January 2017. Therapeutic efficacy and safety were also assessed. A total of 103 patients underwent esophageal ESD using the IT knife nano with the clip traction method. In all cases, we performed en bloc resection. Complete resection was achieved in 100 cases (97.1%). The median operating time was 40 (range 13-230) min. No cases of perforation or delayed bleeding occurred. Although two cases (2.0%) of mediastinal emphysema occurred without visible perforation at endoscopy, all were successfully managed conservatively. The new technique of esophageal ESD using the IT knife nano with the clip traction method appears to be feasible, effective, and safe for EESCC treatment.

  8. Pulse charging of lead-acid traction cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1980-01-01

    Pulse charging, as a method of rapidly and efficiently charging 300 amp-hour lead-acid traction cells for an electric vehicle application was investigated. A wide range of charge pulse current square waveforms were investigated and the results were compared to constant current charging at the time averaged pulse current values. Representative pulse current waveforms were: (1) positive waveform-peak charge pulse current of 300 amperes (amps), discharge pulse-current of zero amps, and a duty cycle of about 50%; (2) Romanov waveform-peak charge pulse current of 300 amps, peak discharge pulse current of 15 amps, and a duty of 50%; and (3) McCulloch waveform peak charge pulse current of 193 amps, peak discharge pulse current of about 575 amps, and a duty cycle of 94%. Experimental results indicate that on the basis of amp-hour efficiency, pulse charging offered no significant advantage as a method of rapidly charging 300 amp-hour lead-acid traction cells when compared to constant current charging at the time average pulse current value. There were, however, some disadvantages of pulse charging in particular a decrease in charge amp-hour and energy efficiencies and an increase in cell electrolyte temperature. The constant current charge method resulted in the best energy efficiency with no significant sacrifice of charge time or amp-hour output. Whether or not pulse charging offers an advantage over constant current charging with regard to the cell charge/discharge cycle life is unknown at this time.

  9. Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Verbrugge, Mark; Soukiazian, Souren

    For hybrid electric vehicle traction applications, energy storage devices with high power density and energy efficiency are required. A primary attribute of supercapacitors is that they retain their high power density and energy efficiency even at -30 °C, the lowest temperature at which unassisted starting must be provided to customers. More abuse-tolerant electrolytes are preferred to the high-conductivity acetonitrile-based systems commonly employed. Propylene carbonate based electrolytes are a promising alternative. In this work, we compare the electrochemical performance of two high-power density electrical double layer supercapacitors employing acetonitrile and propylene carbonate as solvents. From this study, we are able to elucidate phenomena that control the resistance of supercapacitor at lower temperatures, and quantify the difference in performance associated with the two electrolytes.

  10. Traction force dynamics predict gap formation in activated endothelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valent, Erik T.; Nieuw Amerongen, Geerten P. van; Hinsbergh, Victor W.M. van

    In many pathological conditions the endothelium becomes activated and dysfunctional, resulting in hyperpermeability and plasma leakage. No specific therapies are available yet to control endothelial barrier function, which is regulated by inter-endothelial junctions and the generation of acto-myosin-based contractile forces in the context of cell-cell and cell-matrix interactions. However, the spatiotemporal distribution and stimulus-induced reorganization of these integral forces remain largely unknown. Traction force microscopy of human endothelial monolayers was used to visualize contractile forces in resting cells and during thrombin-induced hyperpermeability. Simultaneously, information about endothelial monolayer integrity, adherens junctions and cytoskeletal proteins (F-actin) were captured. This revealed a heterogeneousmore » distribution of traction forces, with nuclear areas showing lower and cell-cell junctions higher traction forces than the whole-monolayer average. Moreover, junctional forces were asymmetrically distributed among neighboring cells. Force vector orientation analysis showed a good correlation with the alignment of F-actin and revealed contractile forces in newly formed filopodia and lamellipodia-like protrusions within the monolayer. Finally, unstable areas, showing high force fluctuations within the monolayer were prone to form inter-endothelial gaps upon stimulation with thrombin. To conclude, contractile traction forces are heterogeneously distributed within endothelial monolayers and force instability, rather than force magnitude, predicts the stimulus-induced formation of intercellular gaps. - Highlights: • Endothelial monolayers exert dynamic- and heterogeneous traction forces. • High traction forces correlate with junctional areas and the F-actin cytoskeleton. • Newly formed inter-endothelial gaps are characterized by opposing traction forces. • Force stability is a key feature controlling endothelial permeability.« less

  11. Traction for low-back pain with or without sciatica.

    PubMed

    Wegner, Inge; Widyahening, Indah S; van Tulder, Maurits W; Blomberg, Stefan E I; de Vet, Henrica Cw; Brønfort, Gert; Bouter, Lex M; van der Heijden, Geert J

    2013-08-19

    Traction has been used to treat low-back pain (LBP), often in combination with other treatments. We included both manual and machine-delivered traction in this review. This is an update of a Cochrane review first published in 1995, and previously updated in 2006. To assess the effects of traction compared to placebo, sham traction, reference treatments and no treatment in people with LBP. We searched the Cochrane Back Review Group Specialized Register, the Cochrane Central Register of Controlled Trials (2012, Issue 8), MEDLINE (January 2006 to August 2012), EMBASE (January 2006 to August 2012), CINAHL (January 2006 to August 2012), and reference lists of articles and personal files. The review authors are not aware of any important new randomized controlled trial (RCTs) on this topic since the date of the last search. RCTs involving traction to treat acute (less than four weeks' duration), subacute (four to 12 weeks' duration) or chronic (more than 12 weeks' duration) non-specific LBP with or without sciatica. Two review authors independently performed study selection, risk of bias assessment and data extraction. As there were insufficient data for statistical pooling, we performed a descriptive analysis. We did not find any case series that identified adverse effects, therefore we evaluated adverse effects that were reported in the included studies. We included 32 RCTs involving 2762 participants in this review. We considered 16 trials, representing 57% of all participants, to have a low risk of bias based on the Cochrane Back Review Group's 'Risk of bias' tool.For people with mixed symptom patterns (acute, subacute and chronic LBP with and without sciatica), there was low- to moderate-quality evidence that traction may make little or no difference in pain intensity, functional status, global improvement or return to work when compared to placebo, sham traction or no treatment. Similarly, when comparing the combination of physiotherapy plus traction with physiotherapy alone or when comparing traction with other treatments, there was very-low- to moderate-quality evidence that traction may make little or no difference in pain intensity, functional status or global improvement.For people with LBP with sciatica and acute, subacute or chronic pain, there was low- to moderate-quality evidence that traction probably has no impact on pain intensity, functional status or global improvement. This was true when traction was compared with controls and other treatments, as well as when the combination of traction plus physiotherapy was compared with physiotherapy alone. No studies reported the effect of traction on return to work.For chronic LBP without sciatica, there was moderate-quality evidence that traction probably makes little or no difference in pain intensity when compared with sham treatment. No studies reported on the effect of traction on functional status, global improvement or return to work.Adverse effects were reported in seven of the 32 studies. These included increased pain, aggravation of neurological signs and subsequent surgery. Four studies reported that there were no adverse effects. The remaining studies did not mention adverse effects. These findings indicate that traction, either alone or in combination with other treatments, has little or no impact on pain intensity, functional status, global improvement and return to work among people with LBP. There is only limited-quality evidence from studies with small sample sizes and moderate to high risk of bias. The effects shown by these studies are small and are not clinically relevant. Implications for practice To date, the use of traction as treatment for non-specific LBP cannot be motivated by the best available evidence. These conclusions are applicable to both manual and mechanical traction. Implications for research Only new, large, high-quality studies may change the point estimate and its accuracy, but it should be noted that such change may not necessarily favour traction. Therefore, little priority should be given to new studies on the effect of traction treatment alone or as part of a package.

  12. Advanced Integrated Traction System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotivemore » platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.« less

  13. Development of Traction Drive Motors for the Toyota Hybrid System

    NASA Astrophysics Data System (ADS)

    Kamiya, Munehiro

    Toyota Motor Corporation developed in 2005 a new hybrid system for a large SUV. This system included the new development of a high-speed traction drive motor achieving a significant increase in power weight ratio. This paper provides an overview of the hybrid system, discusses the characteristics required of a traction drive motor, and presents the technologies employed in the developed motor.

  14. Development of an attention-touch control for manual cervical distraction: a pilot randomized clinical trial for patients with neck pain.

    PubMed

    Gudavalli, M Ram; Salsbury, Stacie A; Vining, Robert D; Long, Cynthia R; Corber, Lance; Patwardhan, Avinash G; Goertz, Christine M

    2015-06-05

    Manual cervical distraction (MCD) is a traction-based therapy performed with a manual contact over the cervical region producing repeating cycles while patients lie prone. This study evaluated a traction force-based minimal intervention for use as an attention-touch control in clinical trials of MCD for patients with chronic neck pain. We conducted a mixed-methods, pilot randomized clinical trial in adults with chronic neck pain. Participants were allocated to three traction force ranges of MCD: low force/minimal intervention (0-20 N), medium force (21-50 N), or high force (51-100 N). Clinicians delivered five treatments over two weeks consisting of three sets of five cycles of MCD at the C5 vertebra and occiput. Traction forces were measured at each treatment. Patient-reported outcomes included a pain visual analogue scale (VAS), Neck Disability Index (NDI), Credibility and Expectancy Questionnaire (CEQ), and adverse effects. A qualitative interview evaluated treatment group allocation perceptions. We randomized 48 participants, allocating an average of five each month. Forty-five participants completed the trial with three participants lost to follow-up. Most participants were women (65%) and white (92%) with a mean (SD) age of 46.8 (12.5) years. Mean traction force values were within the prescribed force ranges for each group at the C5 and occiput levels. Neck pain VAS demonstrated a benefit for high traction force MCD compared to the low force group [adjusted mean difference 15.6; 95% confidence interval (CI) 1.6 to 29.7]. Participants in the medium traction force group demonstrated improvements in NDI compared to the low force group (adjusted mean difference 3.0; 95% CI 0.1 to 5.9), as did participants in the high traction force group (adjusted mean difference 2.7; 95% CI -0.1 to 5.6). CEQ favored the high force group. Most low force participants correctly identified their treatment allocation in the qualitative interview. No serious adverse events were documented. This pilot study demonstrated the feasibility of a clinical trial protocol and the utility of a traction-based, minimal intervention as an attention-touch control for future efficacy trials of MCD for patients with neck pain. ClinicalTrials.gov NCT01765751 (Registration Date 30 May 2012).

  15. Spur-Gear-System Efficiency at Part and Full Load

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1980-01-01

    A simple method for predicting the part- and full-load power loss of a steel spur gearset of arbitrary geometry supported by ball bearings is described. The analysis algebraically accounts for losses due to gear sliding, rolling traction, and windage in addition to support-ball-bearing losses. The analysis compares favorably with test data. A theoretical comparison of the component losses indicates that losses due to gear rolling traction, windage, and support bearings are significant and should be included along with gear sliding loss in a calculation of gear-system power loss.

  16. Factors influencing aircraft ground handling performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft ground handling operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from tests with instrumented ground vehicles and aircraft, and aircraft wet runway accident investigation are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  17. Naegele Forceps Delivery and Association between Morbidity and the Number of Forceps Traction Applications: A Retrospective Study.

    PubMed

    Matsumoto, Naoki; Takenaka, Toshifumi; Ikeda, Nobuyuki; Yazaki, Satoshi; Sato, Yuichi

    2015-01-01

    To present the method of Naegele forceps delivery clinically practiced by the lead author, its success rate, and morbidity and to evaluate the relationship between morbidity and the number of forceps traction applications. Naegele forceps delivery was performed when the fetal head reached station +2 cm, the forceps were applied in the maternal pelvic application, and traction was slowly and gently performed. In the past two years, Naegele forceps delivery was attempted by the lead author in 87 cases, which were retrospectively reviewed. The numbers of traction applications were one in 64.7% of cases, two in 24.7%, and three or more in 10.7%. The success rate was 100%. No severe morbidity was observed in mothers or neonates. Neonatal facial injury occurred most commonly in cases with fetal head malrotation, elevated numbers of traction applications, and maternal complications. Umbilical artery acidemia most commonly occurred in cases with nonreassuring fetal status. The significant crude odds ratio for three or more traction applications was 20 in cases with malrotation. Naegele forceps delivery has a high success rate, but multiple traction applications will sometimes be required, particularly in cases with malrotation. Malrotation and elevated numbers of traction applications may lead to neonatal head damage.

  18. Asymmetry of activation of lateral abdominal muscles during the neurodevelopmental traction technique.

    PubMed

    Gogola, Anna; Gnat, Rafał; Zaborowska, Małgorzata; Dziub, Dorota; Gwóźdź, Michalina

    2018-01-01

    The aim of the study was to evaluate the symmetry and pattern of activation of lateral abdominal muscles (LAM) in response to neurodevelopmental traction technique. Measurements of LAM thickness were performed in four experimental conditions: during traction with the force of 5% body weight (5% traction): 1) in neutral position, 2) in 20° posterior trunk inclination; during traction with the force of 15% body weight (15% traction): 3) in neutral position, 4) in 20° posterior trunk inclination. Thirty-seven healthy children participated in the study. Not applicable. To evaluate LAM activation level ultrasound technology was employed (two Mindray DP660 devices (Mindray, Shenzhen, China) with 75L38EA linear probes). An experiment with repeated measurements of the dependent variables was conducted. Side-to-side LAM activation asymmetry showed relatively high magnitude, however, significant difference was found only in case of the obliquus externus (OE) during stronger traction (P < 0.05). The magnitude of LAM thickness change formed a gradient, with the most profound transversus abdominis (TrA) showing the smallest change, and the most superficial OE - the greatest. The inter-muscle differences were most pronounced between the OE and TrA (P < 0.001). During the neurodevelopmental traction technique there is a difference in individual LAM activation level, with deeper muscles showing less intense activation. In statistical terms, the only signs of side-to-side asymmetry of LAM activation are visible in case of the OE, however, the magnitude of asymmetry is relatively high. The results allow to identify patterns of activation of LAM in children showing typical development that will serve as a reference in future studies in children with neurological disorder. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cellular traction force recovery: An optimal filtering approach in two-dimensional Fourier space.

    PubMed

    Huang, Jianyong; Qin, Lei; Peng, Xiaoling; Zhu, Tao; Xiong, Chunyang; Zhang, Youyi; Fang, Jing

    2009-08-21

    Quantitative estimation of cellular traction has significant physiological and clinical implications. As an inverse problem, traction force recovery is essentially susceptible to noise in the measured displacement data. For traditional procedure of Fourier transform traction cytometry (FTTC), noise amplification is accompanied in the force reconstruction and small tractions cannot be recovered from the displacement field with low signal-noise ratio (SNR). To improve the FTTC process, we develop an optimal filtering scheme to suppress the noise in the force reconstruction procedure. In the framework of the Wiener filtering theory, four filtering parameters are introduced in two-dimensional Fourier space and their analytical expressions are derived in terms of the minimum-mean-squared-error (MMSE) optimization criterion. The optimal filtering approach is validated with simulations and experimental data associated with the adhesion of single cardiac myocyte to elastic substrate. The results indicate that the proposed method can highly enhance SNR of the recovered forces to reveal tiny tractions in cell-substrate interaction.

  20. The nucleus is an intracellular propagator of tensile forces in NIH 3T3 fibroblasts

    PubMed Central

    Alam, Samer G.; Lovett, David; Kim, Dae In; Roux, Kyle J.; Dickinson, Richard B.; Lele, Tanmay P.

    2015-01-01

    ABSTRACT Nuclear positioning is a crucial cell function, but how a migrating cell positions its nucleus is not understood. Using traction-force microscopy, we found that the position of the nucleus in migrating fibroblasts closely coincided with the center point of the traction-force balance, called the point of maximum tension (PMT). Positioning of the nucleus close to the PMT required nucleus–cytoskeleton connections through linker of nucleoskeleton-to-cytoskeleton (LINC) complexes. Although the nucleus briefly lagged behind the PMT following spontaneous detachment of the uropod during migration, the nucleus quickly repositioned to the PMT within a few minutes. Moreover, traction-generating spontaneous protrusions deformed the nearby nucleus surface to pull the nuclear centroid toward the new PMT, and subsequent retraction of these protrusions relaxed the nuclear deformation and restored the nucleus to its original position. We propose that the protruding or retracting cell boundary transmits a force to the surface of the nucleus through the intervening cytoskeletal network connected by the LINC complexes, and that these forces help to position the nucleus centrally and allow the nucleus to efficiently propagate traction forces across the length of the cell during migration. PMID:25908852

  1. [Meta-analysis of needle-knife treatment on cervical spondylosis].

    PubMed

    Kan, Li-Li; Wang, Hai-Dong; Liu, An-Guo

    2013-11-01

    To assess the efficacy of cervical spondylosis by needle-knife treatment according to the correlated literature of RCT,to compare advantages of needle-knife treatment. Randomized Controlled Trials about needle-knife treatment of cervical spondylosis were indexed from Chinese HowNet (CNKI) and Wanfang (WF) from 2000 to 2012, then were analyzed the efficacy by Review Manager 5.1 software. A total of 13 RCT literatures and 1 419 patients were included. The methods of included studies were poor in quality evaluation because of large sample and multi-center RCT studies was lacked, randomization method was not accurate enough, diagnostic criteria and efficacy evaluation were various, only four studies described long-term efficacy, most of the literature didn't describe the adverse event and fall off,all studies did not use the blind method. The Meta analysis outcome showed overall efficiency of needle-knife therapy was better than acupuncture and traction. Needle-knife therapy compared with Acupuncture, the total RR = 0.19, 95% confidence interval was (0.15, 0.24), P < 0.000.01. Compared with traction therapy the total RR = 1.30, 95% confidence intervalwas (1.18,1.42), P < 0.00001. Compared with acupuncture therapy,the overall effectiveness of needle-knife therapy is higher;compared with traction therapy, although,needle-knife therapy has a high overall effectiveness, but because of the loss of total sample size, the outcome RCT researches to confirm.

  2. Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration

    NASA Technical Reports Server (NTRS)

    Klein, Richard C.; Fusaro, Robert L.; Dimofte, Florin

    2012-01-01

    NASA s initiative for Lunar and Martian exploration will require long lived, robust drive systems for manned vehicles that must operate in hostile environments. The operation of these mechanical drives will pose a problem because of the existing extreme operating conditions. Some of these extreme conditions include operating at a very high or very cold temperature, operating over a wide range of temperatures, operating in very dusty environments, operating in a very high radiation environment, and operating in possibly corrosive environments. Current drive systems use gears with various configurations of teeth. These gears must be lubricated with oil (or grease) and must have some sort of a lubricant resupply system. For drive systems, oil poses problems such as evaporation, becoming too viscous and eventually freezing at cold temperatures, being too thin to lubricate at high temperatures, being degraded by the radiation environment, being contaminated by the regolith (soil), and if vaporized (and not sealed), it will contaminate the regolith. Thus, it may not be advisable or even possible to use oil because of these limitations. An oil-less, compact traction vehicle drive is a drive designed for use in hostile environments like those that will be encountered on planetary surfaces. Initially, traction roller tests in vacuum were conducted to obtain traction and endurance data needed for designing the drives. From that data, a traction drive was designed that would fit into a prototype lunar rover vehicle, and this design data was used to construct several traction drives. These drives were then tested in air to determine their performance characteristics, and if any final corrections to the designs were necessary. A limitation with current speed reducer systems such as planetary gears and harmonic drives is the high-contact stresses that occur at tooth engagement and in the harmonic drive wave generator interface. These high stresses induce high wear of solid lubricant coatings, thus necessitating the use of liquid lubricants for long life.

  3. High-Force Versus Low-Force Lumbar Traction in Acute Lumbar Sciatica Due to Disc Herniation: A Preliminary Randomized Trial.

    PubMed

    Isner-Horobeti, Marie-Eve; Dufour, Stéphane Pascal; Schaeffer, Michael; Sauleau, Erik; Vautravers, Philippe; Lecocq, Jehan; Dupeyron, Arnaud

    This study compared the effects of high-force versus low-force lumbar traction in the treatment of acute lumbar sciatica secondary to disc herniation. A randomized double blind trial was performed, and 17 subjects with acute lumbar sciatica secondary to disc herniation were assigned to high-force traction at 50% body weight (BW; LT50, n = 8) or low force traction at 10% BW (LT10, n = 9) for 10 sessions in 2 weeks. Radicular pain (visual analogue scale [VAS]), lumbo-pelvic-hip complex motion (finger-to-toe test), lumbar-spine mobility (Schöber-Macrae test), nerve root compression (straight-leg-raising test), disability (EIFEL score), drug consumption, and overall evaluation of each patient were measured at days 0, 7, 1, 4, and 28. Significant (P < .05) improvements were observed in the LT50 and LT10 groups, respectively, between day 0 and day 14 (end of treatment) for VAS (-44% and -36%), EIFEL score (-43% and -28%) and overall patient evaluation (+3.1 and +2.0 points). At that time, LT50 specifically improved in the finger-to-toe test (-42%), the straight-leg-raising test (+58), and drug consumption (-50%). No significant interaction effect (group-by-time) was revealed, and the effect of traction treatment was independent of the level of medication. During the 2-week follow-up at day 28, only the LT10 group improved (P < .05) in VAS (-52%) and EIFEL scores (-46%). During this period, no interaction effect (group-by-time) was identified, and the observed responses were independent of the level of medication. For this preliminary study, patients with acute lumbar sciatica secondary to disc herniation who received 2 weeks of lumbar traction reported reduced radicular pain and functional impairment and improved well-being regardless of the traction force group to which they were assigned. The effects of the traction treatment were independent of the initial level of medication and appeared to be maintained at the 2-week follow-up. Copyright © 2016. Published by Elsevier Inc.

  4. Design and performance tests of a distributed power-driven wheel loader

    NASA Astrophysics Data System (ADS)

    Jin, Xiaolin; Shi, Laide; Bian, Yongming

    2010-03-01

    An improved ZLM15B distributed power-driven wheel loader was designed, whose travel and brake system was accomplished by two permanent magnet synchronous motorized-wheels instead of traditional mechanical components, and whose hydraulic systems such as the working device system and steering system were both actuated by an induction motor. All above systems were flexibly coupled with 3-phase 380VAC electric power with which the diesel engine power is replaced. On the level cement road, traveling, braking, traction and steering tests were carried out separately under non-load and heavy-load conditions. Data show that machine speed is 5 km/h around and travel efficiency of motorized-wheels is above 95%; that machine braking deceleration is between 0.5 and 0.64 m/s2 but efficiency of motorized-wheels is less than 10%; that maximum machine traction is above 2t while efficiency of motorized-wheels is more than 90% and that adaptive differential steering can be smoothly achieved by motorized-wheels.

  5. Design and performance tests of a distributed power-driven wheel loader

    NASA Astrophysics Data System (ADS)

    Jin, Xiaolin; Shi, Laide; Bian, Yongming

    2009-12-01

    An improved ZLM15B distributed power-driven wheel loader was designed, whose travel and brake system was accomplished by two permanent magnet synchronous motorized-wheels instead of traditional mechanical components, and whose hydraulic systems such as the working device system and steering system were both actuated by an induction motor. All above systems were flexibly coupled with 3-phase 380VAC electric power with which the diesel engine power is replaced. On the level cement road, traveling, braking, traction and steering tests were carried out separately under non-load and heavy-load conditions. Data show that machine speed is 5 km/h around and travel efficiency of motorized-wheels is above 95%; that machine braking deceleration is between 0.5 and 0.64 m/s2 but efficiency of motorized-wheels is less than 10%; that maximum machine traction is above 2t while efficiency of motorized-wheels is more than 90% and that adaptive differential steering can be smoothly achieved by motorized-wheels.

  6. A Novel Adjustment Method for Shearer Traction Speed through Integration of T-S Cloud Inference Network and Improved PSO

    PubMed Central

    Si, Lei; Wang, Zhongbin; Yang, Yinwei

    2014-01-01

    In order to efficiently and accurately adjust the shearer traction speed, a novel approach based on Takagi-Sugeno (T-S) cloud inference network (CIN) and improved particle swarm optimization (IPSO) is proposed. The T-S CIN is built through the combination of cloud model and T-S fuzzy neural network. Moreover, the IPSO algorithm employs parameter automation adjustment strategy and velocity resetting to significantly improve the performance of basic PSO algorithm in global search and fine-tuning of the solutions, and the flowchart of proposed approach is designed. Furthermore, some simulation examples are carried out and comparison results indicate that the proposed method is feasible, efficient, and is outperforming others. Finally, an industrial application example of coal mining face is demonstrated to specify the effect of proposed system. PMID:25506358

  7. Traction force microscopy in rapidly moving cells reveals separate roles for ROCK and MLCK in the mechanics of retraction.

    PubMed

    Morin, Timothy R; Ghassem-Zadeh, Sean A; Lee, Juliet

    2014-08-15

    Retraction is a major rate-limiting step in cell motility, particularly in slow moving cell types that form large stable adhesions. Myosin II dependent contractile forces are thought to facilitate detachment by physically pulling up the rear edge. However, retraction can occur in the absence of myosin II activity in cell types that form small labile adhesions. To investigate the role of contractile force generation in retraction, we performed traction force microscopy during the movement of fish epithelial keratocytes. By correlating changes in local traction stress at the rear with the area retracted, we identified four distinct modes of retraction. "Recoil" retractions are preceded by a rise in local traction stress, while rear edge is temporarily stuck, followed by a sharp drop in traction stress upon detachment. This retraction type was most common in cells generating high average traction stress. In "pull" type retractions local traction stress and area retracted increase concomitantly. This was the predominant type of retraction in keratocytes and was observed mostly in cells generating low average traction stress. "Continuous" type retractions occur without any detectable change in traction stress, and are seen in cells generating low average traction stress. In contrast, to many other cell types, "release" type retractions occur in keratocytes following a decrease in local traction stress. Our identification of distinct modes of retraction suggests that contractile forces may play different roles in detachment that are related to rear adhesion strength. To determine how the regulation of contractility via MLCK or Rho kinase contributes to the mechanics of detachment, inhibitors were used to block or augment these pathways. Modulation of MLCK activity led to the most rapid change in local traction stress suggesting its importance in regulating attachment strength. Surprisingly, Rho kinase was not required for detachment, but was essential for localizing retraction to the rear. We suggest that in keratocytes MLCK and Rho kinase play distinct, complementary roles in the respective temporal and spatial control of rear detachment that is essential for maintaining rapid motility. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Influence of basketball shoe mass, outsole traction, and forefoot bending stiffness on three athletic movements.

    PubMed

    Worobets, Jay; Wannop, John William

    2015-09-01

    Prior research has shown that footwear can enhance athletic performance. However, public information is not available on what basketball shoe properties should be selected to maximise movement performance. Therefore, the purpose of the study was to investigate the influence of basketball shoe mass, outsole traction, and forefoot bending stiffness on sprinting, jumping, and cutting performance. Each of these three basketball shoe properties was systematically varied by ± 20% to produce three shoe conditions of varying mass, three conditions of varying traction, and three conditions of varying bending stiffness. Each shoe was tested by 20 recreational basketball players completing maximal effort sprints, vertical jumps, and a cutting drill. Outsole traction had the largest influence on performance, as the participants performed significantly worse in all tests when traction was decreased by 20% (p < 0.001), and performed significantly better in the cutting drill when traction was increased by 20% (p = 0.005). Forefoot bending stiffness had a moderate effect on sprint and cutting performance (p = 0.013 and p = 0.016 respectively) and shoe mass was found to have no effect on performance. Therefore, choosing a shoe with relatively high outsole traction and forefoot bending stiffness should be prioritised, and less concern should be focused on selecting the lightest shoe.

  9. High Resolution, Large Deformation 3D Traction Force Microscopy

    PubMed Central

    López-Fagundo, Cristina; Reichner, Jonathan; Hoffman-Kim, Diane; Franck, Christian

    2014-01-01

    Traction Force Microscopy (TFM) is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D) imaging and traction force analysis (3D TFM) have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients. PMID:24740435

  10. Force Mapping during the Formation and Maturation of Cell Adhesion Sites with Multiple Optical Tweezers

    PubMed Central

    Schwingel, Melanie; Bastmeyer, Martin

    2013-01-01

    Focal contacts act as mechanosensors allowing cells to respond to their biomechanical environment. Force transmission through newly formed contact sites is a highly dynamic process requiring a stable link between the intracellular cytoskeleton and the extracellular environment. To simultaneously investigate cellular traction forces in several individual maturing adhesion sites within the same cell, we established a custom-built multiple trap optical tweezers setup. Beads functionalized with fibronectin or RGD-peptides were placed onto the apical surface of a cell and trapped with a maximum force of 160 pN. Cells form adhesion contacts around the beads as demonstrated by vinculin accumulation and start to apply traction forces after 30 seconds. Force transmission was found to strongly depend on bead size, surface density of integrin ligands and bead location on the cell surface. Highest traction forces were measured for beads positioned on the leading edge. For mouse embryonic fibroblasts, traction forces acting on single beads are in the range of 80 pN after 5 minutes. If two beads were positioned parallel to the leading edge and with a center-to-center distance less than 10 µm, traction forces acting on single beads were reduced by 40%. This indicates a spatial and temporal coordination of force development in closely related adhesion sites. We also used our setup to compare traction forces, retrograde transport velocities, and migration velocities between two cell lines (mouse melanoma and fibroblasts) and primary chick fibroblasts. We find that maximal force development differs considerably between the three cell types with the primary cells being the strongest. In addition, we observe a linear relation between force and retrograde transport velocity: a high retrograde transport velocity is associated with strong cellular traction forces. In contrast, migration velocity is inversely related to traction forces and retrograde transport velocity. PMID:23372781

  11. Parallel computation using boundary elements in solid mechanics

    NASA Technical Reports Server (NTRS)

    Chien, L. S.; Sun, C. T.

    1990-01-01

    The inherent parallelism of the boundary element method is shown. The boundary element is formulated by assuming the linear variation of displacements and tractions within a line element. Moreover, MACSYMA symbolic program is employed to obtain the analytical results for influence coefficients. Three computational components are parallelized in this method to show the speedup and efficiency in computation. The global coefficient matrix is first formed concurrently. Then, the parallel Gaussian elimination solution scheme is applied to solve the resulting system of equations. Finally, and more importantly, the domain solutions of a given boundary value problem are calculated simultaneously. The linear speedups and high efficiencies are shown for solving a demonstrated problem on Sequent Symmetry S81 parallel computing system.

  12. Rolling, slip and traction measurements on low modulus materials

    NASA Technical Reports Server (NTRS)

    Tevaarwerk, J. L.

    1985-01-01

    Traction and wear tests were performed on six low modulus materials (LMM). Three different traction tests were performed to determine the suitability of the material for use as traction rollers. These were the rolling, slip and endurance traction tests. For each material the combination LMM on LMM and LMM on steel were evaluated. Rolling traction test were conducted to determine the load - velocity limits, the rolling traction coefficient of the materials and to establish the type of failures that would result when loading beyond the limit. It was found that in general a simple constant rolling traction coefficient was enough to describe the results of all the test. The slip traction tests revealed that the peak traction coefficients were considerably higher than for lubricated traction contacts. The endurance traction tests were performed to establish the durability of the LMM under conditions of prolonged traction. Wear measurements were performed during and after the test. Energetic wear rates were determined from the wear measurements conducted in the endurance traction tests. These values show that the roller wear is not severe when reasonable levels of traction are transmitted.

  13. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels

    NASA Astrophysics Data System (ADS)

    Khetan, Sudhir; Guvendiren, Murat; Legant, Wesley R.; Cohen, Daniel M.; Chen, Christopher S.; Burdick, Jason A.

    2013-05-01

    Although cell-matrix adhesive interactions are known to regulate stem cell differentiation, the underlying mechanisms, in particular for direct three-dimensional encapsulation within hydrogels, are poorly understood. Here, we demonstrate that in covalently crosslinked hyaluronic acid (HA) hydrogels, the differentiation of human mesenchymal stem cells (hMSCs) is directed by the generation of degradation-mediated cellular traction, independently of cell morphology or matrix mechanics. hMSCs within HA hydrogels of equivalent elastic moduli that permit (restrict) cell-mediated degradation exhibited high (low) degrees of cell spreading and high (low) tractions, and favoured osteogenesis (adipogenesis). Moreover, switching the permissive hydrogel to a restrictive state through delayed secondary crosslinking reduced further hydrogel degradation, suppressed traction, and caused a switch from osteogenesis to adipogenesis in the absence of changes to the extended cellular morphology. Furthermore, inhibiting tension-mediated signalling in the permissive environment mirrored the effects of delayed secondary crosslinking, whereas upregulating tension induced osteogenesis even in the restrictive environment.

  14. Novel characteristics of traction force in biliary self-expandable metallic stents.

    PubMed

    Hori, Yasuki; Hayashi, Kazuki; Yoshida, Michihiro; Naitoh, Itaru; Ban, Tesshin; Miyabe, Katsuyuki; Kondo, Hiromu; Nishi, Yuji; Umemura, Shuichiro; Fujita, Yasuaki; Natsume, Makoto; Kato, Akihisa; Ohara, Hirotaka; Joh, Takashi

    2017-05-01

    In recent years, knowledge concerning the mechanical properties of self-expandable metallic stents (SEMS) has increased. In a previous study, we defined traction force and traction momentum and reported that these characteristics are important for optimal stent deployment. However, traction force and traction momentum were represented as relative values and were not evaluated in various conditions. The purpose of the present study was to measure traction force in various situations assumed during SEMS placement. Traction force and traction momentum were measured in non-stricture, stricture, and angled stricture models using in-house equipment. Stricture and angled stricture models had significantly higher traction force and traction momentum than those of the non-stricture model (stricture vs non-stricture: traction force, 7.2 N vs 1.4 N, P < 0.001; traction momentum, 237.8 Ns vs 62.3 Ns, P = 0.001; angled stricture vs non-stricture: traction force, 7.4 N vs 1.4 N, P < 0.001; traction momentum, 307.2 Ns vs 62.3 Ns, P < 0.001). Traction force was variable during SEMS placement and was categorized into five different stages, which were similar in both the stricture and angled stricture models. We measured traction force and traction momentum under simulated clinical conditions and demonstrated that strictures and the angular positioning of the stent influenced the traction force. Clinicians should be aware of the transition of the traction force and should schedule X-ray imaging during SEMS placement. © 2017 Japan Gastroenterological Endoscopy Society.

  15. The Effects of Shoe Traction and Obstacle Height on Lower Extremity Coordination Dynamics during Walking

    PubMed Central

    Decker, Leslie; Houser, Jeremy J.; Noble, John M.; Karst, Gregory M.; Stergiou, Nicholas

    2009-01-01

    This study aims to investigate the effects of shoe traction and obstacle height on lower extremity relative phase dynamics (analysis of intralimb coordination) during walking to better understand the mechanisms employed to avoid slippage following obstacle clearance. Ten participants walked at a self-selected pace during eight conditions: four obstacle heights (0%, 10%, 20%, and 40% of limb length) while wearing two pairs of shoes (low and high traction). A coordination analysis was used and phasing relationships between lower extremity segments were examined. The results demonstrated that significant behavioral changes were elicited under varied obstacle heights and frictional conditions. Both decreasing shoe traction and increasing obstacle height resulted in a more in-phase relationship between the interacting lower limb segments. The higher the obstacle and the lower the shoe traction, the more unstable the system became. These changes in phasing relationship and variability are indicators of alterations in coordinative behavior, which if pushed further may have lead to falling. PMID:19187929

  16. Bulk Viscoelastic Contribution to the Wet Sliding Friction of Rubber Compounds

    NASA Astrophysics Data System (ADS)

    Pan, Xiao-Dong

    2002-03-01

    An efficient stopping of an automobile on a wet highway in a rainy day is of obvious importance to the safety of the driving public. Here tire tread made of filled rubber compounds plays an essential role in detremining the wet traction performance. Even though significant progress has been made in improving this tire performance character and much knowledge has been accumulated, there still lacks a coherent fundamental understanding on this dynamic process. Consequently there currently exist no accurate guidelines for designing rubber compounds for better wet traction, and for predicting the wet traction performance of a rubber compound. In this experimental study, a portable British Pendulum Skid Tester has been employed to examine in the laboratory how the rubber compound material properties affect its wet sliding friction on a concrete surface. A dramatic dispaly of the impacts from the compound bulk viscoelastic properties has been observed for the first time. This observation will be discussed in relation to previous results discussed in the literature.

  17. Optimization of wheel-rail interface friction using top-of-rail friction modifiers: State of the art

    NASA Astrophysics Data System (ADS)

    Khan, M. Roshan; Dasaka, Satyanarayana Murty

    2018-05-01

    High Speed Railways and Dedicated Freight Corridors are the need of the day for fast and efficient transportation of the ever growing population and freight across long distances of travel. With the increase in speeds and axle loads carried by these trains, wearing out of rails and train wheel sections are a common issue, which is due to the increase in friction at the wheel-rail interfaces. For the cases where the wheel-rail interface friction is less than optimum, as in case of high speed trains with very low axle loads, wheel-slips are imminent and loss of traction occurs when the trains accelerate rapidly or brake all of a sudden. These vast variety of traction problems around the wheel-rail interface friction need to be mitigated carefully, so that the contact interface friction neither ascents too high to cause material wear and need for added locomotive power, nor be on the lower side to cause wheel-slips and loss of traction at high speeds. Top-of-rail friction modifiers are engineered surface coatings applied on top of rails, to maintain an optimum frictional contact between the train wheels and the rails. Extensive research works in the area of wheel-rail tribology have revealed that the optimum frictional coefficients at wheel-rail interfaces lie at a value of around 0.35. Application of top-of-rail (TOR) friction modifiers on rail surfaces add an extra layer of material coating on top of the rails, with a surface frictional coefficient of the desired range. This study reviews the common types of rail friction modifiers, the methods for their application, issues related with the application of friction modifiers, and a guideline on selection of the right class of coating material based on site specific requirements of the railway networks.

  18. Solid lubrication design methodology, phase 2

    NASA Technical Reports Server (NTRS)

    Pallini, R. A.; Wedeven, L. D.; Ragen, M. A.; Aggarwal, B. B.

    1986-01-01

    The high temperature performance of solid lubricated rolling elements was conducted with a specially designed traction (friction) test apparatus. Graphite lubricants containing three additives (silver, phosphate glass, and zinc orthophosphate) were evaluated from room temperature to 540 C. Two hard coats were also evaluated. The evaluation of these lubricants, using a burnishing method of application, shows a reasonable transfer of lubricant and wear protection for short duration testing except in the 200 C temperature range. The graphite lubricants containing silver and zinc orthophosphate additives were more effective than the phosphate glass material over the test conditions examined. Traction coefficients ranged from a low of 0.07 to a high of 0.6. By curve fitting the traction data, empirical equations for slope and maximum traction coefficient as a function of contact pressure (P), rolling speed (U), and temperature (T) can be developed for each lubricant. A solid lubricant traction model was incorporated into an advanced bearing analysis code (SHABERTH). For comparison purposes, preliminary heat generation calculations were made for both oil and solid lubricated bearing operation. A preliminary analysis indicated a significantly higher heat generation for a solid lubricated ball bearing in a deep groove configuration. An analysis of a cylindrical roller bearing configuration showed a potential for a low friction solid lubricated bearing.

  19. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness

    PubMed Central

    Marinković, Aleksandar; Mih, Justin D.; Park, Jin-Ah; Liu, Fei

    2012-01-01

    Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated contraction of lung fibroblasts and suggest that stiff fibrotic lung tissue may promote myofibroblast activation through contractility-driven events, whereas normal lung tissue compliance may protect against such feedback amplification of fibroblast activation. PMID:22659883

  20. New trends and affinity tag designs for recombinant protein purification.

    PubMed

    Wood, David W

    2014-06-01

    Engineered purification tags can facilitate very efficient purification of recombinant proteins, resulting in high yields and purities in a few standard steps. Over the years, many different purification tags have been developed, including short peptides, epitopes, folded protein domains, non-chromatographic tags and more recently, compound multifunctional tags with optimized capabilities. Although classic proteases are still primarily used to remove the tags from target proteins, new self-cleaving methods are gaining traction as a highly convenient alternative. In this review, we discuss some of these emerging trends, and examine their potential impacts and remaining challenges in recombinant protein research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Magnetic anchor guidance for endoscopic submucosal dissection and other endoscopic procedures

    PubMed Central

    Mortagy, Mohamed; Mehta, Neal; Parsi, Mansour A; Abe, Seiichiro; Stevens, Tyler; Vargo, John J; Saito, Yutaka; Bhatt, Amit

    2017-01-01

    Endoscopic submucosal dissection (ESD) is a well-established, minimally invasive treatment for superficial neoplasms of the gastrointestinal tract. The universal adoption of ESD has been limited by its slow learning curve, long procedure times, and high risk of complications. One technical challenge is the lack of a second hand that can provide traction, as in conventional surgery. Reliable tissue retraction that exposes the submucosal plane of dissection would allow for safer and more efficient dissection. Magnetic anchor guided endoscopic submucosal dissection (MAG-ESD) has potential benefits compared to other current traction methods. MAG-ESD offers dynamic tissue retraction independent of the endoscope mimicking a surgeon’s “second hand”. Two types of magnets can be used: electromagnets and permanent magnets. In this article we review the MAG-ESD technology, published work and studies of magnets in ESD. We also review the use of magnetic anchor guidance systems in natural orifice transluminal endoscopic surgery and the idea of magnetic non-contact retraction using surface ferromagentization. We discuss the current limitations, the future potential of MAG-ESD and the developments needed for adoption of this technology. PMID:28522906

  2. Analysis of the monitoring data of geomagnetic storm interference in the electrification system of a high-speed railway

    NASA Astrophysics Data System (ADS)

    Liu, Lianguang; Ge, Xiaoning; Zong, Wei; Zhou, You; Liu, Mingguang

    2016-10-01

    To study the impact of geomagnetic storm on the equipment of traction electrification system in the high-speed railway, geomagnetically induced current (GIC) monitoring devices were installed in the Hebi East traction power supply substation of the Beijing-Hong Kong Dedicated Passenger Line in January 2015, and GICs were captured during the two geomagnetic storms on 17 March and 23 June 2015. In order to investigate the GIC flow path, both in the track circuit and in the traction network adopting the autotransformer feeding system, a GIC monitor plan was proposed for the electrical system in the Hebi East traction power supply substation. This paper analyzes the correlation between the GIC captured on 17 March and the geomagnetic data obtained from the Malingshan Geomagnetic Observatory and presents a regression analysis between the measured GIC and the calculated geoelectric fields on 23 June in the high-speed railway. The maximum GICs measured in the track circuit are 1.08 A and 1.74 A during the two geomagnetic storms. We find that it is necessary to pay attention on the throttle transformers and track circuits, as the most sensitive elements responding to the extreme geomagnetic storms in the high-speed railway.

  3. Regression analysis of traction characteristics of traction fluids

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Rohn, D. A.

    1983-01-01

    Traction data for Santotrac 50 and TDF-88 over a wide range of operating conditions were analyzed. An eight term correlation equation to predict the maximum traction coefficient and a six term correlation equation to predict the initial slope of the traction curve were developed. The slope correlation was corrected for size effect considering the compliance of the disks. The effects of different operating conditions on the traction performance of each traction fluid were studied. Both fluids exhibited a loss in traction with increases in spin, but the losses with the TDF-88 fluid were not as severe as those with Santotrac 50. Overall, both fluids exhibited similar performance, showing an increase in traction with contact pressure up to about 2.0 GPa, and a reduction in traction with higher surface speeds up to about 100 m/sec. The apparent stiffness of the traction contact, that is, film disk combination, increases with contact pressure and decreases with speed.

  4. Vehicle non-exhaust emissions from the tyre-road interface - effect of stud properties, traction sanding and resuspension

    NASA Astrophysics Data System (ADS)

    Kupiainen, Kaarle J.; Pirjola, Liisa

    2011-08-01

    In Northern cities respirable street dust emission levels (PM 10) are especially high during spring. The spring time dust has been observed to cause health effects as well as discomfort among citizens. Major sources of the dust are the abrasion products from the pavement and traction sand aggregates that are formed due to the motion of the tyre. We studied the formation of respirable abrasion particles in the tyre-road interface due to tyre studs and traction sanding by a mobile laboratory vehicle Sniffer. The measurements were preformed on a test track, where the influence of varying stud weight and stud number per tyre on PM 10 emissions was studied. Studded tyres resulted in higher emission levels than studless tyres especially with speeds 50 km h -1 and higher; however, by using light weight studs, which approximately halves the weight of studs, or by reducing the number of studs per tyre to half, the emission levels decreased by approximately half. Additionally measurements were done with and without traction sand coverage on the pavement of a public road. After traction sanding the emission levels were not affected by tyre type but by formation and suspension of traction sand related dust from the road surface. The emissions after traction sanding decreased as a function of time as passing vehicles' motion shifted the sand grains away from the areas with most tyre-road contact.

  5. Traction behavior of two traction lubricants

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Rohn, D. A.

    1983-01-01

    In the analysis of rolling-sliding concentrated contacts, such as gears, bearings and traction drives, the traction characteristics of the lubricant are of prime importance. The elastic shear modulus and limiting shear stress properties of the lubricant dictate the traction/slip characteristics and power loss associated with an EHD contact undergoing slip and/or spin. These properties can be deducted directly from the initial slope m and maximum traction coefficient micron of an experimental traction curve. In this investigation, correlation equations are presented to predict m and micron for two modern traction fluids based on the regression analysis of 334 separate traction disk machine experiments. The effects of contact pressure, temperature, surface velocity, ellipticity ratio are examined. Problems in deducing lubricant shear moduli from disk machine tests are discussed.

  6. Using real-time ultrasound imaging as adjunct teaching tools to enhance physical therapist students' ability and confidence to perform traction of the knee joint.

    PubMed

    Markowski, Alycia; Watkins, Maureen K; Burnett, Todd; Ho, Melissa; Ling, Michael

    2018-04-01

    Often, physical therapy students struggle with the skill and the confidence to perform manual techniques for musculoskeletal examination. Current teaching methods lack concurrent objective feedback. Real-time ultrasound imaging (RTUI) has the advantage of generating visualization of anatomical structures in real-time in an efficient and safe manner. We hypothesize that the use of RTUI to augment teaching with concurrent objective visual feedback will result in students' improved ability to create a change in joint space when performing a manual knee traction and higher confidence scores. Eighty-six students were randomly allocated to a control or an experimental group. All participants received baseline instructions on how to perform knee traction. The control group received standardized lab instruction (visual, video, and instructor/partner feedback). The experimental group received standardized lab instruction augmented with RTUI feedback. Pre-data and post-data collection consisted of measuring participants' ability to create changes in joint space when performing knee traction, a confidence survey evaluating perceived ability and a reflection paper. Joint space changes between groups were compared using a paired t-test. Surveys were analyzed with descriptive statistics and compared using Wilcoxon Rank Sum and for the reflection papers, themes were identified and descriptive statistics reported. Although there were no statistically significant differences between the control and the experimental group, overall scores improved. Qualitative data suggests students found the use of ultrasound imaging beneficial and would like more exposure. This novel approach to teaching knee traction with RTUI has potential and may be a basis for further studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. An Inverter Packaging Scheme for an Integrated Segmented Traction Drive System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Gui-Jia; Tang, Lixin; Ayers, Curtis William

    The standard voltage source inverter (VSI), widely used in electric vehicle/hybrid electric vehicle (EV/HEV) traction drives, requires a bulky dc bus capacitor to absorb the large switching ripple currents and prevent them from shortening the battery s life. The dc bus capacitor presents a significant barrier to meeting inverter cost, volume, and weight requirements for mass production of affordable EVs/HEVs. The large ripple currents become even more problematic for the film capacitors (the capacitor technology of choice for EVs/HEVs) in high temperature environments as their ripple current handling capability decreases rapidly with rising temperatures. It is shown in previous workmore » that segmenting the VSI based traction drive system can significantly decrease the ripple currents and thus the size of the dc bus capacitor. This paper presents an integrated packaging scheme to reduce the system cost of a segmented traction drive.« less

  8. Comparison of the intervertebral disc spaces between axial and anterior lean cervical traction.

    PubMed

    Chung, Chin-Teng; Tsai, Sen-Wei; Chen, Chun-Jung; Wu, Ting-Chung; Wang, David; Lan, Haw-Chang H; Wu, Shyi-Kuen

    2009-11-01

    The insufficient investigations on the changes of spinal structures during traction prevent further exploring the possible therapeutic mechanism of cervical traction. A blind randomized crossover-design study was conducted to quantitatively compare the intervertebral disc spaces between axial and anterior lean cervical traction in sitting position. A total of 96 radiographic images from the baseline measurements, axial and anterior lean tractions in 32 asymptomatic subjects were digitized for further analysis. The intra- and inter-examiner reliabilities for measuring the intervertebral disc spaces were in good ranges (ICCs = 0.928-0.942). With the application of anterior lean traction, the statistical increases were detected both in anterior and in posterior disc spaces compared to the baseline (0.29 mm and 0.24 mm; both P < 0.01) and axial traction (0.16 mm and 0.35 mm; both P < 0.01). The greater intervertebral disc spaces obtained during anterior lean traction might be associated with the more even distribution of traction forces over the anterior and posterior neck structures. The neck extension moment through mandible that generally occurred in the axial traction could be counteracted by the downward force of head weight during anterior lean traction. This study quantitatively demonstrated that anterior lean traction in sitting position provided more intervertebral disc space enlargements in both anterior and posterior aspects than axial traction did. These findings may serve as a therapeutic reference when cervical traction is suggested.

  9. Automated Coal-Mine Shuttle Car

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1984-01-01

    Cable-guided car increases efficiency in underground coal mines. Unmanned vehicle contains storage batteries in side panels for driving traction motors located in wheels. Batteries recharged during inactive periods or slid out as unit and replaced by fresh battery bank. Onboard generator charges batteries as car operates.

  10. Shear rheological characterization of motor oils

    NASA Technical Reports Server (NTRS)

    Bair, Scott; Winer, Ward O.

    1988-01-01

    Measurements of high pressure viscosity, traction coefficient, and EHD film thickness were performed on twelve commercial automotive engine oils, a reference oil, two unformulated base oils and two unformated base oil and polymer blends. An effective high shear rate inlet viscosity was calculated from film thickness and pressure viscosity coefficient. The difference between measured and effective viscosity is a function of the polymer type and concentration. Traction measurements did not discriminate mileage formulated oils from those not so designated.

  11. Parametric tests of a traction drive retrofitted to an automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Rohn, D. A.; Lowenthal, S. H.; Anderson, N. E.

    1980-01-01

    The results of a test program to retrofit a high performance fixed ratio Nasvytis Multiroller Traction Drive in place of a helical gear set to a gas turbine engine are presented. Parametric tests up to a maximum engine power turbine speed of 45,500 rpm and to a power level of 11 kW were conducted. Comparisons were made to similar drives that were parametrically tested on a back-to-back test stand. The drive showed good compatibility with the gas turbine engine. Specific fuel consumption of the engine with the traction drive speed reducer installed was comparable to the original helical gearset equipped engine.

  12. Impact of NiB Coating on the Efficiency, Scuffing, and Wear of Gear Contacts

    DTIC Science & Technology

    2013-05-01

    required for gear applications. 15. SUBJECT TERMS surface engineering, tribology , traction, wear, scuffing, transmission efficiency 16. SECURITY...force. A third thermocouple was placed inside the oil reservoir to measure supply temperature. The temperature measurements were also monitored and...in figure 7b. Similarly, a commonly used chemical polishing process was applied to a third batch of ground specimens to achieve smoother isotropic

  13. Elastic model of the traction behavior of two traction lubricants

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Rohn, D. A.

    1984-01-01

    In the analysis of rolling-sliding concentrated contacts, such as gears, bearings and traction drives, the traction characteristics of the lubricant are of prime importance. The elastic shear modulus and limiting shear stress properties of the lubricant dictate the traction/slip characteristics and power loss associated with an EHD contact undergoing slip and/or spin. These properties can be deducted directly from the initial slope m and maximum traction coefficient micron of an experimental traction curve. In this investigation, correlation equations are presented to predict m and micron for two modern traction fluids based on the regression analysis of 334 separate traction disk machine experiments. The effects of contact pressure, temperature, surface velocity, ellipticity ratio are examined. Problems in deducing lubricant shear moduli from disk machine tests are discussed. Previously announced in STAR as N83-20116

  14. A Hypothesis: Could Portable Natural Grass be a Risk Factor for Knee Injuries?

    PubMed Central

    Orchard, John; Rodas, Gil; Til, Lluis; ArdevÒl, Jordi; Chivers, Ian

    2008-01-01

    Previous study has shown a likely link between increased shoe- surface traction and risk of knee Anterior Cruciate Ligament (ACL) injury. Portable natural grass systems are being used more often in sport, but no study to date has investigated their relative safety. By their nature, they must have high resistance to falling apart and therefore newly laid systems may be at risk of creating excessive shoe-surface traction. This study describes two clusters of knee injuries (particularly non-contact ACL injuries), each occurring to players of one professional football team at single venue, using portable grass, in a short space of time. The first series included two ACL injuries, one posterolateral complex disruption and one lateral ligament tear occurring in two rugby league games on a portable bermudagrass surface in Brisbane, Australia. The second series included four non-contact ACL injuries over a period of ten weeks in professional soccer games on a portable Kentucky bluegrass/perennial ryegrass surface in Barcelona, Spain. Possible intrinsic risk factors are discussed but there was no common risk shared by the players. Although no measures of traction were made at the Brisbane venue, average rotational traction was measured towards the end of the injury cluster at Camp Nou, Barcelona, to be 48 Nm. Chance undoubtedly had a part to play in these clusters, but the only obvious common risk factor was play on a portable natural grass surface soon after it was laid. Further study is required to determine whether portable natural grass systems may exhibit high shoe-surface traction soon after being laid and whether this could be a risk factor for knee injury. Key pointsExcessive shoe-surface traction is a hypothesised risk factor for knee ligament injuries, including anterior cruciate ligament injuries.Portable natural grass systems (by their nature in order to prevent grass rolls or squares from falling apart) will tend to exhibit high resistance to tearing when first laid. This may lead to excessive shoe-surface traction.This dual case series describes two clusters of non-contact knee ligament injuries which occurred in circumstances of newly laid portable turf.Further research is warranted to undercover any link between non-contact knee ligament injuries and ground surfaces conditions. PMID:24150152

  15. Development of ATC for High Speed and High Density Commuter Line

    NASA Astrophysics Data System (ADS)

    Okutani, Tamio; Nakamura, Nobuyuki; Araki, Hisato; Irie, Shouji; Osa, Hiroki; Sano, Minoru; Ikeda, Keigo; Ozawa, Hiroyuki

    A new ATC (Automatic Train Control) system has been developed with solutions to realize short train headway by assured braking utilizing digital data transmission via rails; the digital data for the ATP (Automatic Train Protection) function; and to achieve EMC features for both AC and DC sections. The DC section is of the unprecedented DC traction power supply system utilizing IGBT PWM converter at all DC substations. Within the AC section, train traction force is controlled by PWM converter/inverters. The carrier frequencies of the digital data signals and chopping frequency of PWM traction power converters on-board are decided via spectral analysis of noise up to degraded mode cases of equipment. Developed system was equipped to the Tukuba Express Line, new commuter line of Tokyo metropolitan area, and opened since Aug. 2005.

  16. A new controller for battery-powered electric vehicles

    NASA Technical Reports Server (NTRS)

    Belsterling, C. A.; Stone, J.

    1980-01-01

    This paper describes the development, under a NASA/DOE contract, of a new concept for efficient and reliable control of battery-powered vehicles. It avoids the detrimental effects of pulsed-power controllers like the SCR 'chopper' by using rotating machines to meter continuous currents to the traction motor. The concept is validated in a proof-of-principle demonstration system and a complete vehicle is simulated on an analog computer. Test results show exceptional promise for a full-scale system. Optimum control strategies to minimize controller weight are developed by means of the simulated vehicle. The design for an Engineering Model is then prepared in the form of a practical, compact two-bearing package with forced air cooling. Predicted performance is outstanding, with controller efficiency of over 90% at high speed.

  17. Identifying traction-separation behavior of self-adhesive polymeric films from in situ digital images under T-peeling

    NASA Astrophysics Data System (ADS)

    Nase, Michael; Rennert, Mirko; Naumenko, Konstantin; Eremeyev, Victor A.

    2016-06-01

    In this paper procedures are developed to identify traction-separation curves from digital images of the deformed flexible films during peeling. T-peel tests were performed for self-adhesive polymeric films. High quality photographs of the deformed shape within and outside the zone of adhesive interaction were made in situ by the digital light microscope. The deformed line is approximated by a power series with coefficients computed by minimizing a least squares functional. Two approaches to identify the traction-separation curve for the given deformation line are proposed. The first one is based on the energy integral of the non-linear theory of rods and allows the direct evaluation of the adhesion force potential. The second one utilizes the complementary energy type variational equation and the Ritz method to compute the adhesion force. The accuracy of both approaches is analyzed with respect to different approximations for the deformed line and the force of interaction. The obtained traction vs. axial coordinate and the traction-separation curves provide several properties of the adhesive system including the maximum adhesion force, the length of the adhesive zone and the equilibrium position, where the adhesive force is zero while the separation is positive.

  18. Wrist Traction During MR Arthrography Improves Detection of Triangular Fibrocartilage Complex and Intrinsic Ligament Tears and Visibility of Articular Cartilage.

    PubMed

    Lee, Ryan K L; Griffith, James F; Ng, Alex W H; Nung, Ryan C H; Yeung, David K W

    2016-01-01

    The purpose of this study was to assess the effects of traction during MR arthrography of the wrist on joint space widening, cartilage visibility, and detection of tears of the triangular fibrocartilage complex (TFCC) and intrinsic ligaments. A prospective study included 40 wrists in 39 patients (25 men, 14 women; mean age, 35 years). MR arthrography was performed with a 3-T MRI system with and without axial traction. Two radiologists independently measured wrist and carpal joint space widths and semiquantitatively graded articular cartilage visibility. Using conventional arthrography as the reference standard and working in consensus, they assessed for the presence of tears of the TFCC, lunotriquetral ligament (LTL), and scapholunate ligament (SLL). Visibility of a tear before traction was compared with visibility after traction. With traction, all joint spaces in the wrist and carpus were significantly widened (change, 0.15-1.01 mm; all p < 0.006). Subjective cartilage visibility of all joint spaces improved after traction (all p ≤ 0.048) except for that of the radioscaphoid space, which was well visualized even before traction. Conventional arthrography depicted 24 TFCC tears, seven LTL tears, and three SLL tears. The accuracy of tear detection improved after traction for the TFCC (98% after traction vs 83% before traction), the LTL (100% vs 88%), and the SLL (100% vs 95%). Tear visibility improved after traction for 54% of TFCC tears, 71% of LTL tears, and 66% of SLL tears. Wrist MR arthrography with axial traction significantly improved the visibility of articular cartilage and the detection and visibility of tears of the TFCC and intrinsic ligaments. The results favor more widespread use of traction during MR arthrography of the wrist.

  19. The impact of the neurodevelopmental traction technique on activation of lateral abdominal muscles in children aged 11-13 years.

    PubMed

    Gogola, Anna; Gnat, Rafał; Dziub, Dorota; Gwóźdź, Michalina; Zaborowska, Małgorzata

    2016-06-27

    The aim of the study was to evaluate the activation of lateral abdominal muscles (LAM) in response to neurodevelopmental traction technique as assessed by ultrasounds as well as to compare the effects of different traction forces. An experiment with repeated measurements of the dependent variables was conducted. Thirty-seven children (22 girls) participated. Measurements of LAM thickness (indicating LAM activation) were performed bilaterally during traction of 5% body weight: 1) in neutral position, 2) in 20° posterior trunk inclination; during traction of 15% body weight: 3) in neutral position, 4) in 20° posterior trunk inclination. The ultrasound technology was employed. When applying the lighter traction the superficial LAM (external and internal oblique muscles) showed significant changes. The mean thickness of both muscles during traction increased (both p < 0.001). The deepest transversus abdominis showed no response (p > 0.05). Stronger traction elicited smaller changes. External and internal oblique muscles showed significant increases (p < 0.001, p < 0.01, respectively). Transversus abdominis became less thick during stronger traction (p < 0.01). The neurodevelopmental traction technique elicits the changes in LAM thickness in children with typical development. The superficial LAM show more distinct responses than the profound LAM. Stronger traction induces smaller LAM thickness changes than lighter traction.

  20. Traction drive automatic transmission for gas turbine engine driveline

    DOEpatents

    Carriere, Donald L.

    1984-01-01

    A transaxle driveline for a wheeled vehicle has a high speed turbine engine and a torque splitting gearset that includes a traction drive unit and a torque converter on a common axis transversely arranged with respect to the longitudinal centerline of the vehicle. The drive wheels of the vehicle are mounted on a shaft parallel to the turbine shaft and carry a final drive gearset for driving the axle shafts. A second embodiment of the final drive gearing produces an overdrive ratio between the output of the first gearset and the axle shafts. A continuously variable range of speed ratios is produced by varying the position of the drive rollers of the traction unit. After starting the vehicle from rest, the transmission is set for operation in the high speed range by engaging a first lockup clutch that joins the torque converter impeller to the turbine for operation as a hydraulic coupling.

  1. High mobility vehicle

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H. (Inventor); Nasif, Annette K. (Inventor)

    2001-01-01

    A vehicle, for driving over a ground surface, has a body with a left side, a right side, a front and a back. The vehicle includes left and right drive mechanisms. Each mechanism includes first and second traction elements for engaging the ground surface and transmitting a driving force between the vehicle and ground surface. Each mechanism includes first and second arms coupled to the first and second traction elements for relative rotation about first and second axis respectively. Each mechanism includes a rotor having a third axis, the rotor coupled to the body for rotation about the third axis and coupled to the first and second arms for relative rotation about the third axis. The mechanism includes first and second drive motors for driving the first and second traction elements and first and second transmissions, driven by the first and second motors and engaging the rotor. Driving the first and second traction elements simultaneously rotates the rotor relative to the first and second arms, respectively.

  2. An overview of the development of lead/acid traction batteries for electric vehicles in India

    NASA Astrophysics Data System (ADS)

    Sivaramaiah, G.; Subramanian, V. R.

    Electric vehicles (EVs) made an entry into the Indian scene quite recently in the area of passenger transportation, milk floats and other similar applications. The industrial EV market, with various models of fork-lift trucks and platform trucks already in wide use all over India, is a better understood application of EV batteries. The lead/acid traction batteries available in India are not of high-energy density. The best available indigenous lead/acid traction battery has an energy density ( C/5 rate) of 30 W h kg -1 as against 39 W h kg -1 available abroad. This paper reviews the developmental efforts relating to lead/acid traction batteries for electric vehicle applications in India, such as prototype road vehicles, commercial vehicles, rail cars, and locomotives. Due to the need for environmental protection and recognition of exhaustible, finite supplies of petroleum fuel, the Indian government is presently taking active interest in EV projects.

  3. Measurement of time-varying displacement fields in cell culture for traction force optical coherence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mulligan, Jeffrey A.; Adie, Steven G.

    2017-02-01

    Mechanobiology is an emerging field which seeks to link mechanical forces and properties to the behaviors of cells and tissues in cancer, stem cell growth, and other processes. Traction force microscopy (TFM) is an imaging technique that enables the study of traction forces exerted by cells on their environment to migrate as well as sense and manipulate their surroundings. To date, TFM research has been performed using incoherent imaging modalities and, until recently, has been largely confined to the study of cell-induced tractions within two-dimensions using highly artificial and controlled environments. As the field of mechanobiology advances, and demand grows for research in physiologically relevant 3D culture and in vivo models, TFM will require imaging modalities that support such settings. Optical coherence microscopy (OCM) is an interferometric imaging modality which enables 3D cellular resolution imaging in highly scattering environments. Moreover, optical coherence elastography (OCE) enables the measurement of tissue mechanical properties. OCE relies on the principle of measuring material deformations in response to artificially applied stress. By extension, similar techniques can enable the measurement of cell-induced deformations, imaged with OCM. We propose traction force optical coherence microscopy (TF-OCM) as a natural extension and partner to existing OCM and OCE methods. We report the first use of OCM data and digital image correlation to track temporally varying displacement fields exhibited within a 3D culture setting. These results mark the first steps toward the realization of TF-OCM in 2D and 3D settings, bolstering OCM as a platform for advancing research in mechanobiology.

  4. Halo-gravity traction in the treatment of severe spinal deformity: a systematic review and meta-analysis.

    PubMed

    Yang, Changsheng; Wang, Huafeng; Zheng, Zhaomin; Zhang, Zhongmin; Wang, Jianru; Liu, Hui; Kim, Yongjung Jay; Cho, Samuel

    2017-07-01

    Halo-gravity traction has been reported to successfully assist in managing severe spinal deformity. This is a systematic review of all studies on halo-gravity traction in the treatment of spinal deformity to provide information for clinical practice. A comprehensive search was conducted for articles on halo-gravity traction in the treatment of spinal deformity according to the PRISMA guidelines. Appropriate studies would be included and analyzed. Preoperative correction rate of spinal deformity, change of pulmonary function and prevalence of complications were the main measurements. Sixteen studies, a total of 351 patients, were included in this review. Generally, the initial Cobb angle was 101.1° in the coronal plane and 80.5° in the sagittal plane, and it was corrected to 49.4° and 56.0° after final spinal fusion. The preoperative correction due to traction alone was 24.1 and 19.3%, respectively. With traction, the flexibility improved 6.1% but postoperatively the patients did not have better correction. Less aggressive procedures and improved pulmonary function were observed in patients with traction. The prevalence of traction-related complications was 22% and three cases of neurologic complication related to traction were noted. The prevalence of total complications related to surgery was 32% and that of neurologic complications was 1%. Partial correction could be achieved preoperatively with halo-gravity traction, and it may help decrease aggressive procedures, improve preoperative pulmonary function, and reduce neurologic complications. However, traction could not increase preoperative flexibility or final correction. Traction-related complications, although usually not severe, were not rare.

  5. Structured box training improves stability of retraction while multitasking in colorectal surgery simulation.

    PubMed

    Kobiela, Jarek; Spychalski, Piotr; Łaski, Dariusz; Błażyńska-Spychalska, Agata; Łachiński, Andrzej J; Śledziński, Zbigniew; Hull, Tracy

    2018-09-01

    Laparoscopic colorectal surgery has an established role. The ability to multitask (use a retraction tool with one hand and navigate a laparoscopic camera with the other) is desired for efficient laparoscopic surgery. Surgical trainees must learn this skill to perform advanced laparoscopic tasks. The aim was to determine whether a box-training protocol improves the stability of retraction while multitasking in colorectal surgery simulation. Fifty-eight medical students were recruited to attend a basic laparoscopic box-training course. Ability to perform steady retraction with and without multitasking was measured initially and at the conclusion of the course. Before training, students demonstrated a decrease in performance while multitasking with a greater maximal exerted force, a greater range of force, and a greater standard deviation for traction and minimal exerted force, range of force and a greater standard deviation for countertraction. Statistically significant improvement (lower maximal exerted force and lower range of force) was observed for traction while multitasking after training. After the training, no statistically significant differences were found when the student performed a single task versus multitasking, both for traction and countertraction. A structured box-training curriculum improved the stability of retraction while multitasking in this colorectal surgery simulation. Although it did not improve stability of retraction as a single task, it did improve stability of retraction while multitasking. After training, this enables the trainee to retract as efficiently while operating the camera as they retract when only focusing on retraction as a single task. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Cell force mapping using a double-sided micropillar array based on the moiré fringe method

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Anderson, S.; Zheng, X.; Roberts, E.; Qiu, Y.; Liao, R.; Zhang, X.

    2014-07-01

    The mapping of traction forces is crucial to understanding the means by which cells regulate their behavior and physiological function to adapt to and communicate with their local microenvironment. To this end, polymeric micropillar arrays have been used for measuring cell traction force. However, the small scale of the micropillar deflections induced by cell traction forces results in highly inefficient force analyses using conventional optical approaches; in many cases, cell forces may be below the limits of detection achieved using conventional microscopy. To address these limitations, the moiré phenomenon has been leveraged as a visualization tool for cell force mapping due to its inherent magnification effect and capacity for whole-field force measurements. This Letter reports an optomechanical cell force sensor, namely, a double-sided micropillar array (DMPA) made of poly(dimethylsiloxane), on which one side is employed to support cultured living cells while the opposing side serves as a reference pattern for generating moiré patterns. The distance between the two sides, which is a crucial parameter influencing moiré pattern contrast, is predetermined during fabrication using theoretical calculations based on the Talbot effect that aim to optimize contrast. Herein, double-sided micropillar arrays were validated by mapping mouse embryo fibroblast contraction forces and the resulting force maps compared to conventional microscopy image analyses as the reference standard. The DMPA-based approach precludes the requirement for aligning two independent periodic substrates, improves moiré contrast, and enables efficient moiré pattern generation. Furthermore, the double-sided structure readily allows for the integration of moiré-based cell force mapping into microfabricated cell culture environments or lab-on-a-chip devices.

  7. A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings

    DOE PAGES

    Gerber, Daniel L.; Vossos, Vagelis; Feng, Wei; ...

    2017-06-12

    Direct current (DC) power distribution has recently gained traction in buildings research due to the proliferation of on-site electricity generation and battery storage, and an increasing prevalence of internal DC loads. The research discussed in this paper uses Modelica-based simulation to compare the efficiency of DC building power distribution with an equivalent alternating current (AC) distribution. The buildings are all modeled with solar generation, battery storage, and loads that are representative of the most efficient building technology. A variety of paramet ric simulations determine how and when DC distribution proves advantageous. These simulations also validate previous studies that use simplermore » approaches and arithmetic efficiency models. This work shows that using DC distribution can be considerably more efficient: a medium sized office building using DC distribution has an expected baseline of 12% savings, but may also save up to 18%. In these results, the baseline simulation parameters are for a zero net energy (ZNE) building that can island as a microgrid. DC is most advantageous in buildings with large solar capacity, large battery capacity, and high voltage distribution.« less

  8. A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Daniel L.; Vossos, Vagelis; Feng, Wei

    Direct current (DC) power distribution has recently gained traction in buildings research due to the proliferation of on-site electricity generation and battery storage, and an increasing prevalence of internal DC loads. The research discussed in this paper uses Modelica-based simulation to compare the efficiency of DC building power distribution with an equivalent alternating current (AC) distribution. The buildings are all modeled with solar generation, battery storage, and loads that are representative of the most efficient building technology. A variety of paramet ric simulations determine how and when DC distribution proves advantageous. These simulations also validate previous studies that use simplermore » approaches and arithmetic efficiency models. This work shows that using DC distribution can be considerably more efficient: a medium sized office building using DC distribution has an expected baseline of 12% savings, but may also save up to 18%. In these results, the baseline simulation parameters are for a zero net energy (ZNE) building that can island as a microgrid. DC is most advantageous in buildings with large solar capacity, large battery capacity, and high voltage distribution.« less

  9. Traction in smooth muscle cells varies with cell spreading

    NASA Technical Reports Server (NTRS)

    Tolic-Norrelykke, Iva Marija; Wang, Ning

    2005-01-01

    Changes in cell shape regulate cell growth, differentiation, and apoptosis. It has been suggested that the regulation of cell function by the cell shape is a result of the tension in the cytoskeleton and the distortion of the cell. Here we explore the association between cell-generated mechanical forces and the cell morphology. We hypothesized that the cell contractile force is associated with the degree of cell spreading, in particular with the cell length. We measured traction fields of single human airway smooth muscle cells plated on a polyacrylamide gel, in which fluorescent microbeads were embedded to serve as markers of gel deformation. The traction exerted by the cells at the cell-substrate interface was determined from the measured deformation of the gel. The traction was measured before and after treatment with the contractile agonist histamine, or the relaxing agonist isoproterenol. The relative increase in traction induced by histamine was negatively correlated with the baseline traction. On the contrary, the relative decrease in traction due to isoproterenol was independent of the baseline traction, but it was associated with cell shape: traction decreased more in elongated than in round cells. Maximum cell width, mean cell width, and projected area of the cell were the parameters most tightly coupled to both baseline and histamine-induced traction in this study. Wide and well-spread cells exerted larger traction than slim cells. These results suggest that cell contractility is controlled by cell spreading.

  10. Traction cytometry: regularization in the Fourier approach and comparisons with finite element method.

    PubMed

    Kulkarni, Ankur H; Ghosh, Prasenjit; Seetharaman, Ashwin; Kondaiah, Paturu; Gundiah, Namrata

    2018-05-09

    Traction forces exerted by adherent cells are quantified using displacements of embedded markers on polyacrylamide substrates due to cell contractility. Fourier Transform Traction Cytometry (FTTC) is widely used to calculate tractions but has inherent limitations due to errors in the displacement fields; these are mitigated through a regularization parameter (γ) in the Reg-FTTC method. An alternate finite element (FE) approach computes tractions on a domain using known boundary conditions. Robust verification and recovery studies are lacking but essential in assessing the accuracy and noise sensitivity of the traction solutions from the different methods. We implemented the L2 regularization method and defined a maximum curvature point in the traction with γ plot as the optimal regularization parameter (γ*) in the Reg-FTTC approach. Traction reconstructions using γ* yield accurate values of low and maximum tractions (Tmax) in the presence of up to 5% noise. Reg-FTTC is hence a clear improvement over the FTTC method but is inadequate to reconstruct low stresses such as those at nascent focal adhesions. FE, implemented using a node-by-node comparison, showed an intermediate reconstruction compared to Reg-FTTC. We performed experiments using mouse embryonic fibroblast (MEF) and compared results between these approaches. Tractions from FTTC and FE showed differences of ∼92% and 22% as compared to Reg-FTTC. Selection of an optimum value of γ for each cell reduced variability in the computed tractions as compared to using a single value of γ for all the MEF cells in this study.

  11. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, M.

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors, and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making HEVs practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies.« less

  12. Effect of traction on wrist joint space and cartilage visibility with and without MR arthrography

    PubMed Central

    Griffith, James F; Tang, W K; Ng, Alex W H; Yeung, David K W

    2017-01-01

    Objective: To compare the effect of traction during non-arthrographic and arthrographic MR examination of the wrist with regard to joint space width, joint fluid dispersion and cartilage surface visibility. Methods: Prospective 3-T MRI study of 100 wrists in 96 patients. The first 50 wrists underwent MR arthrography first without traction and then with traction. The following 50 wrists underwent standard MR first without traction and then with traction. On these examinations, two radiologists independently measured (i) joint space width, semi-quantitatively graded (ii) joint fluid dispersion between opposing cartilage surfaces and (iii) articular cartilage surface visibility. The three parameters were compared between the two groups. Results: Traction led to an increase in joint space width at nearly all joints in all patients (p < 0.05), although more so in the arthrography (∆ = 0.08–0.79 mm, all p < 0.05) than in the non-arthrography (∆ = 0.001–0.61 mm, all p < 0.05) group. Joint fluid dispersion and cartilage surface visibility improved after traction in nearly all joints (p < 0.05) in all patients and more so in the arthographic than in the non-arthrography group. Conclusion: Traction did significantly improve cartilage surface visibility for standard MRI of the wrist although the effect was not as great as that seen with MR arthography or MR arthrography with traction. Advances in knowledge: This is the first study to show the beneficial effect of traction during standard non-arthrography MRI of the wrist and compare the effect of traction between non-arthrographic and arthrographic MRI of the wrist. PMID:28181830

  13. 3.0T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging-A preliminary study.

    PubMed

    Jungmann, Pia M; Baum, Thomas; Schaeffeler, Christoph; Sauerschnig, Martin; Brucker, Peter U; Mann, Alexander; Ganter, Carl; Bieri, Oliver; Rummeny, Ernst J; Woertler, Klaus; Bauer, Jan S

    2015-08-01

    To determine the impact of axial traction during high resolution 3.0T MR imaging of the ankle on morphological assessment of articular cartilage and quantitative cartilage imaging parameters. MR images of n=25 asymptomatic ankles were acquired with and without axial traction (6kg). Coronal and sagittal T1-weighted (w) turbo spin echo (TSE) sequences with a driven equilibrium pulse and sagittal fat-saturated intermediate-w (IMfs) TSE sequences were acquired for morphological evaluation on a four-point scale (1=best, 4=worst). For quantitative assessment of cartilage degradation segmentation was performed on 2D multislice-multiecho (MSME) SE T2, steady-state free-precession (SSFP; n=8) T2 and SSFP diffusion-weighted imaging (DWI; n=8) images. Wilcoxon-tests and paired t-tests were used for statistical analysis. With axial traction, joint space width increased significantly and delineation of cartilage surfaces was rated superior (P<0.05). Cartilage surfaces were best visualized on coronal T1-w images (P<0.05). Differences for cartilage matrix evaluation were smaller. Subchondral bone evaluation, motion artifacts and image quality were not significantly different between the acquisition methods (P>0.05). T2 values were lower at the tibia than at the talus (P<0.001). Reproducibility was better for images with axial traction. Axial traction increased the joint space width, allowed for better visualization of cartilage surfaces and improved compartment discrimination and reproducibility of quantitative cartilage parameters. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Diagnostic performance of direct traction MR arthrography of the hip: detection of chondral and labral lesions with arthroscopic comparison.

    PubMed

    Schmaranzer, Florian; Klauser, Andrea; Kogler, Michael; Henninger, Benjamin; Forstner, Thomas; Reichkendler, Markus; Schmaranzer, Ehrenfried

    2015-06-01

    To assess diagnostic performance of traction MR arthrography of the hip in detection and grading of chondral and labral lesions with arthroscopic comparison. Seventy-five MR arthrograms obtained ± traction of 73 consecutive patients (mean age, 34.5 years; range, 14-54 years) who underwent arthroscopy were included. Traction technique included weight-adapted traction (15-23 kg), a supporting plate for the contralateral leg, and intra-articular injection of 18-27 ml (local anaesthetic and contrast agent). Patients reported on neuropraxia and on pain. Two blinded readers independently assessed femoroacetabular cartilage and labrum lesions which were correlated with arthroscopy. Interobserver agreement was calculated using κ values. Joint distraction ± traction was evaluated in consensus. No procedure had to be stopped. There were no cases of neuropraxia. Accuracy for detection of labral lesions was 92 %/93 %, 91 %/83 % for acetabular lesions, and 92 %/88 % for femoral cartilage lesions for reader 1/reader 2, respectively. Interobserver agreement was moderate (κ = 0.58) for grading of labrum lesions and substantial (κ = 0.7, κ = 0.68) for grading of acetabular and femoral cartilage lesions. Joint distraction was achieved in 72/75 and 14/75 hips with/without traction, respectively. Traction MR arthrography safely enabled accurate detection and grading of labral and chondral lesions. • The used traction technique was well tolerated by most patients. • The used traction technique almost consistently achieved separation of cartilage layers. • Traction MR arthrography enabled accurate detection of chondral and labral lesions.

  15. 21 CFR 882.5960 - Skull tongs for traction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skull tongs for traction. 882.5960 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5960 Skull tongs for traction. (a) Identification. Skull tongs for traction is an instrument used to immobilize a patient with a...

  16. 21 CFR 888.5850 - Nonpowered orthopedic traction apparatus and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonpowered orthopedic traction apparatus and accessories. 888.5850 Section 888.5850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... orthopedic traction apparatus and accessories. (a) Identification. A nonpowered orthopedic traction apparatus...

  17. 21 CFR 888.5850 - Nonpowered orthopedic traction apparatus and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nonpowered orthopedic traction apparatus and accessories. 888.5850 Section 888.5850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... orthopedic traction apparatus and accessories. (a) Identification. A nonpowered orthopedic traction apparatus...

  18. Design study of toroidal traction CVT for electric vehicles

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Kraus, J.; Bell, D. D.

    1980-01-01

    The development, evaluation, and optimization of a preliminary design concept for a continuously variable transmission (CVT) to couple the high-speed output shaft of an energy storage flywheel to the drive train of an electric vehicle is discussed. An existing computer simulation program was modified and used to compare the performance of five CVT design configurations. Based on this analysis, a dual-cavity full-toroidal drive with regenerative gearing is selected for the CVT design configuration. Three areas are identified that will require some technological development: the ratio control system, the traction fluid properities, and evaluation of the traction contact performance. Finally, the suitability of the selected CVT design concept for alternate electric and hybrid vehicle applications and alternate vehicle sizes and maximum output torques is determined. In all cases the toroidal traction drive design concept is applicable to the vehicle system. The regenerative gearing could be eliminated in the electric powered vehicle because of the reduced ratio range requirements. In other cases the CVT with regenerative gearing would meet the design requirements after appropriate adjustments in size and reduction gearing ratio.

  19. Data-based fault-tolerant control of high-speed trains with traction/braking notch nonlinearities and actuator failures.

    PubMed

    Song, Qi; Song, Yong-Duan

    2011-12-01

    This paper investigates the position and velocity tracking control problem of high-speed trains with multiple vehicles connected through couplers. A dynamic model reflecting nonlinear and elastic impacts between adjacent vehicles as well as traction/braking nonlinearities and actuation faults is derived. Neuroadaptive fault-tolerant control algorithms are developed to account for various factors such as input nonlinearities, actuator failures, and uncertain impacts of in-train forces in the system simultaneously. The resultant control scheme is essentially independent of system model and is primarily data-driven because with the appropriate input-output data, the proposed control algorithms are capable of automatically generating the intermediate control parameters, neuro-weights, and the compensation signals, literally producing the traction/braking force based upon input and response data only--the whole process does not require precise information on system model or system parameter, nor human intervention. The effectiveness of the proposed approach is also confirmed through numerical simulations.

  20. Toward single cell traction microscopy within 3D collagen matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives onmore » the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.« less

  1. Computed tomography arthrography with traction in the human hip for three-dimensional reconstruction of cartilage and the acetabular labrum

    PubMed Central

    Henak, C.R.; Abraham, C.L.; Peters, C.L.; Sanders, R.K.; Weiss, J.A.; Anderson, A.E.

    2014-01-01

    AIM To develop and demonstrate the efficacy of a computed tomography arthrography (CTA) protocol for the hip that enables accurate three-dimensional reconstructions of cartilage and excellent visualization of the acetabular labrum. MATERIALS AND METHODS Ninety-three subjects were imaged (104 scans); 68 subjects with abnormal anatomy, 11 patients after periacetabular osteotomy surgery, and 25 subjects with normal anatomy. Fifteen to 25 ml of contrast agent diluted with lidocaine was injected using a lateral oblique approach. A Hare traction splint applied traction during CT. The association between traction force and intra-articular joint space was assessed qualitatively under fluoroscopy. Cartilage geometry was reconstructed from the CTA images for 30 subjects; the maximum joint space under traction was measured. RESULTS Using the Hare traction splint, the intra-articular space and boundaries of cartilage could be clearly delineated throughout the joint; the acetabular labrum was also visible. Dysplastic hips required less traction (~5 kg) than normal and retroverted hips required (>10 kg) to separate the cartilage. An increase in traction force produced a corresponding widening of the intra-articular joint space. Under traction, the maximum width of the intra-articular joint space during CT ranged from 0.98–6.7 mm (2.46 ± 1.16 mm). CONCLUSIONS When applied to subjects with normal and abnormal hip anatomy, the CTA protocol presented yields clear delineation of the cartilage and the acetabular labrum. Use of a Hare traction splint provides a simple, cost-effective method to widen the intra-articular joint space during CT, and provides flexibility to vary the traction as required. PMID:25070373

  2. Treatment of Extreme Tuberculous Kyphosis Using Spinal Osteotomy and Halo-Pelvic Traction: A Case Report.

    PubMed

    Yu, Bin; Zhu, Ke; Zhao, Deng; Wang, Fei; Liang, Yijian

    2016-02-01

    A case report of treatment of extreme tuberculous kyphosis using spinal osteotomy and halopelvic traction. The aim of this study was to describe the process and outcome of treatment of a case with extreme tuberculous kyphosis using spine osteotomy and halo-pelvic traction. Spinal tuberculosis causes destruction, deformity, and paraplegia. Long-standing kyphosis may progress with growth in children, and produces respiratory insufficiency, and neurologic deficit. Surgery may help to prevent or reverse the neurological deterioration, while improving pulmonary function in cases with significant spinal deformity. Review of records and radiographs. A 24-year-old female with tuberculous angular kyphosis presented with bilateral lower extremities paresis and dyspnea. The vertebral bodies from T3 to T9 were severely destructed, with a Cobb's angle of 180°on radiographs. The total duration of distraction using halopelvic apparatus kept 10 months. During the duration of traction, the patient underwent a posterior release surgery because flexibility of the kyphosis was not sufficient. Pedicle subtraction osteotomy and pedicle screw fixation were performed to achieve final correction when the Cobb's angle decreased to about 80°. After the whole treatment of halopelvic traction and spine ostetomy, the patient's height increased nearly 30 cm, whereas the angular kyphosis was corrected to a Cobb's angle of 30°. The patient had no complication and neurological deterioration during the treatment. Correction angle and good sagittal balance were well maintained in the duration of 2 years' follow-up. The halo-pelvic apparatus produces high corrective forces applied over a long period, and it provides a slow and safe correction of deformity. In cases of extreme kyphotic deformity, halopelvic traction is an appropriate technique, while avoiding many serious complications from a rapid, one-stage correction. N/A.

  3. Development of a Drilling Fluid Drive Downhole Tractor in Oil Field

    NASA Astrophysics Data System (ADS)

    Fang, Delei; Shang, Jianzhong; Liu, Yiying; Wu, Wei; Luo, Zirong

    2018-01-01

    This paper proposes a drilling fluid drive downhole tractor, which has the advantages of compact structure, large traction, fast speed and high reliability. The overall mechanical structure of the tractor is introduced, the concrete structures including supporting structure and cushion mechanism are designed. And its all-hydraulic drive continuous propulsion principle is analyzed. Finally the simulation analysis of the tractor operation is carried out to prove that the traction motion scheme is feasible.

  4. Elementary theory of bed-sediment entrainment by debris flows and avalanches

    USGS Publications Warehouse

    Iverson, Richard M.

    2012-01-01

    Analyses of mass and momentum exchange between a debris flow or avalanche and an underlying sediment layer aid interpretations and predictions of bed-sediment entrainment rates. A preliminary analysis assesses the behavior of a Coulomb slide block that entrains bed material as it descends a uniform slope. The analysis demonstrates that the block's momentum can grow unstably, even in the presence of limited entrainment efficiency. A more-detailed, depth-integrated continuum analysis of interacting, deformable bodies identifies mechanical controls on entrainment efficiency, and shows that entrainment rates satisfy a jump condition that involves shear-traction and velocity discontinuities at the flow-bed boundary. Explicit predictions of the entrainment rateEresult from making reasonable assumptions about flow velocity profiles and boundary shear tractions. For Coulomb-friction tractions, predicted entrainment rates are sensitive to pore fluid pressures that develop in bed sediment as it is overridden. In the simplest scenario the bed sediment liquefies completely, and the entrainment-rate equation reduces toE = 2μ1gh1 cos θ(1 − λ1)/ , where θ is the slope angle, μ1 is the flow's Coulomb friction coefficient, h1 is its thickness, λ1 is its degree of liquefaction, and is its depth-averaged velocity. For values ofλ1ranging from 0.5 to 0.8, this equation predicts entrainment rates consistent with rates of 0.05 to 0.1 m/s measured in large-scale debris-flow experiments in which wet sediment beds liquefied almost completely. The propensity for bed liquefaction depends on several factors, including sediment porosity, permeability, and thickness, and rates of compression and shear deformation that occur when beds are overridden.

  5. Spin analysis of concentrated traction contacts

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1983-01-01

    Spin, the result of a mismatch in contact radii on either side of the point of rolling, has a detrimental effect on traction contact performance. It occurs in concentrated contacts having conical or contoured rolling elements, such as those in traction drives or angular contact bearings, and is responsible for an increase in contact heating and power loss. The kinematics of spin producing contact geometries and the subsequent effect on traction and power loss are investigated. The influence of lubricant traction characteristics and contact geometries that minimize spin are also addressed.

  6. Simulation of longitudinal dynamics of long freight trains in positioning operations

    NASA Astrophysics Data System (ADS)

    Qi, Zhaohui; Huang, Zhihao; Kong, Xianchao

    2012-09-01

    Positioning operations are performed in a railway goods yard, in which the freight train is pulled precisely at a specific point by a positioner. The positioner moves strictly according to the predesigned speed and provides all the traction and braking forces which are highly dependent on the longitudinal dynamic response. In order to improve the efficiency and protect the wagons from damage during positioning operations, the design speed of the positioner has to be optimised based on the simulation of longitudinal train dynamics. However, traditional models of longitudinal train dynamics are not accurate enough in some aspects. In this study, we make some changes in the traditional theory to make it suitable for the study of long freight trains in positioning operations. In the proposed method, instead of the traction force on the train, the motion of the positioner is assumed to be known; more importantly, the traditional draft gear model with nonlinear spring and linear damping is replaced by a more detailed model based on the achievement of contact and impact mechanics; the switching effects of the resistance and the coupler slack are also taken into consideration. Numerical examples that deal with positioning operations on the straight lines, slope lines and curving lines are given.

  7. The effect of cavernous nerve traction on erectile function in rats

    PubMed Central

    Chen, Liping; Wang, Tao; Wang, Shaogang; Liu, Jihong

    2017-01-01

    We performed this study to evaluate the effect of cavernous nerve (CN) traction on erectile function in rats. Thirty-two 8- week-old Sprague–Dawley rats were divided into four groups: control, 1-minute CN traction, 2-minute CN traction, and 2-minute CN crush. CN traction was performed using a glass hook with a tensile force of 0.2 Newton. One month later, the mean arterial pressure (MAP) and intracavernosal pressure (ICP) in response to CN stimulation were measured to assess erectile function. The penis and major pelvic ganglion (MPG) were harvested to explore the expression of neuronal nitric oxide synthase (nNOS) and neurofilament, fibrosis and apoptosis. The ICP/MAP ratio was reduced in the 2-minute CN traction group compared with the control group (P < 0.05). The ICP/MAP ratio in the CN crush group was lower than in the other three groups (P < 0.05, for each). Expression of nNOS in both MPG and dorsal penile nerve was lower in the CN traction group than in the control group, but was higher than in the CN crush group (P < 0.05). Nerve fiber number in the dorsal penile nerve was reduced by 2-minute CN traction (P < 0.05). The ratios of collagen to smooth muscle content and the apoptosis were both increased the in 2-minute CN traction group compared with the control group (P < 0.05). The findings indicate that CN traction is an effective CN injury model and the injury it caused is relatively mild compared with the CN crush model. PMID:28982169

  8. 88 kilowatt automotive inverter with new 900 Volt silicon carbide MOSFET technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casady, Jeffrey; Olejniczak, Kraig; McNutt, Ty

    This final report is on the design and experimental verification of a 200 kVA traction inverter using three 900 V, 2.5 mΩ, SiC MOSFET-based half-bridge power modules comprising the power stage. Each dual power module contains four 900 V, 10 mΩ SiC MOSFETs per switch position and uses synchronous conduction to achieve high average and peak efficiencies over its entire operating region to meet the demands of hybrid, plug-in hybrid, and extended-range electrified vehicle architectures. Significant performance improvement, via conduction, switching, and reverse-recovery loss metrics, from this SiC MOSFET-based inverter—especially at light load conditions—will be discussed.

  9. Traction forces during collective cell motion.

    PubMed

    Gov, N S

    2009-08-01

    Collective motion of cell cultures is a process of great interest, as it occurs during morphogenesis, wound healing, and tumor metastasis. During these processes cell cultures move due to the traction forces induced by the individual cells on the surrounding matrix. A recent study [Trepat, et al. (2009). Nat. Phys. 5, 426-430] measured for the first time the traction forces driving collective cell migration and found that they arise throughout the cell culture. The leading 5-10 rows of cell do play a major role in directing the motion of the rest of the culture by having a distinct outwards traction. Fluctuations in the traction forces are an order of magnitude larger than the resultant directional traction at the culture edge and, furthermore, have an exponential distribution. Such exponential distributions are observed for the sizes of adhesion domains within cells, the traction forces produced by single cells, and even in nonbiological nonequilibrium systems, such as sheared granular materials. We discuss these observations and their implications for our understanding of cellular flows within a continuous culture.

  10. Application of low-order potential solutions to higher-order vertical traction boundary problems in an elastic half-space

    PubMed Central

    Taylor, Adam G.

    2018-01-01

    New solutions of potential functions for the bilinear vertical traction boundary condition are derived and presented. The discretization and interpolation of higher-order tractions and the superposition of the bilinear solutions provide a method of forming approximate and continuous solutions for the equilibrium state of a homogeneous and isotropic elastic half-space subjected to arbitrary normal surface tractions. Past experimental measurements of contact pressure distributions in granular media are reviewed in conjunction with the application of the proposed solution method to analysis of elastic settlement in shallow foundations. A numerical example is presented for an empirical ‘saddle-shaped’ traction distribution at the contact interface between a rigid square footing and a supporting soil medium. Non-dimensional soil resistance is computed as the reciprocal of normalized surface displacements under this empirical traction boundary condition, and the resulting internal stresses are compared to classical solutions to uniform traction boundary conditions. PMID:29892456

  11. Traction injury of the recurrent laryngeal nerve: Results of continuous intraoperative neuromonitoring in a swine model.

    PubMed

    Lee, Hye Yoon; Cho, Young Geon; You, Ji Young; Choi, Byoung Ho; Kim, Joon Yub; Wu, Che-Wei; Chiang, Feng-Yu; Kim, Hoon Yub

    2016-04-01

    Recurrent laryngeal nerve (RLN) palsy is the most serious complication after thyroidectomy. However, little is known about the degree of traction injury that causes loss of signal. The purpose of this study was to evaluate traction injuries in the swine RLN using continuous intraoperative neuromonitoring (IONM) and determine the traction power that results in loss of signal. Thirteen swine underwent traction injury to the RLNs with continuous IONM, and stress-strain curves were determined for 8 nerves using the universal material testing machine in an ex vivo model. Traction injury at a mean power of 2.83 MPa caused loss of signal. The mean physiologic limit strain and tensile strength of the swine RLNs were found to be 15.0% and 4.9 MPa, respectively. Histological analysis showed no abnormal structural findings. Traction injury of swine RLNs causes loss of signal at a power of 2.83 MPa. However, all injured nerves recovered within 7 days with no observed structural damage. © 2015 Wiley Periodicals, Inc.

  12. Scoliosis elasticity assessed by manual traction: 49 juvenile and adolescent idiopathic cases.

    PubMed

    Soucacos, P K; Soucacos, P N; Beris, A E

    1996-04-01

    We assessed preoperative curve elasticity in 49 consecutive patients with juvenile or adolescent idiopathic scoliosis who were operated on with Harrington distraction rods. Preoperatively, the curve was determined from posteroanterior radiographs taken in the standing position and in the supine position, with traction. In the latter, the radiographs were taken at the moment of maximal traction when one technician applied traction to the ankles and another to the wrists. The scoliotic curve in the 10 patients with juvenile scoliosis averaged 59 degrees and 32 degrees in the standing and supine positions with traction, respectively. Immediately postoperatively, the curve averaged 19 degrees. 39 patients with adolescent scoliosis had a scoliotic curve which averaged 58 degrees in the standing position and 32 degrees in the supine position with traction. The mean postoperative measurement was 21 degrees. These findings suggest that manual traction is a simple and reliable means of predicting the minimal correction of the scoliotic curve to be expected, using Harrington distraction rods.

  13. The Rapid Transit System That Achieves Higher Performance with Lower Life-Cycle Costs

    NASA Astrophysics Data System (ADS)

    Sone, Satoru; Takagi, Ryo

    In the age of traction system made of inverter and ac traction motors, distributed traction system with pure electric brake of regenerative mode has been recognised very advantageous. This paper proposes a new system as the lowest life-cycle cost system for high performance rapid transit, a new architecture and optimum parameters of power feeding system, and a new running method of trains. In Japan, these components of this proposal, i.e. pure electric brake and various countermeasures of reducing loss of regeneration have been already popular but not as yet the new running method for better utilisation of the equipment and for lower life-cycle cost. One example of what are proposed in this paper will be made as Tsukuba Express, which is under construction as the most modern commuter railway in Greater Tokyo area.

  14. A study of various synthetic routes to produce a halogen-labeled traction fluid

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Zimmer, H.

    1978-01-01

    Several synthetic routes were studied for the synthesis of the compound 1, 1, 3-trimethyl-1, 3-dicyclohexyl-2 chloropropane. This halogen-labeled fluid would be of use in the study of high traction lubricants under elastohydrodynamic lubrication conditions using infrared emission spectroscopy. The synthetic routes included: dimerization of alpha-methylstyrene, methanol addition to alpha-methylstyrene, a Wittig reaction, and an organometallic approach. Because of steric hindrance and competing reactions, none of these routes were successful.

  15. Overhead Bryant's Traction Does Not Improve the Success of Closed Reduction or Limit AVN in Developmental Dysplasia of the Hip.

    PubMed

    Sucato, Daniel J; De La Rocha, Adriana; Lau, Karlee; Ramo, Brandon A

    2017-03-01

    Preoperative Bryant's overhead traction before closed reduction (CR) in developmental dysplasia of the hip (DDH) remains controversial and its success in increasing CR rates and reducing avascular necrosis (AVN) rates has not been specifically reported in a large cohort. IRB-approved retrospective study of patients (below 3 y)who were treated with attempted CR for idiopathic DDH from 1980 to 2009. Successful CR was defined as a hip that remained reduced and did not require repeat CR or open reduction. Patients were grouped by age, hip instability [Ortolani positive (reducible) vs. fixed dislocation], and Tonnis classification and rates of successful CR were compared between groups with P<0.05. A total of 342 hips were included with a mean age of 0.9 years (0.2 to 2.8 y) and a mean follow-up of 10.4 years (2.0 to 27.7 y). There were 269 hips with fixed dislocations and 73 Ortolani-positive hips. Traction was used in 276 hips. There was no difference in traction utilization in the 3 age groups (below 1, below 1.5, and below 2 y) for either Ortolani-positive hips (P=0.947) or fixed dislocations (P=0.943). There was no difference in achieving a successful CR comparing traction (60.9%) and no-traction groups (60.6%) (P=1.00). For Ortolani-positive hips, traction did not improve the incidence of a successful CR for any age group: below 1 year: P=0.19; below 1.5 years: P=0.23; and below 2 years: P=0.25. Similarly, fixed dislocation patients had no benefit from traction: below 1 year: P=0.76; below 1.5 years: P=0.82; and below 2 years: P=0.85. Tonnis classification did predict success of CR but had no influence on traction success. There was no difference in the rate of AVN between the traction (18%) and no-traction (8%) groups for all patients (P=0.15). In this retrospective series, preoperative Bryant's traction does not improve the rate of a successful CR for patients with DDH and has no protective effect on the development of AVN of the femoral head. These results suggest that Bryant's overhead traction may not be warranted for patients below 3 years of age with DDH. Level III.

  16. A prospective study of pain reduction and knee dysfunction comparing femoral skeletal traction and splinting in adult trauma patients.

    PubMed

    Bumpass, David B; Ricci, William M; McAndrew, Christopher M; Gardner, Michael J

    2015-02-01

    To determine if distal femoral traction pins result in knee dysfunction in patients with femoral or pelvic fracture, and to determine if skeletal traction relieves pain more effectively than splinting for femoral shaft fractures. Prospective cohort trial. Level I urban trauma center. One hundred twenty adult patients with femoral shaft, acetabular, and unstable pelvic fractures. Patients with femoral shaft fractures were placed into distal femoral skeletal traction or a long-leg splint, based on an attending-specific protocol. Patients with pelvic or acetabular fractures with instability or intraarticular bone fragments were placed into skeletal traction. An initial Lysholm knee survey was administered to assess preinjury knee pain and function; the survey was repeated at 3- and 6-month follow-up visits. Also, a 10-point visual analog scale was used to document pain immediately before, during, and immediately after fracture immobilization with traction or splinting. Thirty-five patients (29%) were immobilized with a long-leg splint, and 85 (71%) were immobilized with a distal femoral traction pin. Eighty-four patients (70%) completed a 6-month follow-up. Lysholm scores decreased by a mean 9.3 points from preinjury baseline to 6 months postinjury in the entire cohort (P < 0.01); no significant differences were found between the splint and traction pin groups. During application of immobilization, visual analog scale pain scores were significantly lower in traction patients as compared with splinted patients (mean, 1.9 points less, P < 0.01). Traction pins caused no infections, neurovascular injuries, or iatrogenic fractures. Distal femoral skeletal traction does not result in detectable knee dysfunction at 6 months after insertion, and results in less pain during and after immobilization than long-leg splinting. Therapeutic Level II. See Instructions for Authors for a complete description of levels of evidence.

  17. Traction alopecia: the root of the problem.

    PubMed

    Billero, Victoria; Miteva, Mariya

    2018-01-01

    Traction alopecia (TA) affects one-third of women of African descent who wear various forms of traumatic hairstyling for a prolonged period of time. The risk of TA is increased by the extent of pulling and duration of traction, as well as the use of chemical relaxation. The frequent use of tight buns or ponytails, the attachment of weaves or hair extensions, and tight braids (such as cornrows and dreadlocks) are believed to be the highest risk hairstyles. TA can also occur in the setting of religious and occupational traumatic hairstyling. In its later stages, the disease may progress into an irreversible scarring alopecia if traumatic hairstyling continues without appropriate intervention. The most common clinical presentation includes marginal alopecia and non-marginal patchy alopecia. A clue to the clinical diagnosis is the preservation of the fringe sign as opposed to its loss in frontal fibrosing alopecia (FFA). Dermoscopy can be helpful in the diagnosis and can detect the ongoing traction by the presence of hair casts. Histopathology can distinguish TA from alopecia areata, FFA, and patchy central centrifugal cicatricial alopecia. Currently, there is no cure. Therefore, it is imperative that clinicians educate high-risk populations about TA and those practices that may convey the risk of hair loss.

  18. NASA transmission research and its probable effects on helicopter transmission design

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.; Coy, J. J.; Townsend, D. P.

    1983-01-01

    Transmissions studied for application to helicopters in addition to the more conventional geared transmissions include hybrid (traction/gear), bearingless planetary, and split torque transmissions. Research is being performed to establish the validity of analysis and computer codes developed to predict the performance, efficiency, life, and reliability of these transmissions. Results of this research should provide the transmission designer with analytical tools to design for minimum weight and noise with maximum life and efficiency. In addition, the advantages and limitations of drive systems as well as the more conventional systems will be defined.

  19. FY2014 Electric Drive Technologies Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  20. FY2016 Electric Drive Technologies Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  1. FY2015 Electric Drive Technologies Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  2. NASA transmission research and its probable effects on helicopter transmission design

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.; Coy, J. J.; Townsend, D. P.

    1984-01-01

    Transmissions studied for application to helicopters in addition to the more conventional geared transmissions include hybrid (traction/gear), bearingless planetary, and split torque transmissions. Research is being performed to establish the validity of analysis and computer codes developed to predict the performance, efficiency, life, and reliability of these transmissions. Results of this research should provide the transmission designer with analytical tools to design for minimum weight and noise with maximum life and efficiency. In addition, the advantages and limitations of drive systems as well as the more conventional systems will be defined.

  3. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOEpatents

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  4. Electric vehicle regenerative antiskid braking and traction control system

    DOEpatents

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  5. Electric vehicle regenerative antiskid braking and traction control system

    DOEpatents

    Cikanek, Susan R.

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  6. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOEpatents

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  7. Solid lubrication design methodology

    NASA Technical Reports Server (NTRS)

    Aggarwal, B. B.; Yonushonis, T. M.; Bovenkerk, R. L.

    1984-01-01

    A single element traction rig was used to measure the traction forces at the contact of a ball against a flat disc at room temperature under combined rolling and sliding. The load and speed conditions were selected to match those anticipated for bearing applications in adiabatic diesel engines. The test program showed that the magnitude of traction forces were almost the same for all the lubricants tested; a lubricant should, therefore, be selected on the basis of its ability to prevent wear of the contact surfaces. Traction vs. slide/roll ratio curves were similar to those for liquid lubricants but the traction forces were an order of magnitude higher. The test data was used to derive equations to predict traction force as a function of contact stress and rolling speed. Qualitative design guidelines for solid lubricated concentrated contacts are proposed.

  8. Asymmetric vitreomacular traction and symmetrical full thickness macular hole formation.

    PubMed

    Woon, Wai H; Greig, Denis; Savage, Mike D; Wilson, Mark C T; Grant, Colin A; Bishop, Fiona; Mokete, Bataung

    2015-11-01

    A Full Thickness Macular Hole (FTMH) is often associated with vitreomacular traction, and this can be asymmetric with vitreomacular traction on one side of the hole but not the other. In cross-section, the elevated retinal rim around a developed FTMH is seen as a drawbridge elevation, and this drawbridge elevation may be used as a measure of morphological change. Examination of the drawbridge elevation of the retinal rim in FTMH with asymmetric vitreomacular traction may help to clarify the role of vitreomacular traction in the development of FTMH. Cases of FTMH were identified with an initial OCT scan showing vitreomacular traction on one side of the hole only and that had a follow-up OCT scan showing progression of the hole. A tangent to the retinal surface at a distance of 700 microns from the axis of the hole was used as a marker of the drawbridge elevation of the retinal rim around the macular hole. Comparisons of the drawbridge elevation and change in drawbridge elevation between the sides with and without initial vitreomacular traction were made. There was no significant difference between the drawbridge elevation, or change in drawbridge elevation, on the side of the hole with initial vitreomacular traction compared to the side without initial traction. There is some intrinsic mechanism within the retina to link the morphological changes on the two sides of a FTMH. A bistable hypothesis of FTMH formation and closure is postulated to explain this linkage.

  9. The Effect of Skin Traction on Preoperative Pain and Need for Analgesics in Patients With Intertrochanteric Fractures: A Randomized Clinical Trial

    PubMed Central

    Manafi Rasi, Alireza; Amoozadeh, Farzad; Khani, Salim; Kamrani Rad, Amin; Sazegar, Ali

    2015-01-01

    Background: Preoperative skin traction is applied for many patients with hip fracture. However, the efficacy of this modality in pain relief is controversial. Objectives: The aim of the current study was to investigate the effects of skin traction on pain in patients with intertrochanteric fractures. Patients and Methods: A total of 40 patients contributed in this randomized clinical trial. Patients were randomly allocated into two equal groups: the skin traction (3 kg) and control groups. The severity of pain was recorded at admission and 30 minutes, one, six, 12, and 24 hours after skin traction application utilizing a Visual Analogue Scale (VAS). In addition, the number of requests for analgesics was recorded. Finally, the mean severity of pain in each measurement and the mean number of analgesic requests were compared between the two groups. Results: The severity of pain was significantly decreased in skin traction group only at the end of the first day after traction application (2.7 ± 0.8 vs. 3.3 ± 0.9; P = 0.042), while there was no significant difference between the two groups in other pain measurements. The number of requests for analgesics was the same between the two groups. Conclusions: Although skin traction had no effect on analgesic consumption, it significantly decreased the pain at the end of the first day. The application of skin traction in patients with intertrochanteric fractures is recommended. PMID:26401491

  10. Traction Stresses Exerted by Adherent Cells: From Angiogenesis to Metastasis

    NASA Astrophysics Data System (ADS)

    Reinhart-King, Cynthia

    2010-03-01

    Cells exert traction stresses against their substrate that mediate their ability to sense the mechanical properties of their microenvironment. These same forces mediate cell adhesion, migration and the formation of stable cell-cell contacts during tissue formation. In this talk, I will present our data on the traction stresses generated by endothelial cells and metastatic breast cancer cells focused on understanding the processes of angiogenesis and metastasis, respectively. In the context of capillary formation, our data indicate that the mechanics of the substrate play a critical role in establishing endothelial cell-cell contacts. On more compliant substrates, endothelial cell shape and traction stresses polarize and promote the formation of stable cell-cell contacts. On stiffer substrates, traction stresses are less polarized and cell connectivity is disrupted. These data indicate that the mechanical properties of the microenvironment may drive cell connectivity and the formation of stable cell-cell contacts through the reorientation of traction stresses. In our studies of metastatic cell migration, we have found that traction stresses increase with increasing metastatic potential. We investigated three lines of varying metastatic potential (MCF10A, MCF7 and MDAMB231). MDAMB231, which are the most invasive, exert the most significant forces as measured by Traction Force Microscopy. These data present the possibility that cellular traction stress generation aids in the ability of metastatic cells to migrate through the matrix-dense tumor microenvironment. Such measurements are integral to link the mechanical and chemical microenvironment with the resulting response of the cell in health and disease.

  11. The effect of tibio-femoral traction mobilization on passive knee flexion motion impairment and pain: a case series

    PubMed Central

    Maher, Sara; Creighton, Doug; Kondratek, Melodie; Krauss, John; Qu, Xianggui

    2010-01-01

    The purpose of this case series was to explore the effects of tibio-femoral (TF) manual traction on pain and passive range of motion (PROM) in individuals with unilateral motion impairment and pain in knee flexion. Thirteen participants volunteered for the study. All participants received 6 minutes of TF traction mobilization applied at end-range passive knee flexion. PROM measurements were taken before the intervention and after 2, 4, and 6 minutes of TF joint traction. Pain was measured using a visual analog scale with the TF joint at rest, at end-range passive knee flexion, during the application of joint traction, and immediately post-treatment. There were significant differences in PROM after 2 and 4 minutes of traction, with no significance noted after 4 minutes. A significant change in knee flexion of 25.9°, which exceeded the MDC95, was found when comparing PROM measurements pre- to final intervention. While pain did not change significantly over time, pain levels did change significantly during each treatment session. Pain significantly increased when the participant’s knee was passively flexed to end range; it was reduced, although not significantly, during traction mobilization; and it significantly decreased following traction. This case series supports TF joint traction as a means of stretching shortened articular and periarticular tissues without increasing reported levels of pain during or after treatment. In addition, this is the first study documenting the temporal aspects of treatment effectiveness in motion restoration. PMID:21655421

  12. FY2007 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, Mitchell

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as 'FreedomCAR' (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR and Vehicle Technologies Program. A key element in making hybrid electric vehicles (HEVs) practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2007 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less

  13. Local traction force in the proximal leading process triggers nuclear translocation during neuronal migration.

    PubMed

    Umeshima, Hiroki; Nomura, Ken-Ichi; Yoshikawa, Shuhei; Hörning, Marcel; Tanaka, Motomu; Sakuma, Shinya; Arai, Fumihito; Kaneko, Makoto; Kengaku, Mineko

    2018-04-05

    Somal translocation in long bipolar neurons is regulated by actomyosin contractile forces, yet the precise spatiotemporal sites of force generation are unknown. Here we investigate the force dynamics generated during somal translocation using traction force microscopy. Neurons with a short leading process generated a traction force in the growth cone and counteracting forces in the leading and trailing processes. In contrast, neurons with a long leading process generated a force dipole with opposing traction forces in the proximal leading process during nuclear translocation. Transient accumulation of actin filaments was observed at the dipole center of the two opposing forces, which was abolished by inhibition of myosin II activity. A swelling in the leading process emerged and generated a traction force that pulled the nucleus when nuclear translocation was physically hampered. The traction force in the leading process swelling was uncoupled from somal translocation in neurons expressing a dominant negative mutant of the KASH protein, which disrupts the interaction between cytoskeletal components and the nuclear envelope. Our results suggest that the leading process is the site of generation of actomyosin-dependent traction force in long bipolar neurons, and that the traction force is transmitted to the nucleus via KASH proteins. Copyright © 2018 Elsevier B.V. and Japan Neuroscience Society. All rights reserved.

  14. Spatial and temporal traction response in human airway smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Tolic-Norrelykke, Iva Marija; Butler, James P.; Chen, Jianxin; Wang, Ning

    2002-01-01

    Tractions that cells exert on their substrates are essential in cell spreading, migration, and contraction. These tractions can be determined by plating the cells on a flexible gel and measuring the deformation of the gel by using fluorescent beads embedded just below the surface of the gel. In this article we describe the image correlation method (ICM) optimized for determining the displacement field of the gel under a contracting cell. For the calculation of the traction field from the displacement field we use the recently developed method of Fourier transform traction cytometry (FTTC). The ICM and FTTC methods are applied to human airway smooth muscle cells during stimulation with the contractile agonist histamine or the relaxing agonist isoproterenol. The overall intensity of the cell contraction (the median traction magnitude, the energy transferred from the cell to the gel, and the net contractile moment) increased after activation with histamine, and decreased after treatment with isoproterenol. Cells exhibited regional differences in the time course of traction during the treatment. Both temporal evolution and magnitude of traction increase induced by histamine varied markedly among different cell protrusions, whereas the nuclear region showed the smallest response. These results suggest that intracellular mediators of cell adhesion and contraction respond to contractile stimuli with different rates and intensities in different regions of the cell.

  15. Simplified and advanced modelling of traction control systems of heavy-haul locomotives

    NASA Astrophysics Data System (ADS)

    Spiryagin, Maksym; Wolfs, Peter; Szanto, Frank; Cole, Colin

    2015-05-01

    Improving tractive effort is a very complex task in locomotive design. It requires the development of not only mechanical systems but also power systems, traction machines and traction algorithms. At the initial design stage, traction algorithms can be verified by means of a simulation approach. A simple single wheelset simulation approach is not sufficient because all locomotive dynamics are not fully taken into consideration. Given that many traction control strategies exist, the best solution is to use more advanced approaches for such studies. This paper describes the modelling of a locomotive with a bogie traction control strategy based on a co-simulation approach in order to deliver more accurate results. The simplified and advanced modelling approaches of a locomotive electric power system are compared in this paper in order to answer a fundamental question. What level of modelling complexity is necessary for the investigation of the dynamic behaviours of a heavy-haul locomotive running under traction? The simulation results obtained provide some recommendations on simulation processes and the further implementation of advanced and simplified modelling approaches.

  16. Investigation of re-use options for used traction sand.

    DOT National Transportation Integrated Search

    2010-06-01

    The Colorado Department of Transportation (CDOT) uses approximately 24,000 tons of traction sand annually, : especially in mountain locations. Once traction sand is applied, street sweepers reclaim approximately 50% of the : sand, which is either sto...

  17. Orthodontic traction of a transmigrated mandibular canine using mini-implant: a case report and review.

    PubMed

    Plaza, Sonia Patricia

    2016-12-01

    The patient in this case is an 11-year-old girl, whose mandibular left canine was transmigrated. The traction to the arch was assisted by using a temporary skeletal anchorage device. After 5 months of poor response to traction, the biomechanics were re-adjusted, obtaining effective traction in to the arch in 12 months. After this period, the treatment was completed with fixed orthodontic appliances.

  18. Traction and lubricant film temperature as related to the glass transition temperature and solidification. [using infrared spectroscopy on EHD contacts

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; Peterkin, M. E.

    1978-01-01

    Does a traction fluid have to be a glass or solid under operating conditions. Infrared spectra on dynamic EHD contacts of several types of fluid were used to determine the surface and oil-film temperatures. Polarized spectral runs were made to study molecular alignment. Static glass transition pressures at appropriate temperatures were between 0.1 and 2.0 GPa, with the traction fluid showing the highest. In the EHD contact region, the traction fluid showed both the highest film temperatures as well as the greatest degree of molecular alignment. A plot of the difference between the film and surface temperatures vs shear rate resulted in a master plot valid for all the fluids. From this work, the authors propose a model of 'fluid' traction, where friction between parallel rough molecules provides the traction.

  19. Friction self-oscillation decrease in nonlinear system of locomotive traction drive

    NASA Astrophysics Data System (ADS)

    Antipin, D. Ya; Vorobiyov, V. I.; Izmerov, O. V.; Shorokhov, S. G.; Bondarenko, D. A.

    2017-02-01

    The problems of the friction self-oscillation decrease in a nonlinear system of a locomotive traction drive are considered. It is determined that the self-oscillation amplitude decrease in a locomotive wheel pair during boxing in traction drives with an elastic linkage between an armature of a traction electric motor and gearing can be achieved due to drive damping capacity during impact vibro-damping in an axle reduction gear with a hard driven gear. The self-oscillation amplitude reduction in a wheel pair in the designs of locomotive traction drives with the location of elastic elements between a wheel pair and gearing can be obtained owing to the application of drive inertial masses as an anti-vibrator. On the basis of the carried out investigations, a design variant of a self-oscillation shock absorber of a traction electric motor framework on a reduction gear suspension with an absorber located beyond a wheel-motor unit was offered.

  20. Case report: Osteonecrosis of the femoral head after hip arthroscopy.

    PubMed

    Scher, Danielle L; Belmont, Philip J; Owens, Brett D

    2010-11-01

    Hip arthroscopy is a common orthopaedic procedure used as a diagnostic and therapeutic tool with a multitude of surgical indications. The complication rate is reportedly between 1.3% and 23.3%. Major complications are related to traction, fluid extravasation, and iatrogenic chondral injury. Although osteonecrosis is a concern with any surgical procedure about the hip, this complication has been primarily a theoretical concern with hip arthroscopy. We report the case of a 24-year-old man who presented with a 2-year history of left hip pain. He underwent hip arthroscopy to include débridement of a torn labrum and removal of a prominent pincer lesion for femoroacetabular impingement. Traction was initiated by applying manual traction to the traction bar until 10 mm of joint distraction was obtained. Traction was removed at 90 minutes. At the 3-month followup, MRI showed osteonecrosis in the subcapital region of the left femoral head. It generally is agreed the magnitude and duration of traction during hip arthroscopy increase the risk of traction-related injuries. Only one previous case of femoral head osteonecrosis associated with hip arthroscopy has been reported, and this may have resulted from the initial traumatic event. Based on anatomic studies, the use of standard arthroscopic portals would not put at risk any dominant normal vascular structures supplying the femoral head. In contrast, the literature shows that femoral head osteonecrosis may develop secondary to a combination of increased intraarticular pressure and traction. We suspect this case of femoral head osteonecrosis after hip arthroscopy was caused by traction used in the procedure.

  1. Traction-assisted Internal Negative Pressure Wound Therapy With Bridging Retention Sutures to Facilitate Staged Closure of High-risk Wounds Under Tension.

    PubMed

    DeFazio, Michael V; Economides, James M; Anghel, Ersilia L; Mathis, Ryan K; Barbour, John R; Attinger, Christopher E

    2017-10-01

    Loss of domain often complicates attempts at delayed wound closure in regions of high tension. Wound temporization with traction-assisted internal negative pressure wound therapy (NPWT), using bridging retention sutures, can minimize the effects of edema and elastic recoil that contribute to progressive tissue retraction over time. The investigators evaluated the safety and efficacy of this technique for complex wound closure. Between May 2015 and November 2015, 18 consecutive patients underwent staged reconstruction of complex and/or contaminated soft tissue defects utilizing either conventional NPWT or modified NPWT with instillation and continuous dermatotraction via bridging retention sutures. Instillation of antimicrobial solution was reserved for wounds containing infected/exposed hardware or prosthetic devices. Demographic data, wound characteristics, reconstructive outcomes, and complications were reviewed retrospectively. Eighteen wounds were treated with traction-assisted internal NPWT using the conventional (n = 11) or modified instillation (n = 7) technique. Defects involved the lower extremity (n = 14), trunk (n = 3), and proximal upper extremity (n = 1), with positive cultures identified in 12 wounds (67%). Therapy continued for 3 to 8 days (mean, 4.3 days), resulting in an average wound surface area reduction of 78% (149 cm² vs. 33 cm²) at definitive closure. Seventeen wounds (94%) were closed directly, whereas the remaining defect required coverage with a local muscle flap and skin graft. At final follow-up (mean, 12 months), 89% of wounds remained closed. In 2 patients with delayed, recurrent periprosthetic infection (mean, 7.5 weeks), serial debridement/hardware removal mandated free tissue transfer for composite defect reconstruction. Traction-assisted internal NPWT provides a safe and effective alternative to reduce wound burden and facilitate definitive closure in cases where delayed reconstruction of high-tension wounds is planned.

  2. Testing and evaluation of recovered traction sanding material.

    DOT National Transportation Integrated Search

    2013-04-01

    The Montana Department of Transportation (MDT) is searching for a solution to the accumulation of traction sand that is applied to Montana highways every winter. An analysis of reuse and recycle options for salvaged traction sand was conducted using ...

  3. Bidirectional DC-DC conversion device use at system of urban electric transport

    NASA Astrophysics Data System (ADS)

    Vilberger, M. E.; Vislogusov, D. P.; Kotin, D. A.; Kulekina, A. V.

    2017-10-01

    The paper considers questions of energy storage devices used in electric transport, especially in the electric traction drive of a trolley bus, in order to provide an autonomous motion, overhead system’s load leveling and energy recovering. For efficiency of the proposed system, a bidirectional DC-DC converter is used. During the simulation, regulation characteristics of the bidirectional DC-DC converters were obtained.

  4. Electric Transport Traction Power Supply System With Distributed Energy Sources

    NASA Astrophysics Data System (ADS)

    Abramov, E. Y.; Schurov, N. I.; Rozhkova, M. V.

    2016-04-01

    The paper states the problem of traction substation (TSS) leveling of daily-load curve for urban electric transport. The circuit of traction power supply system (TPSS) with distributed autonomous energy source (AES) based on photovoltaic (PV) and energy storage (ES) units is submitted here. The distribution algorithm of power flow for the daily traction load curve leveling is also introduced in this paper. In addition, it illustrates the implemented experiment model of power supply system.

  5. Mechanics of advancing pin-loaded contacts with friction

    NASA Astrophysics Data System (ADS)

    Sundaram, Narayan; Farris, T. N.

    2010-11-01

    This paper considers finite friction contact problems involving an elastic pin and an infinite elastic plate with a circular hole. Using a suitable class of Green's functions, the singular integral equations governing a very general class of conforming contact problems are formulated. In particular, remote plate stresses, pin loads, moments and distributed loading of the pin by conservative body forces are considered. Numerical solutions are presented for different partial slip load cases. In monotonic loading, the dependence of the tractions on the coefficient of friction is strongest when the contact is highly conforming. For less conforming contacts, the tractions are insensitive to an increase in the value of the friction coefficient above a certain threshold. The contact size and peak pressure in monotonic loading are only weakly dependent on the pin load distribution, with center loads leading to slightly higher peak pressure and lower peak shear than distributed loads. In contrast to half-plane cylinder fretting contacts, fretting behavior is quite different depending on whether or not the pin is allowed to rotate freely. If pin rotation is disallowed, the fretting tractions resemble half-plane fretting tractions in the weakly conforming regime but the contact resists sliding in the strongly conforming regime. If pin rotation is allowed, the shear traction behavior resembles planar rolling contacts in that one slip zone is dominant and the peak shear occurs at its edge. In this case, the effects of material dissimilarity in the strongly conforming regime are only secondary and the contact never goes into sliding. Fretting tractions in the forward and reversed load states show shape asymmetry, which persists with continued load cycling. Finally, the governing integro-differential equation for full sliding is derived; in the limiting case of no friction, the same equation governs contacts with center loading and uniform body force loading, resulting in identical pressures when their resultants are equal.

  6. Effects of Different Angles of the Traction Table on Lumbar Spine Ligaments: A Finite Element Study.

    PubMed

    Farajpour, Hekmat; Jamshidi, Nima

    2017-12-01

    The traction bed is a noninvasive device for treating lower back pain caused by herniated intervertebral discs. In this study, we investigated the impact of the traction bed on the lower back as a means of increasing the disc height and creating a gap between facet joints. Computed tomography (CT) images were obtained from a female volunteer and a three-dimensional (3D) model was created using software package MIMICs 17.0. Afterwards, the 3D model was analyzed in an analytical software (Abaqus 6.14). The study was conducted under the following traction loads: 25%, 45%, 55%, and 85% of the whole body weight in different angles. Results indicated that the loading angle in the L3-4 area had 36.8%, 57.4%, 55.32%, 49.8%, and 52.15% effect on the anterior longitudinal ligament, posterior longitudinal ligament, intertransverse ligament, interspinous ligament, and supraspinous ligament, respectively. The respective values for the L4-5 area were 32.3%, 10.6%, 53.4%, 56.58%, and 57.35%. Also, the body weight had 63.2%, 42.6%, 44.68%, 50.2%, and 47.85% effect on the anterior longitudinal ligament, posterior longitudinal ligament, intertransverse ligament, interspinous ligament, and supraspinous ligament, respectively. The respective values for the L4-5 area were 67.7%, 89.4%, 46.6%, 43.42% and 42.65%. The authenticity of results was checked by comparing with the experimental data. The results show that traction beds are highly effective for disc movement and lower back pain relief. Also, an optimal angle for traction can be obtained in a 3D model analysis using CT or magnetic resonance imaging images. The optimal angle would be different for different patients and thus should be determined based on the decreased height of the intervertebral disc, weight and height of patients.

  7. Elastohydrodynamic Traction Properties of Seed Oils

    USDA-ARS?s Scientific Manuscript database

    The elastohydrodynamic traction coefficient (tc) properties of nine seed oils of varying chemical structures, PAO and hexadecane, were investigated using a ball-on disk traction apparatus. The seed oils were: castor oil, a triglyceride with hydroxyl functional group; jojoba, a monoglyceride; and s...

  8. The Technical Problems of Anti-theft Diagnostics in a Traction Network

    NASA Astrophysics Data System (ADS)

    Mikulski, Jerzy; Młynczak, Jakub

    2012-02-01

    The paper presents an analysis of traction lines theft in the Katowice division of the Railroad Development Company (Zakład Linii Kolejowych - ZLK) as well as the principles for the anti-theft protection system, currently in development. The problem of theft is a very important issue concerning the safety of rail transportation. It is also a significant economic problem, as the cost of recreating a stolen network is very high. Moreover, the Administrator of the infrastructure bears the cost of compensation for any delays in train schedules.

  9. Rolling-element fatigue life with traction fluids and automatic transmission fluid in a high-speed rolling-contact rig

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Nahm, A. H.; Loewenthal, S. H.

    1982-01-01

    Rolling-element fatigue tests were run in standard and high-speed rolling-contact rigs at bar speeds from 5000 to 50,000 rpm to determine the effects of speed and lubricant film parameter on rolling-element fatigue life. AISI 52100 test bars were tested at a maximum Hertz stress of 4.83 GPa (700,000 psi) with three traction fluids and an automatic transmission fluid. Rolling-element fatigue life increased with speed, with the greatest increases occurring from 10,000 to 50,000 rpm. The life data tended to follow published life-versus-lubricant-film-parameter data up to a film parameter of approximately 3.

  10. Investigation of control system of traction electric drive with feedbacks on load

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. K.; Iov, I. A.; Iov, A. A.

    2018-03-01

    In the article, by the example of a walking excavator, the results of a study of a control system of traction electric drive with a rigid and flexible feedback on the load are mentioned. Based on the analysis of known works, the calculation scheme has been chosen; the equations of motion of the electromechanical system have been obtained, taking into account the elasticity of the rope and feedbacks on the load in the elastic element. A simulation model of this system has been developed and mathematical modeling of the transient processes to evaluate the influence of feedback on the dynamic characteristics of the mechanism and its efficiency of work was carried out. It is shown that the use of rigid and flexible feedbacks makes it possible to reduce dynamic loads in the traction mechanism and to limit the elastic oscillation of the executive mechanism in transient operating modes in comparison with the standard control system; however, there is some decrease in productivity. It has been also established that the sign-variable of the loading of the electric drive, connected with the opening of the backlashes in the gearbox due to the action of feedbacks on the load in the elastic element, under certain conditions, can lead to undesirable phenomena in the operation of the drive and a decrease in the reliability of its operation.

  11. Integral Sensor Fault Detection and Isolation for Railway Traction Drive.

    PubMed

    Garramiola, Fernando; Del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka

    2018-05-13

    Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive.

  12. Integral Sensor Fault Detection and Isolation for Railway Traction Drive

    PubMed Central

    del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka

    2018-01-01

    Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive. PMID:29757251

  13. Study of advanced electric propulsion system concept using a flywheel for electric vehicles

    NASA Technical Reports Server (NTRS)

    Younger, F. C.; Lackner, H.

    1979-01-01

    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  14. Elastohydrodynamic (EHD) traction properties of seed oils

    USDA-ARS?s Scientific Manuscript database

    The elastohydrodynamic traction coefficient (tc) properties of nine seed oils of varying chemical structures, PAO and hexadecane, were investigated using a ball-on disk traction apparatus. The seed oils were: castor oil, a triglyceride with hydroxyl functional group; jojoba, a monoglyceride; and sev...

  15. Diagnosis of unstable cervical spine injuries: laboratory support for the use of axial traction to diagnose cervical spine instability.

    PubMed

    Kalantar, Babak S; Hipp, John A; Reitman, Charles A; Dreiangel, Niv; Ben-Galim, Peleg

    2010-10-01

    The ability to detect damage to the intervertebral structures is critical in the management of patients after blunt trauma. A practical and inexpensive method to identify severe structural damage not clearly seen on computed tomography would be of benefit. The objective of this study was to assess whether ligamentous injury in the subaxial cervical spine can be reliably detected by analysis of lateral radiographs taken with and without axial traction. Twelve fresh, whole, postrigor-mortis cadavers were used for this study. Lateral cervical spine radiographs were obtained during the application of 0 N, 89 N, and 178 N of axial traction applied to the head. Progressive incremental sectioning of posterior structures was then performed at C4-C5 with traction imaging repeated after each intervention. Intervertebral distraction was analyzed using computer-assisted software. Almost imperceptible intervertebral separation was found when traction was applied to intact spines. In the subaxial cervical spine, the average posterior disc height consistently increased under traction in severely injured spines. The average disc height increase was 14% of the C4 upper endplate width, compared with an average of 2% in the noninjured spines. A change of more than 5% in posterior disc height under traction was above the 95% confidence interval for intact spines, with sensitivity of 83% and specificity of 80%. Applied force of 89 N (20 lb) was sufficient to demonstrate injury. The combination of assessing alignment and distraction under traction increased both the sensitivity and specificity to nearly 100%. This study supports further clinical investigations to determine whether low-level axial traction may be a useful adjunct for detecting unstable subaxial cervical spine injuries in an acute setting.

  16. Incipient mantle delamination, active tectonics and crustal thickening in Northern Morocco: Insights from gravity data and numerical modeling

    NASA Astrophysics Data System (ADS)

    Baratin, Laura-May; Mazzotti, Stéphane; Chéry, Jean; Vernant, Philippe; Tahayt, Abdelilah; Mourabit, Taoufik

    2016-11-01

    The Betic-Rif orocline surrounding the Alboran Sea, the westernmost tip of the Mediterranean Sea, accommodates the NW-SE convergence between the Nubia and Eurasia plates. Recent GPS observations indicate a ∼4 mm/yr SW motion of the Rif Mountains, relative to stable Nubia, incompatible with a simple two-plate model. New gravity data acquired in this study define a pronounced negative Bouguer anomaly south of the Rif, interpreted as a ∼40 km-thick crust in a state of non-isostatic equilibrium. We study the correlation between these present-day kinematic and geodynamic processes using a finite-element code to model in 2-D the first-order behavior of a lithosphere affected by a downward normal traction (representing the pull of a high-density body in the upper mantle). We show that intermediate viscosities for the lower crust and uppermost mantle (1021-1022Pas) allow an efficient coupling between the mantle and the base of the brittle crust, thus enabling (1) the conversion of vertical movement, resulting from the downward traction, to horizontal movement and (2) shortening in the brittle upper crust. Our results show that incipient delamination of the Nubian continental lithosphere, linked to slab pull, can explain the present-day abnormal tectonics, contribute to the gravity anomaly observed in northern Morocco, and give insight into recent tectonics in the Western Mediterranean region.

  17. Innovative Design and Performance Evaluation of Bionic Imprinting Toothed Wheel.

    PubMed

    Zhang, Zhihong; Wang, Xiaoyang; Tong, Jin; Stephen, Carr

    2018-01-01

    A highly efficient soil-burrowing dung beetle possesses an intricate outer contour curve on its foreleg end-tooth. This study was carried out based on evidence that this special outer contour curve has the potential of reducing soil penetration resistance and could enhance soil-burrowing efficiency. A toothed wheel is a typical agricultural implement for soil imprinting, to increase its working efficiency; the approach of the bionic geometrical structure was utilized to optimize the innovative shape of imprinting toothed wheel. Characteristics in the dung beetle's foreleg end-tooth were extracted and studied by the edge detection technique. Then, this special outer contour curve was modeled by a nine-order polynomial function and used for the innovative design of imprinting the tooth's cutting edge. Both the conventional and bionic teeth were manufactured, and traction tests in a soil bin were conducted. Taking required draft force and volume of imprinted microbasin as the evaluating indexes, operating efficiency and quality of different toothed wheels were compared and investigated. Results indicate that compared with the conventional toothed wheel, a bionic toothed wheel possesses a better forward resistance reduction property against soil and, meanwhile, can enhance the quality of soil imprinting by increasing the volume of the created micro-basin.

  18. Auxiliary power unit for moving a vehicle

    DOEpatents

    Akasam, Sivaprasad [Peoria, IL; Johnson, Kris W [Peoria, IL; Johnson, Matthew D [Peoria, IL; Slone, Larry M [Washington, IL; Welter, James Milton [Chillicothe, IL

    2009-02-03

    A power system is provided having at least one traction device and a primary power source configured to power the at least one traction device. In addition, the power system includes an auxiliary power source also configured to power the at least one traction device.

  19. Advanced dc-Traction-Motor Control System

    NASA Technical Reports Server (NTRS)

    Vittone, O.

    1985-01-01

    Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.

  20. Fluidization, resolidification, and reorientation of the endothelial cell in response to slow tidal stretches

    PubMed Central

    Krishnan, Ramaswamy; Canović, Elizabeth Peruski; Iordan, Andreea L.; Rajendran, Kavitha; Manomohan, Greeshma; Pirentis, Athanassios P.; Smith, Michael L.; Butler, James P.; Fredberg, Jeffrey J.

    2012-01-01

    Mechanical stretch plays an important role in regulating shape and orientation of the vascular endothelial cell. This morphological response to stretch is basic to angiogenesis, neovascularization, and vascular homeostasis, but mechanism remains unclear. To elucidate mechanisms, we used cell mapping rheometry to measure traction forces in primary human umbilical vein endothelial cells subjected to periodic uniaxial stretches. Onset of periodic stretch of 10% strain amplitude caused a fluidization response typified by attenuation of traction forces almost to zero. As periodic stretch continued, the prompt fluidization response was followed by a slow resolidification response typified by recovery of the traction forces, but now aligned along the axis perpendicular to the imposed stretch. Reorientation of the cell body lagged reorientation of the traction forces, however. Together, these observations demonstrate that cellular reorientation in response to periodic stretch is preceded by traction attenuation by means of cytoskeletal fluidization and subsequent traction recovery transverse to the stretch direction by means of cytoskeletal resolidification. PMID:22700796

  1. Effects of intermittent traction therapy in an experimental spinal column model.

    PubMed

    Shin, Jeong-Hun; Jun, Seung-lyul; Lee, Young-Jun; Kim, Jae-Hyo; Hwang, Sung-Yeoun; Ahn, Seong-Hun

    2014-04-01

    Traction therapy, which is known to be a treatment method for scoliosis, one of many muscles disease, has been used since Hippocrates introduced it. However, the effects of traction therapy are still not clear. In addition, the meridian sinew theory, which is related to muscle treatment and is mentioned in the book on meridian sinews in the Miraculous Pivot of Huangdi's Internal Classic, has not been the subject of much study. For these reasons, experimental spinal models were made for this study to observe and analyze the lengths of vertebral interspaces after intermittent traction therapy, which is known to be excellent among muscle treatment methods, with various tensile forces. The results showed that the effects of intermittent traction therapy were unclear and that it might be harmful, especially when the pain was induced by muscle weakness. Because the results of this study on intermittent traction therapy were different from those expected from osteopathy or craniosacral theory, better studies of the subject are necessary. Copyright © 2014. Published by Elsevier B.V.

  2. Traction alopecia: the root of the problem

    PubMed Central

    Billero, Victoria; Miteva, Mariya

    2018-01-01

    Traction alopecia (TA) affects one-third of women of African descent who wear various forms of traumatic hairstyling for a prolonged period of time. The risk of TA is increased by the extent of pulling and duration of traction, as well as the use of chemical relaxation. The frequent use of tight buns or ponytails, the attachment of weaves or hair extensions, and tight braids (such as cornrows and dreadlocks) are believed to be the highest risk hairstyles. TA can also occur in the setting of religious and occupational traumatic hairstyling. In its later stages, the disease may progress into an irreversible scarring alopecia if traumatic hairstyling continues without appropriate intervention. The most common clinical presentation includes marginal alopecia and non-marginal patchy alopecia. A clue to the clinical diagnosis is the preservation of the fringe sign as opposed to its loss in frontal fibrosing alopecia (FFA). Dermoscopy can be helpful in the diagnosis and can detect the ongoing traction by the presence of hair casts. Histopathology can distinguish TA from alopecia areata, FFA, and patchy central centrifugal cicatricial alopecia. Currently, there is no cure. Therefore, it is imperative that clinicians educate high-risk populations about TA and those practices that may convey the risk of hair loss. PMID:29670386

  3. [Research on the stability of teaching robots of rotation-traction manipulation].

    PubMed

    Feng, Min-Shan; Zhu, Li-Guo; Wang, Shang-Quan; Yu, Jie; Chen, Ming; Li, Ling-Hui; Wei, Xu

    2017-03-25

    To evaluate the stability of teaching robot of rotation-traction manipulation. Operators were required to get the hang of rotation-traction manipulation and had clinical experience for over 5 years. The examination and data processing of the ten operators in our research were collected by the teaching robot of rotation-traction manipulation. Traction, pulling force, maximum force, pulling time, rotational amplitude and pitch range were recorded and compared for five times(G1, G2, G3, G4 and G5). The qualification rates were analyzed to evaluate the stability of teaching robot of rotation-traction manipulation. Nonconforming items were found in G1 and G2, for instance, pulling force( P =0.074), maximum force( P =0.264) and rotational amplitude ( P =0.531). There was no statistically difference. None nonconforming item was found in G3, G4 and G5. All data were processed by SPSS and One-way ANOVA was used to analysis. Pulling force was found statistically different in G1, compared with G4 and G5( P =0.015, P =0.006). Maximum force was found statistically different in G1, compared with G4 and G5 ( P =0.021, P =0.012). None differences were found in other comparisons ( P >0.05). The teaching robot of rotation-traction manipulation used in our research could provide objective and quantitative indices and was considered to be an effective tool of assessing the rotation-traction manipulation.

  4. A study on high-speed rolling contact between a wheel and a contaminated rail

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Wen, Zefeng; Zhu, Minhao; Jin, Xuesong

    2014-10-01

    A 3-D explicit finite element model is developed to investigate the transient wheel-rail rolling contact in the presence of rail contamination or short low adhesion zones (LAZs). A transient analysis is required because the wheel passes by a short LAZ very quickly, especially at high speeds. A surface-to-surface contact algorithm (by the penalty method) is employed to solve the frictional rolling contact between the wheel and the rail meshed by solid elements. The LAZ is simulated by a varying coefficient of friction along the rail. Different traction efforts and action of the traction control system triggered by the LAZ are simulated by applying a time-dependent driving torque to the wheel axle. Structural flexibilities of the vehicle-track system are considered properly. Analysis focuses on the contact forces, creepage, contact stresses and the derived frictional work and plastic deformation. It is found that the longitudinal contact force and the maximum surface shear stress in the contact patch become obviously lower in the LAZ and much higher as the wheel re-enters the dry rail section. Consequently, a higher wear rate and larger plastic flow are expected at the location where the dry contact starts to be rebuilt. In other words, contact surface damages such as wheel flats and rail burns may come into being because of the LAZ. Length of the LAZ, the traction level, etc. are varied. The results also show that local contact surface damages may still occur as the traction control system acts.

  5. 21 CFR 888.5890 - Noninvasive traction component.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Noninvasive traction component. 888.5890 Section 888.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.5890 Noninvasive traction component. (a...

  6. 21 CFR 888.5890 - Noninvasive traction component.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noninvasive traction component. 888.5890 Section 888.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.5890 Noninvasive traction component. (a...

  7. 21 CFR 888.5890 - Noninvasive traction component.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Noninvasive traction component. 888.5890 Section 888.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.5890 Noninvasive traction component. (a...

  8. 21 CFR 888.5890 - Noninvasive traction component.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Noninvasive traction component. 888.5890 Section 888.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.5890 Noninvasive traction component. (a...

  9. 21 CFR 888.5890 - Noninvasive traction component.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Noninvasive traction component. 888.5890 Section 888.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.5890 Noninvasive traction component. (a...

  10. 21 CFR 890.5900 - Power traction equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Power traction equipment. 890.5900 Section 890.5900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5900 Power traction...

  11. 21 CFR 890.5925 - Traction accessory.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Traction accessory. 890.5925 Section 890.5925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5925 Traction accessory. (a...

  12. 21 CFR 890.5900 - Power traction equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Power traction equipment. 890.5900 Section 890.5900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5900 Power traction...

  13. 21 CFR 890.5925 - Traction accessory.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Traction accessory. 890.5925 Section 890.5925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5925 Traction accessory. (a...

  14. 21 CFR 890.5925 - Traction accessory.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Traction accessory. 890.5925 Section 890.5925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5925 Traction accessory. (a...

  15. 21 CFR 890.5925 - Traction accessory.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Traction accessory. 890.5925 Section 890.5925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5925 Traction accessory. (a...

  16. 21 CFR 890.5900 - Power traction equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Power traction equipment. 890.5900 Section 890.5900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5900 Power traction...

  17. 21 CFR 890.5925 - Traction accessory.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Traction accessory. 890.5925 Section 890.5925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5925 Traction accessory. (a...

  18. 21 CFR 890.5900 - Power traction equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Power traction equipment. 890.5900 Section 890.5900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5900 Power traction...

  19. 21 CFR 890.5900 - Power traction equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Power traction equipment. 890.5900 Section 890.5900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5900 Power traction...

  20. Elements affecting runway traction

    NASA Technical Reports Server (NTRS)

    Horne, W. B.

    1974-01-01

    The five basic elements affecting runway traction for jet transport aircraft operation are identified and described in terms of pilot, aircraft system, atmospheric, tire, and pavement performance factors or parameters. Where possible, research results are summarized, and means for restoring or improving runway traction for these different conditions are discussed.

  1. Measuring traction forces of motile dendritic cells on micropost arrays.

    PubMed

    Ricart, Brendon G; Yang, Michael T; Hunter, Christopher A; Chen, Christopher S; Hammer, Daniel A

    2011-12-07

    Dendritic cells (DCs) migrate from sites of inflammation to secondary lymphoid organs where they initiate the adaptive immune response. Although motility is essential to DC function, the mechanisms by which they migrate are not fully understood. We incorporated micropost array detectors into a microfluidic gradient generator to develop what we consider to be a novel method for probing low magnitude traction forces during directional migration. We found migration of primary murine DCs is driven by short-lived traction stresses at the leading edge or filopodia. The traction forces generated by DCs are smaller in magnitude than found in neutrophils, and of similar magnitude during chemotaxis and chemokinesis, at 18 ± 1.4 and 16 ± 1.3 nN/cell, respectively. The characteristic duration of local DC traction forces was 3 min. The maximum principal stress in the cell occurred in the plane perpendicular to the axis of motion, forward of the centroid. We illustrate that the spatiotemporal pattern of traction stresses can be used to predict the direction of future DC motion. Overall, DCs show a mode of migration distinct from both mesenchymal cells and neutrophils, characterized by rapid turnover of traction forces in leading filopodia. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. A scoping review of applications and outcomes of traction orthoses and constructs for the management of intra-articular fractures and fracture dislocations in the hand.

    PubMed

    Packham, Tara L; Ball, Pamela D; MacDermid, Joy C; Bain, James R; DalCin, Arianna

    2016-01-01

    Intra-articular hand fractures can have devastating consequences for movement and function. The unique nature of the injury and diverse management strategies are a challenge for conducting trials. To conduct a scoping review of traction constructs for the management of intra-articular hand fractures. We conducted a systematic search of the literature, extracting data on the scope and nature of the evidence for traction constructs. Our search yielded 87 articles addressing 3 traction constructs: (1) static traction (n = 17), (2) dynamic external fixation (n = 53), and (3) dynamic orthoses (n = 17). Active range of motion of the target joint was the most frequently reported outcome. Study designs included 36 cohorts, 21 case series, and 9 case studies: 24% contained only technical information. The current literature addressing traction constructs consists primarily of small and low-quality studies. Evidence synthesis could improve the estimation of range of motion outcomes but would not be able to identify the best treatment. Consensus on classification of fracture patterns, routine use of outcome measures, and randomized trials are needed to compare different traction constructs and inform evidence-based care. Scoping review. N/A. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  3. 3D Viscoelastic Traction Force Microscopy

    PubMed Central

    Toyjanova, Jennet; Hannen, Erin; Bar-Kochba, Eyal; Darling, Eric M.; Henann, David L.; Franck, Christian

    2014-01-01

    Native cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in-vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, which could play an important role in how cells sense and transduce tractions. To expand the realm of cell traction measurements and to encompass all materials from elastic to viscoelastic, this paper presents a general, and comprehensive approach for quantifying 3D cell tractions in viscoelastic materials. This methodology includes the experimental characterization of the time-dependent material properties for any viscoelastic material with the subsequent mathematical implementation of the determined material model into a 3D traction force microscopy (3D TFM) framework. Utilizing this new 3D viscoelastic TFM (3D VTFM) approach, we quantify the influence of viscosity on the overall material traction calculations and quantify the error associated with omitting time-dependent material effects, as is the case for all other TFM formulations. We anticipate that the 3D VTFM technique will open up new avenues of cell-material investigations on even more physiologically relevant time-dependent materials including collagen and fibrin gels. PMID:25170569

  4. FY2010 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, Mitchell

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public-private partnerships to fund high risk, high payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ranmore » from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the PE and electrical machines subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machines Research Program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2010 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, and they are indicated at the end of each section for readers interested in pursuing details of the work.« less

  5. FY2009 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, Mitchell

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), all electric vehicles, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher-temperature environments while achieving high reliability; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control and packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2009 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less

  6. Harmonic analysis of traction power supply system based on wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Dun, Xiaohong

    2018-05-01

    With the rapid development of high-speed railway and heavy-haul transport, AC drive electric locomotive and EMU large-scale operation in the country on the ground, the electrified railway has become the main harmonic source of China's power grid. In response to this phenomenon, the need for timely monitoring of power quality problems of electrified railway, assessment and governance. Wavelet transform is developed on the basis of Fourier analysis, the basic idea comes from the harmonic analysis, with a rigorous theoretical model, which has inherited and developed the local thought of Garbor transformation, and has overcome the disadvantages such as window fixation and lack of discrete orthogonally, so as to become a more recently studied spectral analysis tool. The wavelet analysis takes the gradual and precise time domain step in the high frequency part so as to focus on any details of the signal being analyzed, thereby comprehensively analyzing the harmonics of the traction power supply system meanwhile use the pyramid algorithm to increase the speed of wavelet decomposition. The matlab simulation shows that the use of wavelet decomposition of the traction power supply system for harmonic spectrum analysis is effective.

  7. Mechanical Design of Downhole Tractor Based on Two-Way Self-locking Mechanism

    NASA Astrophysics Data System (ADS)

    Fang, Delei; Shang, Jianzhong; Luo, Zirong; Wu, Guoheng; Liu, Yiying

    2018-03-01

    Based on the technology of horizontal well tractor, a kind of downhole tractor was developed which can realize Two-Way self-locking function. Aiming at the needs of horizontal well logging to realize the target of small size, high traction and high reliability, the tractor selects unique heart-shaped CAM as the locking mechanism. The motion principle of telescopic downhole tractor, the design of mechanical structure and locking principle of the locking mechanism are all analyzed. The mathematical expressions of traction are obtained by mechanical analysis of parallel support rod in the locking mechanism. The force analysis and contour design of the heart-shaped CAM are performed, which can lay the foundation for the development of tractor prototype.

  8. Creep force modelling for rail traction vehicles based on the Fastsim algorithm

    NASA Astrophysics Data System (ADS)

    Spiryagin, Maksym; Polach, Oldrich; Cole, Colin

    2013-11-01

    The evaluation of creep forces is a complex task and their calculation is a time-consuming process for multibody simulation (MBS). A methodology of creep forces modelling at large traction creepages has been proposed by Polach [Creep forces in simulations of traction vehicles running on adhesion limit. Wear. 2005;258:992-1000; Influence of locomotive tractive effort on the forces between wheel and rail. Veh Syst Dyn. 2001(Suppl);35:7-22] adapting his previously published algorithm [Polach O. A fast wheel-rail forces calculation computer code. Veh Syst Dyn. 1999(Suppl);33:728-739]. The most common method for creep force modelling used by software packages for MBS of running dynamics is the Fastsim algorithm by Kalker [A fast algorithm for the simplified theory of rolling contact. Veh Syst Dyn. 1982;11:1-13]. However, the Fastsim code has some limitations which do not allow modelling the creep force - creep characteristic in agreement with measurements for locomotives and other high-power traction vehicles, mainly for large traction creep at low-adhesion conditions. This paper describes a newly developed methodology based on a variable contact flexibility increasing with the ratio of the slip area to the area of adhesion. This variable contact flexibility is introduced in a modification of Kalker's code Fastsim by replacing the constant Kalker's reduction factor, widely used in MBS, by a variable reduction factor together with a slip-velocity-dependent friction coefficient decreasing with increasing global creepage. The proposed methodology is presented in this work and compared with measurements for different locomotives. The modification allows use of the well recognised Fastsim code for simulation of creep forces at large creepages in agreement with measurements without modifying the proven modelling methodology at small creepages.

  9. Study of Method for Designing the Power and the Capacitance of Fuel Cells and Electric Double-Layer Capacitors of Hybrid Railway Vehicle

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Kondo, Keiichiro

    A hybrid railway traction system with fuel cells (FCs) and electric double layer-capacitors (EDLCs) is discussed in this paper. This system can save FC costs and absorb the regenerative energy. A method for designing FCs and EDLCs on the basis of the output power and capacitance, respectively, has not been reported, even though their design is one of the most important technical issues encountered in the design of hybrid railway vehicles. Such design method is presented along with a train load profile and an energy management strategy. The design results obtained using the proposed method are verified by performing numerical simulations of a running train. These results reveal that the proposed method for designing the EDLCs and FCs on the basis of the capacitance and power, respectively, and by using a method for controlling the EDLC voltage is sufficiently effective in designing efficient EDLCs and FCs of hybrid railway traction systems.

  10. Dynamics of Cancer Cell near Collagen Fiber Chain

    NASA Astrophysics Data System (ADS)

    Kim, Jihan; Sun, Bo

    Cell migration is an integrated process that is important in life. Migration is essential for embryonic development as well as homeostatic processes such as wound healing and immune responses. When cell migrates through connective extracellular matrix (ECM), it applies cellular traction force to ECM and senses the rigidity of their local environment. We used human breast cancer cell (MDA-MB-231) which is highly invasive and applies strong traction force to ECM. As cancer cell applies traction force to type I collage-based ECM, it deforms collagen fibers near the surface. Patterns of deforming collagen fibers are significantly different with pairs of cancer cells compared to a single cancer cell. While a pair of cancer cells within 60 um creates aligned collagen fiber chains between them permanently, a single cancer cell does not form any fiber chains. In this experiment we measured a cellular response and an interaction between a pair of cells through the chain. Finally, we analyzed correlation of directions between cancer cell migration and the collagen chain alignment.

  11. Methods of the aerodynamical experiments with simulation of massflow-traction ratio of the power unit

    NASA Astrophysics Data System (ADS)

    Lokotko, A. V.

    2016-10-01

    Modeling massflow-traction characteristics of the power unit (PU) may be of interest in the study of aerodynamic characteristics (ADC) aircraft models with full dynamic likeness, and in the study of the effect of interference PU. These studies require the use of a number of processing methods. These include: 1) The method of delivery of the high-pressure body of jets model engines on the sensitive part of the aerodynamic balance. 2) The method of estimate accuracy and reliability of measurement thrust generated by the jet device. 3) The method of implementation of the simulator SU in modeling the external contours of the nacelle, and the conditions at the inlet and outlet. 4) The method of determining the traction simulator PU. 5) The method of determining the interference effect from the work of power unit on the ADC of model. 6) The method of producing hot jets of jet engines. The paper examines implemented in ITAM methodology applied to testing in a supersonic wind tunnel T-313.

  12. Age-related differences in the response of the L5-S1 intervertebral disc to spinal traction.

    PubMed

    Mitchell, Ulrike H; Beattie, Paul F; Bowden, Jennifer; Larson, Robert; Wang, Haonan

    2017-10-01

    Lumbar traction is a common treatment for low back pain; however its mechanisms of action are poorly understood. It has been hypothesized that a key effect of lumbar traction is its capacity to influence fluid movement within the intervertebral disc (IVD). To determine differences in the apparent diffusion coefficient (ADC) obtained with lumbar diffusion-weighted imaging (DWI) of the L5-S1 IVD before, and during, the application of lumbar traction. Case series, repeated measures. A static traction load of ∼50% of body-weight was applied to the low back using a novel "MRI-safe" apparatus. DWI of the lumbar spine was performed prior to, and during the application of the traction load. Participants were currently asymptomatic and included a young adult group (n = 18) and a middle-aged group (n = 15). The young adult group had a non-significant 2.2% increase in ADC (mean change = 0.03 × 10 -3  mm 2 /s, SD = 0.24, 95% CI = -0.09, 0.15). The ADC for the middle-aged group significantly increased by 20% (mean change of 0.18 × 10 -3  mm 2 /s, SD = 0.19; 95% CI = 0.07, 0.28; p = 0.003; effect size = 0.95). There was an inverse relationship between the ADC obtained before traction and the percent increase in ADC that was measured during traction. Static traction was associated with an increase in diffusion of water within the L5-S1 IVDs of middle-age individuals, but not in young adults, suggesting age-related differences in the diffusion response. Further study is needed to assess the relationship between these findings and the symptoms of back pain. 4. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Modification of the SHABERTH bearing code to incorporate RP-1 and a discussion of the traction model

    NASA Technical Reports Server (NTRS)

    Woods, Claudia M.

    1990-01-01

    Recently developed traction data for Rocket Propellant 1 (RP-1), a hydrocarbon fuel of the kerosene family, was used to develop the parameters needed by the bearing code SHABERTH in order to include RP-1 as a lubricant choice. The procedure for inputting data for a new lubricant choice is reviewed, and the theoretical fluid traction model is discussed. Comparisons are made between experimental traction data and those predicted by SHABERTH for RP-1. All data needed to modify SHABERTH for use with RP-1 as a lubricant are specified.

  14. Experimental studies about the impact of traction sand on urban road dust composition.

    PubMed

    Kupiainen, Kaarle; Tervahattu, Heikki; Räisänen, Mika

    2003-06-01

    Traffic causes enhanced PM(10) resuspension especially during spring in the US, Japan, Norway, Sweden and Finland, among other countries. The springtime PM(10) consists primarily of mineral matter from tyre-induced paved road surface wear and traction sand. In some countries, the majority of vehicles are equipped with studded tyres to enhance traction, which additionally increases road surface wear. Because the traction sand and the mineral matter from the pavement aggregate can have a similar mineralogical composition, it has been difficult to determine the source of the mineral fraction in the PM(10). In this study, homogenous traction sand and pavement aggregate with different mineralogical compositions were chosen to determine the sources of PM(10) particles by single particle analysis (SEM/EDX). This study was conducted in a test facility, which made it possible to rule out dust contributions from other sources. The ambient PM(10) concentrations were higher when traction sand was used, regardless of whether the tyres were studded or not. Surprisingly, the use of traction sand greatly increased the number of the particles originating from the pavement. It was concluded that sand must contribute to pavement wear. This phenomenon is called the sandpaper effect. An understanding of this is important to reduce harmful effects of springtime road dust in practical winter maintenance of urban roads

  15. Evaluation of force degradation characteristics of orthodontic latex elastics in vitro and in vivo.

    PubMed

    Wang, Tong; Zhou, Gang; Tan, Xianfeng; Dong, Yaojun

    2007-07-01

    To evaluate the characteristics of force degradation of latex elastics in clinical applications and in vitro studies. Samples of 3/16-inch latex elastics were investigated, and 12 students between the ages of 12 and 15 years were selected for the intermaxillary and intramaxillary tractions. The elastics in the control groups were set in artificial saliva and dry room conditions and were stretched 20 mm. The repeated-measure two-way analysis of variance and nonlinear regression analysis were used to identify statistical significance. Overall, there were statistically significant differences between the different methods and observation intervals. At 24- and 48-hour time intervals, the force decreased during in vivo testing and in artificial saliva (P < .001), whereas there were no significant differences in dry room conditions (P > .05). In intermaxillary traction the percentage of initial force remaining after 48 hours was 61%. In intramaxillary traction and in artificial saliva the percentage of initial force remaining was 71%, and in room conditions 86% of initial force remained. Force degradation of latex elastics was different according to their environmental conditions. There was significantly more force degradation in intermaxillary traction than in intramaxillary traction. The dry room condition caused the least force loss. There were some differences among groups in the different times to start wearing elastics in intermaxillary traction but no significant differences in intramaxillary traction.

  16. Quantitative characterization of 3D deformations of cell interactions with soft biomaterials

    NASA Astrophysics Data System (ADS)

    Franck, Christian

    In recent years, the importance of mechanical forces in directing cellular function has been recognized as a significant factor in biological and physiological processes. In fact, these physical forces are now viewed equally as important as biochemical stimuli in controlling cellular response. Not only do these cellular forces, or cell tractions, play an important role in cell migration, they are also significant to many other physiological and pathological processes, both at the tissue and organ level, including wound healing, inflammation, angiogenesis, and embryogenesis. A complete quantification of cell tractions during cell-material interactions can lead to a deeper understanding of the fundamental role these forces play in cell biology. Thus, understanding the function and role of a cell from a mechanical framework can have important implications towards the development of new implant materials and drug treatments. Previous research has contributed significant descriptions of cell-tissue interactions by quantifying cell tractions in two-dimensional environments; however, most physiological processes are three-dimensional in nature. Recent studies have shown morphological differences in cells cultured on two-dimensional substrates versus three-dimensional matrices, and that the intrinsic extracellular matrix interactions and migration behavior are different in three dimensions versus two dimensions. Hence, measurement techniques are needed to investigate cellular behavior in all three dimensions. This thesis presents a full-field imaging technique capable of quantitatively measuring cell traction forces in all three spatial dimensions, and hence addresses the need of a three-dimensional quantitative imaging technique to gain insight into the fundamental role of physical forces in biological processes. The technique combines laser scanning confocal microscopy (LSCM) with digital volume correlation (DVC) to track the motion of fluorescent particles during cell-induced or externally applied deformations. This method is validated by comparing experimentally measured non-uniform deformation fields near hard and soft spherical inclusions under uniaxial compression with the corresponding analytical solution. Utilization of a newly developed computationally efficient stretch-correlation and deconvolution algorithm is shown to improve the overall measurement accuracy, in particular under large deformations. Using this technique, the full three-dimensional substrate displacement fields are experimentally determined during the migration of individual fibroblast cells on polyacrylamide gels. This is the first study to show the highly three-dimensional structure of cell-induced displacement and traction fields. These new findings suggest a three-dimensional push-pull cell motility, which differs from the traditional theories based on two-dimensional data. These results provide new insight into the dynamic cell-matrix force exchange or mechanotransduction of migrating cells, and will aid in the development of new three-dimensional cell motility and adhesion models. As this study reveals, the mechanical interactions of cells and their extracellular matrix appear to be highly three-dimensional. It also shows that the LSCM-DVC technique is well suited for investigating the mechanics of cell-matrix interactions while providing a platform to access detailed information of the intricate biomechanical coupling for many cellular responses. Thus, this method has the capability to provide direct quantitative experimental data showing how cells interact with their surroundings in three dimensions and might stimulate new avenues of scientific thought in understanding the fundamental role physical forces play in regulating cell behavior.

  17. Applications of Traction Force Microscopy in Measuring Adhesion Molecule Dependent Cell Contractility

    ERIC Educational Resources Information Center

    Mann, Cynthia Marie

    2009-01-01

    This work describes the use of polyacrylamide hydrogels as controlled elastic modulus substrates for single cell traction force microscopy studies. The first section describes the use of EDC/NHS chemistry to convalently link microbeads to the hydrogel matrix for the purpose of performing long-term traction force studies (7 days). The final study…

  18. An electric vehicle propulsion system's impact on battery performance: An overview

    NASA Technical Reports Server (NTRS)

    Bozek, J. M.; Smithrick, J. J.; Cataldo, R. C.; Ewashinka, J. G.

    1980-01-01

    The performance of two types of batteries, lead-acid and nickel-zinc, was measured as a function of the charging and discharging demands anticipated from electric vehicle propulsion systems. The benefits of rapid high current charging were mixed: although it allowed quick charges, the energy efficiency was reduced. For low power (overnight) charging the current wave shapes delivered by the charger to the battery tended to have no effect on the battery cycle life. The use of chopper speed controllers with series traction motors resulted in a significant reduction in the energy available from a battery whenever the motor operates at part load. The demand placed on a battery by an electric vehicle propulsion system containing electrical regenerative braking confirmed significant improvment in short term performance of the battery.

  19. Comparison between effectiveness of Mechanical and Manual Traction combined with mobilization and exercise therapy in Patients with Cervical Radiculopathy.

    PubMed

    Bukhari, Syed Rehan Iftikhar; Shakil-Ur-Rehman, Syed; Ahmad, Shakeel; Naeem, Aamer

    2016-01-01

    Cervical radiculopathy is a common neuro-musculo-skeletal disorder causing pain and disability. Traction is part of the evidence based manual physical therapy management due to its mechanical nature, type of traction and parameters related to its applicability and are still to be explored more through research. Our objective was to determine the Effects of Mechanical versus Manual Traction in Manual Physical Therapy combined with segmental mobilization and exercise therapy in the physical therapy management of Patients with Cervical Radiculopathy. This randomized control trial was conducted at department of physical therapy and rehabilitation, Rathore Hospital Faisalabad, from February to July 2015. Inclusion criteria were both male and female patients with evident symptoms of cervical spine radiculopathy and age ranged between 20-70 years. The exclusion criteria were Patients with history of trauma, neck pain without radiculopathy, aged less than 20 and more than 70. A total of 72 patients with cervical radiculopathy were screened out as per the inclusion criteria, 42 patients were randomly selected and placed into two groups by toss and trial method, and only 36 patients completed the study, while 6 dropped out. The mechanical traction was applied in group A and manual traction in group B along with common intervention of segmental mobilization and exercise therapy in both groups for 6 weeks. The patient's outcomes were assessed by self reported NPRS and NDI at the baseline and after completion of 06 weeks exercise program at 3 days per week. The data was analyzed through SPSS version-21, and paired T test was applied at 95% level significance to determine the statistical deference between two groups. Clinically the group of patients treated with mechanical traction managed pain (mean pre 6.26, mean post 1.43), and disability (mean pre 24.43 and mean post 7.26) more effectively as compared with the group of patients treated with manual traction (Pain mean pre 6.80, mean post 3.85 and disability mean pre 21.92 and post 12.19). Statistically the results of both mechanical and manual traction techniques are equally significant in group A and B for pain and disability (p-value less than 0.05). If patients of cervical radiculopathy treated with mechanical traction, segmental mobilization, and exercise therapy will manage pain and disability more effectively than treated with manual traction, segmental mobilization, and exercise therapy.

  20. Footwear traction and three-dimensional kinematics of level, downhill, uphill and cross-slope walking.

    PubMed

    Wannop, John W; Worobets, Jay T; Ruiz, Rodrigo; Stefanyshyn, Darren J

    2014-01-01

    Outdoor activities are a popular form of recreation, with hiking being the most popular outdoor activity as well as being the most prevalent in terms of injury. Over the duration of a hike, trekkers will encounter many different sloped terrains. Not much is known about the required traction or foot-floor kinematics during locomotion on these sloped surfaces, therefore, the purpose was to determine the three-dimensional foot-floor kinematics and required traction during level, downhill, uphill and cross-slope walking. Ten participants performed level, uphill, downhill and cross-slope walking along a 19° inclined walkway. Ground reaction force data as well as 3D positions of retro reflective markers attached to the shoe were recorded using a Motion Analysis System. Peak traction coefficients and foot-floor kinematics during sloped walking were compared to level walking. When walking along different sloped surfaces, the required traction coefficients at touchdown were not different from level walking, therefore, the increased likelihood of heel slipping during hiking is potentially due to the presence of loose material (rocks, dirt) on hiking slopes, rather than the overall lack of traction. Differences in required traction were seen at takeoff, with uphill and cross-sloped walking requiring a greater amount of traction compared to level walking. Changes in sagittal plane, frontal plane and transverse plane foot-floor angles were seen while walking on the sloped surfaces. Rapid foot-floor eversion was observed during cross-slope walking which could place the hiker at risk of injury with a misstep or if there was a slight slip. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Biomechanical analysis of combining head-down tilt traction with vibration for different grades of degeneration of the lumbar spine.

    PubMed

    Wang, Sicong; Wang, Lizhen; Wang, Yawei; Du, Chengfei; Zhang, Ming; Fan, Yubo

    2017-01-01

    In recent years, a combination of traction and vibration therapy is usually used to alleviate low back pain (LBP) in clinical settings. Combining head-down tilt (HDT) traction with vibration was demonstrated to be efficacious for LBP patients in our previous study. However, the biomechanics of the lumbar spine during this combined treatment is not well known and need quantitative analysis. In addition, LBP patients have different grades of degeneration of the lumbar spinal structure, which are often age related. Selecting a suitable rehabilitation therapy for different age groups of patients has been challenging. Therefore, a finite element (FE) model of the L1-L5 lumbar spine and a vibration dynamic model are developed in this study in order to investigate the biomechanical effects of the combination of HDT traction and vibration therapy on the age-related degeneration of the lumbar spine. The decrease of intradiscal pressure is more effective when vibration is combined with traction therapy. Moreover, the stresses on the discs are lower in the "traction+vibration" mode than the "traction-only" mode. The stress concentration at the posterior part of nucleus is mitigated after the vibration is combined. The disc deformations especially posterior disc radial retraction is improved in the "traction+vibration" mode. These beneficial effects of this therapy could help decompress the discs and spinal nerves and therefore relieve LBP. Simultaneously, patients with grade 1 degeneration (approximately 41-50 years old) are able to achieve better results compared with other age groups. This study could be used to provide a more effective LBP rehabilitation therapy. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. FY2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system tomore » improve fuel efficiency through research in more efficient TDSs.« less

  3. Traction and film thickness measurements under starved elastohydrodynamic conditions

    NASA Technical Reports Server (NTRS)

    Wedeven, L. D.

    1974-01-01

    Traction measurements under starved elastohydrodynamic conditions were obtained for a point contact geometry. Simultaneous measurements of the film thickness and the locations of the inlet lubricant boundary were made optically. The thickness of a starved film for combination rolling and sliding conditions varies with the location of the inlet boundary in the same way found previously for pure rolling. A starved film was observed to possess greater traction than a flooded film for the same slide roll ratio. For a given slide roll ratio a starved film simply increases the shear rate in the Hertz region. The maximum shear rate depends on the degree of starvation and has no theoretical limit. Traction measurements under starved conditions were compared with flooded conditions under equivalent shear rates in the Hertz region. When the shear rates in the Hertz region were low and the film severely starved, the measured tractions were found to be much lower than expected.

  4. 70. DETAIL OF TRACTION CABLE ENGAGEMENT DEVICE. SMALL, KNOBBED LEVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. DETAIL OF TRACTION CABLE ENGAGEMENT DEVICE. SMALL, KNOBBED LEVER ON BUCKET HANGER WAS PULLED DOWN BY A CAMEL (FIXED CAM RAIL AT CENTER) AS BUCKET ROLLED PAST IT, CAUSING A CLAMP TO CLOSE AGAINST TRACTION CABLE. A SIMILAR CAMEL (NO LONGER EXTANT) DISENGAGED CLAMP ON RECEIVING SIDE. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  5. Targeted traction of impacted teeth with C-tube miniplates.

    PubMed

    Chung, Kyu-Rhim; Kim, Yong; Ahn, Hyo-Won; Lee, Dongjoo; Yang, Dong-Min; Kim, Seong-Hun; Nelson, Gerald

    2014-09-01

    Orthodontic traction of impacted teeth has typically been performed using full fixed appliance as anchorage against the traction force. This conventional approach can be difficult to apply in the mixed dentition if the partial fixed appliance offers an insufficient anchor unit. In addition, full fixed appliance can induce unwanted movement of adjacent teeth. This clinical report presents 3 cases where impacted teeth were recovered in the mixed or transitional dentition with skeletal anchorage on the opposite arch without full fixed appliance. Instead, intermaxillary traction was used to bring the impacted teeth into position. With this approach, side effects on teeth and periodontal tissues adjacent to the impaction were minimized.

  6. Surgical management of retinal diseases: proliferative diabetic retinopathy and traction retinal detachment.

    PubMed

    Cruz-Iñigo, Yousef J; Acabá, Luis A; Berrocal, Maria H

    2014-01-01

    Current indications for pars plana vitrectomy in patients with proliferative diabetic retinopathy (PDR) include vitreous hemorrhage, tractional retinal detachment (TRD), combined tractional and rhegmatogenous retinal detachment (CTRRD), diabetic macular edema associated with posterior hyaloidal traction, and anterior segment neovascularization with media opacities. This chapter will review the indications, surgical objectives, adjunctive pharmacotherapy, microincision surgical techniques, and outcomes of diabetic vitrectomy for PDR, TRD, and CTRRD. With the availability of new microincision vitrectomy technology, wide-angle microscope viewing systems, and pharmacologic agents, vitrectomy can improve visual acuity and achieve long-term anatomic stability in eyes with severe complications from PDR. © 2014 S. Karger AG, Basel

  7. The results of preoperative halo-gravity traction in children with severe spinal deformity.

    PubMed

    Garabekyan, Tigran; Hosseinzadeh, Pooya; Iwinski, Henry J; Muchow, Ryan D; Talwalkar, Vishwas R; Walker, Janet; Milbrandt, Todd A

    2014-01-01

    Halo-gravity traction has been used preoperatively for patients with severe spinal deformity but there are limited data in the literature on the results and complications. We studied the outcomes of perioperative halo-gravity traction in children with severe spinal deformity. A retrospective study was carried out on patients who were treated at our center. Twenty-one patients were included in the study. Radiographic and pulmonary function parameters showed significant improvement during the course of traction and at the final follow-up. The overall complication rate was 19%, including two patients with pin loosening and two patients with superficial pin-site infections treated with oral antibiotics.

  8. Ventriculoperitoneal Shunt Fracture Following Application of Halo-Gravity Traction: A Case Report.

    PubMed

    Blakeney, William G; D'Amato, Charles

    2015-09-01

    Ventriculoperitoneal (VP) shunt malfunctions are very common, and shunt fracture is one of the most common causes. Shunt fractures are often a result of calcification and tethering, which predispose the tubing to fracture when mechanical stresses are applied. This case report describes a case of shunt fracture following application of halo-gravity traction for correction of spinal deformity. Chart and imaging data for a single case were reviewed and reported in this retrospective case study. A 10-year-old female, being treated for syndromic scoliosis, underwent posterior surgical release and application of halo-gravity traction. Increasing weight of traction was applied over a period of 6 weeks, for gradual deformity correction. It was noted on the 6-week cervical spine radiograph that the VP shunt had fractured at the base of the neck. The patient was taken to the operating room and intraoperative findings confirmed shunt fracture. This was repaired without complications. This case, to our best knowledge, is the first reported occurrence of shunt fracture following application of halo-gravity traction. It demonstrates the importance of careful monitoring of patients with VP shunts, when they are undergoing traction for correction of spinal deformity. Level IV.

  9. The application of a clinical prediction rule for patients with neck pain likely to benefit from cervical traction: A case report.

    PubMed

    Bernstetter, Andrew

    2016-10-01

    Cervical traction is a commonly utilized intervention in the treatment of patients with neck pain. In 2009, a clinical prediction rule (CPR) was developed as a way to assist clinicians in determining the patient population most likely to respond to cervical traction, though this CPR has yet to be validated. The purpose of this case report is to demonstrate the application of that CPR. The patient was a 46-year-old female with a four-week history of right-sided neck and shoulder pain, with numbness and tingling of her thumb and index finger. Treatment consisted of five sessions provided over 3 weeks. The plan of care included home mechanical cervical traction, exercise, and manual therapy. The patient achieved pain-free cervical range of motion. Neck disability index scores decreased from 28% to 6%, and the Patient-Specific Functional Scale average score improved from 5.5 to 10 out of 10. This case report demonstrates the application of a CPR to assist in deciding if cervical traction is an appropriate intervention. Further research is needed to validate the CPR and to establish the optimal mode of delivery for traction.

  10. Severe Postoperative Complications may be Related to Mesenteric Traction Syndrome during Open Esophagectomy.

    PubMed

    Ambrus, R; Svendsen, L B; Secher, N H; Goetze, J P; Rünitz, K; Achiam, M P

    2017-09-01

    During abdominal surgery, traction of the mesenterium provokes mesenteric traction syndrome, including hypotension, tachycardia, and flushing, along with an increase in plasma prostacyclin (PGI 2 ). We evaluated whether postoperative complications are related to mesenteric traction syndrome during esophagectomy. Flushing, hemodynamic variables, and plasma 6-keto-PGF 1α were recorded during the abdominal part of open ( n = 25) and robotically assisted ( n = 25) esophagectomy. Postoperative complications were also registered, according to the Clavien-Dindo classification. Flushing appeared in 17 (open) and 5 (robotically assisted) surgical cases ( p = 0.001). Mean arterial pressure was stable during both types of surgeries, but infusion of vasopressors during the first hour of open surgery was related to development of widespread (Grade II) flushing ( p = 0.036). For patients who developed flushing, heart rate and plasma 6-keto-PGF 1α also increased ( p = 0.001 and p < 0.001, respectively). Furthermore, severe postoperative complications were related to Grade II flushing ( p = 0.037). Mesenteric traction syndrome manifests more frequently during open than robotically assisted esophagectomy, and postoperative complications appear to be associated with severe mesenteric traction syndrome.

  11. Adaptive backstepping control of train systems with traction/braking dynamics and uncertain resistive forces

    NASA Astrophysics Data System (ADS)

    Song, Qi; Song, Y. D.; Cai, Wenchuan

    2011-09-01

    Although backstepping control design approach has been widely utilised in many practical systems, little effort has been made in applying this useful method to train systems. The main purpose of this paper is to apply this popular control design technique to speed and position tracking control of high-speed trains. By integrating adaptive control with backstepping control, we develop a control scheme that is able to address not only the traction and braking dynamics ignored in most existing methods, but also the uncertain friction and aerodynamic drag forces arisen from uncertain resistance coefficients. As such, the resultant control algorithms are able to achieve high precision train position and speed tracking under varying operation railway conditions, as validated by theoretical analysis and numerical simulations.

  12. Direct observation of CD4 T cell morphologies and their cross-sectional traction force derivation on quartz nanopillar substrates using focused ion beam technique

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Joo; Kim, Gil-Sung; Hyung, Jung-Hwan; Lee, Won-Yong; Hong, Chang-Hee; Lee, Sang-Kwon

    2013-07-01

    Direct observations of the primary mouse CD4 T cell morphologies, e.g., cell adhesion and cell spreading by culturing CD4 T cells in a short period of incubation (e.g., 20 min) on streptavidin-functionalized quartz nanopillar arrays (QNPA) using a high-content scanning electron microscopy method were reported. Furthermore, we first demonstrated cross-sectional cell traction force distribution of surface-bound CD4 T cells on QNPA substrates by culturing the cells on top of the QNPA and further analysis in deflection of underlying QNPA via focused ion beam-assisted technique.

  13. Push-Pull Locomotion for Vehicle Extrication

    NASA Technical Reports Server (NTRS)

    Creager, Colin M.; Johnson, Kyle A.; Plant, Mark; Moreland, Scott J.; Skonieczny, Krzysztof

    2014-01-01

    For applications in which unmanned vehicles must traverse unfamiliar terrain, there often exists the risk of vehicle entrapment. Typically, this risk can be reduced by using feedback from on-board sensors that assess the terrain. This work addressed the situations where a vehicle has already become immobilized or the desired route cannot be traversed using conventional rolling. Specifically, the focus was on using push-pull locomotion in high sinkage granular material. Push-pull locomotion is an alternative mode of travel that generates thrust through articulated motion, using vehicle components as anchors to push or pull against. It has been revealed through previous research that push-pull locomotion has the capacity for generating higher net traction forces than rolling, and a unique optical flow technique indicated that this is the result of a more efficient soil shearing method. It has now been found that pushpull locomotion results in less sinkage, lower travel reduction, and better power efficiency in high sinkage material as compared to rolling. Even when starting from an "entrapped" condition, push-pull locomotion was able to extricate the test vehicle. It is the authors' recommendation that push-pull locomotion be considered as a reliable back-up mode of travel for applications where terrain entrapment is a possibility.

  14. Innovative Design and Performance Evaluation of Bionic Imprinting Toothed Wheel

    PubMed Central

    Wang, Xiaoyang; Tong, Jin; Stephen, Carr

    2018-01-01

    A highly efficient soil-burrowing dung beetle possesses an intricate outer contour curve on its foreleg end-tooth. This study was carried out based on evidence that this special outer contour curve has the potential of reducing soil penetration resistance and could enhance soil-burrowing efficiency. A toothed wheel is a typical agricultural implement for soil imprinting, to increase its working efficiency; the approach of the bionic geometrical structure was utilized to optimize the innovative shape of imprinting toothed wheel. Characteristics in the dung beetle's foreleg end-tooth were extracted and studied by the edge detection technique. Then, this special outer contour curve was modeled by a nine-order polynomial function and used for the innovative design of imprinting the tooth's cutting edge. Both the conventional and bionic teeth were manufactured, and traction tests in a soil bin were conducted. Taking required draft force and volume of imprinted microbasin as the evaluating indexes, operating efficiency and quality of different toothed wheels were compared and investigated. Results indicate that compared with the conventional toothed wheel, a bionic toothed wheel possesses a better forward resistance reduction property against soil and, meanwhile, can enhance the quality of soil imprinting by increasing the volume of the created micro-basin. PMID:29515651

  15. Isolated step-down DC -DC converter for electric vehicles

    NASA Astrophysics Data System (ADS)

    Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.

    2018-02-01

    Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.

  16. Antigravity ESD - double-balloon-assisted underwater with traction hybrid technique.

    PubMed

    Sharma, Sam K; Hiratsuka, Takahiro; Hara, Hisashi; Milsom, Jeffrey W

    2018-06-01

     Complex colorectal polyps or those positioned in difficult anatomic locations are an endoscopic therapeutic challenge. Underwater endoscopic submucosal dissection (UESD) is a potential technical solution to facilitate efficient polyp removal. In addition, endoscopic tissue retraction has been confined to limited methods of varying efficacy and complexity. The aim of this study was to evaluate the efficiency of a unique UESD technique for removing complex polyps using double-balloon-assisted retraction (R).  Using fresh ex-vivo porcine rectum, 4-cm polyps were created using electrosurgery and positioned at "6 o'clock" within an established ESD model. Six resections were performed in each group. Underwater techniques were facilitated using a novel double-balloon platform (Dilumen, Lumendi, Westport, Connecticut, United States).  UESD-R had a significantly shorter total procedural time than cap-assisted ESD and UESD alone (24 vs. 58 vs. 56 mins). UESD-R produced a dissection time on average of 5 minutes, attributed to the retraction provided. There was also a subjective significant reduction in electrosurgical smoke with the underwater techniques contributing to improved visualization.  Here we report the first ex-vivo experience of a unique double-balloon endoscopic platform optimized for UESD with tissue traction capability. UESD-R removed complex lesions in significantly shorter time than conventional means. The combined benefits of UESD and retraction appeared to be additive when tackling complex polyps and should be studied further.

  17. Rupture dynamics along dipping thrust faults: free surface interaction and the case of Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Festa, Gaetano; Scala, Antonio; Vilotte, Jean-Pierre

    2017-04-01

    To address the influence of the free surface interaction on rupture propagating along subduction zones, we numerically investigate dynamic interactions, involving coupling between normal and shear tractions, between in-plane rupture propagating along dipping thrust faults and a free surface for different structural and geometrical conditions. When the rupture occurs along reverse fault with a dip angle different from 90° the symmetry is broken as an effect of slip-induced normal stress perturbations and a larger ground motion is evidenced on the hanging wall. The ground motion is amplified by multiple reflections of waves trapped between the fault and the free surface. This effect is shown to occur when the rupture tip lies on the vertical below the intersection between the S-wave front and the surface that is when waves along the surface start to interact with the rupture front. This interaction is associated with a finite region where the rupture advances in a massive regime preventing the shrinking of the process zone and the emission of high-frequency radiation. The smaller the dip angle the larger co-seismic slip in the shallow part as an effect of the significant break of symmetry. Radiation from shallow part is still depleted in high frequencies due to the massive propagating regime and the interaction length dominating the rupture dynamics. Instantaneous shear response to normal traction perturbations may lead to unstable solutions as in the case of bimaterial rupture. A parametric study has been performed to analyse the effects of a regularised shear traction response to normal traction variations. Finally the case of Tohoku earthquake is considered and we present 2D along-dip numerical results. At first order the larger slip close to the trench can be ascribed to the break of symmetry and the interaction with free surface. When shear/normal coupling is properly regularised the signal from the trench is depleted in high frequencies whereas during deep propagation high-frequency radiations emerge associated to geometrical and structural complexities or to frictional strength asperities.

  18. Rectus femoris muscle atrophy and recovery caused by preoperative pretibial traction in femoral shaft fractures-comparison between traction period.

    PubMed

    Shim, D-G; Kwon, T-Y; Lee, K-B

    2017-09-01

    Skeletal traction is performed to temporarily stabilize fracture sites before surgery in patients with femoral fracture. To date, however, there is no study evaluating the difference in the degree of the recovery, of the muscle strength, as well as muscle atrophy following skeletal traction. The purpose of this study was to compare the degree of recovery of rectus femoris muscle strength after surgery in association with muscle atrophy by analyzing the duration of preoperative tibial traction, age and sex in patients with femoral fracture. Rectus femoris muscle atrophy will progress depending on the duration of preoperative tibial traction, age and sex in patients with femoral fracture. Thirty-one patients who underwent preoperative pretibial skeletal traction and intramedullary nailing were divided into two groups according to the traction period: group A (n=12) with a duration of traction of <7 days (mean: 4.08±1.78 days) and group B (n=19) ≥7 days (mean: 13.63±7.17 days). The degree of muscle atrophy and recovery were compared between the two groups, according to age and gender. The degree of muscle atrophy was measured by the difference in thickness of the rectus femoris between pre- and post-traction using ultrasound. The degree of muscle recovery was evaluated by the Q-setting and heel off time. Clinical outcome was evaluated by the non-union rate and Lysholm score. The degree of muscle atrophy was 0.99±0.14mm in group A and 2.22±0.11mm in group B (P<0.001). The Q-setting time was 4.83±0.94 days in group A and 6.56±1.38 days in group B (P=0.001). Heel off time was also shorter in group A at 2.58±0.90 days, taking 3.72±1.27 days in group B (P=0.012). The recovery rate in the rectus femoris was significantly higher in group A than in group B (P<0.001). There was no significant difference in non-union rate between group A and B (P=0.672) but the mean Lysholm score at the last follow-up was significantly higher in group A than in group B (P=0.006). However, no significant differences were detected in the mean thickness of the rectus femoris, Q-setting, and heel off time between the different age and gender groups (P<0.05). The prolonged duration of preoperative skeletal traction indicates not only that the resulting disuse atrophy would progress further but also that the muscle atrophy would be accelerated more rapidly for shorter periods of time, based on a cut-off value of 7 days. In addition, the rate of rectus femoris muscle recovery and clinical outcomes were lower in patients undergoing traction for longer periods of time. This indicates that it would be effective for increasing the rate of the recovery and minimizing the occurrence of post surgical complications if surgeons could perform surgery at the earliest possible opportunity following traction, within seven days after the onset of trauma. IV, retrospective cohort study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Tractional retinal detachment in Usher syndrome type II.

    PubMed

    Rani, Alka; Pal, Nikhil; Azad, Raj Vardhan; Sharma, Yog Raj; Chandra, Parijat; Vikram Singh, Deependra

    2005-08-01

    Retinal detachment is a rare complication in patients with retinitis pigmentosa. A case is reported of tractional retinal detachment in a patient with retinitis pigmentosa and sensorineural hearing loss, which was diagnosed as Usher syndrome type II. Because of the poor visual prognosis, the patient refused surgery in that eye. Tractional retinal detachment should be added to the differential diagnoses of visual loss in patients with retinitis pigmentosa.

  20. Pins and Rubbers Traction System.

    PubMed

    de Soras, X; de Mourgues, P; Guinard, D; Moutet, F

    1997-12-01

    The Pins and Rubbers Traction System (PRTS) is a mobile frame created with wires to support elastic traction, which produces a ligamentotaxis effect in the same direction and of the same intensity whatever the position of the joint. This technique has been used in 11 cases of complex PIP joint fractures with eight excellent results. The advantages are simplicity, adaptability, the possibility of immediate mobilization, reasonable cost and relatively small bulk.

  1. Traction reveals mechanisms of wall effects for microswimmers near boundaries

    NASA Astrophysics Data System (ADS)

    Shen, Xinhui; Marcos, Fu, Henry C.

    2017-03-01

    The influence of a plane boundary on low-Reynolds-number swimmers has frequently been studied using image systems for flow singularities. However, the boundary effect can also be expressed using a boundary integral representation over the traction on the boundary. We show that examining the traction pattern on the boundary caused by a swimmer can yield physical insights into determining when far-field multipole models are accurate. We investigate the swimming velocities and the traction of a three-sphere swimmer initially placed parallel to an infinite planar wall. In the far field, the instantaneous effect of the wall on the swimmer is well approximated by that of a multipole expansion consisting of a force dipole and a force quadrupole. On the other hand, the swimmer close to the wall must be described by a system of singularities reflecting its internal structure. We show that these limits and the transition between them can be independently identified by examining the traction pattern on the wall, either using a quantitative correlation coefficient or by visual inspection. Last, we find that for nonconstant propulsion, correlations between swimming stroke motions and internal positions are important and not captured by time-averaged traction on the wall, indicating that care must be taken when applying multipole expansions to study boundary effects in cases of nonconstant propulsion.

  2. Traction reveals mechanisms of wall effects for microswimmers near boundaries.

    PubMed

    Shen, Xinhui; Marcos; Fu, Henry C

    2017-03-01

    The influence of a plane boundary on low-Reynolds-number swimmers has frequently been studied using image systems for flow singularities. However, the boundary effect can also be expressed using a boundary integral representation over the traction on the boundary. We show that examining the traction pattern on the boundary caused by a swimmer can yield physical insights into determining when far-field multipole models are accurate. We investigate the swimming velocities and the traction of a three-sphere swimmer initially placed parallel to an infinite planar wall. In the far field, the instantaneous effect of the wall on the swimmer is well approximated by that of a multipole expansion consisting of a force dipole and a force quadrupole. On the other hand, the swimmer close to the wall must be described by a system of singularities reflecting its internal structure. We show that these limits and the transition between them can be independently identified by examining the traction pattern on the wall, either using a quantitative correlation coefficient or by visual inspection. Last, we find that for nonconstant propulsion, correlations between swimming stroke motions and internal positions are important and not captured by time-averaged traction on the wall, indicating that care must be taken when applying multipole expansions to study boundary effects in cases of nonconstant propulsion.

  3. The value of radiographs obtained during forced traction under general anaesthesia in predicting flexibility in idiopathic scoliosis with Cobb angles exceeding 60 degree.

    PubMed

    Ibrahim, T; Gabbar, O A; El-Abed, K; Hutchinson, M J; Nelson, I W

    2008-11-01

    Our aim in this prospective radiological study was to determine whether the flexibility rate calculated from radiographs obtained during forced traction under general anaesthesia, was better than that of fulcrum-bending radiographs before corrective surgery in predicting the extent of the available correction in patients with idiopathic scoliosis. We evaluated 33 patients with a Cobb angle > 60 degrees on a standing posteroanterior radiograph, who had been treated by posterior correction. Pre-operative standing fulcrum-bending radiographs and those with forced-traction under general anaesthesia were obtained. Post-operative standing radiographs were taken after surgical correction. The mean forced-traction flexibility rate was 55% (SD 11.3) which was significantly higher than the mean fulcrum-bending flexibility rate of 32% (SD 16.1) (p < 0.001). We found no correlation between either the forced-traction or fulcrum-bending flexibility rates and the correction rate post-operatively (p = 0.24 and p = 0.44, respectively). Radiographs obtained during forced traction under general anaesthesia were better at predicting the flexibility of the curve than fulcrum-bending radiographs in curves with a Cobb angle > 60 degrees in the standing position and may identify those patients for whom supplementary anterior surgery can be avoided.

  4. Combined preoperative traction with instrumented posterior occipitocervical fusion for severe ventral brainstem compression secondary to displaced os odontoideum: technical report of 2 cases.

    PubMed

    Abd-El-Barr, Muhammad M; Snyder, Brian D; Emans, John B; Proctor, Mark R; Hedequist, Daniel

    2016-12-01

    Severe os odontoideum causing ventral brainstem compression is a rare and difficult entity to treat. It is generally accepted that severe os odontoideum causing ventral brainstem compression and neurological deficits warrants surgical treatment. This often requires both anterior and posterior procedures. Anterior approaches to the craniocervical junction are fraught with complications, including infection and risk of injury to neurovascular structures. External traction systems traditionally require long-term bedrest. The authors report 2 cases of severe ventral brainstem compression secondary to displaced os odontoideum and describe their use of extended preoperative halo vest traction to reduce the severe kyphosis and improve neurological function, followed by posterior occipitocervical fusion. Postoperatively both patients showed remarkable improvements in their neurological function and kyphotic deformity. Preoperative halo vest traction combined with posterior occipitocervical fusion appears to be a safe and effective method to treat brainstem compression by severe os odontoideum. It allows for adequate decompression of ventral neural structures and improvement of neurological function, but it is not hindered by the risks of anterior surgical approaches and does not restrict patients to strict bedrest as traditional traction systems. This method of halo vest traction and posterior-only approaches may be transferable to other cervical instability issues with both anterior and posterior pathologies.

  5. A micropatterning and image processing approach to simplify measurement of cellular traction forces

    PubMed Central

    Polio, Samuel R.; Rothenberg, Katheryn E.; Stamenović, Dimitrije; Smith, Michael L.

    2012-01-01

    Quantification of the traction forces that cells apply to their surroundings has been critical to the advancement of our understanding of cancer, development and basic cell biology. This field was made possible through the development of engineered cell culture systems that permit optical measurement of cell-mediated displacements and computational algorithms that allow conversion of these displacements into stresses and forces. Here, we present a novel advancement of traction force microscopy on polyacrylamide (PAA) gels that addresses limitations of existing technologies. Through an indirect patterning technique, we generated PAA gels with fluorescent 1 μm dot markers in a regularized array. This improves existing traction measurements since (i) multiple fields of view can be measured in one experiment without the need for cell removal; (ii) traction vectors are modeled as discrete point forces, and not as a continuous field, using an extremely simple computational algorithm that we have made available online; and (iii) the pattern transfer technique is amenable to any of the published techniques for producing patterns on glass. In the future, this technique will be used for measuring traction forces on complex patterns with multiple, spatially distinct ligands in systems for applying strain to the substrate, and in sandwich cultures that generate quasi-three-dimensional environments for cells. PMID:21884832

  6. VISUALIZATION FROM INTRAOPERATIVE SWEPT-SOURCE MICROSCOPE-INTEGRATED OPTICAL COHERENCE TOMOGRAPHY IN VITRECTOMY FOR COMPLICATIONS OF PROLIFERATIVE DIABETIC RETINOPATHY.

    PubMed

    Gabr, Hesham; Chen, Xi; Zevallos-Carrasco, Oscar M; Viehland, Christian; Dandrige, Alexandria; Sarin, Neeru; Mahmoud, Tamer H; Vajzovic, Lejla; Izatt, Joseph A; Toth, Cynthia A

    2018-01-10

    To evaluate the use of live volumetric (4D) intraoperative swept-source microscope-integrated optical coherence tomography in vitrectomy for proliferative diabetic retinopathy complications. In this prospective study, we analyzed a subgroup of patients with proliferative diabetic retinopathy complications who required vitrectomy and who were imaged by the research swept-source microscope-integrated optical coherence tomography system. In near real time, images were displayed in stereo heads-up display facilitating intraoperative surgeon feedback. Postoperative review included scoring image quality, identifying different diabetic retinopathy-associated pathologies and reviewing the intraoperatively documented surgeon feedback. Twenty eyes were included. Indications for vitrectomy were tractional retinal detachment (16 eyes), combined tractional-rhegmatogenous retinal detachment (2 eyes), and vitreous hemorrhage (2 eyes). Useful, good-quality 2D (B-scans) and 4D images were obtained in 16/20 eyes (80%). In these eyes, multiple diabetic retinopathy complications could be imaged. Swept-source microscope-integrated optical coherence tomography provided surgical guidance, e.g., in identifying dissection planes under fibrovascular membranes, and in determining residual membranes and traction that would benefit from additional peeling. In 4/20 eyes (20%), acceptable images were captured, but they were not useful due to high tractional retinal detachment elevation which was challenging for imaging. Swept-source microscope-integrated optical coherence tomography can provide important guidance during surgery for proliferative diabetic retinopathy complications through intraoperative identification of different complications and facilitation of intraoperative decision making.

  7. Progressive halo-vest traction preceding posterior occipitocervical instrumented fusion for irreducible atlantoaxial dislocation and basilar invagination.

    PubMed

    Li, Peng; Bao, Deming; Cheng, Huijuan; Meng, Fanshuai; Li, Junwei

    2017-11-01

    Surgical treatment of irreducible atlantoaxial dislocation (IAAD) with basilar invagination (BI) is associated with high rates of severe complications, including mortality. This retrospective study investigated the safety and efficacy of progressive halo-vest traction for IAAD with BI prior to posterior occipitocervical instrumented fusion. Between 2009 and 2013, 39 patients with IAAD with BI underwent preoperative reduction by progressive halo-vest traction for 20.82±4.21days. Instrumented fusion was then performed through a posterior approach. Clinical outcomes were based on pain scale and Japanese Orthopedic Association (JOA) scores. Radiographic analysis evaluated changes in atlantodental distance, McGregor's line violation, spinal canal width at the craniocervical junction, cervicomedullary angle, C2-C7 lordosis angle, and the occiput-C2 angle. Follow-ups ranged from 48 to 96 months. Both atlantodental distance and BI significantly improved in all patients. The rates of complete anatomical reduction were 85% for IAAD, and 95% for BI. Most of the patients reported satisfactory pain relief and improvement in daily activity; the mean JOA scores at baseline and last follow-up were 9.10 and 15.92, respectively. Although complications occurred in 10 patients (25.64%), all of which healed uneventfully. The bony fusion rate was 100%. Progressive halo-vest traction before surgery is safe and effective for reduction of IAAD with BI. The technique we describe is a promising method for treatment of complex craniocervical junction deformity. Copyright © 2017. Published by Elsevier B.V.

  8. Manual unloading of the lumbar spine: can it identify immediate responders to mechanical traction in a low back pain population? A study of reliability and criterion referenced predictive validity

    PubMed Central

    Swanson, Brian T.; Riley, Sean P.; Cote, Mark P.; Leger, Robin R.; Moss, Isaac L.; Carlos,, John

    2016-01-01

    Background To date, no research has examined the reliability or predictive validity of manual unloading tests of the lumbar spine to identify potential responders to lumbar mechanical traction. Purpose To determine: (1) the intra and inter-rater reliability of a manual unloading test of the lumbar spine and (2) the criterion referenced predictive validity for the manual unloading test. Methods Ten volunteers with low back pain (LBP) underwent a manual unloading test to establish reliability. In a separate procedure, 30 consecutive patients with LBP (age 50·86±11·51) were assessed for pain in their most provocative standing position (visual analog scale (VAS) 49·53±25·52 mm). Patients were assessed with a manual unloading test in their most provocative position followed by a single application of intermittent mechanical traction. Post traction, pain in the provocative position was reassessed and utilized as the outcome criterion. Results The test of unloading demonstrated substantial intra and inter-rater reliability K = 1·00, P = 0·002, K = 0·737, P = 0·001, respectively. There were statistically significant within group differences for pain response following traction for patients with a positive manual unloading test (P<0·001), while patients with a negative manual unloading test did not demonstrate a statistically significant change (P>0·05). There were significant between group differences for proportion of responders to traction based on manual unloading response (P = 0·031), and manual unloading response demonstrated a moderate to strong relationship with traction response Phi = 0·443, P = 0·015. Discussion and conclusion The manual unloading test appears to be a reliable test and has a moderate to strong correlation with pain relief that exceeds minimal clinically important difference (MCID) following traction supporting the validity of this test. PMID:27559274

  9. Smart mobility solution with multiple input Output interface.

    PubMed

    Sethi, Aartika; Deb, Sujay; Ranjan, Prabhat; Sardar, Arghya

    2017-07-01

    Smart wheelchairs are commonly used to provide solution for mobility impairment. However their usage is limited primarily due to high cost owing from sensors required for giving input, lack of adaptability for different categories of input and limited functionality. In this paper we propose a smart mobility solution using smartphone with inbuilt sensors (accelerometer, camera and speaker) as an input interface. An Emotiv EPOC+ is also used for motor imagery based input control synced with facial expressions in cases of extreme disability. Apart from traction, additional functions like home security and automation are provided using Internet of Things (IoT) and web interfaces. Although preliminary, our results suggest that this system can be used as an integrated and efficient solution for people suffering from mobility impairment. The results also indicate a decent accuracy is obtained for the overall system.

  10. An non-uniformity voltage model for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Li, Kelei; Li, Yankun; Liu, Jiawei; Guo, Ai

    2017-01-01

    The fuel cell used in transportation has environmental protection, high efficiency and no line traction power system which can greatly reduce line construction investment. That makes it a huge potential. The voltage uniformity is one of the most important factors affecting the operation life of proton exchange membrane fuel cell (PEMFC). On the basis of principle and classical model of the PEMFC, single cell voltage is calculated and the location coefficients are introduced so as to establish a non-uniformity voltage model. These coefficients are estimated with the experimental datum at stack current 50 A. The model is validated respectively with datum at 60 A and 100 A. The results show that the model reflects the basic characteristics of voltage non-uniformity and provides the beneficial reference for fuel cell control and single cell voltage detection.

  11. Enabling Fast Charging: A Technology Gap Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Decreasing energy consumption across the U.S. transportation sector, especially in commercial light-duty vehicles, is essential for the United States to gain energy independence. Recently, powertrain electrification with plug-in electric vehicles (PEVs) have gained traction as an alternative due to their inherent efficiency advantages compared to the traditional internal combustion engine vehicle (ICEV). Even though there are many different classes of PEVs, the intent of this study is to focus on non-hybrid powertrains, or battery electric vehicles (BEVs).

  12. Design of a Novel Electro-hydraulic Drive Downhole Tractor

    NASA Astrophysics Data System (ADS)

    Fang, Delei; Shang, Jianzhong; Yang, Junhong; Wang, Zhuo; Wu, Wei

    2018-02-01

    In order to improve the traction ability and the work efficiency of downhole tractor in oil field, a novel electro-hydraulic drive downhole tractor was designed. The tractor’s supporting mechanism and moving mechanism were analyzed based on the tractor mechanical structure. Through the introduction of hydraulic system, the hydraulic drive mechanism and the implementation process were researched. Based on software, analysis of tractor hydraulic drive characteristic and movement performance were simulated, which provide theoretical basis for the development of tractor prototype.

  13. Review on the Traction System Sensor Technology of a Rail Transit Train.

    PubMed

    Feng, Jianghua; Xu, Junfeng; Liao, Wu; Liu, Yong

    2017-06-11

    The development of high-speed intelligent rail transit has increased the number of sensors applied on trains. These play an important role in train state control and monitoring. These sensors generally work in a severe environment, so the key problem for sensor data acquisition is to ensure data accuracy and reliability. In this paper, we follow the sequence of sensor signal flow, present sensor signal sensing technology, sensor data acquisition, and processing technology, as well as sensor fault diagnosis technology based on the voltage, current, speed, and temperature sensors which are commonly used in train traction systems. Finally, intelligent sensors and future research directions of rail transit train sensors are discussed.

  14. Review on the Traction System Sensor Technology of a Rail Transit Train

    PubMed Central

    Feng, Jianghua; Xu, Junfeng; Liao, Wu; Liu, Yong

    2017-01-01

    The development of high-speed intelligent rail transit has increased the number of sensors applied on trains. These play an important role in train state control and monitoring. These sensors generally work in a severe environment, so the key problem for sensor data acquisition is to ensure data accuracy and reliability. In this paper, we follow the sequence of sensor signal flow, present sensor signal sensing technology, sensor data acquisition, and processing technology, as well as sensor fault diagnosis technology based on the voltage, current, speed, and temperature sensors which are commonly used in train traction systems. Finally, intelligent sensors and future research directions of rail transit train sensors are discussed. PMID:28604615

  15. First- and second-order sensitivity analysis of linear and nonlinear structures

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Mroz, Z.

    1986-01-01

    This paper employs the principle of virtual work to derive sensitivity derivatives of structural response with respect to stiffness parameters using both direct and adjoint approaches. The computations required are based on additional load conditions characterized by imposed initial strains, body forces, or surface tractions. As such, they are equally applicable to numerical or analytical solution techniques. The relative efficiency of various approaches for calculating first and second derivatives is assessed. It is shown that for the evaluation of second derivatives the most efficient approach is one that makes use of both the first-order sensitivities and adjoint vectors. Two example problems are used for demonstrating the various approaches.

  16. Efficient high density train operations

    DOEpatents

    Gordon, Susanna P.; Evans, John A.

    2001-01-01

    The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

  17. A systems approach to energy management and policy in commuter rail transportation

    NASA Astrophysics Data System (ADS)

    Owan, Ransome Egimine

    1998-12-01

    This research is motivated by a recognition of energy as a significant part of the transportation problem. Energy is a long-term variable cost that is controllable. The problem is comprised of: the limited supply of energy, chronic energy deficits and oil imports, energy cost, poor fuel substitution, and the undesirable environmental effects of transportation fuels (Green House Gases and global warming). Mass transit systems are energy intensive networks and energy is a direct constraint to the supply of affordable transportation. Commuter railroads are also relatively unresponsive to energy price changes due to travel demand patterns, firm power needs and slow adoption of efficient train technologies. However, the long term energy demand is lacking in existing transportation planning philosophy. In spite of the apparent oversight, energy is as important as urban land use, funding and congestion, all of which merit explicit treatment. This research was conducted in the form of a case study of New Jersey Transit in an attempt to broaden the understanding of the long-term effects of energy in a transportation environment. The systems approach method that is driven by heuristic models was utilized to investigate energy usage, transit peer group efficiency, energy management regimes, and the tradeoffs between energy and transportation, a seldom discussed topic in the field. Implicit in systems thinking is the methodological hunt for solutions. The energy problem was divided into thinking is the methodological hunt for solutions. The energy problem was divided into smaller parts that in turn were simpler to solve. The research presented five heuristic models: Transit Energy Aggregation Model, Structural Energy Consumption Model, Traction Power Consumption Model, Conjunctive Demand Model, and a Managerial Action Module. A putative relationship was established between traction energy, car-miles, seasonal and ambient factors, without inference of direct causality. The co-mingling of traction power with energy for rail yard and switch heating skewed certain energy intensities. It was concluded that managerial actions such as: demand-side energy conservation strategies, utility rebates, rate case intervention and open market purchases of deregulated power can lower transit operating cost.

  18. The Use of Superselective Arteriography in the Evaluation of the Influence of Intracapsular Hip Joint Pressure on the Blood Flow of the Femoral Head.

    PubMed

    Wu, Kai; Huang, Jianhua; Wang, Qiugen

    2016-01-01

    We aimed to analyze the intracapsular pressure of the hip joint following femoral neck fracture and its relationship to the position of the hip or to traction and (using superselective arteriography) to evaluate the blood supply to the femoral head and the influence of traction and hip position on the blood supply. Twenty-six cases of fresh Garden type I-III femoral neck fractures were enrolled. After being placed in the neutral position, in internal rotation or with traction of 3 and 5 kg, respectively, intracapsular manometric changes were measured. Eight cases underwent superselective arteriography of the medial circumflex femoral artery and its branches under the manometric changes of the hip joint capsule. Twenty-four to 48 h after the injury, the intracapsular pressure was significantly higher on the fractured side than on the normal side. The mean pressure was 28.41 ± 9.339 mm Hg in fully extended hips in the neutral position, 79.92 ± 12.80 mm Hg in internally rotated hips, 51.39 ± 15.41 mm Hg in hips with 3 kg of traction and 64.81 ± 13.56 mm Hg in hips with 5 kg of traction. The arteriographic findings revealed that traction and internal rotation reduced the perfusion of the femoral head at the medial circumflex femoral artery and its branches, and also negatively influenced venous reflux. Traction and internal rotation both caused the intracapsular pressure of the hip joint to rise considerably, which reduced the femoral head perfusion and impeded venous reflux. This could lead to avascular necrosis of the femoral head. © 2015 S. Karger AG, Basel.

  19. Posterior Cervical Transfacet Fusion with Facetal Spacer for the Treatment of Single-Level Cervical Radiculopathy: A Randomized, Controlled Prospective Study.

    PubMed

    Lenzi, Jacopo; Nardone, Antonio; Passacantilli, Emiliano; Caporlingua, Alessandro; Lapadula, Gennaro; Caporlingua, Federico

    2017-04-01

    Single-level cervical radiculopathy may be treated conservatively with cervical tractions. Posterior cervical transfacet fusion with a facetal spacer is a viable option. The aim of the present study is to compare posterior cervical transfacet fusion with conservative physical treatment in single-level cervical radiculopathy. A total of 80 patients were randomized in 2 groups, a surgical group in which patients were given posterior cervical transfacet fusion and a traction group in which patients were treated conservatively with mechanical cervical tractions. Visual analog scale for arm and neck, Neck Disability Index, and Short Form-36 (SF-36) questionnaires were administered preoperatively and after treatment up to 12 months. After treatment, visual analog scale arm scores were greater in traction group (4.7 vs. 1.5 the day after treatment) and at follow-up controls (traction group vs. surgical group: 5.3 vs. 0.6 at 1 month, 3.6 vs. 0.3 at 6 months, 1.8 vs. 0.2 at 12 months). Neck Disability Index scores were lower in the surgical group (surgical group vs. traction group: 4.4 vs. 20.3 at 1 month, 1.3 vs. 10.5 at 6 months). SF-36 scores were greater in the surgical group (surgical group vs. traction group: 96 vs. 70 at 1 month, 96.5 vs. 82.6 at 6 months). Neck disability index and SF-36 scores were superimposable between the groups at 12-month follow-up. No adjacent-segment arthrosis or late complications were reported at 1-year follow-up in the surgical group. posterior cervical transfacet fusion is a safe and effective procedure to treat single-level cervical radiculopathy. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Ultrasound Effect in the Removal of Intraradicular Posts Cemented with Different Materials.

    PubMed

    Berbert, Fabio Luiz Camargo Vilella; Espir, Camila Galletti; Crisci, Fernando Simões; Ferrarezz, Marcelo; de Andrade, T; Chávez-Andrade, Gisselle Moraima; Leonardo, Renato de Toledo; Saad, José Roberto Cury; Segalla, José Claudio Martins; Vaz, Luiz Geraldo; Jordão Basso, Keren Cristina Fagundes; Dantas, Andrea Abi Rached

    2015-06-01

    This study evaluated the effect of ultrasonic vibration on the tensile strength required to remove intraradicular post cemented with different materials. Bovine teeth were selected, and 7 mm of the cervical root canals were prepared to size 5 Largo drill, the posts were cemented with zinc phosphate, Enforce (resin) or Rely X (glass ionomer). The specimens were divided into six groups (n = 10), according to the following procedures: GI-cementation with zinc phosphate associated with traction force; GII-cementation with zinc phosphate associated with ultrasonic activation and traction force; G111-cementation with Enforce associated with traction force; GIV-cementation with Enforce associated with ultrasonic activation and traction force; GV-cementation with Rely X associated with traction force; and GVI-cementation with Rely X associated with ultrasonic activation and traction force. The tensile test was conducted using the electromechanical testing machine, the force was determined by a specialized computer program and ultrasonic activation using the Jet Sonic Four Plus (Gnatus) device in 10P. Concerning to average ranking, GI showed statistically significant difference in comparison with GII and GVI (p < 0.05); there was no statistical difference in GIII and GIV when compared to other groups (p > 0.05). The ultrasound favored the intraradicular post traction regardless of the employed cement in greater or lesser extent. The post removal is a routine practice in the dental office, therefore, new solutions and better alternatives are need to the practitioner. We did not find in the literature many articles referring to this practice. Thus, the results from this study are relevant in the case planning and to promote more treatment options.

  1. Two-staged Correction of Severe Congenital Scoliosis Associated With Intraspinal Abnormalities.

    PubMed

    Zhang, Zhenxing; Hui, Hua; Liu, Tuanjiang; Zhang, Zhenping; Hao, Dingjun

    2016-10-01

    A retrospective study. To analyze the efficacy and safety of perioperative halo-gravity traction as an adjunct to posterior vertebral column resection (PVCR) in the treatment of patients with severe congenital scoliosis and coexisting asymptomatic intraspinal pathologies (diastematomyelia and/or tethered cord). Few reports to our knowledge review the use of perioperative halo-gravity traction and PVCR in this patient population. A total of 17 patients with a minimum 2-year follow-up who underwent PVCR using perioperative halo-gravity traction were analyzed. Patients were analyzed by age at date of examination (range, 11-23 y; mean, 14.4 y), sex (7 male, 10 female), major coronal curve magnitude (range, 108-149 degrees; average, 125 degrees), major sagittal curve magnitude (range, 72-118 degrees; average, 91 degrees). Complications related to halo traction and PVCR were reviewed. Radiographic outcomes demonstrated Cobb angle of major curve had an average correction of 28% after halo traction and it measured 53 degrees (range, 42-84 degrees) at the last follow-up, for a 58% correction. Maximal kyphosis improved to 58 degrees (range, 43-76 degrees) at ultimate follow-up. There were no permanent neurological deficits in this series. The study results suggested that surgical treatment for intraspinal abnormality may be unnecessary in asymptomatic patients with severe congenital scoliosis who are undergoing scoliosis corrective surgery. PVCR combined with perioperative traction is a safe and effective alternative for such patients.

  2. Benefit of "Push-pull" Locomotion for Planetary Rover Mobility

    NASA Technical Reports Server (NTRS)

    Creager, Colin M.; Moreland, Scott Jared; Skonieczny, K.; Johnson, K.; Asnani, V.; Gilligan, R.

    2011-01-01

    As NASAs exploration missions on planetary terrains become more aggressive, a focus on alternative modes of locomotion for rovers is necessary. In addition to climbing steep slopes, the terrain in these extreme environments is often unknown and can be extremely hard to traverse, increasing the likelihood of a vehicle or robot becoming damaged or immobilized. The conventional driving mode in which all wheels are either driven or free-rolling is very efficient on flat hard ground, but does not always provide enough traction to propel the vehicle through soft or steep terrain. This paper presents an alternative mode of travel and investigates the fundamental differences between these locomotion modes. The methods of push-pull locomotion discussed can be used with articulated wheeled vehicles and are identified as walking or inchinginch-worming. In both cases, the braked non-rolling wheels provide increased thrust. An in-depth study of how soil reacts under a rolling wheel vs. a braked wheel was performed by visually observing the motion of particles beneath the surface. This novel technique consists of driving or dragging a wheel in a soil bin against a transparent wall while high resolution, high-rate photographs are taken. Optical flow software was then used to determine shearing patterns in the soil. Different failure modes were observed for the rolling and braked wheel cases. A quantitative comparison of inching vs. conventional driving was also performed on a full-scale vehicle through a series of drawbar pull tests in the Lunar terrain strength simulant, GRC-1. The effect of tire stiffness was also compared; typically compliant tires provide better traction when driving in soft soil, however its been observed that rigid wheels may provide better thrust when non-rolling. Initial tests indicate up to a possible 40 increase in pull force capability at high slip when inching vs. rolling.

  3. Traction sheave elevator, hoisting unit and machine space

    DOEpatents

    Hakala, Harri; Mustalahti, Jorma; Aulanko, Esko

    2000-01-01

    Traction sheave elevator consisting of an elevator car moving along elevator guide rails, a counterweight moving along counterweight guide rails, a set of hoisting ropes (3) on which the elevator car and counterweight are suspended, and a drive machine unit (6) driving a traction sheave (7) acting on the hoisting ropes (3) and placed in the elevator shaft. The drive machine unit (6) is of a flat construction. A wall of the elevator shaft is provided with a machine space with its open side facing towards the shaft, the essential parts of the drive machine unit (6) being placed in the space. The hoisting unit (9) of the traction sheave elevator consists of a substantially discoidal drive machine unit (6) and an instrument panel (8) mounted on the frame (20) of the hoisting unit.

  4. Modulating DNA configuration by interfacial traction: an elastic rod model to characterize DNA folding and unfolding.

    PubMed

    Huang, Zaixing

    2011-01-01

    As a continuum model of DNA, a thin elastic rod subjected to interfacial interactions is used to investigate the equilibrium configuration of DNA in intracellular solution. The interfacial traction between the rod and the solution environment is derived in detail. Kirchhoff's theory of elastic rods is used to analyze the equilibrium configuration of a DNA segment under the action of the interfacial traction. The influences of the interfacial energy factor and bending stiffness on the toroidal spool formation of the DNA segment are discussed. The results show that the equilibrium configuration of DNA is mainly determined by competition between the interfacial energy and elastic strain energy of the DNA itself, and the interfacial traction is one of the forces that drives DNA folding and unfolding.

  5. Abdominal wall integrity after open abdomen: long-term results of vacuum-assisted wound closure and mesh-mediated fascial traction (VAWCM).

    PubMed

    Willms, A; Schaaf, S; Schwab, R; Richardsen, I; Bieler, D; Wagner, B; Güsgen, C

    2016-12-01

    The open abdomen has become a standard technique in the management of critically ill patients undergoing surgery for severe intra-abdominal conditions. Negative pressure and mesh-mediated fascial traction are commonly used and achieve low fistula rates and high fascial closure rates. In this study, long-term results of a standardised treatment approach are presented. Fifty-five patients who underwent OA management for different indications at our institution from 2006 to 2013 were enrolled. All patients were treated under a standardised algorithm that uses a combination of vacuum-assisted wound closure and mesh-mediated fascial traction. Structured follow-up assessments were offered to patients and included a medical history, a clinical examination and abdominal ultrasonography. The data obtained were statistically analysed. The fascial closure rate was 74 % in an intention-to-treat analysis and 89 % in a per-protocol analysis. The fistula rate was 1.8 %. Thirty-four patients attended follow-up. The median follow-up was 46 months (range 12-88 months). Incisional hernias developed in 35 %. Patients with hernias needed more operative procedures (10.3 vs 3.4, p = 0.03) than patients without hernia formation. A Patient Observer Scar Assessment Scale (POSAS) of 31.1 was calculated. Patients with symptomatic hernias (NAS of 2-10) had a significantly lower mean POSAS score (p = 0.04). Vacuum-assisted wound closure and mesh-mediated fascial traction (VAWCM) seem to result in low complication rates and high fascial closure rates. Abdominal wall reconstruction, which is a challenging and complex procedure and causes considerable patient discomfort, can thus be avoided in the majority of cases. Available results are based on studies involving only a small number of cases. Multi-centre studies and registry-based data are therefore needed to validate these findings.

  6. Winter Weather Checklists

    MedlinePlus

    ... walkways Supply of cat litter or bag of sand to add traction on walkways Flashlight and extra ... sealant for emergency tire repair Road salt and sand to help tires get traction Booster cables Emergency ...

  7. Traction of elastohydrodynamic contacts with thermal shearing flow

    NASA Technical Reports Server (NTRS)

    Jakobsen, J.; Winer, W. O.

    1974-01-01

    The formulation and solution for the shear stress and temperature in heavily loaded sliding elastohydrodynamic contacts is presented. The solutions are presented in dimensionless design charts. Integration over the contact area will yield the traction. Accuracy is expected to be very good over the nearly flat part of the contact area where the majority of the sliding traction is generated. The procedure presented is not appropriate for thick film lubrication, for the inlet region, or for the rolling friction of elastohydrodynamic contacts.

  8. Effect of chemical modification on tribological properties

    USDA-ARS?s Scientific Manuscript database

    Biobased ingredients possess a number of properties that makes them very desirable for applications in lubricant formulations. These include: excellent boundary properties, high viscosity index, low volatility, low traction coefficient, renewability, and biodegradability. Biobased ingredients also h...

  9. Prediction of static friction coefficient in rough contacts based on the junction growth theory

    NASA Astrophysics Data System (ADS)

    Spinu, S.; Cerlinca, D.

    2017-08-01

    The classic approach to the slip-stick contact is based on the framework advanced by Mindlin, in which localized slip occurs on the contact area when the local shear traction exceeds the product between the local pressure and the static friction coefficient. This assumption may be too conservative in the case of high tractions arising at the asperities tips in the contact of rough surfaces, because the shear traction may be allowed to exceed the shear strength of the softer material. Consequently, the classic frictional contact model is modified in this paper so that gross sliding occurs when the junctions formed between all contacting asperities are independently sheared. In this framework, when the contact tractions, normal and shear, exceed the hardness of the softer material on the entire contact area, the material of the asperities yields and the junction growth process ends in all contact regions, leading to gross sliding inception. This friction mechanism is implemented in a previously proposed numerical model for the Cattaneo-Mindlin slip-stick contact problem, which is modified to accommodate the junction growth theory. The frictionless normal contact problem is solved first, then the tangential force is gradually increased, until gross sliding inception. The contact problems in the normal and in the tangential direction are successively solved, until one is stabilized in relation to the other. The maximum tangential force leading to a non-vanishing stick area is the static friction force that can be sustained by the rough contact. The static friction coefficient is eventually derived as the ratio between the latter friction force and the normal force.

  10. Acute quadriplegia following closed traction reduction of a cervical facet dislocation in the setting of ossification of the posterior longitudinal ligament: case report.

    PubMed

    Wimberley, David W; Vaccaro, Alexander R; Goyal, Nitin; Harrop, James S; Anderson, D Greg; Albert, Todd J; Hilibrand, Alan S

    2005-08-01

    A case report of acute quadriplegia resulting from closed traction reduction of traumatic bilateral cervical facet dislocation in a 54-year-old male with concomitant ossification of the posterior longitudinal ligament (OPLL). To report an unusual presentation of a spinal cord injury, examine the approach to reversal of the injury, and review the treatment and management controversies of acute cervical facet dislocations in specific patient subgroups. The treatment of acute cervical facet dislocations is an area of ongoing controversy, especially regarding the question of the necessity of advanced imaging studies before closed traction reduction of the dislocated cervical spine. The safety of an immediate closed, traction reduction of the cervical spine in awake, alert, cooperative, and appropriately select patients has been reported in several studies. To date, there have been no permanent neurologic deficits resulting from awake, closed reduction reported in the literature. A case of temporary, acute quadriplegia with complete neurologic recovery following successful closed traction reduction of a bilateral cervical facet dislocation in the setting of OPLL is presented. The clinical neurologic examination, radiographic, and advanced imaging studies before and after closed, traction reduction of a cervical facet dislocation are evaluated and discussed. A review of the literature regarding the treatment of acute cervical facet dislocations is presented. Radiographs showed approximately 50% subluxation of the fifth on the sixth cervical vertebrae, along with computerized tomography revealing extensive discontinuous OPLL. The cervical facet dislocation was successfully reduced with an awake, closed traction reduction, before magnetic resonance imaging (MRI) evaluation. The patient subsequently had acute quadriplegia develop, with the ensuing MRI study illustrating severe spinal stenosis at the C5, C6 level as a result of OPLL or a large extruded disc herniation. Following an immediate anterior decompression and a posterior stabilization procedure, the patient regained full motor and sensory function. This case report highlights the advantages and shows some safety concerns regarding immediate, closed traction reduction of cervical facet dislocation with real-time neural monitoring in an awake, alert, oriented, and appropriately select patient before MRI studies in the setting of preexisting central stenosis from OPLL.

  11. Mechatronic track guidance on disturbed track: the trade-off between actuator performance and wheel wear

    NASA Astrophysics Data System (ADS)

    Kurzeck, Bernhard; Heckmann, Andreas; Wesseler, Christoph; Rapp, Matthias

    2014-05-01

    Future high-speed trains are the main focus of the DLR research project Next Generation Train. One central point of the research activities is the development of mechatronic track guidance for the two-axle intermediate wagons with steerable, individually powered, independently rotating wheels. The traction motors hereby fulfil two functions; they concurrently are traction drives and steering actuators. In this paper, the influence of the track properties - line layout and track irregularities - on the performance requirements for the guidance actuator is investigated using multi-body models in SIMPACK®. In order to compromise on the design conflict between low wheel wear and low steering torque, the control parameters of the mechatronic track guidance are optimised using the DLR in-house software MOPS. Besides the track irregularities especially the increasing inclination at transition curves defines high actuator requirements due to gyroscopic effects at high speed. After introducing a limiter for the actuating variables into the control system, a good performance is achieved.

  12. High Temperature Silicon Carbide (SiC) Traction Motor Drive

    DTIC Science & Technology

    2011-08-09

    UNCLASSIFIED Distribution Statement A. Approved for public release; distribution is unlimited. UNCLASSIFIED HIGH TEMPERATURE SILICON CARBIDE...be modular and conveniently distributed. Small component size and operation with high - temperature liquid coolant are essential factors in the...these densities, power modules capable of high - temperature operation were developed using SiC normally-off JFETs. This paper will discuss the unique

  13. Traction force and tension fluctuations in growing axons

    NASA Astrophysics Data System (ADS)

    Urbach, Jeffrey; Polackwich, Jamie; Koch, Daniel; McAllister, Ryan; Geller, Herbert

    Actively generated mechanical forces play a central role in axon growth and guidance during nervous system development. We describe the dynamics of traction stresses from growth cones of actively advancing axons from postnatal rat DRG neurons. By tracking the movement of the growth cone and analyzing the traction stresses in a co-moving reference frame, we show that there is a clear and consistent average stress field underlying the complex spatial stresses present at any one time. The average stress field has strong maxima on the sides of the growth cone, directed inward toward the growth cone neck. This pattern represents a Contractile stress contained within the growth cone, and a net force that is balanced by the axon tension. In addition, using high time-resolution measurements, we show that the stress field is composed of fluctuating local stress peaks, with a population of peaks whose lifetime distribution follows an exponential decay, and a small number of very long-lived peaks. We also find that the tension appears to vary randomly over short time scales, roughly consistent with the lifetime of the stress peaks, suggesting that the tension fluctuations originate from stochastic adhesion dynamics.

  14. Energy storage and alternatives to improve train voltage on a mass transit system

    NASA Astrophysics Data System (ADS)

    Gordon, S. P.; Rorke, W. S.

    1995-04-01

    The wide separation of substations in the Bay Area Rapid Transit system's transbay tunnel contributes to voltage sag when power demand is high. In the future, expansions to the system will exacerbate this problem by increasing traffic density. Typically, this situation is remedied through the installation of additional substations to increase the system's power capacity. We have evaluated the efficacy of several alternatives to this approach - specifically, installation of an 8 megajoule energy storage system, modification of the existing substations, or reduction of the resistance of the running rails or the third rail. To support this analysis, we have developed a simple model of the traction power system in the tunnel. We have concluded that the storage system does not have sufficient capacity to deal with the expected voltage sags; in this application, the alternatives present more effective solutions. We have also investigated the potential impact of these system upgrades on expected future capital outlays by BART for traction power infrastructure additions. We have found that rail or substation upgrades may reduce the need for additional substations. These upgrades may also be effective on other parts of the BART system and on other traction power systems.

  15. E-Cadherin-Dependent Stimulation of Traction Force at Focal Adhesions via the Src and PI3K Signaling Pathways

    PubMed Central

    Jasaitis, Audrius; Estevez, Maruxa; Heysch, Julie; Ladoux, Benoit; Dufour, Sylvie

    2012-01-01

    The interplay between cadherin- and integrin-dependent signals controls cell behavior, but the precise mechanisms that regulate the strength of adhesion to the extracellular matrix remains poorly understood. We deposited cells expressing a defined repertoire of cadherins and integrins on fibronectin (FN)-coated polyacrylamide gels (FN-PAG) and on FN-coated pillars used as a micro-force sensor array (μFSA), and analyzed the functional relationship between these adhesion receptors to determine how it regulates cell traction force. We found that cadherin-mediated adhesion stimulated cell spreading on FN-PAG, and this was modulated by the substrate stiffness. We compared S180 cells with cells stably expressing different cadherins on μFSA and found that traction forces were stronger in cells expressing cadherins than in parental cells. E-cadherin-mediated contact and mechanical coupling between cells are required for this increase in cell-FN traction force, which was not observed in isolated cells, and required Src and PI3K activities. Traction forces were stronger in cells expressing type I cadherins than in cells expressing type II cadherins, which correlates with our previous observation of a higher intercellular adhesion strength developed by type I compared with type II cadherins. Our results reveal one of the mechanisms whereby molecular cross talk between cadherins and integrins upregulates traction forces at cell-FN adhesion sites, and thus provide additional insight into the molecular control of cell behavior. PMID:22853894

  16. Micropatterning tractional forces in living cells

    NASA Technical Reports Server (NTRS)

    Wang, Ning; Ostuni, Emanuele; Whitesides, George M.; Ingber, Donald E.

    2002-01-01

    Here we describe a method for quantifying traction in cells that are physically constrained within micron-sized adhesive islands of defined shape and size on the surface of flexible polyacrylamide gels that contain fluorescent microbeads (0.2-microm diameter). Smooth muscle cells were plated onto square (50 x 50 microm) or circular (25- or 50-microm diameter) adhesive islands that were created on the surface of the gels by applying a collagen coating through microengineered holes in an elastomeric membrane that was later removed. Adherent cells spread to take on the size and shape of the islands and cell tractions were quantitated by mapping displacement fields of the fluorescent microbeads within the gel. Cells on round islands did not exhibit any preferential direction of force application, but they exerted their strongest traction at sites where they formed protrusions. When cells were confined to squares, traction was highest in the corners both in the absence and presence of the contractile agonist, histamine, and cell protrusions were also observed in these regions. Quantitation of the mean traction exerted by cells cultured on the different islands revealed that cell tension increased as cell spreading was promoted. These results provide a mechanical basis for past studies that demonstrated a similar correlation between spreading and growth within various anchorage-dependent cells. This new approach for analyzing the spatial distribution of mechanical forces beneath individual cells that are experimentally constrained to defined sizes and shapes may provide additional insight into the biophysical basis of cell regulation. Copyright 2002 Wiley-Liss, Inc.

  17. Efficiency Enhancement of Pico-cell Base Station Power Amplifier MMIC in Gallium Nitride HFET Technology Using the Doherty technique

    NASA Astrophysics Data System (ADS)

    Seneviratne, Sashieka

    With the growth of smart phones, the demand for more broadband, data centric technologies are being driven higher. As mobile operators worldwide plan and deploy 4th generation (4G) networks such as LTE to support the relentless growth in mobile data demand, the need for strategically positioned pico-sized cellular base stations known as 'pico-cells' are gaining traction. In addition to having to design a transceiver in a much compact footprint, pico-cells must still face the technical challenges presented by the new 4G systems, such as reduced power consumptions and linear amplification of the signals. The RF power amplifier (PA) that amplifies the output signals of 4G pico-cell systems face challenges to minimize size, achieve high average efficiencies and broader bandwidths while maintaining linearity and operating at higher frequencies. 4G standards as LTE use non-constant envelope modulation techniques with high peak to average ratios. Power amplifiers implemented in such applications are forced to operate at a backed off region from saturation. Therefore, in order to reduce power consumption, a design of a high efficiency PA that can maintain the efficiency for a wider range of radio frequency signals is required. The primary focus of this thesis is to enhance the efficiency of a compact RF amplifier suitable for a 4G pico-cell base station. For this aim, an integrated two way Doherty amplifier design in a compact 10mm x 11.5mm2 monolithic microwave integrated circuit using GaN device technology is presented. Using non-linear GaN HFETs models, the design achieves high effi-ciencies of over 50% at both back-off and peak power regions without compromising on the stringent linearity requirements of 4G LTE standards. This demonstrates a 17% increase in power added efficiency at 6 dB back off from peak power compared to conventional Class AB amplifier performance. Performance optimization techniques to select between high efficiency and high linearity operation are also presented. Overall, this thesis demonstrates the feasibility of an integrated HFET Doherty amplifier for LTE band 7 which entails the frequencies from 2.62-2.69GHz. The realization of the layout and various issues related to the PA design is discussed and attempted to be solved.

  18. FY2014 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Motors Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozpineci, Burak

    The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 throughmore » 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Advanced Power Electronics and Electric Motors (APEEM) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.« less

  19. Oak Ridge National Laboratory Annual Progress Report for the Electric Drive Technologies Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozpineci, Burak

    The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 throughmore » 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Electric Drive Technologies (EDT) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs. In supporting the development of advanced vehicle propulsion systems, the EDT subprogram fosters the development of technologies that will significantly improve efficiency, costs, and fuel economy« less

  20. Intravenous nitroglycerin for controlled cord traction in the management of retained placenta.

    PubMed

    Visalyaputra, Shusee; Prechapanich, Japarath; Suwanvichai, Sukanya; Yimyam, Suwimol; Permpolprasert, Ladda; Suksopee, Pattipa

    2011-02-01

    To determine the effect of 200 μg of intravenous nitroglycerin in the release of retained placenta by controlled cord traction. In this randomized controlled study, 40 women with a placenta retained for 30 minutes received intravenously 200 μg of nitroglycerin or a normal saline solution before umbilical cord traction was initiated. The rates of successful removal of the retained placenta in the study (n=20) and control (n=20) groups were compared, as were blood pressure, pulse rate, blood loss, and adverse effects. The placenta was released in only 15% and 20% of the participants in the study and control group, respectively. The remainder of the participants required general anesthesia and manual removal of the retained placenta regardless of group assignation. Blood pressure fell in significantly more women in the study group, but there were no differences in estimated blood loss or minor adverse effects. Intravenously administered nitroglycerin did not facilitate the release of retained placenta by umbilical cord traction. However, cord traction may be performed longer than 30 minutes to attempt releasing the placenta before operative manual removal is initiated. Copyright © 2010 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Determination of the thermal stress wave propagation in orthotropic hollow cylinder based on classical theory of thermoelasticity

    NASA Astrophysics Data System (ADS)

    Shahani, Amir Reza; Sharifi Torki, Hamid

    2018-01-01

    The thermoelasticity problem in a thick-walled orthotropic hollow cylinder is solved analytically using finite Hankel transform and Laplace transform. Time-dependent thermal and mechanical boundary conditions are applied on the inner and the outer surfaces of the cylinder. For solving the energy equation, the temperature itself is considered as boundary condition to be applied on both the inner and the outer surfaces of the orthotropic cylinder. Two different cases are assumed for solving the equation of motion: traction-traction problem (tractions are prescribed on both the inner and the outer surfaces) and traction-displacement (traction is prescribed on the inner surface and displacement is prescribed on the outer surface of the hollow orthotropic cylinder). Due to considering uncoupled theory, after obtaining temperature distribution, the dynamical structural problem is solved and closed-form relations are derived for radial displacement, radial and hoop stress. As a case study, exponentially decaying temperature with respect to time is prescribed on the inner surface of the cylinder and the temperature of the outer surface is considered to be zero. Owing to solving dynamical problem, the stress wave propagation and its reflections were observed after plotting the results in both cases.

  2. EFFECTS OF A MODIFIED VITRECTOMY PROBE IN SMALL-GAUGE VITRECTOMY: An Experimental Study on the Flow and on the Traction Exerted on the Retina.

    PubMed

    Rizzo, Stanislao; Fantoni, Gualtiero; de Santis, Giovanni; Lue, Jaw-Chyng Lormen; Ciampi, Jonathan; Palla, Michele; Genovesi Ebert, Federica; Savastano, Alfonso; De Maria, Carmelo; Vozzi, Giovanni; Brant Fernandes, Rodrigo A; Faraldi, Francesco; Criscenti, Giuseppe

    2017-09-01

    Thorough this experimental study, the physic features of a modified 23-gauge vitrectomy probe were evaluated in vitro. A modified vitrectomy probe to increase vitreous outflow rate with a small-diameter probe, that also minimized tractional forces on the retina, was created and tested. The "new" probe was created by drilling an opening into the inner duct of a traditional 23-gauge probe with electrochemical or electrodischarge micromachining. Both vitreous outflow and tractional forces on the retina were examined using experimental models of vitreous surgery. The additional opening allowed the modified probe to have a cutting rate of 5,000 cuts per minute, while sustaining an outflow approximately 45% higher than in conventional 23-gauge probes. The modified probe performed two cutting actions per cycle, not one, as in standard probes. Because tractional force is influenced by cutting rate, retinal forces were 2.2 times lower than those observed with traditional cutters. The modified probe could be useful in vitreoretinal surgery. It allows for faster vitreous removal while minimizing tractional forces on the retina. Moreover, any available probe can be modified by creating a hole in the inner duct.

  3. Model for adhesion clutch explains biphasic relationship between actin flow and traction at the cell leading edge

    PubMed Central

    Craig, Erin M.; Stricker, Jonathan; Gardel, Margaret L.; Mogilner, Alex

    2015-01-01

    Cell motility relies on the continuous reorganization of a dynamic actin-myosin-adhesion network at the leading edge of the cell, in order to generate protrusion at the leading edge and traction between the cell and its external environment. We analyze experimentally measured spatial distributions of actin flow, traction force, myosin density, and adhesion density in control and pharmacologically perturbed epithelial cells in order to develop a mechanical model of the actin-adhesion-myosin self-organization at the leading edge. A model in which the F-actin network is treated as a viscous gel, and adhesion clutch engagement is strengthened by myosin but weakened by actin flow, can explain the measured molecular distributions and correctly predict the spatial distributions of the actin flow and traction stress. We test the model by comparing its predictions with measurements of the actin flow and traction stress in cells with fast and slow actin polymerization rates. The model predicts how the location of the lamellipodium-lamellum boundary depends on the actin viscosity and adhesion strength. The model further predicts that the location of the lamellipodium-lamellum boundary is not very sensitive to the level of myosin contraction. PMID:25969948

  4. Demonstrating Cell Traction--Using Hens' Egg Vitelline Membrane as Substratum.

    ERIC Educational Resources Information Center

    Downie, Roger

    1987-01-01

    Suggests ways in which hens' egg vitelline membranes can be used to demonstrate cell traction effects. Reviews procedures for using and culturing the membranes and identifies topic areas for student projects. (ML)

  5. Adaptive control system of dump truck traction electric drive

    NASA Astrophysics Data System (ADS)

    Bolshunova, O. M.; Korzhev, A. A.; Kamyshyan, A. M.

    2018-03-01

    The paper describes the operational factors that determine the accident rate of a quarry motor vehicle and assessment of their impact on the choice of the operation mode of the traction drive control system.

  6. Direct hip joint distraction during acetabular fracture surgery using the AO universal manipulator.

    PubMed

    Calafi, L Afshin; Routt, M L Chip

    2010-02-01

    Certain acetabular fractures may necessitate distraction of the hip joint for removal of intra-articular debris and assessment of reduction. Distraction can be accomplished by manual traction, using a traction table or an AO universal manipulator (UM). The UM is a relatively simple and an inexpensive device that can provide focal distraction in a controlled manner without the risks associated with the use of a traction table. We describe a technique using the UM for hip joint distraction during acetabular fracture surgery through a Kocher-Langenbeck surgical exposure.

  7. FY 2005 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, M

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel and the 21st Century Truck Partnerships through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2004 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less

  8. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, M.

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel Partnership and the 21st Century Truck Partnership through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2006 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work. Summaries of major accomplishments for each technical project are give.« less

  9. FY2012 Advanced Power Electronics and Electric Motors Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  10. Enabling fast charging - Introduction and overview

    NASA Astrophysics Data System (ADS)

    Michelbacher, Christopher; Ahmed, Shabbir; Bloom, Ira; Burnham, Andrew; Carlson, Barney; Dias, Fernando; Dufek, Eric J.; Jansen, Andrew N.; Keyser, Matthew; Markel, Anthony; Meintz, Andrew; Mohanpurkar, Manish; Pesaran, Ahmad; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Tanim, Tanvir; Vijayagopal, Ram; Zhang, Jiucai

    2017-11-01

    The pursuit of U.S. energy security and independence has taken many different forms throughout the many production and consumption sectors. For consumer transportation, a greater reliance on power train electrification has gained traction due to the inherent efficiencies of these platforms, particularly through the use of electric motors and batteries. Vehicle electrification can be generalized into three primary categories-hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs); the latter two, PHEVs and BEVs, are often referred to as plug-in electric vehicles (PEVs).

  11. A modification of the maitland roll top traction table.

    PubMed

    Kneipp, K

    1975-03-01

    This modification of the Maitland Roll Top Traction Table (Maitland, 1973) differs from the original as follows: 1. The two weight-bearing leaves are enclosed by a "guide frame" and the "U-piece" of the original is replaced by a hinged "gate" at the foot, which can be opened downwards for lumbar traction, or can be locked to restrain the leaves when the table is required for other purposes. 2. Four rollers of light steel replace the wooden dowels. 3. The modified table in use by the author is held by a floor peg, and is set up be-between two walls 10' 6″ apart which provide purchase points for traction. Alternatively, purchase at the head end can be taken by hooks attached to the table itself. 4. The design permits a six-foot plinth to be used. Copyright © 1975 Australian Physiotherapy Association. Published by . All rights reserved.

  12. Traction studies of piston ring wear using an external radiometric method with proton activation

    NASA Astrophysics Data System (ADS)

    Scharf, Waldemar; Niewczas, Andrzej

    1987-04-01

    A method and results are presented of traction studies of piston ring wear in a Polski Fiat 126p passenger car and Star 200 lorry. The rings sliding surface was activated with a beam of 9.6-MeV protons and the measurements were made using a collimated scintillation detector placed outside the engine, i.e. without interfering with the engine's operation. The cars were run under varying traction conditions, their mileages having ranged between 7000 and 12000 km. In stable wear conditions on the road the piston ring wear for the passenger car and the lorry was {0.28%}/{100} km and {0.045%}/{100} km, respectively. The method was found to be particularly suitable for traction studies because it is simple and cheap. It can be employed as early as after the first 100 km of the car mileage.

  13. [The application of delayed skin grafting combined traction in severe joint cicatricial contracture].

    PubMed

    Xu, Zihan; Zhang, Zhenxin; Wang, Benfeng; Sun, Yaowen; Guo, Yadong; Gao, Wenjie; Qin, Gaoping

    2014-11-01

    To investigate the effect of delayed skin grafting combined traction in severe joint cicatricial contracture. At the first stage, the joint cicatricial contracture was released completely with protection of vessels, nerves and tendons. The wound was covered with allogenetic skin or biomaterials. After skin traction for 7-14 days, the joint could reach the extension position. Then the skin graft was performed on the wound. 25 cases were treated from Mar. 2000 to May. 2013. Primary healing was achieved at the second stage in all the cases. The skin graft had a satisfactory color and elasticity. Joint function was normal. All the patients were followed up for 3 months to 11 years with no hypertrophic scar and contraction relapse, except for one case who didn' t have enough active exercise on shoulder joint. Delayed skin grafting combined traction can effectively increase the skin graft survival rate and improve the joint function recovery.

  14. Force sensing using 3D displacement measurements in linear elastic bodies

    NASA Astrophysics Data System (ADS)

    Feng, Xinzeng; Hui, Chung-Yuen

    2016-07-01

    In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.

  15. Traction test of temporary dental cements.

    PubMed

    Román-Rodríguez, Juan-Luis; Millan-Martínez, Diego; Fons-Font, Antonio; Agustín-Panadero, Rubén; Fernández-Estevan, Lucía

    2017-04-01

    Classic self-curing temporary cements obstruct the translucence of provisional restorations. New dual-cure esthetic temporary cements need investigation and comparison with classic cements to ensure that they are equally retentive and provide adequate translucence. The objective is to analyze by means of traction testing in a in vitro study the retention of five temporary cements. Ten molars were prepared and ten provisional resin restorations were fabricated using CAD-CAM technology (n=10). Five temporary cements were selected: self-curing temporary cements, Dycal (D), Temp Bond (TB), Temp Bond Non Eugenol (TBNE); dual-curing esthetic cements Temp Bond Clear (TBC) and Telio CS link (TE). Each sample underwent traction testing, both with thermocycling (190 cycles at 5-55º) and without thermocycling. TE and TBC obtained the highest traction resistance values. Thermocycling reduced the resistance of all cements except TBC. The dual-cure esthetic cements tested provided optimum outcomes for bonding provisional restorations. Key words: Temporary dental cements, cements resistance.

  16. Study of dynamic emission spectra from lubricant films in an elastohydrodynamic contact using Fourier transform spectroscopy

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.

    1978-01-01

    Infrared emission spectra were obtained through a diamond window from lubricating fluids in an operating sliding elastohydrodynamic contact and analyzed by comparison with static absorption spectra under similar pressures. Different loads, shear rates and temperatures were used. Most of the spectra exhibited polarization characteristics, indicating directional alignment of the lubricant in the EHD contact. Among the fluids studied were a "traction" fluid, an advanced ester, and their mixtures, a synthetic paraffin, a naphthenic reference fluid (N-1), both neat and containing 1 percent of p-tricresyl phosphate as an anti-wear additive, and a C-ether. Traction properties were found to be nearly proportional to mixture composition for traction fluid and ester mixtures. The anti-wear additive reduced traction and fluid temperature under low loads but increased them under higher loads, giving rise to formation of a friction polymer.

  17. System for controlling a hybrid energy system

    DOEpatents

    Hoff, Brian D.; Akasam, Sivaprasad

    2013-01-29

    A method includes identifying a first operating sequence of a repeated operation of at least one non-traction load. The method also includes determining first and second parameters respectively indicative of a requested energy and output energy of the at least one non-traction load and comparing the determined first and second parameters at a plurality of time increments of the first operating sequence. The method also includes determining a third parameter of the hybrid energy system indicative of energy regenerated from the at least one non-traction load and monitoring the third parameter at the plurality of time increments of the first operating sequence. The method also includes determining at least one of an energy deficiency or an energy surplus associated with the non-traction load of the hybrid energy system and selectively adjusting energy stored within the storage device during at least a portion of a second operating sequence.

  18. Improved biobased lubricants from chemically modified vegetable oils

    USDA-ARS?s Scientific Manuscript database

    Vegetable oils possess a number of desirable properties for lubricant application such as excellent boundary properties, high viscosity index, low volatility, low traction coefficient, renewability, and biodegradability. Unfortunately, they also have a number of weaknesses that make them less desira...

  19. Mobility of lightweight robots over snow

    NASA Astrophysics Data System (ADS)

    Lever, James H.; Shoop, Sally A.

    2006-05-01

    Snowfields are challenging terrain for lightweight (<50 kg) unmanned ground vehicles. Deep sinkage, high snowcompaction resistance, traction loss while turning and ingestion of snow into the drive train can cause immobility within a few meters of travel. However, for suitably designed vehicles, deep snow offers a smooth, uniform surface that can obliterate obstacles. Key requirements for good over-snow mobility are low ground pressure, large clearance relative to vehicle size and a drive system that tolerates cohesive snow. A small robot will invariably encounter deep snow relative to its ground clearance. Because a single snowstorm can easily deposit 30 cm of fresh snow, robots with ground clearance less than about 10 cm must travel over the snow rather than gain support from the underlying ground. This can be accomplished using low-pressure tracks (< 1.5 kPa). Even still, snow-compaction resistance can exceed 20% of vehicle weight. Also, despite relatively high traction coefficients for low track pressures, differential or skid steering is difficult because the outboard track can easily break traction as the vehicle attempts to turn against the snow. Short track lengths (relative to track separation) or coupled articulated robots offer steering solutions for deep snow. This paper presents preliminary guidance to design lightweight robots for good mobility over snow based on mobility theory and tests of PackBot, Talon and SnoBot, a custom-designed research robot. Because many other considerations constrain robot designs, this guidance can help with development of winterization kits to improve the over-snow performance of existing robots.

  20. Cell prestress. II. Contribution of microtubules

    NASA Technical Reports Server (NTRS)

    Stamenovic, Dimitrije; Mijailovich, Srboljub M.; Tolic-Norrelykke, Iva Marija; Chen, Jianxin; Wang, Ning; Ingber, D. E. (Principal Investigator)

    2002-01-01

    The tensegrity model hypothesizes that cytoskeleton-based microtubules (MTs) carry compression as they balance a portion of cell contractile stress. To test this hypothesis, we used traction force microscopy to measure traction at the interface of adhering human airway smooth muscle cells and a flexible polyacrylamide gel substrate. The prediction is that if MTs balance a portion of contractile stress, then, upon their disruption, the portion of stress balanced by MTs would shift to the substrate, thereby causing an increase in traction. Measurements were done first in maximally activated cells (10 microM histamine) and then again after MTs had been disrupted (1 microM colchicine). We found that after disruption of MTs, traction increased on average by approximately 13%. Because in activated cells colchicine induced neither an increase in intracellular Ca(2+) nor an increase in myosin light chain phosphorylation as shown previously, we concluded that the observed increase in traction was a result of load shift from MTs to the substrate. In addition, energy stored in the flexible substrate was calculated as work done by traction on the deformation of the substrate. This result was then utilized in an energetic analysis. We assumed that cytoskeleton-based MTs are slender elastic rods supported laterally by intermediate filaments and that MTs buckle as the cell contracts. Using the post-buckling equilibrium theory of Euler struts, we found that energy stored during buckling of MTs was quantitatively consistent with the measured increase in substrate energy after disruption of MTs. This is further evidence supporting the idea that MTs are intracellular compression-bearing elements.

  1. Cost effectiveness of using surgery versus skeletal traction in management of femoral shaft fractures at Thika level 5 hospital, Kenya.

    PubMed

    Opondo, Everisto; Wanzala, Peter; Makokha, Ansellimo

    2013-01-01

    A prospective quasi experimental study was undertaken at the Thika level 5 hospital. The study aimed to compare the costs of managing femoral shaft fracture by surgery as compared to skeletal traction. Sixty nine (46.6%) patients were enrolled in group A and managed surgically by intramedullary nailing while 79 (53.4%) patients were enrolled in group B and managed by skeletal traction. Exclusion criteria included patients with pathological fractures and previous femoral fractures. Data was collected by evaluation of patients in patient bills using a standardized questionnaire. The questionnaire included cost of haematological and radiological tests, bed fees, theatre fees and physiotherapy costs. The data was compiled and analyzed using SPSS version 16. Person's chi square and odds ratios were used to measure associations and risk analysis respectively. A higher proportion of patients (88.4%) in group A were hospitalized for less than one month compared to 20 patients (30.4%) in group B (p, 0.001).Total cost of treatment in group A was significantly lower than in group B. Nineteen (27.9%) patients who underwent surgery paid a total bill of Ksh 5000-7500 compared to 7(10.4%) who were treated by traction. The financial cost benefit of surgery was further complimented by better functional outcomes. The data indicates a cost advantage of managing femoral shaft fracture by surgery compared to traction. Furthermore the longer hospital stay in the traction group is associated with more malunion, limb deformity and shortening.

  2. Earthquake fracture energy inferred from kinematic rupture models on extended faults

    USGS Publications Warehouse

    Tinti, E.; Spudich, P.; Cocco, M.

    2005-01-01

    We estimate fracture energy on extended faults for several recent earthquakes by retrieving dynamic traction evolution at each point on the fault plane from slip history imaged by inverting ground motion waveforms. We define the breakdown work (Wb) as the excess of work over some minimum traction level achieved during slip. Wb is equivalent to "seismological" fracture energy (G) in previous investigations. Our numerical approach uses slip velocity as a boundary condition on the fault. We employ a three-dimensional finite difference algorithm to compute the dynamic traction evolution in the time domain during the earthquake rupture. We estimate Wb by calculating the scalar product between dynamic traction and slip velocity vectors. This approach does not require specifying a constitutive law and assuming dynamic traction to be collinear with slip velocity. If these vectors are not collinear, the inferred breakdown work depends on the initial traction level. We show that breakdown work depends on the square of slip. The spatial distribution of breakdown work in a single earthquake is strongly correlated with the slip distribution. Breakdown work density and its integral over the fault, breakdown energy, scale with seismic moment according to a power law (with exponent 0.59 and 1.18, respectively). Our estimates of breakdown work range between 4 ?? 105 and 2 ?? 107 J/m2 for earthquakes having moment magnitudes between 5.6 and 7.2. We also compare our inferred values with geologic surface energies. This comparison might suggest that breakdown work for large earthquakes goes primarily into heat production. Copyright 2005 by the American Geophysical Union.

  3. Vacuum-assisted wound closure and mesh-mediated fascial traction for open abdomen therapy - a systematic review.

    PubMed

    Acosta, Stefan; Björck, Martin; Petersson, Ulf

    2017-01-01

    The aim of this paper was to review the literature on vacuum-assisted wound closure and mesh-mediated fascial traction (VAWCM) in open abdomen therapy. It was designed as systematic review of observational studies. A Pub Med, EMBASE and Cochrane search from 2007/01-2016/07 was performed combining the Medical Subject Headings "vacuum", "mesh-mediated fascial traction", "temporary abdominal closure", "delayed abdominal closure", "open abdomen", "abdominal compartment syndrome", "negative pressure wound therapy" or "vacuum assisted wound closure". Eleven original studies were found including patients numbering from 7 to 111. Six studies were prospective and five were retrospective. Nine studies were on mixed surgical (n = 9), vascular (n = 6) and trauma (n = 6) patients, while two were exclusively on vascular patients. The primary fascial closure rate per protocol varied from 80-100%. The time to closure of the open abdomen varied between 9-32 days. The entero-atmospheric fistula rate varied from 0-10.0%. The in-hospital survival rate varied from 57-100%. In the largest prospective study, the incisional hernia rate among survivors at 63 months of median follow-up was 54% (27/50), and 16 (33%) repairs out of 48 incisional hernias were performed throughout the study period. The study patients reported lower short form health survey (SF-36) scores than the mean reference population, mainly dependent on the prevalence of major co-morbidities. There was no difference in SF-36 scores or a modified ventral hernia pain questionnaire (VHPQ) at 5 years of follow up between those with versus those without incisional hernias. A high primary fascial closure rate can be achieved with the vacuum-assisted wound closure and meshmediated fascial traction technique in elderly, mainly non-trauma patients, in need of prolonged open abdomen therapy.

  4. Perfluorocarbon-perfused 23 gauge three-dimensional vitrectomy for complicated diabetic tractional retinal detachment

    PubMed Central

    Velez-Montoya, Raul; Guerrero-Naranjo, Jose Luis; Garcia-Aguirre, Gerardo; Morales-Cantón, Virgilio; Fromow-Guerra, Jans; Quiroz-Mercado, Hugo

    2011-01-01

    Background Perfluorocarbon liquid (PCL)-perfused vitrectomy has been shown in previous studies to be feasible, safe, and to have advantages in managing complicated cases of tractional retinal detachment. The present study had the objectives of describing the anatomical results and measuring surgical time and PCL consumption when combining PCL-perfused techniques with modern vitrectomy equipment. Methods A prospective, interventional consecutive case series was investigated. We enrolled patients with diabetic tractional retinal detachment, complicated by proliferative vitreoretinopathy and poor vision. A 23 gauge PCL-perfused vitrectomy was done with three-dimensional settings. During the procedure, we assessed the degree of surgical bleeding, visualization quality, and difficulty of membrane dissections. Visual acuity, intraocular pressure, and anatomical success were assessed at one and 3 months of follow-up. Results Twelve patients were enrolled in this study. There were no statistical significant changes in intraocular pressure and visual acuity throughout the follow-up period. Surgery was performed in a hemorrhage-free environment in almost all cases, with good visualization and low technical difficulty. The mean complete surgical time was 94.92 ± 25.03 minutes. The mean effective vitrectomy time was 22.50 ± 19.04 minutes and the mean PCL consumption was 25.08 ± 9.76 mL, with a speed of 1.11 mL/minute. Anatomical success was 67% at 3 months. Conclusion Although the technique proved to have some advantages in managing complicated cases of diabetic tractional retinal detachment, there was a high consumption of PCL. A redesign of the entire system is needed in order to decrease the amount of PCL needed for the technique. PMID:22267907

  5. Use of 3 mm percutaneous instruments with 5 mm end effectors during different laparoscopic procedures.

    PubMed

    David, Giulia; Boni, Luigi; Rausei, Stefano; Cassinotti, Elisa; Dionigi, Gianlorenzo; Rovera, Francesca; Spampatti, Sebastiano; Colombo, Elisabetta Marta; Dionigi, Renzo

    2013-01-01

    With a recent focus on minimizing the visibility of scars, new techniques have been developed. Minilaparoscopy reemerged as an attractive option for surgery as it limits tissue trauma, reduces post-operative pain and improves cosmesis. This study was designed to describe our experience with percutaneous trocarless 3 mm instruments used in combination with standard 5 mm and 10 mm laparoscopic instruments in different general surgery procedures. We used the PSS (Percutaneous Surgical Set, Ethicon Endo surgery, Cincinnati, OH, USA) in different surgical procedures as accessory instruments in combination with standard 5 mm and 10 mm standard laparoscopic instruments. The use of percutaneous instruments was safe and feasible in all performed procedures. The surgical technique was not modified. The percutaneous instruments can assure a good grip and can be used for traction and counter-traction. No complications have been described. No pain at the site of insertion has been reported. The skin, muscle and peritoneal defects were smaller than with the 3 mm laparoscopic traditional instruments. Percutaneous approach seems to be a good option in general surgery in terms of efficiency, offering better cosmetic results and good pain control. Copyright © 2013 Elsevier Ltd and Surgical Associates Ltd. All rights reserved.

  6. Axial force and efficiency tests of fixed center variable speed belt drive

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1981-01-01

    An investigation of how the axial force varies with the centerline force at different speed ratios, speeds, and loads, and how the drive's transmission efficiency is affected by these related forces is described. The tests, intended to provide a preliminary performance and controls characterization for a variable speed belt drive continuously variable transmission (CVT), consisted of the design and construction of an experimental test rig geometrically similar to the CVT, and operation of that rig at selected speed ratios and power levels. Data are presented which show: how axial forces exerted on the driver and driven sheaves vary with the centerline force at constant values of speed ratio, speed, and output power; how the transmission efficiency varies with centerline force and how it is also a function of the V belt coefficient; and the axial forces on both sheaves as normalized functions of the traction coefficient.

  7. A Novel Transverse Flux Machine for Vehicle Traction Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Zhao; Ahmed, Adeeb; Husain, Iqbal

    2015-10-05

    A novel transverse flux machine topology for electric vehicle traction application using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to Halbach-array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from Finite Element Analysis (FEA) show the motor achieved comparable torquemore » density to conventional rare-earth permanent magnet machines. This machine is a viable candidate for direct drive applications with low cost and high torque density.« less

  8. A novel anchorage technique for transnasal traction in rigid external maxillary distraction.

    PubMed

    Varol, A; Basa, S

    2013-12-01

    We describe an effective technique for anchorage of transnasal traction in the management of maxillary rotation during external distraction. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Force generation by groups of migrating bacteria

    PubMed Central

    Koch, Matthias D.; Liu, Guannan; Stone, Howard A.; Shaevitz, Joshua W.

    2017-01-01

    From colony formation in bacteria to wound healing and embryonic development in multicellular organisms, groups of living cells must often move collectively. Although considerable study has probed the biophysical mechanisms of how eukaryotic cells generate forces during migration, little such study has been devoted to bacteria, in particular with regard to the question of how bacteria generate and coordinate forces during collective motion. This question is addressed here using traction force microscopy. We study two distinct motility mechanisms of Myxococcus xanthus, namely, twitching and gliding. For twitching, powered by type-IV pilus retraction, we find that individual cells exert local traction in small hotspots with forces on the order of 50 pN. Twitching bacterial groups also produce traction hotspots, but with forces around 100 pN that fluctuate rapidly on timescales of <1.5 min. Gliding, the second motility mechanism, is driven by lateral transport of substrate adhesions. When cells are isolated, gliding produces low average traction on the order of 1 Pa. However, traction is amplified approximately fivefold in groups. Advancing protrusions of gliding cells push, on average, in the direction of motion. Together, these results show that the forces generated during twitching and gliding have complementary characters, and both forces have higher values when cells are in groups. PMID:28655845

  10. Force generation by groups of migrating bacteria.

    PubMed

    Sabass, Benedikt; Koch, Matthias D; Liu, Guannan; Stone, Howard A; Shaevitz, Joshua W

    2017-07-11

    From colony formation in bacteria to wound healing and embryonic development in multicellular organisms, groups of living cells must often move collectively. Although considerable study has probed the biophysical mechanisms of how eukaryotic cells generate forces during migration, little such study has been devoted to bacteria, in particular with regard to the question of how bacteria generate and coordinate forces during collective motion. This question is addressed here using traction force microscopy. We study two distinct motility mechanisms of Myxococcus xanthus , namely, twitching and gliding. For twitching, powered by type-IV pilus retraction, we find that individual cells exert local traction in small hotspots with forces on the order of 50 pN. Twitching bacterial groups also produce traction hotspots, but with forces around 100 pN that fluctuate rapidly on timescales of <1.5 min. Gliding, the second motility mechanism, is driven by lateral transport of substrate adhesions. When cells are isolated, gliding produces low average traction on the order of 1 Pa. However, traction is amplified approximately fivefold in groups. Advancing protrusions of gliding cells push, on average, in the direction of motion. Together, these results show that the forces generated during twitching and gliding have complementary characters, and both forces have higher values when cells are in groups.

  11. Two-Stage Thoracoscopic Repair of Long-Gap Esophageal Atresia Using Internal Traction Is Safe and Feasible.

    PubMed

    Tainaka, Takahisa; Uchida, Hiroo; Tanano, Akihide; Shirota, Chiyoe; Hinoki, Akinari; Murase, Naruhiko; Yokota, Kazuki; Oshima, Kazuo; Shirotsuki, Ryo; Chiba, Kosuke; Amano, Hizuru; Kawashima, Hiroshi; Tanaka, Yujiro

    2017-01-01

    The treatment of long-gap esophageal atresia remains an issue for pediatric surgeons. Many techniques for treating long-gap esophageal atresia have been proposed, but the optimal method has not been established. The thoracoscopic esophageal elongation technique has recently been developed. We previously reported a case in which two-stage thoracoscopic repair was performed using internal esophageal traction without esophageal tearing, and we retrospectively reviewed the outcomes of this procedure in this study. Five patients underwent thoracoscopic treatment involving internal esophageal traction for esophageal atresia involving a long gap or vascular ring over a 5-year period. Between November 2010 and November 2015, 5 patients were treated with thoracoscopic traction. All of these patients successfully underwent thoracoscopic-delayed primary anastomosis. Conversion to open thoracotomy was not required in any case. The postoperative complications experienced by the patients included minor anastomotic leakage in 2 cases, anastomotic stenosis in 1 case, gastroesophageal reflux (GER) in 4 cases, and a hiatal hernia in 1 case. None of the patients died. Two-stage thoracoscopic repair for esophageal atresia involving a long gap or vascular ring is a safe and feasible procedure; however, we must develop methods for treating minor anastomotic complications and GER due to esophageal traction in future.

  12. Social Emotional Learning in High School: How Three Urban High Schools Engage, Educate, and Empower Youth. Research Brief

    ERIC Educational Resources Information Center

    Hamedani, MarYam G.; Darling-Hammond, Linda

    2015-01-01

    The psychological, social, and emotional aspects of education have enjoyed increased attention in recent years as often termed "non-cognitive factors" and "soft skills" have gained traction in research, policy, and practice circles as major drivers of student achievement. This renewed attention represents an important shift, as…

  13. Harmonic analysis of electric locomotive and traction power system based on wavelet singular entropy

    NASA Astrophysics Data System (ADS)

    Dun, Xiaohong

    2018-05-01

    With the rapid development of high-speed railway and heavy-haul transport, the locomotive and traction power system has become the main harmonic source of China's power grid. In response to this phenomenon, the system's power quality issues need timely monitoring, assessment and governance. Wavelet singular entropy is an organic combination of wavelet transform, singular value decomposition and information entropy theory, which combines the unique advantages of the three in signal processing: the time-frequency local characteristics of wavelet transform, singular value decomposition explores the basic modal characteristics of data, and information entropy quantifies the feature data. Based on the theory of singular value decomposition, the wavelet coefficient matrix after wavelet transform is decomposed into a series of singular values that can reflect the basic characteristics of the original coefficient matrix. Then the statistical properties of information entropy are used to analyze the uncertainty of the singular value set, so as to give a definite measurement of the complexity of the original signal. It can be said that wavelet entropy has a good application prospect in fault detection, classification and protection. The mat lab simulation shows that the use of wavelet singular entropy on the locomotive and traction power system harmonic analysis is effective.

  14. Three-dimensional finite element analysis of the deformation of the human mandible: a preliminary study from the perspective of orthodontic mini-implant stability

    PubMed Central

    Baek, Sun-Hye; Cha, Hyun-Suk; Cha, Jung-Yul; Moon, Yoon-Shik

    2012-01-01

    Objective The aims of this study were to investigate mandibular deformation under clenching and to estimate its effect on the stability of orthodontic mini-implants (OMI). Methods Three finite element models were constructed using computed tomography (CT) images of 3 adults with different mandibular plane angles (A, low; B, average; and C, high). An OMI was placed between #45 and #46 in each model. Mandibular deformation under premolar and molar clenching was simulated. Comparisons were made between peri-orthodontic mini-implant compressive strain (POMI-CSTN) under clenching and orthodontic traction forces (150 g and 200 g). Results Three models with different mandibular plane angles demonstrated different functional deformation characteristics. The compressive strains around the OMI were distributed mesiodistally rather than occlusogingivally. In model A, the maximum POMI-CSTN under clenching was observed at the mesial aspect of #46 (1,401.75 microstrain [µE]), and similar maximum POMI-CSTN was observed under a traction force of 150 g (1,415 µE). Conclusions The maximum POMI-CSTN developed by clenching failed to exceed the normally allowed compressive cortical bone strains; however, additional orthodontic traction force to the OMI may increase POMI-CSTN to compromise OMI stability. PMID:23112947

  15. Comparison of Solid State Inverters for AC Induction Motor Traction Propulsion Systems

    DOT National Transportation Integrated Search

    1980-12-01

    This report is one of a series concerned with the application of ac machines as traction motors for railroad motive power. It presents results of a laboratory evaluation and computer analysis of different inverter systems. Three inverter systems, sin...

  16. Lateral traction

    MedlinePlus

    ... treat or reduce any joint dislocation or bone fracture by applying tension to the leg or arm with weights and pulleys to realign the bone. For example, it may be used to help line up a broken bone while it heals. Traction as a treatment involves the amount of ...

  17. Impact of slab pull and incipient mantle delamination on active tectonics and crustal thickening in the Betic-Alboran-Rif system

    NASA Astrophysics Data System (ADS)

    Mazzotti, Stephane; Baratin, Laura-May; Chéry, Jean; Vernant, Philippe; Gueydan, Frédéric; Tahayt, Abdelilah; Mourabit, Taoufik

    2017-04-01

    In Western Mediterranean, the Betic-Alboran-Rif orocline accommodates the WNW-ESE convergence between the Nubia and Eurasia plates. Recent geodetic data show that present-day tectonics in northern Morocco and southernmost Spain are not compatible with this simple two-plate-convergence model: GPS observations indicate significant (2-4 mm/a) deviations from the expected plate motion, and gravity data define two major negative Bouguer anomalies beneath the Betic and south of the Rif, interpreted as a thickened crust in a state of non-isostatic equilibrium. These anomalous geodetic patterns are likely related to the recent impact of the sub-vertical Alboran slab on crustal tectonics. Using 2-D finite-element models, we study the first-order behavior of a lithosphere affected by a downward normal traction, representing the pull of a high-density body in the upper mantle (slab pull or mantle delamination). We show that a specific range of lower crust and upper mantle viscosities allow a strong coupling between the mantle and the base of the brittle crust, thus enabling (1) the efficient conversion of vertical movement (resulting from the downward traction) to horizontal movement and (2) shortening and thickening on the brittle upper crust. Our results show that incipient delamination of the Nubian continental lithosphere, linked to the Alboran slab pull, can explain the present-day abnormal tectonics and non-isostatic equilibrium in northern Morocco. Similar processes may be at play in the whole Betic-Alboran-Rif region, although the fast temporal evolution of the slab - upper plate interactions needs to be taken into account to better understand this complex system.

  18. Substrate Deformation Predicts Neuronal Growth Cone Advance

    PubMed Central

    Athamneh, Ahmad I.M.; Cartagena-Rivera, Alexander X.; Raman, Arvind; Suter, Daniel M.

    2015-01-01

    Although pulling forces have been observed in axonal growth for several decades, their underlying mechanisms, absolute magnitudes, and exact roles are not well understood. In this study, using two different experimental approaches, we quantified retrograde traction force in Aplysia californica neuronal growth cones as they develop over time in response to a new adhesion substrate. In the first approach, we developed a novel method, to our knowledge, for measuring traction forces using an atomic force microscope (AFM) with a cantilever that was modified with an Aplysia cell adhesion molecule (apCAM)-coated microbead. In the second approach, we used force-calibrated glass microneedles coated with apCAM ligands to guide growth cone advance. The traction force exerted by the growth cone was measured by monitoring the microneedle deflection using an optical microscope. Both approaches showed that Aplysia growth cones can develop traction forces in the 100–102 nN range during adhesion-mediated advance. Moreover, our results suggest that the level of traction force is directly correlated to the stiffness of the microneedle, which is consistent with a reinforcement mechanism previously observed in other cell types. Interestingly, the absolute level of traction force did not correlate with growth cone advance toward the adhesion site, but the amount of microneedle deflection did. In cases of adhesion-mediated growth cone advance, the mean needle deflection was 1.05 ± 0.07 μm. By contrast, the mean deflection was significantly lower (0.48 ± 0.06 μm) when the growth cones did not advance. Our data support a hypothesis that adhesion complexes, which can undergo micron-scale elastic deformation, regulate the coupling between the retrogradely flowing actin cytoskeleton and apCAM substrates, stimulating growth cone advance if sufficiently abundant. PMID:26445437

  19. Active management of the third stage of labor with and without controlled cord traction: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Du, Yongming; Ye, Man; Zheng, Feiyun

    2014-07-01

    To determine the specific effect of controlled cord traction in the third stage of labor in the prevention of postpartum hemorrhage. We searched PubMed, Scopus and Web of Science (inception to 30 October 2013). Randomized controlled trials comparing controlled cord traction with hands-off management in the third stage of labor were included. Five randomized controlled trials involving a total of 30 532 participants were eligible. No significant difference was found between controlled cord traction and hands-off management groups with respect to the incidence of severe postpartum hemorrhage (relative risk 0.91, 95% confidence interval 0.77-1.08), need for blood transfusion (relative risk 0.96, 95% confidence interval 0.69-1.33) or therapeutic uterotonics (relative risk 0.94, 95% confidence interval 0.88-1.01). However, controlled cord traction reduced the incidence of postpartum hemorrhage in general (relative risk 0.93, 95% confidence interval 0.87-0.99; number-needed-to-treat 111, 95% confidence interval 61-666), as well manual removal of the placenta (relative risk 0.70, 95% confidence interval 0.58-0.84) and duration of the third stage of labor (mean difference -3.20, 95% confidence interval -3.21 to -3.19). Controlled cord traction appears to reduce the risk of any postpartum hemorrhage in a general sense, as well as manual removal of the placenta and the duration of the third stage of labor. However, the reduction in the occurrence of severe postpartum hemorrhage, need for additional uterotonics and blood transfusion is not statistically significant. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  20. An in vitro correlation of mechanical forces and metastatic capacity

    NASA Astrophysics Data System (ADS)

    Indra, Indrajyoti; Undyala, Vishnu; Kandow, Casey; Thirumurthi, Umadevi; Dembo, Micah; Beningo, Karen A.

    2011-02-01

    Mechanical forces have a major influence on cell migration and are predicted to significantly impact cancer metastasis, yet this idea is currently poorly defined. In this study we have asked if changes in traction stress and migratory properties correlate with the metastatic progression of tumor cells. For this purpose, four murine breast cancer cell lines derived from the same primary tumor, but possessing increasing metastatic capacity, were tested for adhesion strength, traction stress, focal adhesion organization and for differential migration rates in two-dimensional and three-dimensional environments. Using traction force microscopy (TFM), we were surprised to find an inverse relationship between traction stress and metastatic capacity, such that force production decreased as the metastatic capacity increased. Consistent with this observation, adhesion strength exhibited an identical profile to the traction data. A count of adhesions indicated a general reduction in the number as metastatic capacity increased but no difference in the maturation as determined by the ratio of nascent to mature adhesions. These changes correlated well with a reduction in active beta-1 integrin with increasing metastatic ability. Finally, in two dimensions, wound healing, migration and persistence were relatively low in the entire panel, maintaining a downward trend with increasing metastatic capacity. Why metastatic cells would migrate so poorly prompted us to ask if the loss of adhesive parameters in the most metastatic cells indicated a switch to a less adhesive mode of migration that would only be detected in a three-dimensional environment. Indeed, in three-dimensional migration assays, the most metastatic cells now showed the greatest linear speed. We conclude that traction stress, adhesion strength and rate of migration do indeed change as tumor cells progress in metastatic capacity and do so in a dimension-sensitive manner.

  1. Posterior-only surgery with preoperative skeletal traction for management of severe scoliosis.

    PubMed

    Mehrpour, Saeedreza; Sorbi, Reza; Rezaei, Reza; Mazda, Keyvan

    2017-04-01

    The surgical treatment of severe adolescent spinal deformities is challenging and carries substantial risks of mortality and morbidity. To mitigate this risk, surgeons have employed various methods as this study designed to evaluate the safety and effectiveness of preoperative halo-femoral or halo gravity traction (HGT) followed by posterior-only surgery in the management of severe scoliosis. A total number of 23 patients with severe scoliosis treated by preoperative skeletal traction (halo gravity or halo femoral) followed by posterior fusion and instrumentation in one stage. All patients were followed for a minimum of 2 years after surgery. The average age of the patients was 12.7 years at the time of surgery. Mean of the Cobb angle improved from 99.9° ± 8.2° preoperatively to 75.3° ± 8° post-traction and 49.5° ± 7.7° postoperatively. Kyphosis angle corrected from 56.4° ± 9.5° to 38.6° ± 5.8°. The preop-FVC% was 41 ± 6.1% and after 1 year follow-up FVC% was 45.7 ± 7.7%. No patients required an anterior release due to amount of their deformity. Despite the benefits of modern instrumentation procedures, the treatment of severe scoliosis can be very competing. We think that by applying preoperative halo femoral traction and halo-gravity traction, managing severe scoliosis will be in safe and easy manner and can lead to better deformity correction and less neurological complications and facilitate to avoid anterior operation for severe scoliosis and its related complications.

  2. Toward the Reliability of Fault Representation Methods in Finite Difference Schemes for Simulation of Shear Rupture Propagation

    NASA Astrophysics Data System (ADS)

    Dalguer, L. A.; Day, S. M.

    2006-12-01

    Accuracy in finite difference (FD) solutions to spontaneous rupture problems is controlled principally by the scheme used to represent the fault discontinuity, and not by the grid geometry used to represent the continuum. We have numerically tested three fault representation methods, the Thick Fault (TF) proposed by Madariaga et al (1998), the Stress Glut (SG) described by Andrews (1999), and the Staggered-Grid Split-Node (SGSN) methods proposed by Dalguer and Day (2006), each implemented in a the fourth-order velocity-stress staggered-grid (VSSG) FD scheme. The TF and the SG methods approximate the discontinuity through inelastic increments to stress components ("inelastic-zone" schemes) at a set of stress grid points taken to lie on the fault plane. With this type of scheme, the fault surface is indistinguishable from an inelastic zone with a thickness given by a spatial step dx for the SG, and 2dx for the TF model. The SGSN method uses the traction-at-split-node (TSN) approach adapted to the VSSG FD. This method represents the fault discontinuity by explicitly incorporating discontinuity terms at velocity nodes in the grid, with interactions between the "split nodes" occurring exclusively through the tractions (frictional resistance) acting between them. These tractions in turn are controlled by the jump conditions and a friction law. Our 3D tests problem solutions show that the inelastic-zone TF and SG methods show much poorer performance than does the SGSN formulation. The SG inelastic-zone method achieved solutions that are qualitatively meaningful and quantitatively reliable to within a few percent. The TF inelastic-zone method did not achieve qualitatively agreement with the reference solutions to the 3D test problem, and proved to be sufficiently computationally inefficient that it was not feasible to explore convergence quantitatively. The SGSN method gives very accurate solutions, and is also very efficient. Reliable solution of the rupture time is reached with a median resolution of the cohesive zone of only ~2 grid points, and efficiency is competitive with the Boundary Integral (BI) method. The results presented here demonstrate that appropriate fault representation in a numerical scheme is crucial to reduce uncertainties in numerical simulations of earthquake source dynamics and ground motion, and therefore important to improving our understanding of earthquake physics in general.

  3. Investigation of brachial plexus traction lesions by peripheral and spinal somatosensory evoked potentials.

    PubMed Central

    Jones, S J

    1979-01-01

    Peripheral, spinal and cortical somatosensory evoked potentials were recorded in 26 patients with unilateral traction injuries of the brachial plexus ganglia. Of 10 cases explored surgically the recordings correctly anticipated the major site of the lesion in eight. PMID:422958

  4. Etude de l'influence de la temperature et de l'humidite sur les proprietes mecaniques en traction des fibres de chanvre et de coco

    NASA Astrophysics Data System (ADS)

    Ho Thi, Thu Nga

    L'objectif de cette etude fut d'etablir l'effet de l'humidite et de la temperature sur la resistance en traction et le module elastique des fibres de chanvre et de coco. Deux etudes ont ete realisees afin d'atteindre cet objectif. La premiere vise l'absorption de l'humidite dans ces fibres en exposition dans l'air (de 0%RH a 80%RH) ainsi que l'absorption de l'eau dans ces fibres immergees dans l'eau aux differentes temperatures. La deuxieme consiste a mesurer la resistance en traction et le module elastique de ces fibres sous differentes conditions d'humidite et de temperature. En basant sur les resultats experimentaux obtenus, les methodes semi empiriques et de reseaux de neurones ont ete utilisees pour but de predire les proprietes en traction (resistance et module d'elasticite) des fibres de chanvre et de coco sous l'influence de l'humidite et de la temperature.

  5. Traction test of temporary dental cements

    PubMed Central

    Millan-Martínez, Diego; Fons-Font, Antonio; Agustín-Panadero, Rubén; Fernández-Estevan, Lucía

    2017-01-01

    Background Classic self-curing temporary cements obstruct the translucence of provisional restorations. New dual-cure esthetic temporary cements need investigation and comparison with classic cements to ensure that they are equally retentive and provide adequate translucence. The objective is to analyze by means of traction testing in a in vitro study the retention of five temporary cements. Material and Methods Ten molars were prepared and ten provisional resin restorations were fabricated using CAD-CAM technology (n=10). Five temporary cements were selected: self-curing temporary cements, Dycal (D), Temp Bond (TB), Temp Bond Non Eugenol (TBNE); dual-curing esthetic cements Temp Bond Clear (TBC) and Telio CS link (TE). Each sample underwent traction testing, both with thermocycling (190 cycles at 5-55º) and without thermocycling. Results TE and TBC obtained the highest traction resistance values. Thermocycling reduced the resistance of all cements except TBC. Conclusions The dual-cure esthetic cements tested provided optimum outcomes for bonding provisional restorations. Key words:Temporary dental cements, cements resistance. PMID:28469824

  6. Demagnetization monitoring and life extending control for permanent magnet-driven traction systems

    NASA Astrophysics Data System (ADS)

    Niu, Gang; Liu, Senyi

    2018-03-01

    This paper presents a novel scheme of demagnetization monitoring and life extending control for traction systems driven by permanent magnet synchronous motors (PMSMs). Firstly, the offline training is carried to evaluate fatigue damage of insulated gate bipolar transistors (IGBTs) under different flux loss based on first-principle modeling. Then an optimal control law can be extracted by turning down the power distribution factor of the demagnetizing PMSM until all damages of IGBTs turn to balance. Next, the similarity-based empirical modeling is employed to online estimate remaining flux of PMSMs, which is used to update the power distribution factor by referring the optimal control law for the health-oriented autonomous control. The proposed strategy can be demonstrated by a case study of traction drive system coupled with dual-PMSMs. Compared with traditional control strategy, the results show that the novel scheme can not only guarantee traction performance but also extend remaining useful life (RUL) of the system after suffering demagnetization fault.

  7. Some effects of grooved runway configurations on aircraft tire braking traction under flooded runway conditions

    NASA Technical Reports Server (NTRS)

    Byrdsong, T. A.

    1973-01-01

    An experimental investigation was conducted to study the effect of grooved runway configurations on aircraft tire braking traction on flooded runway surfaces. The investigation was performed, utilizing size 49 x 17, type VII, aircraft tires with an inflation pressure of 170 lb per square inch at ground speeds up to approximately 120 knots. The results of this investigation indicate that when the runway is flooded, grooved surfaces provide better braking traction than an ungrooved surface and, in general, the level of braking traction was found to improve as the tire bearing pressure was increased because of an increase in the groove area of either the surface or the tire tread. Rounding the groove edges tended to degrade the tire braking capability from that developed on the same groove configuration with sharp edges. Results also indicate that braking friction coefficients for the test tires and runway surfaces decreased as ground speed was increased because of the hydroplaning effects.

  8. Force transmission in migrating cells

    PubMed Central

    Sauser, Roger; Ambrosi, Davide; Meister, Jean-Jacques; Verkhovsky, Alexander B.

    2010-01-01

    During cell migration, forces generated by the actin cytoskeleton are transmitted through adhesion complexes to the substrate. To investigate the mechanism of force generation and transmission, we analyzed the relationship between actin network velocity and traction forces at the substrate in a model system of persistently migrating fish epidermal keratocytes. Front and lateral sides of the cell exhibited much stronger coupling between actin motion and traction forces than the trailing cell body. Further analysis of the traction–velocity relationship suggested that the force transmission mechanisms were different in different cell regions: at the front, traction was generated by a gripping of the actin network to the substrate, whereas at the sides and back, it was produced by the network’s slipping over the substrate. Treatment with inhibitors of the actin–myosin system demonstrated that the cell body translocation could be powered by either of the two different processes, actomyosin contraction or actin assembly, with the former associated with significantly larger traction forces than the latter. PMID:20100912

  9. A Sticky Situation.

    PubMed

    Weng, Christina Y; Khimani, Karima S; Foroozan, Rod; Gospe, Sidney M; Bhatti, M Tariq

    2018-04-26

    An 81-year-old man with bilateral progressively blurry vision and optic disc swelling was referred for evaluation. Examination and ancillary testing confirmed a diagnosis of bilateral vitreopapillary traction (VPT) accompanied by unilateral tractional retinoschisis in the right eye. Pars plana vitrectomy was performed to release the traction in both eyes. Visual acuity improved in the right eye and stabilized in the left eye. Retinoschisis in the right eye resolved. The visual field improved in both eyes, although the left eye demonstrated a persistent hemifield defect likely attributable to a prior optic neuropathy. Distinguishing VPT optic neuropathy (VPTON) from nonarteritic anterior ischemic optic neuropathy (NAION) is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Simulation of Trolleybus Traction Induction Drive With Supercapacitor Energy Storage System

    NASA Astrophysics Data System (ADS)

    Brazis, V.; Latkovskis, L.; Grigans, L.

    2010-01-01

    The article considers the possibilities of saving the regenerative braking energy in Škoda 24Tr type trolleybuses by installing the onboard supercapacitor energy storage system (ESS) and improving its performance with automated switching to the autonomous traction mode. Proposed is an ESS control system with constant DC bus voltage in the supercapacitor charging mode and supercapacitor current proportional to the AC drive current in the discharging mode. The authors investigate stability of the trolleybus ESS control system operating together with AC traction drive in various overhead voltage failure modes. The co-simulation of ESS operation was done by Matlab/Simulink AC drive and PSIM ESS continuous models.

  11. Can ESD Reach the Year 2020?

    ERIC Educational Resources Information Center

    Lenglet, Frans

    2014-01-01

    In order to have long-term impact ESD concepts, practices and policies should move into societal, policy and research arenas with high visibility and traction. In the process of going "transboundary", the ESD label may fade but the practice and organization of social and collaborative learning may gain.

  12. Can Studying Adolescents' Thinking Amplify High-Leverage Social Studies Teaching Practice? Challenges of Synthesizing Pedagogies of Investigation and Enactment in School-Institutional Contexts

    ERIC Educational Resources Information Center

    Meuwissen, Kevin W.; Thomas, Andrew L.

    2016-01-01

    The notion that teacher education should emphasize high-leverage practice, which is research based, represents the complexity of the subject matter, bolsters teachers' understanding of student learning, is adaptable to different curricular circumstances, and can be mastered with regular use, has traction in scholarship. Nevertheless, how teacher…

  13. Prediction of traction forces of motile cells.

    PubMed

    Roux, Clément; Duperray, Alain; Laurent, Valérie M; Michel, Richard; Peschetola, Valentina; Verdier, Claude; Étienne, Jocelyn

    2016-10-06

    When crawling on a flat substrate, living cells exert forces on it via adhesive contacts, enabling them to build up tension within their cytoskeleton and to change shape. The measurement of these forces has been made possible by traction force microscopy (TFM), a technique which has allowed us to obtain time-resolved traction force maps during cell migration. This cell 'footprint' is, however, not sufficient to understand the details of the mechanics of migration, that is how cytoskeletal elements (respectively, adhesion complexes) are put under tension and reinforce or deform (respectively, mature and/or unbind) as a result. In a recent paper, we have validated a rheological model of actomyosin linking tension, deformation and myosin activity. Here, we complement this model with tentative models of the mechanics of adhesion and explore how closely these models can predict the traction forces that we recover from experimental measurements during cell migration. The resulting mathematical problem is a PDE set on the experimentally observed domain, which we solve using a finite-element approach. The four parameters of the model can then be adjusted by comparison with experimental results on a single frame of an experiment, and then used to test the predictive power of the model for following frames and other experiments. It is found that the basic pattern of traction forces is robustly predicted by the model and fixed parameters as a function of current geometry only.

  14. The effects of infrared laser therapy and weightbath traction hydrotherapy as components of complex physical treatment in disorders of the lumbar spine: a controlled pilot study with follow-up

    NASA Astrophysics Data System (ADS)

    Oláh, Csaba; Oláh, Mihály; Demeter, Béla; Jancsó, Zoltán; Páll, Valéria; Bender, Tamás

    2010-02-01

    Introduction: The therapeutic modalities available for the conservative management of chronic lumbar pain included infrared laser therapy and underwater traction, which usefulness is not universally acknowledged. This study was intended to ascertain any beneficial impact of infrared laser therapy and weightbath treatment on the clinical parameters and quality of life of patients with lumbar discopathy. Material and methods: The study population comprised 54 randomised subjects. I. group of 18 patents received only infrared laser therapy to lumbar region and painful Valley points. II. group of 18 subjects each received underwater traction therapy of lumbar spine with add-on McKenzie exercise and iontophoresis. The remaining III. group treated with exercise and iontophoresis, served as control. VAS, Oswestry index, SF36 scores, range of motion, neurological findings and thermography were monitored to appraise therapeutic afficacy in lumbar discopathy. A CT or MRI scan was done at baseline and after 3 months follow-up. Result:Infrared laser therapy and underwater traction for discopathy achieved significant improvement of all study parameters, which was evident 3 months later. Among the controls, significant improvement of only a single parameter was seen in patients with lumbar discopathy. Conclusions: Infrared laser therapy and underwater traction treatment effectively mitigate pain, muscle spasms, enhance joint flexibility, and improve the quality of life of patients with lumbar discopathy.

  15. Novel Transverse Flux Machine for Vehicle Traction Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Z.; Ahmed, A.; Husain, I.

    2015-04-02

    A novel transverse flux machine topology for electric vehicle traction applications using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to the Halbach array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite-element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from finite element analysis (FEA) show that the motor achievedmore » comparable torque density to conventional rare-earth permanent magnet (PM) machines. This machine is a viable candidate for direct-drive applications with low cost and high torque density.« less

  16. Developments in new aircraft tire tread materials. [fatigue life of elastomeric materials

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; Mccarty, J. L.; Riccitiello, S. R.; Golub, M. A.

    1976-01-01

    Comparative laboratory and field tests were conducted on experimental and state-of-the-art aircraft tire tread materials in a program aimed at seeking new elastomeric materials which would provide improved aircraft tire tread wear, traction, and blowout resistance in the interests of operational safety and economy. The experimental stock was formulated of natural rubber and amorphous vinyl polybutadiene to provide high thermal-oxidative resistance, a characteristic pursued on the premise that thermal oxidation is involved both in the normal abrasion or wear of tire treads and probably in the chain of events leading to blowout failures. Results from the tests demonstrate that the experimental stock provided better heat buildup (hysteresis) and fatigue properties, at least equal wet and dry traction, and greater wear resistance than the state-of-the-art stock.

  17. FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Susan A.

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  18. Net shape processing of alnico magnets by additive manufacturing

    DOE PAGES

    White, Emma Marie Hamilton; Kassen, Aaron Gregory; Simsek, Emrah; ...

    2017-06-07

    Alternatives to rare earth permanent magnets, such as alnico, will reduce supply instability, increase sustainability, and could decrease the cost of permanent magnets, especially for high temperature applications, such as traction drive motors. Alnico magnets with moderate coercivity, high remanence, and relatively high energy product are conventionally processed by directional solidification and (significant) final machining, contributing to increased costs and additional material waste. Additive manufacturing (AM) is developing as a cost effective method to build net-shape three-dimensional parts with minimal final machining and properties comparable to wrought parts. This work describes initial studies of net-shape fabrication of alnico magnets bymore » AM using a laser engineered net shaping (LENS) system. High pressure gas atomized (HPGA) pre-alloyed powders of two different modified alnico “8” compositions, with high purity and sphericity, were built into cylinders using the LENS process, followed by heat treatment. The magnetic properties showed improvement over their cast and sintered counterparts. The resulting alnico permanent magnets were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and hysteresisgraph measurements. Furthermore, these results display the potential for net-shape processing of alnico permanent magnets for use in next generation traction drive motors and other applications requiring high temperatures and/or complex engineered part geometries.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Emma Marie Hamilton; Kassen, Aaron Gregory; Simsek, Emrah

    Alternatives to rare earth permanent magnets, such as alnico, will reduce supply instability, increase sustainability, and could decrease the cost of permanent magnets, especially for high temperature applications, such as traction drive motors. Alnico magnets with moderate coercivity, high remanence, and relatively high energy product are conventionally processed by directional solidification and (significant) final machining, contributing to increased costs and additional material waste. Additive manufacturing (AM) is developing as a cost effective method to build net-shape three-dimensional parts with minimal final machining and properties comparable to wrought parts. This work describes initial studies of net-shape fabrication of alnico magnets bymore » AM using a laser engineered net shaping (LENS) system. High pressure gas atomized (HPGA) pre-alloyed powders of two different modified alnico “8” compositions, with high purity and sphericity, were built into cylinders using the LENS process, followed by heat treatment. The magnetic properties showed improvement over their cast and sintered counterparts. The resulting alnico permanent magnets were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and hysteresisgraph measurements. Furthermore, these results display the potential for net-shape processing of alnico permanent magnets for use in next generation traction drive motors and other applications requiring high temperatures and/or complex engineered part geometries.« less

  20. Multibody dynamics simulation of an all-wheel-drive motorcycle for handling and energy efficiency investigations

    NASA Astrophysics Data System (ADS)

    Griffin, J. W.; Popov, A. A.

    2018-07-01

    It is now possible, through electrical, hydraulic or mechanical means, to power the front wheel of a motorcycle. The aim of this is often to improve performance in limit-handling scenarios including off-road low-traction conditions and on-road high-speed cornering. Following on from research into active torque distribution in 4-wheeled vehicles, the possibility exists for efficiency improvements to be realised by reducing the total amount of energy dissipated as slip at the wheel-road contact. This paper presents the results of an investigation into the effect that varying the torque distribution ratio has on the energy consumption of the two-wheeled vehicle. A 13-degree of freedom multibody model was created, which includes the effects of suspension, aerodynamics and gyroscopic bodies. SimMechanics, from the MathWorks?, is used for automatic generation of equations of motion and time-domain simulation, in conjunction with MATLAB and Simulink. A simple driver model is used to control the speed and yaw rate of the motorcycle. The handling characteristics of the motorcycle are quantitatively analysed, and the impact of torque distribution on energy consumption is considered during straight line and cornering situations. The investigation has shown that only a small improvement in efficiency can be made by transferring a portion of the drive torque to the front wheel. Tyre longevity could be improved by reduced slip energy dissipation.

  1. 21 CFR 882.5960 - Skull tongs for traction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Skull tongs for traction. 882.5960 Section 882.5960 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... cervical spine injury (e.g., fracture or dislocation). The device is caliper shaped with tips that...

  2. Investigation of fault modes in permanent magnet synchronous machines for traction applications

    NASA Astrophysics Data System (ADS)

    Choi, Gilsu

    Over the past few decades, electric motor drives have been more widely adopted to power the transportation sector to reduce our dependence on foreign oil and carbon emissions. Permanent magnet synchronous machines (PMSMs) are popular in many applications in the aerospace and automotive industries that require high power density and high efficiency. However, the presence of magnets that cannot be turned off in the event of a fault has always been an issue that hinders adoption of PMSMs in these demanding applications. This work investigates the design and analysis of PMSMs for automotive traction applications with particular emphasis on fault-mode operation caused by faults appearing at the terminals of the machine. New models and analytical techniques are introduced for evaluating the steady-state and dynamic response of PMSM drives to various fault conditions. Attention is focused on modeling the PMSM drive including nonlinear magnetic behavior under several different fault conditions, evaluating the risks of irreversible demagnetization caused by the large fault currents, as well as developing fault mitigation techniques in terms of both the fault currents and demagnetization risks. Of the major classes of machine terminal faults that can occur in PMSMs, short-circuit (SC) faults produce much more dangerous fault currents than open-circuit faults. The impact of different PMSM topologies and parameters on their responses to symmetrical and asymmetrical short-circuit (SSC & ASC) faults has been investigated. A detailed investigation on both the SSC and ASC faults is presented including both closed-form and numerical analysis. The demagnetization characteristics caused by high fault-mode stator currents (i.e., armature reaction) for different types of PMSMs are investigated. A thorough analysis and comparison of the relative demagnetization vulnerability for different types of PMSMs is presented. This analysis includes design guidelines and recommendations for minimizing the demagnetization risks while examining corresponding trade-offs. Two PM machines have been tested to validate the predicted fault currents and braking torque as well as demagnetization risks in PMSM drives. The generality and scalability of key results have also been demonstrated by analyzing several PM machines with a variety of stator, rotor, and winding configurations for various power ratings.

  3. Avoiding the Pitfalls of Virtual Schooling

    ERIC Educational Resources Information Center

    Schachter, Ron

    2012-01-01

    Virtual school programs--especially online high school courses--are gaining traction in school districts around the country. While offering online courses was once the exclusive province of large state, nonprofit and for-profit organizations and companies, districts and even individual schools are now starting virtual schools of their own. Not…

  4. ePortfolios Meet Social Software

    ERIC Educational Resources Information Center

    Waters, John K.

    2007-01-01

    Although a seemingly good idea, electronic portfolios have to date failed to gain significant traction in higher education. Institutions with ePortfolio implementations routinely report high numbers of accounts on their campuses, but few believe that those numbers are a meaningful reflection of actual usage. Change is in the air for the…

  5. Limitations of Experiments in Education Research

    ERIC Educational Resources Information Center

    Schanzenbach, Diane Whitmore

    2012-01-01

    Research based on randomized experiments (along with high-quality quasi-experiments) has gained traction in education circles in recent years. There is little doubt this has been driven in large part by the shift in research funding strategy by the Department of Education's Institute of Education Sciences under Grover Whitehurst's lead, described…

  6. A case of severe and rigid congenital thoracolumbar lordoscoliosis with diastematomyelia presenting with type 2 respiratory failure: managed by staged correction with controlled axial traction.

    PubMed

    Kanagaraju, Vijayanth; Chhabra, H S; Srivastava, Abhishek; Mahajan, Rajat; Kaul, Rahul; Bhatia, Pallav; Tandon, Vikas; Nanda, Ankur; Sangondimath, Gururaj; Patel, Nishit

    2016-10-01

    Congenital lordoscoliosis is an uncommon pathology and its management poses formidable challenge especially in the presence of type 2 respiratory failure and intraspinal anomalies. In such patients standard management protocols are not applicable and may require multistage procedure to minimize risk and optimize results. A 15-year-old girl presented in our hospital emergency services with severe breathing difficulty. She had a severe and rapidly progressing deformity in her back, noted since 6 years of age, associated with severe respiratory distress requiring oxygen and BiPAP support. She was diagnosed to have a severe and rigid congenital right thoracolumbar lordoscoliosis (coronal Cobb's angle: 105° and thoracic lordosis -10°) with type 1 split cord malformation with bony septum extending from T11 to L3. This leads to presentation of restrictive lung disease with type 2 respiratory failure. As her lung condition did not allow for any major procedure, we did a staged procedure rather than executing in a single stage. Controlled axial traction by halogravity was applied initially followed by halo-femoral traction. Four weeks later, this was replaced by halo-pelvic distraction device after a posterior release procedure with asymmetric pedicle substraction osteotomies at T7 and T10. Halo-pelvic distraction continued for 4 more weeks to optimize and correct the deformity. Subsequently definitive posterior stabilization and fusion was done. The detrimental effect of diastematomyelia resection in such cases is clearly evident from literature, so it was left unresected. A good scoliotic correction with improved respiratory function was achieved. Three years follow-up showed no loss of deformity correction, no evidence of pseudarthrosis and a good clinical outcome with reasonably balanced spine. The management of severe and rigid congenital lordoscoliotic deformities with intraspinal anomalies is challenging. Progressive reduction in respiratory volume in untreated cases can lead to acute respiratory failure. Such patients have a high rate of intraoperative and postoperative morbidity and mortality. Hence a staged procedure is recommended. Initially a less invasive procedure like halo traction helps to improve their respiratory function with simultaneous correction of the deformity, while allowing for monitoring of neurological deficit. Subsequently spinal osteotomies and combined halo traction helps further improve the correction, following which definitive instrumented fusion can be done.

  7. High-resolution imaging of cellular processes across textured surfaces using an indexed-matched elastomer.

    PubMed

    Ravasio, Andrea; Vaishnavi, Sree; Ladoux, Benoit; Viasnoff, Virgile

    2015-03-01

    Understanding and controlling how cells interact with the microenvironment has emerged as a prominent field in bioengineering, stem cell research and in the development of the next generation of in vitro assays as well as organs on a chip. Changing the local rheology or the nanotextured surface of substrates has proved an efficient approach to improve cell lineage differentiation, to control cell migration properties and to understand environmental sensing processes. However, introducing substrate surface textures often alters the ability to image cells with high precision, compromising our understanding of molecular mechanisms at stake in environmental sensing. In this paper, we demonstrate how nano/microstructured surfaces can be molded from an elastomeric material with a refractive index matched to the cell culture medium. Once made biocompatible, contrast imaging (differential interference contrast, phase contrast) and high-resolution fluorescence imaging of subcellular structures can be implemented through the textured surface using an inverted microscope. Simultaneous traction force measurements by micropost deflection were also performed, demonstrating the potential of our approach to study cell-environment interactions, sensing processes and cellular force generation with unprecedented resolution. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Temperature control of power semiconductor devices in traction applications

    NASA Astrophysics Data System (ADS)

    Pugachev, A. A.; Strekalov, N. N.

    2017-02-01

    The peculiarity of thermal management of traction frequency converters of a railway rolling stock is highlighted. The topology and the operation principle of the automatic temperature control system of power semiconductor modules of the traction frequency converter are designed and discussed. The features of semiconductors as an object of temperature control are considered; the equivalent circuit of thermal processes in the semiconductors is suggested, the power losses in the two-level voltage source inverters are evaluated and analyzed. The dynamic properties and characteristics of the cooling fan induction motor electric drive with the scalar control are presented. The results of simulation in Matlab are shown for the steady state of thermal processes.

  9. New model of inverting substation for DC traction with regenerative braking system

    NASA Astrophysics Data System (ADS)

    Omar, Abdul Malek Saidina; Samat, Ahmad Asri Abd; Isa, Siti Sarah Mat; Shamsuddin, Sarah Addyani; Jamaludin, Nur Fadhilah; Khyasudeen, Muhammad Farris

    2017-08-01

    This paper presents a power electronic devices application focus on modeling, analysis, and control of switching power converter in the inverting DC substation with regenerative braking system which is used to recycle the surplus regenerative power by feed it back to the main AC grid. The main objective of this research is to improve the switching power electronic converter of the railway inverting substation and optimize the maximum kinetic energy recovery together with minimum power losses from the railway braking system. Assess performance including efficiency and robustness will be evaluated in order to get the best solution for the design configuration. Research methodology included mathematical calculation, simulation, and detail analysis on modeling of switching power converter on inverting substation. The design stage separates to four main areas include rectification mode, regenerative mode, control inverter mode and filtering mode. The simulation result has shown that the regenerative inverter has a capability to accept a maximum recovery power on the regeneration mode. Total energy recovery has increase and power losses have decreases because inverter abilities to transfer the surplus energy back to the main AC supply. An Inverter controller with PWM Generator and PI Voltage Regulator has been designed to control voltage magnitude and frequency of the DC traction system.

  10. Animal Traction. Appropriate Technologies for Development. Manual M-12.

    ERIC Educational Resources Information Center

    Watson, Peter R.

    This manual is designed for use by Peace Corps volunteers and agricultural extension personnel working in animal traction development programs. While some of the information contained in the manual is specific to the extension of animal-powered agriculture in Africa, the principles covered are generally applicable wherever the method is being used…

  11. Laboratory testing of the (Japan Storage Battery) traction batteries GS E75A and GS E150H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report describes the testing of the GS E75A and GS E150H flooded lead-acid 12-volt traction batteries and compares the selected batteries to U.S.-made electric vehicle batteries. The results and conclusions of the testing are presented.

  12. A Simple Force-Motion Relation for Migrating Cells Revealed by Multipole Analysis of Traction Stress

    PubMed Central

    Tanimoto, Hirokazu; Sano, Masaki

    2014-01-01

    For biophysical understanding of cell motility, the relationship between mechanical force and cell migration must be uncovered, but it remains elusive. Since cells migrate at small scale in dissipative circumstances, the inertia force is negligible and all forces should cancel out. This implies that one must quantify the spatial pattern of the force instead of just the summation to elucidate the force-motion relation. Here, we introduced multipole analysis to quantify the traction stress dynamics of migrating cells. We measured the traction stress of Dictyostelium discoideum cells and investigated the lowest two moments, the force dipole and quadrupole moments, which reflect rotational and front-rear asymmetries of the stress field. We derived a simple force-motion relation in which cells migrate along the force dipole axis with a direction determined by the force quadrupole. Furthermore, as a complementary approach, we also investigated fine structures in the stress field that show front-rear asymmetric kinetics consistent with the multipole analysis. The tight force-motion relation enables us to predict cell migration only from the traction stress patterns. PMID:24411233

  13. The wall traction induced by flowing red blood cells in model microvessels and its potential mechanotransduction

    NASA Astrophysics Data System (ADS)

    Freund, Jonathan; Vermot, Julien

    2013-11-01

    There is evidence in early embryonic development, even well before advective oxygen transport is important, that the presence of red bloods cells per se trigger essential steps of normal vascular development. For example, showed that sequestration of blood cells early in the development of a mouse, such that the hematocrit is reduced, suppresses normal vascular network development. Vascular development also provides a model for remodeling and angiogenesis. We consider the transient stresses associated with blood cells flowing in model microvessels of comparable diameter to those at early stages of development (6 μm to 12 μm). A detailed simulation tool is used to show that passing blood cells present a significant fluctuating traction signature on the vessel wall, well above the mean stresses. This is particularly pronounced for slow flows (<= 50 μm/s) or small diameters (<= 7 μm), for which root-mean-square wall traction fluctuations can exceed their mean. These events potentially present mechanotranduction triggers that direct development or remodeling. Attenuation of such fluctuating tractions by a viscoelastic endothelial glycocalyx layer is also considered. NSF supported.

  14. Lateral traction of laminar flow between sliding pair with heterogeneous slip/no-slip surface

    NASA Astrophysics Data System (ADS)

    Wu, Zhenpeng; Zeng, Liangcai; Chen, Xiaolan; Chen, Keying; Ding, Xianzhong

    2017-11-01

    The problem of shaft axial motion which significantly affects the lubrication performance has been a common phenomenon in journal bearing systems. The existing work involved in the solution of shaft axial motion is also very rare. In this study, we choose to examine the flow between sliding pair in which regard we present a unique heterogeneous surface consisting of a slip zone and a no-slip zone. The results reveal the following points: 1) By appropriately arranging the slip zone to change the angle between the borderline and the moving direction of the upper plate, it is possible to control the direction of the lateral traction in which the liquid film acts on the upper plate. 2) Exponent of the power function of the borderline and aspect ratio of the computational domain are large or small are not conducive to increasing the effect of lateral traction. For the object of this study, the final results of the optimization are shown that the lateral traction can account for 20% of the resistance.

  15. Long term radiological features of radiation-induced lung damage.

    PubMed

    Veiga, Catarina; Landau, David; McClelland, Jamie R; Ledermann, Jonathan A; Hawkes, David; Janes, Sam M; Devaraj, Anand

    2018-02-01

    To describe the radiological findings of radiation-induced lung damage (RILD) present on CT imaging of lung cancer patients 12 months after radical chemoradiation. Baseline and 12-month CT scans of 33 patients were reviewed from a phase I/II clinical trial of isotoxic chemoradiation (IDEAL CRT). CT findings were scored in three categories derived from eleven sub-categories: (1) parenchymal change, defined as the presence of consolidation, ground-glass opacities (GGOs), traction bronchiectasis and/or reticulation; (2) lung volume reduction, identified through reduction in lung height and/or distortions in fissures, diaphragm, anterior junction line and major airways anatomy, and (3) pleural changes, either thickening and/or effusion. Six patients were excluded from the analysis due to anatomical changes caused by partial lung collapse and abscess. All remaining 27 patients had radiological evidence of lung damage. The three categories, parenchymal change, shrinkage and pleural change were present in 100%, 96% and 82% respectively. All patients had at least two categories of change present and 72% all three. GGOs, reticulation and traction bronchiectasis were present in 44%, 52% and 37% of patients. Parenchymal change, lung shrinkage and pleural change are present in a high proportion of patients and are frequently identified in RILD. GGOs, reticulation and traction bronchiectasis are common at 12 months but not diagnostic. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effects of segmental traction therapy on lumbar disc herniation in patients with acute low back pain measured by magnetic resonance imaging: A single arm clinical trial.

    PubMed

    Karimi, Noureddin; Akbarov, Parvin; Rahnama, Leila

    2017-01-01

    Low Back Pain (LBP) is considered as one of the most frequent disorders, which about 80% of adults experience in their lives. Lumbar disc herniation (LDH) is a cause for acute LBP. Among conservative treatments, traction is frequently used by clinicians to manage LBP resulting from LDH. However, there is still a lack of consensus about its efficacy. The purpose of this study was to evaluate the effects of segmental traction therapy on lumbar discs herniation, pain, lumbar range of motion (ROM), and back extensor muscles endurance in patients with acute LBP induced by LDH. Fifteen patients with acute LBP diagnosed by LDH participated in the present study. Participants undertook 15 sessions of segmental traction therapy along with conventional physiotherapy, 5 times a week for 3 weeks. Lumbar herniated mass size was measured before and after the treatment protocol using magnetic resonance imaging. Furthermore, pain, lumbar ROM and back muscle endurance were evaluated before and after the procedure using clinical outcome measures. Following the treatment protocol, herniated mass size and patients' pain were reduced significantly. In addition, lumbar flexion ROM showed a significant improvement. However, no significant change was observed for back extensor muscle endurance after the treatment procedure. The result of the present study showed segmental traction therapy might play an important role in the treatment of acute LBP stimulated by LDH.

  17. Surgical management of C-type subaxial cervical fractures using cervical traction followed by anterior cervical discectomy and fusion within 12 h after the trauma.

    PubMed

    Donnarumma, Pasquale; Bozzini, Vincenzo; Rizzi, Gaetano; Berardi, Arturo; Merlicco, Gaetano

    2017-01-01

    This was a retrospective cohort study. To report our 10-year experience of closed reduction using Crutchfield traction followed by anterior cervical discectomy and fusion within 12 h from injury for C-type subaxial cervical fractures (according to the AOSpine classification system). Clinical records and neuroimaging were retrospectively reviewed. Surgical details were provided. A total of 22 patients were included in the study. The cervical fracture was diagnosed after whole-body computed tomography scan on admission in all cases. Crutchfield traction was applied within 1-5 h from the diagnosis. Surgery consisting of anterior microdiscectomy and fusion with interbody cage and plating was performed 6-12 h after traction positioning. Most patients (19, 86%) had spinal cord injury: 7 were Frankel A (31%), 3 Frankel B (14%), 6 Frankel C (27%), 3 Frankel D (14%), and 3 Frankel E (14%). No neurologic deterioration was observed after the treatment. In 10 cases (45%), neurological symptoms improved 1 year after the trauma. Two patients (10%) died for complication related to spinal cord transition or other organ damage. Early reduction gives the best chance of recovery for patients affected by C-type subaxial cervical fracture. Rapid traction is more often successful and safer than manipulation under anesthesia. After close reduction achieving, anterior microdiscectomy, cage, and plating implant seem to be safe and effective with a low rate of complications.

  18. The effect of cervical traction combined with neural mobilization on pain and disability in cervical radiculopathy. A case report.

    PubMed

    Savva, Christos; Giakas, Giannis

    2013-10-01

    Cervical radiculopathy is the result of cervical nerve root pathology that may lead to chronic pain and disability. Although manual therapy interventions including cervical traction and neural mobilization have been advocated to decrease pain and disability caused by cervical radiculopathy, their analgesic effect has been questioned due to the low quality of research evidence. The purpose of this paper is to present the effect of cervical traction combined with neural mobilization on pain and disability in a patient experiencing cervical radiculopathy. A 52-year-old woman presented with a 2 month history of neurological cervico-brachial pain and whose presentation was consistent with cervical radiculopathy. Cervical traction and a slider neural mobilization of the medial nerve were applied simultaneously to reduce the patient's pain and disability measured at baseline and at 2 and 4 weeks using the Numeric Pain Rating Scale, the Neck Disability Index and the Patient-Specific Functional Scale. Improvements in all outcome measures were noted over a period of four weeks. Scores in all outcome measures revealed that the patient's pain had almost disappeared and that she was able to perform her household chores and job tasks without difficulties and limitations. In conclusion, the findings of this study support that the application of cervical traction combined with neural mobilization can produce significant improvements in terms of pain and disability in cervical radiculopathy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The history of modern spinal traction with particular reference to neural disorders.

    PubMed

    Shterenshis, M V

    1997-03-01

    The last 200 years of the history of spinal traction is described in the present article. The study starts at the end of the 18th century with the works of JA Venel (1789) who tried to apply the Hippocratic idea to modern surgery. Orthopedic specialists of the last century were mostly preoccupied with corsets and the method gained broader popularity when neurologists paid attention to the similar method of suspension. The Russian neurologist Osip Mochutkovsky described suspension as a method for the treatment of tabes dorsalis in an article published in the Russian magazine 'Vratch' in 1883. His works became known in Europe when JM Charcot paid attention to it and published a special short monograph on this subject in 1889. This work was translated into English (1889) and Russian (1890) and the method became popular in the treatment of tabes dorsalis and other neurological diseases. The eminent Russian neurologist VM Bekhterev proposed the combination of body suspension with cervical traction (1893). Some years later Gilles de la Tourette promoted the use of spinal traction in his neurological clinic (1897). Unfortunately neurologists worked without the cooperation of orthopedic specialists. During the first decades of the 20th century suspension was also replaced by traction in neurology. This method was used by both neurologists and orthopedic specialists but in the last decades neurologists lost their interests in it and it found greater use in traumatology and in spinal surgery where it is still in use today.

  20. A new hybrid numerical scheme for modelling elastodynamics in unbounded media with near-source heterogeneities

    NASA Astrophysics Data System (ADS)

    Hajarolasvadi, Setare; Elbanna, Ahmed E.

    2017-11-01

    The finite difference (FD) and the spectral boundary integral (SBI) methods have been used extensively to model spontaneously-propagating shear cracks in a variety of engineering and geophysical applications. In this paper, we propose a new modelling approach in which these two methods are combined through consistent exchange of boundary tractions and displacements. Benefiting from the flexibility of FD and the efficiency of SBI methods, the proposed hybrid scheme will solve a wide range of problems in a computationally efficient way. We demonstrate the validity of the approach using two examples for dynamic rupture propagation: one in the presence of a low-velocity layer and the other in which off-fault plasticity is permitted. We discuss possible potential uses of the hybrid scheme in earthquake cycle simulations as well as an exact absorbing boundary condition.

  1. Use of comparative effectiveness research in drug coverage and pricing decisions: a six-country comparison.

    PubMed

    Sorenson, Corinna

    2010-07-01

    Comparative effectiveness research (CER) has assumed an increasing role in drug coverage and, in some cases, pricing decisions in Europe, as decision-makers seek to obtain better value for money. This issue brief comparatively examines the use of CER across six countries--Denmark, England, France, Germany, the Netherlands, and Sweden. With CER gaining traction in the United States, these international experiences offer insights and potential lessons. Investing in CER can help address the current gap in publicly available, credible, up-to-date, and scientifically based comparative information on the effectiveness of drugs and other health interventions. This information can be used to base coverage and pricing decisions on evidence of value, thereby facilitating access to and public and private investment in the most beneficial new drugs and technologies. In turn, use of CER creates incentives for more efficient, high-quality health care and encourages development of innovative products that offer measurable value to patients.

  2. The Regulation of Medical Malpractice in Japan

    PubMed Central

    2008-01-01

    How Japanese legal and social institutions handle medical errors is little known outside Japan. For almost all of the 20th century, a paternalistic paradigm prevailed. Characteristics of the legal environment affecting Japanese medicine included few attorneys handling medical cases, low litigation rates, long delays, predictable damage awards, and low-cost malpractice insurance. However, transparency principles have gained traction and public concern over medical errors has intensified. Recent legal developments include courts’ adoption of a less deferential standard of informed consent; increases in the numbers of malpractice claims and of practicing attorneys; more efficient claims handling by specialist judges and speedier trials; and highly publicized criminal prosecutions of medical personnel. The health ministry is undertaking a noteworthy “model project” to enlist impartial specialists in investigation and analysis of possible iatrogenic hospital deaths to regain public trust in medicine’s capacity to assess its mistakes honestly and to improve patient safety and has proposed a nationwide peer review system based on the project’s methods. PMID:19002542

  3. [Comparison of dressings and devices to secure peripheral venous catheters in the emergency department: suitability according to patient profile].

    PubMed

    Moreno Martín, Montserrat; Villamor Ordozgoiti, Alberto; Gutiérrez Martín, Montserrat; Santiago Bosch, Mercedes; Grau Ferrer, Helena; Gamero Saavedra, Tamara

    2016-10-01

    To identify the most suitably designed dressings and devices to secure peripheral venous catheters (PVCs) in different types of patients. To evaluate the traction force the dressings could withstand and times they are able to keep the PVC in place in the emergency department. Quasi-experimental descriptive observational study with inferential statistics to compare variables. We studied the designs of devices and dressings for securing PVCs in the emergency department (Omnifix, Tegaderm, Oper Dres, Steri-strip, and stopcocks) and special adaptations devised by the authors: A (Tegaderm), A1 (Tegaderm + Steristrip), A2 (Tegaderm + Oper Dres), B (Omnifix), C (Omnifix doubled). Participants carried out 520 tests on models of human patients to simulate standard, hairy, and hairy-sweaty skin. Costs were as follows: A, € 0.15; A1, € 0.35; A2, € 0.18; B, € 0.005; C, € 0.01. The times in seconds required to apply the dressings were as follows: (A, 15; A1, 25; A2, 20; B, 20; C, 35). The dressings withstood the following traction forces in grams: lengthwise, A, 760; B, 1694; C, 1530); perpendicular (A, 785; B, 1450; C, 3290), and transversal (A, 760; A1, 1220; A2, 1510; B, 1720; C, 2255). Design C was able to withstand greater forces in the traction tests. Extra surgical tape significantly improved resistance to traction when a stopcock was used. Using a Steri-strip with the Tegaderm device increased resistance to traction, although the improvement was less than that obtained with the Omnifix. The Tegaderm plus Omnifix design was significantly more resistant to traction than the Tegaderm by itself at only a slightly higher cost; the combination design, therefore, may be more recommendable. However, our results for resistance, cost, and application time showed that the Omnifix (desing B) is the best choice for securing a PVC.

  4. [Randomized controlled trials of needle knife therapy combined with rotation traction manipulation for the treatment of cervical spondylotic radiculopathy].

    PubMed

    Zhou, Zhong-Liang; Su, Guo-Hong; Zheng, Bao-Zhu; Zuo, Yu-Zhu; Wei, Fu-Liang

    2016-09-25

    To compare the therapeutic effects between needle knife therapy combined with rotation traction manipulation and rotation traction manipulation for the treatment of cervical spondylotic radiculopathy. From November 2013 to June 2015, 80 patients with cervical spondylotic radiculopathy meeting the inclusion criteria were divided into two groups randomly:the control group in which 39 patients were treated with rotation traction manipulation, and the treatment group in which 41 patients were treated with needle knife combined with rotation traction manipulation. The patients in the control group were treated once dayly for 2 weeks, which was 1 course. The patients in the treatment group were treated with needle knife firstly once a week for 2 weeks, which was 1 course;then were treated with the same methods as the patients in the control group. The symptoms, signs score and the therapeutic effects of the two groups before and after treatment were observed. After treatment, symptoms and signs scores declined in both groups( P <0.05). The results of the treatment group were better than effects in the control group( P <0.05). In the treatment group, 19 patients got an excellent result, 16 good, 5 fair and 1 bad;while in the control group, 10 patients got an excellent result, 10 good, 16 fair and 3 bad;the results of the treatment group were better than the results of the control group( P <0.01). Needle knife combined with rotation traction manipulation is an effective method for the treatment of cervical spondylotic radiculopathy, which is better than using manipulation method simply. Needle knife therapy has follow advantages:improving local blood circulation, reducing local content of pain substance, increasing production of substances resisting pain, opening channels and collaterals, and make body reaching new static and dynamic balance on the new foundation.

  5. Hip arthroscopy. The lateral approach.

    PubMed

    Glick, J M

    2001-10-01

    The lateral approach provides an easy and safe access to the hip joint. The line from skin to the joint itself is a straight, downward drop (Fig. 18). The vital arteries and nerves are a safe distance from the portal sites. The potential problems that can arise from this procedure are from the traction applying a compression force on the branches of the pudendal nerve as they cross the ischium (Fig. 19) and traction force on the sciatic nerve. I have always maintained that traction should be treated like a tourniquet; that is, it should be applied for no more then 2 hours. [figure: see text] Furthermore, the amount of traction should not exceed 75 pounds. I use a tensiometer, but it is not mandatory because the major issue with traction is the duration of application. I have monitored the sciatic nerve using both evoke potentials and, in some cases, motor potentials in over 50 cases in the past year, and the poundage and time limits of the traction (75 pounds and 2 hours) were verified. In addition, if the fracture [figure: see text] table has a vertical post as well as a peroneal post, set the vertical post in the back of the patient, and not in the front. Flexing the hip around that post will greatly increase the traction and at the same time will place an extreme stretch on the sciatic nerve, setting up the chance of a significant sciatic nerve neuropraxia. To protect the pudendal nerve, Lyon et al suggest that the perineal post be at least 9 cm in diameter to distribute the forces in a wide area on the ischium and make sure that the pelvis is well supported so the pressure of the post is not placed directly on the this nerve. The perineal posts on most fracture tables are only 3 cm in diameter. These can be made larger by wrapping them with padding. In some fracture tables, the slats that support the lower leg can be removed, and consequently the support on the pelvis is lost. For hip arthroscopy, the slats do not have to be removed. The lateral approach provides a safe and simple way of performing hip arthroscopy. The instruments can be manipulated easily so that the entire confines of the joint can be visualized with the arthroscope and reached with operative instruments.

  6. A New Integrated Onboard Charger and Accessory Power Converter for Plug-in Electric Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Gui-Jia; Tang, Lixin

    2014-01-01

    In this paper, a new approach is presented for integrating the function of onboard battery charging into the traction drive system and accessory dc-dc converter of a plug-in electric vehicle (PEV). The idea is to utilize the segmented traction drive system of a PEV as the frond converter of the charging circuit and the transformer and high voltage converter of the 14 V accessory dc-dc converter to form a galvanically isolated onboard charger. Moreover, a control method is presented for suppressing the battery current ripple component of twice the grid frequency with the reduced dc bus capacitor in the segmentedmore » inverter. The resultant integrated charger has lower cost, weight, and volume than a standalone charger due to a substantially reduced component count. The proposed integrated charger topology was verified by modeling and experimental results on a 5.8 kW charger prototype.« less

  7. Handcuffing Institutional Research and Quality Assurance to the Student Experience: 50 Shades of Grey?

    ERIC Educational Resources Information Center

    Schofield, Mark

    2014-01-01

    Institutional Research (IR), as a concept, has been gaining traction in the UK and across the world, as evidenced by the growing number of European, African, Australasian and North American associations, communities, conferences and publications. This paper stresses the need for high-quality (Institutional) research behaviours, aligned with and…

  8. What Matters Most: Using High-Traction Instructional Strategies to Increase Student Success

    ERIC Educational Resources Information Center

    Turner, Curtis

    2016-01-01

    What matters most when it comes to increasing achievement and student success in the developmental classroom? Recent reform efforts in developmental education have brought sweeping changes in some states. New curricular pathways, redesigned courses, and a handful of new instructional delivery methodologies have been the result. Although these are…

  9. Simplified High-Power Inverter

    NASA Technical Reports Server (NTRS)

    Edwards, D. B.; Rippel, W. E.

    1984-01-01

    Solid-state inverter simplified by use of single gate-turnoff device (GTO) to commutate multiple silicon controlled rectifiers (SCR's). By eliminating conventional commutation circuitry, GTO reduces cost, size and weight. GTO commutation applicable to inverters of greater than 1-kilowatt capacity. Applications include emergency power, load leveling, drives for traction and stationary polyphase motors, and photovoltaic-power conditioning.

  10. Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices.

    PubMed

    Wu, Yunkai; Jiang, Bin; Lu, Ningyun; Yang, Hao; Zhou, Yang

    2017-03-01

    This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Determination of physical and chemical states of lubricants in concentrated contacts, part 3

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; Keller, L. E.

    1983-01-01

    Solid and liquid thin films were analyzed by infrared emission Fourier microspectrophotometry. The apparatus used is a commercial absorption instrument modified to an emission instrument, comprising a rotating polarizing device, a miniature blackbody temperature reference adjustable in temperature and radiant flux and a microscope lens with a high numerical aperture in the entrance system for increased sensitivity and resolution. Studies of lubricant behavior in a simulated ball bearing showed the alignment of the fluid molecules in the Hertzian area. Polyphenyl ether plus 1% 1,1,2-trichloroethane (TCE) required lower shear rates for the same degree of alignment than without TCE. The experiment was run with 440 C stainless steel balls coated with TiN, a chemically inert material. In both cases, the alignment was strongly influenced by the presence of TCE. The results showed (1) the dependence of alignment of fluid molecules on flow and not on adsorption at metallic surfaces, (2) phase separation between lubricant and additive under high pressure which results in two phase flow and (3) reduction in traction of torque transmitting (traction) fluids.

  12. 77 FR 4914 - Consumer Information Regulations; Fees for Use of Traction Skid Pads

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ... found at 49 CFR 575.104. To aid consumers in making an informed choice in the purchase of passenger car..., App. B. Several commercial facilities also have traction skid pads. The current fees charged for use... these tires for purchase by manufacturers. Based on NHTSA's assessment using a ``market price'' analysis...

  13. Defining Strong State Accountability Systems: How Can Better Standards Gain Greater Traction? A First Look

    ERIC Educational Resources Information Center

    Reed, Eileen; Scull, Janie; Slicker, Gerilyn; Winkler, Amber M.

    2012-01-01

    Rigorous standards and aligned assessments are vital tools for boosting education outcomes but they have little traction without strong accountability systems that attach consequences to performance. In this pilot study, Eileen Reed, Janie Scull, Gerilyn Slicker, and Amber Winkler lay out the essential features of such accountability systems,…

  14. Wet runways. [aircraft landing and directional control

    NASA Technical Reports Server (NTRS)

    Horne, W. B.

    1975-01-01

    Aircraft stopping and directional control performance on wet runways is discussed. The major elements affecting tire/ground traction developed by jet transport aircraft are identified and described in terms of atmospheric, pavement, tire, aircraft system and pilot performance factors or parameters. Research results are summarized, and means for improving or restoring tire traction/aircraft performance on wet runways are discussed.

  15. Model-based traction force microscopy reveals differential tension in cellular actin bundles.

    PubMed

    Soiné, Jérôme R D; Brand, Christoph A; Stricker, Jonathan; Oakes, Patrick W; Gardel, Margaret L; Schwarz, Ulrich S

    2015-03-01

    Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs.

  16. Maintenance of working capacity of movement mechanism of load trolley with linear traction electric drive of bridge type crane.

    NASA Astrophysics Data System (ADS)

    Goncharov, K. A.; Denisov, I. A.

    2017-10-01

    The article considers the influence of the air gap size between the linear motor elements on the stability of the traction drive of the movement mechanism of the trolley of the bridge type crane. The main factors affecting the air gap size and the causes of their occurrence are described. The technique of calculating the magnitude of air gap variation is described in relation to the general deformation of the crane metal structure. Recommendations on the need for installation of additional equipment for load trolleys of various designs are given. The optimal values of the length of the trolley base are proposed. Observance of these values ensures normal operation of the traction drive.

  17. Model-based Traction Force Microscopy Reveals Differential Tension in Cellular Actin Bundles

    PubMed Central

    Soiné, Jérôme R. D.; Brand, Christoph A.; Stricker, Jonathan; Oakes, Patrick W.; Gardel, Margaret L.; Schwarz, Ulrich S.

    2015-01-01

    Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs. PMID:25748431

  18. Concept for a Differential Lock and Traction Control Model in Automobiles

    NASA Astrophysics Data System (ADS)

    Shukul, A. K.; Hansra, S. K.

    2014-01-01

    The automobile is a complex integration of electronics and mechanical components. One of the major components is the differential which is limited due to its shortcomings. The paper proposes a concept of a cost effective differential lock and traction for passenger cars to sports utility vehicles alike, employing a parallel braking mechanism coming into action based on the relative speeds of the wheels driven by the differential. The paper highlights the employment of minimum number of components unlike the already existing systems. The system was designed numerically for the traction control and differential lock for the world's cheapest car. The paper manages to come up with all the system parameters and component costing making it a cost effective system.

  19. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Jason; Yu, Wensong; Sun, Pengwei

    2012-03-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling andmore » simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.« less

  20. Prospective study of nerve injuries associated with hip arthroscopy in the lateral position using the modified portals

    PubMed Central

    Salas, Antonio Porthos; O’Donnell, John M.

    2016-01-01

    To access the central compartment of the hip, distraction is essential in hip arthroscopy (HA); nerve injuries have long been accepted as a complication of this surgical procedure, with an incidence ranging from 0 to 46%. Only one previous article collected data prospectively, and the authors utilized a supine technique, with a modified mid-anterior portal. Our study also used prospectively collected data, from a group of 200 consecutive patients who had HA performed in the lateral position using the paratrochanteric portals. Our results were that four patients (2%) reported symptoms of neurological deficits after surgery, three patients with traction times ranging from 20 to 41 min, their neurological deficits resolved completely over a time from 6 to 9 weeks. The fourth patient who had the longest traction time of 73 min, and also greater than usual traction, his neurological deficit resolved at 12 weeks. Our hypothesis of 200 hip arthroscopies, performed in the lateral position by the modified paratrochanteric portals, the incidence of nerve injuries would be lower than 46%. We found an incidence of 2%, all affecting the perineum and genitals and all occurring in men, no differences between the age, surgery side or type of surgery performed on the patient were found to have statistical differences. Traction times with <31.5 min were related with fewer incidences of neurological symptoms. On the basis of this study, all patients with traction times below 73 min can be confidently reassured that any deficit will recover within 3 months. PMID:29632688

  1. Strategies for Proximal Femoral Nailing of Unstable Intertrochanteric Fractures: Lateral Decubitus Position or Traction Table.

    PubMed

    Sonmez, Mesut Mehmet; Camur, Savas; Erturer, Erden; Ugurlar, Meric; Kara, Adnan; Ozturk, Irfan

    2017-03-01

    The aim of this prospective randomized study was to compare the traction table and lateral decubitus position techniques in the management of unstable intertrochanteric fractures. Eighty-two patients with unstable intertrochanteric fractures between 2011 and 2013 were included in this study. All patients were treated surgically with the Proximal Femoral Nail Antirotation implant (DePuy Synthes). Patients were randomized to undergo the procedure in the lateral decubitus position (42 patients) or with the use of a traction table (40 patients). Patients whose procedure was not performed entirely with a semi-invasive method or who required the use of additional fixation materials, such as cables, were excluded from the study. The groups were compared on the basis of the setup time, surgical time, fluoroscopic exposure time, tip-to-apex distance, collodiaphyseal angle, and modified Baumgaertner criteria for radiologic reduction. The setup time, surgical time, and fluoroscopic exposure time were lower and the differences were statistically significant in the lateral decubitus group compared with the traction table group. The collodiaphyseal angles were significantly different between the groups in favor of the lateral decubitus method. The tip-to-apex distance and the classification of reduction according to the modified Baumgaertner criteria did not demonstrate a statistically significant difference between the groups. The lateral decubitus position is used for most open procedures of the hip. We found that this position facilitates exposure for the surgical treatment of unstable intertrochanteric fractures and has advantages over the traction table in terms of set up time, surgical time and fluoroscopic exposure time.

  2. Design Thinking: A Methodology towards Sustainable Problem Solving in Higher Education in South Africa

    ERIC Educational Resources Information Center

    Munyai, Keneilwe

    2016-01-01

    This short paper explores the potential contribution of design thinking methodology to the education and training system in South Africa. Design thinking is slowly gaining traction in South Africa. Design Thinking is gaining traction in South Africa. There is offered by the Hasso Plattner Institute of Design Thinking at the University of Cape Town…

  3. Design study of a continuously variable roller cone traction CVT for electric vehicles

    NASA Technical Reports Server (NTRS)

    Mccoin, D. K.; Walker, R. D.

    1980-01-01

    Continuously variable ratio transmissions (CVT) featuring cone and roller traction elements and computerized controls are studied. The CVT meets or exceeds all requirements set forth in the design criteria. Further, a scalability analysis indicates the basic concept is applicable to lower and higher power units, with upward scaling for increased power being more readily accomplished.

  4. PREDICTIVE FACTORS OF SURGICAL OUTCOMES IN VITRECTOMY FOR MYOPIC TRACTION MACULOPATHY.

    PubMed

    Hattori, Kyoko; Kataoka, Keiko; Takeuchi, Jun; Ito, Yasuki; Terasaki, Hiroko

    2017-11-07

    To assess predictive factors and surgical outcomes for myopic traction maculopathy. This retrospective observational case study enrolled 73 patients who underwent vitrectomy for myopic traction maculopathy. The 79 eyes obtained from our study sample were divided into 4 types: retinoschisis, lamellar macular hole (lamellar MH), foveal retinal detachment (FRD), and FRD + lamellar MH, or into 2 types according to the presence of FRD preoperatively. Dependent variables of interest were age, sex, pre- and postoperative best-corrected visual acuity (BCVA) at 6 months, and axial length. All the four types showed moderately strong-to-strong positive correlations with pre- and postoperative BCVA (retinochisisi: r = 0.61; lamellar MH: r = 0.62; FRD: r = 0.51; FRD + lamellar MH; r = 0.83). Preoperative BCVA was associated with postoperative BCVA (P < 0.0001), but age, axial length, and the types of preoperative foveal status were not. Eyes with FRD had significantly worse pre- and postoperative BCVA than eyes without FRD (P = 0.036 and P = 0.046, respectively). Postoperative full-thickness macular holes developed in 5.1% of cases and in all types but retinoschisis. Preoperative visual acuity and the presence of FRD should be considered for surgical indication of myopic traction maculopathy.

  5. A simple force-motion relation for migrating cells revealed by multipole analysis of traction stress.

    PubMed

    Tanimoto, Hirokazu; Sano, Masaki

    2014-01-07

    For biophysical understanding of cell motility, the relationship between mechanical force and cell migration must be uncovered, but it remains elusive. Since cells migrate at small scale in dissipative circumstances, the inertia force is negligible and all forces should cancel out. This implies that one must quantify the spatial pattern of the force instead of just the summation to elucidate the force-motion relation. Here, we introduced multipole analysis to quantify the traction stress dynamics of migrating cells. We measured the traction stress of Dictyostelium discoideum cells and investigated the lowest two moments, the force dipole and quadrupole moments, which reflect rotational and front-rear asymmetries of the stress field. We derived a simple force-motion relation in which cells migrate along the force dipole axis with a direction determined by the force quadrupole. Furthermore, as a complementary approach, we also investigated fine structures in the stress field that show front-rear asymmetric kinetics consistent with the multipole analysis. The tight force-motion relation enables us to predict cell migration only from the traction stress patterns. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Height increase, neuromuscular function, and back pain during 6 degrees head-down tilt with traction

    NASA Technical Reports Server (NTRS)

    Styf, J. R.; Ballard, R. E.; Fechner, K.; Watenpaugh, D. E.; Kahan, N. J.; Hargens, A. R.

    1997-01-01

    BACKGROUND: Spinal lengthening and back pain are commonly experienced by astronauts exposed to microgravity. METHODS: To develop a ground-based simulation for spinal adaptation to microgravity, we investigated height increase, neuromuscular function and back pain in 6 subjects all of whom underwent two forms of bed rest for 3 d. One form consisted of 6 degrees of head-down tilt (HDT) with balanced traction, while the other was horizontal bed rest (HBR). Subjects had a 2-week recovery period in between the studies. RESULTS: Total body and spinal length increased significantly more and the subjects had significantly more back pain during HDT with balanced traction compared to HBR. The distance between the lower endplate of L4 and upper endplate of S1, as measured by ultrasonography, increased significantly in both treatments to the same degree. Intramuscular pressures in the erector spinae muscles and ankle torque measurements during plantarflexion and dorsiflexion did not change significantly during either treatment. CONCLUSION: Compared to HBR, HDT with balanced traction may be a better method to simulate changes of total body and spinal lengths, as well as back pain seen in microgravity.

  7. A hemidesmosomal protein regulates actin dynamics and traction forces in motile keratinocytes

    PubMed Central

    Hiroyasu, Sho; Colburn, Zachary T.; Jones, Jonathan C. R.

    2016-01-01

    During wound healing of the skin, keratinocytes disassemble hemidesmosomes and reorganize their actin cytoskeletons in order to exert traction forces on and move directionally over the dermis. Nonetheless, the transmembrane hemidesmosome component collagen XVII (ColXVII) is found in actin-rich lamella, situated behind the lamellipodium. A set of actin bundles, along which ColXVII colocalizes with actinin4, is present at each lamella. Knockdown of either ColXVII or actinin4 not only inhibits directed migration of keratinocytes but also relieves constraints on actin bundle retrograde movement at the site of lamella, such that actin bundle movement is enhanced more than 5-fold. Moreover, whereas control keratinocytes move in a stepwise fashion over a substrate by generating alternating traction forces, of up to 1.4 kPa, at each flank of the lamellipodium, ColXVII knockdown keratinocytes fail to do so. In summary, our data indicate that ColXVII-actinin4 complexes at the lamella of a moving keratinocyte regulate actin dynamics, thereby determining the direction of cell movement.—Hiroyasu, S., Colburn, Z. T., Jones, J. C. R. A hemidesmosomal protein regulates actin dynamics and traction forces in motile keratinocytes. PMID:26936359

  8. Case studies on local orthodontic traction by minis-implants before implant rehabilitation

    PubMed Central

    Shen, Pei; Xu, Wei-Feng; Ma, Zhi-Gui; Zhang, Shan-Yong; Zhang, Ying

    2015-01-01

    Objective: Dentition defect with malocclusion is a common occurrence in the clinical work. To restore proper occlusion, preprosthetic corrections of these malposed teeth are often indispensible. The use of orthodontic mini-implants as temporary anchorage devices provides a plausible treatment for those patients with local problems. The aim of this study was to present two cases using local orthodontic traction in conjunction with mini-implants to provide necessary conditions for implant rehabilitation in three dimensional space. Clinical consideration: Two cases who had dentition defect with malocclusion were included in the present study. As both of them rejected crown reduction or orthodontics treatment, local orthodontic traction by mini-implants was used to restore normal space for implant rehabilitation in three dimensions. Careful mechanics analysis and personalized mechanical device were under consideration. The results showed that the biological responses of the corrected teeth and the surrounding bony structures appeared normal and acceptable. Moreover the patients achieved an ideal local occlusion with a short treatment time. Conclusion: In conclusion local orthodontic traction by mini-implants was a less-invasive and short-term method with favorable effects and less necessary occlusal adjustments. PMID:26221389

  9. The Diagnostic Value of the Vacuum Phenomenon during Hip Arthroscopy

    PubMed Central

    Rath, Ehud; Gortzak, Yair; Schwarzkopf, Ran; Benkovich, Vadim; Cohen, Eugene; Atar, Dan

    2011-01-01

    The diagnostic value of the vacuum phenomenon between the femoral head and the acetabulum, and time frame of its occurrence after application of traction is an important clinical question. The resulting arthrogram may outline the shape, location, and extent of cartilage lesions prior to arthroscopy of the hip joint. The presence, duration, and diagnostic information of the vacuum phenomenon were evaluated in 24 hips that underwent arthroscopy. The operative diagnosis was compared to the results of imaging studies and to findings obtained during a traction trial prior to arthroscopy. Indications for arthroscopy included avascular necrosis, labral tears, loose bodies, osteoarthrosis, and intractable hip pain. In 22 hips the vacuum phenomenon developed within 30 seconds after application of traction. The most important data obtained from the vacuum phenomenon was the location and extent of femoral head articular cartilage detachment and the presence of nonossified loose bodies. The vacuum phenomenon did not reveal labral or acetabular cartilage pathology in any of these patients. The vacuum phenomenon obtained during the trial of traction can add valuable information prior to hip arthroscopy. Femoral head articular cartilage detachment was best documented by this method. The hip arthroscopist should utilize this diagnostic window routinely prior to hip arthroscopy. PMID:24977068

  10. The Diagnostic Value of the Vacuum Phenomenon during Hip Arthroscopy.

    PubMed

    Rath, Ehud; Gortzak, Yair; Schwarzkopf, Ran; Benkovich, Vadim; Cohen, Eugene; Atar, Dan

    2011-01-01

    The diagnostic value of the vacuum phenomenon between the femoral head and the acetabulum, and time frame of its occurrence after application of traction is an important clinical question. The resulting arthrogram may outline the shape, location, and extent of cartilage lesions prior to arthroscopy of the hip joint. The presence, duration, and diagnostic information of the vacuum phenomenon were evaluated in 24 hips that underwent arthroscopy. The operative diagnosis was compared to the results of imaging studies and to findings obtained during a traction trial prior to arthroscopy. Indications for arthroscopy included avascular necrosis, labral tears, loose bodies, osteoarthrosis, and intractable hip pain. In 22 hips the vacuum phenomenon developed within 30 seconds after application of traction. The most important data obtained from the vacuum phenomenon was the location and extent of femoral head articular cartilage detachment and the presence of nonossified loose bodies. The vacuum phenomenon did not reveal labral or acetabular cartilage pathology in any of these patients. The vacuum phenomenon obtained during the trial of traction can add valuable information prior to hip arthroscopy. Femoral head articular cartilage detachment was best documented by this method. The hip arthroscopist should utilize this diagnostic window routinely prior to hip arthroscopy.

  11. Study on launch scheme of space-net capturing system.

    PubMed

    Gao, Qingyu; Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang

    2017-01-01

    With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme.

  12. Study on launch scheme of space-net capturing system

    PubMed Central

    Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang

    2017-01-01

    With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme. PMID:28877187

  13. Effects of pole flux distribution in a homopolar linear synchronous machine

    NASA Astrophysics Data System (ADS)

    Balchin, M. J.; Eastham, J. F.; Coles, P. C.

    1994-05-01

    Linear forms of synchronous electrical machine are at present being considered as the propulsion means in high-speed, magnetically levitated (Maglev) ground transportation systems. A homopolar form of machine is considered in which the primary member, which carries both ac and dc windings, is supported on the vehicle. Test results and theoretical predictions are presented for a design of machine intended for driving a 100 passenger vehicle at a top speed of 400 km/h. The layout of the dc magnetic circuit is examined to locate the best position for the dc winding from the point of view of minimum core weight. Measurements of flux build-up under the machine at different operating speeds are given for two types of secondary pole: solid and laminated. The solid pole results, which are confirmed theoretically, show that this form of construction is impractical for high-speed drives. Measured motoring characteristics are presented for a short length of machine which simulates conditions at the leading and trailing ends of the full-sized machine. Combination of the results with those from a cylindrical version of the machine make it possible to infer the performance of the full-sized traction machine. This gives 0.8 pf and 0.9 efficiency at 300 km/h, which is much better than the reported performance of a comparable linear induction motor (0.52 pf and 0.82 efficiency). It is therefore concluded that in any projected high-speed Maglev systems, a linear synchronous machine should be the first choice as the propulsion means.

  14. Winding Schemes for Wide Constant Power Range of Double Stator Transverse Flux Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Tausif; Hassan, Iftekhar; Sozer, Yilmaz

    2015-05-01

    Different ring winding schemes for double sided transverse flux machines are investigated in this paper for wide speed operation. The windings under investigation are based on two inverters used in parallel. At higher power applications this arrangement improves the drive efficiency. The new winding structure through manipulation of the end connection splits individual sets into two and connects the partitioned turns from individual stator sets in series. This configuration offers the flexibility of torque profiling and a greater flux weakening region. At low speeds and low torque only one winding set is capable of providing the required torque thus providingmore » greater fault tolerance. At higher speeds one set is dedicated to torque production and the other for flux control. The proposed method improves the machine efficiency and allows better flux weakening which is desirable for traction applications.« less

  15. Moving from functions to benefits without dollars: Using non-monetary indicators for prioritizing wetland restoration with a flood risk reduction example

    EPA Science Inventory

    Wetlands functional assessments have gained traction as a means to compare wetlands on their ability to produce benefits for people. However, such assessments stop short of actually connecting wetland benefits to people. This means a wetland may be highly productive, yet have a c...

  16. Comparison of shear wave velocity measurements assessed with two different ultrasound systems in an ex-vivo tendon strain phantom.

    PubMed

    Rosskopf, Andrea B; Bachmann, Elias; Snedeker, Jess G; Pfirrmann, Christian W A; Buck, Florian M

    2016-11-01

    The purpose of this study is to compare the reliability of SW velocity measurements of two different ultrasound systems and their correlation with the tangent traction modulus in a non-static tendon strain model. A bovine tendon was fixed in a custom-made stretching device. Force was applied increasing from 0 up to 18 Newton. During each strain state the tangent traction modulus was determined by the stretcher device, and SW velocity (m/s) measurements using a Siemens S3000 and a Supersonic Aixplorer US machine were done for shear modulus (kPa) calculation. A strong significant positive correlation was found between SW velocity assessed by the two ultrasound systems and the tangent traction modulus (r = 0.827-0.954, p < 0.001), yet all SW velocity-based calculations underestimated the reference tissue tangent modulus. Mean difference of SW velocities with the S3000 was 0.44 ± 0.3 m/s (p = 0.002) and with the Aixplorer 0.25 ± 0.3 m/s (p = 0.034). Mean difference of SW velocity between the two US-systems was 0.37 ± 0.3 m/s (p = 0.012). In conclusion, SW velocities are highly dependent on mechanical forces in the tendon tissue, but for controlled mechanical loads appear to yield reproducible and comparable measurements using different US systems.

  17. [Caesarean section with vacuum extraction of the head].

    PubMed

    Dimitrov, A; Pavlova, E; Krŭsteva, K; Nikolov, A

    2008-01-01

    The aim of the study is to investigate the benefits and the limits in using the soft cup vacuum extractor on the fetal scalp during the caesarean section. The prospective study includes 19 cases of caesarean sections (group A), with vacuum assisted delivery using the soft cup vacuum extractor on the fetal scalp (diameter 6 cm) and 25 cases (group B) of caesarean sections with usual, manual extraction of the head assisted by fundal compression. All of the patients had undergone a planned caesarean section on term in absence of uterine activity and preserved amniotic membranes. Our results doesn't show differences in the Apgar score on the first and 5-th minute in the newborns of the two groups. The duration of the scalp traction was significantly shorter (30 +/- 4 sec) in comparison to the classical manual extraction (53 +/- 21 sec). The mean duration for applying the vacuum cup was 10 sec and 25 sec for tractions. The total blood loose and total duration of the caesarean sections were shorter than in the control group. The applied traction with the vacuum cup was sufficient for head extraction and there was no need for additional fundal compression. In conclusion we consider that the extraction of the fetal head in high position in caesarean section with vacuum extractor is an easy, non traumatic and rapid method which can put away the need of rough and prolonged fundal compression and its consequences.

  18. Investigating Some Technical Issues on Cohesive Zone Modeling of Fracture

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2011-01-01

    This study investigates some technical issues related to the use of cohesive zone models (CZMs) in modeling fracture processes. These issues include: why cohesive laws of different shapes can produce similar fracture predictions; under what conditions CZM predictions have a high degree of agreement with linear elastic fracture mechanics (LEFM) analysis results; when the shape of cohesive laws becomes important in the fracture predictions; and why the opening profile along the cohesive zone length needs to be accurately predicted. Two cohesive models were used in this study to address these technical issues. They are the linear softening cohesive model and the Dugdale perfectly plastic cohesive model. Each cohesive model constitutes five cohesive laws of different maximum tractions. All cohesive laws have the same cohesive work rate (CWR) which is defined by the area under the traction-separation curve. The effects of the maximum traction on the cohesive zone length and the critical remote applied stress are investigated for both models. For a CZM to predict a fracture load similar to that obtained by an LEFM analysis, the cohesive zone length needs to be much smaller than the crack length, which reflects the small scale yielding condition requirement for LEFM analysis to be valid. For large-scale cohesive zone cases, the predicted critical remote applied stresses depend on the shape of cohesive models used and can significantly deviate from LEFM results. Furthermore, this study also reveals the importance of accurately predicting the cohesive zone profile in determining the critical remote applied load.

  19. Orthodontic Management with Traction and Asymmetric Extraction for Multiple Impacted Permanent Maxillary Teeth - A Case Report.

    PubMed

    Niu, Qiannan; Zhang, Liang; Dai, Juan; Li, Feifei; Feng, Xue

    2016-01-01

    Multiple impacted teeth are a rare eruption disturbance that increases the case complexity. In this article, we described a 13-year-old boy whose 5 permanent maxillary teeth were not erupted although their root formation was complete. The orthodontic treatment with traction and asymmetric extraction was performed to achieve a significantly improved functional and esthetic result.

  20. The Effect of 2 Forms of Talocrural Joint Traction on Dorsiflexion Range of Motion and Postural Control in Those With Chronic Ankle Instability.

    PubMed

    Powden, Cameron J; Hogan, Kathleen K; Wikstrom, Erik A; Hoch, Matthew C

    2017-05-01

    Talocrural joint mobilizations are commonly used to address deficits associated with chronic ankle instability (CAI). Examine the immediate effects of talocrural joint traction in those with CAI. Blinded, crossover. Laboratory. Twenty adults (14 females; age = 23.80 ± 4.02 y; height = 169.55 ± 12.38 cm; weight = 78.34 ± 16.32 kg) with self-reported CAI participated. Inclusion criteria consisted of a history of ≥1 ankle sprain, ≥2 episodes of giving way in the previous 3 mo, answering "yes" to ≥4 questions on the Ankle Instability Instrument, and ≤24 on the Cumberland Ankle Instability Tool. Subjects participated in 3 sessions in which they received a single treatment session of sustained traction (ST), oscillatory traction (OT), or a sham condition in a randomized order. Interventions consisted of four 30-s sets of traction with 1 min of rest between sets. During ST and OT, the talus was distracted distally from the ankle mortise to the end-range of accessory motion. ST consisted of continuous distraction and OT involved 1-s oscillations between the mid and end-range of accessory motion. The sham condition consisted of physical contact without force application. Preintervention and postintervention measurements of weight-bearing dorsiflexion, dynamic balance, and static single-limb balance were collected. The independent variable was treatment (ST, OT, sham). The dependent variables included pre-to-posttreatment change scores for the WBLT (cm), normalized SEBTAR (%), and time-to-boundary (TTB) variables(s). Separate 1-way ANOVAs examined differences between treatments for each dependent variable. Alpha was set a priori at P < .05. No significant treatment effects were identified for any variables. A single intervention of ST or OT did not produce significant changes in weight-bearing dorsiflexion range of motion or postural control in individuals with CAI. Future research should investigate the effects of repeated talocrural traction treatments and the effects of this technique when combined with other manual therapies.

  1. Finite element analysis of weightbath hydrotraction treatment of degenerated lumbar spine segments in elastic phase.

    PubMed

    Kurutz, M; Oroszváry, L

    2010-02-10

    3D finite element models of human lumbar functional spinal units (FSU) were used for numerical analysis of weightbath hydrotraction therapy (WHT) applied for treating degenerative diseases of the lumbar spine. Five grades of age-related degeneration were modeled by material properties. Tensile material parameters of discs were obtained by parameter identification based on in vivo measured elongations of lumbar segments during regular WHT, compressive material constants were obtained from the literature. It has been proved numerically that young adults of 40-45 years have the most deformable and vulnerable discs, while the stability of segments increases with further aging. The reasons were found by analyzing the separated contrasting effects of decreasing incompressibility and increasing hardening of nucleus, yielding non-monotonous functions of stresses and deformations in terms of aging and degeneration. WHT consists of indirect and direct traction phases. Discs show a bilinear material behaviour with higher resistance in indirect and smaller in direct traction phase. Consequently, although the direct traction load is only 6% of the indirect one, direct traction deformations are 15-90% of the indirect ones, depending on the grade of degeneration. Moreover, the ratio of direct stress relaxation remains equally about 6-8% only. Consequently, direct traction controlled by extra lead weights influences mostly the deformations being responsible for the nerve release; while the stress relaxation is influenced mainly by the indirect traction load coming from the removal of the compressive body weight and muscle forces in the water. A mildly degenerated disc in WHT shows 0.15mm direct, 0.45mm indirect and 0.6mm total extension; 0.2mm direct, 0.6mm indirect and 0.8mm total posterior contraction. A severely degenerated disc exhibits 0.05mm direct, 0.05mm indirect and 0.1mm total extension; 0.05mm direct, 0.25mm indirect and 0.3mm total posterior contraction. These deformations are related to the instant elastic phase of WHT that are doubled during the creep period of the treatment. The beneficial clinical impacts of WHT are still evident even 3 months later. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen.

    PubMed

    Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A; Davidson, Michael W; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M; Fabry, Ben

    2015-11-01

    Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton-ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell-ECM adhesion and traction force generation. © FASEB.

  3. Locomotive dynamic performance under traction/braking conditions considering effect of gear transmissions

    NASA Astrophysics Data System (ADS)

    Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun

    2018-07-01

    Traction or braking operations are usually applied to trains or locomotives for acceleration, speed adjustment, and stopping. During these operations, gear transmission equipment plays a very significant role in the delivery of traction or electrical braking power. Failures of the gear transmissions are likely to cause power loses and even threaten the operation safety of the train. Its dynamic performance is closely related to the normal operation and service safety of the entire train, especially under some emergency braking conditions. In this paper, a locomotive-track coupled vertical-longitudinal dynamics model is employed with considering the dynamic action from the gear transmissions. This dynamics model enables the detailed analysis and more practical simulation on the characteristics of power transmission path, namely motor-gear transmission-wheelset-longitudinal motion of locomotive, especially for traction or braking conditions. Multi-excitation sources, such as time-varying mesh stiffness and nonlinear wheel-rail contact excitations, are considered in this study. This dynamics model is then validated by comparing the simulated results with the experimental test results under braking conditions. The calculated results indicate that involvement of gear transmission could reveal the load reduction of the wheelset due to transmitted forces. Vibrations of the wheelset and the motor are dominated by variation of the gear dynamic mesh forces in the low speed range and by rail geometric irregularity in the higher speed range. Rail vertical geometric irregularity could also cause wheelset longitudinal vibrations, and do modulations to the gear dynamic mesh forces. Besides, the hauling weight has little effect on the locomotive vibrations and the dynamic mesh forces of the gear transmissions for both traction and braking conditions under the same running speed.

  4. Calcium oscillations in wounded fibroblast monolayers are spatially regulated through substrate mechanics

    NASA Astrophysics Data System (ADS)

    Lembong, Josephine; Sabass, Benedikt; Stone, Howard A.

    2017-08-01

    The maintenance of tissue integrity is essential for the life of multicellular organisms. Healing of a skin wound is a paradigm for how various cell types localize and repair tissue perturbations in an orchestrated fashion. To investigate biophysical mechanisms associated with wound localization, we focus on a model system consisting of a fibroblast monolayer on an elastic substrate. We find that the creation of an edge in the monolayer causes cytosolic calcium oscillations throughout the monolayer. The oscillation frequency increases with cell density, which shows that wound-induced calcium oscillations occur collectively. Inhibition of myosin II reduces the number of oscillating cells, demonstrating a coupling between actomyosin activity and calcium response. The spatial distribution of oscillating cells depends on the stiffness of the substrate. For soft substrates with a Young’s modulus E ~ 360 Pa, oscillations occur on average within 0.2 mm distance from the wound edge. Increasing substrate stiffness leads to an average localization of oscillations away from the edge (up to ~0.6 mm). In addition, we use traction force microscopy to determine stresses between cells and substrate. We find that an increase of substrate rigidity leads to a higher traction magnitude. For E  <  ~2 kPa, the traction magnitude is strongly concentrated at the monolayer edge, while for E  >  ~8 kPa, traction magnitude is on average almost uniform beneath the monolayer. Thus, the spatial occurrence of calcium oscillations correlates with the cell-substrate traction. Overall, the experiments with fibroblasts demonstrate a collective, chemomechanical localization mechanism at the edge of a wound with a potential physiological role.

  5. Traction force during vacuum extraction: a prospective observational study.

    PubMed

    Pettersson, K; Ajne, J; Yousaf, K; Sturm, D; Westgren, M; Ajne, G

    2015-12-01

    To investigate the traction force employed during vacuum extractions. Observational cross-sectional study. Obstetric Department, Karolinska University Hospital, Sweden, and the Swedish National Congress of Obstetrics and Gynaecology, 2013. Two hundred women with vacuum extraction at term and 130 obstetricians participating in a simulated setting. In a normal clinical setting, we used a specially adapted device to measure and record the force used to undertake vacuum extraction. In a subsequent part of the study, the force employed for vacuum extraction by a group of obstetricians in a fictive setting was estimated and objectively measured. Applied force during vacuum extraction in relation to the estimated level of difficulty in the delivery; perinatal diagnoses of asphyxia or head trauma; estimated force compared with objectively measured force employed in the fictive setting. The median (minimum-maximum) peak forces for minimum, average and excessive vacuum extraction in the clinical setting were 176 N (5-360 N), 225 N (115-436 N), and 241 N (164-452 N), respectively. In 34% of cases a force in excess of 216 N was employed. There was no correlation between the umbilical arterial pH at delivery and the traction force employed during extraction. Four cases of mild hypoxic ischaemic encephalopathy were observed, three of which were associated with a delivery whereby excessive traction force was employed during the vacuum extraction. In the fictive setting, the actual exerted force was twice the quantitative estimation. The measured forces in the clinical setting were four times higher than that estimated in the fictive setting. Higher than expected levels of traction force were used for vacuum extraction delivery. As obstetricians tend to underestimate the force applied during vacuum extraction, objective measurement with instantaneous feedback may be valuable in raising awareness. © 2015 Royal College of Obstetricians and Gynaecologists.

  6. [The use of Saunders lumbar traction in physiotherapy of patients with chronic lower back pain].

    PubMed

    Pingot, Julia; Pingot, Mariusz; Łabecka, Monika; Woldańska-Okońska, Marta

    2014-05-01

    Pain of the lower back is one of the most common ailments in modem society. Such frequent occurrence of back pain syndromes is a serious medical and social problem. Despite numerous attempts, there have not been comprehensive or decisive publications on the therapeutic standard for back pain syndromes that would cover all the aspects of the ailment. Partial report can change the attitude and shed new light on the treatment of these syndromes. The aim of this study was to evaluate the use of Saunders lumbar tractions in patients with chronic lower back pain in comparison with the group of patients undergoing pharmacological treatment. The study included 140 patients with chronic lower back pain who were divided into two groups. Each group consisted of 70 persons of mixed gender (the age mean value was 45). Group I were treated with the use of Saunders lumbar traction and Group II (control group) were treated pharmacologically. The following scales were used to assess pain and mobility of the lumbar part of the vertebral column (before treatment, in-treatment, right after treatment and 30 days after treatment): Laitinen, VAS, Rolland-Morris questionnaire and Schober functional test. The statistical analysis was performed with Greenhouse-Geisser test of within-subjects effects. In both the groups, a significant analgesic action and an improvement to spinal mobility were observed. Significantly better results were obtained in Group I where the patients had been treated with the use of Saunders lumbar traction. The pharmacological treatment applied in Group II showed an analgesic action and influenced positively the functional parameters of the patients. The effects, however, were much worse than in Group 1 where axial Saunders traction was applied to the lumbar part of the vertebral column.

  7. Cervical Radiculopathy: Effectiveness of Adding Traction to Physical Therapy-A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

    PubMed

    Romeo, Antonio; Vanti, Carla; Boldrini, Valerio; Ruggeri, Martina; Guccione, Andrew A; Pillastrini, Paolo; Bertozzii, Lucia

    2018-04-01

    Cervical radiculopathy (CR) is a common cervical spine disorder. Cervical traction (CT) is a frequently recommended treatment for patients with CR. The purpose of this study was to conduct a review and meta-analysis of randomized controlled trials (RCTs) on the effect of CT combined with other physical therapy procedures versus physical therapy procedures alone on pain and disability. Data were obtained from COCHRANE Controlled Trials Register, PubMed, CINAHL, Scopus, ISI Web of Science, and PEDro, from their inception to July 2016. All RCTs on symptomatic adults with CR, without any restriction regarding publication time or language, were considered. Two reviewers selected the studies, conducted the quality assessment, and extracted the results. Meta-analysis employed a random-effects model. The evidence was assessed using GRADE criteria. Five studies met the inclusion criteria. Mechanical traction had a significant effect on pain at short- and intermediate-terms (g = -0.85 [95% CI = -1.63 to -0.06] and g = -1.17 [95% CI = -2.25 to -0.10], respectively) and significant effects on disability at intermediate term (g = -1.05; 95% CI = -1.81 to -0.28). Manual traction had significant effects on pain at short- term (g = -0.85; 95% CI = -1.39 to -0.30). The most important limitation of the present work is the lack of homogeneity in CR diagnostic criteria among the included studies. In light of these results, the current literature lends some support to the use of the mechanical and manual traction for CR in addition to other physical therapy procedures for pain reduction, but yielding lesser effects on function/disability.

  8. Biomechanical analysis of cervical distraction.

    PubMed

    Miller, L S; Cotler, H B; De Lucia, F A; Cotler, J M; Hume, E L

    1987-11-01

    A biomechanical analysis of cervical distraction is presented, and a model comparing closed reduction of cervical spine dislocations to spring mechanics is developed. Behavior of a spring may be described as F = k delta x where F = distraction force; delta x = elongation of the spring; and k = spring constant. The records and roentgenograms of 24 cervical spine dislocations were reviewed retrospectively. Evaluation of cervical distraction vs traction weight indicates that Ftraction = kneck delta x; where F = traction weight and x = distraction at the injured level. The constant, kneck, is different for bilateral and unilateral dislocations (P less than .001) and is a function of magnitude of injury and neck morphology. As determined in this study, traction weight needed for reduction of facet dislocations may be estimated using the formulae: Ftx = 107.1 lbs/cm (x) unilateral, and Ftx = 76.4 lbs/cm (x) bilateral.

  9. Three-Dimensional Reflectance Traction Microscopy

    PubMed Central

    Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo

    2016-01-01

    Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456

  10. On the Formulation of Weakly Singular Displacement/Traction Integral Equations; and Their Solution by the MLPG Method

    NASA Technical Reports Server (NTRS)

    Atluri, Satya N.; Shen, Shengping

    2002-01-01

    In this paper, a very simple method is used to derive the weakly singular traction boundary integral equation based on the integral relationships for displacement gradients. The concept of the MLPG method is employed to solve the integral equations, especially those arising in solid mechanics. A moving Least Squares (MLS) interpolation is selected to approximate the trial functions in this paper. Five boundary integral Solution methods are introduced: direct solution method; displacement boundary-value problem; traction boundary-value problem; mixed boundary-value problem; and boundary variational principle. Based on the local weak form of the BIE, four different nodal-based local test functions are selected, leading to four different MLPG methods for each BIE solution method. These methods combine the advantages of the MLPG method and the boundary element method.

  11. Fatigue life analysis for traction drives with application to a toroidal type geometry

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Loewenthal, S. H.; Zaretsky, E. V.

    1976-01-01

    A contact fatigue life analysis for traction drives was developed which was based on a modified Lundberg-Palmgren theory. The analysis was used to predict life for a cone-roller toroidal traction drive. A 90-percent probability of survival was assumed for the calculated life. Parametric results were presented for life and Hertz contact stress as a function of load, drive ratio, and size. A design study was also performed. The results were compared to previously published work for the dual cavity toroidal drive as applied to a typical compact passenger vehicle drive train. For a representative duty cycle condition wherein the engine delivers 29 horsepower at 2000 rpm with the vehicle moving at 48.3 km/hr (30 mph) the drive life was calculated to be 19,200 km (11 900 miles).

  12. Biomechanical reposition techniques in anterior shoulder dislocation: a randomised multicentre clinical trial— the BRASD-trial protocol

    PubMed Central

    Roetman, Martijn H; Boeije, Tom; Roodheuvel, Floris; Mullaart-Jansen, Nieke; Peeters, Suzanne; Burg, Mike D

    2017-01-01

    Introduction Glenohumeral (shoulder) dislocations are the most common large joint dislocations seen in the emergency department (ED). They cause pain, often severe, and require timely interventions to minimise discomfort and tissue damage. Commonly used reposition or relocation techniques often involve traction and/or leverage. These techniques have high success rates but may be painful and time consuming. They may also cause complications. Recently, other techniques—the biomechanical reposition techniques (BRTs)—have become more popular since they may cause less pain, require less time and cause fewer complications. To our knowledge, no research exists comparing the various BRTs. Our objective is to establish which BRT or BRT combination is fastest, least painful and associated with the lowest complication rate for adult ED patients with anterior glenohumeral dislocations (AGDs). Methods and analysis Adults presenting to the participating EDs with isolated AGDs, as determined by radiographs, will be randomised to one of three BRTs: Cunningham, modified Milch or scapular manipulation. Main study parameters/endpoints are ED length of stay and patients’ self-report of pain. Secondary study parameters/endpoints are procedure times, need for analgesic and/or sedative medications, iatrogenic complications and rates of successful reduction. Ethics and dissemination Non-biomechanical AGD repositioning techniques based on traction and/or leverage are inherently painful and potentially harmful. We believe that the three BRTs used in this study are more physiological, more patient friendly, less likely to cause pain, more time efficient and less likely to produce complications. By comparing these three techniques, we hope to improve the care provided to adults with acute AGDs by reducing their ED length of stay and minimising pain and procedure-related complications. We also hope to define which of the three BRTs is quickest, most likely to be successful and least likely to require sedative or analgesic medications to achieve reduction. Trial registration number NTR5839. PMID:28729305

  13. A New and General Formulation of the Parametric HFGMC Micromechanical Method for Three-Dimensional Multi-Phase Composites

    NASA Technical Reports Server (NTRS)

    Haj-Ali, Rami; Aboudi, Jacob

    2012-01-01

    The recent two-dimensional (2-D) parametric formulation of the high fidelity generalized method of cells (HFGMC) reported by the authors is generalized for the micromechanical analysis of three-dimensional (3-D) multiphase composites with periodic microstructure. Arbitrary hexahedral subcell geometry is developed to discretize a triply periodic repeating unit-cell (RUC). Linear parametric-geometric mapping is employed to transform the arbitrary hexahedral subcell shapes from the physical space to an auxiliary orthogonal shape, where a complete quadratic displacement expansion is performed. Previously in the 2-D case, additional three equations are needed in the form of average moments of equilibrium as a result of the inclusion of the bilinear terms. However, the present 3-D parametric HFGMC formulation eliminates the need for such additional equations. This is achieved by expressing the coefficients of the full quadratic polynomial expansion of the subcell in terms of the side or face average-displacement vectors. The 2-D parametric and orthogonal HFGMC are special cases of the present 3-D formulation. The continuity of displacements and tractions, as well as the equilibrium equations, are imposed in the average (integral) sense as in the original HFGMC formulation. Each of the six sides (faces) of a subcell has an independent average displacement micro-variable vector which forms an energy-conjugate pair with the transformed average-traction vector. This allows generating symmetric stiffness matrices along with internal resisting vectors for the subcells which enhances the computational efficiency. The established new parametric 3-D HFGMC equations are formulated and solution implementations are addressed. Several applications for triply periodic 3-D composites are presented to demonstrate the general capability and varsity of the present parametric HFGMC method for refined micromechanical analysis by generating the spatial distributions of local stress fields. These applications include triply periodic composites with inclusions in the form of a cavity, spherical inclusion, ellipsoidal inclusion, discontinuous aligned short fiber. A 3-D repeating unit-cell for foam material composite is simulated.

  14. A Conforming Multigrid Method for the Pure Traction Problem of Linear Elasticity: Mixed Formulation

    NASA Technical Reports Server (NTRS)

    Lee, Chang-Ock

    1996-01-01

    A multigrid method using conforming P-1 finite element is developed for the two-dimensional pure traction boundary value problem of linear elasticity. The convergence is uniform even as the material becomes nearly incompressible. A heuristic argument for acceleration of the multigrid method is discussed as well. Numerical results with and without this acceleration as well as performance estimates on a parallel computer are included.

  15. Evaluation of an Empirical Traction Equation for Forestry Tires

    Treesearch

    C.R. Vechinski; C.E. Johnson; R.L. Raper

    1998-01-01

    Variable load test data were used to evaluate the applicability of an existing forestry tire traction model for a new forestry tire and a worn tire of the same size with and without tire chains in a range of soil conditions. `The clay and sandy soi!s ranged in moisture content from 17 to 28%. Soil bulk density varied between 1.1 and 1.4g cm-3...

  16. Numerical modeling of the traction process in the treatment for Pierre-Robin Sequence.

    PubMed

    Słowiński, Jakub J; Czarnecka, Aleksandra

    2016-10-01

    The goal of this numerical study was to identify the results of modulated growth simulation of the mandibular bone during traction in Pierre-Robin Sequence (PRS) treatment. Numerical simulation was conducted in the Ansys 16.2 environment. Two FEM (finite elements method) models of a newborn's mandible (a spatial and a flat model) were developed. The procedure simulated a 20-week traction period. The adopted growth measure was mandibular length increase, defined as the distance between the Co-Pog anatomic points used in cephalometric analysis. The simulation calculations conducted on the developed models showed that modulation had a significant influence on the pace of bone growth. In each of the analyzed cases, growth modulation resulted in an increase in pace. The largest value of increase was 6.91 mm. The modulated growth with the most beneficial load variant increased the basic value of the growth by as much as 24.6%, and growth with the least beneficial variant increased by 7.4%. Traction is a simple, minimally invasive and inexpensive procedure. The proposed algorithm may enable the development of a helpful forecasting tool, which could be of real use to doctors working on Pierre-Robin Sequence and other mandibular deformations in children. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Traction-compression-closure for exomphalos major.

    PubMed

    Morabito, Antonino; Owen, Anthony; Bianchi, Adrian

    2006-11-01

    We present our experience with traction-compression-closure (TCC) for exomphalos major (EM) to achieve a safe and embryologically correct midline supraumbilical aesthetic closure with preservation of the umbilicus. Nineteen neonates with EM were paralyzed and ventilated. The abdominal domain was increased by upward cord traction to assist liver-bowel reduction by gravity and sac ligation, followed by circumferential elastic body binder compression. The supraumbilical abdominal wall anomaly cicatrized spontaneously or was closed surgically as a midline scar, with preservation of the umbilicus. Over 7 years (1998-2004), 19 patients with EM were treated by TCC, 18 of whom survived. The patients' median gestational age was 36 weeks (range, 24-40 weeks); their median birth weight was 2312 g (range, 890-3000 g). The median time to reduction was 4 days (range, 3-5 days), whereas that to full enteral feeds was 6 days (range, 4-6 days). Mechanical ventilation for 7 days (range, 6-8 days) was not associated with any morbidity, and the time to home discharge was 11 days (range, 8-12 days). Five patients did not require any surgery. There was no episode of sac rupture or infection. Abdominal expansion by vertical cord traction followed by compression reduction (TCC) under muscle relaxation and ventilation is time well spent toward a safe and aesthetic midline abdominal wall closure without tension for EM.

  18. Outcomes of microscope-integrated intraoperative optical coherence tomography-guided center-sparing internal limiting membrane peeling for myopic traction maculopathy: a novel technique.

    PubMed

    Kumar, Atul; Ravani, Raghav; Mehta, Aditi; Simakurthy, Sriram; Dhull, Chirakshi

    2017-07-04

    To evaluate the outcomes of pars plana vitrectomy (PPV) with microscope-integrated intraoperative optical coherence tomography (I-OCT)-guided traction removal and center-sparing internal limiting membrane (cs-ILM) peeling. Nine eyes with myopic traction maculopathy as diagnosed on SD-OCT underwent PPV with I-OCT-guided cs-ILM peeling and were evaluated prospectively for resolution of central macular thickness (CMT) and improvement in best-corrected visual acuity (BCVA), and complications, if any, were noted. All patients were followed up for more than 9 months. Resolution of the macular retinoschisis was seen in all nine eyes on SD-OCT. At 36 weeks, there was a significant improvement in mean BCVA from the preoperative BCVA (P = 0.0089) along with a reduction in the CMT from 569.77 ± 263.19 to 166.0 ± 43.91 um (P = 0.0039). None of the eyes showed worsening of BCVA or development of full-thickness macular hole in the intraoperative or follow-up period. PPV with I-OCT-guided cs-ILM peeling helps in complete removal of traction, resolution of retinoschisis and good functional recovery with low intraoperative and postoperative complications.

  19. Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements

    NASA Astrophysics Data System (ADS)

    Tong, Ming Hui; Huang, Nan; Zhang, Wei; Zhou, Zhuo Long; Ngan, Alfonso Hing Wan; Du, Yanan; Chan, Barbara Pui

    2016-01-01

    Engineering 3D microstructures with predetermined properties is critical for stem cell niche studies. We have developed a multiphoton femtosecond laser-based 3D printing platform, which generates complex protein microstructures in minutes. Here, we used the platform to test a series of fabrication and reagent parameters in precisely controlling the mechanical properties of protein micropillars. Atomic force microscopy was utilized to measure the reduced elastic modulus of the micropillars, and transmission electron microscopy was used to visualize the porosity of the structures. The reduced elastic modulus of the micropillars associated positively and linearly with the scanning power. On the other hand, the porosity and pore size of the micropillars associated inversely and linearly with the scanning power and reagent concentrations. While keeping the elastic modulus constant, the stiffness of the micropillars was controlled by varying their height. Subsequently, the single cell traction forces of rabbit chondrocytes, human dermal fibroblasts, human mesenchymal stem cells, and bovine nucleus pulposus cells (bNPCs) were successfully measured by culturing the cells on micropillar arrays of different stiffness. Our results showed that the traction forces of all groups showed positive relationship with stiffness, and that the chondrocytes and bNPCs generated the highest and lowest traction forces, respectively.

  20. New methods of magnet-based instrumentation for NOTES.

    PubMed

    Magdeburg, Richard; Hauth, Daniel; Kaehler, Georg

    2013-12-01

    Laparoscopic surgery has displaced open surgery as the standard of care for many clinical conditions. NOTES has been described as the next surgical frontier with the objective of incision-free abdominal surgery. The principal challenge of NOTES procedures is the loss of triangulation and instrument rigidity, which is one of the fundamental concepts of laparoscopic surgery. To overcome these problems necessitates the development of new instrumentation. material and methods: We aimed to assess the use of a very simple combination of internal and external magnets that might allow the vigorous multiaxial traction/counter-traction required in NOTES procedures. The magnet retraction system consisted of an external magnetic assembly and either small internal magnets attached by endoscopic clips to the designated tissue (magnet-clip-approach) or an endoscopic grasping forceps in a magnetic deflector roll (magnet-trocar-approach). We compared both methods regarding precision, time and efficacy by performing transgastric partial uterus resections with better results for the magnet-trocar-approach. This proof-of-principle animal study showed that the combination of external and internal magnets generates sufficient coupling forces at clinically relevant abdominal wall thicknesses, making them suitable for use and evaluation in NOTES procedures, and provides the vigorous multiaxial traction/counter-traction required by the lack of additional abdominal trocars.

  1. Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure-Part II: Finite element applications

    NASA Astrophysics Data System (ADS)

    Máirtín, Éamonn Ó.; Parry, Guillaume; Beltz, Glenn E.; McGarry, J. Patrick

    2014-02-01

    This paper, the second of two parts, presents three novel finite element case studies to demonstrate the importance of normal-tangential coupling in cohesive zone models (CZMs) for the prediction of mixed-mode interface debonding. Specifically, four new CZMs proposed in Part I of this study are implemented, namely the potential-based MP model and the non-potential-based NP1, NP2 and SMC models. For comparison, simulations are also performed for the well established potential-based Xu-Needleman (XN) model and the non-potential-based model of van den Bosch, Schreurs and Geers (BSG model). Case study 1: Debonding and rebonding of a biological cell from a cyclically deforming silicone substrate is simulated when the mode II work of separation is higher than the mode I work of separation at the cell-substrate interface. An active formulation for the contractility and remodelling of the cell cytoskeleton is implemented. It is demonstrated that when the XN potential function is used at the cell-substrate interface repulsive normal tractions are computed, preventing rebonding of significant regions of the cell to the substrate. In contrast, the proposed MP potential function at the cell-substrate interface results in negligible repulsive normal tractions, allowing for the prediction of experimentally observed patterns of cell cytoskeletal remodelling. Case study 2: Buckling of a coating from the compressive surface of a stent is simulated. It is demonstrated that during expansion of the stent the coating is initially compressed into the stent surface, while simultaneously undergoing tangential (shear) tractions at the coating-stent interface. It is demonstrated that when either the proposed NP1 or NP2 model is implemented at the stent-coating interface mixed-mode over-closure is correctly penalised. Further expansion of the stent results in the prediction of significant buckling of the coating from the stent surface, as observed experimentally. In contrast, the BSG model does not correctly penalise mixed-mode over-closure at the stent-coating interface, significantly altering the stress state in the coating and preventing the prediction of buckling. Case study 3: Application of a displacement to the base of a bi-layered composite arch results in a symmetric sinusoidal distribution of normal and tangential traction at the arch interface. The traction defined mode mixity at the interface ranges from pure mode II at the base of the arch to pure mode I at the top of the arch. It is demonstrated that predicted debonding patterns are highly sensitive to normal-tangential coupling terms in a CZM. The NP2, XN, and BSG models exhibit a strong bias towards mode I separation at the top of the arch, while the NP1 model exhibits a bias towards mode II debonding at the base of the arch. Only the SMC model provides mode-independent behaviour in the early stages of debonding. This case study provides a practical example of the importance of the behaviour of CZMs under conditions of traction controlled mode mixity, following from the theoretical analysis presented in Part I of this study.

  2. Cell origami: self-folding of three-dimensional cell-laden microstructures driven by cell traction force.

    PubMed

    Kuribayashi-Shigetomi, Kaori; Onoe, Hiroaki; Takeuchi, Shoji

    2012-01-01

    This paper describes a method of generating three-dimensional (3D) cell-laden microstructures by applying the principle of origami folding technique and cell traction force (CTF). We harness the CTF as a biological driving force to fold the microstructures. Cells stretch and adhere across multiple microplates. Upon detaching the microplates from a substrate, CTF causes the plates to lift and fold according to a prescribed pattern. This self-folding technique using cells is highly biocompatible and does not involve special material requirements for the microplates and hinges to induce folding. We successfully produced various 3D cell-laden microstructures by just changing the geometry of the patterned 2D plates. We also achieved mass-production of the 3D cell-laden microstructures without causing damage to the cells. We believe that our methods will be useful for biotechnology applications that require analysis of cells in 3D configurations and for self-assembly of cell-based micro-medical devices.

  3. Surgical Tip for Prevention of Lip Injury During Orthognathic and Facial Bone Contouring Surgery.

    PubMed

    Lee, Tae Sung; Park, Sanghoon

    2017-10-01

    Iatrogenic lip injury is a rather common complication after facial bone surgery, but is usually treated lightly by the surgeon compared with other more severe functional complications. However, these injuries can have permanent sequelae and can therefore be a reason for patient dissatisfaction, especially after cosmetic surgery. Intraoperative lip injuries during facial bone surgery are usually caused by heat-generating surgical instruments or forced traction on the operative fields. The authors have applied a special technical strategy using a hydrocolloid dressing material to avoid these intraoperative lip injuries. This method does not disturb the operative procedure itself, but efficiently prevents lip injuries and decreases surgical morbidities and postoperative swelling.

  4. Digital Model of Railway Electric Traction Lines

    NASA Astrophysics Data System (ADS)

    Garg, Rachana; Mahajan, Priya; Kumar, Parmod

    2017-08-01

    The characteristic impedance and propagation constant define the behavior of signal propagation over the transmission lines. The digital model for railway traction lines which includes railway tracks is developed, using curve fitting technique in MATLAB. The sensitivity of this model has been computed with respect to frequency. The digital sensitivity values are compared with the values of analog sensitivity. The developed model is useful for digital protection, integrated operation, control and planning of the system.

  5. Investigation on cause of the elevator turbine wear

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ouyang, W. P.; Xue, J. A.

    2018-03-01

    Elevator traction turbine is often worn for various reasons, causing serious safety hazard. It is explained the main causes of traction wheel wear in detail in combination with a large number of engineering experience. The effect of turbine wear on the actual operation of the elevator is verified by contrast experiment, which is helpful to identify risks early. It is put forward on some reasonable suggestions for elevator inspection, maintenance and management.

  6. Arthroscopic Preparation 0f the Posterior and Posteroinferior Glenoid Labrum

    DTIC Science & Technology

    2007-11-01

    cient traction to easily visual - ize and work in this area of the joint (Figure I). Glenohumeml arthroscopy is initiated from a standard posterior...flexion, and 10 Ibs of traction. the diagnostic glenohumeral arthroscopy is completed, a mid-glenoid (anteroinferior) portal is made just...lorrhaphy. Arthroscopy . 2006; 22:1138 el-5. Section Editor: Steven F. Harwin, MD NOVEMBER 2007 I Volume 30 • Number 11 3. Difelice GS , Williams RJ lil

  7. Friction-Controlled Traction Force in Cell Adhesion

    PubMed Central

    Pompe, Tilo; Kaufmann, Martin; Kasimir, Maria; Johne, Stephanie; Glorius, Stefan; Renner, Lars; Bobeth, Manfred; Pompe, Wolfgang; Werner, Carsten

    2011-01-01

    The force balance between the extracellular microenvironment and the intracellular cytoskeleton controls the cell fate. We report a new (to our knowledge) mechanism of receptor force control in cell adhesion originating from friction between cell adhesion ligands and the supporting substrate. Adherent human endothelial cells have been studied experimentally on polymer substrates noncovalently coated with fluorescent-labeled fibronectin (FN). The cellular traction force correlated with the mobility of FN during cell-driven FN fibrillogenesis. The experimental findings have been explained within a mechanistic two-dimensional model of the load transfer at focal adhesion sites. Myosin motor activity in conjunction with sliding of FN ligands noncovalently coupled to the surface of the polymer substrates is shown to result in a controlled traction force of adherent cells. We conclude that the friction of adhesion ligands on the supporting substrate is important for mechanotransduction and cell development of adherent cells in vitro and in vivo. PMID:22004739

  8. A two-field modified Lagrangian formulation for robust simulations of extrinsic cohesive zone models

    NASA Astrophysics Data System (ADS)

    Cazes, F.; Coret, M.; Combescure, A.

    2013-06-01

    This paper presents the robust implementation of a cohesive zone model based on extrinsic cohesive laws (i.e. laws involving an infinite initial stiffness). To this end, a two-field Lagrangian weak formulation in which cohesive tractions are chosen as the field variables along the crack's path is presented. Unfortunately, this formulation cannot model the infinite compliance of the broken elements accurately, and no simple criterion can be defined to determine the loading-unloading change of state at the integration points of the cohesive elements. Therefore, a modified Lagrangian formulation using a fictitious cohesive traction instead of the classical cohesive traction as the field variable is proposed. Thanks to this change of variable, the cohesive law becomes an increasing function of the equivalent displacement jump, which eliminates the problems mentioned previously. The ability of the proposed formulations to simulate fracture accurately and without field oscillations is investigated through three numerical test examples.

  9. Tire-road friction estimation and traction control strategy for motorized electric vehicle.

    PubMed

    Jin, Li-Qiang; Ling, Mingze; Yue, Weiqiang

    2017-01-01

    In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS).

  10. Research on the Filtering Algorithm in Speed and Position Detection of Maglev Trains

    PubMed Central

    Dai, Chunhui; Long, Zhiqiang; Xie, Yunde; Xue, Song

    2011-01-01

    This paper introduces in brief the traction system of a permanent magnet electrodynamic suspension (EDS) train. The synchronous traction mode based on long stators and track cable is described. A speed and position detection system is recommended. It is installed on board and is used as the feedback end. Restricted by the maglev train’s structure, the permanent magnet electrodynamic suspension (EDS) train uses the non-contact method to detect its position. Because of the shake and the track joints, the position signal sent by the position sensor is always aberrant and noisy. To solve this problem, a linear discrete track-differentiator filtering algorithm is proposed. The filtering characters of the track-differentiator (TD) and track-differentiator group are analyzed. The four series of TD are used in the signal processing unit. The result shows that the track-differentiator could have a good effect and make the traction system run normally. PMID:22164012

  11. Research on the filtering algorithm in speed and position detection of maglev trains.

    PubMed

    Dai, Chunhui; Long, Zhiqiang; Xie, Yunde; Xue, Song

    2011-01-01

    This paper introduces in brief the traction system of a permanent magnet electrodynamic suspension (EDS) train. The synchronous traction mode based on long stators and track cable is described. A speed and position detection system is recommended. It is installed on board and is used as the feedback end. Restricted by the maglev train's structure, the permanent magnet electrodynamic suspension (EDS) train uses the non-contact method to detect its position. Because of the shake and the track joints, the position signal sent by the position sensor is always aberrant and noisy. To solve this problem, a linear discrete track-differentiator filtering algorithm is proposed. The filtering characters of the track-differentiator (TD) and track-differentiator group are analyzed. The four series of TD are used in the signal processing unit. The result shows that the track-differentiator could have a good effect and make the traction system run normally.

  12. Traction patterns of tumor cells.

    PubMed

    Ambrosi, D; Duperray, A; Peschetola, V; Verdier, C

    2009-01-01

    The traction exerted by a cell on a planar deformable substrate can be indirectly obtained on the basis of the displacement field of the underlying layer. The usual methodology used to address this inverse problem is based on the exploitation of the Green tensor of the linear elasticity problem in a half space (Boussinesq problem), coupled with a minimization algorithm under force penalization. A possible alternative strategy is to exploit an adjoint equation, obtained on the basis of a suitable minimization requirement. The resulting system of coupled elliptic partial differential equations is applied here to determine the force field per unit surface generated by T24 tumor cells on a polyacrylamide substrate. The shear stress obtained by numerical integration provides quantitative insight of the traction field and is a promising tool to investigate the spatial pattern of force per unit surface generated in cell motion, particularly in the case of such cancer cells.

  13. A variationally coupled FE-BE method for elasticity and fracture mechanics

    NASA Technical Reports Server (NTRS)

    Lu, Y. Y.; Belytschko, T.; Liu, W. K.

    1991-01-01

    A new method for coupling finite element and boundary element subdomains in elasticity and fracture mechanics problems is described. The essential feature of this new method is that a single variational statement is obtained for the entire domain, and in this process the terms associated with tractions on the interfaces between the subdomains are eliminated. This provides the additional advantage that the ambiguities associated with the matching of discontinuous tractions are circumvented. The method leads to a direct procedure for obtaining the discrete equations for the coupled problem without any intermediate steps. In order to evaluate this method and compare it with previous methods, a patch test for coupled procedures has been devised. Evaluation of this variationally coupled method and other methods, such as stiffness coupling and constraint traction matching coupling, shows that this method is substantially superior. Solutions for a series of fracture mechanics problems are also reported to illustrate the effectiveness of this method.

  14. Life analysis of multiroller planetary traction drive

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Rohn, D. A.; Loewenthal, S. H.

    1981-01-01

    A contact fatigue life analysis was performed for a constant ratio, Nasvytis Multiroller Traction Drive. The analysis was based on the Lundberg-Palmgren method for rolling element bearing life prediction. Life adjustment factors for materials, processing, lubrication and traction were included. The 14.7 to 1 ratio drive consisted of a single stage planetary configuration with two rows of stepped planet rollers of five rollers per row, having a roller cluster diameter of approximately 0.21 m, a width of 0.06 m and a weight of 9 kg. Drive system 10 percent life ranged from 18,800 hours at 16.6 kW (22.2 hp) and 25,000 rpm sun roller speed, to 305 hours at maximum operating conditions of 149 kw (200 hp) and 75,000 rpm sun roller speed. The effect of roller diameter and roller center location on life were determined. It was found that an optimum life geometry exists.

  15. New level of vehicle comfort and vehicle stability via utilisation of the suspensions anti-dive and anti-squat geometry

    NASA Astrophysics Data System (ADS)

    Lindvai-Soos, Daniel; Horn, Martin

    2018-07-01

    In this article a novel vehicle dynamics control concept is designed for a vehicle equipped with wheel individual electric traction machines, electronically controlled brakes and semi-active suspensions. The suspension's cross-couplings between traction forces and vertical forces via anti-dive and anti-squat geometry is utilised in the control concept to improve driving comfort and driving stability. The control concept is divided into one main and two cascaded branches. The main controller consists of a multivariable vehicle dynamics controller and a control allocation scheme to improve the vehicle's driving comfort. The cascaded feedback loops maintain the vehicle's stability according to wheel slip and vehicle sideslip. The performance of the combined vehicle dynamics controller is compared to a standard approach in simulation. It can be stated that the controller piloting semi-active suspensions together with brake and traction devices enables a superior performance regarding comfort and stability.

  16. Tire-road friction estimation and traction control strategy for motorized electric vehicle

    PubMed Central

    Jin, Li-Qiang; Yue, Weiqiang

    2017-01-01

    In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS). PMID:28662053

  17. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2010-01-01

    The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

  18. Electric vehicle drive train with contactor protection

    DOEpatents

    Konrad, Charles E.; Benson, Ralph A.

    1994-01-01

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  19. Electric vehicle drive train with contactor protection

    DOEpatents

    Konrad, C.E.; Benson, R.A.

    1994-11-29

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  20. Vitreous vascular endothelial growth factor concentrations in proliferative diabetic retinopathy versus proliferative vitreoretinopathy.

    PubMed

    Citirik, Mehmet; Kabatas, Emrah Utku; Batman, Cosar; Akin, Kadir Okhan; Kabatas, Naciye

    2012-01-01

    To assess vitreous vascular endothelial growth factor (VEGF) concentrations in proliferative diabetic retinopathy (PDR) in comparison to proliferative vitreoretinopathy (PVR). Vitreous samples were collected from 69 eyes of 69 patients with traumatic lens dislocation (n = 10), grade B PVR with rhegmatogenous retinal detachment (n = 13), grade C PVR with rhegmatogenous retinal detachment (n = 14), PDR with vitreous hemorrhage (n = 18), and PDR with vitreous hemorrhage and tractional retinal detachment (n = 14). Vitreous fluid samples were obtained at vitrectomy, and the levels of VEGF were measured by enzyme-linked immunosorbent assay. The mean vitreous level of VEGF was 15.14 ± 5.22 pg/ml in eyes with grade B PVR, 99.15 ± 38.58 pg/ml in eyes with grade C PVR, 4,534.01 ± 1,193.28 pg/ml in eyes with vitreous hemorrhage secondary to PDR, 5,157.29 ± 969.44 pg/ml in eyes with vitreous hemorrhage and tractional retinal detachment secondary to PDR, and 16.19 ± 5.76 pg/ml in eyes of the control group with traumatic lens dislocation. Vitreous VEGF concentrations were significantly higher in the patients with grade C PVR, PDR with vitreous hemorrhage and PDR with vitreous hemorrhage and tractional retinal detachment in comparison to the control patients (p < 0.05). A significant alteration was not observed in patients with grade B PVR (p = 0.55). Vitreous VEGF concentrations are increased in PDR and grade C PVR. The high VEGF concentrations could suggest a possible effect of VEGF on advanced PVR. Copyright © 2011 S. Karger AG, Basel.

  1. Idiopathic pulmonary fibrosis may be a disease of recurrent, tractional injury to the periphery of the aging lung: a unifying hypothesis regarding etiology and pathogenesis.

    PubMed

    Leslie, Kevin O

    2012-06-01

    Idiopathic pulmonary fibrosis is a progressive, fatal lung disease occurring in older individuals. Despite 50 years of accrued data about the disease, little progress has been made in slowing functional loss or in decreasing patient mortality. To present a novel hypothesis on the etiology and pathogenesis of idiopathic pulmonary fibrosis. Published data are reviewed regarding the epidemiology, clinical presentation, natural history, radiologic findings, and pathologic findings in patients with idiopathic pulmonary fibrosis. Patients with idiopathic pulmonary fibrosis may be predisposed genetically to tractional injury to the peripheral lung. The result is recurrent damage to the epithelial-mesenchymal interface, preferentially at the outer edges of the basilar lung lobules where tractional stress is high during inspiration, compliance is relatively low, and there is a greater tendency for alveolar collapse at end-expiration. A distinctive "reticular network of injury" (the fibroblast focus) forms, attended by a prolonged phase of wound repair (tear and slow repair). Discrete areas of alveolar collapse are observed in scar at the periphery of the lung lobules. The cycle repeats over many years resulting in progressive fibrous remodeling and replacement of the alveoli in a lobule by bronchiolar cysts surrounded by scar (honeycomb lung). Abnormalities in surfactant function are proposed as a potential mechanism of initial lung damage. Age of onset may be a function of a required threshold of environmental exposures (eg, cigarette smoking) or other comorbid injury to the aging lung. Evidence supporting this hypothesis is presented and potential mechanisms are discussed. A potential role for contributing cofactors is presented.

  2. Thermal aging of melt-spun NdFeB magnetic powder in hydrogen

    NASA Astrophysics Data System (ADS)

    Pinkerton, Frederick E.; Balogh, Michael P.; Ellison, Nicole; Foto, Aldo; Sechan, Martin; Tessema, Misle M.; Thompson, Margarita P.

    2016-11-01

    High energy product neodymium-iron-boron (NdFeB) magnets are the premier candidate for demanding electrified vehicle traction motor applications. Injection molded (IM) or compression molded (CM) magnets made using NdFeB powders are promising routes to improve motor efficiency, cost, and manufacturability. However, IM and CM NdFeB magnets are susceptible to substantial thermal aging losses at motor operating temperatures when exposed to the automatic transmission fluid (ATF) used as a lubricant and cooling medium. The intrinsic coercivity Hci of NdFeB IM and CM magnets degrades by as much as 18% when aged for 1000 h in ATF at 150 °C, compared to a 3% loss when aged in air. Here we report aging studies of rapidly quenched NdFeB powder in air, ATF, and H2 gas. Expansion of the NdFeB crystal lattice in both ATF and H2 identified hydrogen dissociated from the ATF during aging and diffused into the primary NdFeB phase as the probable cause of the coercivity loss of IM and CM magnets.

  3. The effect of a twin tunnel on the propagation of ground-borne vibration from an underground railway

    NASA Astrophysics Data System (ADS)

    Kuo, K. A.; Hunt, H. E. M.; Hussein, M. F. M.

    2011-12-01

    Accurate predictions of ground-borne vibration levels in the vicinity of an underground railway are greatly sought after in modern urban centres. Yet the complexity involved in simulating the underground environment means that it is necessary to make simplifying assumptions about this system. One such commonly made assumption is to ignore the effects of neighbouring tunnels, despite the fact that many underground railway lines consist of twin-bored tunnels, one for the outbound direction and one for the inbound direction. This paper presents a unique model for two tunnels embedded in a homogeneous, elastic fullspace. Each of these tunnels is subject to both known, dynamic train forces and dynamic cavity forces. The net forces acting on the tunnels are written as the sum of those tractions acting on the invert of a single tunnel, and those tractions that represent the motion induced by the neighbouring tunnel. By apportioning the tractions in this way, the vibration response of a two-tunnel system is written as a linear combination of displacement fields produced by a single-tunnel system. Using Fourier decomposition, forces are partitioned into symmetric and antisymmetric modenumber components to minimise computation times. The significance of the interactions between two tunnels is quantified by calculating the insertion gains, in both the vertical and horizontal directions, that result from the existence of a second tunnel. The insertion-gain results are shown to be localised and highly dependent on frequency, tunnel orientation and tunnel thickness. At some locations, the magnitude of these insertion gains is greater than 20 dB. This demonstrates that a high degree of inaccuracy exists in any surface vibration prediction model that includes only one of the two tunnels. This novel two-tunnel solution represents a significant contribution to the existing body of research into vibration from underground railways, as it shows that the second tunnel has a significant influence on the accuracy of vibration predictions for underground railways.

  4. The Processing and Mechanical Properties of High Temperature/ High Performance Composites. Fatigue and Creep. Book 3

    DTIC Science & Technology

    1994-03-01

    bilinear forms of their rates. Setting the partial derivatives of fl with respect to the rates to be zero, one obtains simultaneous linear algebraic ...Figure 3 shows the variation in 8/P with P for one such test. In this case, the degree of linearity is high, with a correlation coefficient, r...each cycle is shown.) The linearity of the data suggests that the traction law can be represented by a power law, with the power law exponent, d log

  5. Rupture dynamics along bimaterial interfaces: a parametric study of the coupling between interfacial sliding and normal traction perturbation

    NASA Astrophysics Data System (ADS)

    Scala, Antonio; Festa, Gaetano; Vilotte, Jean-Pierre

    2017-04-01

    Earthquake ruptures often develop along faults separating materials with dissimilar elastic properties. Due to the broken symmetry, the propagation of the rupture along the bimaterial interface is driven by the coupling between interfacial sliding and normal traction perturbations. We numerically investigate in-plane rupture growth along a planar interface, under slip weakening friction, separating two dissimilar isotropic linearly elastic half-spaces. We perform a parametric study of the classical Prakash-Clifton regularisation for different material contrasts. In particular mesh-dependence and regularisation-dependence of the numerical solutions are analysed in this parameter space. When regularisation involves a slip-rate dependent relaxation time, a characteristic sliding distance is identified below which numerical solutions no longer depend on the regularisation parameter, i.e. they are consistent solutions of the same physical problem. Such regularisation provides an adaptive high-frequency filter of the slip-induced normal traction perturbations, following the dynamic shrinking of the dissipation zone during the acceleration phase. In contrast, regularisation involving a constant relaxation time leads to numerical solutions that always depend on the regularisation parameter since it fails adapting to the shrinking of the process zone. Dynamic regularisation is further investigated using a non-local regularisation based on a relaxation time that depends on the dynamic length of the dissipation zone. Such reformulation is shown to provide similar results as the dynamic time scale regularisation proposed by Prakash-Clifton when slip rate is replaced by the maximum slip rate along the sliding interface. This leads to the identification of a dissipative length scale associated with the coupling between interfacial sliding and normal traction perturbations, together with a scaling law between the maximum slip rate and the dynamic size of the process zone during the rupture propagation. Dynamic time scale regularisation is show to provide mesh-independent and physically well-posed numerical solutions during the acceleration phase toward an asymptotic speed. When generalised Rayleigh wave does not exist, numerical solutions are shown to tend toward an asymptotic velocity higher than the slowest shear wave speed. When generalised Rayleigh wave speed exists, as numerical solutions tend toward this velocity, increasing spurious oscillations develop and solutions become unstable. In this regime regularisation dependent and unstable finite-size pulses may be generated. This instability is associated with the singular behaviour of the slip-induced normal traction perturbations, and of the slip rate at the rupture front, in relation with complete shrinking of the dissipation zone. This phase requires to be modelled either by more complex interface constitutive laws involving velocity-strengthening effects that may stabilize short wavelength interfacial propagating modes or by considering non-ideal interfaces that introduce a new length scale in the problem that may promote selection and stabilization of the slip pulses.

  6. USSR Report, Electronics and Electrical Engineering, No. 104

    DTIC Science & Technology

    1983-06-13

    shaping of silicon crystals during their growth is a modification of inductive contactless forming of rods and tubes directly from the melt on a...MANUFACTURING TECHNOLOGY Induction Systems for Electromagnetic Shaping of Silicon Crystal During.Growth (L. R. Lev; ELEKTROTEKHNIKA, Feb 83) • • • x...et al.; IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY: ELEKTROMEKHANIKA, Dec 82) 18 Basic Design of Linear- Induction Traction Motors for High-Speed

  7. [Insert Image Here]: A Reflection on the Ethics of Imagery in a Critical Pedagogy for the Humanities

    ERIC Educational Resources Information Center

    Carniel, Jessica

    2018-01-01

    Using the controversial image of Syrian toddler Alan Kurdi as its provocation, this paper reflects upon the ethics of images used in teaching in a time of high-volume image circulation via social media, as well as a time when debates about content and trigger warnings are starting to gain more traction in the Australian tertiary sector. It…

  8. Mean deformation metrics for quantifying 3D cell–matrix interactions without requiring information about matrix material properties

    PubMed Central

    Stout, David A.; Bar-Kochba, Eyal; Estrada, Jonathan B.; Toyjanova, Jennet; Kesari, Haneesh; Reichner, Jonathan S.; Franck, Christian

    2016-01-01

    Mechanobiology relates cellular processes to mechanical signals, such as determining the effect of variations in matrix stiffness with cell tractions. Cell traction recorded via traction force microscopy (TFM) commonly takes place on materials such as polyacrylamide- and polyethylene glycol-based gels. Such experiments remain limited in physiological relevance because cells natively migrate within complex tissue microenvironments that are spatially heterogeneous and hierarchical. Yet, TFM requires determination of the matrix constitutive law (stress–strain relationship), which is not always readily available. In addition, the currently achievable displacement resolution limits the accuracy of TFM for relatively small cells. To overcome these limitations, and increase the physiological relevance of in vitro experimental design, we present a new approach and a set of associated biomechanical signatures that are based purely on measurements of the matrix's displacements without requiring any knowledge of its constitutive laws. We show that our mean deformation metrics (MDM) approach can provide significant biophysical information without the need to explicitly determine cell tractions. In the process of demonstrating the use of our MDM approach, we succeeded in expanding the capability of our displacement measurement technique such that it can now measure the 3D deformations around relatively small cells (∼10 micrometers), such as neutrophils. Furthermore, we also report previously unseen deformation patterns generated by motile neutrophils in 3D collagen gels. PMID:26929377

  9. A technological advance for 21st century obstetricians: the electronically-controlled vacuum extractor.

    PubMed

    Perone, Nicola

    2018-04-25

    To describe an innovative electronically-controlled vacuum extractor (VE) in detail and to illustrate its performance characteristics, as observed in a laboratory study. Thirty simulated, vacuum-assisted deliveries. (1) The ability to measure in real-time of the pull applied and to sound an alert, when the traction approaches the negative pressure under the cup, to prevent its detachment. (2) The recording and printing of a graphic representation of the pull applied (vacuum delivery graph). (3) The emission of a warning signal when the 15-min time limit of continuous cup application on the fetal scalp, is reached. No cup detachment occurred in any of the 15 vacuum-assisted deliveries, in which traction was kept below the adhesive force of the cup [44 lb (20 kg)], except in three cases, due to loss of negative pressure. In the remaining 15 tests, in which traction was greater than the adhesive force of the cup, "pull-offs" inevitably occurred. Furthermore, upon reaching the 15-min time limit of continuous cup application on the fetal cephalic model, a warning signal was emitted, as programmed. Conclusions We demonstrated that the electronically-controlled VE, with its distinctive pull-sensing handle, performs suitably for its intended purposes. The ability of the modernized device to decrease the incidence of cup detachment, secondary to the inadvertent application of excessive traction, may result in considerable safety, medico-legal and didactic advantages.

  10. Simultaneous Application of Fibrous Piezoresistive Sensors for Compression and Traction Detection in Glass Laminate Composites

    PubMed Central

    Nauman, Saad; Cristian, Irina; Koncar, Vladan

    2011-01-01

    This article describes further development of a novel Non Destructive Evaluation (NDE) approach described in one of our previous papers. Here these sensors have been used for the first time as a Piecewise Continuous System (PCS), which means that they are not only capable of following the deformation pattern but can also detect distinctive fracture events. In order to characterize the simultaneous compression and traction response of these sensors, multilayer glass laminate composite samples were prepared for 3-point bending tests. The laminate sample consisted of five layers of plain woven glass fabrics placed one over another. The sensors were placed at two strategic locations during the lay-up process so as to follow traction and compression separately. The reinforcements were then impregnated in epoxy resin and later subjected to 3-point bending tests. An appropriate data treatment and recording device has also been developed and used for simultaneous data acquisition from the two sensors. The results obtained, under standard testing conditions have shown that our textile fibrous sensors can not only be used for simultaneous detection of compression and traction in composite parts for on-line structural health monitoring but their sensitivity and carefully chosen location inside the composite ensures that each fracture event is indicated in real time by the output signal of the sensor. PMID:22163707

  11. Simultaneous application of fibrous piezoresistive sensors for compression and traction detection in glass laminate composites.

    PubMed

    Nauman, Saad; Cristian, Irina; Koncar, Vladan

    2011-01-01

    This article describes further development of a novel Non Destructive Evaluation (NDE) approach described in one of our previous papers. Here these sensors have been used for the first time as a Piecewise Continuous System (PCS), which means that they are not only capable of following the deformation pattern but can also detect distinctive fracture events. In order to characterize the simultaneous compression and traction response of these sensors, multilayer glass laminate composite samples were prepared for 3-point bending tests. The laminate sample consisted of five layers of plain woven glass fabrics placed one over another. The sensors were placed at two strategic locations during the lay-up process so as to follow traction and compression separately. The reinforcements were then impregnated in epoxy resin and later subjected to 3-point bending tests. An appropriate data treatment and recording device has also been developed and used for simultaneous data acquisition from the two sensors. The results obtained, under standard testing conditions have shown that our textile fibrous sensors can not only be used for simultaneous detection of compression and traction in composite parts for on-line structural health monitoring but their sensitivity and carefully chosen location inside the composite ensures that each fracture event is indicated in real time by the output signal of the sensor.

  12. Thrombin-induced contraction in alveolar epithelial cells probed by traction microscopy.

    PubMed

    Gavara, Núria; Sunyer, Raimon; Roca-Cusachs, Pere; Farré, Ramon; Rotger, Mar; Navajas, Daniel

    2006-08-01

    Contractile tension of alveolar epithelial cells plays a major role in the force balance that regulates the structural integrity of the alveolar barrier. The aim of this work was to study thrombin-induced contractile forces of alveolar epithelial cells. A549 alveolar epithelial cells were challenged with thrombin, and time course of contractile forces was measured by traction microscopy. The cells exhibited basal contraction with total force magnitude 55.0 +/- 12.0 nN (mean +/- SE, n = 12). Traction forces were exerted predominantly at the cell periphery and pointed to the cell center. Thrombin (1 U/ml) induced a fast and sustained 2.5-fold increase in traction forces, which maintained peripheral and centripetal distribution. Actin fluorescent staining revealed F-actin polymerization and enhancement of peripheral actin rim. Disruption of actin cytoskeleton with cytochalasin D (5 microM, 30 min) and inhibition of myosin light chain kinase with ML-7 (10 microM, 30 min) and Rho kinase with Y-27632 (10 microM, 30 min) markedly depressed basal contractile tone and abolished thrombin-induced cell contraction. Therefore, the contractile response of alveolar epithelial cells to the inflammatory agonist thrombin was mediated by actin cytoskeleton remodeling and actomyosin activation through myosin light chain kinase and Rho kinase signaling pathways. Thrombin-induced contractile tension might further impair alveolar epithelial barrier integrity in the injured lung.

  13. Modelling, simulation and applications of longitudinal train dynamics

    NASA Astrophysics Data System (ADS)

    Cole, Colin; Spiryagin, Maksym; Wu, Qing; Sun, Yan Quan

    2017-10-01

    Significant developments in longitudinal train simulation and an overview of the approaches to train models and modelling vehicle force inputs are firstly presented. The most important modelling task, that of the wagon connection, consisting of energy absorption devices such as draft gears and buffers, draw gear stiffness, coupler slack and structural stiffness is then presented. Detailed attention is given to the modelling approaches for friction wedge damped and polymer draft gears. A significant issue in longitudinal train dynamics is the modelling and calculation of the input forces - the co-dimensional problem. The need to push traction performances higher has led to research and improvement in the accuracy of traction modelling which is discussed. A co-simulation method that combines longitudinal train simulation, locomotive traction control and locomotive vehicle dynamics is presented. The modelling of other forces, braking propulsion resistance, curve drag and grade forces are also discussed. As extensions to conventional longitudinal train dynamics, lateral forces and coupler impacts are examined in regards to interaction with wagon lateral and vertical dynamics. Various applications of longitudinal train dynamics are then presented. As an alternative to the tradition single wagon mass approach to longitudinal train dynamics, an example incorporating fully detailed wagon dynamics is presented for a crash analysis problem. Further applications of starting traction, air braking, distributed power, energy analysis and tippler operation are also presented.

  14. Hybrid electric vehicle power management system

    DOEpatents

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  15. Surgical approach in treatment of translation/rotation injuries of the lower cervical spine in 21 patients.

    PubMed

    Llácer-Ortega, Jose L; Riesgo-Suárez, Pedro; Piquer-Belloch, Jose; Rovira-Lillo, Vicente

    2012-05-01

    The management of lower cervical spine injuries with a dislocation of one or both facet joints and a displacement of a vertebra over the adjacent stills generates considerable controversy. We describe our experience in surgical approach of these injuries. We present 21 cases treated between 2003-2010. Neurological status was evaluated with Frankel scale. Diagnosis was done by radiograph (XR), computed tomography (CT) and/or magnetic resonance image (MRI). Cervical traction was placed in 10 cases before surgery. Posterior and/or anterior approach was used for reduction and stabilization. The 21 cases presented were treated by surgery. Posterior approach was initially used in 17 cases and complete reduction was achieved in 13 of them. The 4 cases where we only got a partial reduction, surgery had to be delayed for different reasons. Anterior approach was initially used in 4 of the 21 cases. In 3 of them, reduction was previously obtained by traction and the fourth case anterior approach was used initially due to an important spinal cord compression. Permanent stabilization was achieved in 19 of the 21 cases. In 1 of the other 2 cases an important deformity was detected after the anterior approach. The other case had a minimal progression after a posterior approach with no increase in successive check-ups. In the first 10 cases, we used traction before surgery but reduction was achieved only in 3 of them. As the number of cases increased we rather used posterior approach in the first place, without even trying a preoperative traction. There was no case of neurological deterioration after surgery. Translation/rotation injuries of the lower cervical spine are unstable and surgical treatment must be indicated. It is our impression that posterior approach allows a better reduction and stabilization of this injuries and should be used initially without even trying a preoperative traction. Copyright © 2011 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  16. Interactions between the L1 cell adhesion molecule and ezrin support traction-force generation and can be regulated by tyrosine phosphorylation.

    PubMed

    Sakurai, Takeshi; Gil, Orlando D; Whittard, John D; Gazdoiu, Mihaela; Joseph, Todd; Wu, James; Waksman, Adam; Benson, Deanna L; Salton, Stephen R; Felsenfeld, Dan P

    2008-09-01

    An Ig superfamily cell-adhesion molecule, L1, forms an adhesion complex at the cell membrane containing both signaling molecules and cytoskeletal proteins. This complex mediates the transduction of extracellular signals and generates actin-mediated traction forces, both of which support axon outgrowth. The L1 cytoplasmic region binds ezrin, an adapter protein that interacts with the actin cytoskeleton. In this study, we analyzed L1-ezrin interactions in detail, assessed their role in generating traction forces by L1, and identified potential regulatory mechanisms controlling ezrin-L1 interactions. The FERM domain of ezrin binds to the juxtamembrane region of L1, demonstrated by yeast two-hybrid interaction traps and protein binding analyses in vitro. A lysine-to-leucine substitution in this domain of L1 (K1147L) shows reduced binding to the ezrin FERM domain. Additionally, in ND7 cells, the K1147L mutation inhibits retrograde movement of L1 on the cell surface that has been linked to the generation of the traction forces necessary for axon growth. A membrane-permeable peptide consisting of the juxtamembrane region of L1 that can disrupt endogenous L1-ezrin interactions inhibits neurite extension of cerebellar cells on L1 substrates. Moreover, the L1-ezrin interactions can be modulated by tyrosine phosphorylation of the L1 cytoplasmic region, namely, Y1151, possibly through Src-family kinases. Replacement of this tyrosine together with Y1176 with either aspartate or phenylalanine changes ezrin binding and alters colocalization with ezrin in ND7 cells. Collectively, these data suggest that L1-ezrin interactions mediated by the L1 juxtamembrane region are involved in traction-force generation and can be regulated by the phosphorylation of L1. (c) 2008 Wiley-Liss, Inc.

  17. A nearest-neighbour discretisation of the regularized stokeslet boundary integral equation

    NASA Astrophysics Data System (ADS)

    Smith, David J.

    2018-04-01

    The method of regularized stokeslets is extensively used in biological fluid dynamics due to its conceptual simplicity and meshlessness. This simplicity carries a degree of cost in computational expense and accuracy because the number of degrees of freedom used to discretise the unknown surface traction is generally significantly higher than that required by boundary element methods. We describe a meshless method based on nearest-neighbour interpolation that significantly reduces the number of degrees of freedom required to discretise the unknown traction, increasing the range of problems that can be practically solved, without excessively complicating the task of the modeller. The nearest-neighbour technique is tested against the classical problem of rigid body motion of a sphere immersed in very viscous fluid, then applied to the more complex biophysical problem of calculating the rotational diffusion timescales of a macromolecular structure modelled by three closely-spaced non-slender rods. A heuristic for finding the required density of force and quadrature points by numerical refinement is suggested. Matlab/GNU Octave code for the key steps of the algorithm is provided, which predominantly use basic linear algebra operations, with a full implementation being provided on github. Compared with the standard Nyström discretisation, more accurate and substantially more efficient results can be obtained by de-refining the force discretisation relative to the quadrature discretisation: a cost reduction of over 10 times with improved accuracy is observed. This improvement comes at minimal additional technical complexity. Future avenues to develop the algorithm are then discussed.

  18. A dynamic traction splint for the management of extrinsic tendon tightness.

    PubMed

    Dovelle, S; Heeter, P K; Phillips, P D

    1987-02-01

    The dynamic traction splint designed by therapists at Walter Reed Army Medical Center is used for the management of extrinsic extensor tendon tightness commonly seen in brachial plexus injuries and traumatic soft tissue injuries of the upper extremity. The two components of the splint allow for simultaneous maximum flexion of the MCP and IP joints. This simple and economical splint provides an additional modality to any occupational therapy service involved in the management of upper extremity disorders.

  19. Research Study Towards a MEFFV Electric Armament System

    DTIC Science & Technology

    2004-01-01

    CHPSPerf Inputs Parameter Setting Engine Power (kW) 500 per engine Generator Power (kW) 500/generator Traction Motors Power (kW) 500/side # Battery Pack...Cells in Parallel 2 # Motors in Drive Train 2 Max Power of Traction Motors 200 Minimum Engine Power (kW) 50 Optimum Engine Power (kW) 750 Stop... motors . Other options were examined for the energy storage system. Of particular interest in this regard is the use of the CPA flywheel as the load

  20. Camouflage treatment for class III malocclusion combined with traction of an impacted maxillary central incisor.

    PubMed

    Closs, Luciane Quadrado; Mundstock, Karina Santos; Ribeiro, Darlene Santos; Reston, Eduardo Galia; Silva, Aurelício Novaes

    2010-01-01

    This case report describes the treatment of a patient with an unerupted maxillary left central incisor, class III malocclusion with crossbite of the maxillary posterior teeth and lateral open bite. Treatment consisted of rapid maxillary expansion followed by anterior space opening, maxillary protraction and traction of the unerupted teeth with a light force system. Favorable results were obtained in terms of correcting incisor position and class III malocclusion. The results achieved remained stable throughout a 4-year retention period.

  1. Traction studies of northeast corridor rail passenger service: Executive summary

    NASA Technical Reports Server (NTRS)

    Macie, T. W.; Stallkamp, J. A.

    1980-01-01

    The enabling legislation of 1976 for improvement of service in the Northeast corridor (NEC) requires a schedule of 2 h 40 min between Washington and New York City by 1981 and 3 h 40 min between NYC and Boston, when the electrification is completed. Various options of the NEC operation that may satisfy the legislation were investigated, particularly in terms of travel time and energy consumption. NEC operations were compared with overseas systems and practices. The emerging new technology of AC traction was also evaluated.

  2. Hidden order in crackling noise during peeling of an adhesive tape.

    PubMed

    Kumar, Jagadish; Ciccotti, M; Ananthakrishna, G

    2008-04-01

    We address the longstanding problem of recovering dynamical information from noisy acoustic emission signals arising from peeling of an adhesive tape subject to constant traction velocity. Using the phase space reconstruction procedure we demonstrate the deterministic chaotic dynamics by establishing the existence of correlation dimension as also a positive Lyapunov exponent in a midrange of traction velocities. The results are explained on the basis of the model that also emphasizes the deterministic origin of acoustic emission by clarifying its connection to stick-slip dynamics.

  3. Use of the Endoholder device during robotic-assisted laparoscopic radical prostatectomy: the "poor man's" fourth arm equivalent.

    PubMed

    Zorn, Kevin C; Gofrit, Ofer N; Zagaja, Gregory P; Shalhav, Arieh L

    2008-02-01

    During standard, six-port set-up, robotic-assisted laparoscopic radical prostatectomy (RLRP) using a three-arm daVinci system (DVS), two assistants are routinely required. The role of the second assistant is often limited to isometric traction during prostate dissection. Due to muscle fatigue and inability of the operator to see the operative field, frequent repositioning of the second assistant is often required. In an attempt to improve efficiency in such surgical situations, we describe the use of the Endoholder, an adjustable articulating instrument holder, to assist during RLRP. During 100 consecutive cases, the Endoholder provided quick, reproducible retraction to facilitate exposure. No complications occurred with its use. The device reduced the need for a dedicated second assistant to stand bedside. We have achieved significant improvements in the safety and efficiency of retraction of the rectum, bladder, and prostate during RLRP with the Endoholder. For urologists working with a three-armed DVS, use of the Endoholder may help facilitate tissue retraction during dissection.

  4. Performance of a 14.9-kW laminated-frame dc series motor with chopper controller

    NASA Technical Reports Server (NTRS)

    Schwab, J. R.

    1979-01-01

    Traction motor using two types of excitation: ripple free dc from a motor generator set for baseline data and chopped dc as supplied by a battery and chopper controller was tested. For the same average values of input voltage and current, the power output was independent of the type of excitation. At the same speeds, motor efficiency at low power output (corresponding to low duty cycle of the controller) was 5 to 10 percentage points less on chopped dc than on ripple-free dc. This illustrates that for chopped waveforms, it is incorrect to calculate input power as the product of average voltage and average current. Locked-rotor torque, no load losses, and magnetic saturation data were so determined.

  5. Fast charging nickel-metal hydride traction batteries

    NASA Astrophysics Data System (ADS)

    Yang, Xiao Guang; Liaw, Bor Yann

    This paper describes the fast charge ability, or "fast rechargeability", of nominal 85 Ah Ni-MH modules under various fast charge conditions, including constant current (CC); typically 1-3C, and constant power (CP) regimes. Our tests revealed that there is no apparent difference between CC and CP fast charge regimes with respect to charge efficiency and time. Following the USABC Electric Vehicle Battery Test Procedures Manual (Revision 2, 1996), we demonstrated that we were able to return 40% state of charge (SOC) from 60% depth of discharge (DOD) to 20% DOD within 15 min. Most importantly, we found that the internal pressure of the cell is the most critical parameter in the control of the fast charge process and the safe operation of the modules.

  6. Hybrid High-Order methods for finite deformations of hyperelastic materials

    NASA Astrophysics Data System (ADS)

    Abbas, Mickaël; Ern, Alexandre; Pignet, Nicolas

    2018-01-01

    We devise and evaluate numerically Hybrid High-Order (HHO) methods for hyperelastic materials undergoing finite deformations. The HHO methods use as discrete unknowns piecewise polynomials of order k≥1 on the mesh skeleton, together with cell-based polynomials that can be eliminated locally by static condensation. The discrete problem is written as the minimization of a broken nonlinear elastic energy where a local reconstruction of the displacement gradient is used. Two HHO methods are considered: a stabilized method where the gradient is reconstructed as a tensor-valued polynomial of order k and a stabilization is added to the discrete energy functional, and an unstabilized method which reconstructs a stable higher-order gradient and circumvents the need for stabilization. Both methods satisfy the principle of virtual work locally with equilibrated tractions. We present a numerical study of the two HHO methods on test cases with known solution and on more challenging three-dimensional test cases including finite deformations with strong shear layers and cavitating voids. We assess the computational efficiency of both methods, and we compare our results to those obtained with an industrial software using conforming finite elements and to results from the literature. The two HHO methods exhibit robust behavior in the quasi-incompressible regime.

  7. The development of new radiation protocols for insect sterilization using long wavelength x-rays

    NASA Astrophysics Data System (ADS)

    Urquidi, Jacob; Brar, Ramaninder K.; Rodriguez, Stacy; Hansen, Immo

    2015-07-01

    Control of insect species for the protection of crops, livestock, and prevention of disease such as dengue fever and malaria is a high priority in today's global economy. Traditional methods such as pesticides have fallen out of favor because its effects are indiscriminate as well as adverse and unpredictable impacts on the environment. Modern novel techniques such as genetic modification have had trouble gaining traction due to ethics concerns and the potential for unforeseen side effects. One approach that has gained traction and has proven its efficacy is the use of ionizing radiation to affect sterility in insect species in order to scale back their population. Known as Sterile Insect Technique (SIT), it has proven very effective in eradicating certain dipteran insect populations. However, when standard sterilization methods developed for dipertans are applied to mosquito populations significant complications arise, such as an inability to compete with non-irradiated males and high mortality rates. We have investigated the effect of treatment with x-rays of different wavelengths on x-ray sterilized mosquito males. Our results have demonstrated that longer wavelength x-rays have a significant effect on the outcome of the sterile males' longevity as well as an increase on the efficacy of sterilization while employing a substantially lower dose.

  8. Crackle analysis for chest auscultation and comparison with high-resolution CT findings.

    PubMed

    Kawamura, Takeo; Matsumoto, Tsuneo; Tanaka, Nobuyuki; Kido, Shoji; Jiang, Zhongwei; Matsunaga, Naofumi

    2003-01-01

    The purpose of our study was to clarify the correlation between respiratory sounds and the high-resolution CT (HRCT) findings of lung diseases. Respiratory sounds were recorded using a stethoscope in 41 patients with crackles. All had undergone inspiratory and expiratory CT. Subjects included 18 patients with interstitial pneumonia and 23 without interstitial pneumonia. Two parameters, two-cycle duration (2CD) and initial deflection width (IDW) of the "crackle," were induced by time-expanded waveform analysis. Two radiologists independently assessed 11 HRCT findings. An evaluation was carried out to determine whether there was a significant difference in the two parameters between the presence and absence of each HRCT finding. The two parameters of crackles were significantly shorter in the interstitial pneumonia group than the non-interstitial pneumonia group. Ground-glass opacity, honeycombing, lung volume reduction, traction bronchiectasis, centrilobular nodules, emphysematous change, and attenuation and volume change between inspiratory and expiratory CT were correlated with one or two parameters in all patients, whereas the other three findings were not. Among the interstitial pneumonia group, traction bronchiectasis, emphysematous change, and attenuation and volume change between inspiratory and expiratory CT were significantly correlated with one or two parameters. Abnormal respiratory sounds were correlated with some HRCT findings.

  9. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  10. The development of new radiation protocols for insect sterilization using long wavelength x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urquidi, Jacob, E-mail: jurquidi@nmsu.edu; Brar, Ramaninder K.; Rodriguez, Stacy

    Control of insect species for the protection of crops, livestock, and prevention of disease such as dengue fever and malaria is a high priority in today’s global economy. Traditional methods such as pesticides have fallen out of favor because its effects are indiscriminate as well as adverse and unpredictable impacts on the environment. Modern novel techniques such as genetic modification have had trouble gaining traction due to ethics concerns and the potential for unforeseen side effects. One approach that has gained traction and has proven its efficacy is the use of ionizing radiation to affect sterility in insect species inmore » order to scale back their population. Known as Sterile Insect Technique (SIT), it has proven very effective in eradicating certain dipteran insect populations. However, when standard sterilization methods developed for dipertans are applied to mosquito populations significant complications arise, such as an inability to compete with non-irradiated males and high mortality rates. We have investigated the effect of treatment with x-rays of different wavelengths on x-ray sterilized mosquito males. Our results have demonstrated that longer wavelength x-rays have a significant effect on the outcome of the sterile males’ longevity as well as an increase on the efficacy of sterilization while employing a substantially lower dose.« less

  11. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness.

    PubMed

    Kong, Hyun Joon; Polte, Thomas R; Alsberg, Eben; Mooney, David J

    2005-03-22

    The mechanical properties of cell adhesion substrates regulate cell phenotype, but the mechanism of this relation is currently unclear. It may involve the magnitude of traction force applied by the cell, and/or the ability of the cells to rearrange the cell adhesion molecules presented from the material. In this study, we describe a FRET technique that can be used to evaluate the mechanics of cell-material interactions at the molecular level and simultaneously quantify the cell-based nanoscale rearrangement of the material itself. We found that these events depended on the mechanical rigidity of the adhesion substrate. Furthermore, both the proliferation and differentiation of preosteoblasts (MC3T3-E1) correlated to the magnitude of force that cells generate to cluster the cell adhesion ligands, but not the extent of ligand clustering. Together, these data demonstrate the utility of FRET in analyzing cell-material interactions, and suggest that regulation of phenotype with substrate stiffness is related to alterations in cellular traction forces.

  12. Evaluation of traction stirrup distraction technique to increase the joint space of the shoulder joint in the dog: A cadaveric study.

    PubMed

    Devesa, V; Rovesti, G L; Urrutia, P G; Sanroman, F; Rodriguez-Quiros, J

    2015-06-01

    The objective of this study was to evaluate technical feasibility and efficacy of a joint distraction technique by traction stirrup to facilitate shoulder arthroscopy and assess potential soft tissue damage. Twenty shoulders were evaluated radiographically before distraction. Distraction was applied with loads from 40 N up to 200 N, in 40 N increments, and the joint space was recorded at each step by radiographic images. The effects of joint flexion and intra-articular air injection at maximum load were evaluated. Radiographic evaluation was performed after distraction to evaluate ensuing joint laxity. Joint distraction by traction stirrup technique produces a significant increase in the joint space; an increase in joint laxity could not be inferred by standard and stress radiographs. However, further clinical studies are required to evaluate potential neurovascular complications. A wider joint space may be useful to facilitate arthroscopy, reducing the likelihood for iatrogenic damage to intra-articular structures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Changes in E-cadherin rigidity sensing regulate cell adhesion.

    PubMed

    Collins, Caitlin; Denisin, Aleksandra K; Pruitt, Beth L; Nelson, W James

    2017-07-18

    Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin-dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell-cell adhesion assay and live cell imaging of cell-cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell-cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell-cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell-cell adhesion.

  14. Changes in E-cadherin rigidity sensing regulate cell adhesion

    PubMed Central

    Collins, Caitlin; Pruitt, Beth L.; Nelson, W. James

    2017-01-01

    Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin–dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell–cell adhesion assay and live cell imaging of cell–cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell–cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell–cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell–cell adhesion. PMID:28674019

  15. Extraordinary sediment delivery and rapid geomorphic response following the 2008–2009 eruption of Chaitén Volcano, Chile

    USGS Publications Warehouse

    Major, Jon J.; Bertin, Daniel; Pierson, Thomas C.; Amigo, Alvaro; Iroume, Andres; Ulloa, Hector; Castro, Jonathan M.

    2016-01-01

    The 10 day explosive phase of the 2008–2009 eruption of Chaitén volcano, Chile, draped adjacent watersheds with a few cm to >1 m of tephra. Subsequent lava-dome collapses generated pyroclastic flows that delivered additional sediment. During the waning phase of explosive activity, modest rainfall triggered an extraordinary sediment flush which swiftly aggraded multiple channels by many meters. Ten kilometer from the volcano, Chaitén River channel aggraded 7 m and the river avulsed through a coastal town. That aggradation and delta growth below the abandoned and avulsed channels allow estimates of postdisturbance traction-load transport rate. On the basis of preeruption bathymetry and remotely sensed measurements of delta-surface growth, we derived a time series of delta volume. The initial flush from 11 to 14 May 2008 deposited 0.5–1.5 × 106 m3 of sediment at the mouth of Chaitén River. By 26 May, after channel avulsion, a second delta amassed about 2 × 106 m3 of sediment; by late 2011 it amassed about 11 × 106 m3. Accumulated sediment consists of low-density vesicular pumice and lithic rhyolite sand. Rates of channel aggradation and delta growth, channel width, and an assumed deposit bulk density of 1100–1500 kg m−3 indicate mean traction-load transport rate just before and shortly after avulsion (∼14–15 May) was very high, possibly as great as several tens of kg s−1 m−1. From October 2008 to December 2011, mean traction-load transport rate declined from about 7 to 0.4 kg−1 m−1. Despite extraordinary sediment delivery, disturbed channels recovered rapidly (a few years).

  16. Usefulness of a traction method using dental floss and a hemoclip for gastric endoscopic submucosal dissection: a propensity score matching analysis (with videos).

    PubMed

    Suzuki, Sho; Gotoda, Takuji; Kobayashi, Yoshiyuki; Kono, Shin; Iwatsuka, Kunio; Yagi-Kuwata, Naoko; Kusano, Chika; Fukuzawa, Masakatsu; Moriyasu, Fuminori

    2016-02-01

    Although endoscopic submucosal dissection (ESD) is a significant advancement in therapeutic endoscopy, it is a complicated technique and requires considerable expertise. In this exploratory study, we evaluated the efficacy of a simple traction method that uses dental floss and a hemoclip (DFC) and was developed to overcome the technical difficulties of ESD. In total, 238 early gastric cancers treated by ESD between May 2012 and December 2014 at Tokyo Medical University were retrospectively reviewed. Lesions treated by conventional ESD (n = 185) and by ESD with DFC (ESD-DFC) (n = 53) were compared. Multivariable analyses and propensity score matching were used to compensate for the differences in age, sex, resected specimen size, lesion location, lesion position, presence of ulceration, and operator level. The procedure time, rate of en bloc and complete resection, and rates of adverse events were evaluated between the 2 groups. Propensity score matching analysis created 43 matched pairs. Adjusted comparisons between ESD-DFC and conventional ESD showed similar treatment outcomes (en bloc resection rate: 97.7% vs 100%, P = .315; complete resection rate: 90.7% vs 95.3%, P = .397; perforation during ESD rate: 2.3% vs 2.3%, P = 1.000; post-ESD bleeding rate: 4.7% vs 4.7%, P = 1.000) but a significantly shorter procedure time for ESD-DFC (82.2 ± 79.5 minutes vs 118.2 ± 71.6 minutes, P = .002). ESD-DFC facilitated rapid ESD with good visualization and traction while ensuring high curability and safety. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  17. [Assessment of rehabilitation progress in patients with cervical radicular pain syndrome after application of high intensity laser therapy - HILT and Saunders traction device].

    PubMed

    Haładaj, Robert; Pingot, Julia; Pingot, Mariusz

    2015-07-01

    Osteoarthritis of the spine is a major global health problem, it is an epidemic of our times. It affects all parts of the spine, but the hardest to treat is its cervical region. The cervical spine is most mobile, delicate and sensitive to any load. It requires special care in conservative treatment. To date the selection of effective therapeutic approaches has been controversial. The aim of the study was to assess the progress of rehabilitation in patients with cervical radicular pain syndrome after using two different methods of treatment: HILT and spinal axial traction with the use of Saunders device. The randomized study included 150 patients (81 women and 69 men, aged 24-67 years, mean age 45.5) divided into two groups of 75 patients each with characteristic symptoms of radicular pain. The measurement of the range of cervical spine movement of the cervical spine, visual analog scale for pain - VAS and a NDI questionnaire (Neck Disability Index - Polish version) - an indicator of functional disorders - were used to evaluate the effectiveness of the two different therapies. The results obtained by Saunders method remained significantly higher than those obtained when HILT laser therapy was used for most of the examined parameters. A thorough analysis of the results showed greater analgesic efficacy, improved global mobility and reduced functional impairment in patients treated with Saunders method. Both therapeutic methods manifest analgesic effect and a positive impact on the improvement of range of cervical spine movement in patients with radicular pain in this spine region. HILT laser therapy and Saunders traction device reduce neck disability index in the treated patients. © 2015 MEDPRESS.

  18. Growth Cone Biomechanics in Peripheral and Central Nervous System Neurons

    NASA Astrophysics Data System (ADS)

    Urbach, Jeffrey; Koch, Daniel; Rosoff, Will; Geller, Herbert

    2012-02-01

    The growth cone, a highly motile structure at the tip of an axon, integrates information about the local environment and modulates outgrowth and guidance, but little is known about effects of external mechanical cues and internal mechanical forces on growth-cone mediated guidance. We have investigated neurite outgrowth, traction forces and cytoskeletal substrate coupling on soft elastic substrates for dorsal root ganglion (DRG) neurons (from the peripheral nervous system) and hippocampal neurons (from the central) to see how the mechanics of the microenvironment affect different populations. We find that the biomechanics of DRG neurons are dramatically different from hippocampal, with DRG neurons displaying relatively large, steady traction forces and maximal outgrowth and forces on substrates of intermediate stiffness, while hippocampal neurons display weak, intermittent forces and limited dependence of outgrowth and forces on substrate stiffness. DRG growth cones have slower rates of retrograde actin flow and higher density of localized paxillin (a protein associated with substrate adhesion complexes) compared to hippocampal neurons, suggesting that the difference in force generation is due to stronger adhesions and therefore stronger substrate coupling in DRG growth cones.

  19. Diverse landscapes beneath Pine Island Glacier influence ice flow.

    PubMed

    Bingham, Robert G; Vaughan, David G; King, Edward C; Davies, Damon; Cornford, Stephen L; Smith, Andrew M; Arthern, Robert J; Brisbourne, Alex M; De Rydt, Jan; Graham, Alastair G C; Spagnolo, Matteo; Marsh, Oliver J; Shean, David E

    2017-11-20

    The retreating Pine Island Glacier (PIG), West Antarctica, presently contributes ~5-10% of global sea-level rise. PIG's retreat rate has increased in recent decades with associated thinning migrating upstream into tributaries feeding the main glacier trunk. To project future change requires modelling that includes robust parameterisation of basal traction, the resistance to ice flow at the bed. However, most ice-sheet models estimate basal traction from satellite-derived surface velocity, without a priori knowledge of the key processes from which it is derived, namely friction at the ice-bed interface and form drag, and the resistance to ice flow that arises as ice deforms to negotiate bed topography. Here, we present high-resolution maps, acquired using ice-penetrating radar, of the bed topography across parts of PIG. Contrary to lower-resolution data currently used for ice-sheet models, these data show a contrasting topography across the ice-bed interface. We show that these diverse subglacial landscapes have an impact on ice flow, and present a challenge for modelling ice-sheet evolution and projecting global sea-level rise from ice-sheet loss.

  20. Dynamic growth of mixed-mode shear cracks

    USGS Publications Warehouse

    Andrews, D.J.

    1994-01-01

    A pure mode II (in-plane) shear crack cannot propagate spontaneously at a speed between the Rayleigh and S-wave speeds, but a three-dimensional (3D) or two-dimensional (2D) mixed-mode shear crack can propagate in this range, being driven by the mode III (antiplane) component. Two different analytic solutions have been proposed for the mode II component in this case. The first is the solution valid for crack speed less than the Rayleigh speed. When applied above the Rayleigh speed, it predicts a negative stress intensity factor, which implies that energy is generated at the crack tip. Burridge proposed a second solution, which is continuous at the crack tip, but has a singularity in slip velocity at the Rayleigh wave. Spontaneous propagation of a mixed-mode rupture has been calculated with a slip-weakening friction law, in which the slip velocity vector is colinear with the total traction vector. Spontaneous trans-Rayleigh rupture speed has been found. The solution depends on the absolute stress level. The solution for the in-plane component appears to be a superposition of smeared-out versions of the two analytic solutions. The proportion of the first solution increases with increasing absolute stress. The amplitude of the negative in-plane traction pulse is less than the absolute final sliding traction, so that total in-plane traction does not reverse. The azimuth of the slip velocity vector varies rapidly between the onset of slip and the arrival of the Rayleigh wave. The variation is larger at smaller absolute stress.

  1. Microscale evidence of liquefaction and its potential triggers during soft-bed deformation within subglacial traction tills

    NASA Astrophysics Data System (ADS)

    Phillips, Emrys R.; Evans, David J. A.; van der Meer, Jaap J. M.; Lee, Jonathan R.

    2018-02-01

    Published conceptual models argue that much of the forward motion of modern and ancient glaciers is accommodated by deformation of soft-sediments within the underlying bed. At a microscale this deformation results in the development of a range of ductile and brittle structures in water-saturated sediments as they accommodate the stresses being applied by the overriding glacier. Detailed micromorphological studies of subglacial traction tills reveal that these polydeformed sediments may also contain evidence of having undergone repeated phases of liquefaction followed by solid-state shear deformation. This spatially and temporally restricted liquefaction of subglacial traction tills lowers the shear strength of the sediment and promotes the formation of "transient mobile zones" within the bed, which accommodate the shear imposed by the overriding ice. This process of soft-bed sliding, alternating with bed deformation, facilitates glacier movement by way of 'stick-slip' events. The various controls on the slip events have previously been identified as: (i) the introduction of pressurised meltwater into the bed, a process limited by the porosity and permeability of the till; and (ii) pressurisation of porewater as a result of subglacial deformation; to which we include (iii) episodic liquefaction of water-saturated subglacial traction tills in response to glacier seismic activity (icequakes), which are increasingly being recognized as significant processes in modern glaciers and ice sheets. As liquefaction operates only in materials already at very low values of effective stress, its process-form signatures are likely indicative of glacier sub-marginal tills.

  2. Real-Time Visualization of Joint Cavitation

    PubMed Central

    Rowe, Lindsay

    2015-01-01

    Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking. PMID:25875374

  3. [Conservative treatment of femoral fractures in children in data from the Orthopedic Clinic of the 2nd Medical Faculty of Charles University].

    PubMed

    Rybka, D; Trc, T; Mrzena, V

    2003-01-01

    Conservative therapy is the method of choice for treating femoral fractures in younger children all over the world. At the Department of Orthopedic Surgery of the Second Faculty of Medicine, Charles University in Prague, this approach has had a long tradition and has only partly been replaced by other, more recent methods. It is not always necessary to abandon well-established and reliable techniques because of new achievements and this is demonstrated by the results of our study. In a period of 22 years, 112 boys and 97 girls were treated by Bryant's traction and 62 boys and 46 girls by Weber's traction. The former was used in children younger than 5 years, weighing less than 20 kg. The latter was applied in patients between 5 and 10 years of age whose body mass was between 20 to 35 kg. Bryant's traction, used in the younger age category, offered the advantage of easy application without total anesthesia. Both legs were suspended in an apparatus that keeps the patient's pelvis slightly elevated above the bed level. Counter traction was provided by the weight of the suspended pelvis. In Weber's traction, used in children aged 5 to 10 years, a Kirschner's wire was inserted in the distal metaphysis of each femur in the frontal plane. The ends of each wire were attached to a metal U-shaped spreader. This apparatus holds the legs at right angles both in the knees and hips. Each patient was examined by X-ray at 1 week to check the correction of displacement and at 3 weeks to check callus development. All the patients were immobilized in a plaster cast spica for a period of 6 to 8 weeks after injury and each child was also shortly hospitalized for cast removal and early physical therapy. Fractures in the middle of the diaphysis with an oblique fracture line were most frequent. These and long spiral fractures responded well to these two methods in almost all cases. In transverse fractures, which are less common, when an angular dislocation persisted it was tolerated owing to the subsequent remodelation. The most serious complication was a shortening of the leg involved, which often occurred with the use of Bryant's traction. The shortening was found in 80% of the patients shortly after the fracture had healed. A low body mass of the child was generally responsible for failure to stretch the femur to its full length. In children treated by Weber's traction, the shortening was observed in 55% immediately after fracture healing. On examination at 1 and 3 weeks, its presence was markedly lower, occurring in 25% and 17% of the children, respectively. Lengthening was found only occasionally on examination in adolescence or adulthood, but this may have been due to other causes. Excessive movement of the child in bed, usually when the parents came to visit, sometimes interfered with good correction of the displacement. Bryant's traction was used in our department for conservative treatment even in very young children. The plaster cast spica was applied primarily to non-displaced fractures. Pavlík's harness, recommended by Rockwood and Stannard, was used in pediatric injuries only occasionally. When conservative treatment was indicated in older children, Weber's traction was applied. The Göteborg traction described by Havránek was not used. The shortening of the leg treated was the most frequent complication, but our results were not in agreement with the data reported by Stahelim, who described a greater and more frequent shortening in children older than our patients. In our study, younger children suffered from leg shortening more often, as was also reported by Náhoda and Stryhal. The subsequent lengthening was found only occasionally; the average values of 2.6 cm and 2.3 cm in younger and older children, respectively, as reported by Náhoda and Stryhal, were not recorded. When lengthening was observed, its value was always lower. A 30 degrees rotational deviation, observed by Verbeek in one third of his patients, was not seen in our children. Pseudoarthrosis or infection were absent in our population and a literature search showed that, when treated conservatively, femoral fractures were not associated with these complications. Well-established methods of conservative treatment of femoral fractures in children were evaluated with the objective to advocate their importance for today's orthopedic surgery. Although the children treated by these methods are confined to bed for a longer period than when more recent techniques are used, they may avoid many of the complications that accompany these new approaches.

  4. AC propulsion system for an electric vehicle, phase 2

    NASA Astrophysics Data System (ADS)

    Slicker, J. M.

    1983-06-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  5. AC propulsion system for an electric vehicle, phase 2

    NASA Technical Reports Server (NTRS)

    Slicker, J. M.

    1983-01-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  6. Approximate Analysis for Interlaminar Stresses in Composite Structures with Thickness Discontinuities

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Starnes, James H., Jr.

    1996-01-01

    An efficient, approximate analysis for calculating complete three-dimensional stress fields near regions of geometric discontinuities in laminated composite structures is presented. An approximate three-dimensional local analysis is used to determine the detailed local response due to far-field stresses obtained from a global two-dimensional analysis. The stress results from the global analysis are used as traction boundary conditions for the local analysis. A generalized plane deformation assumption is made in the local analysis to reduce the solution domain to two dimensions. This assumption allows out-of-plane deformation to occur. The local analysis is based on the principle of minimum complementary energy and uses statically admissible stress functions that have an assumed through-the-thickness distribution. Examples are presented to illustrate the accuracy and computational efficiency of the local analysis. Comparisons of the results of the present local analysis with the corresponding results obtained from a finite element analysis and from an elasticity solution are presented. These results indicate that the present local analysis predicts the stress field accurately. Computer execution-times are also presented. The demonstrated accuracy and computational efficiency of the analysis make it well suited for parametric and design studies.

  7. Experimental study of a fuel cell power train for road transport application

    NASA Astrophysics Data System (ADS)

    Corbo, P.; Corcione, F. E.; Migliardini, F.; Veneri, O.

    The development of fuel cell electric vehicles requires the on-board integration of fuel cell systems and electric energy storage devices, with an appropriate energy management system. The optimization of performance and efficiency needs an experimental analysis of the power train, which has to be effected in both stationary and transient conditions (including standard driving cycles). In this paper experimental results concerning the performance of a fuel cell power train are reported and discussed. In particular characterization results for a small sized fuel cell system (FCS), based on a 2.5 kW PEM stack, alone and coupled to an electric propulsion chain of 3.7 kW are presented and discussed. The control unit of the FCS allowed the main stack operative parameters (stoichiometric ratio, hydrogen and air pressure, temperature) to be varied and regulated in order to obtain optimized polarization and efficiency curves. Experimental runs effected on the power train during standard driving cycles have allowed the performance and efficiency of the individual components (fuel cell stack and auxiliaries, dc-dc converter, traction batteries, electric engine) to be evaluated, evidencing the role of output current and voltage of the dc-dc converter in directing the energy flows within the propulsion system.

  8. Intraoperative changes in transcranial motor evoked potentials and somatosensory evoked potentials predicting outcome in children with intramedullary spinal cord tumors.

    PubMed

    Cheng, Jason S; Ivan, Michael E; Stapleton, Christopher J; Quinones-Hinojosa, Alfredo; Gupta, Nalin; Auguste, Kurtis I

    2014-06-01

    Intraoperative dorsal column mapping, transcranial motor evoked potentials (TcMEPs), and somatosensory evoked potentials (SSEPs) have been used in adults to assist with the resection of intramedullary spinal cord tumors (IMSCTs) and to predict postoperative motor deficits. The authors sought to determine whether changes in MEP and SSEP waveforms would similarly predict postoperative motor deficits in children. The authors reviewed charts and intraoperative records for children who had undergone resection for IMSCTs as well as dorsal column mapping and TcMEP and SSEP monitoring. Motor evoked potential data were supplemented with electromyography data obtained using a Kartush microstimulator (Medtronic Inc.). Motor strength was graded using the Medical Research Council (MRC) scale during the preoperative, immediate postoperative, and follow-up periods. Reductions in SSEPs were documented after mechanical traction, in response to maneuvers with the cavitational ultrasonic surgical aspirator (CUSA), or both. Data from 12 patients were analyzed. Three lesions were encountered in the cervical and 7 in the thoracic spinal cord. Two patients had lesions of the cervicomedullary junction and upper spinal cord. Intraoperative MEP changes were noted in half of the patients. In these cases, normal polyphasic signals converted to biphasic signals, and these changes correlated with a loss of 1-2 grades in motor strength. One patient lost MEP signals completely and recovered strength to MRC Grade 4/5. The 2 patients with high cervical lesions showed neither intraoperative MEP changes nor motor deficits postoperatively. Dorsal columns were mapped in 7 patients, and the midline was determined accurately in all 7. Somatosensory evoked potentials were decreased in 7 patients. Two patients each had 2 SSEP decreases in response to traction intraoperatively but had no new sensory findings postoperatively. Another 2 patients had 3 traction-related SSEP decreases intraoperatively, and both had new postoperative sensory deficits that resolved. One additional patient had a CUSA-related SSEP decrease intraoperatively, which resolved postoperatively, and the last patient had 3 traction-related sensory deficits and a CUSA-related sensory deficit postoperatively, none of which resolved. Intraoperative TcMEPs and SSEPs can predict the degree of postoperative motor deficit in pediatric patients undergoing IMSCT resection. This technique, combined with dorsal column mapping, is particularly useful in resecting lesions of the upper cervical cord, which are generally considered to be high risk in this population. Furthermore, the spinal cord appears to be less tolerant of repeated intraoperative SSEP decreases, with 3 successive insults most likely to yield postoperative sensory deficits. Changes in TcMEPs and SSEP waveforms can signal the need to guard against excessive manipulation thereby increasing the safety of tumor resection.

  9. Analysis of fuel cell hybrid locomotives

    NASA Astrophysics Data System (ADS)

    Miller, Arnold R.; Peters, John; Smith, Brian E.; Velev, Omourtag A.

    Led by Vehicle Projects LLC, an international industry-government consortium is developing a 109 t, 1.2 MW road-switcher locomotive for commercial and military railway applications. As part of the feasibility and conceptual-design analysis, a study has been made of the potential benefits of a hybrid power plant in which fuel cells comprise the prime mover and a battery or flywheel provides auxiliary power. The potential benefits of a hybrid power plant are: (i) enhancement of transient power and hence tractive effort; (ii) regenerative braking; (iii) reduction of capital cost. Generally, the tractive effort of a locomotive at low speed is limited by wheel adhesion and not by available power. Enhanced transient power is therefore unlikely to benefit a switcher locomotive, but could assist applications that require high acceleration, e.g. subway trains with all axles powered. In most cases, the value of regeneration in locomotives is minimal. For low-speed applications such as switchers, the available kinetic energy and the effectiveness of traction motors as generators are both minimal. For high-speed heavy applications such as freight, the ability of the auxiliary power device to absorb a significant portion of the available kinetic energy is low. Moreover, the hybrid power plant suffers a double efficiency penalty, namely, losses occur in both absorbing and then releasing energy from the auxiliary device, which result in a net storage efficiency of no more than 50% for present battery technology. Capital cost in some applications may be reduced. Based on an observed locomotive duty cycle, a cost model shows that a hybrid power plant for a switcher may indeed reduce capital cost. Offsetting this potential benefit are the increased complexity, weight and volume of the power plant, as well as 20-40% increased fuel consumption that results from lower efficiency. Based on this analysis, the consortium has decided to develop a pure fuel cell road-switcher locomotive, that is, not a hybrid.

  10. Electric vehicle traction motors - The development of an advanced motor concept

    NASA Technical Reports Server (NTRS)

    Campbell, P.

    1980-01-01

    An axial-field permanent magnet traction motor is described, similar to several advanced motors that are being developed in the United States. This type of machine has several advantages over conventional dc motors, particularly in the electric vehicle application. The rapidly changing cost of magnetic materials, particularly cobalt, makes it important to study the utilization of permanent magnet materials in such machines. The impact of different magnets on machine design is evaluated, and the advantages of using iron powder composites in the armature are assessed.

  11. Personal equipment for low seam coal miners. 8. Improved traction rubber boot soles. Report for 1978-82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, M.S.; Downing, J.V.

    1982-10-01

    Based on laboratory and preliminary field tests of off-the-shelf steel-toed rubber boots, a molded sole design was developed to provide increased traction over conventional calendared sole miners boots. The pattern provided sharp edges perpendicular to both lateral and fore-aft slip vectors. The sole was designed to reduce mud caking. An instep lace-up capability was added to better secure the foot inside the boot. A 5-month field evaluation compared the prototype boots to the boots the participants usually wear.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, W.; Shiota, T.

    Two categories of NaS traction batteries will be discussed: the present battery of Asea Brown Boveri and Powerplex and potential future NaS traction batteries. A large number of our present 24 kWh - 35 kw battery has been subjected to bench and on-vehicle performance tests. Test results will be presented. Future battery types to be volume produced in the early 1990`s are discussed with regard to energy, power and shape for special applications such a passenger car and van propulsion. Examples for those batteries will be given and projected performance characteristiques will be discussed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, W.; Shiota, T.

    Two categories of NaS traction batteries will be discussed: the present battery of Asea Brown Boveri and Powerplex and potential future NaS traction batteries. A large number of our present 24 kWh - 35 kw battery has been subjected to bench and on-vehicle performance tests. Test results will be presented. Future battery types to be volume produced in the early 1990's are discussed with regard to energy, power and shape for special applications such a passenger car and van propulsion. Examples for those batteries will be given and projected performance characteristiques will be discussed.

  14. [Use of laser- and extremely high frequency magnetic therapy in the preoperative period before diskectomy].

    PubMed

    Miriotova, N F; Levitskiĭ, E F; Stupak, I N; Serebrennikov, A N

    2002-01-01

    Electromagnetic therapy and tractions contributed to reduction of neurovascular structures compression evident not only from regression of clinical symptoms but also from improvement of regional hemodynamics, functional condition of the affected nerves and muscles of the limbs. This prediscectomy preparation appeared an effective conservative treatment for 69% patients. The rest patients benefited from such preoperative preparation which provided stabilization of the patients' condition before and after dyscectomy.

  15. Modelling and Simulation in the Design Process of Armored Vehicles

    DTIC Science & Technology

    2003-03-01

    trackway conditions is a demanding optimization task. Basically, a high level of ride comfort requires soft suspension tuning, whereas driving safety relies...The maximum off-road speed is generally limited by traction, input torque, driving safety and ride comfort. When obstacles are to be negotiated, the...wheel travel was defined during the mobility simulation runs. Figure 14: Ramp 1.5m at 40 kph; virtual and physical prototype Driving safety and ride

  16. Study on optimal design of 210kW traction IPMSM considering thermal demagnetization characteristics

    NASA Astrophysics Data System (ADS)

    Kim, Young Hyun; Lee, Seong Soo; Cheon, Byung Chul; Lee, Jung Ho

    2018-04-01

    This study analyses the permanent magnet (PM) used in the rotor of an interior permanent magnet synchronous motor (IPMSM) used for driving an electric railway vehicle (ERV) in the context of controllable shape, temperature, and external magnetic field. The positioning of the inserted magnets is a degree of freedom in the design of such machines. This paper describes a preliminary analysis using parametric finite-element method performed with the aim of achieving an effective design. Next, features of the experimental design, based on methods such as the central-composition method, Box-Behnken and Taguchi method, are explored to optimise the shape of the high power density. The results are used to produce an optimal design for IPMSMs, with design errors minimized using Maxwell 2D, a commercial program. Furthermore, the demagnetization process is analysed based on the magnetization and demagnetization theory for PM materials in computer simulation. The result of the analysis can be used to calculate the magnetization and demagnetization phenomenon according to the input B-H curve. This paper presents the conditions for demagnetization by the external magnetic field in the driving and stopped states, and proposes a simulation method that can analyse demagnetization phenomena according to each condition and design the IPMSM that maximizes efficiency and torque characteristics. Finally, operational characteristics are analysed in terms of the operation patterns of railway vehicles, and control conditions are deduced to achieve maximum efficiency in all sections. This was experimentally verified.

  17. Gradient boosting machine for modeling the energy consumption of commercial buildings

    DOE PAGES

    Touzani, Samir; Granderson, Jessica; Fernandes, Samuel

    2017-11-26

    Accurate savings estimations are important to promote energy efficiency projects and demonstrate their cost-effectiveness. The increasing presence of advanced metering infrastructure (AMI) in commercial buildings has resulted in a rising availability of high frequency interval data. These data can be used for a variety of energy efficiency applications such as demand response, fault detection and diagnosis, and heating, ventilation, and air conditioning (HVAC) optimization. This large amount of data has also opened the door to the use of advanced statistical learning models, which hold promise for providing accurate building baseline energy consumption predictions, and thus accurate saving estimations. The gradientmore » boosting machine is a powerful machine learning algorithm that is gaining considerable traction in a wide range of data driven applications, such as ecology, computer vision, and biology. In the present work an energy consumption baseline modeling method based on a gradient boosting machine was proposed. To assess the performance of this method, a recently published testing procedure was used on a large dataset of 410 commercial buildings. The model training periods were varied and several prediction accuracy metrics were used to evaluate the model's performance. The results show that using the gradient boosting machine model improved the R-squared prediction accuracy and the CV(RMSE) in more than 80 percent of the cases, when compared to an industry best practice model that is based on piecewise linear regression, and to a random forest algorithm.« less

  18. Gradient boosting machine for modeling the energy consumption of commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touzani, Samir; Granderson, Jessica; Fernandes, Samuel

    Accurate savings estimations are important to promote energy efficiency projects and demonstrate their cost-effectiveness. The increasing presence of advanced metering infrastructure (AMI) in commercial buildings has resulted in a rising availability of high frequency interval data. These data can be used for a variety of energy efficiency applications such as demand response, fault detection and diagnosis, and heating, ventilation, and air conditioning (HVAC) optimization. This large amount of data has also opened the door to the use of advanced statistical learning models, which hold promise for providing accurate building baseline energy consumption predictions, and thus accurate saving estimations. The gradientmore » boosting machine is a powerful machine learning algorithm that is gaining considerable traction in a wide range of data driven applications, such as ecology, computer vision, and biology. In the present work an energy consumption baseline modeling method based on a gradient boosting machine was proposed. To assess the performance of this method, a recently published testing procedure was used on a large dataset of 410 commercial buildings. The model training periods were varied and several prediction accuracy metrics were used to evaluate the model's performance. The results show that using the gradient boosting machine model improved the R-squared prediction accuracy and the CV(RMSE) in more than 80 percent of the cases, when compared to an industry best practice model that is based on piecewise linear regression, and to a random forest algorithm.« less

  19. Versatile Clinical Application of the Spike Screw: Direct Anchorage Versus Indirect Anchorage.

    PubMed

    Kim, Kyung A; Chen, Yu; Kwon, Soon-Yong; Seo, Kyung Won; Park, Ki-Ho; Kim, Seong-Hun

    2015-10-01

    This article represents clinical application of spike screw, novel design of miniscrew, for direct anchorage and indirect anchorage in orthodontic treatment. Accompanied by easy placement and removal, the spike screw provides good stability for the orthodontic anchorage. The spike screw consists of 6 spikes attached to a washer with laser welded stainless-steel hook that is placed by self-drilling fixation miniscrew. The spike screws were applied to correct malocclusions in patients as follows: traction of impacted canines and protraction of posterior teeth as a direct anchorage and correction of midline discrepancy as an indirect anchorage. For orthodontic traction of impacted canines, spike screws were placed in the mandibular labial mucosal area to create extrusive forces. Afterward, it was utilized for the protraction of posterior teeth. In the second case of the indirect anchorage, spike screw was applied on the midpalatal area to correct midline discrepancy that occurred during orthodontic treatment. The extended hook of a washer was prebended along the curvature of the palate and then secured with a mini screw. The extended hook was bonded to maxillary left first molar. In the first case, the spike screw provided adequate anchorage for the vertical traction of horizontally impacted canine. Since the spike screws were placed in the mandibular anterior lesion, the vertical traction force was applied simply with orthodontic elastics. Also, enough distance was achieved for up-down elastics to work by placing the spike screw in the opposite arch. The force of vertical traction was adjusted with selection of size and force of up-down elastics. Later, it was used to provide anchorage for protraction of mandibular molars without changing orientation of the spike screws. In the second case, the spike screw placed in the midpalatal area was attached to the left first molar and worked as an indirect anchorage. The midline discrepancy was resolved by consolidating the spaces to the left with securing the left first molar location. The novel design of the spike screw permits clinicians to have minimum invasive and easy placement and removal of the appliance while maintaining a good control over tooth movement with improved stability in various clinical cases.

  20. On the equivalence between traction- and stress-based approaches for the modeling of localized failure in solids

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Ying; Cervera, Miguel

    2015-09-01

    This work investigates systematically traction- and stress-based approaches for the modeling of strong and regularized discontinuities induced by localized failure in solids. Two complementary methodologies, i.e., discontinuities localized in an elastic solid and strain localization of an inelastic softening solid, are addressed. In the former it is assumed a priori that the discontinuity forms with a continuous stress field and along the known orientation. A traction-based failure criterion is introduced to characterize the discontinuity and the orientation is determined from Mohr's maximization postulate. If the displacement jumps are retained as independent variables, the strong/regularized discontinuity approaches follow, requiring constitutive models for both the bulk and discontinuity. Elimination of the displacement jumps at the material point level results in the embedded/smeared discontinuity approaches in which an overall inelastic constitutive model fulfilling the static constraint suffices. The second methodology is then adopted to check whether the assumed strain localization can occur and identify its consequences on the resulting approaches. The kinematic constraint guaranteeing stress boundedness and continuity upon strain localization is established for general inelastic softening solids. Application to a unified stress-based elastoplastic damage model naturally yields all the ingredients of a localized model for the discontinuity (band), justifying the first methodology. Two dual but not necessarily equivalent approaches, i.e., the traction-based elastoplastic damage model and the stress-based projected discontinuity model, are identified. The former is equivalent to the embedded and smeared discontinuity approaches, whereas in the later the discontinuity orientation and associated failure criterion are determined consistently from the kinematic constraint rather than given a priori. The bi-directional connections and equivalence conditions between the traction- and stress-based approaches are classified. Closed-form results under plane stress condition are also given. A generic failure criterion of either elliptic, parabolic or hyperbolic type is analyzed in a unified manner, with the classical von Mises (J2), Drucker-Prager, Mohr-Coulomb and many other frequently employed criteria recovered as its particular cases.

Top