The emerging High Efficiency Video Coding standard (HEVC)
NASA Astrophysics Data System (ADS)
Raja, Gulistan; Khan, Awais
2013-12-01
High definition video (HDV) is becoming popular day by day. This paper describes the performance analysis of latest upcoming video standard known as High Efficiency Video Coding (HEVC). HEVC is designed to fulfil all the requirements for future high definition videos. In this paper, three configurations (intra only, low delay and random access) of HEVC are analyzed using various 480p, 720p and 1080p high definition test video sequences. Simulation results show the superior objective and subjective quality of HEVC.
High efficiency video coding for ultrasound video communication in m-health systems.
Panayides, A; Antoniou, Z; Pattichis, M S; Pattichis, C S; Constantinides, A G
2012-01-01
Emerging high efficiency video compression methods and wider availability of wireless network infrastructure will significantly advance existing m-health applications. For medical video communications, the emerging video compression and network standards support low-delay and high-resolution video transmission, at the clinically acquired resolution and frame rates. Such advances are expected to further promote the adoption of m-health systems for remote diagnosis and emergency incidents in daily clinical practice. This paper compares the performance of the emerging high efficiency video coding (HEVC) standard to the current state-of-the-art H.264/AVC standard. The experimental evaluation, based on five atherosclerotic plaque ultrasound videos encoded at QCIF, CIF, and 4CIF resolutions demonstrates that 50% reductions in bitrate requirements is possible for equivalent clinical quality.
Energy Efficient Image/Video Data Transmission on Commercial Multi-Core Processors
Lee, Sungju; Kim, Heegon; Chung, Yongwha; Park, Daihee
2012-01-01
In transmitting image/video data over Video Sensor Networks (VSNs), energy consumption must be minimized while maintaining high image/video quality. Although image/video compression is well known for its efficiency and usefulness in VSNs, the excessive costs associated with encoding computation and complexity still hinder its adoption for practical use. However, it is anticipated that high-performance handheld multi-core devices will be used as VSN processing nodes in the near future. In this paper, we propose a way to improve the energy efficiency of image and video compression with multi-core processors while maintaining the image/video quality. We improve the compression efficiency at the algorithmic level or derive the optimal parameters for the combination of a machine and compression based on the tradeoff between the energy consumption and the image/video quality. Based on experimental results, we confirm that the proposed approach can improve the energy efficiency of the straightforward approach by a factor of 2∼5 without compromising image/video quality. PMID:23202181
An efficient interpolation filter VLSI architecture for HEVC standard
NASA Astrophysics Data System (ADS)
Zhou, Wei; Zhou, Xin; Lian, Xiaocong; Liu, Zhenyu; Liu, Xiaoxiang
2015-12-01
The next-generation video coding standard of High-Efficiency Video Coding (HEVC) is especially efficient for coding high-resolution video such as 8K-ultra-high-definition (UHD) video. Fractional motion estimation in HEVC presents a significant challenge in clock latency and area cost as it consumes more than 40 % of the total encoding time and thus results in high computational complexity. With aims at supporting 8K-UHD video applications, an efficient interpolation filter VLSI architecture for HEVC is proposed in this paper. Firstly, a new interpolation filter algorithm based on the 8-pixel interpolation unit is proposed in this paper. It can save 19.7 % processing time on average with acceptable coding quality degradation. Based on the proposed algorithm, an efficient interpolation filter VLSI architecture, composed of a reused data path of interpolation, an efficient memory organization, and a reconfigurable pipeline interpolation filter engine, is presented to reduce the implement hardware area and achieve high throughput. The final VLSI implementation only requires 37.2k gates in a standard 90-nm CMOS technology at an operating frequency of 240 MHz. The proposed architecture can be reused for either half-pixel interpolation or quarter-pixel interpolation, which can reduce the area cost for about 131,040 bits RAM. The processing latency of our proposed VLSI architecture can support the real-time processing of 4:2:0 format 7680 × 4320@78fps video sequences.
NASA Astrophysics Data System (ADS)
da Silva, Thaísa Leal; Agostini, Luciano Volcan; da Silva Cruz, Luis A.
2014-05-01
Intra prediction is a very important tool in current video coding standards. High-efficiency video coding (HEVC) intra prediction presents relevant gains in encoding efficiency when compared to previous standards, but with a very important increase in the computational complexity since 33 directional angular modes must be evaluated. Motivated by this high complexity, this article presents a complexity reduction algorithm developed to reduce the HEVC intra mode decision complexity targeting multiview videos. The proposed algorithm presents an efficient fast intra prediction compliant with singleview and multiview video encoding. This fast solution defines a reduced subset of intra directions according to the video texture and it exploits the relationship between prediction units (PUs) of neighbor depth levels of the coding tree. This fast intra coding procedure is used to develop an inter-view prediction method, which exploits the relationship between the intra mode directions of adjacent views to further accelerate the intra prediction process in multiview video encoding applications. When compared to HEVC simulcast, our method achieves a complexity reduction of up to 47.77%, at the cost of an average BD-PSNR loss of 0.08 dB.
NASA Astrophysics Data System (ADS)
Zhang, Dashan; Guo, Jie; Jin, Yi; Zhu, Chang'an
2017-09-01
High-speed cameras provide full field measurement of structure motions and have been applied in nondestructive testing and noncontact structure monitoring. Recently, a phase-based method has been proposed to extract sound-induced vibrations from phase variations in videos, and this method provides insights into the study of remote sound surveillance and material analysis. An efficient singular value decomposition (SVD)-based approach is introduced to detect sound-induced subtle motions from pixel intensities in silent high-speed videos. A high-speed camera is initially applied to capture a video of the vibrating objects stimulated by sound fluctuations. Then, subimages collected from a small region on the captured video are reshaped into vectors and reconstructed to form a matrix. Orthonormal image bases (OIBs) are obtained from the SVD of the matrix; available vibration signal can then be obtained by projecting subsequent subimages onto specific OIBs. A simulation test is initiated to validate the effectiveness and efficiency of the proposed method. Two experiments are conducted to demonstrate the potential applications in sound recovery and material analysis. Results show that the proposed method efficiently detects subtle motions from the video.
Unified transform architecture for AVC, AVS, VC-1 and HEVC high-performance codecs
NASA Astrophysics Data System (ADS)
Dias, Tiago; Roma, Nuno; Sousa, Leonel
2014-12-01
A unified architecture for fast and efficient computation of the set of two-dimensional (2-D) transforms adopted by the most recent state-of-the-art digital video standards is presented in this paper. Contrasting to other designs with similar functionality, the presented architecture is supported on a scalable, modular and completely configurable processing structure. This flexible structure not only allows to easily reconfigure the architecture to support different transform kernels, but it also permits its resizing to efficiently support transforms of different orders (e.g. order-4, order-8, order-16 and order-32). Consequently, not only is it highly suitable to realize high-performance multi-standard transform cores, but it also offers highly efficient implementations of specialized processing structures addressing only a reduced subset of transforms that are used by a specific video standard. The experimental results that were obtained by prototyping several configurations of this processing structure in a Xilinx Virtex-7 FPGA show the superior performance and hardware efficiency levels provided by the proposed unified architecture for the implementation of transform cores for the Advanced Video Coding (AVC), Audio Video coding Standard (AVS), VC-1 and High Efficiency Video Coding (HEVC) standards. In addition, such results also demonstrate the ability of this processing structure to realize multi-standard transform cores supporting all the standards mentioned above and that are capable of processing the 8k Ultra High Definition Television (UHDTV) video format (7,680 × 4,320 at 30 fps) in real time.
Robust video super-resolution with registration efficiency adaptation
NASA Astrophysics Data System (ADS)
Zhang, Xinfeng; Xiong, Ruiqin; Ma, Siwei; Zhang, Li; Gao, Wen
2010-07-01
Super-Resolution (SR) is a technique to construct a high-resolution (HR) frame by fusing a group of low-resolution (LR) frames describing the same scene. The effectiveness of the conventional super-resolution techniques, when applied on video sequences, strongly relies on the efficiency of motion alignment achieved by image registration. Unfortunately, such efficiency is limited by the motion complexity in the video and the capability of adopted motion model. In image regions with severe registration errors, annoying artifacts usually appear in the produced super-resolution video. This paper proposes a robust video super-resolution technique that adapts itself to the spatially-varying registration efficiency. The reliability of each reference pixel is measured by the corresponding registration error and incorporated into the optimization objective function of SR reconstruction. This makes the SR reconstruction highly immune to the registration errors, as outliers with higher registration errors are assigned lower weights in the objective function. In particular, we carefully design a mechanism to assign weights according to registration errors. The proposed superresolution scheme has been tested with various video sequences and experimental results clearly demonstrate the effectiveness of the proposed method.
Dynamic video encryption algorithm for H.264/AVC based on a spatiotemporal chaos system.
Xu, Hui; Tong, Xiao-Jun; Zhang, Miao; Wang, Zhu; Li, Ling-Hao
2016-06-01
Video encryption schemes mostly employ the selective encryption method to encrypt parts of important and sensitive video information, aiming to ensure the real-time performance and encryption efficiency. The classic block cipher is not applicable to video encryption due to the high computational overhead. In this paper, we propose the encryption selection control module to encrypt video syntax elements dynamically which is controlled by the chaotic pseudorandom sequence. A novel spatiotemporal chaos system and binarization method is used to generate a key stream for encrypting the chosen syntax elements. The proposed scheme enhances the resistance against attacks through the dynamic encryption process and high-security stream cipher. Experimental results show that the proposed method exhibits high security and high efficiency with little effect on the compression ratio and time cost.
Video-Based Big Data Analytics in Cyberlearning
ERIC Educational Resources Information Center
Wang, Shuangbao; Kelly, William
2017-01-01
In this paper, we present a novel system, inVideo, for video data analytics, and its use in transforming linear videos into interactive learning objects. InVideo is able to analyze video content automatically without the need for initial viewing by a human. Using a highly efficient video indexing engine we developed, the system is able to analyze…
NASA Technical Reports Server (NTRS)
Ziemke, Robert A.
1990-01-01
The objective of the High Resolution, High Frame Rate Video Technology (HHVT) development effort is to provide technology advancements to remove constraints on the amount of high speed, detailed optical data recorded and transmitted for microgravity science and application experiments. These advancements will enable the development of video systems capable of high resolution, high frame rate video data recording, processing, and transmission. Techniques such as multichannel image scan, video parameter tradeoff, and the use of dual recording media were identified as methods of making the most efficient use of the near-term technology.
NASA Astrophysics Data System (ADS)
Tsang, Sik-Ho; Chan, Yui-Lam; Siu, Wan-Chi
2017-01-01
Weighted prediction (WP) is an efficient video coding tool that was introduced since the establishment of the H.264/AVC video coding standard, for compensating the temporal illumination change in motion estimation and compensation. WP parameters, including a multiplicative weight and an additive offset for each reference frame, are required to be estimated and transmitted to the decoder by slice header. These parameters cause extra bits in the coded video bitstream. High efficiency video coding (HEVC) provides WP parameter prediction to reduce the overhead. Therefore, WP parameter prediction is crucial to research works or applications, which are related to WP. Prior art has been suggested to further improve the WP parameter prediction by implicit prediction of image characteristics and derivation of parameters. By exploiting both temporal and interlayer redundancies, we propose three WP parameter prediction algorithms, enhanced implicit WP parameter, enhanced direct WP parameter derivation, and interlayer WP parameter, to further improve the coding efficiency of HEVC. Results show that our proposed algorithms can achieve up to 5.83% and 5.23% bitrate reduction compared to the conventional scalable HEVC in the base layer for SNR scalability and 2× spatial scalability, respectively.
Collaborative video caching scheme over OFDM-based long-reach passive optical networks
NASA Astrophysics Data System (ADS)
Li, Yan; Dai, Shifang; Chang, Xiangmao
2018-07-01
Long-reach passive optical networks (LR-PONs) are now considered as a desirable access solution for cost-efficiently delivering broadband services by integrating metro network with access network, among which orthogonal frequency division multiplexing (OFDM)-based LR-PONs gain greater research interests due to their good robustness and high spectrum efficiency. In such attractive OFDM-based LR-PONs, however, it is still challenging to effectively provide video service, which is one of the most popular and profitable broadband services, for end users. Given that more video requesters (i.e., end users) far away from optical line terminal (OLT) are served in OFDM-based LR-PONs, it is efficiency-prohibitive to use traditional video delivery model, which relies on the OLT to transmit videos to requesters, for providing video service, due to the model will incur not only larger video playback delay but also higher downstream bandwidth consumption. In this paper, we propose a novel video caching scheme that to collaboratively cache videos on distributed optical network units (ONUs) which are closer to end users, and thus to timely and cost-efficiently provide videos for requesters by ONUs over OFDM-based LR-PONs. We firstly construct an OFDM-based LR-PON architecture to enable the cooperation among ONUs while caching videos. Given a limited storage capacity of each ONU, we then propose collaborative approaches to cache videos on ONUs with the aim to maximize the local video hit ratio (LVHR), i.e., the proportion of video requests that can be directly satisfied by ONUs, under diverse resources requirements and requests distributions of videos. Simulations are finally conducted to evaluate the efficiency of our proposed scheme.
Parallel Key Frame Extraction for Surveillance Video Service in a Smart City.
Zheng, Ran; Yao, Chuanwei; Jin, Hai; Zhu, Lei; Zhang, Qin; Deng, Wei
2015-01-01
Surveillance video service (SVS) is one of the most important services provided in a smart city. It is very important for the utilization of SVS to provide design efficient surveillance video analysis techniques. Key frame extraction is a simple yet effective technique to achieve this goal. In surveillance video applications, key frames are typically used to summarize important video content. It is very important and essential to extract key frames accurately and efficiently. A novel approach is proposed to extract key frames from traffic surveillance videos based on GPU (graphics processing units) to ensure high efficiency and accuracy. For the determination of key frames, motion is a more salient feature in presenting actions or events, especially in surveillance videos. The motion feature is extracted in GPU to reduce running time. It is also smoothed to reduce noise, and the frames with local maxima of motion information are selected as the final key frames. The experimental results show that this approach can extract key frames more accurately and efficiently compared with several other methods.
NASA Astrophysics Data System (ADS)
Boumehrez, Farouk; Brai, Radhia; Doghmane, Noureddine; Mansouri, Khaled
2018-01-01
Recently, video streaming has attracted much attention and interest due to its capability to process and transmit large data. We propose a quality of experience (QoE) model relying on high efficiency video coding (HEVC) encoder adaptation scheme, in turn based on the multiple description coding (MDC) for video streaming. The main contributions of the paper are (1) a performance evaluation of the new and emerging video coding standard HEVC/H.265, which is based on the variation of quantization parameter (QP) values depending on different video contents to deduce their influence on the sequence to be transmitted, (2) QoE support multimedia applications in wireless networks are investigated, so we inspect the packet loss impact on the QoE of transmitted video sequences, (3) HEVC encoder parameter adaptation scheme based on MDC is modeled with the encoder parameter and objective QoE model. A comparative study revealed that the proposed MDC approach is effective for improving the transmission with a peak signal-to-noise ratio (PSNR) gain of about 2 to 3 dB. Results show that a good choice of QP value can compensate for transmission channel effects and improve received video quality, although HEVC/H.265 is also sensitive to packet loss. The obtained results show the efficiency of our proposed method in terms of PSNR and mean-opinion-score.
Video Compression Study: h.265 vs h.264
NASA Technical Reports Server (NTRS)
Pryor, Jonathan
2016-01-01
H.265 video compression (also known as High Efficiency Video Encoding (HEVC)) promises to provide double the video quality at half the bandwidth, or the same quality at half the bandwidth of h.264 video compression [1]. This study uses a Tektronix PQA500 to determine the video quality gains by using h.265 encoding. This study also compares two video encoders to see how different implementations of h.264 and h.265 impact video quality at various bandwidths.
NASA Astrophysics Data System (ADS)
Sanchez, Gustavo; Marcon, César; Agostini, Luciano Volcan
2018-01-01
The 3D-high efficiency video coding has introduced tools to obtain higher efficiency in 3-D video coding, and most of them are related to the depth maps coding. Among these tools, the depth modeling mode-1 (DMM-1) focuses on better encoding edges regions of depth maps. The large memory required for storing all wedgelet patterns is one of the bottlenecks in the DMM-1 hardware design of both encoder and decoder since many patterns must be stored. Three algorithms to reduce the DMM-1 memory requirements and a hardware design targeting the most efficient among these algorithms are presented. Experimental results demonstrate that the proposed solutions surpass related works reducing up to 78.8% of the wedgelet memory, without degrading the encoding efficiency. Synthesis results demonstrate that the proposed algorithm reduces almost 75% of the power dissipation when compared to the standard approach.
Dynamic frame resizing with convolutional neural network for efficient video compression
NASA Astrophysics Data System (ADS)
Kim, Jaehwan; Park, Youngo; Choi, Kwang Pyo; Lee, JongSeok; Jeon, Sunyoung; Park, JeongHoon
2017-09-01
In the past, video codecs such as vc-1 and H.263 used a technique to encode reduced-resolution video and restore original resolution from the decoder for improvement of coding efficiency. The techniques of vc-1 and H.263 Annex Q are called dynamic frame resizing and reduced-resolution update mode, respectively. However, these techniques have not been widely used due to limited performance improvements that operate well only under specific conditions. In this paper, video frame resizing (reduced/restore) technique based on machine learning is proposed for improvement of coding efficiency. The proposed method features video of low resolution made by convolutional neural network (CNN) in encoder and reconstruction of original resolution using CNN in decoder. The proposed method shows improved subjective performance over all the high resolution videos which are dominantly consumed recently. In order to assess subjective quality of the proposed method, Video Multi-method Assessment Fusion (VMAF) which showed high reliability among many subjective measurement tools was used as subjective metric. Moreover, to assess general performance, diverse bitrates are tested. Experimental results showed that BD-rate based on VMAF was improved by about 51% compare to conventional HEVC. Especially, VMAF values were significantly improved in low bitrate. Also, when the method is subjectively tested, it had better subjective visual quality in similar bit rate.
Audiovisual focus of attention and its application to Ultra High Definition video compression
NASA Astrophysics Data System (ADS)
Rerabek, Martin; Nemoto, Hiromi; Lee, Jong-Seok; Ebrahimi, Touradj
2014-02-01
Using Focus of Attention (FoA) as a perceptual process in image and video compression belongs to well-known approaches to increase coding efficiency. It has been shown that foveated coding, when compression quality varies across the image according to region of interest, is more efficient than the alternative coding, when all region are compressed in a similar way. However, widespread use of such foveated compression has been prevented due to two main conflicting causes, namely, the complexity and the efficiency of algorithms for FoA detection. One way around these is to use as much information as possible from the scene. Since most video sequences have an associated audio, and moreover, in many cases there is a correlation between the audio and the visual content, audiovisual FoA can improve efficiency of the detection algorithm while remaining of low complexity. This paper discusses a simple yet efficient audiovisual FoA algorithm based on correlation of dynamics between audio and video signal components. Results of audiovisual FoA detection algorithm are subsequently taken into account for foveated coding and compression. This approach is implemented into H.265/HEVC encoder producing a bitstream which is fully compliant to any H.265/HEVC decoder. The influence of audiovisual FoA in the perceived quality of high and ultra-high definition audiovisual sequences is explored and the amount of gain in compression efficiency is analyzed.
High-throughput sample adaptive offset hardware architecture for high-efficiency video coding
NASA Astrophysics Data System (ADS)
Zhou, Wei; Yan, Chang; Zhang, Jingzhi; Zhou, Xin
2018-03-01
A high-throughput hardware architecture for a sample adaptive offset (SAO) filter in the high-efficiency video coding video coding standard is presented. First, an implementation-friendly and simplified bitrate estimation method of rate-distortion cost calculation is proposed to reduce the computational complexity in the mode decision of SAO. Then, a high-throughput VLSI architecture for SAO is presented based on the proposed bitrate estimation method. Furthermore, multiparallel VLSI architecture for in-loop filters, which integrates both deblocking filter and SAO filter, is proposed. Six parallel strategies are applied in the proposed in-loop filters architecture to improve the system throughput and filtering speed. Experimental results show that the proposed in-loop filters architecture can achieve up to 48% higher throughput in comparison with prior work. The proposed architecture can reach a high-operating clock frequency of 297 MHz with TSMC 65-nm library and meet the real-time requirement of the in-loop filters for 8 K × 4 K video format at 132 fps.
HEVC for high dynamic range services
NASA Astrophysics Data System (ADS)
Kim, Seung-Hwan; Zhao, Jie; Misra, Kiran; Segall, Andrew
2015-09-01
Displays capable of showing a greater range of luminance values can render content containing high dynamic range information in a way such that the viewers have a more immersive experience. This paper introduces the design aspects of a high dynamic range (HDR) system, and examines the performance of the HDR processing chain in terms of compression efficiency. Specifically it examines the relation between recently introduced Society of Motion Picture and Television Engineers (SMPTE) ST 2084 transfer function and the High Efficiency Video Coding (HEVC) standard. SMPTE ST 2084 is designed to cover the full range of an HDR signal from 0 to 10,000 nits, however in many situations the valid signal range of actual video might be smaller than SMPTE ST 2084 supported range. The above restricted signal range results in restricted range of code values for input video data and adversely impacts compression efficiency. In this paper, we propose a code value remapping method that extends the restricted range code values into the full range code values so that the existing standards such as HEVC may better compress the video content. The paper also identifies related non-normative encoder-only changes that are required for remapping method for a fair comparison with anchor. Results are presented comparing the efficiency of the current approach versus the proposed remapping method for HM-16.2.
Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman
2008-08-04
Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.
Chroma sampling and modulation techniques in high dynamic range video coding
NASA Astrophysics Data System (ADS)
Dai, Wei; Krishnan, Madhu; Topiwala, Pankaj
2015-09-01
High Dynamic Range and Wide Color Gamut (HDR/WCG) Video Coding is an area of intense research interest in the engineering community, for potential near-term deployment in the marketplace. HDR greatly enhances the dynamic range of video content (up to 10,000 nits), as well as broadens the chroma representation (BT.2020). The resulting content offers new challenges in its coding and transmission. The Moving Picture Experts Group (MPEG) of the International Standards Organization (ISO) is currently exploring coding efficiency and/or the functionality enhancements of the recently developed HEVC video standard for HDR and WCG content. FastVDO has developed an advanced approach to coding HDR video, based on splitting the HDR signal into a smoothed luminance (SL) signal, and an associated base signal (B). Both signals are then chroma downsampled to YFbFr 4:2:0 signals, using advanced resampling filters, and coded using the Main10 High Efficiency Video Coding (HEVC) standard, which has been developed jointly by ISO/IEC MPEG and ITU-T WP3/16 (VCEG). Our proposal offers both efficient coding, and backwards compatibility with the existing HEVC Main10 Profile. That is, an existing Main10 decoder can produce a viewable standard dynamic range video, suitable for existing screens. Subjective tests show visible improvement over the anchors. Objective tests show a sizable gain of over 25% in PSNR (RGB domain) on average, for a key set of test clips selected by the ISO/MPEG committee.
Background-Modeling-Based Adaptive Prediction for Surveillance Video Coding.
Zhang, Xianguo; Huang, Tiejun; Tian, Yonghong; Gao, Wen
2014-02-01
The exponential growth of surveillance videos presents an unprecedented challenge for high-efficiency surveillance video coding technology. Compared with the existing coding standards that were basically developed for generic videos, surveillance video coding should be designed to make the best use of the special characteristics of surveillance videos (e.g., relative static background). To do so, this paper first conducts two analyses on how to improve the background and foreground prediction efficiencies in surveillance video coding. Following the analysis results, we propose a background-modeling-based adaptive prediction (BMAP) method. In this method, all blocks to be encoded are firstly classified into three categories. Then, according to the category of each block, two novel inter predictions are selectively utilized, namely, the background reference prediction (BRP) that uses the background modeled from the original input frames as the long-term reference and the background difference prediction (BDP) that predicts the current data in the background difference domain. For background blocks, the BRP can effectively improve the prediction efficiency using the higher quality background as the reference; whereas for foreground-background-hybrid blocks, the BDP can provide a better reference after subtracting its background pixels. Experimental results show that the BMAP can achieve at least twice the compression ratio on surveillance videos as AVC (MPEG-4 Advanced Video Coding) high profile, yet with a slightly additional encoding complexity. Moreover, for the foreground coding performance, which is crucial to the subjective quality of moving objects in surveillance videos, BMAP also obtains remarkable gains over several state-of-the-art methods.
Live Ultra-High Definition from the International Space Station
NASA Technical Reports Server (NTRS)
Grubbs, Rodney; George, Sandy
2017-01-01
The first ever live downlink of Ultra-High Definition (UHD) video from the International Space Station (ISS) was the highlight of a 'Super Session' at the National Association of Broadcasters (NAB) in April 2017. The Ultra-High Definition video downlink from the ISS all the way to the Las Vegas Convention Center required considerable planning, pushed the limits of conventional video distribution from a space-craft, and was the first use of High Efficiency Video Coding (HEVC) from a space-craft. The live event at NAB will serve as a pathfinder for more routine downlinks of UHD as well as use of HEVC for conventional HD downlinks to save bandwidth. HEVC may also enable live Virtual Reality video downlinks from the ISS. This paper will describe the overall work flow and routing of the UHD video, how audio was synchronized even though the video and audio were received many seconds apart from each other, and how the demonstration paves the way for not only more efficient video distribution from the ISS, but also serves as a pathfinder for more complex video distribution from deep space. The paper will also describe how a 'live' event was staged when the UHD coming from the ISS had a latency of 10+ seconds. Finally, the paper will discuss how NASA is leveraging commercial technologies for use on-orbit vs. creating technology as was required during the Apollo Moon Program and early space age.
Image and Video Compression with VLSI Neural Networks
NASA Technical Reports Server (NTRS)
Fang, W.; Sheu, B.
1993-01-01
An advanced motion-compensated predictive video compression system based on artificial neural networks has been developed to effectively eliminate the temporal and spatial redundancy of video image sequences and thus reduce the bandwidth and storage required for the transmission and recording of the video signal. The VLSI neuroprocessor for high-speed high-ratio image compression based upon a self-organization network and the conventional algorithm for vector quantization are compared. The proposed method is quite efficient and can achieve near-optimal results.
A novel multiple description scalable coding scheme for mobile wireless video transmission
NASA Astrophysics Data System (ADS)
Zheng, Haifeng; Yu, Lun; Chen, Chang Wen
2005-03-01
We proposed in this paper a novel multiple description scalable coding (MDSC) scheme based on in-band motion compensation temporal filtering (IBMCTF) technique in order to achieve high video coding performance and robust video transmission. The input video sequence is first split into equal-sized groups of frames (GOFs). Within a GOF, each frame is hierarchically decomposed by discrete wavelet transform. Since there is a direct relationship between wavelet coefficients and what they represent in the image content after wavelet decomposition, we are able to reorganize the spatial orientation trees to generate multiple bit-streams and employed SPIHT algorithm to achieve high coding efficiency. We have shown that multiple bit-stream transmission is very effective in combating error propagation in both Internet video streaming and mobile wireless video. Furthermore, we adopt the IBMCTF scheme to remove the redundancy for inter-frames along the temporal direction using motion compensated temporal filtering, thus high coding performance and flexible scalability can be provided in this scheme. In order to make compressed video resilient to channel error and to guarantee robust video transmission over mobile wireless channels, we add redundancy to each bit-stream and apply error concealment strategy for lost motion vectors. Unlike traditional multiple description schemes, the integration of these techniques enable us to generate more than two bit-streams that may be more appropriate for multiple antenna transmission of compressed video. Simulate results on standard video sequences have shown that the proposed scheme provides flexible tradeoff between coding efficiency and error resilience.
NASA Astrophysics Data System (ADS)
Ho, Chien-Peng; Yu, Jen-Yu; Lee, Suh-Yin
2011-12-01
Recent advances in modern television systems have had profound consequences for the scalability, stability, and quality of transmitted digital data signals. This is of particular significance for peer-to-peer (P2P) video-on-demand (VoD) related platforms, faced with an immediate and growing demand for reliable service delivery. In response to demands for high-quality video, the key objectives in the construction of the proposed framework were user satisfaction with perceived video quality and the effective utilization of available resources on P2P VoD networks. This study developed a peer-based promoter to support online advertising in P2P VoD networks based on an estimation of video distortion prior to the replication of data stream chunks. The proposed technology enables the recovery of lost video using replicated stream chunks in real time. Load balance is achieved by adjusting the replication level of each candidate group according to the degree-of-distortion, thereby enabling a significant reduction in server load and increased scalability in the P2P VoD system. This approach also promotes the use of advertising as an efficient tool for commercial promotion. Results indicate that the proposed system efficiently satisfies the given fault tolerances.
Automatic Mrf-Based Registration of High Resolution Satellite Video Data
NASA Astrophysics Data System (ADS)
Platias, C.; Vakalopoulou, M.; Karantzalos, K.
2016-06-01
In this paper we propose a deformable registration framework for high resolution satellite video data able to automatically and accurately co-register satellite video frames and/or register them to a reference map/image. The proposed approach performs non-rigid registration, formulates a Markov Random Fields (MRF) model, while efficient linear programming is employed for reaching the lowest potential of the cost function. The developed approach has been applied and validated on satellite video sequences from Skybox Imaging and compared with a rigid, descriptor-based registration method. Regarding the computational performance, both the MRF-based and the descriptor-based methods were quite efficient, with the first one converging in some minutes and the second in some seconds. Regarding the registration accuracy the proposed MRF-based method significantly outperformed the descriptor-based one in all the performing experiments.
Engineering a Live UHD Program from the International Space Station
NASA Technical Reports Server (NTRS)
Grubbs, Rodney; George, Sandy
2017-01-01
The first-ever live downlink of Ultra-High Definition (UHD) video from the International Space Station (ISS) was the highlight of a “Super Session” at the National Association of Broadcasters (NAB) Show in April 2017. Ultra-High Definition is four times the resolution of “full HD” or “1080P” video. Also referred to as “4K”, the Ultra-High Definition video downlink from the ISS all the way to the Las Vegas Convention Center required considerable planning, pushed the limits of conventional video distribution from a space-craft, and was the first use of High Efficiency Video Coding (HEVC) from a space-craft. The live event at NAB will serve as a pathfinder for more routine downlinks of UHD as well as use of HEVC for conventional HD downlinks to save bandwidth. A similar demonstration was conducted in 2006 with the Discovery Channel to demonstrate the ability to stream HDTV from the ISS. This paper will describe the overall work flow and routing of the UHD video, how audio was synchronized even though the video and audio were received many seconds apart from each other, and how the demonstration paves the way for not only more efficient video distribution from the ISS, but also serves as a pathfinder for more complex video distribution from deep space. The paper will also describe how a “live” event was staged when the UHD video coming from the ISS had a latency of 10+ seconds. In addition, the paper will touch on the unique collaboration between the inherently governmental aspects of the ISS, commercial partners Amazon and Elemental, and the National Association of Broadcasters.
Medical Ultrasound Video Coding with H.265/HEVC Based on ROI Extraction
Wu, Yueying; Liu, Pengyu; Gao, Yuan; Jia, Kebin
2016-01-01
High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems. PMID:27814367
Medical Ultrasound Video Coding with H.265/HEVC Based on ROI Extraction.
Wu, Yueying; Liu, Pengyu; Gao, Yuan; Jia, Kebin
2016-01-01
High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems.
NASA Astrophysics Data System (ADS)
Chan, Chia-Hsin; Tu, Chun-Chuan; Tsai, Wen-Jiin
2017-01-01
High efficiency video coding (HEVC) not only improves the coding efficiency drastically compared to the well-known H.264/AVC but also introduces coding tools for parallel processing, one of which is tiles. Tile partitioning is allowed to be arbitrary in HEVC, but how to decide tile boundaries remains an open issue. An adaptive tile boundary (ATB) method is proposed to select a better tile partitioning to improve load balancing (ATB-LoadB) and coding efficiency (ATB-Gain) with a unified scheme. Experimental results show that, compared to ordinary uniform-space partitioning, the proposed ATB can save up to 17.65% of encoding times in parallel encoding scenarios and can reduce up to 0.8% of total bit rates for coding efficiency.
NASA Astrophysics Data System (ADS)
Abdellah, Skoudarli; Mokhtar, Nibouche; Amina, Serir
2015-11-01
The H.264/AVC video coding standard is used in a wide range of applications from video conferencing to high-definition television according to its high compression efficiency. This efficiency is mainly acquired from the newly allowed prediction schemes including variable block modes. However, these schemes require a high complexity to select the optimal mode. Consequently, complexity reduction in the H.264/AVC encoder has recently become a very challenging task in the video compression domain, especially when implementing the encoder in real-time applications. Fast mode decision algorithms play an important role in reducing the overall complexity of the encoder. In this paper, we propose an adaptive fast intermode algorithm based on motion activity, temporal stationarity, and spatial homogeneity. This algorithm predicts the motion activity of the current macroblock from its neighboring blocks and identifies temporal stationary regions and spatially homogeneous regions using adaptive threshold values based on content video features. Extensive experimental work has been done in high profile, and results show that the proposed source-coding algorithm effectively reduces the computational complexity by 53.18% on average compared with the reference software encoder, while maintaining the high-coding efficiency of H.264/AVC by incurring only 0.097 dB in total peak signal-to-noise ratio and 0.228% increment on the total bit rate.
Application of robust face recognition in video surveillance systems
NASA Astrophysics Data System (ADS)
Zhang, De-xin; An, Peng; Zhang, Hao-xiang
2018-03-01
In this paper, we propose a video searching system that utilizes face recognition as searching indexing feature. As the applications of video cameras have great increase in recent years, face recognition makes a perfect fit for searching targeted individuals within the vast amount of video data. However, the performance of such searching depends on the quality of face images recorded in the video signals. Since the surveillance video cameras record videos without fixed postures for the object, face occlusion is very common in everyday video. The proposed system builds a model for occluded faces using fuzzy principal component analysis (FPCA), and reconstructs the human faces with the available information. Experimental results show that the system has very high efficiency in processing the real life videos, and it is very robust to various kinds of face occlusions. Hence it can relieve people reviewers from the front of the monitors and greatly enhances the efficiency as well. The proposed system has been installed and applied in various environments and has already demonstrated its power by helping solving real cases.
Efficient biprediction decision scheme for fast high efficiency video coding encoding
NASA Astrophysics Data System (ADS)
Park, Sang-hyo; Lee, Seung-ho; Jang, Euee S.; Jun, Dongsan; Kang, Jung-Won
2016-11-01
An efficient biprediction decision scheme of high efficiency video coding (HEVC) is proposed for fast-encoding applications. For low-delay video applications, bidirectional prediction can be used to increase compression performance efficiently with previous reference frames. However, at the same time, the computational complexity of the HEVC encoder is significantly increased due to the additional biprediction search. Although a some research has attempted to reduce this complexity, whether the prediction is strongly related to both motion complexity and prediction modes in a coding unit has not yet been investigated. A method that avoids most compression-inefficient search points is proposed so that the computational complexity of the motion estimation process can be dramatically decreased. To determine if biprediction is critical, the proposed method exploits the stochastic correlation of the context of prediction units (PUs): the direction of a PU and the accuracy of a motion vector. Through experimental results, the proposed method showed that the time complexity of biprediction can be reduced to 30% on average, outperforming existing methods in view of encoding time, number of function calls, and memory access.
Query by example video based on fuzzy c-means initialized by fixed clustering center
NASA Astrophysics Data System (ADS)
Hou, Sujuan; Zhou, Shangbo; Siddique, Muhammad Abubakar
2012-04-01
Currently, the high complexity of video contents has posed the following major challenges for fast retrieval: (1) efficient similarity measurements, and (2) efficient indexing on the compact representations. A video-retrieval strategy based on fuzzy c-means (FCM) is presented for querying by example. Initially, the query video is segmented and represented by a set of shots, each shot can be represented by a key frame, and then we used video processing techniques to find visual cues to represent the key frame. Next, because the FCM algorithm is sensitive to the initializations, here we initialized the cluster center by the shots of query video so that users could achieve appropriate convergence. After an FCM cluster was initialized by the query video, each shot of query video was considered a benchmark point in the aforesaid cluster, and each shot in the database possessed a class label. The similarity between the shots in the database with the same class label and benchmark point can be transformed into the distance between them. Finally, the similarity between the query video and the video in database was transformed into the number of similar shots. Our experimental results demonstrated the performance of this proposed approach.
Learning-Based Just-Noticeable-Quantization- Distortion Modeling for Perceptual Video Coding.
Ki, Sehwan; Bae, Sung-Ho; Kim, Munchurl; Ko, Hyunsuk
2018-07-01
Conventional predictive video coding-based approaches are reaching the limit of their potential coding efficiency improvements, because of severely increasing computation complexity. As an alternative approach, perceptual video coding (PVC) has attempted to achieve high coding efficiency by eliminating perceptual redundancy, using just-noticeable-distortion (JND) directed PVC. The previous JNDs were modeled by adding white Gaussian noise or specific signal patterns into the original images, which were not appropriate in finding JND thresholds due to distortion with energy reduction. In this paper, we present a novel discrete cosine transform-based energy-reduced JND model, called ERJND, that is more suitable for JND-based PVC schemes. Then, the proposed ERJND model is extended to two learning-based just-noticeable-quantization-distortion (JNQD) models as preprocessing that can be applied for perceptual video coding. The two JNQD models can automatically adjust JND levels based on given quantization step sizes. One of the two JNQD models, called LR-JNQD, is based on linear regression and determines the model parameter for JNQD based on extracted handcraft features. The other JNQD model is based on a convolution neural network (CNN), called CNN-JNQD. To our best knowledge, our paper is the first approach to automatically adjust JND levels according to quantization step sizes for preprocessing the input to video encoders. In experiments, both the LR-JNQD and CNN-JNQD models were applied to high efficiency video coding (HEVC) and yielded maximum (average) bitrate reductions of 38.51% (10.38%) and 67.88% (24.91%), respectively, with little subjective video quality degradation, compared with the input without preprocessing applied.
Robust video copy detection approach based on local tangent space alignment
NASA Astrophysics Data System (ADS)
Nie, Xiushan; Qiao, Qianping
2012-04-01
We propose a robust content-based video copy detection approach based on local tangent space alignment (LTSA), which is an efficient dimensionality reduction algorithm. The idea is motivated by the fact that the content of video becomes richer and the dimension of content becomes higher. It does not give natural tools for video analysis and understanding because of the high dimensionality. The proposed approach reduces the dimensionality of video content using LTSA, and then generates video fingerprints in low dimensional space for video copy detection. Furthermore, a dynamic sliding window is applied to fingerprint matching. Experimental results show that the video copy detection approach has good robustness and discrimination.
NASA Astrophysics Data System (ADS)
Bross, Benjamin; Alvarez-Mesa, Mauricio; George, Valeri; Chi, Chi Ching; Mayer, Tobias; Juurlink, Ben; Schierl, Thomas
2013-09-01
The new High Efficiency Video Coding Standard (HEVC) was finalized in January 2013. Compared to its predecessor H.264 / MPEG4-AVC, this new international standard is able to reduce the bitrate by 50% for the same subjective video quality. This paper investigates decoder optimizations that are needed to achieve HEVC real-time software decoding on a mobile processor. It is shown that HEVC real-time decoding up to high definition video is feasible using instruction extensions of the processor while decoding 4K ultra high definition video in real-time requires additional parallel processing. For parallel processing, a picture-level parallel approach has been chosen because it is generic and does not require bitstreams with special indication.
NASA Astrophysics Data System (ADS)
He, Qiang; Schultz, Richard R.; Chu, Chee-Hung Henry
2008-04-01
The concept surrounding super-resolution image reconstruction is to recover a highly-resolved image from a series of low-resolution images via between-frame subpixel image registration. In this paper, we propose a novel and efficient super-resolution algorithm, and then apply it to the reconstruction of real video data captured by a small Unmanned Aircraft System (UAS). Small UAS aircraft generally have a wingspan of less than four meters, so that these vehicles and their payloads can be buffeted by even light winds, resulting in potentially unstable video. This algorithm is based on a coarse-to-fine strategy, in which a coarsely super-resolved image sequence is first built from the original video data by image registration and bi-cubic interpolation between a fixed reference frame and every additional frame. It is well known that the median filter is robust to outliers. If we calculate pixel-wise medians in the coarsely super-resolved image sequence, we can restore a refined super-resolved image. The primary advantage is that this is a noniterative algorithm, unlike traditional approaches based on highly-computational iterative algorithms. Experimental results show that our coarse-to-fine super-resolution algorithm is not only robust, but also very efficient. In comparison with five well-known super-resolution algorithms, namely the robust super-resolution algorithm, bi-cubic interpolation, projection onto convex sets (POCS), the Papoulis-Gerchberg algorithm, and the iterated back projection algorithm, our proposed algorithm gives both strong efficiency and robustness, as well as good visual performance. This is particularly useful for the application of super-resolution to UAS surveillance video, where real-time processing is highly desired.
Investigating the structure preserving encryption of high efficiency video coding (HEVC)
NASA Astrophysics Data System (ADS)
Shahid, Zafar; Puech, William
2013-02-01
This paper presents a novel method for the real-time protection of new emerging High Efficiency Video Coding (HEVC) standard. Structure preserving selective encryption is being performed in CABAC entropy coding module of HEVC, which is significantly different from CABAC entropy coding of H.264/AVC. In CABAC of HEVC, exponential Golomb coding is replaced by truncated Rice (TR) up to a specific value for binarization of transform coefficients. Selective encryption is performed using AES cipher in cipher feedback mode on a plaintext of binstrings in a context aware manner. The encrypted bitstream has exactly the same bit-rate and is format complaint. Experimental evaluation and security analysis of the proposed algorithm is performed on several benchmark video sequences containing different combinations of motion, texture and objects.
Method and system for efficient video compression with low-complexity encoder
NASA Technical Reports Server (NTRS)
Chen, Jun (Inventor); He, Dake (Inventor); Sheinin, Vadim (Inventor); Jagmohan, Ashish (Inventor); Lu, Ligang (Inventor)
2012-01-01
Disclosed are a method and system for video compression, wherein the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a video decoder, wherein the method for encoding includes the steps of converting a source frame into a space-frequency representation; estimating conditional statistics of at least one vector of space-frequency coefficients; estimating encoding rates based on the said conditional statistics; and applying Slepian-Wolf codes with the said computed encoding rates. The preferred method for decoding includes the steps of; generating a side-information vector of frequency coefficients based on previously decoded source data, encoder statistics, and previous reconstructions of the source frequency vector; and performing Slepian-Wolf decoding of at least one source frequency vector based on the generated side-information, the Slepian-Wolf code bits and the encoder statistics.
NASA Astrophysics Data System (ADS)
Nightingale, James; Wang, Qi; Grecos, Christos; Goma, Sergio
2014-02-01
High Efficiency Video Coding (HEVC), the latest video compression standard (also known as H.265), can deliver video streams of comparable quality to the current H.264 Advanced Video Coding (H.264/AVC) standard with a 50% reduction in bandwidth. Research into SHVC, the scalable extension to the HEVC standard, is still in its infancy. One important area for investigation is whether, given the greater compression ratio of HEVC (and SHVC), the loss of packets containing video content will have a greater impact on the quality of delivered video than is the case with H.264/AVC or its scalable extension H.264/SVC. In this work we empirically evaluate the layer-based, in-network adaptation of video streams encoded using SHVC in situations where dynamically changing bandwidths and datagram loss ratios require the real-time adaptation of video streams. Through the use of extensive experimentation, we establish a comprehensive set of benchmarks for SHVC-based highdefinition video streaming in loss prone network environments such as those commonly found in mobile networks. Among other results, we highlight that packet losses of only 1% can lead to a substantial reduction in PSNR of over 3dB and error propagation in over 130 pictures following the one in which the loss occurred. This work would be one of the earliest studies in this cutting-edge area that reports benchmark evaluation results for the effects of datagram loss on SHVC picture quality and offers empirical and analytical insights into SHVC adaptation to lossy, mobile networking conditions.
Evaluation of Simulated Clinical Breast Exam Motion Patterns Using Marker-Less Video Tracking
Azari, David P.; Pugh, Carla M.; Laufer, Shlomi; Kwan, Calvin; Chen, Chia-Hsiung; Yen, Thomas Y.; Hu, Yu Hen; Radwin, Robert G.
2016-01-01
Objective This study investigates using marker-less video tracking to evaluate hands-on clinical skills during simulated clinical breast examinations (CBEs). Background There are currently no standardized and widely accepted CBE screening techniques. Methods Experienced physicians attending a national conference conducted simulated CBEs presenting different pathologies with distinct tumorous lesions. Single hand exam motion was recorded and analyzed using marker-less video tracking. Four kinematic measures were developed to describe temporal (time pressing and time searching) and spatial (area covered and distance explored) patterns. Results Mean differences between time pressing, area covered, and distance explored varied across the simulated lesions. Exams were objectively categorized as either sporadic, localized, thorough, or efficient for both temporal and spatial categories based on spatiotemporal characteristics. The majority of trials were temporally or spatially thorough (78% and 91%), exhibiting proportionally greater time pressing and time searching (temporally thorough) and greater area probed with greater distance explored (spatially thorough). More efficient exams exhibited proportionally more time pressing with less time searching (temporally efficient) and greater area probed with less distance explored (spatially efficient). Just two (5.9 %) of the trials exhibited both high temporal and spatial efficiency. Conclusions Marker-less video tracking was used to discriminate different examination techniques and measure when an exam changes from general searching to specific probing. The majority of participants exhibited more thorough than efficient patterns. Application Marker-less video kinematic tracking may be useful for quantifying clinical skills for training and assessment. PMID:26546381
Audio-based queries for video retrieval over Java enabled mobile devices
NASA Astrophysics Data System (ADS)
Ahmad, Iftikhar; Cheikh, Faouzi Alaya; Kiranyaz, Serkan; Gabbouj, Moncef
2006-02-01
In this paper we propose a generic framework for efficient retrieval of audiovisual media based on its audio content. This framework is implemented in a client-server architecture where the client application is developed in Java to be platform independent whereas the server application is implemented for the PC platform. The client application adapts to the characteristics of the mobile device where it runs such as screen size and commands. The entire framework is designed to take advantage of the high-level segmentation and classification of audio content to improve speed and accuracy of audio-based media retrieval. Therefore, the primary objective of this framework is to provide an adaptive basis for performing efficient video retrieval operations based on the audio content and types (i.e. speech, music, fuzzy and silence). Experimental results approve that such an audio based video retrieval scheme can be used from mobile devices to search and retrieve video clips efficiently over wireless networks.
Efficient implementation of neural network deinterlacing
NASA Astrophysics Data System (ADS)
Seo, Guiwon; Choi, Hyunsoo; Lee, Chulhee
2009-02-01
Interlaced scanning has been widely used in most broadcasting systems. However, there are some undesirable artifacts such as jagged patterns, flickering, and line twitters. Moreover, most recent TV monitors utilize flat panel display technologies such as LCD or PDP monitors and these monitors require progressive formats. Consequently, the conversion of interlaced video into progressive video is required in many applications and a number of deinterlacing methods have been proposed. Recently deinterlacing methods based on neural network have been proposed with good results. On the other hand, with high resolution video contents such as HDTV, the amount of video data to be processed is very large. As a result, the processing time and hardware complexity become an important issue. In this paper, we propose an efficient implementation of neural network deinterlacing using polynomial approximation of the sigmoid function. Experimental results show that these approximations provide equivalent performance with a considerable reduction of complexity. This implementation of neural network deinterlacing can be efficiently incorporated in HW implementation.
Avionics-compatible video facial cognizer for detection of pilot incapacitation.
Steffin, Morris
2006-01-01
High-acceleration loss of consciousness is a serious problem for military pilots. In this laboratory, a video cognizer has been developed that in real time detects facial changes closely coupled to the onset of loss of consciousness. Efficient algorithms are compatible with video digital signal processing hardware and are thus configurable on an autonomous single board that generates alarm triggers to activate autopilot, and is avionics-compatible.
MATIN: a random network coding based framework for high quality peer-to-peer live video streaming.
Barekatain, Behrang; Khezrimotlagh, Dariush; Aizaini Maarof, Mohd; Ghaeini, Hamid Reza; Salleh, Shaharuddin; Quintana, Alfonso Ariza; Akbari, Behzad; Cabrera, Alicia Triviño
2013-01-01
In recent years, Random Network Coding (RNC) has emerged as a promising solution for efficient Peer-to-Peer (P2P) video multicasting over the Internet. This probably refers to this fact that RNC noticeably increases the error resiliency and throughput of the network. However, high transmission overhead arising from sending large coefficients vector as header has been the most important challenge of the RNC. Moreover, due to employing the Gauss-Jordan elimination method, considerable computational complexity can be imposed on peers in decoding the encoded blocks and checking linear dependency among the coefficients vectors. In order to address these challenges, this study introduces MATIN which is a random network coding based framework for efficient P2P video streaming. The MATIN includes a novel coefficients matrix generation method so that there is no linear dependency in the generated coefficients matrix. Using the proposed framework, each peer encapsulates one instead of n coefficients entries into the generated encoded packet which results in very low transmission overhead. It is also possible to obtain the inverted coefficients matrix using a bit number of simple arithmetic operations. In this regard, peers sustain very low computational complexities. As a result, the MATIN permits random network coding to be more efficient in P2P video streaming systems. The results obtained from simulation using OMNET++ show that it substantially outperforms the RNC which uses the Gauss-Jordan elimination method by providing better video quality on peers in terms of the four important performance metrics including video distortion, dependency distortion, End-to-End delay and Initial Startup delay.
Effect of video server topology on contingency capacity requirements
NASA Astrophysics Data System (ADS)
Kienzle, Martin G.; Dan, Asit; Sitaram, Dinkar; Tetzlaff, William H.
1996-03-01
Video servers need to assign a fixed set of resources to each video stream in order to guarantee on-time delivery of the video data. If a server has insufficient resources to guarantee the delivery, it must reject the stream request rather than slowing down all existing streams. Large scale video servers are being built as clusters of smaller components, so as to be economical, scalable, and highly available. This paper uses a blocking model developed for telephone systems to evaluate video server cluster topologies. The goal is to achieve high utilization of the components and low per-stream cost combined with low blocking probability and high user satisfaction. The analysis shows substantial economies of scale achieved by larger server images. Simple distributed server architectures can result in partitioning of resources with low achievable resource utilization. By comparing achievable resource utilization of partitioned and monolithic servers, we quantify the cost of partitioning. Next, we present an architecture for a distributed server system that avoids resource partitioning and results in highly efficient server clusters. Finally, we show how, in these server clusters, further optimizations can be achieved through caching and batching of video streams.
Predefined Redundant Dictionary for Effective Depth Maps Representation
NASA Astrophysics Data System (ADS)
Sebai, Dorsaf; Chaieb, Faten; Ghorbel, Faouzi
2016-01-01
The multi-view video plus depth (MVD) video format consists of two components: texture and depth map, where a combination of these components enables a receiver to generate arbitrary virtual views. However, MVD presents a very voluminous video format that requires a compression process for storage and especially for transmission. Conventional codecs are perfectly efficient for texture images compression but not for intrinsic depth maps properties. Depth images indeed are characterized by areas of smoothly varying grey levels separated by sharp discontinuities at the position of object boundaries. Preserving these characteristics is important to enable high quality view synthesis at the receiver side. In this paper, sparse representation of depth maps is discussed. It is shown that a significant gain in sparsity is achieved when particular mixed dictionaries are used for approximating these types of images with greedy selection strategies. Experiments are conducted to confirm the effectiveness at producing sparse representations, and competitiveness, with respect to candidate state-of-art dictionaries. Finally, the resulting method is shown to be effective for depth maps compression and represents an advantage over the ongoing 3D high efficiency video coding compression standard, particularly at medium and high bitrates.
Video streaming with SHVC to HEVC transcoding
NASA Astrophysics Data System (ADS)
Gudumasu, Srinivas; He, Yuwen; Ye, Yan; Xiu, Xiaoyu
2015-09-01
This paper proposes an efficient Scalable High efficiency Video Coding (SHVC) to High Efficiency Video Coding (HEVC) transcoder, which can reduce the transcoding complexity significantly, and provide a desired trade-off between the transcoding complexity and the transcoded video quality. To reduce the transcoding complexity, some of coding information, such as coding unit (CU) depth, prediction mode, merge mode, motion vector information, intra direction information and transform unit (TU) depth information, in the SHVC bitstream are mapped and transcoded to single layer HEVC bitstream. One major difficulty in transcoding arises when trying to reuse the motion information from SHVC bitstream since motion vectors referring to inter-layer reference (ILR) pictures cannot be reused directly in transcoding. Reusing motion information obtained from ILR pictures for those prediction units (PUs) will reduce the complexity of the SHVC transcoder greatly but a significant reduction in the quality of the picture is observed. Pictures corresponding to the intra refresh pictures in the base layer (BL) will be coded as P pictures in enhancement layer (EL) in the SHVC bitstream; and directly reusing the intra information from the BL for transcoding will not get a good coding efficiency. To solve these problems, various transcoding technologies are proposed. The proposed technologies offer different trade-offs between transcoding speed and transcoding quality. They are implemented on the basis of reference software SHM-6.0 and HM-14.0 for the two layer spatial scalability configuration. Simulations show that the proposed SHVC software transcoder reduces the transcoding complexity by up to 98-99% using low complexity transcoding mode when compared with cascaded re-encoding method. The transcoder performance at various bitrates with different transcoding modes are compared in terms of transcoding speed and transcoded video quality.
Video transmission on ATM networks. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chen, Yun-Chung
1993-01-01
The broadband integrated services digital network (B-ISDN) is expected to provide high-speed and flexible multimedia applications. Multimedia includes data, graphics, image, voice, and video. Asynchronous transfer mode (ATM) is the adopted transport techniques for B-ISDN and has the potential for providing a more efficient and integrated environment for multimedia. It is believed that most broadband applications will make heavy use of visual information. The prospect of wide spread use of image and video communication has led to interest in coding algorithms for reducing bandwidth requirements and improving image quality. The major results of a study on the bridging of network transmission performance and video coding are: Using two representative video sequences, several video source models are developed. The fitness of these models are validated through the use of statistical tests and network queuing performance. A dual leaky bucket algorithm is proposed as an effective network policing function. The concept of the dual leaky bucket algorithm can be applied to a prioritized coding approach to achieve transmission efficiency. A mapping of the performance/control parameters at the network level into equivalent parameters at the video coding level is developed. Based on that, a complete set of principles for the design of video codecs for network transmission is proposed.
Video in English for Specific Purposes.
ERIC Educational Resources Information Center
Hristova, Rozinka
For an English for Specific Purposes (ESP) course to be efficient, the learner and his/her communicative needs should be central in deciding course content and activities. Video can be highly motivating by presenting live instances of communication in the target environment. It is a valuable medium for intensive analysis of visual and nonverbal…
Integration of Video-Based Demonstrations to Prepare Students for the Organic Chemistry Laboratory
ERIC Educational Resources Information Center
Nadelson, Louis S.; Scaggs, Jonathan; Sheffield, Colin; McDougal, Owen M.
2015-01-01
Consistent, high-quality introductions to organic chemistry laboratory techniques effectively and efficiently support student learning in the organic chemistry laboratory. In this work, we developed and deployed a series of instructional videos to communicate core laboratory techniques and concepts. Using a quasi-experimental design, we tested the…
Development of a large-screen high-definition laser video projection system
NASA Astrophysics Data System (ADS)
Clynick, Tony J.
1991-08-01
A prototype laser video projector which uses electronic, optical, and mechanical means to project a television picture is described. With the primary goal of commercial viability, the price/performance ratio of the chosen means is critical. The fundamental requirement has been to achieve high brightness, high definition images of at least movie-theater size, at a cost comparable with other existing large-screen video projection technologies, while having the opportunity of developing and exploiting the unique properties of the laser projected image, such as its infinite depth-of-field. Two argon lasers are used in combination with a dye laser to achieve a range of colors which, despite not being identical to those of a CRT, prove to be subjectively acceptable. Acousto-optic modulation in combination with a rotary polygon scanner, digital video line stores, novel specialized electro-optics, and a galvanometric frame scanner form the basis of the projection technique achieving a 30 MHz video bandwidth, high- definition scan rates (1125/60 and 1250/50), high contrast ratio, and good optical efficiency. Auditorium projection of HDTV pictures wider than 20 meters are possible. Applications including 360 degree(s) projection and 3-D video provide further scope for exploitation of the HD laser video projector.
Visual content highlighting via automatic extraction of embedded captions on MPEG compressed video
NASA Astrophysics Data System (ADS)
Yeo, Boon-Lock; Liu, Bede
1996-03-01
Embedded captions in TV programs such as news broadcasts, documentaries and coverage of sports events provide important information on the underlying events. In digital video libraries, such captions represent a highly condensed form of key information on the contents of the video. In this paper we propose a scheme to automatically detect the presence of captions embedded in video frames. The proposed method operates on reduced image sequences which are efficiently reconstructed from compressed MPEG video and thus does not require full frame decompression. The detection, extraction and analysis of embedded captions help to capture the highlights of visual contents in video documents for better organization of video, to present succinctly the important messages embedded in the images, and to facilitate browsing, searching and retrieval of relevant clips.
MATIN: A Random Network Coding Based Framework for High Quality Peer-to-Peer Live Video Streaming
Barekatain, Behrang; Khezrimotlagh, Dariush; Aizaini Maarof, Mohd; Ghaeini, Hamid Reza; Salleh, Shaharuddin; Quintana, Alfonso Ariza; Akbari, Behzad; Cabrera, Alicia Triviño
2013-01-01
In recent years, Random Network Coding (RNC) has emerged as a promising solution for efficient Peer-to-Peer (P2P) video multicasting over the Internet. This probably refers to this fact that RNC noticeably increases the error resiliency and throughput of the network. However, high transmission overhead arising from sending large coefficients vector as header has been the most important challenge of the RNC. Moreover, due to employing the Gauss-Jordan elimination method, considerable computational complexity can be imposed on peers in decoding the encoded blocks and checking linear dependency among the coefficients vectors. In order to address these challenges, this study introduces MATIN which is a random network coding based framework for efficient P2P video streaming. The MATIN includes a novel coefficients matrix generation method so that there is no linear dependency in the generated coefficients matrix. Using the proposed framework, each peer encapsulates one instead of n coefficients entries into the generated encoded packet which results in very low transmission overhead. It is also possible to obtain the inverted coefficients matrix using a bit number of simple arithmetic operations. In this regard, peers sustain very low computational complexities. As a result, the MATIN permits random network coding to be more efficient in P2P video streaming systems. The results obtained from simulation using OMNET++ show that it substantially outperforms the RNC which uses the Gauss-Jordan elimination method by providing better video quality on peers in terms of the four important performance metrics including video distortion, dependency distortion, End-to-End delay and Initial Startup delay. PMID:23940530
DCT based interpolation filter for motion compensation in HEVC
NASA Astrophysics Data System (ADS)
Alshin, Alexander; Alshina, Elena; Park, Jeong Hoon; Han, Woo-Jin
2012-10-01
High Efficiency Video Coding (HEVC) draft standard has a challenging goal to improve coding efficiency twice compare to H.264/AVC. Many aspects of the traditional hybrid coding framework were improved during new standard development. Motion compensated prediction, in particular the interpolation filter, is one area that was improved significantly over H.264/AVC. This paper presents the details of the interpolation filter design of the draft HEVC standard. The coding efficiency improvements over H.264/AVC interpolation filter is studied and experimental results are presented, which show a 4.0% average bitrate reduction for Luma component and 11.3% average bitrate reduction for Chroma component. The coding efficiency gains are significant for some video sequences and can reach up 21.7%.
Film grain noise modeling in advanced video coding
NASA Astrophysics Data System (ADS)
Oh, Byung Tae; Kuo, C.-C. Jay; Sun, Shijun; Lei, Shawmin
2007-01-01
A new technique for film grain noise extraction, modeling and synthesis is proposed and applied to the coding of high definition video in this work. The film grain noise is viewed as a part of artistic presentation by people in the movie industry. On one hand, since the film grain noise can boost the natural appearance of pictures in high definition video, it should be preserved in high-fidelity video processing systems. On the other hand, video coding with film grain noise is expensive. It is desirable to extract film grain noise from the input video as a pre-processing step at the encoder and re-synthesize the film grain noise and add it back to the decoded video as a post-processing step at the decoder. Under this framework, the coding gain of the denoised video is higher while the quality of the final reconstructed video can still be well preserved. Following this idea, we present a method to remove film grain noise from image/video without distorting its original content. Besides, we describe a parametric model containing a small set of parameters to represent the extracted film grain noise. The proposed model generates the film grain noise that is close to the real one in terms of power spectral density and cross-channel spectral correlation. Experimental results are shown to demonstrate the efficiency of the proposed scheme.
Jin, Meihua; Jung, Ji-Young; Lee, Jung-Ryun
2016-10-12
With the arrival of the era of Internet of Things (IoT), Wi-Fi Direct is becoming an emerging wireless technology that allows one to communicate through a direct connection between the mobile devices anytime, anywhere. In Wi-Fi Direct-based IoT networks, all devices are categorized by group of owner (GO) and client. Since portability is emphasized in Wi-Fi Direct devices, it is essential to control the energy consumption of a device very efficiently. In order to avoid unnecessary power consumed by GO, Wi-Fi Direct standard defines two power-saving methods: Opportunistic and Notice of Absence (NoA) power-saving methods. In this paper, we suggest an algorithm to enhance the energy efficiency of Wi-Fi Direct power-saving, considering the characteristics of multimedia video traffic. Proposed algorithm utilizes the statistical distribution for the size of video frames and adjusts the lengths of awake intervals in a beacon interval dynamically. In addition, considering the inter-dependency among video frames, the proposed algorithm ensures that a video frame having high priority is transmitted with higher probability than other frames having low priority. Simulation results show that the proposed method outperforms the traditional NoA method in terms of average delay and energy efficiency.
Jin, Meihua; Jung, Ji-Young; Lee, Jung-Ryun
2016-01-01
With the arrival of the era of Internet of Things (IoT), Wi-Fi Direct is becoming an emerging wireless technology that allows one to communicate through a direct connection between the mobile devices anytime, anywhere. In Wi-Fi Direct-based IoT networks, all devices are categorized by group of owner (GO) and client. Since portability is emphasized in Wi-Fi Direct devices, it is essential to control the energy consumption of a device very efficiently. In order to avoid unnecessary power consumed by GO, Wi-Fi Direct standard defines two power-saving methods: Opportunistic and Notice of Absence (NoA) power-saving methods. In this paper, we suggest an algorithm to enhance the energy efficiency of Wi-Fi Direct power-saving, considering the characteristics of multimedia video traffic. Proposed algorithm utilizes the statistical distribution for the size of video frames and adjusts the lengths of awake intervals in a beacon interval dynamically. In addition, considering the inter-dependency among video frames, the proposed algorithm ensures that a video frame having high priority is transmitted with higher probability than other frames having low priority. Simulation results show that the proposed method outperforms the traditional NoA method in terms of average delay and energy efficiency. PMID:27754315
Video enhancement workbench: an operational real-time video image processing system
NASA Astrophysics Data System (ADS)
Yool, Stephen R.; Van Vactor, David L.; Smedley, Kirk G.
1993-01-01
Video image sequences can be exploited in real-time, giving analysts rapid access to information for military or criminal investigations. Video-rate dynamic range adjustment subdues fluctuations in image intensity, thereby assisting discrimination of small or low- contrast objects. Contrast-regulated unsharp masking enhances differentially shadowed or otherwise low-contrast image regions. Real-time removal of localized hotspots, when combined with automatic histogram equalization, may enhance resolution of objects directly adjacent. In video imagery corrupted by zero-mean noise, real-time frame averaging can assist resolution and location of small or low-contrast objects. To maximize analyst efficiency, lengthy video sequences can be screened automatically for low-frequency, high-magnitude events. Combined zoom, roam, and automatic dynamic range adjustment permit rapid analysis of facial features captured by video cameras recording crimes in progress. When trying to resolve small objects in murky seawater, stereo video places the moving imagery in an optimal setting for human interpretation.
Highly efficient simulation environment for HDTV video decoder in VLSI design
NASA Astrophysics Data System (ADS)
Mao, Xun; Wang, Wei; Gong, Huimin; He, Yan L.; Lou, Jian; Yu, Lu; Yao, Qingdong; Pirsch, Peter
2002-01-01
With the increase of the complex of VLSI such as the SoC (System on Chip) of MPEG-2 Video decoder with HDTV scalability especially, simulation and verification of the full design, even as high as the behavior level in HDL, often proves to be very slow, costly and it is difficult to perform full verification until late in the design process. Therefore, they become bottleneck of the procedure of HDTV video decoder design, and influence it's time-to-market mostly. In this paper, the architecture of Hardware/Software Interface of HDTV video decoder is studied, and a Hardware-Software Mixed Simulation (HSMS) platform is proposed to check and correct error in the early design stage, based on the algorithm of MPEG-2 video decoding. The application of HSMS to target system could be achieved by employing several introduced approaches. Those approaches speed up the simulation and verification task without decreasing performance.
NASA Astrophysics Data System (ADS)
Chen, Gang; Yang, Bing; Zhang, Xiaoyun; Gao, Zhiyong
2017-07-01
The latest high efficiency video coding (HEVC) standard significantly increases the encoding complexity for improving its coding efficiency. Due to the limited computational capability of handheld devices, complexity constrained video coding has drawn great attention in recent years. A complexity control algorithm based on adaptive mode selection is proposed for interframe coding in HEVC. Considering the direct proportionality between encoding time and computational complexity, the computational complexity is measured in terms of encoding time. First, complexity is mapped to a target in terms of prediction modes. Then, an adaptive mode selection algorithm is proposed for the mode decision process. Specifically, the optimal mode combination scheme that is chosen through offline statistics is developed at low complexity. If the complexity budget has not been used up, an adaptive mode sorting method is employed to further improve coding efficiency. The experimental results show that the proposed algorithm achieves a very large complexity control range (as low as 10%) for the HEVC encoder while maintaining good rate-distortion performance. For the lowdelayP condition, compared with the direct resource allocation method and the state-of-the-art method, an average gain of 0.63 and 0.17 dB in BDPSNR is observed for 18 sequences when the target complexity is around 40%.
NASA Astrophysics Data System (ADS)
Liu, Mei-Feng; Zhong, Guo-Yun; He, Xiao-Hai; Qing, Lin-Bo
2016-09-01
Currently, most video resources on line are encoded in the H.264/AVC format. More fluent video transmission can be obtained if these resources are encoded in the newest international video coding standard: high efficiency video coding (HEVC). In order to improve the video transmission and storage on line, a transcoding method from H.264/AVC to HEVC is proposed. In this transcoding algorithm, the coding information of intraprediction, interprediction, and motion vector (MV) in H.264/AVC video stream are used to accelerate the coding in HEVC. It is found through experiments that the region of interprediction in HEVC overlaps that in H.264/AVC. Therefore, the intraprediction for the region in HEVC, which is interpredicted in H.264/AVC, can be skipped to reduce coding complexity. Several macroblocks in H.264/AVC are combined into one PU in HEVC when the MV difference between two of the macroblocks in H.264/AVC is lower than a threshold. This method selects only one coding unit depth and one prediction unit (PU) mode to reduce the coding complexity. An MV interpolation method of combined PU in HEVC is proposed according to the areas and distances between the center of one macroblock in H.264/AVC and that of the PU in HEVC. The predicted MV accelerates the motion estimation for HEVC coding. The simulation results show that our proposed algorithm achieves significant coding time reduction with a little loss in bitrates distortion rate, compared to the existing transcoding algorithms and normal HEVC coding.
Resolution enhancement of low-quality videos using a high-resolution frame
NASA Astrophysics Data System (ADS)
Pham, Tuan Q.; van Vliet, Lucas J.; Schutte, Klamer
2006-01-01
This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of corresponding LR-HR pairs of image patches from the HR still image, high-frequency details are transferred from the HR source to the LR video. The DCT-domain algorithm is much faster than example-based SR in spatial domain 6 because of a reduction in search dimensionality, which is a direct result of the compact and uncorrelated DCT representation. Fast searching techniques like tree-structure vector quantization 16 and coherence search1 are also key to the improved efficiency. Preliminary results on MJPEG sequence show promising result of the DCT-domain SR synthesis approach.
Jia, Jia; Chen, Jhensi; Yao, Jun; Chu, Daping
2017-03-17
A high quality 3D display requires a high amount of optical information throughput, which needs an appropriate mechanism to distribute information in space uniformly and efficiently. This study proposes a front-viewing system which is capable of managing the required amount of information efficiently from a high bandwidth source and projecting 3D images with a decent size and a large viewing angle at video rate in full colour. It employs variable gratings to support a high bandwidth distribution. This concept is scalable and the system can be made compact in size. A horizontal parallax only (HPO) proof-of-concept system is demonstrated by projecting holographic images from a digital micro mirror device (DMD) through rotational tiled gratings before they are realised on a vertical diffuser for front-viewing.
Design and implementation of H.264 based embedded video coding technology
NASA Astrophysics Data System (ADS)
Mao, Jian; Liu, Jinming; Zhang, Jiemin
2016-03-01
In this paper, an embedded system for remote online video monitoring was designed and developed to capture and record the real-time circumstances in elevator. For the purpose of improving the efficiency of video acquisition and processing, the system selected Samsung S5PV210 chip as the core processor which Integrated graphics processing unit. And the video was encoded with H.264 format for storage and transmission efficiently. Based on S5PV210 chip, the hardware video coding technology was researched, which was more efficient than software coding. After running test, it had been proved that the hardware video coding technology could obviously reduce the cost of system and obtain the more smooth video display. It can be widely applied for the security supervision [1].
Efficient Use of Video for 3d Modelling of Cultural Heritage Objects
NASA Astrophysics Data System (ADS)
Alsadik, B.; Gerke, M.; Vosselman, G.
2015-03-01
Currently, there is a rapid development in the techniques of the automated image based modelling (IBM), especially in advanced structure-from-motion (SFM) and dense image matching methods, and camera technology. One possibility is to use video imaging to create 3D reality based models of cultural heritage architectures and monuments. Practically, video imaging is much easier to apply when compared to still image shooting in IBM techniques because the latter needs a thorough planning and proficiency. However, one is faced with mainly three problems when video image sequences are used for highly detailed modelling and dimensional survey of cultural heritage objects. These problems are: the low resolution of video images, the need to process a large number of short baseline video images and blur effects due to camera shake on a significant number of images. In this research, the feasibility of using video images for efficient 3D modelling is investigated. A method is developed to find the minimal significant number of video images in terms of object coverage and blur effect. This reduction in video images is convenient to decrease the processing time and to create a reliable textured 3D model compared with models produced by still imaging. Two experiments for modelling a building and a monument are tested using a video image resolution of 1920×1080 pixels. Internal and external validations of the produced models are applied to find out the final predicted accuracy and the model level of details. Related to the object complexity and video imaging resolution, the tests show an achievable average accuracy between 1 - 5 cm when using video imaging, which is suitable for visualization, virtual museums and low detailed documentation.
Seeling, Patrick; Reisslein, Martin
2014-01-01
Video encoding for multimedia services over communication networks has significantly advanced in recent years with the development of the highly efficient and flexible H.264/AVC video coding standard and its SVC extension. The emerging H.265/HEVC video coding standard as well as 3D video coding further advance video coding for multimedia communications. This paper first gives an overview of these new video coding standards and then examines their implications for multimedia communications by studying the traffic characteristics of long videos encoded with the new coding standards. We review video coding advances from MPEG-2 and MPEG-4 Part 2 to H.264/AVC and its SVC and MVC extensions as well as H.265/HEVC. For single-layer (nonscalable) video, we compare H.265/HEVC and H.264/AVC in terms of video traffic and statistical multiplexing characteristics. Our study is the first to examine the H.265/HEVC traffic variability for long videos. We also illustrate the video traffic characteristics and statistical multiplexing of scalable video encoded with the SVC extension of H.264/AVC as well as 3D video encoded with the MVC extension of H.264/AVC.
2014-01-01
Video encoding for multimedia services over communication networks has significantly advanced in recent years with the development of the highly efficient and flexible H.264/AVC video coding standard and its SVC extension. The emerging H.265/HEVC video coding standard as well as 3D video coding further advance video coding for multimedia communications. This paper first gives an overview of these new video coding standards and then examines their implications for multimedia communications by studying the traffic characteristics of long videos encoded with the new coding standards. We review video coding advances from MPEG-2 and MPEG-4 Part 2 to H.264/AVC and its SVC and MVC extensions as well as H.265/HEVC. For single-layer (nonscalable) video, we compare H.265/HEVC and H.264/AVC in terms of video traffic and statistical multiplexing characteristics. Our study is the first to examine the H.265/HEVC traffic variability for long videos. We also illustrate the video traffic characteristics and statistical multiplexing of scalable video encoded with the SVC extension of H.264/AVC as well as 3D video encoded with the MVC extension of H.264/AVC. PMID:24701145
Comparison of compression efficiency between HEVC/H.265 and VP9 based on subjective assessments
NASA Astrophysics Data System (ADS)
Řeřábek, Martin; Ebrahimi, Touradj
2014-09-01
Current increasing effort of broadcast providers to transmit UHD (Ultra High Definition) content is likely to increase demand for ultra high definition televisions (UHDTVs). To compress UHDTV content, several alternative encoding mechanisms exist. In addition to internationally recognized standards, open access proprietary options, such as VP9 video encoding scheme, have recently appeared and are gaining popularity. One of the main goals of these encoders is to efficiently compress video sequences beyond HDTV resolution for various scenarios, such as broadcasting or internet streaming. In this paper, a broadcast scenario rate-distortion performance analysis and mutual comparison of one of the latest video coding standards H.265/HEVC with recently released proprietary video coding scheme VP9 is presented. Also, currently one of the most popular and widely spread encoder H.264/AVC has been included into the evaluation to serve as a comparison baseline. The comparison is performed by means of subjective evaluations showing actual differences between encoding algorithms in terms of perceived quality. The results indicate a general dominance of HEVC based encoding algorithm in comparison to other alternatives, while VP9 and AVC showing similar performance.
Research on compression performance of ultrahigh-definition videos
NASA Astrophysics Data System (ADS)
Li, Xiangqun; He, Xiaohai; Qing, Linbo; Tao, Qingchuan; Wu, Di
2017-11-01
With the popularization of high-definition (HD) images and videos (1920×1080 pixels and above), there are even 4K (3840×2160) television signals and 8 K (8192×4320) ultrahigh-definition videos. The demand for HD images and videos is increasing continuously, along with the increasing data volume. The storage and transmission cannot be properly solved only by virtue of the expansion capacity of hard disks and the update and improvement of transmission devices. Based on the full use of the coding standard high-efficiency video coding (HEVC), super-resolution reconstruction technology, and the correlation between the intra- and the interprediction, we first put forward a "division-compensation"-based strategy to further improve the compression performance of a single image and frame I. Then, by making use of the above thought and HEVC encoder and decoder, a video compression coding frame is designed. HEVC is used inside the frame. Last, with the super-resolution reconstruction technology, the reconstructed video quality is further improved. The experiment shows that by the proposed compression method for a single image (frame I) and video sequence here, the performance is superior to that of HEVC in a low bit rate environment.
Web Audio/Video Streaming Tool
NASA Technical Reports Server (NTRS)
Guruvadoo, Eranna K.
2003-01-01
In order to promote NASA-wide educational outreach program to educate and inform the public of space exploration, NASA, at Kennedy Space Center, is seeking efficient ways to add more contents to the web by streaming audio/video files. This project proposes a high level overview of a framework for the creation, management, and scheduling of audio/video assets over the web. To support short-term goals, the prototype of a web-based tool is designed and demonstrated to automate the process of streaming audio/video files. The tool provides web-enabled users interfaces to manage video assets, create publishable schedules of video assets for streaming, and schedule the streaming events. These operations are performed on user-defined and system-derived metadata of audio/video assets stored in a relational database while the assets reside on separate repository. The prototype tool is designed using ColdFusion 5.0.
A new visual navigation system for exploring biomedical Open Educational Resource (OER) videos
Zhao, Baoquan; Xu, Songhua; Lin, Shujin; Luo, Xiaonan; Duan, Lian
2016-01-01
Objective Biomedical videos as open educational resources (OERs) are increasingly proliferating on the Internet. Unfortunately, seeking personally valuable content from among the vast corpus of quality yet diverse OER videos is nontrivial due to limitations of today’s keyword- and content-based video retrieval techniques. To address this need, this study introduces a novel visual navigation system that facilitates users’ information seeking from biomedical OER videos in mass quantity by interactively offering visual and textual navigational clues that are both semantically revealing and user-friendly. Materials and Methods The authors collected and processed around 25 000 YouTube videos, which collectively last for a total length of about 4000 h, in the broad field of biomedical sciences for our experiment. For each video, its semantic clues are first extracted automatically through computationally analyzing audio and visual signals, as well as text either accompanying or embedded in the video. These extracted clues are subsequently stored in a metadata database and indexed by a high-performance text search engine. During the online retrieval stage, the system renders video search results as dynamic web pages using a JavaScript library that allows users to interactively and intuitively explore video content both efficiently and effectively. Results The authors produced a prototype implementation of the proposed system, which is publicly accessible at https://patentq.njit.edu/oer. To examine the overall advantage of the proposed system for exploring biomedical OER videos, the authors further conducted a user study of a modest scale. The study results encouragingly demonstrate the functional effectiveness and user-friendliness of the new system for facilitating information seeking from and content exploration among massive biomedical OER videos. Conclusion Using the proposed tool, users can efficiently and effectively find videos of interest, precisely locate video segments delivering personally valuable information, as well as intuitively and conveniently preview essential content of a single or a collection of videos. PMID:26335986
Sparse/DCT (S/DCT) two-layered representation of prediction residuals for video coding.
Kang, Je-Won; Gabbouj, Moncef; Kuo, C-C Jay
2013-07-01
In this paper, we propose a cascaded sparse/DCT (S/DCT) two-layer representation of prediction residuals, and implement this idea on top of the state-of-the-art high efficiency video coding (HEVC) standard. First, a dictionary is adaptively trained to contain featured patterns of residual signals so that a high portion of energy in a structured residual can be efficiently coded via sparse coding. It is observed that the sparse representation alone is less effective in the R-D performance due to the side information overhead at higher bit rates. To overcome this problem, the DCT representation is cascaded at the second stage. It is applied to the remaining signal to improve coding efficiency. The two representations successfully complement each other. It is demonstrated by experimental results that the proposed algorithm outperforms the HEVC reference codec HM5.0 in the Common Test Condition.
3D video coding: an overview of present and upcoming standards
NASA Astrophysics Data System (ADS)
Merkle, Philipp; Müller, Karsten; Wiegand, Thomas
2010-07-01
An overview of existing and upcoming 3D video coding standards is given. Various different 3D video formats are available, each with individual pros and cons. The 3D video formats can be separated into two classes: video-only formats (such as stereo and multiview video) and depth-enhanced formats (such as video plus depth and multiview video plus depth). Since all these formats exist of at least two video sequences and possibly additional depth data, efficient compression is essential for the success of 3D video applications and technologies. For the video-only formats the H.264 family of coding standards already provides efficient and widely established compression algorithms: H.264/AVC simulcast, H.264/AVC stereo SEI message, and H.264/MVC. For the depth-enhanced formats standardized coding algorithms are currently being developed. New and specially adapted coding approaches are necessary, as the depth or disparity information included in these formats has significantly different characteristics than video and is not displayed directly, but used for rendering. Motivated by evolving market needs, MPEG has started an activity to develop a generic 3D video standard within the 3DVC ad-hoc group. Key features of the standard are efficient and flexible compression of depth-enhanced 3D video representations and decoupling of content creation and display requirements.
ERIC Educational Resources Information Center
Christman, Jennifer T.
2013-01-01
The aim of this study was to examine the application of video modeling on mobile technology to increase efficiency in the classroom for students identified with intellectual disabilities. Specially, this study sought to identify if video modeling on mobile technology could decrease adult prompting for students with intellectual disabilities during…
Backwards compatible high dynamic range video compression
NASA Astrophysics Data System (ADS)
Dolzhenko, Vladimir; Chesnokov, Vyacheslav; Edirisinghe, Eran A.
2014-02-01
This paper presents a two layer CODEC architecture for high dynamic range video compression. The base layer contains the tone mapped video stream encoded with 8 bits per component which can be decoded using conventional equipment. The base layer content is optimized for rendering on low dynamic range displays. The enhancement layer contains the image difference, in perceptually uniform color space, between the result of inverse tone mapped base layer content and the original video stream. Prediction of the high dynamic range content reduces the redundancy in the transmitted data while still preserves highlights and out-of-gamut colors. Perceptually uniform colorspace enables using standard ratedistortion optimization algorithms. We present techniques for efficient implementation and encoding of non-uniform tone mapping operators with low overhead in terms of bitstream size and number of operations. The transform representation is based on human vision system model and suitable for global and local tone mapping operators. The compression techniques include predicting the transform parameters from previously decoded frames and from already decoded data for current frame. Different video compression techniques are compared: backwards compatible and non-backwards compatible using AVC and HEVC codecs.
Jia, Jia; Chen, Jhensi; Yao, Jun; Chu, Daping
2017-01-01
A high quality 3D display requires a high amount of optical information throughput, which needs an appropriate mechanism to distribute information in space uniformly and efficiently. This study proposes a front-viewing system which is capable of managing the required amount of information efficiently from a high bandwidth source and projecting 3D images with a decent size and a large viewing angle at video rate in full colour. It employs variable gratings to support a high bandwidth distribution. This concept is scalable and the system can be made compact in size. A horizontal parallax only (HPO) proof-of-concept system is demonstrated by projecting holographic images from a digital micro mirror device (DMD) through rotational tiled gratings before they are realised on a vertical diffuser for front-viewing. PMID:28304371
Video face recognition against a watch list
NASA Astrophysics Data System (ADS)
Abbas, Jehanzeb; Dagli, Charlie K.; Huang, Thomas S.
2007-10-01
Due to a large increase in the video surveillance data recently in an effort to maintain high security at public places, we need more robust systems to analyze this data and make tasks like face recognition a realistic possibility in challenging environments. In this paper we explore a watch-list scenario where we use an appearance based model to classify query faces from low resolution videos into either a watch-list or a non-watch-list face. We then use our simple yet a powerful face recognition system to recognize the faces classified as watch-list faces. Where the watch-list includes those people that we are interested in recognizing. Our system uses simple feature machine algorithms from our previous work to match video faces against still images. To test our approach, we match video faces against a large database of still images obtained from a previous work in the field from Yahoo News over a period of time. We do this matching in an efficient manner to come up with a faster and nearly real-time system. This system can be incorporated into a larger surveillance system equipped with advanced algorithms involving anomalous event detection and activity recognition. This is a step towards more secure and robust surveillance systems and efficient video data analysis.
Enabling MPEG-2 video playback in embedded systems through improved data cache efficiency
NASA Astrophysics Data System (ADS)
Soderquist, Peter; Leeser, Miriam E.
1999-01-01
Digital video decoding, enabled by the MPEG-2 Video standard, is an important future application for embedded systems, particularly PDAs and other information appliances. Many such system require portability and wireless communication capabilities, and thus face severe limitations in size and power consumption. This places a premium on integration and efficiency, and favors software solutions for video functionality over specialized hardware. The processors in most embedded system currently lack the computational power needed to perform video decoding, but a related and equally important problem is the required data bandwidth, and the need to cost-effectively insure adequate data supply. MPEG data sets are very large, and generate significant amounts of excess memory traffic for standard data caches, up to 100 times the amount required for decoding. Meanwhile, cost and power limitations restrict cache sizes in embedded systems. Some systems, including many media processors, eliminate caches in favor of memories under direct, painstaking software control in the manner of digital signal processors. Yet MPEG data has locality which caches can exploit if properly optimized, providing fast, flexible, and automatic data supply. We propose a set of enhancements which target the specific needs of the heterogeneous types within the MPEG decoder working set. These optimizations significantly improve the efficiency of small caches, reducing cache-memory traffic by almost 70 percent, and can make an enhanced 4 KB cache perform better than a standard 1 MB cache. This performance improvement can enable high-resolution, full frame rate video playback in cheaper, smaller system than woudl otherwise be possible.
A complexity-scalable software-based MPEG-2 video encoder.
Chen, Guo-bin; Lu, Xin-ning; Wang, Xing-guo; Liu, Ji-lin
2004-05-01
With the development of general-purpose processors (GPP) and video signal processing algorithms, it is possible to implement a software-based real-time video encoder on GPP, and its low cost and easy upgrade attract developers' interests to transfer video encoding from specialized hardware to more flexible software. In this paper, the encoding structure is set up first to support complexity scalability; then a lot of high performance algorithms are used on the key time-consuming modules in coding process; finally, at programming level, processor characteristics are considered to improve data access efficiency and processing parallelism. Other programming methods such as lookup table are adopted to reduce the computational complexity. Simulation results showed that these ideas could not only improve the global performance of video coding, but also provide great flexibility in complexity regulation.
Integration of Video-Based Demonstrations to Prepare Students for the Organic Chemistry Laboratory
NASA Astrophysics Data System (ADS)
Nadelson, Louis S.; Scaggs, Jonathan; Sheffield, Colin; McDougal, Owen M.
2015-08-01
Consistent, high-quality introductions to organic chemistry laboratory techniques effectively and efficiently support student learning in the organic chemistry laboratory. In this work, we developed and deployed a series of instructional videos to communicate core laboratory techniques and concepts. Using a quasi-experimental design, we tested the videos in five traditional laboratory experiments by integrating them with the standard pre-laboratory student preparation presentations and instructor demonstrations. We assessed the influence of the videos on student laboratory knowledge and performance, using sections of students who did not view the videos as the control. Our analysis of pre-quizzes revealed the control group had equivalent scores to the treatment group, while the post-quiz results show consistently greater learning gains for the treatment group. Additionally, the students who watched the videos as part of their pre-laboratory instruction completed their experiments in less time.
An improvement analysis on video compression using file segmentation
NASA Astrophysics Data System (ADS)
Sharma, Shubhankar; Singh, K. John; Priya, M.
2017-11-01
From the past two decades the extreme evolution of the Internet has lead a massive rise in video technology and significantly video consumption over the Internet which inhabits the bulk of data traffic in general. Clearly, video consumes that so much data size on the World Wide Web, to reduce the burden on the Internet and deduction of bandwidth consume by video so that the user can easily access the video data.For this, many video codecs are developed such as HEVC/H.265 and V9. Although after seeing codec like this one gets a dilemma of which would be improved technology in the manner of rate distortion and the coding standard.This paper gives a solution about the difficulty for getting low delay in video compression and video application e.g. ad-hoc video conferencing/streaming or observation by surveillance. Also this paper describes the benchmark of HEVC and V9 technique of video compression on subjective oral estimations of High Definition video content, playback on web browsers. Moreover, this gives the experimental ideology of dividing the video file into several segments for compression and putting back together to improve the efficiency of video compression on the web as well as on the offline mode.
2010-07-01
imagery, persistent sensor array I. Introduction New device fabrication technologies and heterogeneous embedded processors have led to the emergence of a...geometric occlusions between target and sensor , motion blur, urban scene complexity, and high data volumes. In practical terms the targets are small...distributed airborne narrow-field-of-view video sensor networks. Airborne camera arrays combined with com- putational photography techniques enable the
A hardware-oriented concurrent TZ search algorithm for High-Efficiency Video Coding
NASA Astrophysics Data System (ADS)
Doan, Nghia; Kim, Tae Sung; Rhee, Chae Eun; Lee, Hyuk-Jae
2017-12-01
High-Efficiency Video Coding (HEVC) is the latest video coding standard, in which the compression performance is double that of its predecessor, the H.264/AVC standard, while the video quality remains unchanged. In HEVC, the test zone (TZ) search algorithm is widely used for integer motion estimation because it effectively searches the good-quality motion vector with a relatively small amount of computation. However, the complex computation structure of the TZ search algorithm makes it difficult to implement it in the hardware. This paper proposes a new integer motion estimation algorithm which is designed for hardware execution by modifying the conventional TZ search to allow parallel motion estimations of all prediction unit (PU) partitions. The algorithm consists of the three phases of zonal, raster, and refinement searches. At the beginning of each phase, the algorithm obtains the search points required by the original TZ search for all PU partitions in a coding unit (CU). Then, all redundant search points are removed prior to the estimation of the motion costs, and the best search points are then selected for all PUs. Compared to the conventional TZ search algorithm, experimental results show that the proposed algorithm significantly decreases the Bjøntegaard Delta bitrate (BD-BR) by 0.84%, and it also reduces the computational complexity by 54.54%.
An efficient approach for video information retrieval
NASA Astrophysics Data System (ADS)
Dong, Daoguo; Xue, Xiangyang
2005-01-01
Today, more and more video information can be accessed through internet, satellite, etc.. Retrieving specific video information from large-scale video database has become an important and challenging research topic in the area of multimedia information retrieval. In this paper, we introduce a new and efficient index structure OVA-File, which is a variant of VA-File. In OVA-File, the approximations close to each other in data space are stored in close positions of the approximation file. The benefit is that only a part of approximations close to the query vector need to be visited to get the query result. Both shot query algorithm and video clip algorithm are proposed to support video information retrieval efficiently. The experimental results showed that the queries based on OVA-File were much faster than that based on VA-File with small loss of result quality.
Ethernet direct display: a new dimension for in-vehicle video connectivity solutions
NASA Astrophysics Data System (ADS)
Rowley, Vincent
2009-05-01
To improve the local situational awareness (LSA) of personnel in light or heavily armored vehicles, most military organizations recognize the need to equip their fleets with high-resolution digital video systems. Several related upgrade programs are already in progress and, almost invariably, COTS IP/Ethernet is specified as the underlying transport mechanism. The high bandwidths, long reach, networking flexibility, scalability, and affordability of IP/Ethernet make it an attractive choice. There are significant technical challenges, however, in achieving high-performance, real-time video connectivity over the IP/Ethernet platform. As an early pioneer in performance-oriented video systems based on IP/Ethernet, Pleora Technologies has developed core expertise in meeting these challenges and applied a singular focus to innovating within the required framework. The company's field-proven iPORTTM Video Connectivity Solution is deployed successfully in thousands of real-world applications for medical, military, and manufacturing operations. Pleora's latest innovation is eDisplayTM, a smallfootprint, low-power, highly efficient IP engine that acquires video from an Ethernet connection and sends it directly to a standard HDMI/DVI monitor for real-time viewing. More costly PCs are not required. This paper describes Pleora's eDisplay IP Engine in more detail. It demonstrates how - in concert with other elements of the end-to-end iPORT Video Connectivity Solution - the engine can be used to build standards-based, in-vehicle video systems that increase the safety and effectiveness of military personnel while fully leveraging the advantages of the lowcost COTS IP/Ethernet platform.
Extensions under development for the HEVC standard
NASA Astrophysics Data System (ADS)
Sullivan, Gary J.
2013-09-01
This paper discusses standardization activities for extending the capabilities of the High Efficiency Video Coding (HEVC) standard - the first edition of which was completed in early 2013. These near-term extensions are focused on three areas: range extensions (such as enhanced chroma formats, monochrome video, and increased bit depth), bitstream scalability extensions for spatial and fidelity scalability, and 3D video extensions (including stereoscopic/multi-view coding, and probably also depth map coding and combinations thereof). Standardization extensions on each of these topics will be completed by mid-2014, and further work beyond that timeframe is also discussed.
NASA Astrophysics Data System (ADS)
Sullivan, Gary J.; Topiwala, Pankaj N.; Luthra, Ajay
2004-11-01
H.264/MPEG-4 AVC is the latest international video coding standard. It was jointly developed by the Video Coding Experts Group (VCEG) of the ITU-T and the Moving Picture Experts Group (MPEG) of ISO/IEC. It uses state-of-the-art coding tools and provides enhanced coding efficiency for a wide range of applications, including video telephony, video conferencing, TV, storage (DVD and/or hard disk based, especially high-definition DVD), streaming video, digital video authoring, digital cinema, and many others. The work on a new set of extensions to this standard has recently been completed. These extensions, known as the Fidelity Range Extensions (FRExt), provide a number of enhanced capabilities relative to the base specification as approved in the Spring of 2003. In this paper, an overview of this standard is provided, including the highlights of the capabilities of the new FRExt features. Some comparisons with the existing MPEG-2 and MPEG-4 Part 2 standards are also provided.
Compression of computer generated phase-shifting hologram sequence using AVC and HEVC
NASA Astrophysics Data System (ADS)
Xing, Yafei; Pesquet-Popescu, Béatrice; Dufaux, Frederic
2013-09-01
With the capability of achieving twice the compression ratio of Advanced Video Coding (AVC) with similar reconstruction quality, High Efficiency Video Coding (HEVC) is expected to become the newleading technique of video coding. In order to reduce the storage and transmission burden of digital holograms, in this paper we propose to use HEVC for compressing the phase-shifting digital hologram sequences (PSDHS). By simulating phase-shifting digital holography (PSDH) interferometry, interference patterns between illuminated three dimensional( 3D) virtual objects and the stepwise phase changed reference wave are generated as digital holograms. The hologram sequences are obtained by the movement of the virtual objects and compressed by AVC and HEVC. The experimental results show that AVC and HEVC are efficient to compress PSDHS, with HEVC giving better performance. Good compression rate and reconstruction quality can be obtained with bitrate above 15000kbps.
An ROI multi-resolution compression method for 3D-HEVC
NASA Astrophysics Data System (ADS)
Ti, Chunli; Guan, Yudong; Xu, Guodong; Teng, Yidan; Miao, Xinyuan
2017-09-01
3D High Efficiency Video Coding (3D-HEVC) provides a significant potential on increasing the compression ratio of multi-view RGB-D videos. However, the bit rate still rises dramatically with the improvement of the video resolution, which will bring challenges to the transmission network, especially the mobile network. This paper propose an ROI multi-resolution compression method for 3D-HEVC to better preserve the information in ROI on condition of limited bandwidth. This is realized primarily through ROI extraction and compression multi-resolution preprocessed video as alternative data according to the network conditions. At first, the semantic contours are detected by the modified structured forests to restrain the color textures inside objects. The ROI is then determined utilizing the contour neighborhood along with the face region and foreground area of the scene. Secondly, the RGB-D videos are divided into slices and compressed via 3D-HEVC under different resolutions for selection by the audiences and applications. Afterwards, the reconstructed low-resolution videos from 3D-HEVC encoder are directly up-sampled via Laplace transformation and used to replace the non-ROI areas of the high-resolution videos. Finally, the ROI multi-resolution compressed slices are obtained by compressing the ROI preprocessed videos with 3D-HEVC. The temporal and special details of non-ROI are reduced in the low-resolution videos, so the ROI will be better preserved by the encoder automatically. Experiments indicate that the proposed method can keep the key high-frequency information with subjective significance while the bit rate is reduced.
Applications of just-noticeable depth difference model in joint multiview video plus depth coding
NASA Astrophysics Data System (ADS)
Liu, Chao; An, Ping; Zuo, Yifan; Zhang, Zhaoyang
2014-10-01
A new multiview just-noticeable-depth-difference(MJNDD) Model is presented and applied to compress the joint multiview video plus depth. Many video coding algorithms remove spatial and temporal redundancies and statistical redundancies but they are not capable of removing the perceptual redundancies. Since the final receptor of video is the human eyes, we can remove the perception redundancy to gain higher compression efficiency according to the properties of human visual system (HVS). Traditional just-noticeable-distortion (JND) model in pixel domain contains luminance contrast and spatial-temporal masking effects, which describes the perception redundancy quantitatively. Whereas HVS is very sensitive to depth information, a new multiview-just-noticeable-depth-difference(MJNDD) model is proposed by combining traditional JND model with just-noticeable-depth-difference (JNDD) model. The texture video is divided into background and foreground areas using depth information. Then different JND threshold values are assigned to these two parts. Later the MJNDD model is utilized to encode the texture video on JMVC. When encoding the depth video, JNDD model is applied to remove the block artifacts and protect the edges. Then we use VSRS3.5 (View Synthesis Reference Software) to generate the intermediate views. Experimental results show that our model can endure more noise and the compression efficiency is improved by 25.29 percent at average and by 54.06 percent at most compared to JMVC while maintaining the subject quality. Hence it can gain high compress ratio and low bit rate.
A new visual navigation system for exploring biomedical Open Educational Resource (OER) videos.
Zhao, Baoquan; Xu, Songhua; Lin, Shujin; Luo, Xiaonan; Duan, Lian
2016-04-01
Biomedical videos as open educational resources (OERs) are increasingly proliferating on the Internet. Unfortunately, seeking personally valuable content from among the vast corpus of quality yet diverse OER videos is nontrivial due to limitations of today's keyword- and content-based video retrieval techniques. To address this need, this study introduces a novel visual navigation system that facilitates users' information seeking from biomedical OER videos in mass quantity by interactively offering visual and textual navigational clues that are both semantically revealing and user-friendly. The authors collected and processed around 25 000 YouTube videos, which collectively last for a total length of about 4000 h, in the broad field of biomedical sciences for our experiment. For each video, its semantic clues are first extracted automatically through computationally analyzing audio and visual signals, as well as text either accompanying or embedded in the video. These extracted clues are subsequently stored in a metadata database and indexed by a high-performance text search engine. During the online retrieval stage, the system renders video search results as dynamic web pages using a JavaScript library that allows users to interactively and intuitively explore video content both efficiently and effectively.ResultsThe authors produced a prototype implementation of the proposed system, which is publicly accessible athttps://patentq.njit.edu/oer To examine the overall advantage of the proposed system for exploring biomedical OER videos, the authors further conducted a user study of a modest scale. The study results encouragingly demonstrate the functional effectiveness and user-friendliness of the new system for facilitating information seeking from and content exploration among massive biomedical OER videos. Using the proposed tool, users can efficiently and effectively find videos of interest, precisely locate video segments delivering personally valuable information, as well as intuitively and conveniently preview essential content of a single or a collection of videos. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
An efficient CU partition algorithm for HEVC based on improved Sobel operator
NASA Astrophysics Data System (ADS)
Sun, Xuebin; Chen, Xiaodong; Xu, Yong; Sun, Gang; Yang, Yunsheng
2018-04-01
As the latest video coding standard, High Efficiency Video Coding (HEVC) achieves over 50% bit rate reduction with similar video quality compared with previous standards H.264/AVC. However, the higher compression efficiency is attained at the cost of significantly increasing computational load. In order to reduce the complexity, this paper proposes a fast coding unit (CU) partition technique to speed up the process. To detect the edge features of each CU, a more accurate improved Sobel filtering is developed and performed By analyzing the textural features of CU, an early CU splitting termination is proposed to decide whether a CU should be decomposed into four lower-dimensions CUs or not. Compared with the reference software HM16.7, experimental results indicate the proposed algorithm can lessen the encoding time up to 44.09% on average, with a negligible bit rate increase of 0.24%, and quality losses lower 0.03 dB, respectively. In addition, the proposed algorithm gets a better trade-off between complexity and rate-distortion among the other proposed works.
News video story segmentation method using fusion of audio-visual features
NASA Astrophysics Data System (ADS)
Wen, Jun; Wu, Ling-da; Zeng, Pu; Luan, Xi-dao; Xie, Yu-xiang
2007-11-01
News story segmentation is an important aspect for news video analysis. This paper presents a method for news video story segmentation. Different form prior works, which base on visual features transform, the proposed technique uses audio features as baseline and fuses visual features with it to refine the results. At first, it selects silence clips as audio features candidate points, and selects shot boundaries and anchor shots as two kinds of visual features candidate points. Then this paper selects audio feature candidates as cues and develops different fusion method, which effectively using diverse type visual candidates to refine audio candidates, to get story boundaries. Experiment results show that this method has high efficiency and adaptability to different kinds of news video.
NASA Astrophysics Data System (ADS)
Kroll, Christine; von der Werth, Monika; Leuck, Holger; Stahl, Christoph; Schertler, Klaus
2017-05-01
For Intelligence, Surveillance, Reconnaissance (ISR) missions of manned and unmanned air systems typical electrooptical payloads provide high-definition video data which has to be exploited with respect to relevant ground targets in real-time by automatic/assisted target recognition software. Airbus Defence and Space is developing required technologies for real-time sensor exploitation since years and has combined the latest advances of Deep Convolutional Neural Networks (CNN) with a proprietary high-speed Support Vector Machine (SVM) learning method into a powerful object recognition system with impressive results on relevant high-definition video scenes compared to conventional target recognition approaches. This paper describes the principal requirements for real-time target recognition in high-definition video for ISR missions and the Airbus approach of combining an invariant feature extraction using pre-trained CNNs and the high-speed training and classification ability of a novel frequency-domain SVM training method. The frequency-domain approach allows for a highly optimized implementation for General Purpose Computation on a Graphics Processing Unit (GPGPU) and also an efficient training of large training samples. The selected CNN which is pre-trained only once on domain-extrinsic data reveals a highly invariant feature extraction. This allows for a significantly reduced adaptation and training of the target recognition method for new target classes and mission scenarios. A comprehensive training and test dataset was defined and prepared using relevant high-definition airborne video sequences. The assessment concept is explained and performance results are given using the established precision-recall diagrams, average precision and runtime figures on representative test data. A comparison to legacy target recognition approaches shows the impressive performance increase by the proposed CNN+SVM machine-learning approach and the capability of real-time high-definition video exploitation.
Video coding for 3D-HEVC based on saliency information
NASA Astrophysics Data System (ADS)
Yu, Fang; An, Ping; Yang, Chao; You, Zhixiang; Shen, Liquan
2016-11-01
As an extension of High Efficiency Video Coding ( HEVC), 3D-HEVC has been widely researched under the impetus of the new generation coding standard in recent years. Compared with H.264/AVC, its compression efficiency is doubled while keeping the same video quality. However, its higher encoding complexity and longer encoding time are not negligible. To reduce the computational complexity and guarantee the subjective quality of virtual views, this paper presents a novel video coding method for 3D-HEVC based on the saliency informat ion which is an important part of Human Visual System (HVS). First of all, the relationship between the current coding unit and its adjacent units is used to adjust the maximum depth of each largest coding unit (LCU) and determine the SKIP mode reasonably. Then, according to the saliency informat ion of each frame image, the texture and its corresponding depth map will be divided into three regions, that is, salient area, middle area and non-salient area. Afterwards, d ifferent quantization parameters will be assigned to different regions to conduct low complexity coding. Finally, the compressed video will generate new view point videos through the renderer tool. As shown in our experiments, the proposed method saves more bit rate than other approaches and achieves up to highest 38% encoding time reduction without subjective quality loss in compression or rendering.
Scalable Coding of Plenoptic Images by Using a Sparse Set and Disparities.
Li, Yun; Sjostrom, Marten; Olsson, Roger; Jennehag, Ulf
2016-01-01
One of the light field capturing techniques is the focused plenoptic capturing. By placing a microlens array in front of the photosensor, the focused plenoptic cameras capture both spatial and angular information of a scene in each microlens image and across microlens images. The capturing results in a significant amount of redundant information, and the captured image is usually of a large resolution. A coding scheme that removes the redundancy before coding can be of advantage for efficient compression, transmission, and rendering. In this paper, we propose a lossy coding scheme to efficiently represent plenoptic images. The format contains a sparse image set and its associated disparities. The reconstruction is performed by disparity-based interpolation and inpainting, and the reconstructed image is later employed as a prediction reference for the coding of the full plenoptic image. As an outcome of the representation, the proposed scheme inherits a scalable structure with three layers. The results show that plenoptic images are compressed efficiently with over 60 percent bit rate reduction compared with High Efficiency Video Coding intra coding, and with over 20 percent compared with an High Efficiency Video Coding block copying mode.
Reduction in Fall Rate in Dementia Managed Care Through Video Incident Review: Pilot Study
Netscher, George; Agrawal, Pulkit; Tabb Noyce, Lynn; Bayen, Alexandre
2017-01-01
Background Falls of individuals with dementia are frequent, dangerous, and costly. Early detection and access to the history of a fall is crucial for efficient care and secondary prevention in cognitively impaired individuals. However, most falls remain unwitnessed events. Furthermore, understanding why and how a fall occurred is a challenge. Video capture and secure transmission of real-world falls thus stands as a promising assistive tool. Objective The objective of this study was to analyze how continuous video monitoring and review of falls of individuals with dementia can support better quality of care. Methods A pilot observational study (July-September 2016) was carried out in a Californian memory care facility. Falls were video-captured (24×7), thanks to 43 wall-mounted cameras (deployed in all common areas and in 10 out of 40 private bedrooms of consenting residents and families). Video review was provided to facility staff, thanks to a customized mobile device app. The outcome measures were the count of residents’ falls happening in the video-covered areas, the acceptability of video recording, the analysis of video review, and video replay possibilities for care practice. Results Over 3 months, 16 falls were video-captured. A drop in fall rate was observed in the last month of the study. Acceptability was good. Video review enabled screening for the severity of falls and fall-related injuries. Video replay enabled identifying cognitive-behavioral deficiencies and environmental circumstances contributing to the fall. This allowed for secondary prevention in high-risk multi-faller individuals and for updated facility care policies regarding a safer living environment for all residents. Conclusions Video monitoring offers high potential to support conventional care in memory care facilities. PMID:29042342
Parallax-Robust Surveillance Video Stitching
He, Botao; Yu, Shaohua
2015-01-01
This paper presents a parallax-robust video stitching technique for timely synchronized surveillance video. An efficient two-stage video stitching procedure is proposed in this paper to build wide Field-of-View (FOV) videos for surveillance applications. In the stitching model calculation stage, we develop a layered warping algorithm to align the background scenes, which is location-dependent and turned out to be more robust to parallax than the traditional global projective warping methods. On the selective seam updating stage, we propose a change-detection based optimal seam selection approach to avert ghosting and artifacts caused by moving foregrounds. Experimental results demonstrate that our procedure can efficiently stitch multi-view videos into a wide FOV video output without ghosting and noticeable seams. PMID:26712756
K-Band Traveling-Wave Tube Amplifier
NASA Technical Reports Server (NTRS)
Force, Dale A.; Simons, Rainee N.; Peterson, Todd T.; Spitsen, Paul C.
2010-01-01
A new space-qualified, high-power, high-efficiency, K-band traveling-wave tube amplifier (TWTA) will provide high-rate, high-capacity, direct-to-Earth communications for science data and video gathered by the Lunar Reconnaissance Orbiter (LRO) during its mission. Several technological advances were responsible for the successful demonstration of the K-band TWTA.
Adaptive Video Streaming Using Bandwidth Estimation for 3.5G Mobile Network
NASA Astrophysics Data System (ADS)
Nam, Hyeong-Min; Park, Chun-Su; Jung, Seung-Won; Ko, Sung-Jea
Currently deployed mobile networks including High Speed Downlink Packet Access (HSDPA) offer only best-effort Quality of Service (QoS). In wireless best effort networks, the bandwidth variation is a critical problem, especially, for mobile devices with small buffers. This is because the bandwidth variation leads to packet losses caused by buffer overflow as well as picture freezing due to high transmission delay or buffer underflow. In this paper, in order to provide seamless video streaming over HSDPA, we propose an efficient real-time video streaming method that consists of the available bandwidth (AB) estimation for the HSDPA network and the transmission rate control to prevent buffer overflows/underflows. In the proposed method, the client estimates the AB and the estimated AB is fed back to the server through real-time transport control protocol (RTCP) packets. Then, the server adaptively adjusts the transmission rate according to the estimated AB and the buffer state obtained from the RTCP feedback information. Experimental results show that the proposed method achieves seamless video streaming over the HSDPA network providing higher video quality and lower transmission delay.
Note: Sound recovery from video using SVD-based information extraction
NASA Astrophysics Data System (ADS)
Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Chang'an
2016-08-01
This note reports an efficient singular value decomposition (SVD)-based vibration extraction approach that recovers sound information in silent high-speed video. A high-speed camera of which frame rates are in the range of 2 kHz-10 kHz is applied to film the vibrating objects. Sub-images cut from video frames are transformed into column vectors and then reconstructed to a new matrix. The SVD of the new matrix produces orthonormal image bases (OIBs) and image projections onto specific OIB can be recovered as understandable acoustical signals. Standard frequencies of 256 Hz and 512 Hz tuning forks are extracted offline from their vibrating surfaces and a 3.35 s speech signal is recovered online from a piece of paper that is stimulated by sound waves within 1 min.
Highlight summarization in golf videos using audio signals
NASA Astrophysics Data System (ADS)
Kim, Hyoung-Gook; Kim, Jin Young
2008-01-01
In this paper, we present an automatic summarization of highlights in golf videos based on audio information alone without video information. The proposed highlight summarization system is carried out based on semantic audio segmentation and detection on action units from audio signals. Studio speech, field speech, music, and applause are segmented by means of sound classification. Swing is detected by the methods of impulse onset detection. Sounds like swing and applause form a complete action unit, while studio speech and music parts are used to anchor the program structure. With the advantage of highly precise detection of applause, highlights are extracted effectively. Our experimental results obtain high classification precision on 18 golf games. It proves that the proposed system is very effective and computationally efficient to apply the technology to embedded consumer electronic devices.
Key Frame Extraction in the Summary Space.
Li, Xuelong; Zhao, Bin; Lu, Xiaoqiang; Xuelong Li; Bin Zhao; Xiaoqiang Lu; Lu, Xiaoqiang; Li, Xuelong; Zhao, Bin
2018-06-01
Key frame extraction is an efficient way to create the video summary which helps users obtain a quick comprehension of the video content. Generally, the key frames should be representative of the video content, meanwhile, diverse to reduce the redundancy. Based on the assumption that the video data are near a subspace of a high-dimensional space, a new approach, named as key frame extraction in the summary space, is proposed for key frame extraction in this paper. The proposed approach aims to find the representative frames of the video and filter out similar frames from the representative frame set. First of all, the video data are mapped to a high-dimensional space, named as summary space. Then, a new representation is learned for each frame by analyzing the intrinsic structure of the summary space. Specifically, the learned representation can reflect the representativeness of the frame, and is utilized to select representative frames. Next, the perceptual hash algorithm is employed to measure the similarity of representative frames. As a result, the key frame set is obtained after filtering out similar frames from the representative frame set. Finally, the video summary is constructed by assigning the key frames in temporal order. Additionally, the ground truth, created by filtering out similar frames from human-created summaries, is utilized to evaluate the quality of the video summary. Compared with several traditional approaches, the experimental results on 80 videos from two datasets indicate the superior performance of our approach.
ERIC Educational Resources Information Center
Ljubojevic, Milos; Vaskovic, Vojkan; Stankovic, Srecko; Vaskovic, Jelena
2014-01-01
The main objective of this research is to investigate efficiency of use of supplementary video content in multimedia teaching. Integrating video clips in multimedia lecture presentations may increase students' perception of important information and motivation for learning. Because of that, students can better understand and remember key points of…
Cardiac ultrasonography over 4G wireless networks using a tele-operated robot
Panayides, Andreas S.; Jossif, Antonis P.; Christoforou, Eftychios G.; Vieyres, Pierre; Novales, Cyril; Voskarides, Sotos; Pattichis, Constantinos S.
2016-01-01
This Letter proposes an end-to-end mobile tele-echography platform using a portable robot for remote cardiac ultrasonography. Performance evaluation investigates the capacity of long-term evolution (LTE) wireless networks to facilitate responsive robot tele-manipulation and real-time ultrasound video streaming that qualifies for clinical practice. Within this context, a thorough video coding standards comparison for cardiac ultrasound applications is performed, using a data set of ten ultrasound videos. Both objective and subjective (clinical) video quality assessment demonstrate that H.264/AVC and high efficiency video coding standards can achieve diagnostically-lossless video quality at bitrates well within the LTE supported data rates. Most importantly, reduced latencies experienced throughout the live tele-echography sessions allow the medical expert to remotely operate the robot in a responsive manner, using the wirelessly communicated cardiac ultrasound video to reach a diagnosis. Based on preliminary results documented in this Letter, the proposed robotised tele-echography platform can provide for reliable, remote diagnosis, achieving comparable quality of experience levels with in-hospital ultrasound examinations. PMID:27733929
Lee, Chaewoo
2014-01-01
The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm. PMID:25276862
NASA Astrophysics Data System (ADS)
Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung
2010-12-01
This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.
Content-based management service for medical videos.
Mendi, Engin; Bayrak, Coskun; Cecen, Songul; Ermisoglu, Emre
2013-01-01
Development of health information technology has had a dramatic impact to improve the efficiency and quality of medical care. Developing interoperable health information systems for healthcare providers has the potential to improve the quality and equitability of patient-centered healthcare. In this article, we describe an automated content-based medical video analysis and management service that provides convenience and ease in accessing the relevant medical video content without sequential scanning. The system facilitates effective temporal video segmentation and content-based visual information retrieval that enable a more reliable understanding of medical video content. The system is implemented as a Web- and mobile-based service and has the potential to offer a knowledge-sharing platform for the purpose of efficient medical video content access.
Improved Techniques for Video Compression and Communication
ERIC Educational Resources Information Center
Chen, Haoming
2016-01-01
Video compression and communication has been an important field over the past decades and critical for many applications, e.g., video on demand, video-conferencing, and remote education. In many applications, providing low-delay and error-resilient video transmission and increasing the coding efficiency are two major challenges. Low-delay and…
NASA Astrophysics Data System (ADS)
Rodríguez-Sánchez, Rafael; Martínez, José Luis; Cock, Jan De; Fernández-Escribano, Gerardo; Pieters, Bart; Sánchez, José L.; Claver, José M.; de Walle, Rik Van
2013-12-01
The H.264/AVC video coding standard introduces some improved tools in order to increase compression efficiency. Moreover, the multi-view extension of H.264/AVC, called H.264/MVC, adopts many of them. Among the new features, variable block-size motion estimation is one which contributes to high coding efficiency. Furthermore, it defines a different prediction structure that includes hierarchical bidirectional pictures, outperforming traditional Group of Pictures patterns in both scenarios: single-view and multi-view. However, these video coding techniques have high computational complexity. Several techniques have been proposed in the literature over the last few years which are aimed at accelerating the inter prediction process, but there are no works focusing on bidirectional prediction or hierarchical prediction. In this article, with the emergence of many-core processors or accelerators, a step forward is taken towards an implementation of an H.264/AVC and H.264/MVC inter prediction algorithm on a graphics processing unit. The results show a negligible rate distortion drop with a time reduction of up to 98% for the complete H.264/AVC encoder.
Performance evaluation of the intra compression in the video coding standards
NASA Astrophysics Data System (ADS)
Abramowski, Andrzej
2015-09-01
The article presents a comparison of the Intra prediction algorithms in the current state-of-the-art video coding standards, including MJPEG 2000, VP8, VP9, H.264/AVC and H.265/HEVC. The effectiveness of techniques employed by each standard is evaluated in terms of compression efficiency and average encoding time. The compression efficiency is measured using BD-PSNR and BD-RATE metrics with H.265/HEVC results as an anchor. Tests are performed on a set of video sequences, composed of sequences gathered by Joint Collaborative Team on Video Coding during the development of the H.265/HEVC standard and 4K sequences provided by Ultra Video Group. According to results, H.265/HEVC provides significant bit-rate savings at the expense of computational complexity, while VP9 may be regarded as a compromise between the efficiency and required encoding time.
Joint forensics and watermarking approach for video authentication
NASA Astrophysics Data System (ADS)
Thiemert, Stefan; Liu, Huajian; Steinebach, Martin; Croce-Ferri, Lucilla
2007-02-01
In our paper we discuss and compare the possibilities and shortcomings of both content-fragile watermarking and digital forensics and analyze if the combination of both techniques allows the identification of more than the sum of all manipulations identified by both techniques on their own due to synergetic effects. The first part of the paper discusses the theoretical possibilities offered by a combined approach, in which forensics and watermarking are considered as complementary tools for data authentication or deeply combined together, in order to reduce their error rate and to enhance the detection efficiency. After this conceptual discussion the paper proposes some concrete examples in which the joint approach is applied to video authentication. Some specific forensics techniques are analyzed and expanded to handle efficiently video data. The examples show possible extensions of passive-blind image forgery detection to video data, where the motion and time related characteristics of video are efficiently exploited.
Indexing and retrieval of MPEG compressed video
NASA Astrophysics Data System (ADS)
Kobla, Vikrant; Doermann, David S.
1998-04-01
To keep pace with the increased popularity of digital video as an archival medium, the development of techniques for fast and efficient analysis of ideo streams is essential. In particular, solutions to the problems of storing, indexing, browsing, and retrieving video data from large multimedia databases are necessary to a low access to these collections. Given that video is often stored efficiently in a compressed format, the costly overhead of decompression can be reduced by analyzing the compressed representation directly. In earlier work, we presented compressed domain parsing techniques which identified shots, subshots, and scenes. In this article, we present efficient key frame selection, feature extraction, indexing, and retrieval techniques that are directly applicable to MPEG compressed video. We develop a frame type independent representation which normalizes spatial and temporal features including frame type, frame size, macroblock encoding, and motion compensation vectors. Features for indexing are derived directly from this representation and mapped to a low- dimensional space where they can be accessed using standard database techniques. Spatial information is used as primary index into the database and temporal information is used to rank retrieved clips and enhance the robustness of the system. The techniques presented enable efficient indexing, querying, and retrieval of compressed video as demonstrated by our system which typically takes a fraction of a second to retrieve similar video scenes from a database, with over 95 percent recall.
StreaMorph: A Case for Synthesizing Energy-Efficient Adaptive Programs Using High-Level Abstractions
2013-08-12
technique when switching from using eight cores to one core. 1. Introduction Real - time streaming of media data is growing in popularity. This includes...both capture and processing of real - time video and audio, and delivery of video and audio from servers; recent usage number shows over 800 million...source of data, when that source is a real - time source, and it is generally not necessary to get ahead of the sink. Even with real - time sources and sinks
Real-time transmission of digital video using variable-length coding
NASA Technical Reports Server (NTRS)
Bizon, Thomas P.; Shalkhauser, Mary JO; Whyte, Wayne A., Jr.
1993-01-01
Huffman coding is a variable-length lossless compression technique where data with a high probability of occurrence is represented with short codewords, while 'not-so-likely' data is assigned longer codewords. Compression is achieved when the high-probability levels occur so frequently that their benefit outweighs any penalty paid when a less likely input occurs. One instance where Huffman coding is extremely effective occurs when data is highly predictable and differential coding can be applied (as with a digital video signal). For that reason, it is desirable to apply this compression technique to digital video transmission; however, special care must be taken in order to implement a communication protocol utilizing Huffman coding. This paper addresses several of the issues relating to the real-time transmission of Huffman-coded digital video over a constant-rate serial channel. Topics discussed include data rate conversion (from variable to a fixed rate), efficient data buffering, channel coding, recovery from communication errors, decoder synchronization, and decoder architectures. A description of the hardware developed to execute Huffman coding and serial transmission is also included. Although this paper focuses on matters relating to Huffman-coded digital video, the techniques discussed can easily be generalized for a variety of applications which require transmission of variable-length data.
High-Order Model and Dynamic Filtering for Frame Rate Up-Conversion.
Bao, Wenbo; Zhang, Xiaoyun; Chen, Li; Ding, Lianghui; Gao, Zhiyong
2018-08-01
This paper proposes a novel frame rate up-conversion method through high-order model and dynamic filtering (HOMDF) for video pixels. Unlike the constant brightness and linear motion assumptions in traditional methods, the intensity and position of the video pixels are both modeled with high-order polynomials in terms of time. Then, the key problem of our method is to estimate the polynomial coefficients that represent the pixel's intensity variation, velocity, and acceleration. We propose to solve it with two energy objectives: one minimizes the auto-regressive prediction error of intensity variation by its past samples, and the other minimizes video frame's reconstruction error along the motion trajectory. To efficiently address the optimization problem for these coefficients, we propose the dynamic filtering solution inspired by video's temporal coherence. The optimal estimation of these coefficients is reformulated into a dynamic fusion of the prior estimate from pixel's temporal predecessor and the maximum likelihood estimate from current new observation. Finally, frame rate up-conversion is implemented using motion-compensated interpolation by pixel-wise intensity variation and motion trajectory. Benefited from the advanced model and dynamic filtering, the interpolated frame has much better visual quality. Extensive experiments on the natural and synthesized videos demonstrate the superiority of HOMDF over the state-of-the-art methods in both subjective and objective comparisons.
HDR video synthesis for vision systems in dynamic scenes
NASA Astrophysics Data System (ADS)
Shopovska, Ivana; Jovanov, Ljubomir; Goossens, Bart; Philips, Wilfried
2016-09-01
High dynamic range (HDR) image generation from a number of differently exposed low dynamic range (LDR) images has been extensively explored in the past few decades, and as a result of these efforts a large number of HDR synthesis methods have been proposed. Since HDR images are synthesized by combining well-exposed regions of the input images, one of the main challenges is dealing with camera or object motion. In this paper we propose a method for the synthesis of HDR video from a single camera using multiple, differently exposed video frames, with circularly alternating exposure times. One of the potential applications of the system is in driver assistance systems and autonomous vehicles, involving significant camera and object movement, non- uniform and temporally varying illumination, and the requirement of real-time performance. To achieve these goals simultaneously, we propose a HDR synthesis approach based on weighted averaging of aligned radiance maps. The computational complexity of high-quality optical flow methods for motion compensation is still pro- hibitively high for real-time applications. Instead, we rely on more efficient global projective transformations to solve camera movement, while moving objects are detected by thresholding the differences between the trans- formed and brightness adapted images in the set. To attain temporal consistency of the camera motion in the consecutive HDR frames, the parameters of the perspective transformation are stabilized over time by means of computationally efficient temporal filtering. We evaluated our results on several reference HDR videos, on synthetic scenes, and using 14-bit raw images taken with a standard camera.
Segment scheduling method for reducing 360° video streaming latency
NASA Astrophysics Data System (ADS)
Gudumasu, Srinivas; Asbun, Eduardo; He, Yong; Ye, Yan
2017-09-01
360° video is an emerging new format in the media industry enabled by the growing availability of virtual reality devices. It provides the viewer a new sense of presence and immersion. Compared to conventional rectilinear video (2D or 3D), 360° video poses a new and difficult set of engineering challenges on video processing and delivery. Enabling comfortable and immersive user experience requires very high video quality and very low latency, while the large video file size poses a challenge to delivering 360° video in a quality manner at scale. Conventionally, 360° video represented in equirectangular or other projection formats can be encoded as a single standards-compliant bitstream using existing video codecs such as H.264/AVC or H.265/HEVC. Such method usually needs very high bandwidth to provide an immersive user experience. While at the client side, much of such high bandwidth and the computational power used to decode the video are wasted because the user only watches a small portion (i.e., viewport) of the entire picture. Viewport dependent 360°video processing and delivery approaches spend more bandwidth on the viewport than on non-viewports and are therefore able to reduce the overall transmission bandwidth. This paper proposes a dual buffer segment scheduling algorithm for viewport adaptive streaming methods to reduce latency when switching between high quality viewports in 360° video streaming. The approach decouples the scheduling of viewport segments and non-viewport segments to ensure the viewport segment requested matches the latest user head orientation. A base layer buffer stores all lower quality segments, and a viewport buffer stores high quality viewport segments corresponding to the most recent viewer's head orientation. The scheduling scheme determines viewport requesting time based on the buffer status and the head orientation. This paper also discusses how to deploy the proposed scheduling design for various viewport adaptive video streaming methods. The proposed dual buffer segment scheduling method is implemented in an end-to-end tile based 360° viewports adaptive video streaming platform, where the entire 360° video is divided into a number of tiles, and each tile is independently encoded into multiple quality level representations. The client requests different quality level representations of each tile based on the viewer's head orientation and the available bandwidth, and then composes all tiles together for rendering. The simulation results verify that the proposed dual buffer segment scheduling algorithm reduces the viewport switch latency, and utilizes available bandwidth more efficiently. As a result, a more consistent immersive 360° video viewing experience can be presented to the user.
Action video games make dyslexic children read better.
Franceschini, Sandro; Gori, Simone; Ruffino, Milena; Viola, Simona; Molteni, Massimo; Facoetti, Andrea
2013-03-18
Learning to read is extremely difficult for about 10% of children; they are affected by a neurodevelopmental disorder called dyslexia [1, 2]. The neurocognitive causes of dyslexia are still hotly debated [3-12]. Dyslexia remediation is far from being fully achieved [13], and the current treatments demand high levels of resources [1]. Here, we demonstrate that only 12 hr of playing action video games-not involving any direct phonological or orthographic training-drastically improve the reading abilities of children with dyslexia. We tested reading, phonological, and attentional skills in two matched groups of children with dyslexia before and after they played action or nonaction video games for nine sessions of 80 min per day. We found that only playing action video games improved children's reading speed, without any cost in accuracy, more so than 1 year of spontaneous reading development and more than or equal to highly demanding traditional reading treatments. Attentional skills also improved during action video game training. It has been demonstrated that action video games efficiently improve attention abilities [14, 15]; our results showed that this attention improvement can directly translate into better reading abilities, providing a new, fast, fun remediation of dyslexia that has theoretical relevance in unveiling the causal role of attention in reading acquisition. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fast depth decision for HEVC inter prediction based on spatial and temporal correlation
NASA Astrophysics Data System (ADS)
Chen, Gaoxing; Liu, Zhenyu; Ikenaga, Takeshi
2016-07-01
High efficiency video coding (HEVC) is a video compression standard that outperforms the predecessor H.264/AVC by doubling the compression efficiency. To enhance the compression accuracy, the partition sizes ranging is from 4x4 to 64x64 in HEVC. However, the manifold partition sizes dramatically increase the encoding complexity. This paper proposes a fast depth decision based on spatial and temporal correlation. Spatial correlation utilize the code tree unit (CTU) Splitting information and temporal correlation utilize the motion vector predictor represented CTU in inter prediction to determine the maximum depth in each CTU. Experimental results show that the proposed method saves about 29.1% of the original processing time with 0.9% of BD-bitrate increase on average.
Content Based Lecture Video Retrieval Using Speech and Video Text Information
ERIC Educational Resources Information Center
Yang, Haojin; Meinel, Christoph
2014-01-01
In the last decade e-lecturing has become more and more popular. The amount of lecture video data on the "World Wide Web" (WWW) is growing rapidly. Therefore, a more efficient method for video retrieval in WWW or within large lecture video archives is urgently needed. This paper presents an approach for automated video indexing and video…
NASA Astrophysics Data System (ADS)
Bulan, Orhan; Bernal, Edgar A.; Loce, Robert P.; Wu, Wencheng
2013-03-01
Video cameras are widely deployed along city streets, interstate highways, traffic lights, stop signs and toll booths by entities that perform traffic monitoring and law enforcement. The videos captured by these cameras are typically compressed and stored in large databases. Performing a rapid search for a specific vehicle within a large database of compressed videos is often required and can be a time-critical life or death situation. In this paper, we propose video compression and decompression algorithms that enable fast and efficient vehicle or, more generally, event searches in large video databases. The proposed algorithm selects reference frames (i.e., I-frames) based on a vehicle having been detected at a specified position within the scene being monitored while compressing a video sequence. A search for a specific vehicle in the compressed video stream is performed across the reference frames only, which does not require decompression of the full video sequence as in traditional search algorithms. Our experimental results on videos captured in a local road show that the proposed algorithm significantly reduces the search space (thus reducing time and computational resources) in vehicle search tasks within compressed video streams, particularly those captured in light traffic volume conditions.
Efficient reversible data hiding in encrypted H.264/AVC videos
NASA Astrophysics Data System (ADS)
Xu, Dawen; Wang, Rangding
2014-09-01
Due to the security and privacy-preserving requirements for cloud data management, it is sometimes desired that video content is accessible in an encrypted form. Reversible data hiding in the encrypted domain is an emerging technology, as it can perform data hiding in encrypted videos without decryption, which preserves the confidentiality of the content. Furthermore, the original cover can be losslessly restored after decryption and data extraction. An efficient reversible data hiding scheme for encrypted H.264/AVC videos is proposed. During H.264/AVC encoding, the intraprediction mode, motion vector difference, and the sign bits of the residue coefficients are encrypted using a standard stream cipher. Then, the data-hider who does not know the original video content, may reversibly embed secret data into the encrypted H.264/AVC video by using a modified version of the histogram shifting technique. A scale factor is utilized for selecting the embedding zone, which is scalable for different capacity requirements. With an encrypted video containing hidden data, data extraction can be carried out either in the encrypted or decrypted domain. In addition, real reversibility is realized so that data extraction and video recovery are free of any error. Experimental results demonstrate the feasibility and efficiency of the proposed scheme.
Video Relay Service for Signing Deaf - Lessons Learnt from a Pilot Study
NASA Astrophysics Data System (ADS)
Ponsard, Christophe; Sutera, Joelle; Henin, Michael
The generalization of high speed Internet, efficient compression techniques and low cost hardware have resulted in low cost video communication since the year 2000. For the Deaf community, this enables native communication in sign language and a better communication with hearing people over the phone. This implies that Video Relay Service can take over the old Text Relay Service which is less natural and requires mastering written language. A number of such services have developed throughout the world. The objectives of this paper are to present the experience gained in the Walloon Region of Belgium, to share a number of lessons learnt, and to provide recommendations at the technical, user adoption and political levels. A survey of video relay services around the world is presented together with the feedback from users both before and after using the pilot service.
Robust and efficient anomaly detection using heterogeneous representations
NASA Astrophysics Data System (ADS)
Hu, Xing; Hu, Shiqiang; Xie, Jinhua; Zheng, Shiyou
2015-05-01
Various approaches have been proposed for video anomaly detection. Yet these approaches typically suffer from one or more limitations: they often characterize the pattern using its internal information, but ignore its external relationship which is important for local anomaly detection. Moreover, the high-dimensionality and the lack of robustness of pattern representation may lead to problems, including overfitting, increased computational cost and memory requirements, and high false alarm rate. We propose a video anomaly detection framework which relies on a heterogeneous representation to account for both the pattern's internal information and external relationship. The internal information is characterized by slow features learned by slow feature analysis from low-level representations, and the external relationship is characterized by the spatial contextual distances. The heterogeneous representation is compact, robust, efficient, and discriminative for anomaly detection. Moreover, both the pattern's internal information and external relationship can be taken into account in the proposed framework. Extensive experiments demonstrate the robustness and efficiency of our approach by comparison with the state-of-the-art approaches on the widely used benchmark datasets.
Doulamis, A D; Doulamis, N D; Kollias, S D
2003-01-01
Multimedia services and especially digital video is expected to be the major traffic component transmitted over communication networks [such as internet protocol (IP)-based networks]. For this reason, traffic characterization and modeling of such services are required for an efficient network operation. The generated models can be used as traffic rate predictors, during the network operation phase (online traffic modeling), or as video generators for estimating the network resources, during the network design phase (offline traffic modeling). In this paper, an adaptable neural-network architecture is proposed covering both cases. The scheme is based on an efficient recursive weight estimation algorithm, which adapts the network response to current conditions. In particular, the algorithm updates the network weights so that 1) the network output, after the adaptation, is approximately equal to current bit rates (current traffic statistics) and 2) a minimal degradation over the obtained network knowledge is provided. It can be shown that the proposed adaptable neural-network architecture simulates a recursive nonlinear autoregressive model (RNAR) similar to the notation used in the linear case. The algorithm presents low computational complexity and high efficiency in tracking traffic rates in contrast to conventional retraining schemes. Furthermore, for the problem of offline traffic modeling, a novel correlation mechanism is proposed for capturing the burstness of the actual MPEG video traffic. The performance of the model is evaluated using several real-life MPEG coded video sources of long duration and compared with other linear/nonlinear techniques used for both cases. The results indicate that the proposed adaptable neural-network architecture presents better performance than other examined techniques.
Reduction in Fall Rate in Dementia Managed Care Through Video Incident Review: Pilot Study.
Bayen, Eleonore; Jacquemot, Julien; Netscher, George; Agrawal, Pulkit; Tabb Noyce, Lynn; Bayen, Alexandre
2017-10-17
Falls of individuals with dementia are frequent, dangerous, and costly. Early detection and access to the history of a fall is crucial for efficient care and secondary prevention in cognitively impaired individuals. However, most falls remain unwitnessed events. Furthermore, understanding why and how a fall occurred is a challenge. Video capture and secure transmission of real-world falls thus stands as a promising assistive tool. The objective of this study was to analyze how continuous video monitoring and review of falls of individuals with dementia can support better quality of care. A pilot observational study (July-September 2016) was carried out in a Californian memory care facility. Falls were video-captured (24×7), thanks to 43 wall-mounted cameras (deployed in all common areas and in 10 out of 40 private bedrooms of consenting residents and families). Video review was provided to facility staff, thanks to a customized mobile device app. The outcome measures were the count of residents' falls happening in the video-covered areas, the acceptability of video recording, the analysis of video review, and video replay possibilities for care practice. Over 3 months, 16 falls were video-captured. A drop in fall rate was observed in the last month of the study. Acceptability was good. Video review enabled screening for the severity of falls and fall-related injuries. Video replay enabled identifying cognitive-behavioral deficiencies and environmental circumstances contributing to the fall. This allowed for secondary prevention in high-risk multi-faller individuals and for updated facility care policies regarding a safer living environment for all residents. Video monitoring offers high potential to support conventional care in memory care facilities. ©Eleonore Bayen, Julien Jacquemot, George Netscher, Pulkit Agrawal, Lynn Tabb Noyce, Alexandre Bayen. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 17.10.2017.
Compact light-emitting diode lighting ring for video-assisted thoracic surgery.
Lu, Ming-Kuan; Chang, Feng-Chen; Wang, Wen-Zhe; Hsieh, Chih-Cheng; Kao, Fu-Jen
2014-01-01
In this work, a foldable ring-shaped light-emitting diode (LED) lighting assembly, designed to attach to a rubber wound retractor, is realized and tested through porcine animal experiments. Enabled by the small size and the high efficiency of LED chips, the lighting assembly is compact, flexible, and disposable while providing direct and high brightness lighting for more uniform background illumination in video-assisted thoracic surgery (VATS). When compared with a conventional fiber bundle coupled light source that is usually used in laparoscopy and endoscopy, the much broader solid angle of illumination enabled by the LED assembly allows greatly improved background lighting and imaging quality in VATS.
Coding visual features extracted from video sequences.
Baroffio, Luca; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano
2014-05-01
Visual features are successfully exploited in several applications (e.g., visual search, object recognition and tracking, etc.) due to their ability to efficiently represent image content. Several visual analysis tasks require features to be transmitted over a bandwidth-limited network, thus calling for coding techniques to reduce the required bit budget, while attaining a target level of efficiency. In this paper, we propose, for the first time, a coding architecture designed for local features (e.g., SIFT, SURF) extracted from video sequences. To achieve high coding efficiency, we exploit both spatial and temporal redundancy by means of intraframe and interframe coding modes. In addition, we propose a coding mode decision based on rate-distortion optimization. The proposed coding scheme can be conveniently adopted to implement the analyze-then-compress (ATC) paradigm in the context of visual sensor networks. That is, sets of visual features are extracted from video frames, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast to the traditional compress-then-analyze (CTA) paradigm, in which video sequences acquired at a node are compressed and then sent to a central unit for further processing. In this paper, we compare these coding paradigms using metrics that are routinely adopted to evaluate the suitability of visual features in the context of content-based retrieval, object recognition, and tracking. Experimental results demonstrate that, thanks to the significant coding gains achieved by the proposed coding scheme, ATC outperforms CTA with respect to all evaluation metrics.
Real-time demonstration hardware for enhanced DPCM video compression algorithm
NASA Technical Reports Server (NTRS)
Bizon, Thomas P.; Whyte, Wayne A., Jr.; Marcopoli, Vincent R.
1992-01-01
The lack of available wideband digital links as well as the complexity of implementation of bandwidth efficient digital video CODECs (encoder/decoder) has worked to keep the cost of digital television transmission too high to compete with analog methods. Terrestrial and satellite video service providers, however, are now recognizing the potential gains that digital video compression offers and are proposing to incorporate compression systems to increase the number of available program channels. NASA is similarly recognizing the benefits of and trend toward digital video compression techniques for transmission of high quality video from space and therefore, has developed a digital television bandwidth compression algorithm to process standard National Television Systems Committee (NTSC) composite color television signals. The algorithm is based on differential pulse code modulation (DPCM), but additionally utilizes a non-adaptive predictor, non-uniform quantizer and multilevel Huffman coder to reduce the data rate substantially below that achievable with straight DPCM. The non-adaptive predictor and multilevel Huffman coder combine to set this technique apart from other DPCM encoding algorithms. All processing is done on a intra-field basis to prevent motion degradation and minimize hardware complexity. Computer simulations have shown the algorithm will produce broadcast quality reconstructed video at an average transmission rate of 1.8 bits/pixel. Hardware implementation of the DPCM circuit, non-adaptive predictor and non-uniform quantizer has been completed, providing realtime demonstration of the image quality at full video rates. Video sampling/reconstruction circuits have also been constructed to accomplish the analog video processing necessary for the real-time demonstration. Performance results for the completed hardware compare favorably with simulation results. Hardware implementation of the multilevel Huffman encoder/decoder is currently under development along with implementation of a buffer control algorithm to accommodate the variable data rate output of the multilevel Huffman encoder. A video CODEC of this type could be used to compress NTSC color television signals where high quality reconstruction is desirable (e.g., Space Station video transmission, transmission direct-to-the-home via direct broadcast satellite systems or cable television distribution to system headends and direct-to-the-home).
A spatiotemporal decomposition strategy for personal home video management
NASA Astrophysics Data System (ADS)
Yi, Haoran; Kozintsev, Igor; Polito, Marzia; Wu, Yi; Bouguet, Jean-Yves; Nefian, Ara; Dulong, Carole
2007-01-01
With the advent and proliferation of low cost and high performance digital video recorder devices, an increasing number of personal home video clips are recorded and stored by the consumers. Compared to image data, video data is lager in size and richer in multimedia content. Efficient access to video content is expected to be more challenging than image mining. Previously, we have developed a content-based image retrieval system and the benchmarking framework for personal images. In this paper, we extend our personal image retrieval system to include personal home video clips. A possible initial solution to video mining is to represent video clips by a set of key frames extracted from them thus converting the problem into an image search one. Here we report that a careful selection of key frames may improve the retrieval accuracy. However, because video also has temporal dimension, its key frame representation is inherently limited. The use of temporal information can give us better representation for video content at semantic object and concept levels than image-only based representation. In this paper we propose a bottom-up framework to combine interest point tracking, image segmentation and motion-shape factorization to decompose the video into spatiotemporal regions. We show an example application of activity concept detection using the trajectories extracted from the spatio-temporal regions. The proposed approach shows good potential for concise representation and indexing of objects and their motion in real-life consumer video.
Layer-based buffer aware rate adaptation design for SHVC video streaming
NASA Astrophysics Data System (ADS)
Gudumasu, Srinivas; Hamza, Ahmed; Asbun, Eduardo; He, Yong; Ye, Yan
2016-09-01
This paper proposes a layer based buffer aware rate adaptation design which is able to avoid abrupt video quality fluctuation, reduce re-buffering latency and improve bandwidth utilization when compared to a conventional simulcast based adaptive streaming system. The proposed adaptation design schedules DASH segment requests based on the estimated bandwidth, dependencies among video layers and layer buffer fullness. Scalable HEVC video coding is the latest state-of-art video coding technique that can alleviate various issues caused by simulcast based adaptive video streaming. With scalable coded video streams, the video is encoded once into a number of layers representing different qualities and/or resolutions: a base layer (BL) and one or more enhancement layers (EL), each incrementally enhancing the quality of the lower layers. Such layer based coding structure allows fine granularity rate adaptation for the video streaming applications. Two video streaming use cases are presented in this paper. The first use case is to stream HD SHVC video over a wireless network where available bandwidth varies, and the performance comparison between proposed layer-based streaming approach and conventional simulcast streaming approach is provided. The second use case is to stream 4K/UHD SHVC video over a hybrid access network that consists of a 5G millimeter wave high-speed wireless link and a conventional wired or WiFi network. The simulation results verify that the proposed layer based rate adaptation approach is able to utilize the bandwidth more efficiently. As a result, a more consistent viewing experience with higher quality video content and minimal video quality fluctuations can be presented to the user.
Mateus, Ana Rita A; Grilo, Clara; Santos-Reis, Margarida
2011-10-01
Environmental assessment studies often evaluate the effectiveness of drainage culverts as habitat linkages for species, however, the efficiency of the sampling designs and the survey methods are not known. Our main goal was to estimate the most cost-effective monitoring method for sampling carnivore culvert using track-pads and video-surveillance. We estimated the most efficient (lower costs and high detection success) interval between visits (days) when using track-pads and also determined the advantages of using each method. In 2006, we selected two highways in southern Portugal and sampled 15 culverts over two 10-day sampling periods (spring and summer). Using the track-pad method, 90% of the animal tracks were detected using a 2-day interval between visits. We recorded a higher number of crossings for most species using video-surveillance (n = 129) when compared with the track-pad technique (n = 102); however, the detection ability using the video-surveillance method varied with type of structure and species. More crossings were detected in circular culverts (1 m and 1.5 m diameter) than in box culverts (2 m to 4 m width), likely because video cameras had a reduced vision coverage area. On the other hand, carnivore species with small feet such as the common genet Genetta genetta were detected less often using the track-pad surveying method. The cost-benefit analyzes shows that the track-pad technique is the most appropriate technique, but video-surveillance allows year-round surveys as well as the behavior response analyzes of species using crossing structures.
Motion adaptive Kalman filter for super-resolution
NASA Astrophysics Data System (ADS)
Richter, Martin; Nasse, Fabian; Schröder, Hartmut
2011-01-01
Superresolution is a sophisticated strategy to enhance image quality of both low and high resolution video, performing tasks like artifact reduction, scaling and sharpness enhancement in one algorithm, all of them reconstructing high frequency components (above Nyquist frequency) in some way. Especially recursive superresolution algorithms can fulfill high quality aspects because they control the video output using a feed-back loop and adapt the result in the next iteration. In addition to excellent output quality, temporal recursive methods are very hardware efficient and therefore even attractive for real-time video processing. A very promising approach is the utilization of Kalman filters as proposed by Farsiu et al. Reliable motion estimation is crucial for the performance of superresolution. Therefore, robust global motion models are mainly used, but this also limits the application of superresolution algorithm. Thus, handling sequences with complex object motion is essential for a wider field of application. Hence, this paper proposes improvements by extending the Kalman filter approach using motion adaptive variance estimation and segmentation techniques. Experiments confirm the potential of our proposal for ideal and real video sequences with complex motion and further compare its performance to state-of-the-art methods like trainable filters.
The video watermarking container: efficient real-time transaction watermarking
NASA Astrophysics Data System (ADS)
Wolf, Patrick; Hauer, Enrico; Steinebach, Martin
2008-02-01
When transaction watermarking is used to secure sales in online shops by embedding transaction specific watermarks, the major challenge is embedding efficiency: Maximum speed by minimal workload. This is true for all types of media. Video transaction watermarking presents a double challenge. Video files not only are larger than for example music files of the same playback time. In addition, video watermarking algorithms have a higher complexity than algorithms for other types of media. Therefore online shops that want to protect their videos by transaction watermarking are faced with the problem that their servers need to work harder and longer for every sold medium in comparison to audio sales. In the past, many algorithms responded to this challenge by reducing their complexity. But this usually results in a loss of either robustness or transparency. This paper presents a different approach. The container technology separates watermark embedding into two stages: A preparation stage and the finalization stage. In the preparation stage, the video is divided into embedding segments. For each segment one copy marked with "0" and anther one marked with "1" is created. This stage is computationally expensive but only needs to be done once. In the finalization stage, the watermarked video is assembled from the embedding segments according to the watermark message. This stage is very fast and involves no complex computations. It thus allows efficient creation of individually watermarked video files.
Design of batch audio/video conversion platform based on JavaEE
NASA Astrophysics Data System (ADS)
Cui, Yansong; Jiang, Lianpin
2018-03-01
With the rapid development of digital publishing industry, the direction of audio / video publishing shows the diversity of coding standards for audio and video files, massive data and other significant features. Faced with massive and diverse data, how to quickly and efficiently convert to a unified code format has brought great difficulties to the digital publishing organization. In view of this demand and present situation in this paper, basing on the development architecture of Sptring+SpringMVC+Mybatis, and combined with the open source FFMPEG format conversion tool, a distributed online audio and video format conversion platform with a B/S structure is proposed. Based on the Java language, the key technologies and strategies designed in the design of platform architecture are analyzed emphatically in this paper, designing and developing a efficient audio and video format conversion system, which is composed of “Front display system”, "core scheduling server " and " conversion server ". The test results show that, compared with the ordinary audio and video conversion scheme, the use of batch audio and video format conversion platform can effectively improve the conversion efficiency of audio and video files, and reduce the complexity of the work. Practice has proved that the key technology discussed in this paper can be applied in the field of large batch file processing, and has certain practical application value.
ERIC Educational Resources Information Center
Borup, Jered; West, Richard E.; Graham, Charles R.
2013-01-01
Online courses are increasingly using asynchronous video communication. However, little is known about how asynchronous video communication influences students' communication patterns. This study presents four narratives of students with varying characteristics who engaged in asynchronous video communication. The extrovert valued the efficiency of…
ERIC Educational Resources Information Center
Plavnick, Joshua B.
2012-01-01
Video modeling is an effective and efficient methodology for teaching new skills to individuals with autism. New technology may enhance video modeling as smartphones or tablet computers allow for portable video displays. However, the reduced screen size may decrease the likelihood of attending to the video model for some children. The present…
ERIC Educational Resources Information Center
Cihak, David F.; Schrader, Linda
2009-01-01
The purpose of this study was to compare the effectiveness and efficiency of learning and maintaining vocational chain tasks using video self-modeling and video adult modeling instruction. Four adolescents with autism spectrum disorders were taught vocational and prevocational skills. Although both video modeling conditions were effective for…
Efficient space-time sampling with pixel-wise coded exposure for high-speed imaging.
Liu, Dengyu; Gu, Jinwei; Hitomi, Yasunobu; Gupta, Mohit; Mitsunaga, Tomoo; Nayar, Shree K
2014-02-01
Cameras face a fundamental trade-off between spatial and temporal resolution. Digital still cameras can capture images with high spatial resolution, but most high-speed video cameras have relatively low spatial resolution. It is hard to overcome this trade-off without incurring a significant increase in hardware costs. In this paper, we propose techniques for sampling, representing, and reconstructing the space-time volume to overcome this trade-off. Our approach has two important distinctions compared to previous works: 1) We achieve sparse representation of videos by learning an overcomplete dictionary on video patches, and 2) we adhere to practical hardware constraints on sampling schemes imposed by architectures of current image sensors, which means that our sampling function can be implemented on CMOS image sensors with modified control units in the future. We evaluate components of our approach, sampling function and sparse representation, by comparing them to several existing approaches. We also implement a prototype imaging system with pixel-wise coded exposure control using a liquid crystal on silicon device. System characteristics such as field of view and modulation transfer function are evaluated for our imaging system. Both simulations and experiments on a wide range of scenes show that our method can effectively reconstruct a video from a single coded image while maintaining high spatial resolution.
Schemes for efficient transmission of encoded video streams on high-speed networks
NASA Astrophysics Data System (ADS)
Ramanathan, Srinivas; Vin, Harrick M.; Rangan, P. Venkat
1994-04-01
In this paper, we argue that significant performance benefits can accrue if integrated networks implement application-specific mechanisms that account for the diversities in media compression schemes. Towards this end, we propose a simple, yet effective, strategy called Frame Induced Packet Discarding (FIPD), in which, upon detection of loss of a threshold number (determined by an application's video encoding scheme) of packets belonging to a video frame, the network attempts to discard all the remaining packets of that frame. In order to analytically quantify the performance of FIPD so as to obtain fractional frame losses that can be guaranteed to video channels, we develop a finite state, discrete time markov chain model of the FIPD strategy. The fractional frame loss thus computed can serve as the criterion for admission control at the network. Performance evaluations demonstrate the utility of the FIPD strategy.
NASA Astrophysics Data System (ADS)
Fragkoulis, Alexandros; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.
2015-03-01
We propose a method for the fair and efficient allocation of wireless resources over a cognitive radio system network to transmit multiple scalable video streams to multiple users. The method exploits the dynamic architecture of the Scalable Video Coding extension of the H.264 standard, along with the diversity that OFDMA networks provide. We use a game-theoretic Nash Bargaining Solution (NBS) framework to ensure that each user receives the minimum video quality requirements, while maintaining fairness over the cognitive radio system. An optimization problem is formulated, where the objective is the maximization of the Nash product while minimizing the waste of resources. The problem is solved by using a Swarm Intelligence optimizer, namely Particle Swarm Optimization. Due to the high dimensionality of the problem, we also introduce a dimension-reduction technique. Our experimental results demonstrate the fairness imposed by the employed NBS framework.
Chaos based video encryption using maps and Ikeda time delay system
NASA Astrophysics Data System (ADS)
Valli, D.; Ganesan, K.
2017-12-01
Chaos based cryptosystems are an efficient method to deal with improved speed and highly secured multimedia encryption because of its elegant features, such as randomness, mixing, ergodicity, sensitivity to initial conditions and control parameters. In this paper, two chaos based cryptosystems are proposed: one is the higher-dimensional 12D chaotic map and the other is based on the Ikeda delay differential equation (DDE) suitable for designing a real-time secure symmetric video encryption scheme. These encryption schemes employ a substitution box (S-box) to diffuse the relationship between pixels of plain video and cipher video along with the diffusion of current input pixel with the previous cipher pixel, called cipher block chaining (CBC). The proposed method enhances the robustness against statistical, differential and chosen/known plain text attacks. Detailed analysis is carried out in this paper to demonstrate the security and uniqueness of the proposed scheme.
Fast image interpolation for motion estimation using graphics hardware
NASA Astrophysics Data System (ADS)
Kelly, Francis; Kokaram, Anil
2004-05-01
Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.
High-Performance Computing Unlocks Innovation at NREL - Video Text Version
scales, data visualizations and large-scale modeling provide insights and test new ideas. But this type most energy-efficient data center in the world. NREL and Hewlett-Packard won an R&D 100 award-the
NASA Astrophysics Data System (ADS)
Grois, Dan; Marpe, Detlev; Nguyen, Tung; Hadar, Ofer
2014-09-01
The popularity of low-delay video applications dramatically increased over the last years due to a rising demand for realtime video content (such as video conferencing or video surveillance), and also due to the increasing availability of relatively inexpensive heterogeneous devices (such as smartphones and tablets). To this end, this work presents a comparative assessment of the two latest video coding standards: H.265/MPEG-HEVC (High-Efficiency Video Coding), H.264/MPEG-AVC (Advanced Video Coding), and also of the VP9 proprietary video coding scheme. For evaluating H.264/MPEG-AVC, an open-source x264 encoder was selected, which has a multi-pass encoding mode, similarly to VP9. According to experimental results, which were obtained by using similar low-delay configurations for all three examined representative encoders, it was observed that H.265/MPEG-HEVC provides significant average bit-rate savings of 32.5%, and 40.8%, relative to VP9 and x264 for the 1-pass encoding, and average bit-rate savings of 32.6%, and 42.2% for the 2-pass encoding, respectively. On the other hand, compared to the x264 encoder, typical low-delay encoding times of the VP9 encoder, are about 2,000 times higher for the 1-pass encoding, and are about 400 times higher for the 2-pass encoding.
NASA Astrophysics Data System (ADS)
Al Hadhrami, Tawfik; Nightingale, James M.; Wang, Qi; Grecos, Christos
2014-05-01
In emergency situations, the ability to remotely monitor unfolding events using high-quality video feeds will significantly improve the incident commander's understanding of the situation and thereby aids effective decision making. This paper presents a novel, adaptive video monitoring system for emergency situations where the normal communications network infrastructure has been severely impaired or is no longer operational. The proposed scheme, operating over a rapidly deployable wireless mesh network, supports real-time video feeds between first responders, forward operating bases and primary command and control centers. Video feeds captured on portable devices carried by first responders and by static visual sensors are encoded in H.264/SVC, the scalable extension to H.264/AVC, allowing efficient, standard-based temporal, spatial, and quality scalability of the video. A three-tier video delivery system is proposed, which balances the need to avoid overuse of mesh nodes with the operational requirements of the emergency management team. In the first tier, the video feeds are delivered at a low spatial and temporal resolution employing only the base layer of the H.264/SVC video stream. Routing in this mode is designed to employ all nodes across the entire mesh network. In the second tier, whenever operational considerations require that commanders or operators focus on a particular video feed, a `fidelity control' mechanism at the monitoring station sends control messages to the routing and scheduling agents in the mesh network, which increase the quality of the received picture using SNR scalability while conserving bandwidth by maintaining a low frame rate. In this mode, routing decisions are based on reliable packet delivery with the most reliable routes being used to deliver the base and lower enhancement layers; as fidelity is increased and more scalable layers are transmitted they will be assigned to routes in descending order of reliability. The third tier of video delivery transmits a high-quality video stream including all available scalable layers using the most reliable routes through the mesh network ensuring the highest possible video quality. The proposed scheme is implemented in a proven simulator, and the performance of the proposed system is numerically evaluated through extensive simulations. We further present an in-depth analysis of the proposed solutions and potential approaches towards supporting high-quality visual communications in such a demanding context.
Stochastic Frontier Estimation of Efficient Learning in Video Games
ERIC Educational Resources Information Center
Hamlen, Karla R.
2012-01-01
Stochastic Frontier Regression Analysis was used to investigate strategies and skills that are associated with the minimization of time required to achieve proficiency in video games among students in grades four and five. Students self-reported their video game play habits, including strategies and skills used to become good at the video games…
Energy 101: Energy Efficient Commercial Buildings
None
2018-06-06
Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.
Visual saliency-based fast intracoding algorithm for high efficiency video coding
NASA Astrophysics Data System (ADS)
Zhou, Xin; Shi, Guangming; Zhou, Wei; Duan, Zhemin
2017-01-01
Intraprediction has been significantly improved in high efficiency video coding over H.264/AVC with quad-tree-based coding unit (CU) structure from size 64×64 to 8×8 and more prediction modes. However, these techniques cause a dramatic increase in computational complexity. An intracoding algorithm is proposed that consists of perceptual fast CU size decision algorithm and fast intraprediction mode decision algorithm. First, based on the visual saliency detection, an adaptive and fast CU size decision method is proposed to alleviate intraencoding complexity. Furthermore, a fast intraprediction mode decision algorithm with step halving rough mode decision method and early modes pruning algorithm is presented to selectively check the potential modes and effectively reduce the complexity of computation. Experimental results show that our proposed fast method reduces the computational complexity of the current HM to about 57% in encoding time with only 0.37% increases in BD rate. Meanwhile, the proposed fast algorithm has reasonable peak signal-to-noise ratio losses and nearly the same subjective perceptual quality.
Evaluation of automatic video summarization systems
NASA Astrophysics Data System (ADS)
Taskiran, Cuneyt M.
2006-01-01
Compact representations of video, or video summaries, data greatly enhances efficient video browsing. However, rigorous evaluation of video summaries generated by automatic summarization systems is a complicated process. In this paper we examine the summary evaluation problem. Text summarization is the oldest and most successful summarization domain. We show some parallels between these to domains and introduce methods and terminology. Finally, we present results for a comprehensive evaluation summary that we have performed.
Video and accelerometer-based motion analysis for automated surgical skills assessment.
Zia, Aneeq; Sharma, Yachna; Bettadapura, Vinay; Sarin, Eric L; Essa, Irfan
2018-03-01
Basic surgical skills of suturing and knot tying are an essential part of medical training. Having an automated system for surgical skills assessment could help save experts time and improve training efficiency. There have been some recent attempts at automated surgical skills assessment using either video analysis or acceleration data. In this paper, we present a novel approach for automated assessment of OSATS-like surgical skills and provide an analysis of different features on multi-modal data (video and accelerometer data). We conduct a large study for basic surgical skill assessment on a dataset that contained video and accelerometer data for suturing and knot-tying tasks. We introduce "entropy-based" features-approximate entropy and cross-approximate entropy, which quantify the amount of predictability and regularity of fluctuations in time series data. The proposed features are compared to existing methods of Sequential Motion Texture, Discrete Cosine Transform and Discrete Fourier Transform, for surgical skills assessment. We report average performance of different features across all applicable OSATS-like criteria for suturing and knot-tying tasks. Our analysis shows that the proposed entropy-based features outperform previous state-of-the-art methods using video data, achieving average classification accuracies of 95.1 and 92.2% for suturing and knot tying, respectively. For accelerometer data, our method performs better for suturing achieving 86.8% average accuracy. We also show that fusion of video and acceleration features can improve overall performance for skill assessment. Automated surgical skills assessment can be achieved with high accuracy using the proposed entropy features. Such a system can significantly improve the efficiency of surgical training in medical schools and teaching hospitals.
Web-video-mining-supported workflow modeling for laparoscopic surgeries.
Liu, Rui; Zhang, Xiaoli; Zhang, Hao
2016-11-01
As quality assurance is of strong concern in advanced surgeries, intelligent surgical systems are expected to have knowledge such as the knowledge of the surgical workflow model (SWM) to support their intuitive cooperation with surgeons. For generating a robust and reliable SWM, a large amount of training data is required. However, training data collected by physically recording surgery operations is often limited and data collection is time-consuming and labor-intensive, severely influencing knowledge scalability of the surgical systems. The objective of this research is to solve the knowledge scalability problem in surgical workflow modeling with a low cost and labor efficient way. A novel web-video-mining-supported surgical workflow modeling (webSWM) method is developed. A novel video quality analysis method based on topic analysis and sentiment analysis techniques is developed to select high-quality videos from abundant and noisy web videos. A statistical learning method is then used to build the workflow model based on the selected videos. To test the effectiveness of the webSWM method, 250 web videos were mined to generate a surgical workflow for the robotic cholecystectomy surgery. The generated workflow was evaluated by 4 web-retrieved videos and 4 operation-room-recorded videos, respectively. The evaluation results (video selection consistency n-index ≥0.60; surgical workflow matching degree ≥0.84) proved the effectiveness of the webSWM method in generating robust and reliable SWM knowledge by mining web videos. With the webSWM method, abundant web videos were selected and a reliable SWM was modeled in a short time with low labor cost. Satisfied performances in mining web videos and learning surgery-related knowledge show that the webSWM method is promising in scaling knowledge for intelligent surgical systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Tsapatsoulis, Nicolas; Loizou, Christos; Pattichis, Constantinos
2007-01-01
Efficient medical video transmission over 3G wireless is of great importance for fast diagnosis and on site medical staff training purposes. In this paper we present a region of interest based ultrasound video compression study which shows that significant reduction of the required, for transmission, bit rate can be achieved without altering the design of existing video codecs. Simple preprocessing of the original videos to define visually and clinically important areas is the only requirement.
Video quality assessment method motivated by human visual perception
NASA Astrophysics Data System (ADS)
He, Meiling; Jiang, Gangyi; Yu, Mei; Song, Yang; Peng, Zongju; Shao, Feng
2016-11-01
Research on video quality assessment (VQA) plays a crucial role in improving the efficiency of video coding and the performance of video processing. It is well acknowledged that the motion energy model generates motion energy responses in a middle temporal area by simulating the receptive field of neurons in V1 for the motion perception of the human visual system. Motivated by the biological evidence for the visual motion perception, a VQA method is proposed in this paper, which comprises the motion perception quality index and the spatial index. To be more specific, the motion energy model is applied to evaluate the temporal distortion severity of each frequency component generated from the difference of Gaussian filter bank, which produces the motion perception quality index, and the gradient similarity measure is used to evaluate the spatial distortion of the video sequence to get the spatial quality index. The experimental results of the LIVE, CSIQ, and IVP video databases demonstrate that the random forests regression technique trained by the generated quality indices is highly correspondent to human visual perception and has many significant improvements than comparable well-performing methods. The proposed method has higher consistency with subjective perception and higher generalization capability.
Multiscale Space-Time Computational Methods for Fluid-Structure Interactions
2015-09-13
prescribed fully or partially, is from an actual locust, extracted from high-speed, multi-camera video recordings of the locust in a wind tunnel . We use...With creative methods for coupling the fluid and structure, we can increase the scope and efficiency of the FSI modeling . Multiscale methods, which now...play an important role in computational mathematics, can also increase the accuracy and efficiency of the computer modeling techniques. The main
NASA Astrophysics Data System (ADS)
Efstathiou, Nectarios; Skitsas, Michael; Psaroudakis, Chrysostomos; Koutras, Nikolaos
2017-09-01
Nowadays, video surveillance cameras are used for the protection and monitoring of a huge number of facilities worldwide. An important element in such surveillance systems is the use of aerial video streams originating from onboard sensors located on Unmanned Aerial Vehicles (UAVs). Video surveillance using UAVs represent a vast amount of video to be transmitted, stored, analyzed and visualized in a real-time way. As a result, the introduction and development of systems able to handle huge amount of data become a necessity. In this paper, a new approach for the collection, transmission and storage of aerial videos and metadata is introduced. The objective of this work is twofold. First, the integration of the appropriate equipment in order to capture and transmit real-time video including metadata (i.e. position coordinates, target) from the UAV to the ground and, second, the utilization of the ADITESS Versatile Media Content Management System (VMCMS-GE) for storing of the video stream and the appropriate metadata. Beyond the storage, VMCMS-GE provides other efficient management capabilities such as searching and processing of videos, along with video transcoding. For the evaluation and demonstration of the proposed framework we execute a use case where the surveillance of critical infrastructure and the detection of suspicious activities is performed. Collected video Transcodingis subject of this evaluation as well.
Haptic Glove Technology: Skill Development through Video Game Play
ERIC Educational Resources Information Center
Bargerhuff, Mary Ellen; Cowan, Heidi; Oliveira, Francisco; Quek, Francis; Fang, Bing
2010-01-01
This article introduces a recently developed haptic glove system and describes how the participants used a video game that was purposely designed to train them in skills that are needed for the efficient use of the haptic glove. Assessed skills included speed, efficiency, embodied skill, and engagement. The findings and implications for future…
Video Super-Resolution via Bidirectional Recurrent Convolutional Networks.
Huang, Yan; Wang, Wei; Wang, Liang
2018-04-01
Super resolving a low-resolution video, namely video super-resolution (SR), is usually handled by either single-image SR or multi-frame SR. Single-Image SR deals with each video frame independently, and ignores intrinsic temporal dependency of video frames which actually plays a very important role in video SR. Multi-Frame SR generally extracts motion information, e.g., optical flow, to model the temporal dependency, but often shows high computational cost. Considering that recurrent neural networks (RNNs) can model long-term temporal dependency of video sequences well, we propose a fully convolutional RNN named bidirectional recurrent convolutional network for efficient multi-frame SR. Different from vanilla RNNs, 1) the commonly-used full feedforward and recurrent connections are replaced with weight-sharing convolutional connections. So they can greatly reduce the large number of network parameters and well model the temporal dependency in a finer level, i.e., patch-based rather than frame-based, and 2) connections from input layers at previous timesteps to the current hidden layer are added by 3D feedforward convolutions, which aim to capture discriminate spatio-temporal patterns for short-term fast-varying motions in local adjacent frames. Due to the cheap convolutional operations, our model has a low computational complexity and runs orders of magnitude faster than other multi-frame SR methods. With the powerful temporal dependency modeling, our model can super resolve videos with complex motions and achieve well performance.
Intermediate view synthesis algorithm using mesh clustering for rectangular multiview camera system
NASA Astrophysics Data System (ADS)
Choi, Byeongho; Kim, Taewan; Oh, Kwan-Jung; Ho, Yo-Sung; Choi, Jong-Soo
2010-02-01
A multiview video-based three-dimensional (3-D) video system offers a realistic impression and a free view navigation to the user. The efficient compression and intermediate view synthesis are key technologies since 3-D video systems deal multiple views. We propose an intermediate view synthesis using a rectangular multiview camera system that is suitable to realize 3-D video systems. The rectangular multiview camera system not only can offer free view navigation both horizontally and vertically but also can employ three reference views such as left, right, and bottom for intermediate view synthesis. The proposed view synthesis method first represents the each reference view to meshes and then finds the best disparity for each mesh element by using the stereo matching between reference views. Before stereo matching, we separate the virtual image to be synthesized into several regions to enhance the accuracy of disparities. The mesh is classified into foreground and background groups by disparity values and then affine transformed. By experiments, we confirm that the proposed method synthesizes a high-quality image and is suitable for 3-D video systems.
Berkeley Lab Answers Your Home Energy Efficiency Questions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Iain
2013-02-14
In this follow-up "Ask Berkeley Lab" video, energy efficiency expert Iain Walker answers some of your questions about home energy efficiency. How do you monitor which appliances use the most energy? Should you replace your old windows? Are photovoltaic systems worth the cost? What to do about a leaky house? And what's the single biggest energy user in your home? Watch the video to get the answers to these and more questions.
Berkeley Lab Answers Your Home Energy Efficiency Questions
Walker, Iain
2018-01-16
In this follow-up "Ask Berkeley Lab" video, energy efficiency expert Iain Walker answers some of your questions about home energy efficiency. How do you monitor which appliances use the most energy? Should you replace your old windows? Are photovoltaic systems worth the cost? What to do about a leaky house? And what's the single biggest energy user in your home? Watch the video to get the answers to these and more questions.
Action Spotting and Recognition Based on a Spatiotemporal Orientation Analysis.
Derpanis, Konstantinos G; Sizintsev, Mikhail; Cannons, Kevin J; Wildes, Richard P
2013-03-01
This paper provides a unified framework for the interrelated topics of action spotting, the spatiotemporal detection and localization of human actions in video, and action recognition, the classification of a given video into one of several predefined categories. A novel compact local descriptor of video dynamics in the context of action spotting and recognition is introduced based on visual spacetime oriented energy measurements. This descriptor is efficiently computed directly from raw image intensity data and thereby forgoes the problems typically associated with flow-based features. Importantly, the descriptor allows for the comparison of the underlying dynamics of two spacetime video segments irrespective of spatial appearance, such as differences induced by clothing, and with robustness to clutter. An associated similarity measure is introduced that admits efficient exhaustive search for an action template, derived from a single exemplar video, across candidate video sequences. The general approach presented for action spotting and recognition is amenable to efficient implementation, which is deemed critical for many important applications. For action spotting, details of a real-time GPU-based instantiation of the proposed approach are provided. Empirical evaluation of both action spotting and action recognition on challenging datasets suggests the efficacy of the proposed approach, with state-of-the-art performance documented on standard datasets.
Region-of-interest determination and bit-rate conversion for H.264 video transcoding
NASA Astrophysics Data System (ADS)
Huang, Shu-Fen; Chen, Mei-Juan; Tai, Kuang-Han; Li, Mian-Shiuan
2013-12-01
This paper presents a video bit-rate transcoder for baseline profile in H.264/AVC standard to fit the available channel bandwidth for the client when transmitting video bit-streams via communication channels. To maintain visual quality for low bit-rate video efficiently, this study analyzes the decoded information in the transcoder and proposes a Bayesian theorem-based region-of-interest (ROI) determination algorithm. In addition, a curve fitting scheme is employed to find the models of video bit-rate conversion. The transcoded video will conform to the target bit-rate by re-quantization according to our proposed models. After integrating the ROI detection method and the bit-rate transcoding models, the ROI-based transcoder allocates more coding bits to ROI regions and reduces the complexity of the re-encoding procedure for non-ROI regions. Hence, it not only keeps the coding quality but improves the efficiency of the video transcoding for low target bit-rates and makes the real-time transcoding more practical. Experimental results show that the proposed framework gets significantly better visual quality.
NASA Astrophysics Data System (ADS)
Karczewicz, Marta; Chen, Peisong; Joshi, Rajan; Wang, Xianglin; Chien, Wei-Jung; Panchal, Rahul; Coban, Muhammed; Chong, In Suk; Reznik, Yuriy A.
2011-01-01
This paper describes video coding technology proposal submitted by Qualcomm Inc. in response to a joint call for proposal (CfP) issued by ITU-T SG16 Q.6 (VCEG) and ISO/IEC JTC1/SC29/WG11 (MPEG) in January 2010. Proposed video codec follows a hybrid coding approach based on temporal prediction, followed by transform, quantization, and entropy coding of the residual. Some of its key features are extended block sizes (up to 64x64), recursive integer transforms, single pass switched interpolation filters with offsets (single pass SIFO), mode dependent directional transform (MDDT) for intra-coding, luma and chroma high precision filtering, geometry motion partitioning, adaptive motion vector resolution. It also incorporates internal bit-depth increase (IBDI), and modified quadtree based adaptive loop filtering (QALF). Simulation results are presented for a variety of bit rates, resolutions and coding configurations to demonstrate the high compression efficiency achieved by the proposed video codec at moderate level of encoding and decoding complexity. For random access hierarchical B configuration (HierB), the proposed video codec achieves an average BD-rate reduction of 30.88c/o compared to the H.264/AVC alpha anchor. For low delay hierarchical P (HierP) configuration, the proposed video codec achieves an average BD-rate reduction of 32.96c/o and 48.57c/o, compared to the H.264/AVC beta and gamma anchors, respectively.
A new method for wireless video monitoring of bird nests
David I. King; Richard M. DeGraaf; Paul J. Champlin; Tracey B. Champlin
2001-01-01
Video monitoring of active bird nests is gaining popularity among researchers because it eliminates many of the biases associated with reliance on incidental observations of predation events or use of artificial nests, but the expense of video systems may be prohibitive. Also, the range and efficiency of current video monitoring systems may be limited by the need to...
Common and Innovative Visuals: A sparsity modeling framework for video.
Abdolhosseini Moghadam, Abdolreza; Kumar, Mrityunjay; Radha, Hayder
2014-05-02
Efficient video representation models are critical for many video analysis and processing tasks. In this paper, we present a framework based on the concept of finding the sparsest solution to model video frames. To model the spatio-temporal information, frames from one scene are decomposed into two components: (i) a common frame, which describes the visual information common to all the frames in the scene/segment, and (ii) a set of innovative frames, which depicts the dynamic behaviour of the scene. The proposed approach exploits and builds on recent results in the field of compressed sensing to jointly estimate the common frame and the innovative frames for each video segment. We refer to the proposed modeling framework by CIV (Common and Innovative Visuals). We show how the proposed model can be utilized to find scene change boundaries and extend CIV to videos from multiple scenes. Furthermore, the proposed model is robust to noise and can be used for various video processing applications without relying on motion estimation and detection or image segmentation. Results for object tracking, video editing (object removal, inpainting) and scene change detection are presented to demonstrate the efficiency and the performance of the proposed model.
Compressed-domain video indexing techniques using DCT and motion vector information in MPEG video
NASA Astrophysics Data System (ADS)
Kobla, Vikrant; Doermann, David S.; Lin, King-Ip; Faloutsos, Christos
1997-01-01
Development of various multimedia applications hinges on the availability of fast and efficient storage, browsing, indexing, and retrieval techniques. Given that video is typically stored efficiently in a compressed format, if we can analyze the compressed representation directly, we can avoid the costly overhead of decompressing and operating at the pixel level. Compressed domain parsing of video has been presented in earlier work where a video clip is divided into shots, subshots, and scenes. In this paper, we describe key frame selection, feature extraction, and indexing and retrieval techniques that are directly applicable to MPEG compressed video. We develop a frame-type independent representation of the various types of frames present in an MPEG video in which al frames can be considered equivalent. Features are derived from the available DCT, macroblock, and motion vector information and mapped to a low-dimensional space where they can be accessed with standard database techniques. The spatial information is used as primary index while the temporal information is used to enhance the robustness of the system during the retrieval process. The techniques presented enable fast archiving, indexing, and retrieval of video. Our operational prototype typically takes a fraction of a second to retrieve similar video scenes from our database, with over 95% success.
NASA Astrophysics Data System (ADS)
Hanhart, Philippe; Řeřábek, Martin; Ebrahimi, Touradj
2015-09-01
This paper reports the details and results of the subjective evaluations conducted at EPFL to evaluate the responses to the Call for Evidence (CfE) for High Dynamic Range (HDR) and Wide Color Gamut (WCG) Video Coding issued by Moving Picture Experts Group (MPEG). The CfE on HDR/WCG Video Coding aims to explore whether the coding efficiency and/or the functionality of the current version of HEVC standard can be signi_cantly improved for HDR and WCG content. In total, nine submissions, five for Category 1 and four for Category 3a, were compared to the HEVC Main 10 Profile based Anchor. More particularly, five HDR video contents, compressed at four bit rates by each proponent responding to the CfE, were used in the subjective evaluations. Further, the side-by-side presentation methodology was used for the subjective experiment to discriminate small differences between the Anchor and proponents. Subjective results shows that the proposals provide evidence that the coding efficiency can be improved in a statistically noticeable way over MPEG CfE Anchors in terms of perceived quality within the investigated content. The paper further benchmarks the selected objective metrics based on their correlations with the subjective ratings. It is shown that PSNR-DE1000, HDRVDP- 2, and PSNR-Lx can reliably detect visible differences between the proposed encoding solutions and current HEVC standard.
Constructing Self-Modeling Videos: Procedures and Technology
ERIC Educational Resources Information Center
Collier-Meek, Melissa A.; Fallon, Lindsay M.; Johnson, Austin H.; Sanetti, Lisa M. H.; Delcampo, Marisa A.
2012-01-01
Although widely recommended, evidence-based interventions are not regularly utilized by school practitioners. Video self-modeling is an effective and efficient evidence-based intervention for a variety of student problem behaviors. However, like many other evidence-based interventions, it is not frequently used in schools. As video creation…
Real-time WebRTC-based design for a telepresence wheelchair.
Van Kha Ly Ha; Rifai Chai; Nguyen, Hung T
2017-07-01
This paper presents a novel approach to the telepresence wheelchair system which is capable of real-time video communication and remote interaction. The investigation of this emerging technology aims at providing a low-cost and efficient way for assisted-living of people with disabilities. The proposed system has been designed and developed by deploying the JavaScript with Hyper Text Markup Language 5 (HTML5) and Web Real-time Communication (WebRTC) in which the adaptive rate control algorithm for video transmission is invoked. We conducted experiments in real-world environments, and the wheelchair was controlled from a distance using the Internet browser to compare with existing methods. The results show that the adaptively encoded video streaming rate matches the available bandwidth. The video streaming is high-quality with approximately 30 frames per second (fps) and round trip time less than 20 milliseconds (ms). These performance results confirm that the WebRTC approach is a potential method for developing a telepresence wheelchair system.
Scorebox extraction from mobile sports videos using Support Vector Machines
NASA Astrophysics Data System (ADS)
Kim, Wonjun; Park, Jimin; Kim, Changick
2008-08-01
Scorebox plays an important role in understanding contents of sports videos. However, the tiny scorebox may give the small-display-viewers uncomfortable experience in grasping the game situation. In this paper, we propose a novel framework to extract the scorebox from sports video frames. We first extract candidates by using accumulated intensity and edge information after short learning period. Since there are various types of scoreboxes inserted in sports videos, multiple attributes need to be used for efficient extraction. Based on those attributes, the optimal information gain is computed and top three ranked attributes in terms of information gain are selected as a three-dimensional feature vector for Support Vector Machines (SVM) to distinguish the scorebox from other candidates, such as logos and advertisement boards. The proposed method is tested on various videos of sports games and experimental results show the efficiency and robustness of our proposed method.
Do sign language videos improve Web navigation for Deaf Signer users?
Fajardo, Inmaculada; Parra, Elena; Cañas, José J
2010-01-01
The efficacy of video-based sign language (SL) navigation aids to improve Web search for Deaf Signers was tested by two experiments. Experiment 1 compared 2 navigation aids based on text hyperlinks linked to embedded SL videos, which differed in the spatial contiguity between the text hyperlink and SL video (contiguous vs. distant). Deaf Signers' performance was similar in Web search using both aids, but a positive correlation between their word categorization abilities and search efficiency appeared in the distant condition. In Experiment 2, the contiguous condition was compared with a text-only hyperlink condition. Deaf Signers became less disorientated (used shorter paths to find the target) in the text plus SL condition than in the text-only condition. In addition, the positive correlation between word categorization abilities and search only appeared in the text-only condition. These findings suggest that SL videos added to text hyperlinks improve Web search efficiency for Deaf Signers.
ERIC Educational Resources Information Center
Akmanoglu, Nurgul; Yanardag, Mehmet; Batu, E. Sema
2014-01-01
Teaching play skills is important for children with autism. The purpose of the present study was to compare effectiveness and efficiency of providing video modeling and graduated guidance together and video modeling alone for teaching role playing skills to children with autism. The study was conducted with four students. The study was conducted…
ERIC Educational Resources Information Center
Wren, Andrew
2008-01-01
Administrators are constantly seeking ways to cost-effectively and adequately increase security and improve efficiency in K-12 schools. While video is not a new tool to schools, the shift from analog to network technology has increased the accessibility and usability in a variety of applications. Properly installed and used, video is a powerful…
Lee, Chang Kyu; Kim, Youngjun; Lee, Nam; Kim, Byeongwoo; Kim, Doyoung; Yi, Seong
2017-02-15
Study for feasibility of commercially available action cameras in recording video of spine. Recent innovation of the wearable action camera with high-definition video recording enables surgeons to use camera in the operation at ease without high costs. The purpose of this study is to compare the feasibility, safety, and efficacy of commercially available action cameras in recording video of spine surgery. There are early reports of medical professionals using Google Glass throughout the hospital, Panasonic HX-A100 action camera, and GoPro. This study is the first report for spine surgery. Three commercially available cameras were tested: GoPro Hero 4 Silver, Google Glass, and Panasonic HX-A100 action camera. Typical spine surgery was selected for video recording; posterior lumbar laminectomy and fusion. Three cameras were used by one surgeon and video was recorded throughout the operation. The comparison was made on the perspective of human factor, specification, and video quality. The most convenient and lightweight device for wearing and holding throughout the long operation time was Google Glass. The image quality; all devices except Google Glass supported HD format and GoPro has unique 2.7K or 4K resolution. Quality of video resolution was best in GoPro. Field of view, GoPro can adjust point of interest, field of view according to the surgery. Narrow FOV option was the best for recording in GoPro to share the video clip. Google Glass has potentials by using application programs. Connectivity such as Wi-Fi and Bluetooth enables video streaming for audience, but only Google Glass has two-way communication feature in device. Action cameras have the potential to improve patient safety, operator comfort, and procedure efficiency in the field of spinal surgery and broadcasting a surgery with development of the device and applied program in the future. N/A.
Beamed Energy Propulsion by Means of Target Ablation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, Benjamin A.
2004-03-30
This paper describes hundreds of pendulum tests examining the beamed energy conversion efficiency of different metal targets coated with multiple liquid enhancers. Preliminary testing used a local laser with photographic paper targets, with no liquid, water, canola oil, or methanol additives. Laboratory experimentation was completed at Wright-Patterson AFB using a high-powered laser, and ballistic pendulums of aluminum, titanium, or copper. Dry targets, and those coated with water, methanol and oil were repeatedly tested in laboratory conditions. Results were recorded on several high-speed digital video cameras, and the conversion efficiency was calculated. Paper airplanes successfully launched using BEP were likewise recorded.
Good Practices for Learning to Recognize Actions Using FV and VLAD.
Wu, Jianxin; Zhang, Yu; Lin, Weiyao
2016-12-01
High dimensional representations such as Fisher vectors (FV) and vectors of locally aggregated descriptors (VLAD) have shown state-of-the-art accuracy for action recognition in videos. The high dimensionality, on the other hand, also causes computational difficulties when scaling up to large-scale video data. This paper makes three lines of contributions to learning to recognize actions using high dimensional representations. First, we reviewed several existing techniques that improve upon FV or VLAD in image classification, and performed extensive empirical evaluations to assess their applicability for action recognition. Our analyses of these empirical results show that normality and bimodality are essential to achieve high accuracy. Second, we proposed a new pooling strategy for VLAD and three simple, efficient, and effective transformations for both FV and VLAD. Both proposed methods have shown higher accuracy than the original FV/VLAD method in extensive evaluations. Third, we proposed and evaluated new feature selection and compression methods for the FV and VLAD representations. This strategy uses only 4% of the storage of the original representation, but achieves comparable or even higher accuracy. Based on these contributions, we recommend a set of good practices for action recognition in videos for practitioners in this field.
Bernard, Florian; Deuter, Christian Eric; Gemmar, Peter; Schachinger, Hartmut
2013-10-01
Using the positions of the eyelids is an effective and contact-free way for the measurement of startle induced eye-blinks, which plays an important role in human psychophysiological research. To the best of our knowledge, no methods for an efficient detection and tracking of the exact eyelid contours in image sequences captured at high-speed exist that are conveniently usable by psychophysiological researchers. In this publication a semi-automatic model-based eyelid contour detection and tracking algorithm for the analysis of high-speed video recordings from an eye tracker is presented. As a large number of images have been acquired prior to method development it was important that our technique is able to deal with images that are recorded without any special parametrisation of the eye tracker. The method entails pupil detection, specular reflection removal and makes use of dynamic model adaption. In a proof-of-concept study we could achieve a correct detection rate of 90.6%. With this approach, we provide a feasible method to accurately assess eye-blinks from high-speed video recordings. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Verification testing of the compression performance of the HEVC screen content coding extensions
NASA Astrophysics Data System (ADS)
Sullivan, Gary J.; Baroncini, Vittorio A.; Yu, Haoping; Joshi, Rajan L.; Liu, Shan; Xiu, Xiaoyu; Xu, Jizheng
2017-09-01
This paper reports on verification testing of the coding performance of the screen content coding (SCC) extensions of the High Efficiency Video Coding (HEVC) standard (Rec. ITU-T H.265 | ISO/IEC 23008-2 MPEG-H Part 2). The coding performance of HEVC screen content model (SCM) reference software is compared with that of the HEVC test model (HM) without the SCC extensions, as well as with the Advanced Video Coding (AVC) joint model (JM) reference software, for both lossy and mathematically lossless compression using All-Intra (AI), Random Access (RA), and Lowdelay B (LB) encoding structures and using similar encoding techniques. Video test sequences in 1920×1080 RGB 4:4:4, YCbCr 4:4:4, and YCbCr 4:2:0 colour sampling formats with 8 bits per sample are tested in two categories: "text and graphics with motion" (TGM) and "mixed" content. For lossless coding, the encodings are evaluated in terms of relative bit-rate savings. For lossy compression, subjective testing was conducted at 4 quality levels for each coding case, and the test results are presented through mean opinion score (MOS) curves. The relative coding performance is also evaluated in terms of Bjøntegaard-delta (BD) bit-rate savings for equal PSNR quality. The perceptual tests and objective metric measurements show a very substantial benefit in coding efficiency for the SCC extensions, and provided consistent results with a high degree of confidence. For TGM video, the estimated bit-rate savings ranged from 60-90% relative to the JM and 40-80% relative to the HM, depending on the AI/RA/LB configuration category and colour sampling format.
2016-01-01
Passive content fingerprinting is widely used for video content identification and monitoring. However, many challenges remain unsolved especially for partial-copies detection. The main challenge is to find the right balance between the computational cost of fingerprint extraction and fingerprint dimension, without compromising detection performance against various attacks (robustness). Fast video detection performance is desirable in several modern applications, for instance, in those where video detection involves the use of large video databases or in applications requiring real-time video detection of partial copies, a process whose difficulty increases when videos suffer severe transformations. In this context, conventional fingerprinting methods are not fully suitable to cope with the attacks and transformations mentioned before, either because the robustness of these methods is not enough or because their execution time is very high, where the time bottleneck is commonly found in the fingerprint extraction and matching operations. Motivated by these issues, in this work we propose a content fingerprinting method based on the extraction of a set of independent binary global and local fingerprints. Although these features are robust against common video transformations, their combination is more discriminant against severe video transformations such as signal processing attacks, geometric transformations and temporal and spatial desynchronization. Additionally, we use an efficient multilevel filtering system accelerating the processes of fingerprint extraction and matching. This multilevel filtering system helps to rapidly identify potential similar video copies upon which the fingerprint process is carried out only, thus saving computational time. We tested with datasets of real copied videos, and the results show how our method outperforms state-of-the-art methods regarding detection scores. Furthermore, the granularity of our method makes it suitable for partial-copy detection; that is, by processing only short segments of 1 second length. PMID:27861492
Region-Based Prediction for Image Compression in the Cloud.
Begaint, Jean; Thoreau, Dominique; Guillotel, Philippe; Guillemot, Christine
2018-04-01
Thanks to the increasing number of images stored in the cloud, external image similarities can be leveraged to efficiently compress images by exploiting inter-images correlations. In this paper, we propose a novel image prediction scheme for cloud storage. Unlike current state-of-the-art methods, we use a semi-local approach to exploit inter-image correlation. The reference image is first segmented into multiple planar regions determined from matched local features and super-pixels. The geometric and photometric disparities between the matched regions of the reference image and the current image are then compensated. Finally, multiple references are generated from the estimated compensation models and organized in a pseudo-sequence to differentially encode the input image using classical video coding tools. Experimental results demonstrate that the proposed approach yields significant rate-distortion performance improvements compared with the current image inter-coding solutions such as high efficiency video coding.
Robust and efficient fiducial tracking for augmented reality in HD-laparoscopic video streams
NASA Astrophysics Data System (ADS)
Mueller, M.; Groch, A.; Baumhauer, M.; Maier-Hein, L.; Teber, D.; Rassweiler, J.; Meinzer, H.-P.; Wegner, In.
2012-02-01
Augmented Reality (AR) is a convenient way of porting information from medical images into the surgical field of view and can deliver valuable assistance to the surgeon, especially in laparoscopic procedures. In addition, high definition (HD) laparoscopic video devices are a great improvement over the previously used low resolution equipment. However, in AR applications that rely on real-time detection of fiducials from video streams, the demand for efficient image processing has increased due to the introduction of HD devices. We present an algorithm based on the well-known Conditional Density Propagation (CONDENSATION) algorithm which can satisfy these new demands. By incorporating a prediction around an already existing and robust segmentation algorithm, we can speed up the whole procedure while leaving the robustness of the fiducial segmentation untouched. For evaluation purposes we tested the algorithm on recordings from real interventions, allowing for a meaningful interpretation of the results. Our results show that we can accelerate the segmentation by a factor of 3.5 on average. Moreover, the prediction information can be used to compensate for fiducials that are temporarily occluded or out of scope, providing greater stability.
Intrinsic dimensionality predicts the saliency of natural dynamic scenes.
Vig, Eleonora; Dorr, Michael; Martinetz, Thomas; Barth, Erhardt
2012-06-01
Since visual attention-based computer vision applications have gained popularity, ever more complex, biologically inspired models seem to be needed to predict salient locations (or interest points) in naturalistic scenes. In this paper, we explore how far one can go in predicting eye movements by using only basic signal processing, such as image representations derived from efficient coding principles, and machine learning. To this end, we gradually increase the complexity of a model from simple single-scale saliency maps computed on grayscale videos to spatiotemporal multiscale and multispectral representations. Using a large collection of eye movements on high-resolution videos, supervised learning techniques fine-tune the free parameters whose addition is inevitable with increasing complexity. The proposed model, although very simple, demonstrates significant improvement in predicting salient locations in naturalistic videos over four selected baseline models and two distinct data labeling scenarios.
NASA Astrophysics Data System (ADS)
Wiener, C.; Miller, A.; Zykov, V.
2016-12-01
Advanced robotic vehicles are increasingly being used by oceanographic research vessels to enable more efficient and widespread exploration of the ocean, particularly the deep ocean. With cutting-edge capabilities mounted onto robotic vehicles, data at high resolutions is being generated more than ever before, enabling enhanced data collection and the potential for broader participation. For example, high resolution camera technology not only improves visualization of the ocean environment, but also expands the capacity to engage participants remotely through increased use of telepresence and virtual reality techniques. Schmidt Ocean Institute is a private, non-profit operating foundation established to advance the understanding of the world's oceans through technological advancement, intelligent observation and analysis, and open sharing of information. Telepresence-enabled research is an important component of Schmidt Ocean Institute's science research cruises, which this presentation will highlight. Schmidt Ocean Institute is one of the only research programs that make their entire underwater vehicle dive series available online, creating a collection of video that enables anyone to follow deep sea research in real time. We encourage students, educators and the general public to take advantage of freely available dive videos. Additionally, other SOI-supported internet platforms, have engaged the public in image and video annotation activities. Examples of these new online platforms, which utilize citizen scientists to annotate scientific image and video data will be provided. This presentation will include an introduction to SOI-supported video and image tagging citizen science projects, real-time robot tracking, live ship-to-shore communications, and an array of outreach activities that enable scientists to interact with the public and explore the ocean in fascinating detail.
Video quality assesment using M-SVD
NASA Astrophysics Data System (ADS)
Tao, Peining; Eskicioglu, Ahmet M.
2007-01-01
Objective video quality measurement is a challenging problem in a variety of video processing application ranging from lossy compression to printing. An ideal video quality measure should be able to mimic the human observer. We present a new video quality measure, M-SVD, to evaluate distorted video sequences based on singular value decomposition. A computationally efficient approach is developed for full-reference (FR) video quality assessment. This measure is tested on the Video Quality Experts Group (VQEG) phase I FR-TV test data set. Our experiments show the graphical measure displays the amount of distortion as well as the distribution of error in all frames of the video sequence while the numerical measure has a good correlation with perceived video quality outperforms PSNR and other objective measures by a clear margin.
H.264/AVC Video Compression on Smartphones
NASA Astrophysics Data System (ADS)
Sharabayko, M. P.; Markov, N. G.
2017-01-01
In this paper, we studied the usage of H.264/AVC video compression tools by the flagship smartphones. The results show that only a subset of tools is used, meaning that there is still a potential to achieve higher compression efficiency within the H.264/AVC standard, but the most advanced smartphones are already reaching the compression efficiency limit of H.264/AVC.
ERIC Educational Resources Information Center
Genc-Tosun, Derya; Kurt, Onur
2017-01-01
The purpose of the present study was to compare the effectiveness and efficiency of simultaneous prompting with and without video modeling in teaching food preparation skills to four participants with autism spectrum disorder, whose ages ranged from 5 to 6 years old. An adapted alternating treatment single-case experimental design was used to…
A time-varying subjective quality model for mobile streaming videos with stalling events
NASA Astrophysics Data System (ADS)
Ghadiyaram, Deepti; Pan, Janice; Bovik, Alan C.
2015-09-01
Over-the-top mobile video streaming is invariably influenced by volatile network conditions which cause playback interruptions (stalling events), thereby impairing users' quality of experience (QoE). Developing models that can accurately predict users' QoE could enable the more efficient design of quality-control protocols for video streaming networks that reduce network operational costs while still delivering high-quality video content to the customers. Existing objective models that predict QoE are based on global video features, such as the number of stall events and their lengths, and are trained and validated on a small pool of ad hoc video datasets, most of which are not publicly available. The model we propose in this work goes beyond previous models as it also accounts for the fundamental effect that a viewer's recent level of satisfaction or dissatisfaction has on their overall viewing experience. In other words, the proposed model accounts for and adapts to the recency, or hysteresis effect caused by a stall event in addition to accounting for the lengths, frequency of occurrence, and the positions of stall events - factors that interact in a complex way to affect a user's QoE. On the recently introduced LIVE-Avvasi Mobile Video Database, which consists of 180 distorted videos of varied content that are afflicted solely with over 25 unique realistic stalling events, we trained and validated our model to accurately predict the QoE, attaining standout QoE prediction performance.
Apply network coding for H.264/SVC multicasting
NASA Astrophysics Data System (ADS)
Wang, Hui; Kuo, C.-C. Jay
2008-08-01
In a packet erasure network environment, video streaming benefits from error control in two ways to achieve graceful degradation. The first approach is application-level (or the link-level) forward error-correction (FEC) to provide erasure protection. The second error control approach is error concealment at the decoder end to compensate lost packets. A large amount of research work has been done in the above two areas. More recently, network coding (NC) techniques have been proposed for efficient data multicast over networks. It was shown in our previous work that multicast video streaming benefits from NC for its throughput improvement. An algebraic model is given to analyze the performance in this work. By exploiting the linear combination of video packets along nodes in a network and the SVC video format, the system achieves path diversity automatically and enables efficient video delivery to heterogeneous receivers in packet erasure channels. The application of network coding can protect video packets against the erasure network environment. However, the rank defficiency problem of random linear network coding makes the error concealment inefficiently. It is shown by computer simulation that the proposed NC video multicast scheme enables heterogenous receiving according to their capacity constraints. But it needs special designing to improve the video transmission performance when applying network coding.
AirSea Battle: A Point-of-Departure Operational Concept
2010-01-01
UCAS. 105 Such aircraft would be the preferred means. Their employment would help to conserve SSN tor- pedoes , which are key to keeping US and allied...does not prize efficient use of bandwidth, resulting in a certain mental laxness. For example, consider the high demand for full-motion video for non
Video Tape Application to Higher Education: Pre-Employment Screening. Final Report.
ERIC Educational Resources Information Center
Millet, June E.; Smith, Lawrence H.
Significant needs and additional pressures have been imposed on those persons involved in faculty selection activities on college campuses today. The combination of greater numbers of highly qualified candidates and restricted interview budgets suggests the need for more efficient and less costly methods of employment screening. In addition,…
Embedded DCT and wavelet methods for fine granular scalable video: analysis and comparison
NASA Astrophysics Data System (ADS)
van der Schaar-Mitrea, Mihaela; Chen, Yingwei; Radha, Hayder
2000-04-01
Video transmission over bandwidth-varying networks is becoming increasingly important due to emerging applications such as streaming of video over the Internet. The fundamental obstacle in designing such systems resides in the varying characteristics of the Internet (i.e. bandwidth variations and packet-loss patterns). In MPEG-4, a new SNR scalability scheme, called Fine-Granular-Scalability (FGS), is currently under standardization, which is able to adapt in real-time (i.e. at transmission time) to Internet bandwidth variations. The FGS framework consists of a non-scalable motion-predicted base-layer and an intra-coded fine-granular scalable enhancement layer. For example, the base layer can be coded using a DCT-based MPEG-4 compliant, highly efficient video compression scheme. Subsequently, the difference between the original and decoded base-layer is computed, and the resulting FGS-residual signal is intra-frame coded with an embedded scalable coder. In order to achieve high coding efficiency when compressing the FGS enhancement layer, it is crucial to analyze the nature and characteristics of residual signals common to the SNR scalability framework (including FGS). In this paper, we present a thorough analysis of SNR residual signals by evaluating its statistical properties, compaction efficiency and frequency characteristics. The signal analysis revealed that the energy compaction of the DCT and wavelet transforms is limited and the frequency characteristic of SNR residual signals decay rather slowly. Moreover, the blockiness artifacts of the low bit-rate coded base-layer result in artificial high frequencies in the residual signal. Subsequently, a variety of wavelet and embedded DCT coding techniques applicable to the FGS framework are evaluated and their results are interpreted based on the identified signal properties. As expected from the theoretical signal analysis, the rate-distortion performances of the embedded wavelet and DCT-based coders are very similar. However, improved results can be obtained for the wavelet coder by deblocking the base- layer prior to the FGS residual computation. Based on the theoretical analysis and our measurements, we can conclude that for an optimal complexity versus coding-efficiency trade- off, only limited wavelet decomposition (e.g. 2 stages) needs to be performed for the FGS-residual signal. Also, it was observed that the good rate-distortion performance of a coding technique for a certain image type (e.g. natural still-images) does not necessarily translate into similarly good performance for signals with different visual characteristics and statistical properties.
Influence of audio triggered emotional attention on video perception
NASA Astrophysics Data System (ADS)
Torres, Freddy; Kalva, Hari
2014-02-01
Perceptual video coding methods attempt to improve compression efficiency by discarding visual information not perceived by end users. Most of the current approaches for perceptual video coding only use visual features ignoring the auditory component. Many psychophysical studies have demonstrated that auditory stimuli affects our visual perception. In this paper we present our study of audio triggered emotional attention and it's applicability to perceptual video coding. Experiments with movie clips show that the reaction time to detect video compression artifacts was longer when video was presented with the audio information. The results reported are statistically significant with p=0.024.
Overview of the H.264/AVC video coding standard
NASA Astrophysics Data System (ADS)
Luthra, Ajay; Topiwala, Pankaj N.
2003-11-01
H.264/MPEG-4 AVC is the latest coding standard jointly developed by the Video Coding Experts Group (VCEG) of ITU-T and Moving Picture Experts Group (MPEG) of ISO/IEC. It uses state of the art coding tools and provides enhanced coding efficiency for a wide range of applications including video telephony, video conferencing, TV, storage (DVD and/or hard disk based), streaming video, digital video creation, digital cinema and others. In this paper an overview of this standard is provided. Some comparisons with the existing standards, MPEG-2 and MPEG-4 Part 2, are also provided.
Video Salient Object Detection via Fully Convolutional Networks.
Wang, Wenguan; Shen, Jianbing; Shao, Ling
This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further propose a novel data augmentation technique that simulates video training data from existing annotated image data sets, which enables our network to learn diverse saliency information and prevents overfitting with the limited number of training videos. Leveraging our synthetic video data (150K video sequences) and real videos, our deep video saliency model successfully learns both spatial and temporal saliency cues, thus producing accurate spatiotemporal saliency estimate. We advance the state-of-the-art on the densely annotated video segmentation data set (MAE of .06) and the Freiburg-Berkeley Motion Segmentation data set (MAE of .07), and do so with much improved speed (2 fps with all steps).This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further propose a novel data augmentation technique that simulates video training data from existing annotated image data sets, which enables our network to learn diverse saliency information and prevents overfitting with the limited number of training videos. Leveraging our synthetic video data (150K video sequences) and real videos, our deep video saliency model successfully learns both spatial and temporal saliency cues, thus producing accurate spatiotemporal saliency estimate. We advance the state-of-the-art on the densely annotated video segmentation data set (MAE of .06) and the Freiburg-Berkeley Motion Segmentation data set (MAE of .07), and do so with much improved speed (2 fps with all steps).
Haro, A.; Kynard, B.
1997-01-01
Movement and behavior of adult American shad Alosa sapidissima and sea lamprey Petromyzon marinus were monitored by closed-circuit video at several locations within a modified Ice Harbor fishway. American shad ascended and descended the fishway exclusively by surface weirs, while sea lampreys used both surface weirs and submerged orifices. Upstream movement of American shad during the day was higher than at night at both lower and middle fishway observation sites. Peak downstream movement of American shad at both locations was associated with decreasing light levels in the evening. Sea lampreys moved primarily at night at the lower and middle fishway sites. Mean daily passage efficiency was low (1% for American shad, -2% for sea lamprey) at the lower fishway surface weir, but passage efficiency at the middle fishway surface weir was moderate (70% for American shad, 35% for sea lamprey). High water velocity, air entrainment, and turbulence of the modified Ice Harbor fishway design appeared to inhibit American shad and sea lamprey passage by disrupting upstream migratory motivation and visual and rheotactic orientation.
NASA Astrophysics Data System (ADS)
Pandremmenou, K.; Tziortziotis, N.; Paluri, S.; Zhang, W.; Blekas, K.; Kondi, L. P.; Kumar, S.
2015-03-01
We propose the use of the Least Absolute Shrinkage and Selection Operator (LASSO) regression method in order to predict the Cumulative Mean Squared Error (CMSE), incurred by the loss of individual slices in video transmission. We extract a number of quality-relevant features from the H.264/AVC video sequences, which are given as input to the LASSO. This method has the benefit of not only keeping a subset of the features that have the strongest effects towards video quality, but also produces accurate CMSE predictions. Particularly, we study the LASSO regression through two different architectures; the Global LASSO (G.LASSO) and Local LASSO (L.LASSO). In G.LASSO, a single regression model is trained for all slice types together, while in L.LASSO, motivated by the fact that the values for some features are closely dependent on the considered slice type, each slice type has its own regression model, in an e ort to improve LASSO's prediction capability. Based on the predicted CMSE values, we group the video slices into four priority classes. Additionally, we consider a video transmission scenario over a noisy channel, where Unequal Error Protection (UEP) is applied to all prioritized slices. The provided results demonstrate the efficiency of LASSO in estimating CMSE with high accuracy, using only a few features. les that typically contain high-entropy data, producing a footprint that is far less conspicuous than existing methods. The system uses a local web server to provide a le system, user interface and applications through an web architecture.
Pattern-based integer sample motion search strategies in the context of HEVC
NASA Astrophysics Data System (ADS)
Maier, Georg; Bross, Benjamin; Grois, Dan; Marpe, Detlev; Schwarz, Heiko; Veltkamp, Remco C.; Wiegand, Thomas
2015-09-01
The H.265/MPEG-H High Efficiency Video Coding (HEVC) standard provides a significant increase in coding efficiency compared to its predecessor, the H.264/MPEG-4 Advanced Video Coding (AVC) standard, which however comes at the cost of a high computational burden for a compliant encoder. Motion estimation (ME), which is a part of the inter-picture prediction process, typically consumes a high amount of computational resources, while significantly increasing the coding efficiency. In spite of the fact that both H.265/MPEG-H HEVC and H.264/MPEG-4 AVC standards allow processing motion information on a fractional sample level, the motion search algorithms based on the integer sample level remain to be an integral part of ME. In this paper, a flexible integer sample ME framework is proposed, thereby allowing to trade off significant reduction of ME computation time versus coding efficiency penalty in terms of bit rate overhead. As a result, through extensive experimentation, an integer sample ME algorithm that provides a good trade-off is derived, incorporating a combination and optimization of known predictive, pattern-based and early termination techniques. The proposed ME framework is implemented on a basis of the HEVC Test Model (HM) reference software, further being compared to the state-of-the-art fast search algorithm, which is a native part of HM. It is observed that for high resolution sequences, the integer sample ME process can be speed-up by factors varying from 3.2 to 7.6, resulting in the bit-rate overhead of 1.5% and 0.6% for Random Access (RA) and Low Delay P (LDP) configurations, respectively. In addition, the similar speed-up is observed for sequences with mainly Computer-Generated Imagery (CGI) content while trading off the bit rate overhead of up to 5.2%.
Knipel, V; Criée, C P; Windisch, W
2013-03-01
Inhalation therapy is well recognized as a cornerstone treatment of airway diseases. In daily practice, however, high failure rates of inhalation technique are evident, which substantially attenuates the treatment success. In 2011 the German Airway League has initiated the production of video screens for correct inhalation aimed at providing an efficient and globally available platform for information. All devices regularly used have been filmed and published via internet and DVD; thereby, video screens, spoken text passages, and visual insertion of information have been combined. Here, all important steps of inhalation therapy like preparation, performance, and termination have been covered. Video screens of 20 different devices lasting between 1:42 and 3:11 min:sec have been produced between July 2011 and January 2013 and published on the YouTube channel of the German Airway League with more than 70.000 clicks so far (27. February 2013). Pragmatic, internet-based video screens on the correct inhalation therapy are available and are cost-free. Further studies aimed at evaluating the benefits of these screens are necessary. © Georg Thieme Verlag KG Stuttgart · New York.
Fast Video Encryption Using the H.264 Error Propagation Property for Smart Mobile Devices
Chung, Yongwha; Lee, Sungju; Jeon, Taewoong; Park, Daihee
2015-01-01
In transmitting video data securely over Video Sensor Networks (VSNs), since mobile handheld devices have limited resources in terms of processor clock speed and battery size, it is necessary to develop an efficient method to encrypt video data to meet the increasing demand for secure connections. Selective encryption methods can reduce the amount of computation needed while satisfying high-level security requirements. This is achieved by selecting an important part of the video data and encrypting it. In this paper, to ensure format compliance and security, we propose a special encryption method for H.264, which encrypts only the DC/ACs of I-macroblocks and the motion vectors of P-macroblocks. In particular, the proposed new selective encryption method exploits the error propagation property in an H.264 decoder and improves the collective performance by analyzing the tradeoff between the visual security level and the processing speed compared to typical selective encryption methods (i.e., I-frame, P-frame encryption, and combined I-/P-frame encryption). Experimental results show that the proposed method can significantly reduce the encryption workload without any significant degradation of visual security. PMID:25850068
Efficient management and promotion of utilization of the video information acquired by observation
NASA Astrophysics Data System (ADS)
Kitayama, T.; Tanaka, K.; Shimabukuro, R.; Hase, H.; Ogido, M.; Nakamura, M.; Saito, H.; Hanafusa, Y.; Sonoda, A.
2012-12-01
In Japan Agency for Marine-Earth Science and Technology (JAMSTEC), the deep sea videos are made from the research by JAMSTEC submersibles in 1982, and the information on the huge deep-sea that will reach more 4,000 dives (ca. 24,700 tapes) by the present are opened to public via the Internet since 2002. The deep-sea videos is important because the time variation of deep-sea environment with difficult investigation and collection and growth of the living thing in extreme environment can be checked. Moreover, with development of video technique, the advanced analysis of an investigation image is attained. For grasp of deep sea environment, especially the utility value of the image is high. In JAMSTEC's Data Research Center for Marine-Earth Sciences (DrC), collection of the video are obtained by dive investigation of JAMSTEC, preservation, quality control, and open to public are performed. It is our big subject that the huge video information which utility value has expanded managed efficiently and promotion of use. In this announcement, the present measure is introduced about these subjects . The videos recorded on a tape or various media onboard are collected, and the backup and encoding for preventing the loss and degradation are performed. The video inside of a hard disk has the large file size. Then, we use the Linear Tape File System (LTFS) which attracts attention with image management engineering these days. Cost does not start compared with the usual disk backup, but correspondence years can also save the video data for a long time, and the operatively of a file is not different from a disk. The video that carried out the transcode to offer is archived by disk storage, and offer according to a use is possible for it. For the promotion of utilization of the video, the video public presentation system was reformed completely from November, 2011 to "JAMSTEC E-library of Deep Sea Images (http:// www.godac.jamstec.go.jp/jedi/)" This new system has preparing various searches (e.g. Search by map, Tree, Icon, Keyword et al.). The video annotation is enabled with the same interface, and the usability of use and management is raised. Moreover, In the "Biological Information System for Marine Life : BISMaL (http://www.godac.jamstec.go.jp/bismal/e/index.html)" which is a data system for biodiversity information, particularly in biogeographic data of marine organisms, based on photography position information, the visualization of living thing distribution, the life list of a deep sea living thing, and the deep sea video were used, and aim at the contribution to biodiversity grasp. Future, aiming at the accuracy improvement of the information given to the video by Work support of the comment registration by automatic recognition of an image and Development of a comment registration tool onboard, it aims at offering higher quality information.
Video conference quality assessment based on cooperative sensing of video and audio
NASA Astrophysics Data System (ADS)
Wang, Junxi; Chen, Jialin; Tian, Xin; Zhou, Cheng; Zhou, Zheng; Ye, Lu
2015-12-01
This paper presents a method to video conference quality assessment, which is based on cooperative sensing of video and audio. In this method, a proposed video quality evaluation method is used to assess the video frame quality. The video frame is divided into noise image and filtered image by the bilateral filters. It is similar to the characteristic of human visual, which could also be seen as a low-pass filtering. The audio frames are evaluated by the PEAQ algorithm. The two results are integrated to evaluate the video conference quality. A video conference database is built to test the performance of the proposed method. It could be found that the objective results correlate well with MOS. Then we can conclude that the proposed method is efficiency in assessing video conference quality.
Perceptual tools for quality-aware video networks
NASA Astrophysics Data System (ADS)
Bovik, A. C.
2014-01-01
Monitoring and controlling the quality of the viewing experience of videos transmitted over increasingly congested networks (especially wireless networks) is a pressing problem owing to rapid advances in video-centric mobile communication and display devices that are straining the capacity of the network infrastructure. New developments in automatic perceptual video quality models offer tools that have the potential to be used to perceptually optimize wireless video, leading to more efficient video data delivery and better received quality. In this talk I will review key perceptual principles that are, or could be used to create effective video quality prediction models, and leading quality prediction models that utilize these principles. The goal is to be able to monitor and perceptually optimize video networks by making them "quality-aware."
Improved segmentation of occluded and adjoining vehicles in traffic surveillance videos
NASA Astrophysics Data System (ADS)
Juneja, Medha; Grover, Priyanka
2013-12-01
Occlusion in image processing refers to concealment of any part of the object or the whole object from view of an observer. Real time videos captured by static cameras on roads often encounter overlapping and hence, occlusion of vehicles. Occlusion in traffic surveillance videos usually occurs when an object which is being tracked is hidden by another object. This makes it difficult for the object detection algorithms to distinguish all the vehicles efficiently. Also morphological operations tend to join the close proximity vehicles resulting in formation of a single bounding box around more than one vehicle. Such problems lead to errors in further video processing, like counting of vehicles in a video. The proposed system brings forward efficient moving object detection and tracking approach to reduce such errors. The paper uses successive frame subtraction technique for detection of moving objects. Further, this paper implements the watershed algorithm to segment the overlapped and adjoining vehicles. The segmentation results have been improved by the use of noise and morphological operations.
NV-CMOS HD camera for day/night imaging
NASA Astrophysics Data System (ADS)
Vogelsong, T.; Tower, J.; Sudol, Thomas; Senko, T.; Chodelka, D.
2014-06-01
SRI International (SRI) has developed a new multi-purpose day/night video camera with low-light imaging performance comparable to an image intensifier, while offering the size, weight, ruggedness, and cost advantages enabled by the use of SRI's NV-CMOS HD digital image sensor chip. The digital video output is ideal for image enhancement, sharing with others through networking, video capture for data analysis, or fusion with thermal cameras. The camera provides Camera Link output with HD/WUXGA resolution of 1920 x 1200 pixels operating at 60 Hz. Windowing to smaller sizes enables operation at higher frame rates. High sensitivity is achieved through use of backside illumination, providing high Quantum Efficiency (QE) across the visible and near infrared (NIR) bands (peak QE <90%), as well as projected low noise (<2h+) readout. Power consumption is minimized in the camera, which operates from a single 5V supply. The NVCMOS HD camera provides a substantial reduction in size, weight, and power (SWaP) , ideal for SWaP-constrained day/night imaging platforms such as UAVs, ground vehicles, fixed mount surveillance, and may be reconfigured for mobile soldier operations such as night vision goggles and weapon sights. In addition the camera with the NV-CMOS HD imager is suitable for high performance digital cinematography/broadcast systems, biofluorescence/microscopy imaging, day/night security and surveillance, and other high-end applications which require HD video imaging with high sensitivity and wide dynamic range. The camera comes with an array of lens mounts including C-mount and F-mount. The latest test data from the NV-CMOS HD camera will be presented.
Wang, Wei; Wang, Chunqiu; Zhao, Min
2014-03-01
To ease the burdens on the hospitalization capacity, an emerging swallowable-capsule technology has evolved to serve as a remote gastrointestinal (GI) disease examination technique with the aid of the wireless body sensor network (WBSN). Secure multimedia transmission in such a swallowable-capsule-based WBSN faces critical challenges including energy efficiency and content quality guarantee. In this paper, we propose a joint resource allocation and stream authentication scheme to maintain the best possible video quality while ensuring security and energy efficiency in GI-WBSNs. The contribution of this research is twofold. First, we establish a unique signature-hash (S-H) diversity approach in the authentication domain to optimize video authentication robustness and the authentication bit rate overhead over a wireless channel. Based on the full exploration of S-H authentication diversity, we propose a new two-tier signature-hash (TTSH) stream authentication scheme to improve the video quality by reducing authentication dependence overhead while protecting its integrity. Second, we propose to combine this authentication scheme with a unique S-H oriented unequal resource allocation (URA) scheme to improve the energy-distortion-authentication performance of wireless video delivery in GI-WBSN. Our analysis and simulation results demonstrate that the proposed TTSH with URA scheme achieves considerable gain in both authenticated video quality and energy efficiency.
Joint Machine Learning and Game Theory for Rate Control in High Efficiency Video Coding.
Gao, Wei; Kwong, Sam; Jia, Yuheng
2017-08-25
In this paper, a joint machine learning and game theory modeling (MLGT) framework is proposed for inter frame coding tree unit (CTU) level bit allocation and rate control (RC) optimization in High Efficiency Video Coding (HEVC). First, a support vector machine (SVM) based multi-classification scheme is proposed to improve the prediction accuracy of CTU-level Rate-Distortion (R-D) model. The legacy "chicken-and-egg" dilemma in video coding is proposed to be overcome by the learning-based R-D model. Second, a mixed R-D model based cooperative bargaining game theory is proposed for bit allocation optimization, where the convexity of the mixed R-D model based utility function is proved, and Nash bargaining solution (NBS) is achieved by the proposed iterative solution search method. The minimum utility is adjusted by the reference coding distortion and frame-level Quantization parameter (QP) change. Lastly, intra frame QP and inter frame adaptive bit ratios are adjusted to make inter frames have more bit resources to maintain smooth quality and bit consumption in the bargaining game optimization. Experimental results demonstrate that the proposed MLGT based RC method can achieve much better R-D performances, quality smoothness, bit rate accuracy, buffer control results and subjective visual quality than the other state-of-the-art one-pass RC methods, and the achieved R-D performances are very close to the performance limits from the FixedQP method.
Video Shot Boundary Detection Using QR-Decomposition and Gaussian Transition Detection
NASA Astrophysics Data System (ADS)
Amiri, Ali; Fathy, Mahmood
2010-12-01
This article explores the problem of video shot boundary detection and examines a novel shot boundary detection algorithm by using QR-decomposition and modeling of gradual transitions by Gaussian functions. Specifically, the authors attend to the challenges of detecting gradual shots and extracting appropriate spatiotemporal features that affect the ability of algorithms to efficiently detect shot boundaries. The algorithm utilizes the properties of QR-decomposition and extracts a block-wise probability function that illustrates the probability of video frames to be in shot transitions. The probability function has abrupt changes in hard cut transitions, and semi-Gaussian behavior in gradual transitions. The algorithm detects these transitions by analyzing the probability function. Finally, we will report the results of the experiments using large-scale test sets provided by the TRECVID 2006, which has assessments for hard cut and gradual shot boundary detection. These results confirm the high performance of the proposed algorithm.
Novel Integration of Frame Rate Up Conversion and HEVC Coding Based on Rate-Distortion Optimization.
Guo Lu; Xiaoyun Zhang; Li Chen; Zhiyong Gao
2018-02-01
Frame rate up conversion (FRUC) can improve the visual quality by interpolating new intermediate frames. However, high frame rate videos by FRUC are confronted with more bitrate consumption or annoying artifacts of interpolated frames. In this paper, a novel integration framework of FRUC and high efficiency video coding (HEVC) is proposed based on rate-distortion optimization, and the interpolated frames can be reconstructed at encoder side with low bitrate cost and high visual quality. First, joint motion estimation (JME) algorithm is proposed to obtain robust motion vectors, which are shared between FRUC and video coding. What's more, JME is embedded into the coding loop and employs the original motion search strategy in HEVC coding. Then, the frame interpolation is formulated as a rate-distortion optimization problem, where both the coding bitrate consumption and visual quality are taken into account. Due to the absence of original frames, the distortion model for interpolated frames is established according to the motion vector reliability and coding quantization error. Experimental results demonstrate that the proposed framework can achieve 21% ~ 42% reduction in BDBR, when compared with the traditional methods of FRUC cascaded with coding.
Why Video Games Can Be a Good Fit for Formative Assessment
ERIC Educational Resources Information Center
Bauer, Malcolm; Wylie, Caroline; Jackson, Tanner; Mislevy, Bob; Hoffman-John, Erin; John, Michael; Corrigan, Seth
2017-01-01
This paper explores the relation between formative assessment principles and their analogues in video games that game designers have been developing over the past 35 years. We identify important parallels between the two that should enable effective and efficient use of well-designed video games in the classroom as part of an overall learning…
FBCOT: a fast block coding option for JPEG 2000
NASA Astrophysics Data System (ADS)
Taubman, David; Naman, Aous; Mathew, Reji
2017-09-01
Based on the EBCOT algorithm, JPEG 2000 finds application in many fields, including high performance scientific, geospatial and video coding applications. Beyond digital cinema, JPEG 2000 is also attractive for low-latency video communications. The main obstacle for some of these applications is the relatively high computational complexity of the block coder, especially at high bit-rates. This paper proposes a drop-in replacement for the JPEG 2000 block coding algorithm, achieving much higher encoding and decoding throughputs, with only modest loss in coding efficiency (typically < 0.5dB). The algorithm provides only limited quality/SNR scalability, but offers truly reversible transcoding to/from any standard JPEG 2000 block bit-stream. The proposed FAST block coder can be used with EBCOT's post-compression RD-optimization methodology, allowing a target compressed bit-rate to be achieved even at low latencies, leading to the name FBCOT (Fast Block Coding with Optimized Truncation).
Efficient video-equipped fire detection approach for automatic fire alarm systems
NASA Astrophysics Data System (ADS)
Kang, Myeongsu; Tung, Truong Xuan; Kim, Jong-Myon
2013-01-01
This paper proposes an efficient four-stage approach that automatically detects fire using video capabilities. In the first stage, an approximate median method is used to detect video frame regions involving motion. In the second stage, a fuzzy c-means-based clustering algorithm is employed to extract candidate regions of fire from all of the movement-containing regions. In the third stage, a gray level co-occurrence matrix is used to extract texture parameters by tracking red-colored objects in the candidate regions. These texture features are, subsequently, used as inputs of a back-propagation neural network to distinguish between fire and nonfire. Experimental results indicate that the proposed four-stage approach outperforms other fire detection algorithms in terms of consistently increasing the accuracy of fire detection in both indoor and outdoor test videos.
A novel video recommendation system based on efficient retrieval of human actions
NASA Astrophysics Data System (ADS)
Ramezani, Mohsen; Yaghmaee, Farzin
2016-09-01
In recent years, fast growth of online video sharing eventuated new issues such as helping users to find their requirements in an efficient way. Hence, Recommender Systems (RSs) are used to find the users' most favorite items. Finding these items relies on items or users similarities. Though, many factors like sparsity and cold start user impress the recommendation quality. In some systems, attached tags are used for searching items (e.g. videos) as personalized recommendation. Different views, incomplete and inaccurate tags etc. can weaken the performance of these systems. Considering the advancement of computer vision techniques can help improving RSs. To this end, content based search can be used for finding items (here, videos are considered). In such systems, a video is taken from the user to find and recommend a list of most similar videos to the query one. Due to relating most videos to humans, we present a novel low complex scalable method to recommend videos based on the model of included action. This method has recourse to human action retrieval approaches. For modeling human actions, some interest points are extracted from each action and their motion information are used to compute the action representation. Moreover, a fuzzy dissimilarity measure is presented to compare videos for ranking them. The experimental results on HMDB, UCFYT, UCF sport and KTH datasets illustrated that, in most cases, the proposed method can reach better results than most used methods.
Spanager, Lene; Beier-Holgersen, Randi; Dieckmann, Peter; Konge, Lars; Rosenberg, Jacob; Oestergaard, Doris
2013-11-01
Nontechnical skills are essential for safe and efficient surgery. The aim of this study was to evaluate the reliability of an assessment tool for surgeons' nontechnical skills, Non-Technical Skills for Surgeons dk (NOTSSdk), and the effect of rater training. A 1-day course was conducted for 15 general surgeons in which they rated surgeons' nontechnical skills in 9 video recordings of scenarios simulating real intraoperative situations. Data were gathered from 2 sessions separated by a 4-hour training session. Interrater reliability was high for both pretraining ratings (Cronbach's α = .97) and posttraining ratings (Cronbach's α = .98). There was no statistically significant development in assessment skills. The D study showed that 2 untrained raters or 1 trained rater was needed to obtain generalizability coefficients >.80. The high pretraining interrater reliability indicates that videos were easy to rate and Non-Technical Skills for Surgeons dk easy to use. This implies that Non-Technical Skills for Surgeons dk (NOTSSdk) could be an important tool in surgical training, potentially improving safety and quality for surgical patients. Copyright © 2013 Elsevier Inc. All rights reserved.
Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing.
Zhang, Yu-Xuan; Tang, Ding-Lan; Moore, David R; Amitay, Sygal
2017-01-01
Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD) with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.
2003-01-01
media factors affecting: • Shared Understanding – explicit and operational knowledge • Decision-Making – what information format best helps decision...Passing the Bubble: Cognitive Efficiency of Augmented Video for Collaborative Transfer of Situational Understanding Collaboration and Knowledge ...operational knowledge ? • Informed Decision-Making – what information format is best to pass the bubble to a decision-maker 1/14/2003 ONR David Kirsh
Mehmood, Irfan; Sajjad, Muhammad; Baik, Sung Wook
2014-01-01
Wireless capsule endoscopy (WCE) has great advantages over traditional endoscopy because it is portable and easy to use, especially in remote monitoring health-services. However, during the WCE process, the large amount of captured video data demands a significant deal of computation to analyze and retrieve informative video frames. In order to facilitate efficient WCE data collection and browsing task, we present a resource- and bandwidth-aware WCE video summarization framework that extracts the representative keyframes of the WCE video contents by removing redundant and non-informative frames. For redundancy elimination, we use Jeffrey-divergence between color histograms and inter-frame Boolean series-based correlation of color channels. To remove non-informative frames, multi-fractal texture features are extracted to assist the classification using an ensemble-based classifier. Owing to the limited WCE resources, it is impossible for the WCE system to perform computationally intensive video summarization tasks. To resolve computational challenges, mobile-cloud architecture is incorporated, which provides resizable computing capacities by adaptively offloading video summarization tasks between the client and the cloud server. The qualitative and quantitative results are encouraging and show that the proposed framework saves information transmission cost and bandwidth, as well as the valuable time of data analysts in browsing remote sensing data. PMID:25225874
Mathiassen, Svend Erik; Liv, Per; Wahlström, Jens
2012-01-01
In ergonomics, assessing the working postures of an individual by observation is a very common practice. The present study investigated whether monetary resources devoted to an observational study should preferably be invested in collecting many video recordings of the work, or in having several observers estimate postures from available videos multiple times. On the basis of a data set of observed working postures among hairdressers, necessary information in terms of posture variability, observer variability, and costs for recording and observing videos was entered into equations providing the total cost of data collection and the precision (informative value) of the resulting estimates of two variables: percentages time with the arm elevated <15 degrees and >90 degrees. In all 160 data collection strategies, differing with respect to the number of video recordings and the number of repeated observations of each recording, were simulated and compared for cost and precision. For both posture variables, the most cost-efficient strategy for a given budget was to engage 4 observers to look at available video recordings, rather than to have one observer look at more recordings. Since the latter strategy is the more common in ergonomics practice, we recommend reconsidering standard practice in observational posture assessment.
Mehmood, Irfan; Sajjad, Muhammad; Baik, Sung Wook
2014-09-15
Wireless capsule endoscopy (WCE) has great advantages over traditional endoscopy because it is portable and easy to use, especially in remote monitoring health-services. However, during the WCE process, the large amount of captured video data demands a significant deal of computation to analyze and retrieve informative video frames. In order to facilitate efficient WCE data collection and browsing task, we present a resource- and bandwidth-aware WCE video summarization framework that extracts the representative keyframes of the WCE video contents by removing redundant and non-informative frames. For redundancy elimination, we use Jeffrey-divergence between color histograms and inter-frame Boolean series-based correlation of color channels. To remove non-informative frames, multi-fractal texture features are extracted to assist the classification using an ensemble-based classifier. Owing to the limited WCE resources, it is impossible for the WCE system to perform computationally intensive video summarization tasks. To resolve computational challenges, mobile-cloud architecture is incorporated, which provides resizable computing capacities by adaptively offloading video summarization tasks between the client and the cloud server. The qualitative and quantitative results are encouraging and show that the proposed framework saves information transmission cost and bandwidth, as well as the valuable time of data analysts in browsing remote sensing data.
Privacy information management for video surveillance
NASA Astrophysics Data System (ADS)
Luo, Ying; Cheung, Sen-ching S.
2013-05-01
The widespread deployment of surveillance cameras has raised serious privacy concerns. Many privacy-enhancing schemes have been proposed to automatically redact images of trusted individuals in the surveillance video. To identify these individuals for protection, the most reliable approach is to use biometric signals such as iris patterns as they are immutable and highly discriminative. In this paper, we propose a privacy data management system to be used in a privacy-aware video surveillance system. The privacy status of a subject is anonymously determined based on her iris pattern. For a trusted subject, the surveillance video is redacted and the original imagery is considered to be the privacy information. Our proposed system allows a subject to access her privacy information via the same biometric signal for privacy status determination. Two secure protocols, one for privacy information encryption and the other for privacy information retrieval are proposed. Error control coding is used to cope with the variability in iris patterns and efficient implementation is achieved using surrogate data records. Experimental results on a public iris biometric database demonstrate the validity of our framework.
NASA Astrophysics Data System (ADS)
Lee, Feifei; Kotani, Koji; Chen, Qiu; Ohmi, Tadahiro
2010-02-01
In this paper, a fast search algorithm for MPEG-4 video clips from video database is proposed. An adjacent pixel intensity difference quantization (APIDQ) histogram is utilized as the feature vector of VOP (video object plane), which had been reliably applied to human face recognition previously. Instead of fully decompressed video sequence, partially decoded data, namely DC sequence of the video object are extracted from the video sequence. Combined with active search, a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by total 15 hours of video contained of TV programs such as drama, talk, news, etc. to search for given 200 MPEG-4 video clips which each length is 15 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 80ms, and Equal Error Rate (ERR) of 2 % in drama and news categories are achieved, which are more accurately and robust than conventional fast video search algorithm.
Low Cost Efficient Deliverying Video Surveillance Service to Moving Guard for Smart Home.
Gualotuña, Tatiana; Macías, Elsa; Suárez, Álvaro; C, Efraín R Fonseca; Rivadeneira, Andrés
2018-03-01
Low-cost video surveillance systems are attractive for Smart Home applications (especially in emerging economies). Those systems use the flexibility of the Internet of Things to operate the video camera only when an intrusion is detected. We are the only ones that focus on the design of protocols based on intelligent agents to communicate the video of an intrusion in real time to the guards by wireless or mobile networks. The goal is to communicate, in real time, the video to the guards who can be moving towards the smart home. However, this communication suffers from sporadic disruptions that difficults the control and drastically reduces user satisfaction and operativity of the system. In a novel way, we have designed a generic software architecture based on design patterns that can be adapted to any hardware in a simple way. The implanted hardware is of very low economic cost; the software frameworks are free. In the experimental tests we have shown that it is possible to communicate to the moving guard, intrusion notifications (by e-mail and by instant messaging), and the first video frames in less than 20 s. In addition, we automatically recovered the frames of video lost in the disruptions in a transparent way to the user, we supported vertical handover processes and we could save energy of the smartphone's battery. However, the most important thing was that the high satisfaction of the people who have used the system.
Low Cost Efficient Deliverying Video Surveillance Service to Moving Guard for Smart Home
Gualotuña, Tatiana; Fonseca C., Efraín R.; Rivadeneira, Andrés
2018-01-01
Low-cost video surveillance systems are attractive for Smart Home applications (especially in emerging economies). Those systems use the flexibility of the Internet of Things to operate the video camera only when an intrusion is detected. We are the only ones that focus on the design of protocols based on intelligent agents to communicate the video of an intrusion in real time to the guards by wireless or mobile networks. The goal is to communicate, in real time, the video to the guards who can be moving towards the smart home. However, this communication suffers from sporadic disruptions that difficults the control and drastically reduces user satisfaction and operativity of the system. In a novel way, we have designed a generic software architecture based on design patterns that can be adapted to any hardware in a simple way. The implanted hardware is of very low economic cost; the software frameworks are free. In the experimental tests we have shown that it is possible to communicate to the moving guard, intrusion notifications (by e-mail and by instant messaging), and the first video frames in less than 20 s. In addition, we automatically recovered the frames of video lost in the disruptions in a transparent way to the user, we supported vertical handover processes and we could save energy of the smartphone's battery. However, the most important thing was that the high satisfaction of the people who have used the system. PMID:29494551
Layered compression for high-precision depth data.
Miao, Dan; Fu, Jingjing; Lu, Yan; Li, Shipeng; Chen, Chang Wen
2015-12-01
With the development of depth data acquisition technologies, access to high-precision depth with more than 8-b depths has become much easier and determining how to efficiently represent and compress high-precision depth is essential for practical depth storage and transmission systems. In this paper, we propose a layered high-precision depth compression framework based on an 8-b image/video encoder to achieve efficient compression with low complexity. Within this framework, considering the characteristics of the high-precision depth, a depth map is partitioned into two layers: 1) the most significant bits (MSBs) layer and 2) the least significant bits (LSBs) layer. The MSBs layer provides rough depth value distribution, while the LSBs layer records the details of the depth value variation. For the MSBs layer, an error-controllable pixel domain encoding scheme is proposed to exploit the data correlation of the general depth information with sharp edges and to guarantee the data format of LSBs layer is 8 b after taking the quantization error from MSBs layer. For the LSBs layer, standard 8-b image/video codec is leveraged to perform the compression. The experimental results demonstrate that the proposed coding scheme can achieve real-time depth compression with satisfactory reconstruction quality. Moreover, the compressed depth data generated from this scheme can achieve better performance in view synthesis and gesture recognition applications compared with the conventional coding schemes because of the error control algorithm.
Wavelet-based audio embedding and audio/video compression
NASA Astrophysics Data System (ADS)
Mendenhall, Michael J.; Claypoole, Roger L., Jr.
2001-12-01
Watermarking, traditionally used for copyright protection, is used in a new and exciting way. An efficient wavelet-based watermarking technique embeds audio information into a video signal. Several effective compression techniques are applied to compress the resulting audio/video signal in an embedded fashion. This wavelet-based compression algorithm incorporates bit-plane coding, index coding, and Huffman coding. To demonstrate the potential of this audio embedding and audio/video compression algorithm, we embed an audio signal into a video signal and then compress. Results show that overall compression rates of 15:1 can be achieved. The video signal is reconstructed with a median PSNR of nearly 33 dB. Finally, the audio signal is extracted from the compressed audio/video signal without error.
Di Gennaro, Giancarlo; Picardi, Angelo; Sparano, Antonio; Mascia, Addolorata; Meldolesi, Giulio N; Grammaldo, Liliana G; Esposito, Vincenzo; Quarato, Pier P
2012-03-01
To evaluate the efficiency and safety of pre-surgical video-EEG monitoring with a slow anti-epileptic drug (AED) taper and a rescue benzodiazepine protocol. Fifty-four consecutive patients with refractory focal epilepsy who underwent pre-surgical video-electroencephalography (EEG) monitoring during the year 2010 were included in the study. Time to first seizure, duration of monitoring, incidence of 4-h and 24-h seizure clustering, secondarily generalised tonic-clonic seizures (sGTCS), status epilepticus, falls and cardiac asystole were evaluated. A total of 190 seizures were recorded. Six (11%) patients had 4-h clusters and 21 (39%) patients had 24-h clusters. While 15 sGTCS were recorded in 14 patients (26%), status epilepticus did not occur and no seizure was complicated with cardiac asystole. Epileptic falls with no significant injuries occurred in three patients. The mean time to first seizure was 3.3days and the time to conclude video-EEG monitoring averaged 6days. Seizure clustering was common during pre-surgical video-EEG monitoring, although serious adverse events were rare with a slow AED tapering and a rescue benzodiazepine protocol. Slow AED taper pre-surgical video-EEG monitoring is fairly safe when performed in a highly specialised and supervised hospital setting. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Coding tools investigation for next generation video coding based on HEVC
NASA Astrophysics Data System (ADS)
Chen, Jianle; Chen, Ying; Karczewicz, Marta; Li, Xiang; Liu, Hongbin; Zhang, Li; Zhao, Xin
2015-09-01
The new state-of-the-art video coding standard, H.265/HEVC, has been finalized in 2013 and it achieves roughly 50% bit rate saving compared to its predecessor, H.264/MPEG-4 AVC. This paper provides the evidence that there is still potential for further coding efficiency improvements. A brief overview of HEVC is firstly given in the paper. Then, our improvements on each main module of HEVC are presented. For instance, the recursive quadtree block structure is extended to support larger coding unit and transform unit. The motion information prediction scheme is improved by advanced temporal motion vector prediction, which inherits the motion information of each small block within a large block from a temporal reference picture. Cross component prediction with linear prediction model improves intra prediction and overlapped block motion compensation improves the efficiency of inter prediction. Furthermore, coding of both intra and inter prediction residual is improved by adaptive multiple transform technique. Finally, in addition to deblocking filter and SAO, adaptive loop filter is applied to further enhance the reconstructed picture quality. This paper describes above-mentioned techniques in detail and evaluates their coding performance benefits based on the common test condition during HEVC development. The simulation results show that significant performance improvement over HEVC standard can be achieved, especially for the high resolution video materials.
ERIC Educational Resources Information Center
Wilson, Kaitlyn P.
2013-01-01
Video modeling is a time- and cost-efficient intervention that has been proven effective for children with autism spectrum disorder (ASD); however, the comparative efficacy of this intervention has not been examined in the classroom setting. The present study examines the relative efficacy of video modeling as compared to the more widely-used…
Comparison of Video and Live Modeling in Teaching Response Chains to Children with Autism
ERIC Educational Resources Information Center
Ergenekon, Yasemin; Tekin-Iftar, Elif; Kapan, Alper; Akmanoglu, Nurgul
2014-01-01
Research has shown that video and live modeling are both effective in teaching new skills to children with autism. An adapted alternating treatments design was used to compare the effectiveness and efficiency of video and live modeling in teaching response chains to three children with autism. Each child was taught two chained skills; one skill…
Shafer, Paul R; Rodes, Robert; Kim, Annice; Hansen, Heather; Patel, Deesha; Coln, Caryn; Beistle, Diane
2016-01-01
Background Federal and state public health agencies in the United States are increasingly using digital advertising and social media to promote messages from broader multimedia campaigns. However, little evidence exists on population-level campaign awareness and relative cost efficiencies of digital advertising in the context of a comprehensive public health education campaign. Objective Our objective was to compare the impact of increased doses of digital video and television advertising from the 2013 Tips From Former Smokers (Tips) campaign on overall campaign awareness at the population level. We also compared the relative cost efficiencies across these media platforms. Methods We used data from a large national online survey of approximately 15,000 US smokers conducted in 2013 immediately after the conclusion of the 2013 Tips campaign. These data were used to compare the effects of variation in media dose of digital video and television advertising on population-level awareness of the Tips campaign. We implemented higher doses of digital video among selected media markets and randomly selected other markets to receive similar higher doses of television ads. Multivariate logistic regressions estimated the odds of overall campaign awareness via digital or television format as a function of higher-dose media in each market area. All statistical tests used the .05 threshold for statistical significance and the .10 level for marginal nonsignificance. We used adjusted advertising costs for the additional doses of digital and television advertising to compare the cost efficiencies of digital and television advertising on the basis of costs per percentage point of population awareness generated. Results Higher-dose digital video advertising was associated with 94% increased odds of awareness of any ad online relative to standard-dose markets (P<.001). Higher-dose digital advertising was associated with a marginally nonsignificant increase (46%) in overall campaign awareness regardless of media format (P=.09). Higher-dose television advertising was associated with 81% increased odds of overall ad awareness regardless of media format (P<.001). Increased doses of television advertising were also associated with significantly higher odds of awareness of any ad on television (P<.001) and online (P=.04). The adjusted cost of each additional percentage point of population-level reach generated by higher doses of advertising was approximately US $440,000 for digital advertising and US $1 million for television advertising. Conclusions Television advertising generated relatively higher levels of overall campaign awareness. However, digital video was relatively more cost efficient for generating awareness. These results suggest that digital video may be used as a cost-efficient complement to traditional advertising modes (eg, television), but digital video should not replace television given the relatively smaller audience size of digital video viewers. PMID:27627853
Davis, Kevin C; Shafer, Paul R; Rodes, Robert; Kim, Annice; Hansen, Heather; Patel, Deesha; Coln, Caryn; Beistle, Diane
2016-09-14
Federal and state public health agencies in the United States are increasingly using digital advertising and social media to promote messages from broader multimedia campaigns. However, little evidence exists on population-level campaign awareness and relative cost efficiencies of digital advertising in the context of a comprehensive public health education campaign. Our objective was to compare the impact of increased doses of digital video and television advertising from the 2013 Tips From Former Smokers (Tips) campaign on overall campaign awareness at the population level. We also compared the relative cost efficiencies across these media platforms. We used data from a large national online survey of approximately 15,000 US smokers conducted in 2013 immediately after the conclusion of the 2013 Tips campaign. These data were used to compare the effects of variation in media dose of digital video and television advertising on population-level awareness of the Tips campaign. We implemented higher doses of digital video among selected media markets and randomly selected other markets to receive similar higher doses of television ads. Multivariate logistic regressions estimated the odds of overall campaign awareness via digital or television format as a function of higher-dose media in each market area. All statistical tests used the .05 threshold for statistical significance and the .10 level for marginal nonsignificance. We used adjusted advertising costs for the additional doses of digital and television advertising to compare the cost efficiencies of digital and television advertising on the basis of costs per percentage point of population awareness generated. Higher-dose digital video advertising was associated with 94% increased odds of awareness of any ad online relative to standard-dose markets (P<.001). Higher-dose digital advertising was associated with a marginally nonsignificant increase (46%) in overall campaign awareness regardless of media format (P=.09). Higher-dose television advertising was associated with 81% increased odds of overall ad awareness regardless of media format (P<.001). Increased doses of television advertising were also associated with significantly higher odds of awareness of any ad on television (P<.001) and online (P=.04). The adjusted cost of each additional percentage point of population-level reach generated by higher doses of advertising was approximately US $440,000 for digital advertising and US $1 million for television advertising. Television advertising generated relatively higher levels of overall campaign awareness. However, digital video was relatively more cost efficient for generating awareness. These results suggest that digital video may be used as a cost-efficient complement to traditional advertising modes (eg, television), but digital video should not replace television given the relatively smaller audience size of digital video viewers.
NASA Astrophysics Data System (ADS)
Patti, Andrew; Tan, Wai-tian; Shen, Bo
2007-09-01
Streaming video in consumer homes over wireless IEEE 802.11 networks is becoming commonplace. Wireless 802.11 networks pose unique difficulties for streaming high definition (HD), low latency video due to their error-prone physical layer and media access procedures which were not designed for real-time traffic. HD video streaming, even with sophisticated H.264 encoding, is particularly challenging due to the large number of packet fragments per slice. Cross-layer design strategies have been proposed to address the issues of video streaming over 802.11. These designs increase streaming robustness by imposing some degree of monitoring and control over 802.11 parameters from application level, or by making the 802.11 layer media-aware. Important contributions are made, but none of the existing approaches directly take the 802.11 queuing into account. In this paper we take a different approach and propose a cross-layer design allowing direct, expedient control over the wireless packet queue, while obtaining timely feedback on transmission status for each packet in a media flow. This method can be fully implemented on a media sender with no explicit support or changes required to the media client. We assume that due to congestion or deteriorating signal-to-noise levels, the available throughput may drop substantially for extended periods of time, and thus propose video source adaptation methods that allow matching the bit-rate to available throughput. A particular H.264 slice encoding is presented to enable seamless stream switching between streams at multiple bit-rates, and we explore using new computationally efficient transcoding methods when only a high bit-rate stream is available.
GLIDES â Efficient Energy Storage from ORNL
Momen, Ayyoub M.; Abu-Heiba, Ahmad; Odukomaiya, Wale; Akinina, Alla
2018-06-25
The research shown in this video features the GLIDES (Ground-Level Integrated Diverse Energy Storage) project, which has been under development at Oak Ridge National Laboratory (ORNL) since 2013. GLIDES can store energy via combined inputs of electricity and heat, and deliver dispatchable electricity. Supported by ORNLâs Laboratory Directorâs Research and Development (LDRD) fund, this energy storage system is low-cost, and hybridizes compressed air and pumped-hydro approaches to allow for storage of intermittent renewable energy at high efficiency. A U.S. patent application for this novel energy storage concept has been submitted, and research findings suggest it has the potential to be a flexible, low-cost, scalable, high-efficiency option for energy storage, especially useful in residential and commercial buildings.
GLIDES – Efficient Energy Storage from ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momen, Ayyoub M.; Abu-Heiba, Ahmad; Odukomaiya, Wale
2016-03-01
The research shown in this video features the GLIDES (Ground-Level Integrated Diverse Energy Storage) project, which has been under development at Oak Ridge National Laboratory (ORNL) since 2013. GLIDES can store energy via combined inputs of electricity and heat, and deliver dispatchable electricity. Supported by ORNL’s Laboratory Director’s Research and Development (LDRD) fund, this energy storage system is low-cost, and hybridizes compressed air and pumped-hydro approaches to allow for storage of intermittent renewable energy at high efficiency. A U.S. patent application for this novel energy storage concept has been submitted, and research findings suggest it has the potential to bemore » a flexible, low-cost, scalable, high-efficiency option for energy storage, especially useful in residential and commercial buildings.« less
Spatial Pyramid Covariance based Compact Video Code for Robust Face Retrieval in TV-series.
Li, Yan; Wang, Ruiping; Cui, Zhen; Shan, Shiguang; Chen, Xilin
2016-10-10
We address the problem of face video retrieval in TV-series which searches video clips based on the presence of specific character, given one face track of his/her. This is tremendously challenging because on one hand, faces in TV-series are captured in largely uncontrolled conditions with complex appearance variations, and on the other hand retrieval task typically needs efficient representation with low time and space complexity. To handle this problem, we propose a compact and discriminative representation for the huge body of video data, named Compact Video Code (CVC). Our method first models the face track by its sample (i.e., frame) covariance matrix to capture the video data variations in a statistical manner. To incorporate discriminative information and obtain more compact video signature suitable for retrieval, the high-dimensional covariance representation is further encoded as a much lower-dimensional binary vector, which finally yields the proposed CVC. Specifically, each bit of the code, i.e., each dimension of the binary vector, is produced via supervised learning in a max margin framework, which aims to make a balance between the discriminability and stability of the code. Besides, we further extend the descriptive granularity of covariance matrix from traditional pixel-level to more general patchlevel, and proceed to propose a novel hierarchical video representation named Spatial Pyramid Covariance (SPC) along with a fast calculation method. Face retrieval experiments on two challenging TV-series video databases, i.e., the Big Bang Theory and Prison Break, demonstrate the competitiveness of the proposed CVC over state-of-the-art retrieval methods. In addition, as a general video matching algorithm, CVC is also evaluated in traditional video face recognition task on a standard Internet database, i.e., YouTube Celebrities, showing its quite promising performance by using an extremely compact code with only 128 bits.
ERIC Educational Resources Information Center
Sani-Bozkurt, Sunagul; Ozen, Arzu
2015-01-01
This study aimed to examine whether or not there was any difference in the effectiveness and efficiency of the presentation of video modeling interventions using peer and adult models in teaching pretend play skills to children with ASD and to examine the views of parents about the study. Participants were two boys and one girl, aged 5-6 years…
NASA Astrophysics Data System (ADS)
El-Shafai, W.; El-Bakary, E. M.; El-Rabaie, S.; Zahran, O.; El-Halawany, M.; Abd El-Samie, F. E.
2017-06-01
Three-Dimensional Multi-View Video (3D-MVV) transmission over wireless networks suffers from Macro-Blocks losses due to either packet dropping or fading-motivated bit errors. Thus, the robust performance of 3D-MVV transmission schemes over wireless channels becomes a recent considerable hot research issue due to the restricted resources and the presence of severe channel errors. The 3D-MVV is composed of multiple video streams shot by several cameras around a single object, simultaneously. Therefore, it is an urgent task to achieve high compression ratios to meet future bandwidth constraints. Unfortunately, the highly-compressed 3D-MVV data becomes more sensitive and vulnerable to packet losses, especially in the case of heavy channel faults. Thus, in this paper, we suggest the application of a chaotic Baker interleaving approach with equalization and convolution coding for efficient Singular Value Decomposition (SVD) watermarked 3D-MVV transmission over an Orthogonal Frequency Division Multiplexing wireless system. Rayleigh fading and Additive White Gaussian Noise are considered in the real scenario of 3D-MVV transmission. The SVD watermarked 3D-MVV frames are primarily converted to their luminance and chrominance components, which are then converted to binary data format. After that, chaotic interleaving is applied prior to the modulation process. It is used to reduce the channel effects on the transmitted bit streams and it also adds a degree of encryption to the transmitted 3D-MVV frames. To test the performance of the proposed framework; several simulation experiments on different SVD watermarked 3D-MVV frames have been executed. The experimental results show that the received SVD watermarked 3D-MVV frames still have high Peak Signal-to-Noise Ratios and watermark extraction is possible in the proposed framework.
Blurry-frame detection and shot segmentation in colonoscopy videos
NASA Astrophysics Data System (ADS)
Oh, JungHwan; Hwang, Sae; Tavanapong, Wallapak; de Groen, Piet C.; Wong, Johnny
2003-12-01
Colonoscopy is an important screening procedure for colorectal cancer. During this procedure, the endoscopist visually inspects the colon. Human inspection, however, is not without error. We hypothesize that colonoscopy videos may contain additional valuable information missed by the endoscopist. Video segmentation is the first necessary step for the content-based video analysis and retrieval to provide efficient access to the important images and video segments from a large colonoscopy video database. Based on the unique characteristics of colonoscopy videos, we introduce a new scheme to detect and remove blurry frames, and segment the videos into shots based on the contents. Our experimental results show that the average precision and recall of the proposed scheme are over 90% for the detection of non-blurry images. The proposed method of blurry frame detection and shot segmentation is extensible to the videos captured from other endoscopic procedures such as upper gastrointestinal endoscopy, enteroscopy, cystoscopy, and laparoscopy.
NASA Astrophysics Data System (ADS)
Wang, Jianhua; Cheng, Lianglun; Wang, Tao; Peng, Xiaodong
2016-03-01
Table look-up operation plays a very important role during the decoding processing of context-based adaptive variable length decoding (CAVLD) in H.264/advanced video coding (AVC). However, frequent table look-up operation can result in big table memory access, and then lead to high table power consumption. Aiming to solve the problem of big table memory access of current methods, and then reduce high power consumption, a memory-efficient table look-up optimized algorithm is presented for CAVLD. The contribution of this paper lies that index search technology is introduced to reduce big memory access for table look-up, and then reduce high table power consumption. Specifically, in our schemes, we use index search technology to reduce memory access by reducing the searching and matching operations for code_word on the basis of taking advantage of the internal relationship among length of zero in code_prefix, value of code_suffix and code_lengh, thus saving the power consumption of table look-up. The experimental results show that our proposed table look-up algorithm based on index search can lower about 60% memory access consumption compared with table look-up by sequential search scheme, and then save much power consumption for CAVLD in H.264/AVC.
Using Deep Learning Algorithm to Enhance Image-review Software for Surveillance Cameras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Yonggang; Thomas, Maikael A.
We propose the development of proven deep learning algorithms to flag objects and events of interest in Next Generation Surveillance System (NGSS) surveillance to make IAEA image review more efficient. Video surveillance is one of the core monitoring technologies used by the IAEA Department of Safeguards when implementing safeguards at nuclear facilities worldwide. The current image review software GARS has limited automated functions, such as scene-change detection, black image detection and missing scene analysis, but struggles with highly cluttered backgrounds. A cutting-edge algorithm to be developed in this project will enable efficient and effective searches in images and video streamsmore » by identifying and tracking safeguards relevant objects and detect anomalies in their vicinity. In this project, we will develop the algorithm, test it with the IAEA surveillance cameras and data sets collected at simulated nuclear facilities at BNL and SNL, and implement it in a software program for potential integration into the IAEA’s IRAP (Integrated Review and Analysis Program).« less
NASA Astrophysics Data System (ADS)
He, Qiang; Schultz, Richard R.; Wang, Yi; Camargo, Aldo; Martel, Florent
2008-01-01
In traditional super-resolution methods, researchers generally assume that accurate subpixel image registration parameters are given a priori. In reality, accurate image registration on a subpixel grid is the single most critically important step for the accuracy of super-resolution image reconstruction. In this paper, we introduce affine invariant features to improve subpixel image registration, which considerably reduces the number of mismatched points and hence makes traditional image registration more efficient and more accurate for super-resolution video enhancement. Affine invariant interest points include those corners that are invariant to affine transformations, including scale, rotation, and translation. They are extracted from the second moment matrix through the integration and differentiation covariance matrices. Our tests are based on two sets of real video captured by a small Unmanned Aircraft System (UAS) aircraft, which is highly susceptible to vibration from even light winds. The experimental results from real UAS surveillance video show that affine invariant interest points are more robust to perspective distortion and present more accurate matching than traditional Harris/SIFT corners. In our experiments on real video, all matching affine invariant interest points are found correctly. In addition, for the same super-resolution problem, we can use many fewer affine invariant points than Harris/SIFT corners to obtain good super-resolution results.
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-02-01
Experimental or operational modal analysis traditionally requires physically-attached wired or wireless sensors for vibration measurement of structures. This instrumentation can result in mass-loading on lightweight structures, and is costly and time-consuming to install and maintain on large civil structures, especially for long-term applications (e.g., structural health monitoring) that require significant maintenance for cabling (wired sensors) or periodic replacement of the energy supply (wireless sensors). Moreover, these sensors are typically placed at a limited number of discrete locations, providing low spatial sensing resolution that is hardly sufficient for modal-based damage localization, or model correlation and updating for larger-scale structures. Non-contact measurement methods such as scanning laser vibrometers provide high-resolution sensing capacity without the mass-loading effect; however, they make sequential measurements that require considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation, optical flow), video camera based measurements have been successfully used for vibration measurements and subsequent modal analysis, based on techniques such as the digital image correlation (DIC) and the point-tracking. However, they typically require speckle pattern or high-contrast markers to be placed on the surface of structures, which poses challenges when the measurement area is large or inaccessible. This work explores advanced computer vision and video processing algorithms to develop a novel video measurement and vision-based operational (output-only) modal analysis method that alleviate the need of structural surface preparation associated with existing vision-based methods and can be implemented in a relatively efficient and autonomous manner with little user supervision and calibration. First a multi-scale image processing method is applied on the frames of the video of a vibrating structure to extract the local pixel phases that encode local structural vibration, establishing a full-field spatiotemporal motion matrix. Then a high-spatial dimensional, yet low-modal-dimensional, over-complete model is used to represent the extracted full-field motion matrix using modal superposition, which is physically connected and manipulated by a family of unsupervised learning models and techniques, respectively. Thus, the proposed method is able to blindly extract modal frequencies, damping ratios, and full-field (as many points as the pixel number of the video frame) mode shapes from line of sight video measurements of the structure. The method is validated by laboratory experiments on a bench-scale building structure and a cantilever beam. Its ability for output (video measurements)-only identification and visualization of the weakly-excited mode is demonstrated and several issues with its implementation are discussed.
Neil A. Clark
2001-01-01
A multisensor video system has been developed incorporating a CCD video camera, a 3-axis magnetometer, and a laser-rangefinding device, for the purpose of measuring individual tree stems. While preliminary results show promise, some changes are needed to improve the accuracy and efficiency of the system. Image matching is needed to improve the accuracy of length...
Lalys, Florent; Riffaud, Laurent; Bouget, David; Jannin, Pierre
2012-01-01
The need for a better integration of the new generation of Computer-Assisted-Surgical (CAS) systems has been recently emphasized. One necessity to achieve this objective is to retrieve data from the Operating Room (OR) with different sensors, then to derive models from these data. Recently, the use of videos from cameras in the OR has demonstrated its efficiency. In this paper, we propose a framework to assist in the development of systems for the automatic recognition of high level surgical tasks using microscope videos analysis. We validated its use on cataract procedures. The idea is to combine state-of-the-art computer vision techniques with time series analysis. The first step of the framework consisted in the definition of several visual cues for extracting semantic information, therefore characterizing each frame of the video. Five different pieces of image-based classifiers were therefore implemented. A step of pupil segmentation was also applied for dedicated visual cue detection. Time series classification algorithms were then applied to model time-varying data. Dynamic Time Warping (DTW) and Hidden Markov Models (HMM) were tested. This association combined the advantages of all methods for better understanding of the problem. The framework was finally validated through various studies. Six binary visual cues were chosen along with 12 phases to detect, obtaining accuracies of 94%. PMID:22203700
Hierarchical video surveillance architecture: a chassis for video big data analytics and exploration
NASA Astrophysics Data System (ADS)
Ajiboye, Sola O.; Birch, Philip; Chatwin, Christopher; Young, Rupert
2015-03-01
There is increasing reliance on video surveillance systems for systematic derivation, analysis and interpretation of the data needed for predicting, planning, evaluating and implementing public safety. This is evident from the massive number of surveillance cameras deployed across public locations. For example, in July 2013, the British Security Industry Association (BSIA) reported that over 4 million CCTV cameras had been installed in Britain alone. The BSIA also reveal that only 1.5% of these are state owned. In this paper, we propose a framework that allows access to data from privately owned cameras, with the aim of increasing the efficiency and accuracy of public safety planning, security activities, and decision support systems that are based on video integrated surveillance systems. The accuracy of results obtained from government-owned public safety infrastructure would improve greatly if privately owned surveillance systems `expose' relevant video-generated metadata events, such as triggered alerts and also permit query of a metadata repository. Subsequently, a police officer, for example, with an appropriate level of system permission can query unified video systems across a large geographical area such as a city or a country to predict the location of an interesting entity, such as a pedestrian or a vehicle. This becomes possible with our proposed novel hierarchical architecture, the Fused Video Surveillance Architecture (FVSA). At the high level, FVSA comprises of a hardware framework that is supported by a multi-layer abstraction software interface. It presents video surveillance systems as an adapted computational grid of intelligent services, which is integration-enabled to communicate with other compatible systems in the Internet of Things (IoT).
Empirical evaluation of H.265/HEVC-based dynamic adaptive video streaming over HTTP (HEVC-DASH)
NASA Astrophysics Data System (ADS)
Irondi, Iheanyi; Wang, Qi; Grecos, Christos
2014-05-01
Real-time HTTP streaming has gained global popularity for delivering video content over Internet. In particular, the recent MPEG-DASH (Dynamic Adaptive Streaming over HTTP) standard enables on-demand, live, and adaptive Internet streaming in response to network bandwidth fluctuations. Meanwhile, emerging is the new-generation video coding standard, H.265/HEVC (High Efficiency Video Coding) promises to reduce the bandwidth requirement by 50% at the same video quality when compared with the current H.264/AVC standard. However, little existing work has addressed the integration of the DASH and HEVC standards, let alone empirical performance evaluation of such systems. This paper presents an experimental HEVC-DASH system, which is a pull-based adaptive streaming solution that delivers HEVC-coded video content through conventional HTTP servers where the client switches to its desired quality, resolution or bitrate based on the available network bandwidth. Previous studies in DASH have focused on H.264/AVC, whereas we present an empirical evaluation of the HEVC-DASH system by implementing a real-world test bed, which consists of an Apache HTTP Server with GPAC, an MP4Client (GPAC) with open HEVC-based DASH client and a NETEM box in the middle emulating different network conditions. We investigate and analyze the performance of HEVC-DASH by exploring the impact of various network conditions such as packet loss, bandwidth and delay on video quality. Furthermore, we compare the Intra and Random Access profiles of HEVC coding with the Intra profile of H.264/AVC when the correspondingly encoded video is streamed with DASH. Finally, we explore the correlation among the quality metrics and network conditions, and empirically establish under which conditions the different codecs can provide satisfactory performance.
Evaluation of H.264 and H.265 full motion video encoding for small UAS platforms
NASA Astrophysics Data System (ADS)
McGuinness, Christopher D.; Walker, David; Taylor, Clark; Hill, Kerry; Hoffman, Marc
2016-05-01
Of all the steps in the image acquisition and formation pipeline, compression is the only process that degrades image quality. A selected compression algorithm succeeds or fails to provide sufficient quality at the requested compression rate depending on how well the algorithm is suited to the input data. Applying an algorithm designed for one type of data to a different type often results in poor compression performance. This is mostly the case when comparing the performance of H.264, designed for standard definition data, to HEVC (High Efficiency Video Coding), which the Joint Collaborative Team on Video Coding (JCT-VC) designed for high-definition data. This study focuses on evaluating how HEVC compares to H.264 when compressing data from small UAS platforms. To compare the standards directly, we assess two open-source traditional software solutions: x264 and x265. These software-only comparisons allow us to establish a baseline of how much improvement can generally be expected of HEVC over H.264. Then, specific solutions leveraging different types of hardware are selected to understand the limitations of commercial-off-the-shelf (COTS) options. Algorithmically, regardless of the implementation, HEVC is found to provide similar quality video as H.264 at 40% lower data rates for video resolutions greater than 1280x720, roughly 1 Megapixel (MPx). For resolutions less than 1MPx, H.264 is an adequate solution though a small (roughly 20%) compression boost is earned by employing HEVC. New low cost, size, weight, and power (CSWAP) HEVC implementations are being developed and will be ideal for small UAS systems.
Storying energy consumption: Collective video storytelling in energy efficiency social marketing.
Gordon, Ross; Waitt, Gordon; Cooper, Paul; Butler, Katherine
2018-05-01
Despite calls for more socio-technical research on energy, there is little practical advice to how narratives collected through qualitative research may be melded with technical knowledge from the physical sciences such as engineering and then applied in energy efficiency social action strategies. This is despite established knowledge in the environmental management literature about domestic energy use regarding the utility of social practice theory and narrative framings that socialise everyday consumption. Storytelling is positioned in this paper both as a focus for socio-technical energy research, and as one potential practical tool that can arguably enhance energy efficiency interventions. We draw upon the literature on everyday social practices, and storytelling, to present our framework called 'collective video storytelling' that combines scientific and lay knowledge about domestic energy use to offer a practical tool for energy efficiency management. Collective video storytelling is discussed in the context of Energy+Illawarra, a 3-year cross-disciplinary collaboration between social marketers, human geographers, and engineers to target energy behavioural change within older low-income households in regional NSW, Australia. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Participative Tool for Sharing, Annotating and Archiving Submarine Video Data
NASA Astrophysics Data System (ADS)
Marcon, Y.; Kottmann, R.; Ratmeyer, V.; Boetius, A.
2016-02-01
Oceans cover more than 70 percent of the Earth's surface and are known to play an essential role on all of the Earth systems and cycles. However, less than 5 percent of the ocean bottom has been explored and many aspects of the deep-sea world remain poorly understood. Increasing our ocean literacy is a necessity in order for specialists and non-specialists to better grasp the roles of the ocean on the Earth's system, its resources, and the impact of human activities on it. Due to technological advances, deep-sea research produces ever-increasing amounts of scientific video data. However, using such data for science communication and public outreach purposes remains difficult as tools for accessing/sharing such scientific data are often lacking. Indeed, there is no common solution for the management and analysis of marine video data, which are often scattered across multiple research institutes or working groups and it is difficult to get an overview of the whereabouts of those data. The VIDLIB Deep-Sea Video Platform is a web-based tool for sharing/annotating time-coded deep-sea video data. VIDLIB provides a participatory way to share and analyze video data. Scientists can share expert knowledge for video analysis without the need to upload/download large video files. Also, VIDLIB offers streaming capabilities and has potential for participatory science and science communication in that non-specialists can ask questions on what they see and get answers from scientists. Such a tool is highly valuable in terms of scientific public outreach and popular science. Video data are by far the most efficient way to communicate scientific findings to a non-expert public. VIDLIB is being used for studying the impact of deep-sea mining on benthic communities as well as for exploration in polar regions. We will present the structure and workflow of VIDLIB as well as an example of video analysis. VIDLIB (http://vidlib.marum.de) is funded by the EU EUROFLEET project and the Helmholtz Alliance ROBEX.
Rutz, Christian; Bluff, Lucas A; Weir, Alex A S; Kacelnik, Alex
2007-11-02
New Caledonian crows (Corvus moneduloides) are renowned for using tools for extractive foraging, but the ecological context of this unusual behavior is largely unknown. We developed miniaturized, animal-borne video cameras to record the undisturbed behavior and foraging ecology of wild, free-ranging crows. Our video recordings enabled an estimate of the species' natural foraging efficiency and revealed that tool use, and choice of tool materials, are more diverse than previously thought. Video tracking has potential for studying the behavior and ecology of many other bird species that are shy or live in inaccessible habitats.
Advanced Video Activity Analytics (AVAA): Human Performance Model Report
2017-12-01
NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by other...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data...Video Activity Analytics (AVAA) system. AVAA was designed to help US Army Intelligence Analysts exploit full-motion video more efficiently and
Selecting salient frames for spatiotemporal video modeling and segmentation.
Song, Xiaomu; Fan, Guoliang
2007-12-01
We propose a new statistical generative model for spatiotemporal video segmentation. The objective is to partition a video sequence into homogeneous segments that can be used as "building blocks" for semantic video segmentation. The baseline framework is a Gaussian mixture model (GMM)-based video modeling approach that involves a six-dimensional spatiotemporal feature space. Specifically, we introduce the concept of frame saliency to quantify the relevancy of a video frame to the GMM-based spatiotemporal video modeling. This helps us use a small set of salient frames to facilitate the model training by reducing data redundancy and irrelevance. A modified expectation maximization algorithm is developed for simultaneous GMM training and frame saliency estimation, and the frames with the highest saliency values are extracted to refine the GMM estimation for video segmentation. Moreover, it is interesting to find that frame saliency can imply some object behaviors. This makes the proposed method also applicable to other frame-related video analysis tasks, such as key-frame extraction, video skimming, etc. Experiments on real videos demonstrate the effectiveness and efficiency of the proposed method.
Display device-adapted video quality-of-experience assessment
NASA Astrophysics Data System (ADS)
Rehman, Abdul; Zeng, Kai; Wang, Zhou
2015-03-01
Today's viewers consume video content from a variety of connected devices, including smart phones, tablets, notebooks, TVs, and PCs. This imposes significant challenges for managing video traffic efficiently to ensure an acceptable quality-of-experience (QoE) for the end users as the perceptual quality of video content strongly depends on the properties of the display device and the viewing conditions. State-of-the-art full-reference objective video quality assessment algorithms do not take into account the combined impact of display device properties, viewing conditions, and video resolution while performing video quality assessment. We performed a subjective study in order to understand the impact of aforementioned factors on perceptual video QoE. We also propose a full reference video QoE measure, named SSIMplus, that provides real-time prediction of the perceptual quality of a video based on human visual system behaviors, video content characteristics (such as spatial and temporal complexity, and video resolution), display device properties (such as screen size, resolution, and brightness), and viewing conditions (such as viewing distance and angle). Experimental results have shown that the proposed algorithm outperforms state-of-the-art video quality measures in terms of accuracy and speed.
Wide-Range Motion Estimation Architecture with Dual Search Windows for High Resolution Video Coding
NASA Astrophysics Data System (ADS)
Dung, Lan-Rong; Lin, Meng-Chun
This paper presents a memory-efficient motion estimation (ME) technique for high-resolution video compression. The main objective is to reduce the external memory access, especially for limited local memory resource. The reduction of memory access can successfully save the notorious power consumption. The key to reduce the memory accesses is based on center-biased algorithm in that the center-biased algorithm performs the motion vector (MV) searching with the minimum search data. While considering the data reusability, the proposed dual-search-windowing (DSW) approaches use the secondary windowing as an option per searching necessity. By doing so, the loading of search windows can be alleviated and hence reduce the required external memory bandwidth. The proposed techniques can save up to 81% of external memory bandwidth and require only 135 MBytes/sec, while the quality degradation is less than 0.2dB for 720p HDTV clips coded at 8Mbits/sec.
NASA Astrophysics Data System (ADS)
Liang, Yu-Li
Multimedia data is increasingly important in scientific discovery and people's daily lives. Content of massive multimedia is often diverse and noisy, and motion between frames is sometimes crucial in analyzing those data. Among all, still images and videos are commonly used formats. Images are compact in size but do not contain motion information. Videos record motion but are sometimes too big to be analyzed. Sequential images, which are a set of continuous images with low frame rate, stand out because they are smaller than videos and still maintain motion information. This thesis investigates features in different types of noisy sequential images, and the proposed solutions that intelligently combined multiple features to successfully retrieve visual information from on-line videos and cloudy satellite images. The first task is detecting supraglacial lakes above ice sheet in sequential satellite images. The dynamics of supraglacial lakes on the Greenland ice sheet deeply affect glacier movement, which is directly related to sea level rise and global environment change. Detecting lakes above ice is suffering from diverse image qualities and unexpected clouds. A new method is proposed to efficiently extract prominent lake candidates with irregular shapes, heterogeneous backgrounds, and in cloudy images. The proposed system fully automatize the procedure that track lakes with high accuracy. We further cooperated with geoscientists to examine the tracked lakes and found new scientific findings. The second one is detecting obscene content in on-line video chat services, such as Chatroulette, that randomly match pairs of users in video chat sessions. A big problem encountered in such systems is the presence of flashers and obscene content. Because of various obscene content and unstable qualities of videos capture by home web-camera, detecting misbehaving users is a highly challenging task. We propose SafeVchat, which is the first solution that achieves satisfactory detection rate by using facial features and skin color model. To harness all the features in the scene, we further developed another system using multiple types of local descriptors along with Bag-of-Visual Word framework. In addition, an investigation of new contour feature in detecting obscene content is presented.
NASA Astrophysics Data System (ADS)
Zhou, Gan; An, Xin; Pu, Allen; Psaltis, Demetri; Mok, Fai H.
1999-11-01
The holographic disc is a high capacity, disk-based data storage device that can provide the performance for next generation mass data storage needs. With a projected capacity approaching 1 terabit on a single 12 cm platter, the holographic disc has the potential to become a highly efficient storage hardware for data warehousing applications. The high readout rate of holographic disc makes it especially suitable for generating multiple, high bandwidth data streams such as required for network server computers. Multimedia applications such as interactive video and HDTV can also potentially benefit from the high capacity and fast data access of holographic memory.
Axilbund, J E; Hamby, L A; Thompson, D B; Olsen, S J; Griffin, C A
2005-06-01
Cancer genetic counselors use a variety of teaching modalities for patient education. This survey of cancer genetic counselors assessed their use of educational videos and their recommendations for content of future videos. Thirty percent of respondents use videos for patient education. Cited benefits included reinforcement of information for clients and increased counselor efficiency. Of the 70% who do not use videos, predominant barriers included the perceived lack of an appropriate video, lack of space and/or equipment, and concern that videos are impersonal. Most respondents desired a video that is representative of the genetic counseling session, but emphasized the importance of using broad information. Content considered critical included the pros and cons of genetic testing, associated psychosocial implications, and genetic discrimination. The results of this exploratory study provide data relevant for the development of a cancer genetics video for patient education, and suggestions are made based on aspects of information processing and communication theories.
NASA Astrophysics Data System (ADS)
Genovese, Mariangela; Napoli, Ettore
2013-05-01
The identification of moving objects is a fundamental step in computer vision processing chains. The development of low cost and lightweight smart cameras steadily increases the request of efficient and high performance circuits able to process high definition video in real time. The paper proposes two processor cores aimed to perform the real time background identification on High Definition (HD, 1920 1080 pixel) video streams. The implemented algorithm is the OpenCV version of the Gaussian Mixture Model (GMM), an high performance probabilistic algorithm for the segmentation of the background that is however computationally intensive and impossible to implement on general purpose CPU with the constraint of real time processing. In the proposed paper, the equations of the OpenCV GMM algorithm are optimized in such a way that a lightweight and low power implementation of the algorithm is obtained. The reported performances are also the result of the use of state of the art truncated binary multipliers and ROM compression techniques for the implementation of the non-linear functions. The first circuit has commercial FPGA devices as a target and provides speed and logic resource occupation that overcome previously proposed implementations. The second circuit is oriented to an ASIC (UMC-90nm) standard cell implementation. Both implementations are able to process more than 60 frames per second in 1080p format, a frame rate compatible with HD television.
A video, text, and speech-driven realistic 3-d virtual head for human-machine interface.
Yu, Jun; Wang, Zeng-Fu
2015-05-01
A multiple inputs-driven realistic facial animation system based on 3-D virtual head for human-machine interface is proposed. The system can be driven independently by video, text, and speech, thus can interact with humans through diverse interfaces. The combination of parameterized model and muscular model is used to obtain a tradeoff between computational efficiency and high realism of 3-D facial animation. The online appearance model is used to track 3-D facial motion from video in the framework of particle filtering, and multiple measurements, i.e., pixel color value of input image and Gabor wavelet coefficient of illumination ratio image, are infused to reduce the influence of lighting and person dependence for the construction of online appearance model. The tri-phone model is used to reduce the computational consumption of visual co-articulation in speech synchronized viseme synthesis without sacrificing any performance. The objective and subjective experiments show that the system is suitable for human-machine interaction.
Aerial video mosaicking using binary feature tracking
NASA Astrophysics Data System (ADS)
Minnehan, Breton; Savakis, Andreas
2015-05-01
Unmanned Aerial Vehicles are becoming an increasingly attractive platform for many applications, as their cost decreases and their capabilities increase. Creating detailed maps from aerial data requires fast and accurate video mosaicking methods. Traditional mosaicking techniques rely on inter-frame homography estimations that are cascaded through the video sequence. Computationally expensive keypoint matching algorithms are often used to determine the correspondence of keypoints between frames. This paper presents a video mosaicking method that uses an object tracking approach for matching keypoints between frames to improve both efficiency and robustness. The proposed tracking method matches local binary descriptors between frames and leverages the spatial locality of the keypoints to simplify the matching process. Our method is robust to cascaded errors by determining the homography between each frame and the ground plane rather than the prior frame. The frame-to-ground homography is calculated based on the relationship of each point's image coordinates and its estimated location on the ground plane. Robustness to moving objects is integrated into the homography estimation step through detecting anomalies in the motion of keypoints and eliminating the influence of outliers. The resulting mosaics are of high accuracy and can be computed in real time.
Neuswanger, Jason R.; Wipfli, Mark S.; Rosenberger, Amanda E.; Hughes, Nicholas F.
2017-01-01
Applications of video in fisheries research range from simple biodiversity surveys to three-dimensional (3D) measurement of complex swimming, schooling, feeding, and territorial behaviors. However, researchers lack a transparently developed, easy-to-use, general purpose tool for 3D video measurement and event logging. Thus, we developed a new measurement system, with freely available, user-friendly software, easily obtained hardware, and flexible underlying mathematical methods capable of high precision and accuracy. The software, VidSync, allows users to efficiently record, organize, and navigate complex 2D or 3D measurements of fish and their physical habitats. Laboratory tests showed submillimetre accuracy in length measurements of 50.8 mm targets at close range, with increasing errors (mostly <1%) at longer range and for longer targets. A field test on juvenile Chinook salmon (Oncorhynchus tshawytscha) feeding behavior in Alaska streams found that individuals within aggregations avoided the immediate proximity of their competitors, out to a distance of 1.0 to 2.9 body lengths. This system makes 3D video measurement a practical tool for laboratory and field studies of aquatic or terrestrial animal behavior and ecology.
NASA Astrophysics Data System (ADS)
Gunay, Omer; Ozsarac, Ismail; Kamisli, Fatih
2017-05-01
Video recording is an essential property of new generation military imaging systems. Playback of the stored video on the same device is also desirable as it provides several operational benefits to end users. Two very important constraints for many military imaging systems, especially for hand-held devices and thermal weapon sights, are power consumption and size. To meet these constraints, it is essential to perform most of the processing applied to the video signal, such as preprocessing, compression, storing, decoding, playback and other system functions on a single programmable chip, such as FPGA, DSP, GPU or ASIC. In this work, H.264/AVC (Advanced Video Coding) compatible video compression, storage, decoding and playback blocks are efficiently designed and implemented on FPGA platforms using FPGA fabric and Altera NIOS II soft processor. Many subblocks that are used in video encoding are also used during video decoding in order to save FPGA resources and power. Computationally complex blocks are designed using FPGA fabric, while blocks such as SD card write/read, H.264 syntax decoding and CAVLC decoding are done using NIOS processor to benefit from software flexibility. In addition, to keep power consumption low, the system was designed to require limited external memory access. The design was tested using 640x480 25 fps thermal camera on CYCLONE V FPGA, which is the ALTERA's lowest power FPGA family, and consumes lower than 40% of CYCLONE V 5CEFA7 FPGA resources on average.
Storey, Bob; Marcellino, Chris; Miller, Melissa; Maclean, Mary; Mostafa, Eman; Howell, Sue; Sakanari, Judy; Wolstenholme, Adrian; Kaplan, Ray
2014-12-01
A major hindrance to evaluating nematode populations for anthelmintic resistance, as well as for screening existing drugs, new compounds, or bioactive plant extracts for anthelmintic properties, is the lack of an efficient, objective, and reproducible in vitro assay that is adaptable to multiple life stages and parasite genera. To address this need we have developed the "Worminator" system, which objectively and quantitatively measures the motility of microscopic stages of parasitic nematodes. The system is built around the computer application "WormAssay", developed at the Center for Discovery and Innovation in Parasitic Diseases at the University of California, San Francisco. WormAssay was designed to assess motility of macroscopic parasites for the purpose of high throughput screening of potential anthelmintic compounds, utilizing high definition video as an input to assess motion of adult stage (macroscopic) parasites (e.g. Brugia malayi). We adapted this assay for use with microscopic parasites by modifying the software to support a full frame analysis mode that applies the motion algorithm to the entire video frame. Thus, the motility of all parasites in a given well are recorded and measured simultaneously. Assays performed on third-stage larvae (L3) of the bovine intestinal nematode Cooperia spp., as well as microfilariae (mf) of the filarioid nematodes B. malayi and Dirofilaria immitis, yielded reproducible dose responses using the macrocyclic lactones ivermectin, doramectin, and moxidectin, as well as the nicotinic agonists, pyrantel, oxantel, morantel, and tribendimidine. This new computer based-assay is simple to use, requires minimal new investment in equipment, is robust across nematode genera and developmental stage, and does not require subjective scoring of motility by an observer. Thus, the "Worminator" provides a relatively low-cost platform for developing genera- and stage-specific assays with high efficiency and reproducibility, low labor input, and yields objective motility data that is not subject to scorer bias.
Ditchburn, Jae-Llane; Marshall, Alison
2017-09-01
The Lancashire Teaching Hospitals NHS Trust in the UK has been providing renal care through video-as-a-service (VAAS) to patients since 2013, with support from the North West NHS Shared Infrastructure Service, a collaborative team that supports information and communication technology use in the UK National Health Service. Renal telemedicine offered remotely to patients on home dialysis supports renal care through the provision of a live high-quality video link directly to unsupported patients undergoing haemodialysis at home. Home haemodialysis is known to provide benefits to patients, particularly in making them more independent. The use of a telemedicine video-link in Lancashire and South Cumbria, UK, further reduces patient dependence on the professional team. The purpose of this paper is to present the perspectives of the renal care team members using the renal telemedicine service to understand the perceived benefits and issues with the service. Ten semi-structured interviews with members of the renal care team (two renal specialists, one matron, two renal nurses, one business manager, one renal technical services manager, two IT technicians and one hardware maintenance technician) were conducted. Thematic analysis was undertaken to analyse the qualitative data. A range of incremental benefits to the renal team members were reported, including more efficient use of staff time, reduced travel, peace of mind and a strong sense of job satisfaction. Healthcare staff believed that remote renal care through video was useful, encouraged concordance and could nurture confidence in patients. Key technological issues and adjustments which would improve the renal telemedicine service were also identified. The impact of renal telemedicine was positive on the renal team members. The use of telemedicine has been demonstrated to make home dialysis delivery more efficient and safe. The learning from staff feedback could inform development of services elsewhere. © 2017 European Dialysis and Transplant Nurses Association/European Renal Care Association.
Video Coaching as an Efficient Teaching Method for Surgical Residents-A Randomized Controlled Trial.
Soucisse, Mikael L; Boulva, Kerianne; Sideris, Lucas; Drolet, Pierre; Morin, Michel; Dubé, Pierre
As surgical training is evolving and operative exposure is decreasing, new, effective, and experiential learning methods are needed to ensure surgical competency and patient safety. Video coaching is an emerging concept in surgery that needs further investigation. In this randomized controlled trial conducted at a single teaching hospital, participating residents were filmed performing a side-to-side intestinal anastomosis on cadaveric dog bowel for baseline assessment. The Surgical Video Coaching (SVC) group then participated in a one-on-one video playback coaching and debriefing session with a surgeon, during which constructive feedback was given. The control group went on with their normal clinical duties without coaching or debriefing. All participants were filmed making a second intestinal anastomosis. This was compared to their first anastomosis using a 7-category-validated technical skill global rating scale, the Objective Structured Assessment of Technical Skills. A single independent surgeon who did not participate in coaching or debriefing to the SVC group reviewed all videos. A satisfaction survey was then sent to the residents in the coaching group. Department of Surgery, HôpitalMaisonneuve-Rosemont, tertiary teaching hospital affiliated to the University of Montreal, Canada. General surgery residents from University of Montreal were recruited to take part in this trial. A total of 28 residents were randomized and completed the study. After intervention, the SVC group (n = 14) significantly increased their Objective Structured Assessment of Technical Skills score (mean of differences 3.36, [1.09-5.63], p = 0.007) when compared to the control group (n = 14) (mean of differences 0.29, p = 0.759). All residents agreed or strongly agreed that video coaching was a time-efficient teaching method. Video coaching is an effective and efficient teaching intervention to improve surgical residents' technical skills. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Fast Appearance Modeling for Automatic Primary Video Object Segmentation.
Yang, Jiong; Price, Brian; Shen, Xiaohui; Lin, Zhe; Yuan, Junsong
2016-02-01
Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the segmentation and fix the segmentation while optimizing the appearance model. However, these approaches may rely on good initialization and can be easily trapped in local optimal. In addition, they are usually time consuming for analyzing videos. To address these limitations, we propose a novel and efficient appearance modeling technique for automatic primary video object segmentation in the Markov random field (MRF) framework. It embeds the appearance constraint as auxiliary nodes and edges in the MRF structure, and can optimize both the segmentation and appearance model parameters simultaneously in one graph cut. The extensive experimental evaluations validate the superiority of the proposed approach over the state-of-the-art methods, in both efficiency and effectiveness.
YouTube™ as a Source of Instructional Videos on Bowel Preparation: a Content Analysis.
Ajumobi, Adewale B; Malakouti, Mazyar; Bullen, Alexander; Ahaneku, Hycienth; Lunsford, Tisha N
2016-12-01
Instructional videos on bowel preparation have been shown to improve bowel preparation scores during colonoscopy. YouTube™ is one of the most frequently visited website on the internet and contains videos on bowel preparation. In an era where patients are increasingly turning to social media for guidance on their health, the content of these videos merits further investigation. We assessed the content of bowel preparation videos available on YouTube™ to determine the proportion of YouTube™ videos on bowel preparation that are high-content videos and the characteristics of these videos. YouTube™ videos were assessed for the following content: (1) definition of bowel preparation, (2) importance of bowel preparation, (3) instructions on home medications, (4) name of bowel cleansing agent (BCA), (5) instructions on when to start taking BCA, (6) instructions on volume and frequency of BCA intake, (7) diet instructions, (8) instructions on fluid intake, (9) adverse events associated with BCA, and (10) rectal effluent. Each content parameter was given 1 point for a total of 10 points. Videos with ≥5 points were considered by our group to be high-content videos. Videos with ≤4 points were considered low-content videos. Forty-nine (59 %) videos were low-content videos while 34 (41 %) were high-content videos. There was no association between number of views, number of comments, thumbs up, thumbs down or engagement score, and videos deemed high-content. Multiple regression analysis revealed bowel preparation videos on YouTube™ with length >4 minutes and non-patient authorship to be associated with high-content videos.
Naval Airborne ESM Systems Analysis
1989-09-01
basically three different kinds of receivers available in a very mature technoiogical state: a.) Crystal Video Receivers (CVR), b.) Instantaneous...filtered out by the narrow bandwidth of the video stage. This is referred to sometimes as "Processing Gain", and it is proportional to the ratio of the...Acceptance Bandwidth (Ba) to the Video Bandwidth (By), where gamma is the integration efficiency. Brf Bn = (3-3) Brf gamma 2 Bv Gamma varies from 0.5
A unified and efficient framework for court-net sports video analysis using 3D camera modeling
NASA Astrophysics Data System (ADS)
Han, Jungong; de With, Peter H. N.
2007-01-01
The extensive amount of video data stored on available media (hard and optical disks) necessitates video content analysis, which is a cornerstone for different user-friendly applications, such as, smart video retrieval and intelligent video summarization. This paper aims at finding a unified and efficient framework for court-net sports video analysis. We concentrate on techniques that are generally applicable for more than one sports type to come to a unified approach. To this end, our framework employs the concept of multi-level analysis, where a novel 3-D camera modeling is utilized to bridge the gap between the object-level and the scene-level analysis. The new 3-D camera modeling is based on collecting features points from two planes, which are perpendicular to each other, so that a true 3-D reference is obtained. Another important contribution is a new tracking algorithm for the objects (i.e. players). The algorithm can track up to four players simultaneously. The complete system contributes to summarization by various forms of information, of which the most important are the moving trajectory and real-speed of each player, as well as 3-D height information of objects and the semantic event segments in a game. We illustrate the performance of the proposed system by evaluating it for a variety of court-net sports videos containing badminton, tennis and volleyball, and we show that the feature detection performance is above 92% and events detection about 90%.
Developing an educational video on lung lobectomy for the general surgery resident.
Hayden, Emily L; Seagull, F Jacob; Reddy, Rishindra M
2015-06-15
The educational resources available to general surgery residents preparing for complex thoracic surgeries vary greatly in content and target audience. We hypothesized that the preparatory resources could be improved in both efficiency of use and targeting. A formal needs analysis was performed to determine residents' knowledge gaps and desired format and/or content of an educational tool while preparing for their first lung resections. The results of the needs assessment then guided the creation of a 20-min video tool. The video was evaluated by a focus group of experts for appropriateness to the target audience, ease of use, and relevance. The needs assessment illustrated that residents feel there is a paucity of appropriate resources available to them while preparing for the lung resection procedure; 82% of respondents felt that easy-to-use and concise resources on the lobectomy procedure were either "not at all" or "somewhat" accessible. Residents reported that video was their preferred format for a learning tool overall and identified a broad spectrum of most challenging procedural aspects. These results were used to guide the creation of a 20-min video tool. A focus group validated the efficacy and appropriateness of the video. Targeted and efficient tools for residents preparing for complex subspecialty procedures are needed and valued. These results clearly encourage further work in the creation of focused educational tools for surgical residents, especially in the format of short video overviews. Copyright © 2015 Elsevier Inc. All rights reserved.
Development of a web-based video management and application processing system
NASA Astrophysics Data System (ADS)
Chan, Shermann S.; Wu, Yi; Li, Qing; Zhuang, Yueting
2001-07-01
How to facilitate efficient video manipulation and access in a web-based environment is becoming a popular trend for video applications. In this paper, we present a web-oriented video management and application processing system, based on our previous work on multimedia database and content-based retrieval. In particular, we extend the VideoMAP architecture with specific web-oriented mechanisms, which include: (1) Concurrency control facilities for the editing of video data among different types of users, such as Video Administrator, Video Producer, Video Editor, and Video Query Client; different users are assigned various priority levels for different operations on the database. (2) Versatile video retrieval mechanism which employs a hybrid approach by integrating a query-based (database) mechanism with content- based retrieval (CBR) functions; its specific language (CAROL/ST with CBR) supports spatio-temporal semantics of video objects, and also offers an improved mechanism to describe visual content of videos by content-based analysis method. (3) Query profiling database which records the `histories' of various clients' query activities; such profiles can be used to provide the default query template when a similar query is encountered by the same kind of users. An experimental prototype system is being developed based on the existing VideoMAP prototype system, using Java and VC++ on the PC platform.
Advanced Video Analysis Needs for Human Performance Evaluation
NASA Technical Reports Server (NTRS)
Campbell, Paul D.
1994-01-01
Evaluators of human task performance in space missions make use of video as a primary source of data. Extraction of relevant human performance information from video is often a labor-intensive process requiring a large amount of time on the part of the evaluator. Based on the experiences of several human performance evaluators, needs were defined for advanced tools which could aid in the analysis of video data from space missions. Such tools should increase the efficiency with which useful information is retrieved from large quantities of raw video. They should also provide the evaluator with new analytical functions which are not present in currently used methods. Video analysis tools based on the needs defined by this study would also have uses in U.S. industry and education. Evaluation of human performance from video data can be a valuable technique in many industrial and institutional settings where humans are involved in operational systems and processes.
Moral-Muñoz, José A; Esteban-Moreno, Bernabé; Arroyo-Morales, Manuel; Cobo, Manuel J; Herrera-Viedma, Enrique
2015-09-01
The objective of this study was to determine the level of agreement between face-to-face hamstring flexibility measurements and free software video analysis in adolescents. Reduced hamstring flexibility is common in adolescents (75% of boys and 35% of girls aged 10). The length of the hamstring muscle has an important role in both the effectiveness and the efficiency of basic human movements, and reduced hamstring flexibility is related to various musculoskeletal conditions. There are various approaches to measuring hamstring flexibility with high reliability; the most commonly used approaches in the scientific literature are the sit-and-reach test, hip joint angle (HJA), and active knee extension. The assessment of hamstring flexibility using video analysis could help with adolescent flexibility follow-up. Fifty-four adolescents from a local school participated in a descriptive study of repeated measures using a crossover design. Active knee extension and HJA were measured with an inclinometer and were simultaneously recorded with a video camera. Each video was downloaded to a computer and subsequently analyzed using Kinovea 0.8.15, a free software application for movement analysis. All outcome measures showed reliability estimates with α > 0.90. The lowest reliability was obtained for HJA (α = 0.91). The preliminary findings support the use of a free software tool for assessing hamstring flexibility, offering health professionals a useful tool for adolescent flexibility follow-up.
Wang, Wei-Hsung; McGlothlin, James D; Smith, Deborah J; Matthews, Kenneth L
2006-02-01
This project incorporates radiation survey training into a real-time video radiation detection system, thus providing a practical perspective for the radiation worker on efficient performance of radiation surveys. Regular surveys to evaluate radiation levels are necessary not only to recognize potential radiological hazards but also to keep the radiation exposure as low as reasonably achievable. By developing and implementing an instructional learning system using a real-time radiation survey training video showing specific categorization of work elements, radiation workers trained with this system demonstrated better radiation survey practice.
None
2017-12-09
Through research, the National Renewable Energy Laboratory (NREL) has developed many strategies and design techniques to ensure both commercial and residential buildings use as little energy as possible and also work well with the surroundings. Here you will find a video that introduces the work of NREL Buildings Research, highlights some of the facilities on the NREL campus, and demonstrates these efficient building strategies. Watch this video to see design highlights of the Science and Technology Facility on the NREL campusâthe first Federal building to be LEED® Platinum certified. Additionally, the video demonstrates the energy-saving features of NRELs Thermal Test Facility.
A content-based news video retrieval system: NVRS
NASA Astrophysics Data System (ADS)
Liu, Huayong; He, Tingting
2009-10-01
This paper focus on TV news programs and design a content-based news video browsing and retrieval system, NVRS, which is convenient for users to fast browsing and retrieving news video by different categories such as political, finance, amusement, etc. Combining audiovisual features and caption text information, the system automatically segments a complete news program into separate news stories. NVRS supports keyword-based news story retrieval, category-based news story browsing and generates key-frame-based video abstract for each story. Experiments show that the method of story segmentation is effective and the retrieval is also efficient.
Adaptive correlation filter-based video stabilization without accumulative global motion estimation
NASA Astrophysics Data System (ADS)
Koh, Eunjin; Lee, Chanyong; Jeong, Dong Gil
2014-12-01
We present a digital video stabilization approach that provides both robustness and efficiency for practical applications. In this approach, we adopt a stabilization model that maintains spatio-temporal information of past input frames efficiently and can track original stabilization position. Because of the stabilization model, the proposed method does not need accumulative global motion estimation and can recover the original position even if there is a failure in interframe motion estimation. It can also intelligently overcome the situation of damaged or interrupted video sequences. Moreover, because it is simple and suitable to parallel scheme, we implement it on a commercial field programmable gate array and a graphics processing unit board with compute unified device architecture in a breeze. Experimental results show that the proposed approach is both fast and robust.
Comparison of H.265/HEVC encoders
NASA Astrophysics Data System (ADS)
Trochimiuk, Maciej
2016-09-01
The H.265/HEVC is the state-of-the-art video compression standard, which allows the bitrate reduction up to 50% compared with its predecessor, H.264/AVC, maintaining equal perceptual video quality. The growth in coding efficiency was achieved by increasing the number of available intra- and inter-frame prediction features and improvements in existing ones, such as entropy encoding and filtering. Nevertheless, to achieve real-time performance of the encoder, simplifications in algorithm are inevitable. Some features and coding modes shall be skipped, to reduce time needed to evaluate modes forwarded to rate-distortion optimisation. Thus, the potential acceleration of the encoding process comes at the expense of coding efficiency. In this paper, a trade-off between video quality and encoding speed of various H.265/HEVC encoders is discussed.
The National Capital Region closed circuit television video interoperability project.
Contestabile, John; Patrone, David; Babin, Steven
2016-01-01
The National Capital Region (NCR) includes many government jurisdictions and agencies using different closed circuit TV (CCTV) cameras and video management software. Because these agencies often must work together to respond to emergencies and events, a means of providing interoperability for CCTV video is critically needed. Video data from different CCTV systems that are not inherently interoperable is represented in the "data layer." An "integration layer" ingests the data layer source video and normalizes the different video formats. It then aggregates and distributes this video to a "presentation layer" where it can be viewed by almost any application used by other agencies and without any proprietary software. A native mobile video viewing application is also developed that uses the presentation layer to provide video to different kinds of smartphones. The NCR includes Washington, DC, and surrounding counties in Maryland and Virginia. The video sharing architecture allows one agency to see another agency's video in their native viewing application without the need to purchase new CCTV software or systems. A native smartphone application was also developed to enable them to share video via mobile devices even when they use different video management systems. A video sharing architecture has been developed for the NCR that creates an interoperable environment for sharing CCTV video in an efficient and cost effective manner. In addition, it provides the desired capability of sharing video via a native mobile application.
Innovative Video Diagnostic Equipment for Material Science
NASA Technical Reports Server (NTRS)
Capuano, G.; Titomanlio, D.; Soellner, W.; Seidel, A.
2012-01-01
Materials science experiments under microgravity increasingly rely on advanced optical systems to determine the physical properties of the samples under investigation. This includes video systems with high spatial and temporal resolution. The acquisition, handling, storage and transmission to ground of the resulting video data are very challenging. Since the available downlink data rate is limited, the capability to compress the video data significantly without compromising the data quality is essential. We report on the development of a Digital Video System (DVS) for EML (Electro Magnetic Levitator) which provides real-time video acquisition, high compression using advanced Wavelet algorithms, storage and transmission of a continuous flow of video with different characteristics in terms of image dimensions and frame rates. The DVS is able to operate with the latest generation of high-performance cameras acquiring high resolution video images up to 4Mpixels@60 fps or high frame rate video images up to about 1000 fps@512x512pixels.
Developing Handheld Video Intervention for Students with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Hughes, Elizabeth M.; Yakubova, Gulnoza
2016-01-01
Video-based intervention (VBI) has strong evidence supporting efficiency in teaching social, communication, functional, behavior, play, and self-help skills and emerging evidence for teaching academic skills to students with autism spectrum disorder (ASD). VBI allows opportunities to electronically provide personalized, consistent, and prerecorded…
A video event trigger for high frame rate, high resolution video technology
NASA Astrophysics Data System (ADS)
Williams, Glenn L.
1991-12-01
When video replaces film the digitized video data accumulates very rapidly, leading to a difficult and costly data storage problem. One solution exists for cases when the video images represent continuously repetitive 'static scenes' containing negligible activity, occasionally interrupted by short events of interest. Minutes or hours of redundant video frames can be ignored, and not stored, until activity begins. A new, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term or short term changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pretrigger and post-trigger storage techniques are then adaptable for archiving the digital stream from only the significant video images.
A video event trigger for high frame rate, high resolution video technology
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
1991-01-01
When video replaces film the digitized video data accumulates very rapidly, leading to a difficult and costly data storage problem. One solution exists for cases when the video images represent continuously repetitive 'static scenes' containing negligible activity, occasionally interrupted by short events of interest. Minutes or hours of redundant video frames can be ignored, and not stored, until activity begins. A new, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term or short term changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pretrigger and post-trigger storage techniques are then adaptable for archiving the digital stream from only the significant video images.
NASA Astrophysics Data System (ADS)
Williams, David J.; Wadsworth, Winthrop; Salvaggio, Carl; Messinger, David W.
2006-08-01
Undiscovered gas leaks, known as fugitive emissions, in chemical plants and refinery operations can impact regional air quality and present a loss of product for industry. Surveying a facility for potential gas leaks can be a daunting task. Industrial leak detection and repair programs can be expensive to administer. An efficient, accurate and cost effective method for detecting and quantifying gas leaks would both save industries money by identifying production losses and improve regional air quality. Specialized thermal video systems have proven effective in rapidly locating gas leaks. These systems, however, do not have the spectral resolution for compound identification. Passive FTIR spectrometers can be used for gas compound identification, but using these systems for facility surveys is problematic due to their small field of view. A hybrid approach has been developed that utilizes the thermal video system to locate gas plumes using real time visualization of the leaks, coupled with the high spectral resolution FTIR spectrometer for compound identification and quantification. The prototype hybrid video/spectrometer system uses a sterling cooled thermal camera, operating in the MWIR (3-5 μm) with an additional notch filter set at around 3.4 μm, which allows for the visualization of gas compounds that absorb in this narrow spectral range, such as alkane hydrocarbons. This camera is positioned alongside of a portable, high speed passive FTIR spectrometer, which has a spectral range of 2 - 25 μm and operates at 4 cm -1 resolution. This system uses a 10 cm telescope foreoptic with an onboard blackbody for calibration. The two units are optically aligned using a turning mirror on the spectrometer's telescope with the video camera's output.
Humanizing Instructional Videos in Physics: When Less Is More
NASA Astrophysics Data System (ADS)
Schroeder, Noah L.; Traxler, Adrienne L.
2017-06-01
Many instructors in science, technology, engineering, and mathematics fields are striving to create active learning environments in their classrooms and in doing so are frequently moving the lecture portion of their course into online video format. In this classroom-based study, we used a two group randomized experimental design to examine the efficacy of an instructional video that incorporates a human hand demonstrating and modeling how to solve frictional inclined plane problems compared to an identical video that did not include the human hand. The results show that the learners who viewed the video without the human hand present performed significantly better on a learning test and experienced a significantly better training efficiency than the learners who viewed the video with the human hand present. Meanwhile, those who learned with the human hand present in the instructional video rated the instructor as being more humanlike and engaging. The results have implications for both theory and practice. Implications for those designing instructional videos are discussed, as well as the limitations of the current study.
Real-time video quality monitoring
NASA Astrophysics Data System (ADS)
Liu, Tao; Narvekar, Niranjan; Wang, Beibei; Ding, Ran; Zou, Dekun; Cash, Glenn; Bhagavathy, Sitaram; Bloom, Jeffrey
2011-12-01
The ITU-T Recommendation G.1070 is a standardized opinion model for video telephony applications that uses video bitrate, frame rate, and packet-loss rate to measure the video quality. However, this model was original designed as an offline quality planning tool. It cannot be directly used for quality monitoring since the above three input parameters are not readily available within a network or at the decoder. And there is a great room for the performance improvement of this quality metric. In this article, we present a real-time video quality monitoring solution based on this Recommendation. We first propose a scheme to efficiently estimate the three parameters from video bitstreams, so that it can be used as a real-time video quality monitoring tool. Furthermore, an enhanced algorithm based on the G.1070 model that provides more accurate quality prediction is proposed. Finally, to use this metric in real-world applications, we present an example emerging application of real-time quality measurement to the management of transmitted videos, especially those delivered to mobile devices.
Modeling the time--varying subjective quality of HTTP video streams with rate adaptations.
Chen, Chao; Choi, Lark Kwon; de Veciana, Gustavo; Caramanis, Constantine; Heath, Robert W; Bovik, Alan C
2014-05-01
Newly developed hypertext transfer protocol (HTTP)-based video streaming technologies enable flexible rate-adaptation under varying channel conditions. Accurately predicting the users' quality of experience (QoE) for rate-adaptive HTTP video streams is thus critical to achieve efficiency. An important aspect of understanding and modeling QoE is predicting the up-to-the-moment subjective quality of a video as it is played, which is difficult due to hysteresis effects and nonlinearities in human behavioral responses. This paper presents a Hammerstein-Wiener model for predicting the time-varying subjective quality (TVSQ) of rate-adaptive videos. To collect data for model parameterization and validation, a database of longer duration videos with time-varying distortions was built and the TVSQs of the videos were measured in a large-scale subjective study. The proposed method is able to reliably predict the TVSQ of rate adaptive videos. Since the Hammerstein-Wiener model has a very simple structure, the proposed method is suitable for online TVSQ prediction in HTTP-based streaming.
Robu, Maria R; Edwards, Philip; Ramalhinho, João; Thompson, Stephen; Davidson, Brian; Hawkes, David; Stoyanov, Danail; Clarkson, Matthew J
2017-07-01
Minimally invasive surgery offers advantages over open surgery due to a shorter recovery time, less pain and trauma for the patient. However, inherent challenges such as lack of tactile feedback and difficulty in controlling bleeding lower the percentage of suitable cases. Augmented reality can show a better visualisation of sub-surface structures and tumour locations by fusing pre-operative CT data with real-time laparoscopic video. Such augmented reality visualisation requires a fast and robust video to CT registration that minimises interruption to the surgical procedure. We propose to use view planning for efficient rigid registration. Given the trocar position, a set of camera positions are sampled and scored based on the corresponding liver surface properties. We implement a simulation framework to validate the proof of concept using a segmented CT model from a human patient. Furthermore, we apply the proposed method on clinical data acquired during a human liver resection. The first experiment motivates the viewpoint scoring strategy and investigates reliable liver regions for accurate registrations in an intuitive visualisation. The second experiment shows wider basins of convergence for higher scoring viewpoints. The third experiment shows that a comparable registration performance can be achieved by at least two merged high scoring views and four low scoring views. Hence, the focus could change from the acquisition of a large liver surface to a small number of distinctive patches, thereby giving a more explicit protocol for surface reconstruction. We discuss the application of the proposed method on clinical data and show initial results. The proposed simulation framework shows promising results to motivate more research into a comprehensive view planning method for efficient registration in laparoscopic liver surgery.
Development of High-speed Visualization System of Hypocenter Data Using CUDA-based GPU computing
NASA Astrophysics Data System (ADS)
Kumagai, T.; Okubo, K.; Uchida, N.; Matsuzawa, T.; Kawada, N.; Takeuchi, N.
2014-12-01
After the Great East Japan Earthquake on March 11, 2011, intelligent visualization of seismic information is becoming important to understand the earthquake phenomena. On the other hand, to date, the quantity of seismic data becomes enormous as a progress of high accuracy observation network; we need to treat many parameters (e.g., positional information, origin time, magnitude, etc.) to efficiently display the seismic information. Therefore, high-speed processing of data and image information is necessary to handle enormous amounts of seismic data. Recently, GPU (Graphic Processing Unit) is used as an acceleration tool for data processing and calculation in various study fields. This movement is called GPGPU (General Purpose computing on GPUs). In the last few years the performance of GPU keeps on improving rapidly. GPU computing gives us the high-performance computing environment at a lower cost than before. Moreover, use of GPU has an advantage of visualization of processed data, because GPU is originally architecture for graphics processing. In the GPU computing, the processed data is always stored in the video memory. Therefore, we can directly write drawing information to the VRAM on the video card by combining CUDA and the graphics API. In this study, we employ CUDA and OpenGL and/or DirectX to realize full-GPU implementation. This method makes it possible to write drawing information to the VRAM on the video card without PCIe bus data transfer: It enables the high-speed processing of seismic data. The present study examines the GPU computing-based high-speed visualization and the feasibility for high-speed visualization system of hypocenter data.
NASA Technical Reports Server (NTRS)
Grubbs, Rodney
2016-01-01
The first live High Definition Television (HDTV) from a spacecraft was in November, 2006, nearly ten years before the 2016 SpaceOps Conference. Much has changed since then. Now, live HDTV from the International Space Station (ISS) is routine. HDTV cameras stream live video views of the Earth from the exterior of the ISS every day on UStream, and HDTV has even flown around the Moon on a Japanese Space Agency spacecraft. A great deal has been learned about the operations applicability of HDTV and high resolution imagery since that first live broadcast. This paper will discuss the current state of real-time and file based HDTV and higher resolution video for space operations. A potential roadmap will be provided for further development and innovations of high-resolution digital motion imagery, including gaps in technology enablers, especially for deep space and unmanned missions. Specific topics to be covered in the paper will include: An update on radiation tolerance and performance of various camera types and sensors and ramifications on the future applicability of these types of cameras for space operations; Practical experience with downlinking very large imagery files with breaks in link coverage; Ramifications of larger camera resolutions like Ultra-High Definition, 6,000 [pixels] and 8,000 [pixels] in space applications; Enabling technologies such as the High Efficiency Video Codec, Bundle Streaming Delay Tolerant Networking, Optical Communications and Bayer Pattern Sensors and other similar innovations; Likely future operations scenarios for deep space missions with extreme latency and intermittent communications links.
The quality of video information on burn first aid available on YouTube.
Butler, Daniel P; Perry, Fiona; Shah, Zameer; Leon-Villapalos, Jorge
2013-08-01
To evaluate the clinical accuracy and delivery of information on thermal burn first aid available on the leading video-streaming website, YouTube. YouTube was searched using four separate search terms. The first 20 videos identified for each search term were included in the study if their primary focus was on thermal burn first aid. Videos were scored by two independent reviewers using a standardised scoring system and the scores totalled to give each video an overall score out of 20. A total of 47 videos were analysed. The average video score was 8.5 out of a possible 20. No videos scored full-marks. A low correlation was found between the score given by the independent reviewers and the number of views the video received per month (Spearman's rank correlation co-efficient=0.03, p=0.86). The current standard of videos covering thermal burn first aid available on YouTube is unsatisfactory. In addition to this, viewers do not appear to be drawn to videos of higher quality. Organisations involved in managing burns and providing first aid care should be encouraged to produce clear, structured videos that can be made available on leading video streaming websites. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.
Packet-aware transport for video distribution [Invited
NASA Astrophysics Data System (ADS)
Aguirre-Torres, Luis; Rosenfeld, Gady; Bruckman, Leon; O'Connor, Mannix
2006-05-01
We describe a solution based on resilient packet rings (RPR) for the distribution of broadcast video and video-on-demand (VoD) content over a packet-aware transport network. The proposed solution is based on our experience in the design and deployment of nationwide Triple Play networks and relies on technologies such as RPR, multiprotocol label switching (MPLS), and virtual private LAN service (VPLS) to provide the most efficient solution in terms of utilization, scalability, and availability.
NASA Astrophysics Data System (ADS)
El-Shafai, W.; El-Rabaie, S.; El-Halawany, M.; Abd El-Samie, F. E.
2018-03-01
Three-Dimensional Video-plus-Depth (3DV + D) comprises diverse video streams captured by different cameras around an object. Therefore, there is a great need to fulfill efficient compression to transmit and store the 3DV + D content in compressed form to attain future resource bounds whilst preserving a decisive reception quality. Also, the security of the transmitted 3DV + D is a critical issue for protecting its copyright content. This paper proposes an efficient hybrid watermarking scheme for securing the 3DV + D transmission, which is the homomorphic transform based Singular Value Decomposition (SVD) in Discrete Wavelet Transform (DWT) domain. The objective of the proposed watermarking scheme is to increase the immunity of the watermarked 3DV + D to attacks and achieve adequate perceptual quality. Moreover, the proposed watermarking scheme reduces the transmission-bandwidth requirements for transmitting the color-plus-depth 3DV over limited-bandwidth wireless networks through embedding the depth frames into the color frames of the transmitted 3DV + D. Thus, it saves the transmission bit rate and subsequently it enhances the channel bandwidth-efficiency. The performance of the proposed watermarking scheme is compared with those of the state-of-the-art hybrid watermarking schemes. The comparisons depend on both the subjective visual results and the objective results; the Peak Signal-to-Noise Ratio (PSNR) of the watermarked frames and the Normalized Correlation (NC) of the extracted watermark frames. Extensive simulation results on standard 3DV + D sequences have been conducted in the presence of attacks. The obtained results confirm that the proposed hybrid watermarking scheme is robust in the presence of attacks. It achieves not only very good perceptual quality with appreciated PSNR values and saving in the transmission bit rate, but also high correlation coefficient values in the presence of attacks compared to the existing hybrid watermarking schemes.
TWT design requirements for 30/20 GHz digital communications' satellite
NASA Technical Reports Server (NTRS)
Stankiewicz, N.; Anzic, G.
1979-01-01
The rapid growth of communication traffic (voice, data, and video) requires the development of additional frequency bands before the 1990's. The frequencies currently in use for satellite communications at 6/4 GHz are crowded and demands for 14/12 GHz systems are increasing. Projections are that these bands will be filled to capacity by the late 1980's. The next higher frequency band allocated for satellite communications is at 30/20 GHz. For interrelated reasons of efficiency, power level, and system reliability criteria, a candidate for the downlink amplifier in a 30/20 GHz communications' satellite is a dual mode traveling wave tube (TWT) equipped with a highly efficient depressed collector. A summary is given of the analyses which determine the TWT design requirements. The overall efficiency of such a tube is then inferred from a parametric study and from experimental data on multistaged depressed collectors. The expected TWT efficiency at 4 dB below output saturation is 24 percent in the high mode and 22 percent in the low mode.
2D-pattern matching image and video compression: theory, algorithms, and experiments.
Alzina, Marc; Szpankowski, Wojciech; Grama, Ananth
2002-01-01
In this paper, we propose a lossy data compression framework based on an approximate two-dimensional (2D) pattern matching (2D-PMC) extension of the Lempel-Ziv (1977, 1978) lossless scheme. This framework forms the basis upon which higher level schemes relying on differential coding, frequency domain techniques, prediction, and other methods can be built. We apply our pattern matching framework to image and video compression and report on theoretical and experimental results. Theoretically, we show that the fixed database model used for video compression leads to suboptimal but computationally efficient performance. The compression ratio of this model is shown to tend to the generalized entropy. For image compression, we use a growing database model for which we provide an approximate analysis. The implementation of 2D-PMC is a challenging problem from the algorithmic point of view. We use a range of techniques and data structures such as k-d trees, generalized run length coding, adaptive arithmetic coding, and variable and adaptive maximum distortion level to achieve good compression ratios at high compression speeds. We demonstrate bit rates in the range of 0.25-0.5 bpp for high-quality images and data rates in the range of 0.15-0.5 Mbps for a baseline video compression scheme that does not use any prediction or interpolation. We also demonstrate that this asymmetric compression scheme is capable of extremely fast decompression making it particularly suitable for networked multimedia applications.
Event detection for car park entries by video-surveillance
NASA Astrophysics Data System (ADS)
Coquin, Didier; Tailland, Johan; Cintract, Michel
2007-10-01
Intelligent surveillance has become an important research issue due to the high cost and low efficiency of human supervisors, and machine intelligence is required to provide a solution for automated event detection. In this paper we describe a real-time system that has been used for detecting car park entries, using an adaptive background learning algorithm and two indicators representing activity and identity to overcome the difficulty of tracking objects.
ENERGY STAR Certified Audio Video
Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Audio Video Equipment that are effective as of May 1, 2013. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=audio_dvd.pr_crit_audio_dvd
Increasing Student Engagement through Paired Technologies
ERIC Educational Resources Information Center
Basko, Lynn; Hartman, Jillian
2017-01-01
This article highlights efficient ways to combine tech tools, such as Remind and video conferencing, to increase student engagement and faculty/student communication. Using Remind is a great way to provide information to students outside of LoudCloud, and video conferencing is a tool for having synchronous meetings and conferences with students.…
Comparing Pictures and Videos for Teaching Action Labels to Children with Communication Delays
ERIC Educational Resources Information Center
Schebell, Shannon; Shepley, Collin; Mataras, Theologia; Wunderlich, Kara
2018-01-01
Children with communication delays often display difficulties labeling stimuli in their environment, particularly related to actions. Research supports direct instruction with video and picture stimuli for increasing children's action labeling repertoires; however, no studies have compared which type of stimuli results in more efficient,…
New Media Resistance: Barriers to Implementation of Computer Video Games in the Classroom
ERIC Educational Resources Information Center
Rice, John W.
2007-01-01
Computer video games are an emerging instructional medium offering strong degrees of cognitive efficiencies for experiential learning, team building, and greater understanding of abstract concepts. As with other new media adopted for use by instructional technologists for pedagogical purposes, barriers to classroom implementation have manifested…
Kapoula, Zoï; Morize, Aurélien; Daniel, François; Jonqua, Fabienne; Orssaud, Christophe; Brémond-Gignac, Dominique
2016-01-01
Purpose We performed video-oculography to evaluate vergence eye movement abnormalities in students diagnosed clinically with vergence disorders. We tested the efficiency of a novel rehabilitation method and evaluated its benefits with video-oculography cross-correlated with clinical tests and symptomatology. Methods A total of 19 students (20–27 years old) underwent ophthalmologic, orthoptic examination, and a vergence test coupled with video-oculography. Eight patients were diagnosed with vergence disorders with a high symptomatology score (CISS) and performed a 5-week session of vergence rehabilitation. Vergence and rehabilitation tasks were performed with a trapezoid surface of light emitting diodes (LEDs) and adjacent buzzers (US 8851669). We used a novel Vergence double-step (Vd-s) protocol: the target stepped to a second position before the vergence movement completion. Afterward the vergence test was repeated 1 week and 1 month later. Results Abnormally increased intertrial variability was observed for many vergence parameters (gain, duration, and speed) for the subjects with vergence disorders. High CISS scores were correlated with variability and increased latency. After the Vd-s, variability of all parameters dropped to normal or better levels. Moreover, the convergence and divergence latency diminished significantly to levels better than normal; benefits were maintained 1 month after completion of Vd-s. CISS scores dropped to normal level, which was maintained up to 1 year. Conclusions and Translational Relevance: Intertrial variability is the major marker of vergence disorders. The Vd-s research-based method leads to normalization of vergence properties and lasting removal of symptoms. The efficiency of the method is due to the spatiotemporal parameters of repetitive trials that stimulate neural plasticity. PMID:26981330
Luegmair, Georg; Mehta, Daryush D.; Kobler, James B.; Döllinger, Michael
2015-01-01
Vocal fold kinematics and its interaction with aerodynamic characteristics play a primary role in acoustic sound production of the human voice. Investigating the temporal details of these kinematics using high-speed videoendoscopic imaging techniques has proven challenging in part due to the limitations of quantifying complex vocal fold vibratory behavior using only two spatial dimensions. Thus, we propose an optical method of reconstructing the superior vocal fold surface in three spatial dimensions using a high-speed video camera and laser projection system. Using stereo-triangulation principles, we extend the camera-laser projector method and present an efficient image processing workflow to generate the three-dimensional vocal fold surfaces during phonation captured at 4000 frames per second. Initial results are provided for airflow-driven vibration of an ex vivo vocal fold model in which at least 75% of visible laser points contributed to the reconstructed surface. The method captures the vertical motion of the vocal folds at a high accuracy to allow for the computation of three-dimensional mucosal wave features such as vibratory amplitude, velocity, and asymmetry. PMID:26087485
VLSI-based video event triggering for image data compression
NASA Astrophysics Data System (ADS)
Williams, Glenn L.
1994-02-01
Long-duration, on-orbit microgravity experiments require a combination of high resolution and high frame rate video data acquisition. The digitized high-rate video stream presents a difficult data storage problem. Data produced at rates of several hundred million bytes per second may require a total mission video data storage requirement exceeding one terabyte. A NASA-designed, VLSI-based, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term (DC-like) or short term (AC-like) changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pre-trigger and post-trigger storage techniques are then adaptable to archiving only the significant video images.
Data compression techniques applied to high resolution high frame rate video technology
NASA Technical Reports Server (NTRS)
Hartz, William G.; Alexovich, Robert E.; Neustadter, Marc S.
1989-01-01
An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended.
VLSI-based Video Event Triggering for Image Data Compression
NASA Technical Reports Server (NTRS)
Williams, Glenn L.
1994-01-01
Long-duration, on-orbit microgravity experiments require a combination of high resolution and high frame rate video data acquisition. The digitized high-rate video stream presents a difficult data storage problem. Data produced at rates of several hundred million bytes per second may require a total mission video data storage requirement exceeding one terabyte. A NASA-designed, VLSI-based, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term (DC-like) or short term (AC-like) changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pre-trigger and post-trigger storage techniques are then adaptable to archiving only the significant video images.
Bandwidth reduction for video-on-demand broadcasting using secondary content insertion
NASA Astrophysics Data System (ADS)
Golynski, Alexander; Lopez-Ortiz, Alejandro; Poirier, Guillaume; Quimper, Claude-Guy
2005-01-01
An optimal broadcasting scheme under the presence of secondary content (i.e. advertisements) is proposed. The proposed scheme works both for movies encoded in a Constant Bit Rate (CBR) or a Variable Bit Rate (VBR) format. It is shown experimentally that secondary content in movies can make Video-on-Demand (VoD) broadcasting systems more efficient. An efficient algorithm is given to compute the optimal broadcasting schedule with secondary content, which in particular significantly improves over the best previously known algorithm for computing the optimal broadcasting schedule without secondary content.
Use of static picture prompts versus video modeling during simulation instruction.
Alberto, Paul A; Cihak, David F; Gama, Robert I
2005-01-01
The purpose of this study was to compare the effectiveness and efficiency of static picture prompts and video modeling as classroom simulation strategies in combination with in vivo community instruction. Students with moderate intellectual disabilities were instructed in the tasks of withdrawing money from an ATM and purchasing items using a debit card. Both simulation strategies were effective and efficient at teaching the skills. The two simulation strategies were not functionally different in terms of number of trials to acquisition, number of errors, and number of instructional sessions to criterion.
Architecture design of motion estimation for ITU-T H.263
NASA Astrophysics Data System (ADS)
Ku, Chung-Wei; Lin, Gong-Sheng; Chen, Liang-Gee; Lee, Yung-Ping
1997-01-01
Digitalized video and audio system has become the trend of the progress in multimedia, because it provides great performance in quality and feasibility of processing. However, as the huge amount of information is needed while the bandwidth is limitted, data compression plays an important role in the system. Say, for a 176 x 144 monochromic sequence with 10 frames/sec frame rate, the bandwidth is about 2Mbps. This wastes much channel resource and limits the applications. MPEG (moving picttre ezpert groip) standardizes the video codec scheme, and it performs high compression ratio while providing good quality. MPEG-i is used for the frame size about 352 x 240 and 30 frames per second, and MPEG-2 provides scalibility and can be applied on scenes with higher definition, say HDTV (high definition television). On the other hand, some applications concerns the very low bit-rate, such as videophone and video-conferencing. Because the channel bandwidth is much limitted in telephone network, a very high compression ratio must be required. ITU-T announced the H.263 video coding standards to meet the above requirements.8 According to the simulation results of TMN-5,22 it outperforms 11.263 with little overhead of complexity. Since wireless communication is the trend in the near future, low power design of the video codec is an important issue for portable visual telephone. Motion estimation is the most computation consuming parts in the whole video codec. About 60% of the computation is spent on this parts for the encoder. Several architectures were proposed for efficient processing of block matching algorithms. In this paper, in order to meet the requirements of 11.263 and the expectation of low power consumption, a modified sandwich architecture in21 is proposed. Based on the parallel processing philosophy, low power is expected and the generation of either one motion vector or four motion vectors with half-pixel accuracy is achieved concurrently. In addition, we will present our solution how to solve the other addition modes in 11.263 with the proposed architecture.
Moore, Sarah J; Blair, Elizabeth A; Steeb, David R; Reed, Brent N; Hull, J Heyward; Rodgers, Jo Ellen
2015-06-01
Discharge anticoagulation counseling is important for ensuring patient comprehension and optimizing clinical outcomes. As pharmacy resources become increasingly limited, the impact of informational videos on the counseling process becomes more relevant. To evaluate differences in pharmacist time spent counseling and patient comprehension (measured by the Oral Anticoagulation Knowledge [OAK] test) between informational videos and traditional face-to-face (oral) counseling. This prospective, open, parallel-group study at an academic medical center randomized 40 individuals-17 warfarin-naïve ("New Start") and 23 with prior warfarin use ("Restart")-to receive warfarin discharge education by video or face-to-face counseling. "Teach-back" questions were used in both groups. Although overall pharmacist time was reduced in the video counseling group (P < 0.001), an interaction between prior warfarin use and counseling method (P = 0.012) suggests the difference between counseling methods was smaller in New Start participants. Following adjustment, mean total time was reduced 8.71 (95% CI = 5.15-12.26) minutes (adjusted P < 0.001) in Restart participants and 2.31 (-2.19 to 6.81) minutes (adjusted P = 0.472) in New Start participants receiving video counseling. Postcounseling OAK test scores did not differ. Age, gender, socioeconomic status, and years of education were not predictive of total time or OAK test score. Use of informational videos coupled with teach-back questions significantly reduced pharmacist time spent on anticoagulation counseling without compromising short-term patient comprehension, primarily in patients with prior warfarin use. Study results demonstrate that video technology provides an efficient method of anticoagulation counseling while achieving similar comprehension. © The Author(s) 2015.
Telesign: a videophone system for sign language distant communication
NASA Astrophysics Data System (ADS)
Mozelle, Gerard; Preteux, Francoise J.; Viallet, Jean-Emmanuel
1998-09-01
This paper presents a low bit rate videophone system for deaf people communicating by means of sign language. Classic video conferencing systems have focused on head and shoulders sequences which are not well-suited for sign language video transmission since hearing impaired people also use their hands and arms to communicate. To address the above-mentioned functionality, we have developed a two-step content-based video coding system based on: (1) A segmentation step. Four or five video objects (VO) are extracted using a cooperative approach between color-based and morphological segmentation. (2) VO coding are achieved by using a standardized MPEG-4 video toolbox. Results of encoded sign language video sequences, presented for three target bit rates (32 kbits/s, 48 kbits/s and 64 kbits/s), demonstrate the efficiency of the approach presented in this paper.
Video game-based coordinative training improves ataxia in children with degenerative ataxia.
Ilg, Winfried; Schatton, Cornelia; Schicks, Julia; Giese, Martin A; Schöls, Ludger; Synofzik, Matthis
2012-11-13
Degenerative ataxias in children present a rare condition where effective treatments are lacking. Intensive coordinative training based on physiotherapeutic exercises improves degenerative ataxia in adults, but such exercises have drawbacks for children, often including a lack of motivation for high-frequent physiotherapy. Recently developed whole-body controlled video game technology might present a novel treatment strategy for highly interactive and motivational coordinative training for children with degenerative ataxias. We examined the effectiveness of an 8-week coordinative training for 10 children with progressive spinocerebellar ataxia. Training was based on 3 Microsoft Xbox Kinect video games particularly suitable to exercise whole-body coordination and dynamic balance. Training was started with a laboratory-based 2-week training phase and followed by 6 weeks training in children's home environment. Rater-blinded assessments were performed 2 weeks before laboratory-based training, immediately prior to and after the laboratory-based training period, as well as after home training. These assessments allowed for an intraindividual control design, where performance changes with and without training were compared. Ataxia symptoms were significantly reduced (decrease in Scale for the Assessment and Rating of Ataxia score, p = 0.0078) and balance capacities improved (dynamic gait index, p = 0.04) after intervention. Quantitative movement analysis revealed improvements in gait (lateral sway: p = 0.01; step length variability: p = 0.01) and in goal-directed leg placement (p = 0.03). Despite progressive cerebellar degeneration, children are able to improve motor performance by intensive coordination training. Directed training of whole-body controlled video games might present a highly motivational, cost-efficient, and home-based rehabilitation strategy to train dynamic balance and interaction with dynamic environments in a large variety of young-onset neurologic conditions. This study provides Class III evidence that directed training with Xbox Kinect video games can improve several signs of ataxia in adolescents with progressive ataxia as measured by SARA score, Dynamic Gait Index, and Activity-specific Balance Confidence Scale at 8 weeks of training.
NASA Astrophysics Data System (ADS)
Lazar, Aurel A.; White, John S.
1987-07-01
Theoretical analysis of integrated local area network model of MAGNET, an integrated network testbed developed at Columbia University, shows that the bandwidth freed up during video and voice calls during periods of little movement in the images and periods of silence in the speech signals could be utilized efficiently for graphics and data transmission. Based on these investigations, an architecture supporting adaptive protocols that are dynamicaly controlled by the requirements of a fluctuating load and changing user environment has been advanced. To further analyze the behavior of the network, a real-time packetized video system has been implemented. This system is embedded in the real-time multimedia workstation EDDY, which integrates video, voice, and data traffic flows. Protocols supporting variable-bandwidth, fixed-quality packetized video transport are described in detail.
NASA Astrophysics Data System (ADS)
Lazar, Aurel A.; White, John S.
1986-11-01
Theoretical analysis of an ILAN model of MAGNET, an integrated network testbed developed at Columbia University, shows that the bandwidth freed up by video and voice calls during periods of little movement in the images and silence periods in the speech signals could be utilized efficiently for graphics and data transmission. Based on these investigations, an architecture supporting adaptive protocols that are dynamically controlled by the requirements of a fluctuating load and changing user environment has been advanced. To further analyze the behavior of the network, a real-time packetized video system has been implemented. This system is embedded in the real time multimedia workstation EDDY that integrates video, voice and data traffic flows. Protocols supporting variable bandwidth, constant quality packetized video transport are descibed in detail.
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.; Caimi, Frank M.
2001-12-01
A wide variety of digital image compression transforms developed for still imaging and broadcast video transmission are unsuitable for Internet video applications due to insufficient compression ratio, poor reconstruction fidelity, or excessive computational requirements. Examples include hierarchical transforms that require all, or large portion of, a source image to reside in memory at one time, transforms that induce significant locking effect at operationally salient compression ratios, and algorithms that require large amounts of floating-point computation. The latter constraint holds especially for video compression by small mobile imaging devices for transmission to, and compression on, platforms such as palmtop computers or personal digital assistants (PDAs). As Internet video requirements for frame rate and resolution increase to produce more detailed, less discontinuous motion sequences, a new class of compression transforms will be needed, especially for small memory models and displays such as those found on PDAs. In this, the third series of papers, we discuss the EBLAST compression transform and its application to Internet communication. Leading transforms for compression of Internet video and still imagery are reviewed and analyzed, including GIF, JPEG, AWIC (wavelet-based), wavelet packets, and SPIHT, whose performance is compared with EBLAST. Performance analysis criteria include time and space complexity and quality of the decompressed image. The latter is determined by rate-distortion data obtained from a database of realistic test images. Discussion also includes issues such as robustness of the compressed format to channel noise. EBLAST has been shown to perform superiorly to JPEG and, unlike current wavelet compression transforms, supports fast implementation on embedded processors with small memory models.
ACE: Automatic Centroid Extractor for real time target tracking
NASA Technical Reports Server (NTRS)
Cameron, K.; Whitaker, S.; Canaris, J.
1990-01-01
A high performance video image processor has been implemented which is capable of grouping contiguous pixels from a raster scan image into groups and then calculating centroid information for each object in a frame. The algorithm employed to group pixels is very efficient and is guaranteed to work properly for all convex shapes as well as most concave shapes. Processing speeds are adequate for real time processing of video images having a pixel rate of up to 20 million pixels per second. Pixels may be up to 8 bits wide. The processor is designed to interface directly to a transputer serial link communications channel with no additional hardware. The full custom VLSI processor was implemented in a 1.6 mu m CMOS process and measures 7200 mu m on a side.
Ho, B T; Tsai, M J; Wei, J; Ma, M; Saipetch, P
1996-01-01
A new method of video compression for angiographic images has been developed to achieve high compression ratio (~20:1) while eliminating block artifacts which leads to loss of diagnostic accuracy. This method adopts motion picture experts group's (MPEGs) motion compensated prediction to takes advantage of frame to frame correlation. However, in contrast to MPEG, the error images arising from mismatches in the motion estimation are encoded by discrete wavelet transform (DWT) rather than block discrete cosine transform (DCT). Furthermore, the authors developed a classification scheme which label each block in an image as intra, error, or background type and encode it accordingly. This hybrid coding can significantly improve the compression efficiency in certain eases. This method can be generalized for any dynamic image sequences applications sensitive to block artifacts.
An improved real time superresolution FPGA system
NASA Astrophysics Data System (ADS)
Lakshmi Narasimha, Pramod; Mudigoudar, Basavaraj; Yue, Zhanfeng; Topiwala, Pankaj
2009-05-01
In numerous computer vision applications, enhancing the quality and resolution of captured video can be critical. Acquired video is often grainy and low quality due to motion, transmission bottlenecks, etc. Postprocessing can enhance it. Superresolution greatly decreases camera jitter to deliver a smooth, stabilized, high quality video. In this paper, we extend previous work on a real-time superresolution application implemented in ASIC/FPGA hardware. A gradient based technique is used to register the frames at the sub-pixel level. Once we get the high resolution grid, we use an improved regularization technique in which the image is iteratively modified by applying back-projection to get a sharp and undistorted image. The algorithm was first tested in software and migrated to hardware, to achieve 320x240 -> 1280x960, about 30 fps, a stunning superresolution by 16X in total pixels. Various input parameters, such as size of input image, enlarging factor and the number of nearest neighbors, can be tuned conveniently by the user. We use a maximum word size of 32 bits to implement the algorithm in Matlab Simulink as well as in FPGA hardware, which gives us a fine balance between the number of bits and performance. The proposed system is robust and highly efficient. We have shown the performance improvement of the hardware superresolution over the software version (C code).
Toy, Dustin L.; Roche, Erin; Dovichin, Colin M.
2017-01-01
Many bird species of conservation concern have behavioral or morphological traits that make it difficult for researchers to determine if the birds have been uniquely marked. Those traits can also increase the difficulty for researchers to decipher those markers. As a result, it is a priority for field biologists to develop time- and cost-efficient methods to resight uniquely marked individuals, especially when efforts are spread across multiple States and study areas. The Interior Least Tern (Sternula antillarum athalassos) is one such difficult-to-resight species; its tendency to mob perceived threats, such as observing researchers, makes resighting marked individuals difficult without physical recapture. During 2015, uniquely marked adult Interior Least Terns were resighted and identified by small, inexpensive, high-definition portable video cameras deployed for 29-min periods adjacent to nests. Interior Least Tern individuals were uniquely identified 84% (n = 277) of the time. This method also provided the ability to link individually marked adults to a specific nest, which can aid in generational studies and understanding heritability for difficult-to-resight species. Mark-recapture studies on such species may be prone to sparse encounter data that can result in imprecise or biased demographic estimates and ultimately flawed inferences. High-definition video cameras may prove to be a robust method for generating reliable demographic estimates.
Videos for Science Communication and Nature Interpretation: The TIB|AV-Portal as Resource.
NASA Astrophysics Data System (ADS)
Marín Arraiza, Paloma; Plank, Margret; Löwe, Peter
2016-04-01
Scientific audiovisual media such as videos of research, interactive displays or computer animations has become an important part of scientific communication and education. Dynamic phenomena can be described better by audiovisual media than by words and pictures. For this reason, scientific videos help us to understand and discuss environmental phenomena more efficiently. Moreover, the creation of scientific videos is easier than ever, thanks to mobile devices and open source editing software. Video-clips, webinars or even the interactive part of a PICO are formats of scientific audiovisual media used in the Geosciences. This type of media translates the location-referenced Science Communication such as environmental interpretation into computed-based Science Communication. A new way of Science Communication is video abstracting. A video abstract is a three- to five-minute video statement that provides background information about a research paper. It also gives authors the opportunity to present their research activities to a wider audience. Since this kind of media have become an important part of scientific communication there is a need for reliable infrastructures which are capable of managing the digital assets researchers generate. Using the reference of the usecase of video abstracts this paper gives an overview over the activities by the German National Library of Science and Technology (TIB) regarding publishing and linking audiovisual media in a scientifically sound way. The German National Library of Science and Technology (TIB) in cooperation with the Hasso Plattner Institute (HPI) developed a web-based portal (av.tib.eu) that optimises access to scientific videos in the fields of science and technology. Videos from the realms of science and technology can easily be uploaded onto the TIB|AV Portal. Within a short period of time the videos are assigned a digital object identifier (DOI). This enables them to be referenced, cited, and linked (e.g. to the relevant article or further supplement materials). By using media fragment identifiers not only the whole video can be cited, but also individual parts of it. Doing so, users are also likely to find high-quality related content (for instance, a video abstract and the corresponding article or an expedition documentary and its field notebook). Based on automatic analysis of speech, images and texts within the videos a large amount of metadata associated with the segments of the video is automatically generated. These metadata enhance the searchability of the video and make it easier to retrieve and interlink meaningful parts of the video. This new and reliable library-driven infrastructure allow all different types of data be discoverable, accessible, citable, freely reusable, and interlinked. Therefore, it simplifies Science Communication
Anxiety, anticipation and contextual information: A test of attentional control theory.
Cocks, Adam J; Jackson, Robin C; Bishop, Daniel T; Williams, A Mark
2016-09-01
We tested the assumptions of Attentional Control Theory (ACT) by examining the impact of anxiety on anticipation using a dynamic, time-constrained task. Moreover, we examined the involvement of high- and low-level cognitive processes in anticipation and how their importance may interact with anxiety. Skilled and less-skilled tennis players anticipated the shots of opponents under low- and high-anxiety conditions. Participants viewed three types of video stimuli, each depicting different levels of contextual information. Performance effectiveness (response accuracy) and processing efficiency (response accuracy divided by corresponding mental effort) were measured. Skilled players recorded higher levels of response accuracy and processing efficiency compared to less-skilled counterparts. Processing efficiency significantly decreased under high- compared to low-anxiety conditions. No difference in response accuracy was observed. When reviewing directional errors, anxiety was most detrimental to performance in the condition conveying only contextual information, suggesting that anxiety may have a greater impact on high-level (top-down) cognitive processes, potentially due to a shift in attentional control. Our findings provide partial support for ACT; anxiety elicited greater decrements in processing efficiency than performance effectiveness, possibly due to predominance of the stimulus-driven attentional system.
iBiology: communicating the process of science
Goodwin, Sarah S.
2014-01-01
The Internet hosts an abundance of science video resources aimed at communicating scientific knowledge, including webinars, massive open online courses, and TED talks. Although these videos are efficient at disseminating information for diverse types of users, they often do not demonstrate the process of doing science, the excitement of scientific discovery, or how new scientific knowledge is developed. iBiology (www.ibiology.org), a project that creates open-access science videos about biology research and science-related topics, seeks to fill this need by producing videos by science leaders that make their ideas, stories, and experiences available to anyone with an Internet connection. PMID:25080124
An openstack-based flexible video transcoding framework in live
NASA Astrophysics Data System (ADS)
Shi, Qisen; Song, Jianxin
2017-08-01
With the rapid development of mobile live business, transcoding HD video is often a challenge for mobile devices due to their limited processing capability and bandwidth-constrained network connection. For live service providers, it's wasteful for resources to delay lots of transcoding server because some of them are free to work sometimes. To deal with this issue, this paper proposed an Openstack-based flexible transcoding framework to achieve real-time video adaption for mobile device and make computing resources used efficiently. To this end, we introduced a special method of video stream splitting and VMs resource scheduling based on access pressure prediction,which is forecasted by an AR model.
Video auto stitching in multicamera surveillance system
NASA Astrophysics Data System (ADS)
He, Bin; Zhao, Gang; Liu, Qifang; Li, Yangyang
2012-01-01
This paper concerns the problem of video stitching automatically in a multi-camera surveillance system. Previous approaches have used multiple calibrated cameras for video mosaic in large scale monitoring application. In this work, we formulate video stitching as a multi-image registration and blending problem, and not all cameras are needed to be calibrated except a few selected master cameras. SURF is used to find matched pairs of image key points from different cameras, and then camera pose is estimated and refined. Homography matrix is employed to calculate overlapping pixels and finally implement boundary resample algorithm to blend images. The result of simulation demonstrates the efficiency of our method.
Video auto stitching in multicamera surveillance system
NASA Astrophysics Data System (ADS)
He, Bin; Zhao, Gang; Liu, Qifang; Li, Yangyang
2011-12-01
This paper concerns the problem of video stitching automatically in a multi-camera surveillance system. Previous approaches have used multiple calibrated cameras for video mosaic in large scale monitoring application. In this work, we formulate video stitching as a multi-image registration and blending problem, and not all cameras are needed to be calibrated except a few selected master cameras. SURF is used to find matched pairs of image key points from different cameras, and then camera pose is estimated and refined. Homography matrix is employed to calculate overlapping pixels and finally implement boundary resample algorithm to blend images. The result of simulation demonstrates the efficiency of our method.
Macias, Elsa; Lloret, Jaime; Suarez, Alvaro; Garcia, Miguel
2012-01-01
Current mobile phones come with several sensors and powerful video cameras. These video cameras can be used to capture good quality scenes, which can be complemented with the information gathered by the sensors also embedded in the phones. For example, the surroundings of a beach recorded by the camera of the mobile phone, jointly with the temperature of the site can let users know via the Internet if the weather is nice enough to swim. In this paper, we present a system that tags the video frames of the video recorded from mobile phones with the data collected by the embedded sensors. The tagged video is uploaded to a video server, which is placed on the Internet and is accessible by any user. The proposed system uses a semantic approach with the stored information in order to make easy and efficient video searches. Our experimental results show that it is possible to tag video frames in real time and send the tagged video to the server with very low packet delay variations. As far as we know there is not any other application developed as the one presented in this paper. PMID:22438753
Macias, Elsa; Lloret, Jaime; Suarez, Alvaro; Garcia, Miguel
2012-01-01
Current mobile phones come with several sensors and powerful video cameras. These video cameras can be used to capture good quality scenes, which can be complemented with the information gathered by the sensors also embedded in the phones. For example, the surroundings of a beach recorded by the camera of the mobile phone, jointly with the temperature of the site can let users know via the Internet if the weather is nice enough to swim. In this paper, we present a system that tags the video frames of the video recorded from mobile phones with the data collected by the embedded sensors. The tagged video is uploaded to a video server, which is placed on the Internet and is accessible by any user. The proposed system uses a semantic approach with the stored information in order to make easy and efficient video searches. Our experimental results show that it is possible to tag video frames in real time and send the tagged video to the server with very low packet delay variations. As far as we know there is not any other application developed as the one presented in this paper.
Novel modes and adaptive block scanning order for intra prediction in AV1
NASA Astrophysics Data System (ADS)
Hadar, Ofer; Shleifer, Ariel; Mukherjee, Debargha; Joshi, Urvang; Mazar, Itai; Yuzvinsky, Michael; Tavor, Nitzan; Itzhak, Nati; Birman, Raz
2017-09-01
The demand for streaming video content is on the rise and growing exponentially. Networks bandwidth is very costly and therefore there is a constant effort to improve video compression rates and enable the sending of reduced data volumes while retaining quality of experience (QoE). One basic feature that utilizes the spatial correlation of pixels for video compression is Intra-Prediction, which determines the codec's compression efficiency. Intra prediction enables significant reduction of the Intra-Frame (I frame) size and, therefore, contributes to efficient exploitation of bandwidth. In this presentation, we propose new Intra-Prediction algorithms that improve the AV1 prediction model and provide better compression ratios. Two (2) types of methods are considered: )1( New scanning order method that maximizes spatial correlation in order to reduce prediction error; and )2( New Intra-Prediction modes implementation in AVI. Modern video coding standards, including AVI codec, utilize fixed scan orders in processing blocks during intra coding. The fixed scan orders typically result in residual blocks with high prediction error mainly in blocks with edges. This means that the fixed scan orders cannot fully exploit the content-adaptive spatial correlations between adjacent blocks, thus the bitrate after compression tends to be large. To reduce the bitrate induced by inaccurate intra prediction, the proposed approach adaptively chooses the scanning order of blocks according to criteria of firstly predicting blocks with maximum number of surrounding, already Inter-Predicted blocks. Using the modified scanning order method and the new modes has reduced the MSE by up to five (5) times when compared to conventional TM mode / Raster scan and up to two (2) times when compared to conventional CALIC mode / Raster scan, depending on the image characteristics (which determines the percentage of blocks predicted with Inter-Prediction, which in turn impacts the efficiency of the new scanning method). For the same cases, the PSNR was shown to improve by up to 7.4dB and up to 4 dB, respectively. The new modes have yielded 5% improvement in BD-Rate over traditionally used modes, when run on K-Frame, which is expected to yield 1% of overall improvement.
Tele-Assessment of the Berg Balance Scale: Effects of Transmission Characteristics.
Venkataraman, Kavita; Morgan, Michelle; Amis, Kristopher A; Landerman, Lawrence R; Koh, Gerald C; Caves, Kevin; Hoenig, Helen
2017-04-01
To compare Berg Balance Scale (BBS) rating using videos with differing transmission characteristics with direct in-person rating. Repeated-measures study for the assessment of the BBS in 8 configurations: in person, high-definition video with slow motion review, standard-definition videos with varying bandwidths and frame rates (768 kilobytes per second [kbps] videos at 8, 15, and 30 frames per second [fps], 30 fps videos at 128, 384, and 768 kbps). Medical center. Patients with limitations (N=45) in ≥1 of 3 specific aspects of motor function: fine motor coordination, gross motor coordination, and gait and balance. Not applicable. Ability to rate the BBS in person and using videos with differing bandwidths and frame rates in frontal and lateral views. Compared with in-person rating (7%), 18% (P=.29) of high-definition videos and 37% (P=.03) of standard-definition videos could not be rated. Interrater reliability for the high-definition videos was .96 (95% confidence interval, .94-.97). Rating failure proportions increased from 20% in videos with the highest bandwidth to 60% (P<.001) in videos with the lowest bandwidth, with no significant differences in proportions across frame rate categories. Both frontal and lateral views were critical for successful rating using videos, with 60% to 70% (P<.001) of videos unable to be rated on a single view. Although there is some loss of information when using videos to rate the BBS compared to in-person ratings, it is feasible to reliably rate the BBS remotely in standard clinical spaces. However, optimal video rating requires frontal and lateral views for each assessment, high-definition video with high bandwidth, and the ability to carry out slow motion review. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Use of Static Picture Prompts Versus Video Modeling during Simulation Instruction
ERIC Educational Resources Information Center
Alberto, Paul A.; Cihak, David F.; Gama, Robert I.
2005-01-01
The purpose of this study was to compare the effectiveness and efficiency of static picture prompts and video modeling as classroom simulation strategies in combination with in vivo community instruction. Students with moderate intellectual disabilities were instructed in the tasks of withdrawing money from an ATM and purchasing items using a…
NASA Astrophysics Data System (ADS)
Kushwaha, Alok Kumar Singh; Srivastava, Rajeev
2015-09-01
An efficient view invariant framework for the recognition of human activities from an input video sequence is presented. The proposed framework is composed of three consecutive modules: (i) detect and locate people by background subtraction, (ii) view invariant spatiotemporal template creation for different activities, (iii) and finally, template matching is performed for view invariant activity recognition. The foreground objects present in a scene are extracted using change detection and background modeling. The view invariant templates are constructed using the motion history images and object shape information for different human activities in a video sequence. For matching the spatiotemporal templates for various activities, the moment invariants and Mahalanobis distance are used. The proposed approach is tested successfully on our own viewpoint dataset, KTH action recognition dataset, i3DPost multiview dataset, MSR viewpoint action dataset, VideoWeb multiview dataset, and WVU multiview human action recognition dataset. From the experimental results and analysis over the chosen datasets, it is observed that the proposed framework is robust, flexible, and efficient with respect to multiple views activity recognition, scale, and phase variations.
Real-time rendering for multiview autostereoscopic displays
NASA Astrophysics Data System (ADS)
Berretty, R.-P. M.; Peters, F. J.; Volleberg, G. T. G.
2006-02-01
In video systems, the introduction of 3D video might be the next revolution after the introduction of color. Nowadays multiview autostereoscopic displays are in development. Such displays offer various views at the same time and the image content observed by the viewer depends upon his position with respect to the screen. His left eye receives a signal that is different from what his right eye gets; this gives, provided the signals have been properly processed, the impression of depth. The various views produced on the display differ with respect to their associated camera positions. A possible video format that is suited for rendering from different camera positions is the usual 2D format enriched with a depth related channel, e.g. for each pixel in the video not only its color is given, but also e.g. its distance to a camera. In this paper we provide a theoretical framework for the parallactic transformations which relates captured and observed depths to screen and image disparities. Moreover we present an efficient real time rendering algorithm that uses forward mapping to reduce aliasing artefacts and that deals properly with occlusions. For improved perceived resolution, we take the relative position of the color subpixels and the optics of the lenticular screen into account. Sophisticated filtering techniques results in high quality images.
NASA Astrophysics Data System (ADS)
Jerosch, K.; Lüdtke, A.; Schlüter, M.; Ioannidis, G. T.
2007-02-01
The combination of new underwater technology as remotely operating vehicles (ROVs), high-resolution video imagery, and software to compute georeferenced mosaics of the seafloor provides new opportunities for marine geological or biological studies and applications in offshore industry. Even during single surveys by ROVs or towed systems large amounts of images are compiled. While these underwater techniques are now well-engineered, there is still a lack of methods for the automatic analysis of the acquired image data. During ROV dives more than 4200 georeferenced video mosaics were compiled for the HÅkon Mosby Mud Volcano (HMMV). Mud volcanoes as HMMV are considered as significant source locations for methane characterised by unique chemoautotrophic communities as Beggiatoa mats. For the detection and quantification of the spatial distribution of Beggiatoa mats an automated image analysis technique was developed, which applies watershed transformation and relaxation-based labelling of pre-segmented regions. Comparison of the data derived by visual inspection of 2840 video images with the automated image analysis revealed similarities with a precision better than 90%. We consider this as a step towards a time-efficient and accurate analysis of seafloor images for computation of geochemical budgets and identification of habitats at the seafloor.
Quantification of Surf Zone Bathymetry from Video Observations of Wave Breaking
NASA Astrophysics Data System (ADS)
Aarninkhof, S.; Ruessink, G.
2002-12-01
Cost-efficient methods to quantify surf zone bathymetry with high resolution in time and space would be of great value for coastal research and management. Automated video techniques provide the potential to do so. Time-averaged video observations of the nearshore zone show bright intensities at locations where waves preferentially break. Highly similar patterns are found from model simulations of depth-induced wave breaking, which show increasing rates of wave dissipation in shallow areas like sand bars. Thus, video observations of wave breaking - at least qualitatively - reflect sub-merged beach bathymetry. In search of the quantification of this relationship, we present a new model concept to map sub-merged beach bathymetry from time-averaged video images. This is achieved by matching model-predicted and video-observed rates of wave dissipation. First, time-averaged image intensities are sampled along a cross-shore array and interpreted in terms of a wave dissipation parameter. This involves a correction for the effect of persistent foam, which is visible at time-averaged video images but not predicted by common wave propagation models. The dissipation profiles thus obtained are used to update an initial beach bathymetry through optimisation of the match between measured and modelled rates of wave dissipation. The latter is done by raising the bottom elevation in areas where the measured dissipation rate exceeds the computed dissipation and vice versa. Since the model includes video data with high resolution in time (typically multiple images over a tidal cycle), it allows for virtually continous monitoring of surfzone bathymetry . Model tests against a synthetic data set of artificially generated wave dissipation profiles have shown the model's capability to accurately reconstruct beach bathymetry, over a wide range of morphological configurations. Maximum model deviations were found in the case of highly developed bar-trough systems (bar heights up to 4 m) and near the shoreline. Model performance strongly benefits from an increase of wave heights and tidal ranges. At the moment, the model is subject to validation against a data set of multiple-barred beach profiles, surveyed during a 3 week period of stormy wheather in the course of the Coast3D field experiments at Egmond (The Netherlands). Although the video-based estimates of bar bathymetry show a shoreward off-set of the location of the inner bar and vertical deviations of 0.5 (0.8) m near the outer (inner) bar crest, these preliminary results show a promising match in terms of profile shape and the migration of the seaward bar face. Model application at the time scale of months to years is subject to present research. This work was supported by the DIOC Earth Observations of Delft University of Technology, the Delft Cluster program at Delft Hydraulics, the Dutch Ministry of Public Works Rijkswaterstaaat and the EU-funded Coastview project.
Multi-tasking computer control of video related equipment
NASA Technical Reports Server (NTRS)
Molina, Rod; Gilbert, Bob
1989-01-01
The flexibility, cost-effectiveness and widespread availability of personal computers now makes it possible to completely integrate the previously separate elements of video post-production into a single device. Specifically, a personal computer, such as the Commodore-Amiga, can perform multiple and simultaneous tasks from an individual unit. Relatively low cost, minimal space requirements and user-friendliness, provides the most favorable environment for the many phases of video post-production. Computers are well known for their basic abilities to process numbers, text and graphics and to reliably perform repetitive and tedious functions efficiently. These capabilities can now apply as either additions or alternatives to existing video post-production methods. A present example of computer-based video post-production technology is the RGB CVC (Computer and Video Creations) WorkSystem. A wide variety of integrated functions are made possible with an Amiga computer existing at the heart of the system.
Secure and Efficient Reactive Video Surveillance for Patient Monitoring.
Braeken, An; Porambage, Pawani; Gurtov, Andrei; Ylianttila, Mika
2016-01-02
Video surveillance is widely deployed for many kinds of monitoring applications in healthcare and assisted living systems. Security and privacy are two promising factors that align the quality and validity of video surveillance systems with the caliber of patient monitoring applications. In this paper, we propose a symmetric key-based security framework for the reactive video surveillance of patients based on the inputs coming from data measured by a wireless body area network attached to the human body. Only authenticated patients are able to activate the video cameras, whereas the patient and authorized people can consult the video data. User and location privacy are at each moment guaranteed for the patient. A tradeoff between security and quality of service is defined in order to ensure that the surveillance system gets activated even in emergency situations. In addition, the solution includes resistance against tampering with the device on the patient's side.
Secure and Efficient Reactive Video Surveillance for Patient Monitoring
Braeken, An; Porambage, Pawani; Gurtov, Andrei; Ylianttila, Mika
2016-01-01
Video surveillance is widely deployed for many kinds of monitoring applications in healthcare and assisted living systems. Security and privacy are two promising factors that align the quality and validity of video surveillance systems with the caliber of patient monitoring applications. In this paper, we propose a symmetric key-based security framework for the reactive video surveillance of patients based on the inputs coming from data measured by a wireless body area network attached to the human body. Only authenticated patients are able to activate the video cameras, whereas the patient and authorized people can consult the video data. User and location privacy are at each moment guaranteed for the patient. A tradeoff between security and quality of service is defined in order to ensure that the surveillance system gets activated even in emergency situations. In addition, the solution includes resistance against tampering with the device on the patient’s side. PMID:26729130
Content-Aware Video Adaptation under Low-Bitrate Constraint
NASA Astrophysics Data System (ADS)
Hsiao, Ming-Ho; Chen, Yi-Wen; Chen, Hua-Tsung; Chou, Kuan-Hung; Lee, Suh-Yin
2007-12-01
With the development of wireless network and the improvement of mobile device capability, video streaming is more and more widespread in such an environment. Under the condition of limited resource and inherent constraints, appropriate video adaptations have become one of the most important and challenging issues in wireless multimedia applications. In this paper, we propose a novel content-aware video adaptation in order to effectively utilize resource and improve visual perceptual quality. First, the attention model is derived from analyzing the characteristics of brightness, location, motion vector, and energy features in compressed domain to reduce computation complexity. Then, through the integration of attention model, capability of client device and correlational statistic model, attractive regions of video scenes are derived. The information object- (IOB-) weighted rate distortion model is used for adjusting the bit allocation. Finally, the video adaptation scheme dynamically adjusts video bitstream in frame level and object level. Experimental results validate that the proposed scheme achieves better visual quality effectively and efficiently.
Identifying sports videos using replay, text, and camera motion features
NASA Astrophysics Data System (ADS)
Kobla, Vikrant; DeMenthon, Daniel; Doermann, David S.
1999-12-01
Automated classification of digital video is emerging as an important piece of the puzzle in the design of content management systems for digital libraries. The ability to classify videos into various classes such as sports, news, movies, or documentaries, increases the efficiency of indexing, browsing, and retrieval of video in large databases. In this paper, we discuss the extraction of features that enable identification of sports videos directly from the compressed domain of MPEG video. These features include detecting the presence of action replays, determining the amount of scene text in vide, and calculating various statistics on camera and/or object motion. The features are derived from the macroblock, motion,and bit-rate information that is readily accessible from MPEG video with very minimal decoding, leading to substantial gains in processing speeds. Full-decoding of selective frames is required only for text analysis. A decision tree classifier built using these features is able to identify sports clips with an accuracy of about 93 percent.
A Semi-supervised Heat Kernel Pagerank MBO Algorithm for Data Classification
2016-07-01
financial predictions, etc. and is finding growing use in text mining studies. In this paper, we present an efficient algorithm for classification of high...video data, set of images, hyperspectral data, medical data, text data, etc. Moreover, the framework provides a way to analyze data whose different...also be incorporated. For text classification, one can use tfidf (term frequency inverse document frequency) to form feature vectors for each document
Graph Based Models for Unsupervised High Dimensional Data Clustering and Network Analysis
2015-01-01
ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for...algorithms we proposed improve the time e ciency signi cantly for large scale datasets. In the last chapter, we also propose an incremental reseeding...plume detection in hyper-spectral video data. These graph based clustering algorithms we proposed improve the time efficiency significantly for large
A simulator tool set for evaluating HEVC/SHVC streaming
NASA Astrophysics Data System (ADS)
Al Hadhrami, Tawfik; Nightingale, James; Wang, Qi; Grecos, Christos; Kehtarnavaz, Nasser
2015-02-01
Video streaming and other multimedia applications account for an ever increasing proportion of all network traffic. The recent adoption of High Efficiency Video Coding (HEVC) as the H.265 standard provides many opportunities for new and improved services multimedia services and applications in the consumer domain. Since the delivery of version one of H.265, the Joint Collaborative Team on Video Coding have been working towards standardisation of a scalable extension (SHVC) to the H.265 standard and a series of range extensions and new profiles. As these enhancements are added to the standard the range of potential applications and research opportunities will expend. For example the use of video is also growing rapidly in other sectors such as safety, security, defence and health with real-time high quality video transmission playing an important role in areas like critical infrastructure monitoring and disaster management. Each of which may benefit from the application of enhanced HEVC/H.265 and SHVC capabilities. The majority of existing research into HEVC/H.265 transmission has focussed on the consumer domain addressing issues such as broadcast transmission and delivery to mobile devices with the lack of freely available tools widely cited as an obstacle to conducting this type of research. In this paper we present a toolset which facilitates the transmission and evaluation of HEVC/H.265 and SHVC encoded video on the popular open source NCTUns simulator. Our toolset provides researchers with a modular, easy to use platform for evaluating video transmission and adaptation proposals on large scale wired, wireless and hybrid architectures. The toolset consists of pre-processing, transmission, SHVC adaptation and post-processing tools to gather and analyse statistics. It has been implemented using HM15 and SHM5, the latest versions of the HEVC and SHVC reference software implementations to ensure that currently adopted proposals for scalable and range extensions to the standard can be investigated. We demonstrate the effectiveness and usability of our toolset by evaluating SHVC streaming and adaptation to meet terminal constraints and network conditions in a range of wired, wireless, and large scale wireless mesh network scenarios, each of which is designed to simulate a realistic environment. Our results are compared to those for H264/SVC, the scalable extension to the existing H.264/AVC advanced video coding standard.
Characterization, adaptive traffic shaping, and multiplexing of real-time MPEG II video
NASA Astrophysics Data System (ADS)
Agrawal, Sanjay; Barry, Charles F.; Binnai, Vinay; Kazovsky, Leonid G.
1997-01-01
We obtain network traffic model for real-time MPEG-II encoded digital video by analyzing video stream samples from real-time encoders from NUKO Information Systems. MPEG-II sample streams include a resolution intensive movie, City of Joy, an action intensive movie, Aliens, a luminance intensive (black and white) movie, Road To Utopia, and a chrominance intensive (color) movie, Dick Tracy. From our analysis we obtain a heuristic model for the encoded video traffic which uses a 15-stage Markov process to model the I,B,P frame sequences within a group of pictures (GOP). A jointly-correlated Gaussian process is used to model the individual frame sizes. Scene change arrivals are modeled according to a gamma process. Simulations show that our MPEG-II traffic model generates, I,B,P frame sequences and frame sizes that closely match the sample MPEG-II stream traffic characteristics as they relate to latency and buffer occupancy in network queues. To achieve high multiplexing efficiency we propose a traffic shaping scheme which sets preferred 1-frame generation times among a group of encoders so as to minimize the overall variation in total offered traffic while still allowing the individual encoders to react to scene changes. Simulations show that our scheme results in multiplexing gains of up to 10% enabling us to multiplex twenty 6 Mbps MPEG-II video streams instead of 18 streams over an ATM/SONET OC3 link without latency or cell loss penalty. This scheme is due for a patent.
Linking animal-borne video to accelerometers reveals prey capture variability.
Watanabe, Yuuki Y; Takahashi, Akinori
2013-02-05
Understanding foraging is important in ecology, as it determines the energy gains and, ultimately, the fitness of animals. However, monitoring prey captures of individual animals is difficult. Direct observations using animal-borne videos have short recording periods, and indirect signals (e.g., stomach temperature) are never validated in the field. We took an integrated approach to monitor prey captures by a predator by deploying a video camera (lasting for 85 min) and two accelerometers (on the head and back, lasting for 50 h) on free-swimming Adélie penguins. The movies showed that penguins moved the heads rapidly to capture krill in midwater and fish (Pagothenia borchgrevinki) underneath the sea ice. Captures were remarkably fast (two krill per second in swarms) and efficient (244 krill or 33 P. borchgrevinki in 78-89 min). Prey captures were detected by the signal of head acceleration relative to body acceleration with high sensitivity and specificity (0.83-0.90), as shown by receiver-operating characteristic analysis. Extension of signal analysis to the entire behavioral records showed that krill captures were spatially and temporally more variable than P. borchgrevinki captures. Notably, the frequency distribution of krill capture rate closely followed a power-law model, indicating that the foraging success of penguins depends on a small number of very successful dives. The three steps illustrated here (i.e., video observations, linking video to behavioral signals, and extension of signal analysis) are unique approaches to understanding the spatial and temporal variability of ecologically important events such as foraging.
Advanced sensors and instrumentation
NASA Technical Reports Server (NTRS)
Calloway, Raymond S.; Zimmerman, Joe E.; Douglas, Kevin R.; Morrison, Rusty
1990-01-01
NASA is currently investigating the readiness of Advanced Sensors and Instrumentation to meet the requirements of new initiatives in space. The following technical objectives and technologies are briefly discussed: smart and nonintrusive sensors; onboard signal and data processing; high capacity and rate adaptive data acquisition systems; onboard computing; high capacity and rate onboard storage; efficient onboard data distribution; high capacity telemetry; ground and flight test support instrumentation; power distribution; and workstations, video/lighting. The requirements for high fidelity data (accuracy, frequency, quantity, spatial resolution) in hostile environments will continue to push the technology developers and users to extend the performance of their products and to develop new generations.
del Río, Joaquín; Aguzzi, Jacopo; Costa, Corrado; Menesatti, Paolo; Sbragaglia, Valerio; Nogueras, Marc; Sarda, Francesc; Manuèl, Antoni
2013-10-30
Field measurements of the swimming activity rhythms of fishes are scant due to the difficulty of counting individuals at a high frequency over a long period of time. Cabled observatory video monitoring allows such a sampling at a high frequency over unlimited periods of time. Unfortunately, automation for the extraction of biological information (i.e., animals' visual counts per unit of time) is still a major bottleneck. In this study, we describe a new automated video-imaging protocol for the 24-h continuous counting of fishes in colorimetrically calibrated time-lapse photographic outputs, taken by a shallow water (20 m depth) cabled video-platform, the OBSEA. The spectral reflectance value for each patch was measured between 400 to 700 nm and then converted into standard RGB, used as a reference for all subsequent calibrations. All the images were acquired within a standardized Region Of Interest (ROI), represented by a 2 × 2 m methacrylate panel, endowed with a 9-colour calibration chart, and calibrated using the recently implemented "3D Thin-Plate Spline" warping approach in order to numerically define color by its coordinates in n-dimensional space. That operation was repeated on a subset of images, 500 images as a training set, manually selected since acquired under optimum visibility conditions. All images plus those for the training set were ordered together through Principal Component Analysis allowing the selection of 614 images (67.6%) out of 908 as a total corresponding to 18 days (at 30 min frequency). The Roberts operator (used in image processing and computer vision for edge detection) was used to highlights regions of high spatial colour gradient corresponding to fishes' bodies. Time series in manual and visual counts were compared together for efficiency evaluation. Periodogram and waveform analysis outputs provided very similar results, although quantified parameters in relation to the strength of respective rhythms were different. Results indicate that automation efficiency is limited by optimum visibility conditions. Data sets from manual counting present the larger day-night fluctuations in comparison to those derived from automation. This comparison indicates that the automation protocol subestimate fish numbers but it is anyway suitable for the study of community activity rhythms.
del Río, Joaquín; Aguzzi, Jacopo; Costa, Corrado; Menesatti, Paolo; Sbragaglia, Valerio; Nogueras, Marc; Sarda, Francesc; Manuèl, Antoni
2013-01-01
Field measurements of the swimming activity rhythms of fishes are scant due to the difficulty of counting individuals at a high frequency over a long period of time. Cabled observatory video monitoring allows such a sampling at a high frequency over unlimited periods of time. Unfortunately, automation for the extraction of biological information (i.e., animals' visual counts per unit of time) is still a major bottleneck. In this study, we describe a new automated video-imaging protocol for the 24-h continuous counting of fishes in colorimetrically calibrated time-lapse photographic outputs, taken by a shallow water (20 m depth) cabled video-platform, the OBSEA. The spectral reflectance value for each patch was measured between 400 to 700 nm and then converted into standard RGB, used as a reference for all subsequent calibrations. All the images were acquired within a standardized Region Of Interest (ROI), represented by a 2 × 2 m methacrylate panel, endowed with a 9-colour calibration chart, and calibrated using the recently implemented “3D Thin-Plate Spline” warping approach in order to numerically define color by its coordinates in n-dimensional space. That operation was repeated on a subset of images, 500 images as a training set, manually selected since acquired under optimum visibility conditions. All images plus those for the training set were ordered together through Principal Component Analysis allowing the selection of 614 images (67.6%) out of 908 as a total corresponding to 18 days (at 30 min frequency). The Roberts operator (used in image processing and computer vision for edge detection) was used to highlights regions of high spatial colour gradient corresponding to fishes' bodies. Time series in manual and visual counts were compared together for efficiency evaluation. Periodogram and waveform analysis outputs provided very similar results, although quantified parameters in relation to the strength of respective rhythms were different. Results indicate that automation efficiency is limited by optimum visibility conditions. Data sets from manual counting present the larger day-night fluctuations in comparison to those derived from automation. This comparison indicates that the automation protocol subestimate fish numbers but it is anyway suitable for the study of community activity rhythms. PMID:24177726
VLSI design of lossless frame recompression using multi-orientation prediction
NASA Astrophysics Data System (ADS)
Lee, Yu-Hsuan; You, Yi-Lun; Chen, Yi-Guo
2016-01-01
Pursuing an experience of high-end visual quality drives human to demand a higher display resolution and a higher frame rate. Hence, a lot of powerful coding tools are aggregated together in emerging video coding standards to improve coding efficiency. This also makes video coding standards suffer from two design challenges: heavy computation and tremendous memory bandwidth. The first issue can be properly solved by a careful hardware architecture design with advanced semiconductor processes. Nevertheless, the second one becomes a critical design bottleneck for a modern video coding system. In this article, a lossless frame recompression using multi-orientation prediction technique is proposed to overcome this bottleneck. This work is realised into a silicon chip with the technology of TSMC 0.18 µm CMOS process. Its encoding capability can reach full-HD (1920 × 1080)@48 fps. The chip power consumption is 17.31 mW@100 MHz. Core area and chip area are 0.83 × 0.83 mm2 and 1.20 × 1.20 mm2, respectively. Experiment results demonstrate that this work exhibits an outstanding performance on lossless compression ratio with a competitive hardware performance.
Simulation training in video-assisted urologic surgery.
Hoznek, András; Salomon, Laurent; de la Taille, Alexandre; Yiou, René; Vordos, Dimitrios; Larre, Stéphane; Abbou, Clément-Claude
2006-03-01
The current system of surgical education is facing many challenges in terms of time efficiency, costs, and patient safety. Training using simulation is an emerging area, mostly based on the experience of other high-risk professions like aviation. The goal of simulation-based training in surgery is to develop not only technical but team skills. This learning environment is stress-free and safe, allows standardization and tailoring of training, and also objectively evaluate performances. The development of simulation training is straightforward in endourology, since these procedures are video-assisted and the low degree of freedom of the instruments is easily replicated. On the other hand, these interventions necessitate a long learning curve, training in the operative room is especially costly and risky. Many models are already in use or under development in all fields of video-assisted urologic surgery: ureteroscopy, percutaneous surgery, transurethral resection of the prostate, and laparoscopy. Although bench models are essential, simulation increasingly benefits from the achievements and development of computer technology. Still in its infancy, virtual reality simulation will certainly belong to tomorrow's teaching tools.
Bidwell, Jonathan; Khuwatsamrit, Thanin; Askew, Brittain; Ehrenberg, Joshua Andrew; Helmers, Sandra
2015-11-01
This review surveys current seizure detection and classification technologies as they relate to aiding clinical decision-making during epilepsy treatment. Interviews and data collected from neurologists and a literature review highlighted a strong need for better distinguishing between patients exhibiting generalized and partial seizure types as well as achieving more accurate seizure counts. This information is critical for enabling neurologists to select the correct class of antiepileptic drugs (AED) for their patients and evaluating AED efficiency during long-term treatment. In our questionnaire, 100% of neurologists reported they would like to have video from patients prior to selecting an AED during an initial consultation. Presently, only 30% have access to video. In our technology review we identified that only a subset of available technologies surpassed patient self-reporting performance due to high false positive rates. Inertial seizure detection devices coupled with video capture for recording seizures at night could stand to address collecting seizure counts that are more accurate than current patient self-reporting during day and night time use. Copyright © 2015. Published by Elsevier Ltd.
Hierarchical video summarization
NASA Astrophysics Data System (ADS)
Ratakonda, Krishna; Sezan, M. Ibrahim; Crinon, Regis J.
1998-12-01
We address the problem of key-frame summarization of vide in the absence of any a priori information about its content. This is a common problem that is encountered in home videos. We propose a hierarchical key-frame summarization algorithm where a coarse-to-fine key-frame summary is generated. A hierarchical key-frame summary facilitates multi-level browsing where the user can quickly discover the content of the video by accessing its coarsest but most compact summary and then view a desired segment of the video with increasingly more detail. At the finest level, the summary is generated on the basis of color features of video frames, using an extension of a recently proposed key-frame extraction algorithm. The finest level key-frames are recursively clustered using a novel pairwise K-means clustering approach with temporal consecutiveness constraint. We also address summarization of MPEG-2 compressed video without fully decoding the bitstream. We also propose efficient mechanisms that facilitate decoding the video when the hierarchical summary is utilized in browsing and playback of video segments starting at selected key-frames.
Binary video codec for data reduction in wireless visual sensor networks
NASA Astrophysics Data System (ADS)
Khursheed, Khursheed; Ahmad, Naeem; Imran, Muhammad; O'Nils, Mattias
2013-02-01
Wireless Visual Sensor Networks (WVSN) is formed by deploying many Visual Sensor Nodes (VSNs) in the field. Typical applications of WVSN include environmental monitoring, health care, industrial process monitoring, stadium/airports monitoring for security reasons and many more. The energy budget in the outdoor applications of WVSN is limited to the batteries and the frequent replacement of batteries is usually not desirable. So the processing as well as the communication energy consumption of the VSN needs to be optimized in such a way that the network remains functional for longer duration. The images captured by VSN contain huge amount of data and require efficient computational resources for processing the images and wide communication bandwidth for the transmission of the results. Image processing algorithms must be designed and developed in such a way that they are computationally less complex and must provide high compression rate. For some applications of WVSN, the captured images can be segmented into bi-level images and hence bi-level image coding methods will efficiently reduce the information amount in these segmented images. But the compression rate of the bi-level image coding methods is limited by the underlined compression algorithm. Hence there is a need for designing other intelligent and efficient algorithms which are computationally less complex and provide better compression rate than that of bi-level image coding methods. Change coding is one such algorithm which is computationally less complex (require only exclusive OR operations) and provide better compression efficiency compared to image coding but it is effective for applications having slight changes between adjacent frames of the video. The detection and coding of the Region of Interest (ROIs) in the change frame efficiently reduce the information amount in the change frame. But, if the number of objects in the change frames is higher than a certain level then the compression efficiency of both the change coding and ROI coding becomes worse than that of image coding. This paper explores the compression efficiency of the Binary Video Codec (BVC) for the data reduction in WVSN. We proposed to implement all the three compression techniques i.e. image coding, change coding and ROI coding at the VSN and then select the smallest bit stream among the results of the three compression techniques. In this way the compression performance of the BVC will never become worse than that of image coding. We concluded that the compression efficiency of BVC is always better than that of change coding and is always better than or equal that of ROI coding and image coding.
Comparing Audio and Video Data for Rating Communication
Williams, Kristine; Herman, Ruth; Bontempo, Daniel
2013-01-01
Video recording has become increasingly popular in nursing research, adding rich nonverbal, contextual, and behavioral information. However, benefits of video over audio data have not been well established. We compared communication ratings of audio versus video data using the Emotional Tone Rating Scale. Twenty raters watched video clips of nursing care and rated staff communication on 12 descriptors that reflect dimensions of person-centered and controlling communication. Another group rated audio-only versions of the same clips. Interrater consistency was high within each group with ICC (2,1) for audio = .91, and video = .94. Interrater consistency for both groups combined was also high with ICC (2,1) for audio and video = .95. Communication ratings using audio and video data were highly correlated. The value of video being superior to audio recorded data should be evaluated in designing studies evaluating nursing care. PMID:23579475
Energy 101: Heavy Duty Vehicle Efficiency
None
2018-06-06
Although Class 8 Trucks only make up 4% of the vehicles on the road, they use about 20% of the nation's transportation fuel. In this video, learn how new fuel-efficient technologies are making our country's big rigs quieter, less polluting, more energy-efficient, and less expensive to operate over time.
System for real-time generation of georeferenced terrain models
NASA Astrophysics Data System (ADS)
Schultz, Howard J.; Hanson, Allen R.; Riseman, Edward M.; Stolle, Frank; Zhu, Zhigang; Hayward, Christopher D.; Slaymaker, Dana
2001-02-01
A growing number of law enforcement applications, especially in the areas of border security, drug enforcement and anti- terrorism require high-resolution wide area surveillance from unmanned air vehicles. At the University of Massachusetts we are developing an aerial reconnaissance system capable of generating high resolution, geographically registered terrain models (in the form of a seamless mosaic) in real-time from a single down-looking digital video camera. The efficiency of the processing algorithms, as well as the simplicity of the hardware, will provide the user with the ability to produce and roam through stereoscopic geo-referenced mosaic images in real-time, and to automatically generate highly accurate 3D terrain models offline in a fraction of the time currently required by softcopy conventional photogrammetry systems. The system is organized around a set of integrated sensor and software components. The instrumentation package is comprised of several inexpensive commercial-off-the-shelf components, including a digital video camera, a differential GPS, and a 3-axis heading and reference system. At the heart of the system is a set of software tools for image registration, mosaic generation, geo-location and aircraft state vector recovery. Each process is designed to efficiently handle the data collected by the instrument package. Particular attention is given to minimizing geospatial errors at each stage, as well as modeling propagation of errors through the system. Preliminary results for an urban and forested scene are discussed in detail.
ERIC Educational Resources Information Center
Purifoy, George R., Jr.
This report presents a detailed description of the methods by which airborne video recording will be utilized in training Air Force pilots, and presents the format for an experiment testing the effectiveness of such training. Portable airborne recording with ground playback permits more economical and efficient teaching of the critical visual and…
Educational Technology as a Video Cases in Teaching Psychology for Future Teachers
ERIC Educational Resources Information Center
Shen, Pingxia; Gromova, Chulpan R.; Zakirova, Venera G.; Yalalov, Farit G.
2017-01-01
Relevance of the article is caused by need to form the teacher's psychological competences on the basis of life and professional situations. This article is directed to detection of the main difficulties, which students have in the course of studying psychology and efficiency of use of video cases at classes of psychology. The leading research…
Design of multi-mode compatible image acquisition system for HD area array CCD
NASA Astrophysics Data System (ADS)
Wang, Chen; Sui, Xiubao
2014-11-01
Combining with the current development trend in video surveillance-digitization and high-definition, a multimode-compatible image acquisition system for HD area array CCD is designed. The hardware and software designs of the color video capture system of HD area array CCD KAI-02150 presented by Truesense Imaging company are analyzed, and the structure parameters of the HD area array CCD and the color video gathering principle of the acquisition system are introduced. Then, the CCD control sequence and the timing logic of the whole capture system are realized. The noises of the video signal (KTC noise and 1/f noise) are filtered by using the Correlated Double Sampling (CDS) technique to enhance the signal-to-noise ratio of the system. The compatible designs in both software and hardware for the two other image sensors of the same series: KAI-04050 and KAI-08050 are put forward; the effective pixels of these two HD image sensors are respectively as many as four million and eight million. A Field Programmable Gate Array (FPGA) is adopted as the key controller of the system to perform the modularization design from top to bottom, which realizes the hardware design by software and improves development efficiency. At last, the required time sequence driving is simulated accurately by the use of development platform of Quartus II 12.1 combining with VHDL. The result of the simulation indicates that the driving circuit is characterized by simple framework, low power consumption, and strong anti-interference ability, which meet the demand of miniaturization and high-definition for the current tendency.
Computationally Efficient Clustering of Audio-Visual Meeting Data
NASA Astrophysics Data System (ADS)
Hung, Hayley; Friedland, Gerald; Yeo, Chuohao
This chapter presents novel computationally efficient algorithms to extract semantically meaningful acoustic and visual events related to each of the participants in a group discussion using the example of business meeting recordings. The recording setup involves relatively few audio-visual sensors, comprising a limited number of cameras and microphones. We first demonstrate computationally efficient algorithms that can identify who spoke and when, a problem in speech processing known as speaker diarization. We also extract visual activity features efficiently from MPEG4 video by taking advantage of the processing that was already done for video compression. Then, we present a method of associating the audio-visual data together so that the content of each participant can be managed individually. The methods presented in this article can be used as a principal component that enables many higher-level semantic analysis tasks needed in search, retrieval, and navigation.
Reflectance Prediction Modelling for Residual-Based Hyperspectral Image Coding
Xiao, Rui; Gao, Junbin; Bossomaier, Terry
2016-01-01
A Hyperspectral (HS) image provides observational powers beyond human vision capability but represents more than 100 times the data compared to a traditional image. To transmit and store the huge volume of an HS image, we argue that a fundamental shift is required from the existing “original pixel intensity”-based coding approaches using traditional image coders (e.g., JPEG2000) to the “residual”-based approaches using a video coder for better compression performance. A modified video coder is required to exploit spatial-spectral redundancy using pixel-level reflectance modelling due to the different characteristics of HS images in their spectral and shape domain of panchromatic imagery compared to traditional videos. In this paper a novel coding framework using Reflectance Prediction Modelling (RPM) in the latest video coding standard High Efficiency Video Coding (HEVC) for HS images is proposed. An HS image presents a wealth of data where every pixel is considered a vector for different spectral bands. By quantitative comparison and analysis of pixel vector distribution along spectral bands, we conclude that modelling can predict the distribution and correlation of the pixel vectors for different bands. To exploit distribution of the known pixel vector, we estimate a predicted current spectral band from the previous bands using Gaussian mixture-based modelling. The predicted band is used as the additional reference band together with the immediate previous band when we apply the HEVC. Every spectral band of an HS image is treated like it is an individual frame of a video. In this paper, we compare the proposed method with mainstream encoders. The experimental results are fully justified by three types of HS dataset with different wavelength ranges. The proposed method outperforms the existing mainstream HS encoders in terms of rate-distortion performance of HS image compression. PMID:27695102
NASA Technical Reports Server (NTRS)
Mackro, J.
1973-01-01
The results are presented of a study involving closed circuit television as the means of providing the necessary task-to-operator feedback for efficient performance of the remote manipulation system. Experiments were performed to determine the remote video configuration that will result in the best overall system. Two categories of tests were conducted which include: those which involved remote control position (rate) of just the video system, and those in which closed circuit TV was used along with manipulation of the objects themselves.
Comparing audio and video data for rating communication.
Williams, Kristine; Herman, Ruth; Bontempo, Daniel
2013-09-01
Video recording has become increasingly popular in nursing research, adding rich nonverbal, contextual, and behavioral information. However, benefits of video over audio data have not been well established. We compared communication ratings of audio versus video data using the Emotional Tone Rating Scale. Twenty raters watched video clips of nursing care and rated staff communication on 12 descriptors that reflect dimensions of person-centered and controlling communication. Another group rated audio-only versions of the same clips. Interrater consistency was high within each group with Interclass Correlation Coefficient (ICC) (2,1) for audio .91, and video = .94. Interrater consistency for both groups combined was also high with ICC (2,1) for audio and video = .95. Communication ratings using audio and video data were highly correlated. The value of video being superior to audio-recorded data should be evaluated in designing studies evaluating nursing care.
High-Speed Video Analysis of Damped Harmonic Motion
ERIC Educational Resources Information Center
Poonyawatpornkul, J.; Wattanakasiwich, P.
2013-01-01
In this paper, we acquire and analyse high-speed videos of a spring-mass system oscillating in glycerin at different temperatures. Three cases of damped harmonic oscillation are investigated and analysed by using high-speed video at a rate of 120 frames s[superscript -1] and Tracker Video Analysis (Tracker) software. We present empirical data for…
Geographic Video 3d Data Model And Retrieval
NASA Astrophysics Data System (ADS)
Han, Z.; Cui, C.; Kong, Y.; Wu, H.
2014-04-01
Geographic video includes both spatial and temporal geographic features acquired through ground-based or non-ground-based cameras. With the popularity of video capture devices such as smartphones, the volume of user-generated geographic video clips has grown significantly and the trend of this growth is quickly accelerating. Such a massive and increasing volume poses a major challenge to efficient video management and query. Most of the today's video management and query techniques are based on signal level content extraction. They are not able to fully utilize the geographic information of the videos. This paper aimed to introduce a geographic video 3D data model based on spatial information. The main idea of the model is to utilize the location, trajectory and azimuth information acquired by sensors such as GPS receivers and 3D electronic compasses in conjunction with video contents. The raw spatial information is synthesized to point, line, polygon and solid according to the camcorder parameters such as focal length and angle of view. With the video segment and video frame, we defined the three categories geometry object using the geometry model of OGC Simple Features Specification for SQL. We can query video through computing the spatial relation between query objects and three categories geometry object such as VFLocation, VSTrajectory, VSFOView and VFFovCone etc. We designed the query methods using the structured query language (SQL) in detail. The experiment indicate that the model is a multiple objective, integration, loosely coupled, flexible and extensible data model for the management of geographic stereo video.
... Heart Disease Stroke High Blood Pressure Cholesterol Salt Video: Gail’s Story YouTube embed video: YouTube embed video: https://www.youtube-nocookie.com/embed/ZOoRLFdOdac Video: Aaron’s Story YouTube embed video: YouTube embed video: ...
Ergonomic problems encountered by the surgical team during video endoscopic surgery.
Kaya, Oskay I; Moran, Munevver; Ozkardes, Alper B; Taskin, Emre Y; Seker, Gaye E; Ozmen, Mahir M
2008-02-01
The aim of this study is to analyze the problems related to the ergonomic conditions faced by video endoscopic surgical teams during video endoscopic surgery by means of a questionnaire. A questionnaire was distributed to 100 medical personnel, from 8 different disciplines, who performed video endoscopic surgeries. Participants were asked to answer 13 questions related to physical, perceptive, and cognitive problems. Eighty-two questionnaires were returned. Although there were differences among the disciplines, participants assessment of various problems ranged from 32% to 72% owing to poor ergonomic conditions. As the problems encountered by the staff during video endoscopic surgery and the poor ergonomic conditions of the operating room affect the productivity of the surgical team and the safety and efficiency of the surgery, redesigning of the instruments and the operating room is required.
Los Alamos Quantum Dots for Solar, Display Technology
Klimov, Victor
2018-05-01
Quantum dots are ultra-small bits of semiconductor matter that can be synthesized with nearly atomic precision via modern methods of colloidal chemistry. Their emission color can be tuned by simply varying their dimensions. Color tunability is combined with high emission efficiencies approaching 100 percent. These properties have recently become the basis of a new technology â quantum dot displays â employed, for example, in the newest generation of e-readers and video monitors.
Patient Perceptions of Telehealth Primary Care Video Visits.
Powell, Rhea E; Henstenburg, Jeffrey M; Cooper, Grace; Hollander, Judd E; Rising, Kristin L
2017-05-01
Telehealth is a care delivery model that promises to increase the flexibility and reach of health services. Our objective is to describe patient experiences with video visits performed with their established primary care clinicians. We constructed semistructured, in-depth qualitative interviews with adult patients following video visits with their primary care clinicians at a single academic medical center. Data were analyzed with a content analysis approach. Of 32 eligible patients, 19 were successfully interviewed. All patients reported overall satisfaction with video visits, with the majority interested in continuing to use video visits as an alternative to in-person visits. The primary benefits cited were convenience and decreased costs. Some patients felt more comfortable with video visits than office visits and expressed a preference for receiving future serious news via video visit, because they could be in their own supportive environment. Primary concerns with video visits were privacy, including the potential for work colleagues to overhear conversations, and questions about the ability of the clinician to perform an adequate physical examination. Primary care video visits are acceptable in a variety of situations. Patients identified convenience, efficiency, communication, privacy, and comfort as domains that are potentially important to consider when assessing video visits vs in-person encounters. Future studies should explore which patients and conditions are best suited for video visits. © 2017 Annals of Family Medicine, Inc.
NASA Astrophysics Data System (ADS)
Moyer-Packenham, Patricia S.; Bullock, Emma K.; Shumway, Jessica F.; Tucker, Stephen I.; Watts, Christina M.; Westenskow, Arla; Anderson-Pence, Katie L.; Maahs-Fladung, Cathy; Boyer-Thurgood, Jennifer; Gulkilik, Hilal; Jordan, Kerry
2016-03-01
This paper focuses on understanding the role that affordances played in children's learning performance and efficiency during clinical interviews of their interactions with mathematics apps on touch-screen devices. One hundred children, ages 3 to 8, each used six different virtual manipulative mathematics apps during 30-40-min interviews. The study used a convergent mixed methods design, in which quantitative and qualitative data were collected concurrently to answer the research questions (Creswell and Plano Clark 2011). Videos were used to capture each child's interactions with the virtual manipulative mathematics apps, document learning performance and efficiency, and record children's interactions with the affordances within the apps. Quantitized video data answered the research question on differences in children's learning performance and efficiency between pre- and post-assessments. A Wilcoxon matched pairs signed-rank test was used to explore these data. Qualitative video data was used to identify affordance access by children when using each app, identifying 95 potential helping and hindering affordances among the 18 apps. The results showed that there were changes in children's learning performance and efficiency when children accessed a helping or a hindering affordance. Helping affordances were more likely to be accessed by children who progressed between the pre- and post-assessments, and the same affordances had helping and hindering effects for different children. These results have important implications for the design of virtual manipulative mathematics learning apps.
The effects of video game play on the characteristics of saccadic eye movements.
Mack, David J; Ilg, Uwe J
2014-09-01
Video game play has become a common leisure activity all around the world. To reveal possible effects of playing video games, we measured saccades elicited by video game players (VGPs) and non-players (NVGPs) in two oculomotor tasks. First, our subjects performed a double-step task. Second, we asked our subjects to move their gaze opposite to the appearance of a visual target, i.e. to perform anti-saccades. As expected on the basis of previous studies, VGPs had significantly shorter saccadic reaction times (SRTs) than NVGPs for all saccade types. However, the error rates in the anti-saccade task did not reveal any significant differences. In fact, the error rates of VGPs were actually slightly lower compared to NVGPs (34% versus 40%, respectively). In addition, VGPs showed significantly higher saccadic peak velocities in every saccade type compared to NVGP. Our results suggest that faster SRTs in VGPs were associated with a more efficient motor drive for saccades. Taken together, our results are in excellent agreement with earlier reports of beneficial video game effects through the general reduction in SRTs. Our data clearly provides additional experimental evidence for an higher efficiency of the VGPs on the one hand and refutes the notion of a reduced impulse control in VGPs on the other. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Chu, Szu-Yin; Baker, Sonia
2015-01-01
Video self-modeling has been proven to be effective with other populations with challenging behaviors, but only a few studies of video self-modeling have been conducted with high school students with emotional and behavioral disorders. This study aimed to focus on analyzing the effects of video self-modeling on four high school students with…
Context-dependent JPEG backward-compatible high-dynamic range image compression
NASA Astrophysics Data System (ADS)
Korshunov, Pavel; Ebrahimi, Touradj
2013-10-01
High-dynamic range (HDR) imaging is expected, together with ultrahigh definition and high-frame rate video, to become a technology that may change photo, TV, and film industries. Many cameras and displays capable of capturing and rendering both HDR images and video are already available in the market. The popularity and full-public adoption of HDR content is, however, hindered by the lack of standards in evaluation of quality, file formats, and compression, as well as large legacy base of low-dynamic range (LDR) displays that are unable to render HDR. To facilitate the wide spread of HDR usage, the backward compatibility of HDR with commonly used legacy technologies for storage, rendering, and compression of video and images are necessary. Although many tone-mapping algorithms are developed for generating viewable LDR content from HDR, there is no consensus of which algorithm to use and under which conditions. We, via a series of subjective evaluations, demonstrate the dependency of the perceptual quality of the tone-mapped LDR images on the context: environmental factors, display parameters, and image content itself. Based on the results of subjective tests, it proposes to extend JPEG file format, the most popular image format, in a backward compatible manner to deal with HDR images also. An architecture to achieve such backward compatibility with JPEG is proposed. A simple implementation of lossy compression demonstrates the efficiency of the proposed architecture compared with the state-of-the-art HDR image compression.
Parks, Kathleen A.; Levonyan-Radloff, Kristine; Dearing, Ronda L.; Hequembourg, Amy; Testa, Maria
2016-01-01
Objective Using an iterative process, a series of three video scenarios were developed for use as a standardized measure for assessing women’s perception of risks for alcohol-related sexual assault (SA). The videos included ambiguous and clear behavioral and environmental risk cues. Method Focus group discussions with young, female heavy drinkers (N = 42) were used to develop three videos at different risk levels (low, moderate, and high) in Study 1. Realism, reliability, and validity of the videos were assessed using multiple methods in Studies 2 and 3. One hundred-four women were used to compare differences in risk perception across the video risk level in Study 2. In Study 3 (N = 60), we assessed women’s perceptions of the low and high risk videos under conditions of no alcohol and alcohol. Results The realism and reliability of the videos were good. Women who viewed the low risk video compared to women who viewed the moderate and high risk videos perceived less risk for SA. We found an interaction between alcohol and risk perception such that, women in the alcohol condition were less likely to perceive risk when watching the high risk video. Conclusions As the video risk level increased, women’s perception of risk increased. These findings provide convergent evidence for the validity of the video measure. Given the limited number of standardized scenarios for assessing risk perception for sexual assault, our findings suggest that these videos may provide a needed standardized measure. PMID:27747131
Context-dependent player's movement interpretation: application to adaptive game development
NASA Astrophysics Data System (ADS)
Picard, Francois; Estraillier, Pascal
2010-02-01
Video games are more and more controlled by the real movements of the player. However, the player is constrained by the system devices, imposing a limited vocabulary of actions associated with a set of unnatural movements. To introduce more entertaining video games to players, a component-based architecture is proposed. It has been acknowledged as the starting point for the development of adaptive applications based on the hypothesis of a high level dialogue between the system and the player. The system adaptability relies on interpretation mechanisms of the player behaviors. These behaviors are defined through the representation of the real movements of the player who freely interacts with the 3D elements composing an immersive virtual environment, following a given game scenario. The efficient interpretation of the player movements relies on the introduction in the system of the management of the scene's context. The contextual information not only helps to determine the true meaning of an observed behavior but also makes the system to adapt its processes regarding this interpretation, while managing its hardware and software resources efficiently. A commercial motion capture interface has been enhanced by the elaboration of such a system.
NASA Astrophysics Data System (ADS)
Gaudin, Damien; Moroni, Monica; Taddeucci, Jacopo; Scarlato, Piergiorgio; Shindler, Luca
2014-07-01
Image-based techniques enable high-resolution observation of the pyroclasts ejected during Strombolian explosions and drawing inferences on the dynamics of volcanic activity. However, data extraction from high-resolution videos is time consuming and operator dependent, while automatic analysis is often challenging due to the highly variable quality of images collected in the field. Here we present a new set of algorithms to automatically analyze image sequences of explosive eruptions: the pyroclast tracking velocimetry (PyTV) toolbox. First, a significant preprocessing is used to remove the image background and to detect the pyroclasts. Then, pyroclast tracking is achieved with a new particle tracking velocimetry algorithm, featuring an original predictor of velocity based on the optical flow equation. Finally, postprocessing corrects the systematic errors of measurements. Four high-speed videos of Strombolian explosions from Yasur and Stromboli volcanoes, representing various observation conditions, have been used to test the efficiency of the PyTV against manual analysis. In all cases, >106 pyroclasts have been successfully detected and tracked by PyTV, with a precision of 1 m/s for the velocity and 20% for the size of the pyroclast. On each video, more than 1000 tracks are several meters long, enabling us to study pyroclast properties and trajectories. Compared to manual tracking, 3 to 100 times more pyroclasts are analyzed. PyTV, by providing time-constrained information, links physical properties and motion of individual pyroclasts. It is a powerful tool for the study of explosive volcanic activity, as well as an ideal complement for other geological and geophysical volcano observation systems.
USDA-ARS?s Scientific Manuscript database
An unmanned aerial vehicle was used to capture videos of cattle in pastures to determine the efficiency of this technology for use by Mounted Inspectors in the Permanent Quarantine zone (PQZ) of the Cattle Fever Tick Eradication Program in south Texas along the U.S.-Mexico Border. These videos were ...
Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons.
Fan, G Y; Fujisaki, H; Miyawaki, A; Tsay, R K; Tsien, R Y; Ellisman, M H
1999-01-01
A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested. The microscope, based on a Nikon RCM 8000, incorporates a femtosecond pulsed laser with wavelength tunable from 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video-rate point scanning, and a pair of nonconfocal detectors for fast emission ratioing. An increase in fluorescent emission of 1.75-fold is consistently obtained with the use of the prechirper optics. The nonconfocal detectors provide another 2.25-fold increase in detection efficiency. Ratio imaging and optical sectioning can therefore be performed more efficiently without confocal optics. Faster frame rates, at 60, 120, and 240 frames/s, can be achieved with proportionally reduced scan lines per frame. Useful two-photon images can be acquired at video rate with a laser power as low as 2.7 mW at specimen with the genetically modified green fluorescent proteins. Preliminary results obtained using this system confirm that the yellow "cameleons" exhibit similar optical properties as under one-photon excitation conditions. Dynamic two-photon images of cardiac myocytes and ratio images of yellow cameleon-2.1, -3.1, and -3.1nu are also presented. PMID:10233058
Stochastic modeling of soundtrack for efficient segmentation and indexing of video
NASA Astrophysics Data System (ADS)
Naphade, Milind R.; Huang, Thomas S.
1999-12-01
Tools for efficient and intelligent management of digital content are essential for digital video data management. An extremely challenging research area in this context is that of multimedia analysis and understanding. The capabilities of audio analysis in particular for video data management are yet to be fully exploited. We present a novel scheme for indexing and segmentation of video by analyzing the audio track. This analysis is then applied to the segmentation and indexing of movies. We build models for some interesting events in the motion picture soundtrack. The models built include music, human speech and silence. We propose the use of hidden Markov models to model the dynamics of the soundtrack and detect audio-events. Using these models we segment and index the soundtrack. A practical problem in motion picture soundtracks is that the audio in the track is of a composite nature. This corresponds to the mixing of sounds from different sources. Speech in foreground and music in background are common examples. The coexistence of multiple individual audio sources forces us to model such events explicitly. Experiments reveal that explicit modeling gives better result than modeling individual audio events separately.
Fingerprint multicast in secure video streaming.
Zhao, H Vicky; Liu, K J Ray
2006-01-01
Digital fingerprinting is an emerging technology to protect multimedia content from illegal redistribution, where each distributed copy is labeled with unique identification information. In video streaming, huge amount of data have to be transmitted to a large number of users under stringent latency constraints, so the bandwidth-efficient distribution of uniquely fingerprinted copies is crucial. This paper investigates the secure multicast of anticollusion fingerprinted video in streaming applications and analyzes their performance. We first propose a general fingerprint multicast scheme that can be used with most spread spectrum embedding-based multimedia fingerprinting systems. To further improve the bandwidth efficiency, we explore the special structure of the fingerprint design and propose a joint fingerprint design and distribution scheme. From our simulations, the two proposed schemes can reduce the bandwidth requirement by 48% to 87%, depending on the number of users, the characteristics of video sequences, and the network and computation constraints. We also show that under the constraint that all colluders have the same probability of detection, the embedded fingerprints in the two schemes have approximately the same collusion resistance. Finally, we propose a fingerprint drift compensation scheme to improve the quality of the reconstructed sequences at the decoder's side without introducing extra communication overhead.
Yellepeddi, Venkata Kashyap; Roberson, Charles
2016-10-25
Objective. To evaluate the impact of animated videos of oral solid dosage form manufacturing as visual instructional aids on pharmacy students' perception and learning. Design. Data were obtained using a validated, paper-based survey instrument designed to evaluate the effectiveness, appeal, and efficiency of the animated videos in a pharmaceutics course offered in spring 2014 and 2015. Basic demographic data were also collected and analyzed. Assessment data at the end of pharmaceutics course was collected for 2013 and compared with assessment data from 2014, and 2015. Assessment. Seventy-six percent of the respondents supported the idea of incorporating animated videos as instructional aids for teaching pharmaceutics. Students' performance on the formative assessment in 2014 and 2015 improved significantly compared to the performance of students in 2013 whose lectures did not include animated videos as instructional aids. Conclusions. Implementing animated videos of oral solid dosage form manufacturing as instructional aids resulted in improved student learning and favorable student perceptions about the instructional approach. Therefore, use of animated videos can be incorporated in pharmaceutics teaching to enhance visual learning.
Roberson, Charles
2016-01-01
Objective. To evaluate the impact of animated videos of oral solid dosage form manufacturing as visual instructional aids on pharmacy students’ perception and learning. Design. Data were obtained using a validated, paper-based survey instrument designed to evaluate the effectiveness, appeal, and efficiency of the animated videos in a pharmaceutics course offered in spring 2014 and 2015. Basic demographic data were also collected and analyzed. Assessment data at the end of pharmaceutics course was collected for 2013 and compared with assessment data from 2014, and 2015. Assessment. Seventy-six percent of the respondents supported the idea of incorporating animated videos as instructional aids for teaching pharmaceutics. Students’ performance on the formative assessment in 2014 and 2015 improved significantly compared to the performance of students in 2013 whose lectures did not include animated videos as instructional aids. Conclusions. Implementing animated videos of oral solid dosage form manufacturing as instructional aids resulted in improved student learning and favorable student perceptions about the instructional approach. Therefore, use of animated videos can be incorporated in pharmaceutics teaching to enhance visual learning. PMID:27899837
Camera Control and Geo-Registration for Video Sensor Networks
NASA Astrophysics Data System (ADS)
Davis, James W.
With the use of large video networks, there is a need to coordinate and interpret the video imagery for decision support systems with the goal of reducing the cognitive and perceptual overload of human operators. We present computer vision strategies that enable efficient control and management of cameras to effectively monitor wide-coverage areas, and examine the framework within an actual multi-camera outdoor urban video surveillance network. First, we construct a robust and precise camera control model for commercial pan-tilt-zoom (PTZ) video cameras. In addition to providing a complete functional control mapping for PTZ repositioning, the model can be used to generate wide-view spherical panoramic viewspaces for the cameras. Using the individual camera control models, we next individually map the spherical panoramic viewspace of each camera to a large aerial orthophotograph of the scene. The result provides a unified geo-referenced map representation to permit automatic (and manual) video control and exploitation of cameras in a coordinated manner. The combined framework provides new capabilities for video sensor networks that are of significance and benefit to the broad surveillance/security community.
Semantic-based surveillance video retrieval.
Hu, Weiming; Xie, Dan; Fu, Zhouyu; Zeng, Wenrong; Maybank, Steve
2007-04-01
Visual surveillance produces large amounts of video data. Effective indexing and retrieval from surveillance video databases are very important. Although there are many ways to represent the content of video clips in current video retrieval algorithms, there still exists a semantic gap between users and retrieval systems. Visual surveillance systems supply a platform for investigating semantic-based video retrieval. In this paper, a semantic-based video retrieval framework for visual surveillance is proposed. A cluster-based tracking algorithm is developed to acquire motion trajectories. The trajectories are then clustered hierarchically using the spatial and temporal information, to learn activity models. A hierarchical structure of semantic indexing and retrieval of object activities, where each individual activity automatically inherits all the semantic descriptions of the activity model to which it belongs, is proposed for accessing video clips and individual objects at the semantic level. The proposed retrieval framework supports various queries including queries by keywords, multiple object queries, and queries by sketch. For multiple object queries, succession and simultaneity restrictions, together with depth and breadth first orders, are considered. For sketch-based queries, a method for matching trajectories drawn by users to spatial trajectories is proposed. The effectiveness and efficiency of our framework are tested in a crowded traffic scene.
Designing a scalable video-on-demand server with data sharing
NASA Astrophysics Data System (ADS)
Lim, Hyeran; Du, David H.
2000-12-01
As current disk space and transfer speed increase, the bandwidth between a server and its disks has become critical for video-on-demand (VOD) services. Our VOD server consists of several hosts sharing data on disks through a ring-based network. Data sharing provided by the spatial-reuse ring network between servers and disks not only increases the utilization towards full bandwidth but also improves the availability of videos. Striping and replication methods are introduced in order to improve the efficiency of our VOD server system as well as the availability of videos. We consider tow kinds of resources of a VOD server system. Given a representative access profile, our intention is to propose an algorithm to find an initial condition, place videos on disks in the system successfully. If any copy of a video cannot be placed due to lack of resources, more servers/disks are added. When all videos are place on the disks by our algorithm, the final configuration is determined with indicator of how tolerable it is against the fluctuation in demand of videos. Considering it is a NP-hard problem, our algorithm generates the final configuration with O(M log M) at best, where M is the number of movies.
Designing a scalable video-on-demand server with data sharing
NASA Astrophysics Data System (ADS)
Lim, Hyeran; Du, David H. C.
2001-01-01
As current disk space and transfer speed increase, the bandwidth between a server and its disks has become critical for video-on-demand (VOD) services. Our VOD server consists of several hosts sharing data on disks through a ring-based network. Data sharing provided by the spatial-reuse ring network between servers and disks not only increases the utilization towards full bandwidth but also improves the availability of videos. Striping and replication methods are introduced in order to improve the efficiency of our VOD server system as well as the availability of videos. We consider tow kinds of resources of a VOD server system. Given a representative access profile, our intention is to propose an algorithm to find an initial condition, place videos on disks in the system successfully. If any copy of a video cannot be placed due to lack of resources, more servers/disks are added. When all videos are place on the disks by our algorithm, the final configuration is determined with indicator of how tolerable it is against the fluctuation in demand of videos. Considering it is a NP-hard problem, our algorithm generates the final configuration with O(M log M) at best, where M is the number of movies.
Wilson, Kaitlyn P
2013-01-01
Video modeling is an intervention strategy that has been shown to be effective in improving the social and communication skills of students with autism spectrum disorders, or ASDs. The purpose of this tutorial is to outline empirically supported, step-by-step instructions for the use of video modeling by school-based speech-language pathologists (SLPs) serving students with ASDs. This tutorial draws from the many reviews and meta-analyses of the video modeling literature that have been conducted over the past decade, presenting empirically supported considerations for school-based SLPs who are planning to incorporate video modeling into their service delivery for students with ASD. The 5 overarching procedural phases presented in this tutorial are (a) preparation, (b) recording of the video model, (c) implementation of the video modeling intervention, (d) monitoring of the student's response to the intervention, and (e) planning of the next steps. Video modeling is not only a promising intervention strategy for students with ASD, but it is also a practical and efficient tool that is well-suited to the school setting. This tutorial will facilitate school-based SLPs' incorporation of this empirically supported intervention into their existing strategies for intervention for students with ASD.
A web-based video annotation system for crowdsourcing surveillance videos
NASA Astrophysics Data System (ADS)
Gadgil, Neeraj J.; Tahboub, Khalid; Kirsh, David; Delp, Edward J.
2014-03-01
Video surveillance systems are of a great value to prevent threats and identify/investigate criminal activities. Manual analysis of a huge amount of video data from several cameras over a long period of time often becomes impracticable. The use of automatic detection methods can be challenging when the video contains many objects with complex motion and occlusions. Crowdsourcing has been proposed as an effective method for utilizing human intelligence to perform several tasks. Our system provides a platform for the annotation of surveillance video in an organized and controlled way. One can monitor a surveillance system using a set of tools such as training modules, roles and labels, task management. This system can be used in a real-time streaming mode to detect any potential threats or as an investigative tool to analyze past events. Annotators can annotate video contents assigned to them for suspicious activity or criminal acts. First responders are then able to view the collective annotations and receive email alerts about a newly reported incident. They can also keep track of the annotators' training performance, manage their activities and reward their success. By providing this system, the process of video analysis is made more efficient.
Source-Adaptation-Based Wireless Video Transport: A Cross-Layer Approach
NASA Astrophysics Data System (ADS)
Qu, Qi; Pei, Yong; Modestino, James W.; Tian, Xusheng
2006-12-01
Real-time packet video transmission over wireless networks is expected to experience bursty packet losses that can cause substantial degradation to the transmitted video quality. In wireless networks, channel state information is hard to obtain in a reliable and timely manner due to the rapid change of wireless environments. However, the source motion information is always available and can be obtained easily and accurately from video sequences. Therefore, in this paper, we propose a novel cross-layer framework that exploits only the motion information inherent in video sequences and efficiently combines a packetization scheme, a cross-layer forward error correction (FEC)-based unequal error protection (UEP) scheme, an intracoding rate selection scheme as well as a novel intraframe interleaving scheme. Our objective and subjective results demonstrate that the proposed approach is very effective in dealing with the bursty packet losses occurring on wireless networks without incurring any additional implementation complexity or delay. Thus, the simplicity of our proposed system has important implications for the implementation of a practical real-time video transmission system.
Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions.
Murphy, Gillian; Greene, Ciara M
2016-01-01
Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals.
Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions
Murphy, Gillian; Greene, Ciara M.
2016-01-01
Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals. PMID:27625628
Basu, Amar S
2013-05-21
Emerging assays in droplet microfluidics require the measurement of parameters such as drop size, velocity, trajectory, shape deformation, fluorescence intensity, and others. While micro particle image velocimetry (μPIV) and related techniques are suitable for measuring flow using tracer particles, no tool exists for tracking droplets at the granularity of a single entity. This paper presents droplet morphometry and velocimetry (DMV), a digital video processing software for time-resolved droplet analysis. Droplets are identified through a series of image processing steps which operate on transparent, translucent, fluorescent, or opaque droplets. The steps include background image generation, background subtraction, edge detection, small object removal, morphological close and fill, and shape discrimination. A frame correlation step then links droplets spanning multiple frames via a nearest neighbor search with user-defined matching criteria. Each step can be individually tuned for maximum compatibility. For each droplet found, DMV provides a time-history of 20 different parameters, including trajectory, velocity, area, dimensions, shape deformation, orientation, nearest neighbour spacing, and pixel statistics. The data can be reported via scatter plots, histograms, and tables at the granularity of individual droplets or by statistics accrued over the population. We present several case studies from industry and academic labs, including the measurement of 1) size distributions and flow perturbations in a drop generator, 2) size distributions and mixing rates in drop splitting/merging devices, 3) efficiency of single cell encapsulation devices, 4) position tracking in electrowetting operations, 5) chemical concentrations in a serial drop dilutor, 6) drop sorting efficiency of a tensiophoresis device, 7) plug length and orientation of nonspherical plugs in a serpentine channel, and 8) high throughput tracking of >250 drops in a reinjection system. Performance metrics show that highest accuracy and precision is obtained when the video resolution is >300 pixels per drop. Analysis time increases proportionally with video resolution. The current version of the software provides throughputs of 2-30 fps, suggesting the potential for real time analysis.
Volhard, Theresia; Jessen, Frank; Kleineidam, Luca; Wolfsgruber, Steffen; Lanzerath, Dirk; Wagner, Michael; Maier, Wolfgang
2018-01-01
To investigate whether life-sustaining measures in medical emergency situations are less accepted for an anticipated own future of living with dementia, and to test whether a resource-oriented, in contrast to a deficit-oriented video about the same demented person, would increase the acceptance of such life-saving measures. Experimental study conducted between September 2012 and February 2013. Community dwelling female volunteers living in the region of Bonn, Germany. 278 women aged 19 to 89 (mean age 53.4 years). Presentation of a video on dementia care focusing either on the deficits of a demented woman (negative framing), or focusing on the remaining resources (positive framing) of the same patient. Approval of life-sustaining treatments in five critical medical scenarios under the assumption of having comorbid dementia, before and after the presentation of the brief videos on care. At baseline, the acceptance of life-sustaining measures in critical medical situations was significantly lower in subjects anticipating their own future life with dementia. Participants watching the resource-oriented film on living with dementia had significantly higher post-film acceptance rates compared to those watching the deficit-oriented negatively framed film. This effect particularly emerges if brief and efficient life-saving interventions with a high likelihood of physical recovery are available (eg, antibiotic treatment for pneumonia). Anticipated decisions regarding life-sustaining measures are negatively influenced by the subjective imagination of living with dementia, which might be shaped by common, unquestioned stereotypes. This bias can be reduced by providing audio-visual information on living with dementia which is not only centred around cognitive and functional losses but also focuses on remaining resources and the apparent quality of life. This is particularly true if the medical threat can be treated efficiently. These findings have implications for the practice of formulating, revising, and supporting advance directives.
Discontinuity minimization for omnidirectional video projections
NASA Astrophysics Data System (ADS)
Alshina, Elena; Zakharchenko, Vladyslav
2017-09-01
Advances in display technologies both for head mounted devices and television panels demand resolution increase beyond 4K for source signal in virtual reality video streaming applications. This poses a problem of content delivery trough a bandwidth limited distribution networks. Considering a fact that source signal covers entire surrounding space investigation reviled that compression efficiency may fluctuate 40% in average depending on origin selection at the conversion stage from 3D space to 2D projection. Based on these knowledge the origin selection algorithm for video compression applications has been proposed. Using discontinuity entropy minimization function projection origin rotation may be defined to provide optimal compression results. Outcome of this research may be applied across various video compression solutions for omnidirectional content.
NASA Technical Reports Server (NTRS)
Scott, D. W.
1994-01-01
This report describes efforts to use digital motion video compression technology to develop a highly portable device that would convert 1990-91 era IBM-compatible and/or MacIntosh notebook computers into full-color, motion-video capable multimedia training systems. An architecture was conceived that would permit direct conversion of existing laser-disk-based multimedia courses with little or no reauthoring. The project did not physically demonstrate certain critical video keying techniques, but their implementation should be feasible. This investigation of digital motion video has spawned two significant spaceflight projects at MSFC: one to downlink multiple high-quality video signals from Spacelab, and the other to uplink videoconference-quality video in realtime and high quality video off-line, plus investigate interactive, multimedia-based techniques for enhancing onboard science operations. Other airborne or spaceborne spinoffs are possible.
An investigation into online videos as a source of safety hazard reports.
Nasri, Leila; Baghersad, Milad; Gruss, Richard; Marucchi, Nico Sung Won; Abrahams, Alan S; Ehsani, Johnathon P
2018-06-01
Despite the advantages of video-based product reviews relative to text-based reviews in detecting possible safety hazard issues, video-based product reviews have received no attention in prior literature. This study focuses on online video-based product reviews as possible sources to detect safety hazards. We use two common text mining methods - sentiment and smoke words - to detect safety issues mentioned in videos on the world's most popular video sharing platform, YouTube. 15,402 product review videos from YouTube were identified as containing either negative sentiment or smoke words, and were carefully manually viewed to verify whether hazards were indeed mentioned. 496 true safety issues (3.2%) were found. Out of 9,453 videos that contained smoke words, 322 (3.4%) mentioned safety issues, vs. only 174 (2.9%) of the 5,949 videos with negative sentiment words. Only 1% of randomly-selected videos mentioned safety hazards. Comparing the number of videos with true safety issues that contain sentiment words vs. smoke words in their title or description, we show that smoke words are a more accurate predictor of safety hazards in video-based product reviews than sentiment words. This research also discovers words that are indicative of true hazards versus false positives in online video-based product reviews. Practical applications: The smoke words lists and word sub-groups generated in this paper can be used by manufacturers and consumer product safety organizations to more efficiently identify product safety issues from online videos. This project also provides realistic baselines for resource estimates for future projects that aim to discover safety issues from online videos or reviews. Copyright © 2018 National Safety Council and Elsevier Ltd. All rights reserved.
Evaluation of privacy in high dynamic range video sequences
NASA Astrophysics Data System (ADS)
Řeřábek, Martin; Yuan, Lin; Krasula, Lukáš; Korshunov, Pavel; Fliegel, Karel; Ebrahimi, Touradj
2014-09-01
The ability of high dynamic range (HDR) to capture details in environments with high contrast has a significant impact on privacy in video surveillance. However, the extent to which HDR imaging affects privacy, when compared to a typical low dynamic range (LDR) imaging, is neither well studied nor well understood. To achieve such an objective, a suitable dataset of images and video sequences is needed. Therefore, we have created a publicly available dataset of HDR video for privacy evaluation PEViD-HDR, which is an HDR extension of an existing Privacy Evaluation Video Dataset (PEViD). PEViD-HDR video dataset can help in the evaluations of privacy protection tools, as well as for showing the importance of HDR imaging in video surveillance applications and its influence on the privacy-intelligibility trade-off. We conducted a preliminary subjective experiment demonstrating the usability of the created dataset for evaluation of privacy issues in video. The results confirm that a tone-mapped HDR video contains more privacy sensitive information and details compared to a typical LDR video.
Field Test Data for Detecting Vibrations of a Building Using High-Speed Video Cameras
2017-10-01
ARL-TR-8185 ● OCT 2017 US Army Research Laboratory Field Test Data for Detecting Vibrations of a Building Using High -Speed Video...Field Test Data for Detecting Vibrations of a Building Using High -Speed Video Cameras by Caitlin P Conn and Geoffrey H Goldman Sensors and...June 2016 – October 2017 4. TITLE AND SUBTITLE Field Test Data for Detecting Vibrations of a Building Using High -Speed Video Cameras 5a. CONTRACT
2016-04-04
Terminal Performance of Lead-Free Pistol Bullets in Ballistic Gelatin Using Retarding Force Analysis from High Speed Video ELIJAH COURTNEY, AMY...quantified using high speed video . The temporary stretch cavities and permanent wound cavities are also characterized. Two factors tend to re- duce the...Performance of Lead-Free Pistol Bullets in Ballistic Gelatin Using Retarding Force Analysis from High Speed Video cavity. In addition, stretching can also
Visualizing the history of living spaces.
Ivanov, Yuri; Wren, Christopher; Sorokin, Alexander; Kaur, Ishwinder
2007-01-01
The technology available to building designers now makes it possible to monitor buildings on a very large scale. Video cameras and motion sensors are commonplace in practically every office space, and are slowly making their way into living spaces. The application of such technologies, in particular video cameras, while improving security, also violates privacy. On the other hand, motion sensors, while being privacy-conscious, typically do not provide enough information for a human operator to maintain the same degree of awareness about the space that can be achieved by using video cameras. We propose a novel approach in which we use a large number of simple motion sensors and a small set of video cameras to monitor a large office space. In our system we deployed 215 motion sensors and six video cameras to monitor the 3,000-square-meter office space occupied by 80 people for a period of about one year. The main problem in operating such systems is finding a way to present this highly multidimensional data, which includes both spatial and temporal components, to a human operator to allow browsing and searching recorded data in an efficient and intuitive way. In this paper we present our experiences and the solutions that we have developed in the course of our work on the system. We consider this work to be the first step in helping designers and managers of building systems gain access to information about occupants' behavior in the context of an entire building in a way that is only minimally intrusive to the occupants' privacy.
Linking animal-borne video to accelerometers reveals prey capture variability
Watanabe, Yuuki Y.; Takahashi, Akinori
2013-01-01
Understanding foraging is important in ecology, as it determines the energy gains and, ultimately, the fitness of animals. However, monitoring prey captures of individual animals is difficult. Direct observations using animal-borne videos have short recording periods, and indirect signals (e.g., stomach temperature) are never validated in the field. We took an integrated approach to monitor prey captures by a predator by deploying a video camera (lasting for 85 min) and two accelerometers (on the head and back, lasting for 50 h) on free-swimming Adélie penguins. The movies showed that penguins moved the heads rapidly to capture krill in midwater and fish (Pagothenia borchgrevinki) underneath the sea ice. Captures were remarkably fast (two krill per second in swarms) and efficient (244 krill or 33 P. borchgrevinki in 78–89 min). Prey captures were detected by the signal of head acceleration relative to body acceleration with high sensitivity and specificity (0.83–0.90), as shown by receiver-operating characteristic analysis. Extension of signal analysis to the entire behavioral records showed that krill captures were spatially and temporally more variable than P. borchgrevinki captures. Notably, the frequency distribution of krill capture rate closely followed a power-law model, indicating that the foraging success of penguins depends on a small number of very successful dives. The three steps illustrated here (i.e., video observations, linking video to behavioral signals, and extension of signal analysis) are unique approaches to understanding the spatial and temporal variability of ecologically important events such as foraging. PMID:23341596
Komorkiewicz, Mateusz; Kryjak, Tomasz; Gorgon, Marek
2014-01-01
This article presents an efficient hardware implementation of the Horn-Schunck algorithm that can be used in an embedded optical flow sensor. An architecture is proposed, that realises the iterative Horn-Schunck algorithm in a pipelined manner. This modification allows to achieve data throughput of 175 MPixels/s and makes processing of Full HD video stream (1, 920 × 1, 080 @ 60 fps) possible. The structure of the optical flow module as well as pre- and post-filtering blocks and a flow reliability computation unit is described in details. Three versions of optical flow modules, with different numerical precision, working frequency and obtained results accuracy are proposed. The errors caused by switching from floating- to fixed-point computations are also evaluated. The described architecture was tested on popular sequences from an optical flow dataset of the Middlebury University. It achieves state-of-the-art results among hardware implementations of single scale methods. The designed fixed-point architecture achieves performance of 418 GOPS with power efficiency of 34 GOPS/W. The proposed floating-point module achieves 103 GFLOPS, with power efficiency of 24 GFLOPS/W. Moreover, a 100 times speedup compared to a modern CPU with SIMD support is reported. A complete, working vision system realized on Xilinx VC707 evaluation board is also presented. It is able to compute optical flow for Full HD video stream received from an HDMI camera in real-time. The obtained results prove that FPGA devices are an ideal platform for embedded vision systems. PMID:24526303
Komorkiewicz, Mateusz; Kryjak, Tomasz; Gorgon, Marek
2014-02-12
This article presents an efficient hardware implementation of the Horn-Schunck algorithm that can be used in an embedded optical flow sensor. An architecture is proposed, that realises the iterative Horn-Schunck algorithm in a pipelined manner. This modification allows to achieve data throughput of 175 MPixels/s and makes processing of Full HD video stream (1; 920 × 1; 080 @ 60 fps) possible. The structure of the optical flow module as well as pre- and post-filtering blocks and a flow reliability computation unit is described in details. Three versions of optical flow modules, with different numerical precision, working frequency and obtained results accuracy are proposed. The errors caused by switching from floating- to fixed-point computations are also evaluated. The described architecture was tested on popular sequences from an optical flow dataset of the Middlebury University. It achieves state-of-the-art results among hardware implementations of single scale methods. The designed fixed-point architecture achieves performance of 418 GOPS with power efficiency of 34 GOPS/W. The proposed floating-point module achieves 103 GFLOPS, with power efficiency of 24 GFLOPS/W. Moreover, a 100 times speedup compared to a modern CPU with SIMD support is reported. A complete, working vision system realized on Xilinx VC707 evaluation board is also presented. It is able to compute optical flow for Full HD video stream received from an HDMI camera in real-time. The obtained results prove that FPGA devices are an ideal platform for embedded vision systems.
VOP memory management in MPEG-4
NASA Astrophysics Data System (ADS)
Vaithianathan, Karthikeyan; Panchanathan, Sethuraman
2001-03-01
MPEG-4 is a multimedia standard that requires Video Object Planes (VOPs). Generation of VOPs for any kind of video sequence is still a challenging problem that largely remains unsolved. Nevertheless, if this problem is treated by imposing certain constraints, solutions for specific application domains can be found. MPEG-4 applications in mobile devices is one such domain where the opposite goals namely low power and high throughput are required to be met. Efficient memory management plays a major role in reducing the power consumption. Specifically, efficient memory management for VOPs is difficult because the lifetimes of these objects vary and these life times may be overlapping. Varying life times of the objects requires dynamic memory management where memory fragmentation is a key problem that needs to be addressed. In general, memory management systems address this problem by following a combination of strategy, policy and mechanism. For MPEG4 based mobile devices that lack instruction processors, a hardware based memory management solution is necessary. In MPEG4 based mobile devices that have a RISC processor, using a Real time operating system (RTOS) for this memory management task is not expected to be efficient because the strategies and policies used by the ROTS is often tuned for handling memory segments of smaller sizes compared to object sizes. Hence, a memory management scheme specifically tuned for VOPs is important. In this paper, different strategies, policies and mechanisms for memory management are considered and an efficient combination is proposed for the case of VOP memory management along with a hardware architecture, which can handle the proposed combination.
Efficient burst image compression using H.265/HEVC
NASA Astrophysics Data System (ADS)
Roodaki-Lavasani, Hoda; Lainema, Jani
2014-02-01
New imaging use cases are emerging as more powerful camera hardware is entering consumer markets. One family of such use cases is based on capturing multiple pictures instead of just one when taking a photograph. That kind of a camera operation allows e.g. selecting the most successful shot from a sequence of images, showing what happened right before or after the shot was taken or combining the shots by computational means to improve either visible characteristics of the picture (such as dynamic range or focus) or the artistic aspects of the photo (e.g. by superimposing pictures on top of each other). Considering that photographic images are typically of high resolution and quality and the fact that these kind of image bursts can consist of at least tens of individual pictures, an efficient compression algorithm is desired. However, traditional video coding approaches fail to provide the random access properties these use cases require to achieve near-instantaneous access to the pictures in the coded sequence. That feature is critical to allow users to browse the pictures in an arbitrary order or imaging algorithms to extract desired pictures from the sequence quickly. This paper proposes coding structures that provide such random access properties while achieving coding efficiency superior to existing image coders. The results indicate that using HEVC video codec with a single reference picture fixed for the whole sequence can achieve nearly as good compression as traditional IPPP coding structures. It is also shown that the selection of the reference frame can further improve the coding efficiency.
Use of videos to support teaching and learning of clinical skills in nursing education: A review.
Forbes, Helen; Oprescu, Florin I; Downer, Terri; Phillips, Nicole M; McTier, Lauren; Lord, Bill; Barr, Nigel; Alla, Kristel; Bright, Peter; Dayton, Jeanne; Simbag, Vilma; Visser, Irene
2016-07-01
Information and communications technology is influencing the delivery of education in tertiary institutions. In particular, the increased use of videos for teaching and learning clinical skills in nursing may be a promising direction to pursue, yet we need to better document the current research in this area of inquiry. The aim of this paper was to explore and document the current areas of research into the use of videos to support teaching and learning of clinical skills in nursing education. The four main areas of current and future research are effectiveness, efficiency, usage, and quality of videos as teaching and learning materials. While there is a clear need for additional research in the area, the use of videos seems to be a promising, relevant, and increasingly used instructional strategy that could enhance the quality of clinical skills education. Copyright © 2016 Elsevier Ltd. All rights reserved.
A method of operation scheduling based on video transcoding for cluster equipment
NASA Astrophysics Data System (ADS)
Zhou, Haojie; Yan, Chun
2018-04-01
Because of the cluster technology in real-time video transcoding device, the application of facing the massive growth in the number of video assignments and resolution and bit rate of diversity, task scheduling algorithm, and analyze the current mainstream of cluster for real-time video transcoding equipment characteristics of the cluster, combination with the characteristics of the cluster equipment task delay scheduling algorithm is proposed. This algorithm enables the cluster to get better performance in the generation of the job queue and the lower part of the job queue when receiving the operation instruction. In the end, a small real-time video transcode cluster is constructed to analyze the calculation ability, running time, resource occupation and other aspects of various algorithms in operation scheduling. The experimental results show that compared with traditional clustering task scheduling algorithm, task delay scheduling algorithm has more flexible and efficient characteristics.
Privacy enabling technology for video surveillance
NASA Astrophysics Data System (ADS)
Dufaux, Frédéric; Ouaret, Mourad; Abdeljaoued, Yousri; Navarro, Alfonso; Vergnenègre, Fabrice; Ebrahimi, Touradj
2006-05-01
In this paper, we address the problem privacy in video surveillance. We propose an efficient solution based on transformdomain scrambling of regions of interest in a video sequence. More specifically, the sign of selected transform coefficients is flipped during encoding. We address more specifically the case of Motion JPEG 2000. Simulation results show that the technique can be successfully applied to conceal information in regions of interest in the scene while providing with a good level of security. Furthermore, the scrambling is flexible and allows adjusting the amount of distortion introduced. This is achieved with a small impact on coding performance and negligible computational complexity increase. In the proposed video surveillance system, heterogeneous clients can remotely access the system through the Internet or 2G/3G mobile phone network. Thanks to the inherently scalable Motion JPEG 2000 codestream, the server is able to adapt the resolution and bandwidth of the delivered video depending on the usage environment of the client.
Extensive video-game experience alters cortical networks for complex visuomotor transformations.
Granek, Joshua A; Gorbet, Diana J; Sergio, Lauren E
2010-10-01
Using event-related functional magnetic resonance imaging (fMRI), we examined the effect of video-game experience on the neural control of increasingly complex visuomotor tasks. Previously, skilled individuals have demonstrated the use of a more efficient movement control brain network, including the prefrontal, premotor, primary sensorimotor and parietal cortices. Our results extend and generalize this finding by documenting additional prefrontal cortex activity in experienced video gamers planning for complex eye-hand coordination tasks that are distinct from actual video-game play. These changes in activation between non-gamers and extensive gamers are putatively related to the increased online control and spatial attention required for complex visually guided reaching. These data suggest that the basic cortical network for processing complex visually guided reaching is altered by extensive video-game play. Crown Copyright © 2009. Published by Elsevier Srl. All rights reserved.
The Simple Video Coder: A free tool for efficiently coding social video data.
Barto, Daniel; Bird, Clark W; Hamilton, Derek A; Fink, Brandi C
2017-08-01
Videotaping of experimental sessions is a common practice across many disciplines of psychology, ranging from clinical therapy, to developmental science, to animal research. Audio-visual data are a rich source of information that can be easily recorded; however, analysis of the recordings presents a major obstacle to project completion. Coding behavior is time-consuming and often requires ad-hoc training of a student coder. In addition, existing software is either prohibitively expensive or cumbersome, which leaves researchers with inadequate tools to quickly process video data. We offer the Simple Video Coder-free, open-source software for behavior coding that is flexible in accommodating different experimental designs, is intuitive for students to use, and produces outcome measures of event timing, frequency, and duration. Finally, the software also offers extraction tools to splice video into coded segments suitable for training future human coders or for use as input for pattern classification algorithms.
Performance evaluation of MPEG internet video coding
NASA Astrophysics Data System (ADS)
Luo, Jiajia; Wang, Ronggang; Fan, Kui; Wang, Zhenyu; Li, Ge; Wang, Wenmin
2016-09-01
Internet Video Coding (IVC) has been developed in MPEG by combining well-known existing technology elements and new coding tools with royalty-free declarations. In June 2015, IVC project was approved as ISO/IEC 14496-33 (MPEG- 4 Internet Video Coding). It is believed that this standard can be highly beneficial for video services in the Internet domain. This paper evaluates the objective and subjective performances of IVC by comparing it against Web Video Coding (WVC), Video Coding for Browsers (VCB) and AVC High Profile. Experimental results show that IVC's compression performance is approximately equal to that of the AVC High Profile for typical operational settings, both for streaming and low-delay applications, and is better than WVC and VCB.
Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel
NASA Technical Reports Server (NTRS)
Shalkhauser, Mary JO; Whyte, Wayne A., Jr.
1989-01-01
Advances in very large-scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible and potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for a DPCM-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the CODEC are described, and performance results are provided.
Digital CODEC for real-time processing of broadcast quality video signals at 1.8 bits/pixel
NASA Technical Reports Server (NTRS)
Shalkhauser, Mary JO; Whyte, Wayne A.
1991-01-01
Advances in very large scale integration and recent work in the field of bandwidth efficient digital modulation techniques have combined to make digital video processing technically feasible an potentially cost competitive for broadcast quality television transmission. A hardware implementation was developed for DPCM (differential pulse code midulation)-based digital television bandwidth compression algorithm which processes standard NTSC composite color television signals and produces broadcast quality video in real time at an average of 1.8 bits/pixel. The data compression algorithm and the hardware implementation of the codec are described, and performance results are provided.
Automatic background updating for video-based vehicle detection
NASA Astrophysics Data System (ADS)
Hu, Chunhai; Li, Dongmei; Liu, Jichuan
2008-03-01
Video-based vehicle detection is one of the most valuable techniques for the Intelligent Transportation System (ITS). The widely used video-based vehicle detection technique is the background subtraction method. The key problem of this method is how to subtract and update the background effectively. In this paper an efficient background updating scheme based on Zone-Distribution for vehicle detection is proposed to resolve the problems caused by sudden camera perturbation, sudden or gradual illumination change and the sleeping person problem. The proposed scheme is robust and fast enough to satisfy the real-time constraints of vehicle detection.
Increasing Speed of Processing With Action Video Games
Dye, Matthew W.G.; Green, C. Shawn; Bavelier, Daphne
2010-01-01
In many everyday situations, speed is of the essence. However, fast decisions typically mean more mistakes. To this day, it remains unknown whether reaction times can be reduced with appropriate training, within one individual, across a range of tasks, and without compromising accuracy. Here we review evidence that the very act of playing action video games significantly reduces reaction times without sacrificing accuracy. Critically, this increase in speed is observed across various tasks beyond game situations. Video gaming may therefore provide an efficient training regimen to induce a general speeding of perceptual reaction times without decreases in accuracy of performance. PMID:20485453
Operationally Efficient Propulsion System Study (OEPSS): OEPSS Video Script
NASA Technical Reports Server (NTRS)
Wong, George S.; Waldrop, Glen S.; Trent, Donnie (Editor)
1992-01-01
The OEPSS video film, along with the OEPSS Databooks, provides a data base of current launch experience that will be useful for design of future expendable and reusable launch systems. The focus is on the launch processing of propulsion systems. A brief 15-minute overview of the OEPSS study results is found at the beginning of the film. The remainder of the film discusses in more detail: current ground operations at the Kennedy Space Center; typical operations issues and problems; critical operations technologies; and efficiency of booster and space propulsion systems. The impact of system architecture on the launch site and its facility infrastucture is emphasized. Finally, a particularly valuable analytical tool, developed during the OEPSS study, that will provide for the "first time" a quantitative measure of operations efficiency for a propulsion system is described.
State of the art in video system performance
NASA Technical Reports Server (NTRS)
Lewis, Michael J.
1990-01-01
The closed circuit television (CCTV) system that is onboard the Space Shuttle has the following capabilities: camera, video signal switching and routing unit (VSU); and Space Shuttle video tape recorder. However, this system is inadequate for use with many experiments that require video imaging. In order to assess the state-of-the-art in video technology and data storage systems, a survey was conducted of the High Resolution, High Frame Rate Video Technology (HHVT) products. The performance of the state-of-the-art solid state cameras and image sensors, video recording systems, data transmission devices, and data storage systems versus users' requirements are shown graphically.
[Online-conference using JGN.].
Nakayama, Kazuya; Kojima, Kazuhiko; Suzuki, Masayuki; Kikuchi, Yuzo; Iwahara, Masayoshi; Matsui, Osamu; Noguchi, Masato
2004-01-01
Telemedicine and online conference systems have some benefits so that equalizing medical level, improving efficiency of medical care and improving service for patients. It is possible to give advice and to support its medical projects stationed in other facility and to provide the same quality treatments for patients. In this paper, we set up an experimental network system to teleconference using JGN (Japan Gigabit Network) and tried to discussion alternatively for case study between Kanazawa university and Fukui red cross hospital, 70 km away. The JGN used in this study is an ultra-high-speed network for the purpose of research and development. Kanazawa university, and Fukui red cross hospital are connected by a 10 Mbps communication link of the JGN. We tried online conference on the experimental network using video chat system. In result, using video chat system, the average transmission rate of MRI images (256 X 256pixel, 16bit) is 0.2 s/frame.
Kim, Min-Gu; Moon, Hae-Min; Chung, Yongwha; Pan, Sung Bum
2012-01-01
Biometrics verification can be efficiently used for intrusion detection and intruder identification in video surveillance systems. Biometrics techniques can be largely divided into traditional and the so-called soft biometrics. Whereas traditional biometrics deals with physical characteristics such as face features, eye iris, and fingerprints, soft biometrics is concerned with such information as gender, national origin, and height. Traditional biometrics is versatile and highly accurate. But it is very difficult to get traditional biometric data from a distance and without personal cooperation. Soft biometrics, although featuring less accuracy, can be used much more freely though. Recently, many researchers have been made on human identification using soft biometrics data collected from a distance. In this paper, we use both traditional and soft biometrics for human identification and propose a framework for solving such problems as lighting, occlusion, and shadowing. PMID:22919273
Zero-block mode decision algorithm for H.264/AVC.
Lee, Yu-Ming; Lin, Yinyi
2009-03-01
In the previous paper , we proposed a zero-block intermode decision algorithm for H.264 video coding based upon the number of zero-blocks of 4 x 4 DCT coefficients between the current macroblock and the co-located macroblock. The proposed algorithm can achieve significant improvement in computation, but the computation performance is limited for high bit-rate coding. To improve computation efficiency, in this paper, we suggest an enhanced zero-block decision algorithm, which uses an early zero-block detection method to compute the number of zero-blocks instead of direct DCT and quantization (DCT/Q) calculation and incorporates two adequate decision methods into semi-stationary and nonstationary regions of a video sequence. In addition, the zero-block decision algorithm is also applied to the intramode prediction in the P frame. The enhanced zero-block decision algorithm brings out a reduction of average 27% of total encoding time compared to the zero-block decision algorithm.
Kim, Min-Gu; Moon, Hae-Min; Chung, Yongwha; Pan, Sung Bum
2012-01-01
Biometrics verification can be efficiently used for intrusion detection and intruder identification in video surveillance systems. Biometrics techniques can be largely divided into traditional and the so-called soft biometrics. Whereas traditional biometrics deals with physical characteristics such as face features, eye iris, and fingerprints, soft biometrics is concerned with such information as gender, national origin, and height. Traditional biometrics is versatile and highly accurate. But it is very difficult to get traditional biometric data from a distance and without personal cooperation. Soft biometrics, although featuring less accuracy, can be used much more freely though. Recently, many researchers have been made on human identification using soft biometrics data collected from a distance. In this paper, we use both traditional and soft biometrics for human identification and propose a framework for solving such problems as lighting, occlusion, and shadowing.
Ranking Highlights in Personal Videos by Analyzing Edited Videos.
Sun, Min; Farhadi, Ali; Chen, Tseng-Hung; Seitz, Steve
2016-11-01
We present a fully automatic system for ranking domain-specific highlights in unconstrained personal videos by analyzing online edited videos. A novel latent linear ranking model is proposed to handle noisy training data harvested online. Specifically, given a targeted domain such as "surfing," our system mines the YouTube database to find pairs of raw and their corresponding edited videos. Leveraging the assumption that an edited video is more likely to contain highlights than the trimmed parts of the raw video, we obtain pair-wise ranking constraints to train our model. The learning task is challenging due to the amount of noise and variation in the mined data. Hence, a latent loss function is incorporated to mitigate the issues caused by the noise. We efficiently learn the latent model on a large number of videos (about 870 min in total) using a novel EM-like procedure. Our latent ranking model outperforms its classification counterpart and is fairly competitive compared with a fully supervised ranking system that requires labels from Amazon Mechanical Turk. We further show that a state-of-the-art audio feature mel-frequency cepstral coefficients is inferior to a state-of-the-art visual feature. By combining both audio-visual features, we obtain the best performance in dog activity, surfing, skating, and viral video domains. Finally, we show that impressive highlights can be detected without additional human supervision for seven domains (i.e., skating, surfing, skiing, gymnastics, parkour, dog activity, and viral video) in unconstrained personal videos.
Heterogeneity image patch index and its application to consumer video summarization.
Dang, Chinh T; Radha, Hayder
2014-06-01
Automatic video summarization is indispensable for fast browsing and efficient management of large video libraries. In this paper, we introduce an image feature that we refer to as heterogeneity image patch (HIP) index. The proposed HIP index provides a new entropy-based measure of the heterogeneity of patches within any picture. By evaluating this index for every frame in a video sequence, we generate a HIP curve for that sequence. We exploit the HIP curve in solving two categories of video summarization applications: key frame extraction and dynamic video skimming. Under the key frame extraction frame-work, a set of candidate key frames is selected from abundant video frames based on the HIP curve. Then, a proposed patch-based image dissimilarity measure is used to create affinity matrix of these candidates. Finally, a set of key frames is extracted from the affinity matrix using a min–max based algorithm. Under video skimming, we propose a method to measure the distance between a video and its skimmed representation. The video skimming problem is then mapped into an optimization framework and solved by minimizing a HIP-based distance for a set of extracted excerpts. The HIP framework is pixel-based and does not require semantic information or complex camera motion estimation. Our simulation results are based on experiments performed on consumer videos and are compared with state-of-the-art methods. It is shown that the HIP approach outperforms other leading methods, while maintaining low complexity.
Predictive Displays for High Latency Teleoperation
2016-08-04
PREDICTIVE DISPLAYS FOR HIGH LATENCY TELEOPERATION” Analysis of existing approach 3 C om m s. C hannel Vehicle OCU D Throttle, Steer, Brake D Video ...presents opportunity mitigate outgoing latency. • Video is not governed by physics, however, video is dependent on the state of the vehicle, which...Commands, estimates UDP: H.264 Video UDP: Vehicle state • C++ implementation • 2 threads • OpenCV for image manipulation • FFMPEG for video decoding
ERIC Educational Resources Information Center
Ozkan, Serife Yucesoy
2013-01-01
The purposes of this study were to (1) compare peer and self-video modeling in terms of effectiveness and efficiency in teaching first aid skills to children with intellectual disability and (2) analyze the error patterns made in probe sessions to determine whether the children who took the role of sufferers during the first aid skill sessions…
Fast repurposing of high-resolution stereo video content for mobile use
NASA Astrophysics Data System (ADS)
Karaoglu, Ali; Lee, Bong Ho; Boev, Atanas; Cheong, Won-Sik; Gotchev, Atanas
2012-06-01
3D video content is captured and created mainly in high resolution targeting big cinema or home TV screens. For 3D mobile devices, equipped with small-size auto-stereoscopic displays, such content has to be properly repurposed, preferably in real-time. The repurposing requires not only spatial resizing but also properly maintaining the output stereo disparity, as it should deliver realistic, pleasant and harmless 3D perception. In this paper, we propose an approach to adapt the disparity range of the source video to the comfort disparity zone of the target display. To achieve this, we adapt the scale and the aspect ratio of the source video. We aim at maximizing the disparity range of the retargeted content within the comfort zone, and minimizing the letterboxing of the cropped content. The proposed algorithm consists of five stages. First, we analyse the display profile, which characterises what 3D content can be comfortably observed in the target display. Then, we perform fast disparity analysis of the input stereoscopic content. Instead of returning the dense disparity map, it returns an estimate of the disparity statistics (min, max, meanand variance) per frame. Additionally, we detect scene cuts, where sharp transitions in disparities occur. Based on the estimated input, and desired output disparity ranges, we derive the optimal cropping parameters and scale of the cropping window, which would yield the targeted disparity range and minimize the area of cropped and letterboxed content. Once the rescaling and cropping parameters are known, we perform resampling procedure using spline-based and perceptually optimized resampling (anti-aliasing) kernels, which have also a very efficient computational structure. Perceptual optimization is achieved through adjusting the cut-off frequency of the anti-aliasing filter with the throughput of the target display.
Converting laserdisc video to digital video: a demonstration project using brain animations.
Jao, C S; Hier, D B; Brint, S U
1995-01-01
Interactive laserdiscs are of limited value in large group learning situations due to the expense of establishing multiple workstations. The authors implemented an alternative to laserdisc video by using indexed digital video combined with an expert system. High-quality video was captured from a laserdisc player and combined with waveform audio into an audio-video-interleave (AVI) file format in the Microsoft Video-for-Windows environment (Microsoft Corp., Seattle, WA). With the use of an expert system, a knowledge-based computer program provided random access to these indexed AVI files. The program can be played on any multimedia computer without the need for laserdiscs. This system offers a high level of interactive video without the overhead and cost of a laserdisc player.
NASA Astrophysics Data System (ADS)
Carraro, L.; Simonetta, M.; Benetti, G.; Tramonte, A.; Capelli, G.; Benedetti, M.; Randone, E. M.; Ylisaukko-oja, A.; Keränen, K.; Facchinetti, T.; Giuliani, G.
2017-02-01
LUMENTILE (LUMinous ElectroNic TILE) is a project funded by the European Commission with the goal of developing a luminous tile with novel functionalities, capable of changing its color and interact with the user. Applications include interior/exterior tile for walls and floors covering, high-efficiency luminaries, and advertising under the form of giant video screens. High overall electrical efficiency of the tile is mandatory, as several millions of square meters are foreseen to be installed each year. Demand is for high uniformity of the illumination of the top tile surface, and for high optical extraction efficiency. These features are achieved by smart light management, using a new approach based on light guiding slab and spatially selective light extraction obtained using both diffusion and/or reflection from the top and bottom interfaces of the optical layer. Planar and edge configurations for the RGB LEDs are considered and compared. A square shape with side length from 20cm to 60cm is considered for the tiles. The electronic circuit layout must optimize the electrical efficiency, and be compatible with low-cost roll-to-roll production on flexible substrates. LED heat management is tackled by using dedicated solutions that allow operation in thermally harsh environment. An approach based on OLEDs has also been considered, still needing improvement on emitted power and ruggedness.
Jensen, Scott A; Blumberg, Sean; Browning, Megan
2017-09-01
Although time-out has been demonstrated to be effective across multiple settings, little research exists on effective methods for training others to implement time-out. The present set of studies is an exploratory analysis of a structured feedback method for training time-out using repeated role-plays. The three studies examined (a) a between-subjects comparison to more a traditional didactic/video modeling method of time-out training, (b) a within-subjects comparison to traditional didactic/video modeling training for another skill, and (c) the impact of structured feedback training on in-home time-out implementation. Though findings are only preliminary and more research is needed, the structured feedback method appears across studies to be an efficient, effective method that demonstrates good maintenance of skill up to 3 months post training. Findings suggest, though do not confirm, a benefit of the structured feedback method over a more traditional didactic/video training model. Implications and further research on the method are discussed.
Objective grading of facial paralysis using Local Binary Patterns in video processing.
He, Shu; Soraghan, John J; O'Reilly, Brian F
2008-01-01
This paper presents a novel framework for objective measurement of facial paralysis in biomedial videos. The motion information in the horizontal and vertical directions and the appearance features on the apex frames are extracted based on the Local Binary Patterns (LBP) on the temporal-spatial domain in each facial region. These features are temporally and spatially enhanced by the application of block schemes. A multi-resolution extension of uniform LBP is proposed to efficiently combine the micro-patterns and large-scale patterns into a feature vector, which increases the algorithmic robustness and reduces noise effects while still retaining computational simplicity. The symmetry of facial movements is measured by the Resistor-Average Distance (RAD) between LBP features extracted from the two sides of the face. Support Vector Machine (SVM) is applied to provide quantitative evaluation of facial paralysis based on the House-Brackmann (H-B) Scale. The proposed method is validated by experiments with 197 subject videos, which demonstrates its accuracy and efficiency.
A portable wireless power transmission system for video capsule endoscopes.
Shi, Yu; Yan, Guozheng; Zhu, Bingquan; Liu, Gang
2015-01-01
Wireless power transmission (WPT) technology can solve the energy shortage problem of the video capsule endoscope (VCE) powered by button batteries, but the fixed platform limited its clinical application. This paper presents a portable WPT system for VCE. Besides portability, power transfer efficiency and stability are considered as the main indexes of optimization design of the system, which consists of the transmitting coil structure, portable control box, operating frequency, magnetic core and winding of receiving coil. Upon the above principles, the correlation parameters are measured, compared and chosen. Finally, through experiments on the platform, the methods are tested and evaluated. In the gastrointestinal tract of small pig, the VCE is supplied with sufficient energy by the WPT system, and the energy conversion efficiency is 2.8%. The video obtained is clear with a resolution of 320×240 and a frame rate of 30 frames per second. The experiments verify the feasibility of design scheme, and further improvement direction is discussed.
Novel inter and intra prediction tools under consideration for the emerging AV1 video codec
NASA Astrophysics Data System (ADS)
Joshi, Urvang; Mukherjee, Debargha; Han, Jingning; Chen, Yue; Parker, Sarah; Su, Hui; Chiang, Angie; Xu, Yaowu; Liu, Zoe; Wang, Yunqing; Bankoski, Jim; Wang, Chen; Keyder, Emil
2017-09-01
Google started the WebM Project in 2010 to develop open source, royalty- free video codecs designed specifically for media on the Web. The second generation codec released by the WebM project, VP9, is currently served by YouTube, and enjoys billions of views per day. Realizing the need for even greater compression efficiency to cope with the growing demand for video on the web, the WebM team embarked on an ambitious project to develop a next edition codec AV1, in a consortium of major tech companies called the Alliance for Open Media, that achieves at least a generational improvement in coding efficiency over VP9. In this paper, we focus primarily on new tools in AV1 that improve the prediction of pixel blocks before transforms, quantization and entropy coding are invoked. Specifically, we describe tools and coding modes that improve intra, inter and combined inter-intra prediction. Results are presented on standard test sets.
Remote Video Auditing in the Surgical Setting.
Pedersen, Anne; Getty Ritter, Elizabeth; Beaton, Megan; Gibbons, David
2017-02-01
Remote video auditing, a method first adopted by the food preparation industry, was later introduced to the health care industry as a novel approach to improving hand hygiene practices. This strategy yielded tremendous and sustained improvement, causing leaders to consider the potential effects of such technology on the complex surgical environment. This article outlines the implementation of remote video auditing and the first year of activity, outcomes, and measurable successes in a busy surgery department in the eastern United States. A team of anesthesia care providers, surgeons, and OR personnel used low-resolution cameras, large-screen displays, and cell phone alerts to make significant progress in three domains: application of the Universal Protocol for preventing wrong site, wrong procedure, wrong person surgery; efficiency metrics; and cleaning compliance. The use of cameras with real-time auditing and results-sharing created an environment of continuous learning, compliance, and synergy, which has resulted in a safer, cleaner, and more efficient OR. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Grossman, Barry G.; Gonzalez, Frank S.; Blatt, Joel H.; Hooker, Jeffery A.
1992-03-01
The development of efficient high speed techniques to recognize, locate, and quantify damage is vitally important for successful automated inspection systems such as ones used for the inspection of undersea pipelines. Two critical problems must be solved to achieve these goals: the reduction of nonuseful information present in the video image and automatic recognition and quantification of extent and location of damage. Artificial neural network processed moire profilometry appears to be a promising technique to accomplish this. Real time video moire techniques have been developed which clearly distinguish damaged and undamaged areas on structures, thus reducing the amount of extraneous information input into an inspection system. Artificial neural networks have demonstrated advantages for image processing, since they can learn the desired response to a given input and are inherently fast when implemented in hardware due to their parallel computing architecture. Video moire images of pipes with dents of different depths were used to train a neural network, with the desired output being the location and severity of the damage. The system was then successfully tested with a second series of moire images. The techniques employed and the results obtained are discussed.
Energy Efficient Legged Robotics at Sandia Labs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buerger, Steve
Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the first in a series, describes early development and initial integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.
Energy Efficient Legged Robotics at Sandia Labs
Buerger, Steve
2018-05-07
Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the first in a series, describes early development and initial integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.
ERIC Educational Resources Information Center
Cihak, David F.; Bowlin, Tammy
2009-01-01
The researchers examined the use of video modeling by means of a handheld computer as an alternative instructional delivery system for learning basic geometry skills. Three high school students with learning disabilities participated in this study. Through video modeling, teacher-developed video clips showing step-by-step problem solving processes…
Videos for Teachers: Successful Teaching Strategies in Middle and High School Classrooms. [CD-ROM].
ERIC Educational Resources Information Center
Teachers Network, New York, NY.
This CD-ROM presents six videos that feature veteran middle and high school teachers in action in their classrooms. Each video offers links to supplemental education resources, including innovative lesson plans. The six videos are: "Monsters and Myths" (a humanities unit for middle school students); "The Bleeding Edge" (a thematic…
A Powerful Teaching Tool: Self-Produced Videos
ERIC Educational Resources Information Center
Case, Patty; Hino, Jeff
2010-01-01
Video--once complex and expensive to create with high distribution costs--has become more affordable and highly accessible in addition to being a powerful teaching tool. Self-produced videos are one way educators can connect with a growing number of on-line learners. The authors describe a pilot project in which a series of video clips were…
Tensor Factorization for Low-Rank Tensor Completion.
Zhou, Pan; Lu, Canyi; Lin, Zhouchen; Zhang, Chao
2018-03-01
Recently, a tensor nuclear norm (TNN) based method was proposed to solve the tensor completion problem, which has achieved state-of-the-art performance on image and video inpainting tasks. However, it requires computing tensor singular value decomposition (t-SVD), which costs much computation and thus cannot efficiently handle tensor data, due to its natural large scale. Motivated by TNN, we propose a novel low-rank tensor factorization method for efficiently solving the 3-way tensor completion problem. Our method preserves the low-rank structure of a tensor by factorizing it into the product of two tensors of smaller sizes. In the optimization process, our method only needs to update two smaller tensors, which can be more efficiently conducted than computing t-SVD. Furthermore, we prove that the proposed alternating minimization algorithm can converge to a Karush-Kuhn-Tucker point. Experimental results on the synthetic data recovery, image and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state-of-the-arts including the TNN and matricization methods.
Robust efficient video fingerprinting
NASA Astrophysics Data System (ADS)
Puri, Manika; Lubin, Jeffrey
2009-02-01
We have developed a video fingerprinting system with robustness and efficiency as the primary and secondary design criteria. In extensive testing, the system has shown robustness to cropping, letter-boxing, sub-titling, blur, drastic compression, frame rate changes, size changes and color changes, as well as to the geometric distortions often associated with camcorder capture in cinema settings. Efficiency is afforded by a novel two-stage detection process in which a fast matching process first computes a number of likely candidates, which are then passed to a second slower process that computes the overall best match with minimal false alarm probability. One key component of the algorithm is a maximally stable volume computation - a three-dimensional generalization of maximally stable extremal regions - that provides a content-centric coordinate system for subsequent hash function computation, independent of any affine transformation or extensive cropping. Other key features include an efficient bin-based polling strategy for initial candidate selection, and a final SIFT feature-based computation for final verification. We describe the algorithm and its performance, and then discuss additional modifications that can provide further improvement to efficiency and accuracy.
Αutomated 2D shoreline detection from coastal video imagery: an example from the island of Crete
NASA Astrophysics Data System (ADS)
Velegrakis, A. F.; Trygonis, V.; Vousdoukas, M. I.; Ghionis, G.; Chatzipavlis, A.; Andreadis, O.; Psarros, F.; Hasiotis, Th.
2015-06-01
Beaches are both sensitive and critical coastal system components as they: (i) are vulnerable to coastal erosion (due to e.g. wave regime changes and the short- and long-term sea level rise) and (ii) form valuable ecosystems and economic resources. In order to identify/understand the current and future beach morphodynamics, effective monitoring of the beach spatial characteristics (e.g. the shoreline position) at adequate spatio-temporal resolutions is required. In this contribution we present the results of a new, fully-automated detection method of the (2-D) shoreline positions using high resolution video imaging from a Greek island beach (Ammoudara, Crete). A fully-automated feature detection method was developed/used to monitor the shoreline position in geo-rectified coastal imagery obtained through a video system set to collect 10 min videos every daylight hour with a sampling rate of 5 Hz, from which snapshot, time-averaged (TIMEX) and variance images (SIGMA) were generated. The developed coastal feature detector is based on a very fast algorithm using a localised kernel that progressively grows along the SIGMA or TIMEX digital image, following the maximum backscatter intensity along the feature of interest; the detector results were found to compare very well with those obtained from a semi-automated `manual' shoreline detection procedure. The automated procedure was tested on video imagery obtained from the eastern part of Ammoudara beach in two 5-day periods, a low wave energy period (6-10 April 2014) and a high wave energy period (1 -5 November 2014). The results showed that, during the high wave energy event, there have been much higher levels of shoreline variance which, however, appeared to be similarly unevenly distributed along the shoreline as that related to the low wave energy event, Shoreline variance `hot spots' were found to be related to the presence/architecture of an offshore submerged shallow beachrock reef, found at a distance of 50-80 m from the shoreline. Hydrodynamic observations during the high wave energy period showed (a) that there is very significant wave energy attenuation by the offshore reef and (b) the generation of significant longshore and rip flows. The study results suggest that the developed methodology can provide a fast, powerful and efficient beach monitoring tool, particularly if combined with pertinent hydrodynamic observations.
Weighted-MSE based on saliency map for assessing video quality of H.264 video streams
NASA Astrophysics Data System (ADS)
Boujut, H.; Benois-Pineau, J.; Hadar, O.; Ahmed, T.; Bonnet, P.
2011-01-01
Human vision system is very complex and has been studied for many years specifically for purposes of efficient encoding of visual, e.g. video content from digital TV. There have been physiological and psychological evidences which indicate that viewers do not pay equal attention to all exposed visual information, but only focus on certain areas known as focus of attention (FOA) or saliency regions. In this work, we propose a novel based objective quality assessment metric, for assessing the perceptual quality of decoded video sequences affected by transmission errors and packed loses. The proposed method weights the Mean Square Error (MSE), Weighted-MSE (WMSE), according to the calculated saliency map at each pixel. Our method was validated trough subjective quality experiments.
Pornographic information of Internet views detection method based on the connected areas
NASA Astrophysics Data System (ADS)
Wang, Huibai; Fan, Ajie
2017-01-01
Nowadays online porn video broadcasting and downloading is very popular. In view of the widespread phenomenon of Internet pornography, this paper proposed a new method of pornographic video detection based on connected areas. Firstly, decode the video into a serious of static images and detect skin color on the extracted key frames. If the area of skin color reaches a certain threshold, use the AdaBoost algorithm to detect the human face. Judge the connectivity of the human face and the large area of skin color to determine whether detect the sensitive area finally. The experimental results show that the method can effectively remove the non-pornographic videos contain human who wear less. This method can improve the efficiency and reduce the workload of detection.
A quality assessment of cardiac auscultation material on YouTube.
Camm, Christian F; Sunderland, Nicholas; Camm, A John
2013-02-01
YouTube is a highly utilized Web site that contains a large amount of medical educational material. Although some studies have assessed the education material contained on the Web site, little analysis of cardiology content has been made. This study aimed to assess the quality of videos relating to heart sounds and murmurs contained on YouTube. We hypothesized that the quality of video files purporting to provide education on heart auscultation would be highly variable. Videos were searched for using the terms "heart sounds," "heart murmur," and "heart auscultation." A built-in educational filter was employed, and manual rejection of non-English language and nonrelated videos was undertaken. Remaining videos were analyzed for content, and suitable videos were scored using a purpose-built tool. YouTube search located 3350 videos in total, and of these, 22 were considered suitable for scoring. The average score was 4.07 out of 7 (standard deviation, 1.35). Six videos scored 5.5 or greater and 5 videos scoring 2.5 or less. There was no correlation between video score and YouTube indices of preference (hits, likes, dislikes, or search page). The quality of videos found in this study was highly variable. YouTube indications of preference were of no value in determining the value of video content. Therefore, teaching institutions or professional societies should endeavor to identify and highlight good online teaching resources. YouTube contains many videos relating to cardiac auscultation, but very few are valuable education resources. © 2012 Wiley Periodicals, Inc.
Video-rate functional photoacoustic microscopy at depths
NASA Astrophysics Data System (ADS)
Wang, Lidai; Maslov, Konstantin; Xing, Wenxin; Garcia-Uribe, Alejandro; Wang, Lihong V.
2012-10-01
We report the development of functional photoacoustic microscopy capable of video-rate high-resolution in vivo imaging in deep tissue. A lightweight photoacoustic probe is made of a single-element broadband ultrasound transducer, a compact photoacoustic beam combiner, and a bright-field light delivery system. Focused broadband ultrasound detection provides a 44-μm lateral resolution and a 28-μm axial resolution based on the envelope (a 15-μm axial resolution based on the raw RF signal). Due to the efficient bright-field light delivery, the system can image as deep as 4.8 mm in vivo using low excitation pulse energy (28 μJ per pulse, 0.35 mJ/cm2 on the skin surface). The photoacoustic probe is mounted on a fast-scanning voice-coil scanner to acquire 40 two-dimensional (2-D) B-scan images per second over a 9-mm range. High-resolution anatomical imaging is demonstrated in the mouse ear and brain. Via fast dual-wavelength switching, oxygen dynamics of mouse cardio-vasculature is imaged in realtime as well.
A Novel Approach to High Definition, High-Contrast Video Capture in Abdominal Surgery
Cosman, Peter H.; Shearer, Christopher J.; Hugh, Thomas J.; Biankin, Andrew V.; Merrett, Neil D.
2007-01-01
Objective: The aim of this study was to define the best available option for video capture of surgical procedures for educational and archival purposes, with a view to identifying methods of capturing high-quality footage and identifying common pitfalls. Summary Background Data: Several options exist for those who wish to record operative surgical techniques on video. While high-end equipment is an unnecessary expense for most surgical units, several techniques are readily available that do not require industrial-grade audiovisual recording facilities, but not all are suited to every surgical application. Methods: We surveyed and evaluated the available technology for video capture in surgery. Our evaluation included analyses of video resolution, depth of field, contrast, exposure, image stability, and frame composition, as well as considerations of cost, accessibility, utility, feasibility, and economies of scale. Results: Several video capture options were identified, and the strengths and shortcomings of each were catalogued. None of the commercially available options was deemed suitable for high-quality video capture of abdominal surgical procedures. A novel application of off-the-shelf technology was devised to address these issues. Conclusions: Excellent quality video capture of surgical procedures within deep body cavities is feasible using commonly available equipment and technology, with minimal technical difficulty. PMID:17414600
Design considerations for computationally constrained two-way real-time video communication
NASA Astrophysics Data System (ADS)
Bivolarski, Lazar M.; Saunders, Steven E.; Ralston, John D.
2009-08-01
Today's video codecs have evolved primarily to meet the requirements of the motion picture and broadcast industries, where high-complexity studio encoding can be utilized to create highly-compressed master copies that are then broadcast one-way for playback using less-expensive, lower-complexity consumer devices for decoding and playback. Related standards activities have largely ignored the computational complexity and bandwidth constraints of wireless or Internet based real-time video communications using devices such as cell phones or webcams. Telecommunications industry efforts to develop and standardize video codecs for applications such as video telephony and video conferencing have not yielded image size, quality, and frame-rate performance that match today's consumer expectations and market requirements for Internet and mobile video services. This paper reviews the constraints and the corresponding video codec requirements imposed by real-time, 2-way mobile video applications. Several promising elements of a new mobile video codec architecture are identified, and more comprehensive computational complexity metrics and video quality metrics are proposed in order to support the design, testing, and standardization of these new mobile video codecs.
Kelly, Christopher R; Hogle, Nancy J; Landman, Jaime; Fowler, Dennis L
2008-09-01
The use of high-definition cameras and monitors during minimally invasive procedures can provide the surgeon and operating team with more than twice the resolution of standard definition systems. Although this dramatic improvement in visualization offers numerous advantages, the adoption of high definition cameras in the operating room can be challenging because new recording equipment must be purchased, and several new technologies are required to edit and distribute video. The purpose of this review article is to provide an overview of the popular methods for recording, editing, and distributing high-definition video. This article discusses the essential technical concepts of high-definition video, reviews the different kinds of equipment and methods most often used for recording, and describes several options for video distribution.
Learning a Continuous-Time Streaming Video QoE Model.
Ghadiyaram, Deepti; Pan, Janice; Bovik, Alan C
2018-05-01
Over-the-top adaptive video streaming services are frequently impacted by fluctuating network conditions that can lead to rebuffering events (stalling events) and sudden bitrate changes. These events visually impact video consumers' quality of experience (QoE) and can lead to consumer churn. The development of models that can accurately predict viewers' instantaneous subjective QoE under such volatile network conditions could potentially enable the more efficient design of quality-control protocols for media-driven services, such as YouTube, Amazon, Netflix, and so on. However, most existing models only predict a single overall QoE score on a given video and are based on simple global video features, without accounting for relevant aspects of human perception and behavior. We have created a QoE evaluator, called the time-varying QoE Indexer, that accounts for interactions between stalling events, analyzes the spatial and temporal content of a video, predicts the perceptual video quality, models the state of the client-side data buffer, and consequently predicts continuous-time quality scores that agree quite well with human opinion scores. The new QoE predictor also embeds the impact of relevant human cognitive factors, such as memory and recency, and their complex interactions with the video content being viewed. We evaluated the proposed model on three different video databases and attained standout QoE prediction performance.
Dual-Layer Video Encryption using RSA Algorithm
NASA Astrophysics Data System (ADS)
Chadha, Aman; Mallik, Sushmit; Chadha, Ankit; Johar, Ravdeep; Mani Roja, M.
2015-04-01
This paper proposes a video encryption algorithm using RSA and Pseudo Noise (PN) sequence, aimed at applications requiring sensitive video information transfers. The system is primarily designed to work with files encoded using the Audio Video Interleaved (AVI) codec, although it can be easily ported for use with Moving Picture Experts Group (MPEG) encoded files. The audio and video components of the source separately undergo two layers of encryption to ensure a reasonable level of security. Encryption of the video component involves applying the RSA algorithm followed by the PN-based encryption. Similarly, the audio component is first encrypted using PN and further subjected to encryption using the Discrete Cosine Transform. Combining these techniques, an efficient system, invulnerable to security breaches and attacks with favorable values of parameters such as encryption/decryption speed, encryption/decryption ratio and visual degradation; has been put forth. For applications requiring encryption of sensitive data wherein stringent security requirements are of prime concern, the system is found to yield negligible similarities in visual perception between the original and the encrypted video sequence. For applications wherein visual similarity is not of major concern, we limit the encryption task to a single level of encryption which is accomplished by using RSA, thereby quickening the encryption process. Although some similarity between the original and encrypted video is observed in this case, it is not enough to comprehend the happenings in the video.
Risks for Heart Disease & Stroke
... Heart Disease Stroke High Blood Pressure Cholesterol Salt Video: Know Your Risk Factors YouTube embed video: YouTube ... https://www.youtube-nocookie.com/embed/GQ0f7-ksmGI Video: José’s Story YouTube embed video: YouTube embed video: ...
ERIC Educational Resources Information Center
Laaser, W.; And Others
This study investigated the efficiency of video as an additional teaching aid for a statistics course offered by the Fernuniversitat (Open University, West Germany). A total of 65 distance students and internal students from the Universities of Bochum and Dortmund were divided into five groups to test the effects of five alternative treatments:…
ERIC Educational Resources Information Center
Ulke-Kurkcuoglu, Burcu
2015-01-01
The aim of this study is to compare effectiveness and efficiency of least-to-most prompting and video modeling for teaching pretend play skills to children with autism spectrum disorder. The adapted alternating treatment model, a single-subject design, was used in the study. Three students, one girl and two boys, between the ages of 5-6…
Using Focus Groups to Develop a Nutrition Education Video for High School Students.
ERIC Educational Resources Information Center
James, Delores C. S.; Rienzo, Barbara A.; Frazee, Carol
1997-01-01
Study used focus group interviews with ninth graders to help develop a nutrition education video and teacher's guide for Florida high schools. Students believed a video would be successful, expressed interest in 10 nutrition topics, recommended using teen actors with varying body types, and suggested no more than three or four topics per video.…
Doulamis, A; Doulamis, N; Ntalianis, K; Kollias, S
2003-01-01
In this paper, an unsupervised video object (VO) segmentation and tracking algorithm is proposed based on an adaptable neural-network architecture. The proposed scheme comprises: 1) a VO tracking module and 2) an initial VO estimation module. Object tracking is handled as a classification problem and implemented through an adaptive network classifier, which provides better results compared to conventional motion-based tracking algorithms. Network adaptation is accomplished through an efficient and cost effective weight updating algorithm, providing a minimum degradation of the previous network knowledge and taking into account the current content conditions. A retraining set is constructed and used for this purpose based on initial VO estimation results. Two different scenarios are investigated. The first concerns extraction of human entities in video conferencing applications, while the second exploits depth information to identify generic VOs in stereoscopic video sequences. Human face/ body detection based on Gaussian distributions is accomplished in the first scenario, while segmentation fusion is obtained using color and depth information in the second scenario. A decision mechanism is also incorporated to detect time instances for weight updating. Experimental results and comparisons indicate the good performance of the proposed scheme even in sequences with complicated content (object bending, occlusion).
McKenzie, Cynthia H.; Best, Kiley; Zargarpour, Nicola; Favaro, Brett
2018-01-01
The European green crab (Carcinus maenas) is a destructive marine invader that was first discovered in Newfoundland waters in 2007 and has since become established in nearshore ecosystems on the south and west coast of the island. Targeted fishing programs aimed at removing green crabs from invaded Newfoundland ecosystems use Fukui traps, but the capture efficiency of these traps has not been previously assessed. We assessed Fukui traps using in situ observation with underwater video cameras as they actively fished for green crabs. From these videos, we recorded the number of green crabs that approached the trap, the outcome of each entry attempt (success or failure), and the number of exits from the trap. Across eight videos, we observed 1,226 green crab entry attempts, with only a 16% rate of success from these attempts. Based on these observations we believe there is scope to improve the performance of the Fukui trap through modifications in order to achieve a higher catch per unit effort (CPUE), maximizing trap usage for mitigation. Ultimately, a more efficient Fukui trap will help to control green crab populations in order to preserve the function and integrity of ecosystems invaded by the green crab. PMID:29340237
No-Reference Video Quality Assessment Based on Statistical Analysis in 3D-DCT Domain.
Li, Xuelong; Guo, Qun; Lu, Xiaoqiang
2016-05-13
It is an important task to design models for universal no-reference video quality assessment (NR-VQA) in multiple video processing and computer vision applications. However, most existing NR-VQA metrics are designed for specific distortion types which are not often aware in practical applications. A further deficiency is that the spatial and temporal information of videos is hardly considered simultaneously. In this paper, we propose a new NR-VQA metric based on the spatiotemporal natural video statistics (NVS) in 3D discrete cosine transform (3D-DCT) domain. In the proposed method, a set of features are firstly extracted based on the statistical analysis of 3D-DCT coefficients to characterize the spatiotemporal statistics of videos in different views. These features are used to predict the perceived video quality via the efficient linear support vector regression (SVR) model afterwards. The contributions of this paper are: 1) we explore the spatiotemporal statistics of videos in 3DDCT domain which has the inherent spatiotemporal encoding advantage over other widely used 2D transformations; 2) we extract a small set of simple but effective statistical features for video visual quality prediction; 3) the proposed method is universal for multiple types of distortions and robust to different databases. The proposed method is tested on four widely used video databases. Extensive experimental results demonstrate that the proposed method is competitive with the state-of-art NR-VQA metrics and the top-performing FR-VQA and RR-VQA metrics.
A Viscoelastic Deadly Fluid in Carnivorous Pitcher Plants
NASA Astrophysics Data System (ADS)
Gaume, Laurence; Forterre, Yoel
2008-07-01
We study the rheology of the digestive fluid secreted by the carnivorous pitcher plants Nepenthes rafflesiana and its role in the mechanism of insects trapping. Using a combination of physical measurements (surface tension, wetting properties, extensional and shear rheometry), insects bioessays and high-speed video, we show that the digestive fluid of Nepenthes rafflesiana is a highly viscoelastic fluid and that this property is crucial for the retention of insect in its trap. Trapping efficiency is shown to remain strong even when the fluid is highly diluted by water, as long as the elastic relaxation time of the fluid is higher than the typical time scale of insect movements (large Deborah numbers).
NASA Astrophysics Data System (ADS)
Han, Yishi; Luo, Zhixiao; Wang, Jianhua; Min, Zhixuan; Qin, Xinyu; Sun, Yunlong
2014-09-01
In general, context-based adaptive variable length coding (CAVLC) decoding in H.264/AVC standard requires frequent access to the unstructured variable length coding tables (VLCTs) and significant memory accesses are consumed. Heavy memory accesses will cause high power consumption and time delays, which are serious problems for applications in portable multimedia devices. We propose a method for high-efficiency CAVLC decoding by using a program instead of all the VLCTs. The decoded codeword from VLCTs can be obtained without any table look-up and memory access. The experimental results show that the proposed algorithm achieves 100% memory access saving and 40% decoding time saving without degrading video quality. Additionally, the proposed algorithm shows a better performance compared with conventional CAVLC decoding, such as table look-up by sequential search, table look-up by binary search, Moon's method, and Kim's method.
Context adaptive binary arithmetic coding-based data hiding in partially encrypted H.264/AVC videos
NASA Astrophysics Data System (ADS)
Xu, Dawen; Wang, Rangding
2015-05-01
A scheme of data hiding directly in a partially encrypted version of H.264/AVC videos is proposed which includes three parts, i.e., selective encryption, data embedding and data extraction. Selective encryption is performed on context adaptive binary arithmetic coding (CABAC) bin-strings via stream ciphers. By careful selection of CABAC entropy coder syntax elements for selective encryption, the encrypted bitstream is format-compliant and has exactly the same bit rate. Then a data-hider embeds the additional data into partially encrypted H.264/AVC videos using a CABAC bin-string substitution technique without accessing the plaintext of the video content. Since bin-string substitution is carried out on those residual coefficients with approximately the same magnitude, the quality of the decrypted video is satisfactory. Video file size is strictly preserved even after data embedding. In order to adapt to different application scenarios, data extraction can be done either in the encrypted domain or in the decrypted domain. Experimental results have demonstrated the feasibility and efficiency of the proposed scheme.
Motion video analysis using planar parallax
NASA Astrophysics Data System (ADS)
Sawhney, Harpreet S.
1994-04-01
Motion and structure analysis in video sequences can lead to efficient descriptions of objects and their motions. Interesting events in videos can be detected using such an analysis--for instance independent object motion when the camera itself is moving, figure-ground segregation based on the saliency of a structure compared to its surroundings. In this paper we present a method for 3D motion and structure analysis that uses a planar surface in the environment as a reference coordinate system to describe a video sequence. The motion in the video sequence is described as the motion of the reference plane, and the parallax motion of all the non-planar components of the scene. It is shown how this method simplifies the otherwise hard general 3D motion analysis problem. In addition, a natural coordinate system in the environment is used to describe the scene which can simplify motion based segmentation. This work is a part of an ongoing effort in our group towards video annotation and analysis for indexing and retrieval. Results from a demonstration system being developed are presented.
Topical video object discovery from key frames by modeling word co-occurrence prior.
Zhao, Gangqiang; Yuan, Junsong; Hua, Gang; Yang, Jiong
2015-12-01
A topical video object refers to an object, that is, frequently highlighted in a video. It could be, e.g., the product logo and the leading actor/actress in a TV commercial. We propose a topic model that incorporates a word co-occurrence prior for efficient discovery of topical video objects from a set of key frames. Previous work using topic models, such as latent Dirichelet allocation (LDA), for video object discovery often takes a bag-of-visual-words representation, which ignored important co-occurrence information among the local features. We show that such data driven co-occurrence information from bottom-up can conveniently be incorporated in LDA with a Gaussian Markov prior, which combines top-down probabilistic topic modeling with bottom-up priors in a unified model. Our experiments on challenging videos demonstrate that the proposed approach can discover different types of topical objects despite variations in scale, view-point, color and lighting changes, or even partial occlusions. The efficacy of the co-occurrence prior is clearly demonstrated when compared with topic models without such priors.
Van Hoecke, Sofie; Steurbaut, Kristof; Taveirne, Kristof; De Turck, Filip; Dhoedt, Bart
2010-01-01
We designed a broker platform for e-homecare services using web service technology. The broker allows efficient data communication and guarantees quality requirements such as security, availability and cost-efficiency by dynamic selection of services, minimizing user interactions and simplifying authentication through a single user sign-on. A prototype was implemented, with several e-homecare services (alarm, telemonitoring, audio diary and video-chat). It was evaluated by patients with diabetes and multiple sclerosis. The patients found that the start-up time and overhead imposed by the platform was satisfactory. Having all e-homecare services integrated into a single application, which required only one login, resulted in a high quality of experience for the patients.
Energy efficient sensor network implementations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frigo, Janette R; Raby, Eric Y; Brennan, Sean M
In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study.more » We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.« less
Analysis-Preserving Video Microscopy Compression via Correlation and Mathematical Morphology
Shao, Chong; Zhong, Alfred; Cribb, Jeremy; Osborne, Lukas D.; O’Brien, E. Timothy; Superfine, Richard; Mayer-Patel, Ketan; Taylor, Russell M.
2015-01-01
The large amount video data produced by multi-channel, high-resolution microscopy system drives the need for a new high-performance domain-specific video compression technique. We describe a novel compression method for video microscopy data. The method is based on Pearson's correlation and mathematical morphology. The method makes use of the point-spread function (PSF) in the microscopy video acquisition phase. We compare our method to other lossless compression methods and to lossy JPEG, JPEG2000 and H.264 compression for various kinds of video microscopy data including fluorescence video and brightfield video. We find that for certain data sets, the new method compresses much better than lossless compression with no impact on analysis results. It achieved a best compressed size of 0.77% of the original size, 25× smaller than the best lossless technique (which yields 20% for the same video). The compressed size scales with the video's scientific data content. Further testing showed that existing lossy algorithms greatly impacted data analysis at similar compression sizes. PMID:26435032
The effects of video game playing on attention, memory, and executive control.
Boot, Walter R; Kramer, Arthur F; Simons, Daniel J; Fabiani, Monica; Gratton, Gabriele
2008-11-01
Expert video game players often outperform non-players on measures of basic attention and performance. Such differences might result from exposure to video games or they might reflect other group differences between those people who do or do not play video games. Recent research has suggested a causal relationship between playing action video games and improvements in a variety of visual and attentional skills (e.g., [Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423, 534-537]). The current research sought to replicate and extend these results by examining both expert/non-gamer differences and the effects of video game playing on tasks tapping a wider range of cognitive abilities, including attention, memory, and executive control. Non-gamers played 20+ h of an action video game, a puzzle game, or a real-time strategy game. Expert gamers and non-gamers differed on a number of basic cognitive skills: experts could track objects moving at greater speeds, better detected changes to objects stored in visual short-term memory, switched more quickly from one task to another, and mentally rotated objects more efficiently. Strikingly, extensive video game practice did not substantially enhance performance for non-gamers on most cognitive tasks, although they did improve somewhat in mental rotation performance. Our results suggest that at least some differences between video game experts and non-gamers in basic cognitive performance result either from far more extensive video game experience or from pre-existing group differences in abilities that result in a self-selection effect.
Energy Efficient Legged Robotics at Sandia Labs, Part 2
Buerger, Steve; Mazumdar, Ani; Spencer, Steve
2018-01-16
Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the second in a series, describes the continued development and integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.
Energy Efficient Legged Robotics at Sandia Labs, Part 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buerger, Steve; Mazumdar, Ani; Spencer, Steve
Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the second in a series, describes the continued development and integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.
The Universe Adventure - Video Contest
high school students to share their science know-how with the world. By joining our Student Video , 2009, and the contest is open to California high school students only. Examples of student videos that to engage high school teachers and their students in a creative learning process combining social
Pedestrian detection in video surveillance using fully convolutional YOLO neural network
NASA Astrophysics Data System (ADS)
Molchanov, V. V.; Vishnyakov, B. V.; Vizilter, Y. V.; Vishnyakova, O. V.; Knyaz, V. A.
2017-06-01
More than 80% of video surveillance systems are used for monitoring people. Old human detection algorithms, based on background and foreground modelling, could not even deal with a group of people, to say nothing of a crowd. Recent robust and highly effective pedestrian detection algorithms are a new milestone of video surveillance systems. Based on modern approaches in deep learning, these algorithms produce very discriminative features that can be used for getting robust inference in real visual scenes. They deal with such tasks as distinguishing different persons in a group, overcome problem with sufficient enclosures of human bodies by the foreground, detect various poses of people. In our work we use a new approach which enables to combine detection and classification tasks into one challenge using convolution neural networks. As a start point we choose YOLO CNN, whose authors propose a very efficient way of combining mentioned above tasks by learning a single neural network. This approach showed competitive results with state-of-the-art models such as FAST R-CNN, significantly overcoming them in speed, which allows us to apply it in real time video surveillance and other video monitoring systems. Despite all advantages it suffers from some known drawbacks, related to the fully-connected layers that obstruct applying the CNN to images with different resolution. Also it limits the ability to distinguish small close human figures in groups which is crucial for our tasks since we work with rather low quality images which often include dense small groups of people. In this work we gradually change network architecture to overcome mentioned above problems, train it on a complex pedestrian dataset and finally get the CNN detecting small pedestrians in real scenes.
Design and development of a very high resolution thermal imager
NASA Astrophysics Data System (ADS)
Kuerbitz, Gunther; Duchateau, Ruediger
1998-10-01
The design goal of this project was to develop a thermal imaging system with ultimate geometrical resolution without sacrificing thermal sensitivity. It was necessary to fulfil the criteria for a future advanced video standard. This video standard is the so-called HDTV standard (HDTV High Definition TeleVision). The thermal imaging system is a parallel scanning system working in the 7...11 micrometer spectral region. The detector for that system has to have 576 X n (n number of TDI stages) detector elements taking into account a twofold interlace. It must be carefully optimized in terms of range performance and size of optics entrance pupil as well as producibility and yield. This was done in strong interaction with the detector manufacturer. The 16:9 aspect ratio of the HDTV standard together with the high number of 1920 pixels/line impose high demands on the scanner design in terms of scan efficiency and linearity. As an advanced second generation thermal imager the system has an internal thermal reference. The electronics is fully digitized and comprises circuits for Non Uniformity Correction (NUC), scan conversion, electronic zoom, auto gain and level, edge enhancement, up/down and left/right reversion etc. It can be completely remote-controlled via a serial interface.
Iwama, Sekai; Kuyama, Kazunori; Mori, Yuko; Manoj, Kochunnoonny; Gonnade, Rajesh G; Suzuki, Katsuaki; Hughes, Colan E; Williams, P Andrew; Harris, Kenneth D M; Veesler, Stéphane; Takahashi, Hiroki; Tsue, Hirohito; Tamura, Rui
2014-08-11
An excellent chiral symmetry-breaking spontaneous enantiomeric resolution phenomenon, denoted preferential enrichment, was observed on recrystallization of the 1:1 cocrystal of dl-arginine and fumaric acid, which is classified as a racemic compound crystal with a high eutectic ee value (>95 %), under non-equilibrium crystallization conditions. On the basis of temperature-controlled video microscopy and in situ time-resolved solid-state (13) C NMR spectroscopic studies on the crystallization process, a new mechanism of phase transition that can induce preferential enrichment is proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigation of the ignition of liquid hydrocarbon fuels with nanoadditives
NASA Astrophysics Data System (ADS)
Bakulin, V. N.; Velikodnyi, V. Yu.; Levin, Yu. K.; Popov, V. V.
2017-12-01
During our experimental studies we showed a high efficiency of the influence of nanoparticle additives on the stability of the ignition of hydrocarbon fuels and the stabilization of their combustion in a highfrequency high-voltage discharge. We detected the effects of a jet deceleration, an increase in the volume of the combustible mixture, and a reduction in the inflammation delay time. These effects have been estimated quantitatively by digitally processing the video frames of the ignition of a bubbled kerosene jet with 0.5% graphene nanoparticle additives and without these additives. This effect has been explained by the influence of electrodynamic processes.
Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Politano, Antonio; Knap, Wojciech; Vitiello, Miriam S.
2016-01-01
The ability to convert light into an electrical signal with high efficiencies and controllable dynamics, is a major need in photonics and optoelectronics. In the Terahertz (THz) frequency range, with its exceptional application possibilities in high data rate wireless communications, security, night-vision, biomedical or video-imaging and gas sensing, detection technologies providing efficiency and sensitivity performances that can be “engineered” from scratch, remain elusive. Here, by exploiting the inherent electrical and thermal in-plane anisotropy of a flexible thin flake of black-phosphorus (BP), we devise plasma-wave, thermoelectric and bolometric nano-detectors with a selective, switchable and controllable operating mechanism. All devices operates at room-temperature and are integrated on-chip with planar nanoantennas, which provide remarkable efficiencies through light-harvesting in the strongly sub-wavelength device channel. The achieved selective detection (∼5–8 V/W responsivity) and sensitivity performances (signal-to-noise ratio of 500), are here exploited to demonstrate the first concrete application of a phosphorus-based active THz device, for pharmaceutical and quality control imaging of macroscopic samples, in real-time and in a realistic setting. PMID:26847823
Keebler, Joseph R; Jentsch, Florian; Schuster, David
2014-12-01
We investigated the effects of active stereoscopic simulation-based training and individual differences in video game experience on multiple indices of combat identification (CID) performance. Fratricide is a major problem in combat operations involving military vehicles. In this research, we aimed to evaluate the effects of training on CID performance in order to reduce fratricide errors. Individuals were trained on 12 combat vehicles in a simulation, which were presented via either a non-stereoscopic or active stereoscopic display using NVIDIA's GeForce shutter glass technology. Self-report was used to assess video game experience, leading to four between-subjects groups: high video game experience with stereoscopy, low video game experience with stereoscopy, high video game experience without stereoscopy, and low video game experience without stereoscopy. We then tested participants on their memory of each vehicle's alliance and name across multiple measures, including photographs and videos. There was a main effect for both video game experience and stereoscopy across many of the dependent measures. Further, we found interactions between video game experience and stereoscopic training, such that those individuals with high video game experience in the non-stereoscopic group had the highest performance outcomes in the sample on multiple dependent measures. This study suggests that individual differences in video game experience may be predictive of enhanced performance in CID tasks. Selection based on video game experience in CID tasks may be a useful strategy for future military training. Future research should investigate the generalizability of these effects, such as identification through unmanned vehicle sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokawa, Satoru; School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650; Suzuki, Takahiro
We have firstly visualized glucagon secretion using a method of video-rate bioluminescence imaging. The fusion protein of proglucagon and Gaussia luciferase (PGCG-GLase) was used as a reporter to detect glucagon secretion and was efficiently expressed in mouse pancreatic α cells (αTC1.6) using a preferred human codon-optimized gene. In the culture medium of the cells expressing PGCG-GLase, luminescence activity determined with a luminometer was increased with low glucose stimulation and KCl-induced depolarization, as observed for glucagon secretion. From immunochemical analyses, PGCG-GLase stably expressed in clonal αTC1.6 cells was correctly processed and released by secretory granules. Luminescence signals of the secreted PGCG-GLase frommore » the stable cells were visualized by video-rate bioluminescence microscopy. The video images showed an increase in glucagon secretion from clustered cells in response to stimulation by KCl. The secretory events were observed frequently at the intercellular contact regions. Thus, the localization and frequency of glucagon secretion might be regulated by cell-cell adhesion. - Highlights: • The fused protein of proglucagon to Gaussia luciferase was used as a reporter. • The fusion protein was highly expressed using a preferred human-codon optimized gene. • Glucagon secretion stimulated by depolarization was determined by luminescence. • Glucagon secretion in α cells was visualized by bioluminescence imaging. • Glucagon secretion sites were localized in the intercellular contact regions.« less
Video-Game Play Induces Plasticity in the Visual System of Adults with Amblyopia
Li, Roger W.; Ngo, Charlie; Nguyen, Jennie; Levi, Dennis M.
2011-01-01
Abnormal visual experience during a sensitive period of development disrupts neuronal circuitry in the visual cortex and results in abnormal spatial vision or amblyopia. Here we examined whether playing video games can induce plasticity in the visual system of adults with amblyopia. Specifically 20 adults with amblyopia (age 15–61 y; visual acuity: 20/25–20/480, with no manifest ocular disease or nystagmus) were recruited and allocated into three intervention groups: action videogame group (n = 10), non-action videogame group (n = 3), and crossover control group (n = 7). Our experiments show that playing video games (both action and non-action games) for a short period of time (40–80 h, 2 h/d) using the amblyopic eye results in a substantial improvement in a wide range of fundamental visual functions, from low-level to high-level, including visual acuity (33%), positional acuity (16%), spatial attention (37%), and stereopsis (54%). Using a cross-over experimental design (first 20 h: occlusion therapy, and the next 40 h: videogame therapy), we can conclude that the improvement cannot be explained simply by eye patching alone. We quantified the limits and the time course of visual plasticity induced by video-game experience. The recovery in visual acuity that we observed is at least 5-fold faster than would be expected from occlusion therapy in childhood amblyopia. We used positional noise and modelling to reveal the neural mechanisms underlying the visual improvements in terms of decreased spatial distortion (7%) and increased processing efficiency (33%). Our study had several limitations: small sample size, lack of randomization, and differences in numbers between groups. A large-scale randomized clinical study is needed to confirm the therapeutic value of video-game treatment in clinical situations. Nonetheless, taken as a pilot study, this work suggests that video-game play may provide important principles for treating amblyopia, and perhaps other cortical dysfunctions. Trial Registration ClinicalTrials.gov NCT01223716 PMID:21912514
Video-game play induces plasticity in the visual system of adults with amblyopia.
Li, Roger W; Ngo, Charlie; Nguyen, Jennie; Levi, Dennis M
2011-08-01
Abnormal visual experience during a sensitive period of development disrupts neuronal circuitry in the visual cortex and results in abnormal spatial vision or amblyopia. Here we examined whether playing video games can induce plasticity in the visual system of adults with amblyopia. Specifically 20 adults with amblyopia (age 15-61 y; visual acuity: 20/25-20/480, with no manifest ocular disease or nystagmus) were recruited and allocated into three intervention groups: action videogame group (n = 10), non-action videogame group (n = 3), and crossover control group (n = 7). Our experiments show that playing video games (both action and non-action games) for a short period of time (40-80 h, 2 h/d) using the amblyopic eye results in a substantial improvement in a wide range of fundamental visual functions, from low-level to high-level, including visual acuity (33%), positional acuity (16%), spatial attention (37%), and stereopsis (54%). Using a cross-over experimental design (first 20 h: occlusion therapy, and the next 40 h: videogame therapy), we can conclude that the improvement cannot be explained simply by eye patching alone. We quantified the limits and the time course of visual plasticity induced by video-game experience. The recovery in visual acuity that we observed is at least 5-fold faster than would be expected from occlusion therapy in childhood amblyopia. We used positional noise and modelling to reveal the neural mechanisms underlying the visual improvements in terms of decreased spatial distortion (7%) and increased processing efficiency (33%). Our study had several limitations: small sample size, lack of randomization, and differences in numbers between groups. A large-scale randomized clinical study is needed to confirm the therapeutic value of video-game treatment in clinical situations. Nonetheless, taken as a pilot study, this work suggests that video-game play may provide important principles for treating amblyopia, and perhaps other cortical dysfunctions. ClinicalTrials.gov NCT01223716.
Tackling action-based video abstraction of animated movies for video browsing
NASA Astrophysics Data System (ADS)
Ionescu, Bogdan; Ott, Laurent; Lambert, Patrick; Coquin, Didier; Pacureanu, Alexandra; Buzuloiu, Vasile
2010-07-01
We address the issue of producing automatic video abstracts in the context of the video indexing of animated movies. For a quick browse of a movie's visual content, we propose a storyboard-like summary, which follows the movie's events by retaining one key frame for each specific scene. To capture the shot's visual activity, we use histograms of cumulative interframe distances, and the key frames are selected according to the distribution of the histogram's modes. For a preview of the movie's exciting action parts, we propose a trailer-like video highlight, whose aim is to show only the most interesting parts of the movie. Our method is based on a relatively standard approach, i.e., highlighting action through the analysis of the movie's rhythm and visual activity information. To suit every type of movie content, including predominantly static movies or movies without exciting parts, the concept of action depends on the movie's average rhythm. The efficiency of our approach is confirmed through several end-user studies.
Low-complexity transcoding algorithm from H.264/AVC to SVC using data mining
NASA Astrophysics Data System (ADS)
Garrido-Cantos, Rosario; De Cock, Jan; Martínez, Jose Luis; Van Leuven, Sebastian; Cuenca, Pedro; Garrido, Antonio
2013-12-01
Nowadays, networks and terminals with diverse characteristics of bandwidth and capabilities coexist. To ensure a good quality of experience, this diverse environment demands adaptability of the video stream. In general, video contents are compressed to save storage capacity and to reduce the bandwidth required for its transmission. Therefore, if these compressed video streams were compressed using scalable video coding schemes, they would be able to adapt to those heterogeneous networks and a wide range of terminals. Since the majority of the multimedia contents are compressed using H.264/AVC, they cannot benefit from that scalability. This paper proposes a low-complexity algorithm to convert an H.264/AVC bitstream without scalability to scalable bitstreams with temporal scalability in baseline and main profiles by accelerating the mode decision task of the scalable video coding encoding stage using machine learning tools. The results show that when our technique is applied, the complexity is reduced by 87% while maintaining coding efficiency.
SCTP as scalable video coding transport
NASA Astrophysics Data System (ADS)
Ortiz, Jordi; Graciá, Eduardo Martínez; Skarmeta, Antonio F.
2013-12-01
This study presents an evaluation of the Stream Transmission Control Protocol (SCTP) for the transport of the scalable video codec (SVC), proposed by MPEG as an extension to H.264/AVC. Both technologies fit together properly. On the one hand, SVC permits to split easily the bitstream into substreams carrying different video layers, each with different importance for the reconstruction of the complete video sequence at the receiver end. On the other hand, SCTP includes features, such as the multi-streaming and multi-homing capabilities, that permit to transport robustly and efficiently the SVC layers. Several transmission strategies supported on baseline SCTP and its concurrent multipath transfer (CMT) extension are compared with the classical solutions based on the Transmission Control Protocol (TCP) and the Realtime Transmission Protocol (RTP). Using ns-2 simulations, it is shown that CMT-SCTP outperforms TCP and RTP in error-prone networking environments. The comparison is established according to several performance measurements, including delay, throughput, packet loss, and peak signal-to-noise ratio of the received video.
High-definition video display based on the FPGA and THS8200
NASA Astrophysics Data System (ADS)
Qian, Jia; Sui, Xiubao
2014-11-01
This paper presents a high-definition video display solution based on the FPGA and THS8200. THS8200 is a video decoder chip launched by TI company, this chip has three 10-bit DAC channels which can capture video data in both 4:2:2 and 4:4:4 formats, and its data synchronization can be either through the dedicated synchronization signals HSYNC and VSYNC, or extracted from the embedded video stream synchronization information SAV / EAV code. In this paper, we will utilize the address and control signals generated by FPGA to access to the data-storage array, and then the FPGA generates the corresponding digital video signals YCbCr. These signals combined with the synchronization signals HSYNC and VSYNC that are also generated by the FPGA act as the input signals of THS8200. In order to meet the bandwidth requirements of the high-definition TV, we adopt video input in the 4:2:2 format over 2×10-bit interface. THS8200 is needed to be controlled by FPGA with I2C bus to set the internal registers, and as a result, it can generate the synchronous signal that is satisfied with the standard SMPTE and transfer the digital video signals YCbCr into analog video signals YPbPr. Hence, the composite analog output signals YPbPr are consist of image data signal and synchronous signal which are superimposed together inside the chip THS8200. The experimental research indicates that the method presented in this paper is a viable solution for high-definition video display, which conforms to the input requirements of the new high-definition display devices.
On the Design of the Peer-Assisted UGC VoD System
NASA Astrophysics Data System (ADS)
Wan, Yi; Asaka, Takuya; Takahashi, Tatsuro
User Generated Content (UGC) VoD services such as YouTube are becoming more and more popular, and their maintenance costs are growing as well. Many P2P solutions have been proposed to reduce server load in such systems, but almost all of them focus on the single-video approach, which only has limited effect on the systems serving short videos such as UGC. The purpose of this paper is to investigate the potential of an alternative approach, the multi-video approach, and we use a very simple method called collaborative caching to show that methods using the multi-video approach are generally more suitable for current UGC VoD systems. We also study the influence of the major design factors through simulations and provide guidelines for efficiently building systems with this method.
Teaching Surgical Procedures with Movies: Tips for High-quality Video Clips.
Jacquemart, Mathieu; Bouletreau, Pierre; Breton, Pierre; Mojallal, Ali; Sigaux, Nicolas
2016-09-01
Video must now be considered as a precious tool for learning surgery. However, the medium does present production challenges, and currently, quality movies are not always accessible. We developed a series of 7 surgical videos and made them available on a publicly accessible internet website. Our videos have been viewed by thousands of people worldwide. High-quality educational movies must respect strategic and technical points to be reliable.
Compression of stereoscopic video using MPEG-2
NASA Astrophysics Data System (ADS)
Puri, A.; Kollarits, Richard V.; Haskell, Barry G.
1995-10-01
Many current as well as emerging applications in areas of entertainment, remote operations, manufacturing industry and medicine can benefit from the depth perception offered by stereoscopic video systems which employ two views of a scene imaged under the constraints imposed by human visual system. Among the many challenges to be overcome for practical realization and widespread use of 3D/stereoscopic systems are good 3D displays and efficient techniques for digital compression of enormous amounts of data while maintaining compatibility with normal video decoding and display systems. After a brief introduction to the basics of 3D/stereo including issues of depth perception, stereoscopic 3D displays and terminology in stereoscopic imaging and display, we present an overview of tools in the MPEG-2 video standard that are relevant to our discussion on compression of stereoscopic video, which is the main topic of this paper. Next, we outilne the various approaches for compression of stereoscopic video and then focus on compatible stereoscopic video coding using MPEG-2 Temporal scalability concepts. Compatible coding employing two different types of prediction structures become potentially possible, disparity compensated prediction and combined disparity and motion compensated predictions. To further improve coding performance and display quality, preprocessing for reducing mismatch between the two views forming stereoscopic video is considered. Results of simulations performed on stereoscopic video of normal TV resolution are then reported comparing the performance of two prediction structures with the simulcast solution. It is found that combined disparity and motion compensated prediction offers the best performance. Results indicate that compression of both views of stereoscopic video of normal TV resolution appears feasible in a total of 6 to 8 Mbit/s. We then discuss regarding multi-viewpoint video, a generalization of stereoscopic video. Finally, we describe ongoing efforts within MPEG-2 to define a profile for stereoscopic video coding, as well as, the promise of MPEG-4 in addressing coding of multi-viewpoint video.
Compression of stereoscopic video using MPEG-2
NASA Astrophysics Data System (ADS)
Puri, Atul; Kollarits, Richard V.; Haskell, Barry G.
1995-12-01
Many current as well as emerging applications in areas of entertainment, remote operations, manufacturing industry and medicine can benefit from the depth perception offered by stereoscopic video systems which employ two views of a scene imaged under the constraints imposed by human visual system. Among the many challenges to be overcome for practical realization and widespread use of 3D/stereoscopic systems are good 3D displays and efficient techniques for digital compression of enormous amounts of data while maintaining compatibility with normal video decoding and display systems. After a brief introduction to the basics of 3D/stereo including issues of depth perception, stereoscopic 3D displays and terminology in stereoscopic imaging and display, we present an overview of tools in the MPEG-2 video standard that are relevant to our discussion on compression of stereoscopic video, which is the main topic of this paper. Next, we outline the various approaches for compression of stereoscopic video and then focus on compatible stereoscopic video coding using MPEG-2 Temporal scalability concepts. Compatible coding employing two different types of prediction structures become potentially possible, disparity compensated prediction and combined disparity and motion compensated predictions. To further improve coding performance and display quality, preprocessing for reducing mismatch between the two views forming stereoscopic video is considered. Results of simulations performed on stereoscopic video of normal TV resolution are then reported comparing the performance of two prediction structures with the simulcast solution. It is found that combined disparity and motion compensated prediction offers the best performance. Results indicate that compression of both views of stereoscopic video of normal TV resolution appears feasible in a total of 6 to 8 Mbit/s. We then discuss regarding multi-viewpoint video, a generalization of stereoscopic video. Finally, we describe ongoing efforts within MPEG-2 to define a profile for stereoscopic video coding, as well as, the promise of MPEG-4 in addressing coding of multi-viewpoint video.
Wakefield, Corey B.; Lewis, Paul D.; Coutts, Teresa B.; Fairclough, David V.; Langlois, Timothy J.
2013-01-01
Marine embayments and estuaries play an important role in the ecology and life history of many fish species. Cockburn Sound is one of a relative paucity of marine embayments on the west coast of Australia. Its sheltered waters and close proximity to a capital city have resulted in anthropogenic intrusion and extensive seascape modification. This study aimed to compare the sampling efficiencies of baited videos and fish traps in determining the relative abundance and diversity of temperate demersal fish species associated with naturally occurring (seagrass, limestone outcrops and soft sediment) and modified (rockwall and dredge channel) habitats in Cockburn Sound. Baited videos sampled a greater range of species in higher total and mean abundances than fish traps. This larger amount of data collected by baited videos allowed for greater discrimination of fish assemblages between habitats. The markedly higher diversity and abundances of fish associated with seagrass and limestone outcrops, and the fact that these habitats are very limited within Cockburn Sound, suggests they play an important role in the fish ecology of this embayment. Fish assemblages associated with modified habitats comprised a subset of species in lower abundances when compared to natural habitats with similar physical characteristics. This suggests modified habitats may not have provided the necessary resource requirements (e.g. shelter and/or diet) for some species, resulting in alterations to the natural trophic structure and interspecific interactions. Baited videos provided a more efficient and non-extractive method for comparing fish assemblages and habitat associations of smaller bodied species and juveniles in a turbid environment. PMID:23555847
Wakefield, Corey B; Lewis, Paul D; Coutts, Teresa B; Fairclough, David V; Langlois, Timothy J
2013-01-01
Marine embayments and estuaries play an important role in the ecology and life history of many fish species. Cockburn Sound is one of a relative paucity of marine embayments on the west coast of Australia. Its sheltered waters and close proximity to a capital city have resulted in anthropogenic intrusion and extensive seascape modification. This study aimed to compare the sampling efficiencies of baited videos and fish traps in determining the relative abundance and diversity of temperate demersal fish species associated with naturally occurring (seagrass, limestone outcrops and soft sediment) and modified (rockwall and dredge channel) habitats in Cockburn Sound. Baited videos sampled a greater range of species in higher total and mean abundances than fish traps. This larger amount of data collected by baited videos allowed for greater discrimination of fish assemblages between habitats. The markedly higher diversity and abundances of fish associated with seagrass and limestone outcrops, and the fact that these habitats are very limited within Cockburn Sound, suggests they play an important role in the fish ecology of this embayment. Fish assemblages associated with modified habitats comprised a subset of species in lower abundances when compared to natural habitats with similar physical characteristics. This suggests modified habitats may not have provided the necessary resource requirements (e.g. shelter and/or diet) for some species, resulting in alterations to the natural trophic structure and interspecific interactions. Baited videos provided a more efficient and non-extractive method for comparing fish assemblages and habitat associations of smaller bodied species and juveniles in a turbid environment.
Li, Yachun; Charalampaki, Patra; Liu, Yong; Yang, Guang-Zhong; Giannarou, Stamatia
2018-06-13
Probe-based confocal laser endomicroscopy (pCLE) enables in vivo, in situ tissue characterisation without changes in the surgical setting and simplifies the oncological surgical workflow. The potential of this technique in identifying residual cancer tissue and improving resection rates of brain tumours has been recently verified in pilot studies. The interpretation of endomicroscopic information is challenging, particularly for surgeons who do not themselves routinely review histopathology. Also, the diagnosis can be examiner-dependent, leading to considerable inter-observer variability. Therefore, automatic tissue characterisation with pCLE would support the surgeon in establishing diagnosis as well as guide robot-assisted intervention procedures. The aim of this work is to propose a deep learning-based framework for brain tissue characterisation for context aware diagnosis support in neurosurgical oncology. An efficient representation of the context information of pCLE data is presented by exploring state-of-the-art CNN models with different tuning configurations. A novel video classification framework based on the combination of convolutional layers with long-range temporal recursion has been proposed to estimate the probability of each tumour class. The video classification accuracy is compared for different network architectures and data representation and video segmentation methods. We demonstrate the application of the proposed deep learning framework to classify Glioblastoma and Meningioma brain tumours based on endomicroscopic data. Results show significant improvement of our proposed image classification framework over state-of-the-art feature-based methods. The use of video data further improves the classification performance, achieving accuracy equal to 99.49%. This work demonstrates that deep learning can provide an efficient representation of pCLE data and accurately classify Glioblastoma and Meningioma tumours. The performance evaluation analysis shows the potential clinical value of the technique.
Action video game players' visual search advantage extends to biologically relevant stimuli.
Chisholm, Joseph D; Kingstone, Alan
2015-07-01
Research investigating the effects of action video game experience on cognition has demonstrated a host of performance improvements on a variety of basic tasks. Given the prevailing evidence that these benefits result from efficient control of attentional processes, there has been growing interest in using action video games as a general tool to enhance everyday attentional control. However, to date, there is little evidence indicating that the benefits of action video game playing scale up to complex settings with socially meaningful stimuli - one of the fundamental components of our natural environment. The present experiment compared action video game player (AVGP) and non-video game player (NVGP) performance on an oculomotor capture task that presented participants with face stimuli. In addition, the expression of a distractor face was manipulated to assess if action video game experience modulated the effect of emotion. Results indicate that AVGPs experience less oculomotor capture than NVGPs; an effect that was not influenced by the emotional content depicted by distractor faces. It is noteworthy that this AVGP advantage emerged despite participants being unaware that the investigation had to do with video game playing, and participants being equivalent in their motivation and treatment of the task as a game. The results align with the notion that action video game experience is associated with superior attentional and oculomotor control, and provides evidence that these benefits can generalize to more complex and biologically relevant stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.
Creep Measurement Video Extensometer
NASA Technical Reports Server (NTRS)
Jaster, Mark; Vickerman, Mary; Padula, Santo, II; Juhas, John
2011-01-01
Understanding material behavior under load is critical to the efficient and accurate design of advanced aircraft and spacecraft. Technologies such as the one disclosed here allow accurate creep measurements to be taken automatically, reducing error. The goal was to develop a non-contact, automated system capable of capturing images that could subsequently be processed to obtain the strain characteristics of these materials during deformation, while maintaining adequate resolution to capture the true deformation response of the material. The measurement system comprises a high-resolution digital camera, computer, and software that work collectively to interpret the image.
ERIC Educational Resources Information Center
Mechling, Linda C.; Ayres, Kevin M.; Bryant, Kathryn J.; Foster, Ashley L.
2014-01-01
The current study evaluated a relatively new video-based procedure, continuous video modeling (CVM), to teach multi-step cleaning tasks to high school students with moderate intellectual disability. CVM in contrast to video modeling and video prompting allows repetition of the video model (looping) as many times as needed while the user completes…
ERIC Educational Resources Information Center
Mechling, Linda C.; Ayres, Kevin M.; Bryant, Kathryn J.; Foster, Ashley L.
2014-01-01
This study compared the effects of three procedures (video prompting: VP, video modeling: VM, and continuous video modeling: CVM) on task completion by three high school students with moderate intellectual disability. The comparison was made across three sets of fundamentally different tasks (putting away household items in clusters of two items;…
Maier, Hans; de Heer, Gert; Ortac, Ajda; Kuijten, Jan
2015-11-01
To analyze, interpret and evaluate microscopic images, used in medical diagnostics and forensic science, video images for educational purposes were made with a very high resolution of 4096 × 2160 pixels (4K), which is four times as many pixels as High-Definition Video (1920 × 1080 pixels). The unprecedented high resolution makes it possible to see details that remain invisible to any other video format. The images of the specimens (blood cells, tissue sections, hair, fibre, etc.) are recorded using a 4K video camera which is attached to a light microscope. After processing, this resulted in very sharp and highly detailed images. This material was then used in education for classroom discussion. Spoken explanation by experts in the field of medical diagnostics and forensic science was also added to the high-resolution video images to make it suitable for self-study. © 2015 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.
Kovess-Masfety, Viviane; Keyes, Katherine; Hamilton, Ava; Hanson, Gregory; Bitfoi, Adina; Golitz, Dietmar; Koç, Ceren; Kuijpers, Rowella; Lesinskiene, Sigita; Mihova, Zlatka; Otten, Roy; Fermanian, Christophe; Pez, Ondine
2016-03-01
Video games are one of the favourite leisure activities of children; the influence on child health is usually perceived to be negative. The present study assessed the association between the amount of time spent playing video games and children mental health as well as cognitive and social skills. Data were drawn from the School Children Mental Health Europe project conducted in six European Union countries (youth ages 6-11, n = 3195). Child mental health was assessed by parents and teachers using the Strengths and Difficulties Questionnaire and by children themselves with the Dominic Interactive. Child video game usage was reported by the parents. Teachers evaluated academic functioning. Multivariable logistic regressions were used. 20 % of the children played video games more than 5 h per week. Factors associated with time spent playing video games included being a boy, being older, and belonging to a medium size family. Having a less educated, single, inactive, or psychologically distressed mother decreased time spent playing video games. Children living in Western European countries were significantly less likely to have high video game usage (9.66 vs 20.49 %) though this was not homogenous. Once adjusted for child age and gender, number of children, mothers age, marital status, education, employment status, psychological distress, and region, high usage was associated with 1.75 times the odds of high intellectual functioning (95 % CI 1.31-2.33), and 1.88 times the odds of high overall school competence (95 % CI 1.44-2.47). Once controlled for high usage predictors, there were no significant associations with any child self-reported or mother- or teacher-reported mental health problems. High usage was associated with decreases in peer relationship problems [OR 0.41 (0.2-0.86) and in prosocial deficits (0.23 (0.07, 0.81)]. Playing video games may have positive effects on young children. Understanding the mechanisms through which video game use may stimulate children should be further investigated.