Science.gov

Sample records for high efficient facility

  1. High efficiency waste to energy facility -- Pilot plant design

    SciTech Connect

    Orita, Norihiko; Kawahara, Yuuzou; Takahashi, Kazuyoshi; Yamauchi, Toru; Hosoda, Takuo

    1998-07-01

    Waste To Energy facilities are commonly acceptable to the environment and give benefits in two main areas: one is a hygienic waste disposal and another is waste heat energy recovery to save fossil fuel consumption. Recovered energy is used for electricity supply, and it is required to increase the efficiency of refuse to electric energy conversion, and to spread the plant construction throughout the country of Japan, by the government. The national project started in 1992, and pilot plant design details were established in 1995. The objective of the project is to get 30% of energy conversion efficiency through the measure by raising the steam temperature and pressure to 500 C and 9.8 MPa respectively. The pilot plant is operating under the design conditions, which verify the success of applied technologies. This paper describes key technologies which were used to design the refuse burning boiler, which generates the highest steam temperature and pressure steam.

  2. Low turbulence/high efficiency cyclone separators: Facility qualification results

    SciTech Connect

    Razgaitis, R.; Paul, D.D.; Bioarski, A.A.; Jordan, H. ); Brodkey, R.S.; Munson-McGee, M. . Dept. of Chemical Engineering)

    1985-01-01

    The objective of this work is to experimentally investigate the near-wall turbulent flow-fields characteristic of cyclone separators in order to determine the influence of wall-originating turbulence on the separation of fine particles. In particular, seven turbulence suppression concepts will be evaluated with reference to a well-established baseline condition. Concepts which appear attractive will be studied and characterized in more detail. The work accomplished to date is principally the design, construction, and qualification of two of the facilities that will be used to study the various concepts of turbulence suppression. The qualification of the primary facility, the Cyclonic Wind Tunnel (CWT), has required the development and adaptation of laser Doppler velocimetry (LDV) to perform simultaneous two-dimensional turbulence measurements in a highly swirling flow. A companion facility to the CWT is the Curvilinear Boundary Layer (CBL) apparatus. The purpose of the CBL is to provide a thick, visually-observable near-wall flow region under dynamically similar conditions to the CWT to that a physical understanding of the turbulence suppression process can be obtained. 9 refs., 15 figs.

  3. A Highly Efficient and Facile Approach for Fabricating Graphite Nanoplatelets

    NASA Astrophysics Data System (ADS)

    Van Thanh, Dang; Van Thien, Nguyen; Thang, Bui Hung; Van Chuc, Nguyen; Hong, Nguyen Manh; Trang, Bui Thi; Lam, Tran Dai; Huyen, Dang Thi Thu; Hong, Phan Ngoc; Minh, Phan Ngoc

    2016-05-01

    In this study, we report a highly efficient, convenient, and cost-effective technique for producing graphite nanoplatelets (GNPs) from plasma-expanded graphite oxides (PEGOs) obtained directly from low-cost, recycled graphite electrodes of used batteries, x-ray diffraction, Raman spectroscopy, and x-ray photoelectron spectroscopy confirmed the successful preparation of GNPs. Scanning electron microscopy revealed that the GNPs have lateral width from several hundreds of nanometers to 1.5 μm with an approximate thickness of 20-50 nm. These GNPs can serve as a precursor for the preparation of GNPs-based nanocomposite.

  4. A facile way to rejuvenate Ag3PO4 as a recyclable highly efficient photocatalyst.

    PubMed

    Wang, Hua; Bai, Yusong; Yang, Jutong; Lang, Xiufeng; Li, Jinghong; Guo, Lin

    2012-04-27

    Recycling awarded the silver: Ag(3)PO(4), a highly efficient photocatalyst, decomposes to the weak photocatalyst Ag during consecutive photocatalytic cycles. A facile and very mild wet chemical oxidation method was proposed, which involves the cooperation of H(2)O(2) with Na(2)HPO(4), to rejuvenate Ag(3)PO(4) from Ag as a recyclable highly efficient photocatalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating

    PubMed Central

    2011-01-01

    Background Immobilization of lipase on appropriate solid supports is one way to improve their stability and activity, and can be reused for large scale applications. A sample, cost- effective and high loading capacity method is still challenging. Results A facile method of lipase immobilization was developed in this study, by the use of polydopamine coated magnetic nanoparticles (PD-MNPs). Under optimal conditions, 73.9% of the available lipase was immobilized on PD-MNPs, yielding a lipase loading capacity as high as 429 mg/g. Enzyme assays revealed that lipase immobilized on PD-MNPs displayed enhanced pH and thermal stability compared to free lipase. Furthermore, lipase immobilized on PD-MNPs was easily isolated from the reaction medium by magnetic separation and retained more than 70% of initial activity after 21 repeated cycles of enzyme reaction followed by magnetic separation. Conclusions Immobilization of enzyme onto magnetic iron oxide nanoparticles via poly-dopamine film is economical, facile and efficient. PMID:21649934

  6. Facile construction of high-electrocatalytic bilayer counter electrode for efficient dye-sensitized solar cells.

    PubMed

    Hao, Feng; Lin, Hong; Liu, Yizhu; Wang, Ning; Li, Wendi; Li, Jianbao

    2011-10-01

    To improve the mechanical rigidity of the electrocatalyst and assure a higher number density of catalytic sites of the counter electrode in dye-sensitized solar cells (DSCs), we have extended widely applied titanium tetrachloride treatment to construct a rough scaffolding underlayer for the platinized counter electrode. Field-emission scanning electron microscopy and atomic force microscopy images clearly depicted the platinum nanoparticles with a diameter of ca. 10 nm homogeneously distributed on the scaffolding underlayer of the bilayer counter electrode and thus led to a characteristically high surface roughness. The electocatalytic activity of this novel bilayer counter electrode was measured and compared with the corresponding properties of conventional sputtered Pt electrode. Interestingly, electrochemical impedance spectroscopy and cyclic voltammetry measurements further demonstrated the notably larger electrochemical active surface area and thereby higher electrocatalytic activity of the bilayer counter electrode. Consequently, under standard 1 sun illumination (100 mW cm(-2), AM 1.5), device with this bilayer counter electrode achieved a considerably improved fill factor of 0.67 and overall energy conversion efficiency of 7.09%, which was apparently higher than that of 0.60 and 6.37% for sputterd Pt electrode. Therefore, this present method paves a facile and inexpensive way to prepare high-electrocatalytic bilayer counter electrode in DSCs. © 2011 American Chemical Society

  7. Facile thiol-ene thermal crosslinking reaction facilitated hole-transporting layer for highly efficient and stable perovskite solar cells

    DOE PAGES

    Li, Zhong'an; Zhu, Zonglong; Chueh, Chu -Chen; ...

    2016-08-08

    A crosslinked organic hole-transporting layer (HTL) is developed to realize highly efficient and stable perovskite solar cells via a facile thiol-ene thermal reaction. This crosslinked HTL not only facilitates hole extraction from perovskites, but also functions as an effective protective barrier. Lastly, a high-performance (power conversion efficiency: 18.3%) device is demonstrated to show respectable photo and thermal stability without encapsulation.

  8. Facile thiol-ene thermal crosslinking reaction facilitated hole-transporting layer for highly efficient and stable perovskite solar cells

    SciTech Connect

    Li, Zhong'an; Zhu, Zonglong; Chueh, Chu -Chen; Luo, Jingdong; Jen, Alex K. -Y.

    2016-08-08

    A crosslinked organic hole-transporting layer (HTL) is developed to realize highly efficient and stable perovskite solar cells via a facile thiol-ene thermal reaction. This crosslinked HTL not only facilitates hole extraction from perovskites, but also functions as an effective protective barrier. Lastly, a high-performance (power conversion efficiency: 18.3%) device is demonstrated to show respectable photo and thermal stability without encapsulation.

  9. Facile synthesis of TiO2(B) crystallites/nanopores structure: a highly efficient photocatalyst.

    PubMed

    Wang, Ping; Xie, Tengfeng; Wang, Dejun; Dong, Shaojun

    2010-10-15

    TiO(2)(B) was prepared by a facile green solvothermal method and further characterized by the powder X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), raman spectroscopy and nitrogen sorption analysis, and it has been found that the as-synthesized sample possesses a unique crystallites/nanopores structure and has a very large surface area (484 m(2) g(-1)). Surprisingly, it exhibits the very high photocatalytic activity and good stability for the decomposition of methyl orange (MO) compared to that of P25. Copyright 2010 Elsevier Inc. All rights reserved.

  10. A facile synthesis of highly stable modified carbon nanotubes as efficient oxygen reduction reaction catalysts

    NASA Astrophysics Data System (ADS)

    Stenmark, Theodore Axel

    Proton Exchange Membrane Fuel Cell (PEMFC) technology is an exciting alternative energy prospect, especially in the field of transportation. PEMFCs are three times as efficient as internal combustion (IC) engines and emit only water as a byproduct. The latter point is especially important in a day and age when climate change is upon us. However, platinum required to catalyze the sluggish oxygen reduction reaction (ORR) which takes place on the cathode of the PEMFC has rendered fuel cell automobiles economically unviable. Therefore, the pursuit of an inexpensive replacement for platinum has become an active research area. Herein, a facile synthetic process for modified carbon nanotubes for ORR catalysis is described. These nanotubes display catalytic activity via rotating disc electrode (RDE) analysis which, in some cases, equals that of a Pt/C standard.

  11. Facile and high-efficient immobilization of histidine-tagged multimeric protein G on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Jiho; Chang, Jeong Ho

    2014-12-01

    This work reports the high-efficient and one-step immobilization of multimeric protein G on magnetic nanoparticles. The histidine-tagged (His-tag) recombinant multimeric protein G was overexpressed in Escherichia coli BL21 by the repeated linking of protein G monomers with a flexible linker. High-efficient immobilization on magnetic nanoparticles was demonstrated by two different preparation methods through the amino-silane and chloro-silane functionalization on silica-coated magnetic nanoparticles. Three kinds of multimeric protein G such as His-tag monomer, dimer, and trimer were tested for immobilization efficiency. For these tests, bicinchoninic acid (BCA) assay was employed to determine the amount of immobilized His-tag multimeric protein G. The result showed that the immobilization efficiency of the His-tag multimeric protein G of the monomer, dimer, and trimer was increased with the use of chloro-silane-functionalized magnetic nanoparticles in the range of 98% to 99%, rather than the use of amino-silane-functionalized magnetic nanoparticles in the range of 55% to 77%, respectively.

  12. A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction

    PubMed Central

    Zhang, Yaqing; Zhang, Xianlei; Ma, Xiuxiu; Guo, Wenhui; Wang, Chunchi; Asefa, Tewodros; He, Xingquan

    2017-01-01

    The oxygen reduction reaction (ORR) is of great importance for various renewable energy conversion technologies such as fuel cells and metal-air batteries. Heteroatom-doped carbon nanomaterials have proven to be robust metal-free electrocatalysts for ORR in the above-mentioned energy devices. Herein, we demonstrate the synthesis of novel highly porous N-doped carbon nanoplatelets (N-HPCNPs) derived from oatmeal (or a biological material) and we show the materials’ high-efficiency as electrocatalyst for ORR. The obtained N-HPCNPs hybrid materials exhibit superior electrocatalytic activities towards ORR, besides excellent stability and good methanol tolerance in both basic and acidic electrolytes. The unique nanoarchitectures with rich micropores and mesopores, as well as the high surface area-to-volume ratios, present in the materials significantly increase the density of accessible catalytically active sites in them and facilitate the transport of electrons and electrolyte within the materials. Consequently, the N-HPCNPs catalysts hold a great potential to serve as low-cost and highly efficient cathode materials in direct methanol fuel cells (DMFCs). PMID:28240234

  13. A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction

    NASA Astrophysics Data System (ADS)

    Zhang, Yaqing; Zhang, Xianlei; Ma, Xiuxiu; Guo, Wenhui; Wang, Chunchi; Asefa, Tewodros; He, Xingquan

    2017-02-01

    The oxygen reduction reaction (ORR) is of great importance for various renewable energy conversion technologies such as fuel cells and metal-air batteries. Heteroatom-doped carbon nanomaterials have proven to be robust metal-free electrocatalysts for ORR in the above-mentioned energy devices. Herein, we demonstrate the synthesis of novel highly porous N-doped carbon nanoplatelets (N-HPCNPs) derived from oatmeal (or a biological material) and we show the materials’ high-efficiency as electrocatalyst for ORR. The obtained N-HPCNPs hybrid materials exhibit superior electrocatalytic activities towards ORR, besides excellent stability and good methanol tolerance in both basic and acidic electrolytes. The unique nanoarchitectures with rich micropores and mesopores, as well as the high surface area-to-volume ratios, present in the materials significantly increase the density of accessible catalytically active sites in them and facilitate the transport of electrons and electrolyte within the materials. Consequently, the N-HPCNPs catalysts hold a great potential to serve as low-cost and highly efficient cathode materials in direct methanol fuel cells (DMFCs).

  14. A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction.

    PubMed

    Zhang, Yaqing; Zhang, Xianlei; Ma, Xiuxiu; Guo, Wenhui; Wang, Chunchi; Asefa, Tewodros; He, Xingquan

    2017-02-27

    The oxygen reduction reaction (ORR) is of great importance for various renewable energy conversion technologies such as fuel cells and metal-air batteries. Heteroatom-doped carbon nanomaterials have proven to be robust metal-free electrocatalysts for ORR in the above-mentioned energy devices. Herein, we demonstrate the synthesis of novel highly porous N-doped carbon nanoplatelets (N-HPCNPs) derived from oatmeal (or a biological material) and we show the materials' high-efficiency as electrocatalyst for ORR. The obtained N-HPCNPs hybrid materials exhibit superior electrocatalytic activities towards ORR, besides excellent stability and good methanol tolerance in both basic and acidic electrolytes. The unique nanoarchitectures with rich micropores and mesopores, as well as the high surface area-to-volume ratios, present in the materials significantly increase the density of accessible catalytically active sites in them and facilitate the transport of electrons and electrolyte within the materials. Consequently, the N-HPCNPs catalysts hold a great potential to serve as low-cost and highly efficient cathode materials in direct methanol fuel cells (DMFCs).

  15. Facile adsorption-dry process to incorporate Cu into TiO2 nanotube for highly efficient photocatalytic hydrogen production.

    PubMed

    Xu, Shiping; Sun, Darren Delai

    2013-10-01

    Cu species was introduced into TiO2 nanotube prepared by hydrothermal method via a facile adsorption-dry process. The fabricated sample exhibited excellent H2 generation activity (76.3 mmol h(-1) g(-1)(catalyst)), which was higher than most of the reported Cu incorporated TiO2 samples, even superior to some Pt/Pd/Au/Ni incorporated TiO2. Compared to wet impregnation and in-situ photo-deposition methods, the facile adsorption-dry process was much simpler but more efficient to introduce Cu species into TiO2 for H2 production. To fully understand the adsorption-dry process, characterizations of the samples were carried out by high-resolution transmission electron microscope, X-ray diffractometer, energy dispersive X-ray spectrometer, BET surface area analysis, UV-visible spectrophotometer and X-ray photoelectron spectroscopy. It was found that the facile adsorption-dry process could well maintain the morphology of TiO2 support, for instance, 1-D tubular structure and large BET surface area of TiO2 nanotube; moreover, the introduced Cu species was highly dispersed and intensively bonded with TiO2. All of these contributed to the high H2 generation activity.

  16. Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility.

    PubMed

    Döppner, T; Kraus, D; Neumayer, P; Bachmann, B; Emig, J; Falcone, R W; Fletcher, L B; Hardy, M; Kalantar, D H; Kritcher, A L; Landen, O L; Ma, T; Saunders, A M; Wood, R D

    2016-11-01

    We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5-10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.

  17. Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Döppner, T.; Kraus, D.; Neumayer, P.; Bachmann, B.; Emig, J.; Falcone, R. W.; Fletcher, L. B.; Hardy, M.; Kalantar, D. H.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Saunders, A. M.; Wood, R. D.

    2016-11-01

    We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5-10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.

  18. Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility

    SciTech Connect

    Döppner, T. Bachmann, B.; Emig, J.; Hardy, M.; Kalantar, D. H.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Wood, R. D.; Kraus, D.; Saunders, A. M.; Neumayer, P.; Falcone, R. W.; Fletcher, L. B.

    2016-11-15

    We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5–10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.

  19. Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility

    DOE PAGES

    Döppner, T.; Kraus, D.; Neumayer, P.; ...

    2016-08-03

    We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5-10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here in this paper we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction.more » Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.« less

  20. Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility

    SciTech Connect

    Döppner, T.; Kraus, D.; Neumayer, P.; Bachmann, B.; Emig, J.; Falcone, R. W.; Fletcher, L. B.; Hardy, M.; Kalantar, D. H.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Saunders, A. M.; Wood, R. D.

    2016-08-03

    We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5-10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here in this paper we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.

  1. Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts

    NASA Astrophysics Data System (ADS)

    Altintas Yildirim, Ozlem; Arslan, Hanife; Sönmezoğlu, Savaş

    2016-12-01

    Cobalt-doped zinc oxide (Co:ZnO) thin films with dopant contents ranging from 0 to 5 at.% were prepared using the sol-gel method, and their structural, morphological, optical, and photocatalytic properties were characterized. The effect of the dopant content on the photocatalytic properties of the films was investigated by examining the degradation behavior of methylene blue (MB) under visible light irradiation, and a detailed investigation of their photocatalytic activities was performed by determining the apparent quantum yields (AQYs). Co2+ ions were observed to be substitutionally incorporated into Zn2+ sites in the ZnO crystal, leading to lattice parameter constriction and band gap narrowing due to the photoinduced carriers produced under the visible light irradiation. Thus, the light absorption range of the Co:ZnO films was improved compared with that of the undoped ZnO film, and the Co:ZnO films exhibited highly efficient photocatalytic activity (∼92% decomposition of MB after 60-min visible light irradiation for the 3 at.% Co:ZnO film). The AQYs of the Co:ZnO films were greatly enhanced under visible light irradiation compared with that of the undoped ZnO thin film, demonstrating the effect of the Co doping level on the photocatalytic activity of the films.

  2. Facile and Scalable Preparation of Graphene Oxide-Based Magnetic Hybrids for Fast and Highly Efficient Removal of Organic Dyes

    PubMed Central

    Jiao, Tifeng; Liu, Yazhou; Wu, Yitian; Zhang, Qingrui; Yan, Xuehai; Gao, Faming; Bauer, Adam J. P.; Liu, Jianzhao; Zeng, Tingying; Li, Bingbing

    2015-01-01

    This study reports the facile preparation and the dye removal efficiency of nanohybrids composed of graphene oxide (GO) and Fe3O4 nanoparticles with various geometrical structures. In comparison to previously reported GO/Fe3O4 composites prepared through the one-pot, in situ deposition of Fe3O4 nanoparticles, the GO/Fe3O4 nanohybrids reported here were obtained by taking advantage of the physical affinities between sulfonated GO and Fe3O4 nanoparticles, which allows tuning the dimensions and geometries of Fe3O4 nanoparticles in order to decrease their contact area with GO, while still maintaining the magnetic properties of the nanohybrids for easy separation and adsorbent recycling. Both the as-prepared and regenerated nanohybrids demonstrate a nearly 100% removal rate for methylene blue and an impressively high removal rate for Rhodamine B. This study provides new insights into the facile and controllable industrial scale fabrication of safe and highly efficient GO-based adsorbents for dye or other organic pollutants in a wide range of environmental-related applications. PMID:26220847

  3. Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells

    SciTech Connect

    Jang, Segeun; Yoon, Jungjin; Ha, Kyungyeon; Kim, Min-cheol; Kim, Dong Hoe; Kim, Sang Moon; Kang, Seong Min; Park, Sei Jin; Jung, Hyun Suk; Choi, Mansoo

    2016-04-01

    The capability of fabricating three dimensional (3-D) nanostructures with desired morphology is a key to realizing effective light-harvesting strategy in optical applications. In this work, we report a novel 3-D nanopatterning technique that combines ion-assisted aerosol lithography (IAAL) and soft lithography that serves as a facile method to fabricate 3-D nanostructures. Aerosol nanoparticles can be assembled into desired 3-D nanostructures via ion-induced electrostatic focusing and antenna effects from charged nanoparticle structures. Replication of the structures with a polymeric mold allows high throughput fabrication of 3-D nanostructures with various liquid-soluble materials. 3-D flower-patterned polydimethylsiloxane (PDMS) stamp was prepared using the reported technique and utilized for fabricating 3-D nanopatterned mesoporous TiO2 layer, which was employed as the electron transport layer in perovskite solar cells. By incorporating the 3-D nanostructures, absorbed photon-to-current efficiency of >95% at 650 nm wavelength and overall power conversion efficiency of 15.96% were achieved. The enhancement can be attributed to an increase in light harvesting efficiency in a broad wavelength range from 400 to 800 nm and more efficient charge collection from enlarged interfacial area between TiO2 and perovskite layers. This hybrid nanopatterning technique has demonstrated to be an effective method to create textures that increase light harvesting and charge collection with 3-D nanostructures in solar cells.

  4. Qualification of a high-efficiency, gated spectrometer for x-ray Thomson scattering on the National Ignition Facility.

    PubMed

    Döppner, T; Kritcher, A L; Neumayer, P; Kraus, D; Bachmann, B; Burns, S; Falcone, R W; Glenzer, S H; Hawreliak, J; House, A; Landen, O L; LePape, S; Ma, T; Pak, A; Swift, D

    2014-11-01

    We have designed, built, and successfully fielded a highly efficient and gated Bragg crystal spectrometer for x-ray Thomson scattering measurements on the National Ignition Facility (NIF). It utilizes a cylindrically curved Highly Oriented Pyrolytic Graphite crystal. Its spectral range of 7.4-10 keV is optimized for scattering experiments using a Zn He-α x-ray probe at 9.0 keV or Mo K-shell line emission around 18 keV in second diffraction order. The spectrometer has been designed as a diagnostic instrument manipulator-based instrument for the NIF target chamber at the Lawrence Livermore National Laboratory, USA. Here, we report on details of the spectrometer snout, its novel debris shield configuration and an in situ spectral calibration experiment with a Brass foil target, which demonstrated a spectral resolution of E/ΔE = 220 at 9.8 keV.

  5. Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste.

    PubMed

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Yu, Han-Qing

    2013-01-01

    In this work, sawdust, a biomass waste, is converted into a magnetic porous carbonaceous (MPC) solid acid catalyst by an integrated fast pyrolysis-sulfonation process. The resultant magnetic solid acid has a porous structure with high surface area of 296.4 m(2) g(-1), which can be attributed to the catalytic effect of Fe. The catalytic activity and recyclability of the solid acid catalyst are evaluated during three typical acid-catalyzed reactions: esterification, dehydration, and hydrolysis. The favorable catalytic performance in all three reactions is attributed to the acid's high strength with 2.57 mmol g(-1) of total acid sites. Moreover, the solid acid can be reused five times without a noticeable decrease in catalytic activity, indicating the stability of the porous carbon (PC)-sulfonic acid group structure. The findings in the present work offer effective alternatives for environmentally friendly utilization of abundant biomass waste.

  6. Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste

    PubMed Central

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Yu, Han-Qing

    2013-01-01

    In this work, sawdust, a biomass waste, is converted into a magnetic porous carbonaceous (MPC) solid acid catalyst by an integrated fast pyrolysis–sulfonation process. The resultant magnetic solid acid has a porous structure with high surface area of 296.4 m2 g−1, which can be attributed to the catalytic effect of Fe. The catalytic activity and recyclability of the solid acid catalyst are evaluated during three typical acid-catalyzed reactions: esterification, dehydration, and hydrolysis. The favorable catalytic performance in all three reactions is attributed to the acid's high strength with 2.57 mmol g−1 of total acid sites. Moreover, the solid acid can be reused five times without a noticeable decrease in catalytic activity, indicating the stability of the porous carbon (PC)–sulfonic acid group structure. The findings in the present work offer effective alternatives for environmentally friendly utilization of abundant biomass waste. PMID:23939253

  7. An efficient and facile synthesis of highly substituted 2,6-dicyanoanilines.

    PubMed

    Yi, Chenyi; Blum, Carmen; Liu, Shi-Xia; Frei, Gabriela; Neels, Antonia; Renaud, Philippe; Leutwyler, Samuel; Decurtins, Silvio

    2008-05-02

    A one-pot procedure for the synthesis of substituted 2,6-dicyanoanilines starting from readily available ynones and malononitrile has been developed. For instance, penta-1,4-diyn-3-one is converted into the acetylene-substituted aniline derivative 1 in good yield. Upon photoexcitation, this chromophore shows a strong blue emission with a high quantum yield. The ground- and the excited-state geometries, charge distributions, and excitation energies of 1 have been evaluated by ab initio calculations.

  8. Facile fabrication of heterostructured g-C₃N₄/Bi₂MoO₆ microspheres with highly efficient activity under visible light irradiation.

    PubMed

    Yan, Tao; Yan, Qing; Wang, Xiaodong; Liu, Hongye; Li, Mengmeng; Lu, Shixiang; Xu, Wenguo; Sun, Meng

    2015-01-28

    A facile and template-free solvothermal method was developed for the synthesis of microspheric g-C3N4/Bi2MoO6 photocatalysts. The obtained g-C3N4/Bi2MoO6 composites were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photo-electron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible diffuse reflection spectroscopy (DRS). The XRD, FTIR, and HRTEM characterization results confirmed the formation of heterojunction structures at the interfaces of g-C3N4 and Bi2MoO6. The DRS results showed that the absorption edges of g-C3N4/Bi2MoO6 composites were red shifted in the visible light region with the increase of g-C3N4 content. The SEM and TEM images revealed that the composites exhibited a microsphere-like morphology and were composed of smaller nanoplates. The elemental mapping images revealed that g-C3N4 and Bi2MoO6 nanoflakes uniformly assembled together to form hierarchical flowers. Compared with pure g-C3N4 and Bi2MoO6, the as-prepared samples exhibited superior photocatalytic activity towards the degradation of dyes (Rhodamine B and Methyl blue) under visible light irradiation. The enhanced photocatalytic activity of g-C3N4/Bi2MoO6 composites could be attributed to their strong visible light absorption, the high migration efficiency of photo-induced carriers, and the interfacial electronic interaction. The electrochemical impedance spectroscopy (EIS) confirmed that the interface charge separation efficiency was greatly improved by coupling g-C3N4 with Bi2MoO6. It was also confirmed that the photo-degradation of dye molecules is mainly attributed to the oxidizing ability of the generated holes (h(+)) and partly to the oxidizing ability of ·O2(-) and ·OH radicals.

  9. A facilely synthesized amino-functionalized metal-organic framework for highly specific and efficient enrichment of glycopeptides.

    PubMed

    Zhang, Yi-Wei; Li, Ze; Zhao, Qiang; Zhou, Ying-Lin; Liu, Hu-Wei; Zhang, Xin-Xiang

    2014-10-09

    A facilely synthesized amino-functionalized metal-organic framework (MOF) MIL-101(Cr)-NH2 was first applied for highly specific glycopeptide enrichment based on the hydrophilic interactions. With the special characteristics of the MOF, the material performed well in selectivity and sensitivity for both standard glycoprotein samples and complex biological samples.

  10. High energy forming facility

    NASA Technical Reports Server (NTRS)

    Ciurlionis, B.

    1967-01-01

    Watertight, high-explosive forming facility, 25 feet in diameter and 15 feet deep, withstands repeated explosions of 10 pounds of TNT equivalent. The shell is fabricated of high strength steel and allows various structural elements to deform or move elastically and independently while retaining structural integrity.

  11. Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis.

    PubMed

    Ouyang, Wei; Wang, Wei; Zhang, Haixia; Wu, Wengang; Li, Zhihong

    2013-08-30

    The great advances in nanotechnology call for advances in miniaturized power sources for micro/nano-scale systems. Nanofluidic channels have received great attention as promising high-power-density substitutes for ion exchange membranes for use in energy harvesting from ambient ionic concentration gradient, namely reverse electrodialysis. This paper proposes the nanofluidic crystal (NFC), of packed nanoparticles in micro-meter-sized confined space, as a facile, high-efficiency and high-power-density scaling-up scheme for energy harvesting by nanofluidic reverse electrodialysis (NRED). Obtained from the self-assembly of nanoparticles in a micropore, the NFC forms an ion-selective network with enormous nanochannels due to electrical double-layer overlap in the nanoparticle interstices. As a proof-of-concept demonstration, a maximum efficiency of 42.3 ± 1.84%, a maximum power density of 2.82 ± 0.22 W m(-2), and a maximum output power of 1.17 ± 0.09 nW/unit (nearly three orders of magnitude of amplification compared to other NREDs) were achieved in our prototype cell, which was prepared within 30 min. The current NFC-based prototype cell can be parallelized and cascaded to achieve the desired output power and open circuit voltage. This NFC-based scaling-up scheme for energy harvesting based on NRED is promising for the building of self-powered micro/nano-scale systems.

  12. Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Wang, Wei; Zhang, Haixia; Wu, Wengang; Li, Zhihong

    2013-08-01

    The great advances in nanotechnology call for advances in miniaturized power sources for micro/nano-scale systems. Nanofluidic channels have received great attention as promising high-power-density substitutes for ion exchange membranes for use in energy harvesting from ambient ionic concentration gradient, namely reverse electrodialysis. This paper proposes the nanofluidic crystal (NFC), of packed nanoparticles in micro-meter-sized confined space, as a facile, high-efficiency and high-power-density scaling-up scheme for energy harvesting by nanofluidic reverse electrodialysis (NRED). Obtained from the self-assembly of nanoparticles in a micropore, the NFC forms an ion-selective network with enormous nanochannels due to electrical double-layer overlap in the nanoparticle interstices. As a proof-of-concept demonstration, a maximum efficiency of 42.3 ± 1.84%, a maximum power density of 2.82 ± 0.22 W m-2, and a maximum output power of 1.17 ± 0.09 nW/unit (nearly three orders of magnitude of amplification compared to other NREDs) were achieved in our prototype cell, which was prepared within 30 min. The current NFC-based prototype cell can be parallelized and cascaded to achieve the desired output power and open circuit voltage. This NFC-based scaling-up scheme for energy harvesting based on NRED is promising for the building of self-powered micro/nano-scale systems.

  13. Energy Efficiency in Water and Wastewater Facilities

    EPA Pesticide Factsheets

    This guide describes how water and wastewater facilities can lead by example and achieve multiple benefits by improving the energy efficiency of their new, existing, and renovated buildings and their day-to-day operations.

  14. Reliable, efficient systems for biomedical research facility

    SciTech Connect

    Basso, P.

    1997-05-01

    Medical Sciences Research Building III (MSRB III) is a 10-story, 207,000 ft{sup 2} (19,230 m{sup 2}) biomedical research facility on the campus of the University of Michigan. The design of MSRB III required a variety of technological solutions to complex design issues. The systems also had to accommodate future modifications. Closely integrated, modular systems with a high degree of flexibility were designed to respond to this requirement. Additionally, designs were kept as simple as possible for operation and maintenance personnel. Integrated electronic controls were used to provide vital data during troubleshooting and maintenance procedures. Equipment was also specified that provides reliability and minimizes maintenance. Other features include 100% redundancy of all central equipment servicing the animal housing area; redundant temperature controls for each individual animal housing room for fail-safe operation to protect the animals against overheating; and accessibility to all items requiring maintenance through an above-ceiling coordination process. It is critical that the engineering systems for MSRB III provide a safe, comfortable, energy efficient environment. The achievement of this design intent was noted by the University`s Commissioning Review Committee which stated: The Commissioning Process performed during both the design phase and construction phase of MSRB III was a significant success, providing an efficiently functioning facility that has been built in accordance with its design intent.

  15. Facile synthesis of Au-ZnO plasmonic nanohybrids for highly efficient photocatalytic degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Kuriakose, Sini; Sahu, Kavita; Khan, Saif A.; Tripathi, A.; Avasthi, D. K.; Mohapatra, Satyabrata

    2017-02-01

    Au-ZnO plasmonic nanohybrids were synthesized by a facile two step process. In the first step, nanostructured ZnO thin films were prepared by carbothermal evaporation followed by thermal annealing in oxygen atmosphere. Deposition of ultrathin Au films onto the nanostructured ZnO thin films by sputtering combined with thermal annealing resulted in the formation of Au-ZnO plasmonic nanohybrid thin films. The structural, optical, plasmonic and photocatalytic properties of the Au-ZnO nanohybrid thin films were studied. XRD studies on the Au-ZnO hybrid thin films revealed the presence of Au and ZnO nanostructures. UV-visible absorption studies showed two peaks corresponding to the excitonic absorption of ZnO nanostructures in the UV region and the surface plasmon resonance (SPR) absorption of Au nanoparticles in the visible region. The Au-ZnO nanohybrid thin films annealed at 400 °C showed enhanced photocatalytic activity as compared to nanostructrured ZnO thin films towards sun light driven photocatalytic degradation of methylene blue (MB) dye in water. The observed enhanced photocatalytic activity of Au-ZnO plasmonic nanohybrids is attributed to the efficient suppression of the recombination of photogenerated charge carriers in ZnO due to the strong electron scavenging action of Au nanoparticles combined with the improved sun light utilization capability of Au-ZnO nanohybrids coming from the plasmonic response of Au nanoparticles decorating ZnO nanostructures.

  16. One-pot facile synthesis of branched Ag-ZnO heterojunction nanostructure as highly efficient photocatalytic catalyst

    NASA Astrophysics Data System (ADS)

    Huang, Qingli; Zhang, Qitao; Yuan, Saisai; Zhang, Yongcai; Zhang, Ming

    2015-10-01

    In this paper, the branched Ag-ZnO heterojunction nanostructure and the branched ZnO were synthesized successfully by a facile, green and one-pot hydrothermal method. Such branched heterojunction and the comparing branched pure ZnO were characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy (PL) and UV-vis diffuse reflectance spectra (DRS). The photocatalytic degradation of RhB aqueous solution and acetaldehyde (CH3CHO) gas results both showed that the branched Ag-ZnO heterojunction possessed the enhanced photocatalytic properties in comparison to the branched ZnO and Ag-ZnO counterparts due to its special interface structures and fast separation of its photogenerated charge carriers. This method is simple, feasible and can provide an important clue for synthesis and application of other branched metal/semiconductor heterojunction nanostructures.

  17. Energy efficiency in California laboratory-type facilities

    SciTech Connect

    Mills, E.; Bell, G.; Sartor, D.

    1996-07-31

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in the overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.

  18. Facile fabrication of highly efficient g-C₃N₄/BiFeO₃ nanocomposites with enhanced visible light photocatalytic activities.

    PubMed

    Wang, Xingfu; Mao, Weiwei; Zhang, Jian; Han, Yumin; Quan, Chuye; Zhang, Qiaoxia; Yang, Tao; Yang, Jianping; Li, Xing'ao; Huang, Wei

    2015-06-15

    Graphitic carbon nitride/bismuth ferrite (g-C3N4/BiFeO3) nanocomposites with various g-C3N4 contents have been synthesized by a simple method. After the deposition-precipitation process, the novel BiFeO3 spindle-like nanoparticles with the size of ∼100 nm were homogeneously decorated on the surfaces of the C3N4 nanosheets. A possible deposition growth mechanism is proposed on the basis of experimental results. The as-prepared g-C3N4/BiFeO3 composites exhibit high efficiency for the degradation of methyl orange (MO) under visible light irradiation, which can be mainly attributed to the synergic effect between g-C3N4 and BiFeO3. The ability to tune surface and interfacial characteristics for the optimization of photophysical properties suggests that the deposition growth process may enable formation of hybrids suitable for a range of photocatalytic applications based on g-C3N4. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Assessment of Efficiency of Regenerative Heating System of Feed Water for High Temperature Turbine Plant on Decentralized Power Engineering Facilities

    NASA Astrophysics Data System (ADS)

    Larionov, Kirill; Gvozdjakov, Dmitrij; Zenkov, Andrej; Zaytsev, Vladimir

    2016-02-01

    The results of theoretical researches on efficiency of air heater use have been presented. The results of the research show the possibility of increase of energy efficiency of electrical power unit on electrical energy consumption by 2% at the initial temperature of steam 1073 K. The possibility of decrease of unit consumption of reference fuel by 4% has been stated.

  20. High power, high frequency component test facility

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Krawczonek, Walter

    1990-01-01

    The NASA Lewis Research Center has available a high frequency, high power laboratory facility for testing various components of aerospace and/or terrestrial power systems. This facility is described here. All of its capabilities and potential applications are detailed.

  1. Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method.

    PubMed

    Ding, Bin; Gao, Lili; Liang, Lusheng; Chu, Qianqian; Song, Xiaoxuan; Li, Yan; Yang, Guanjun; Fan, Bin; Wang, Mingkui; Li, Chengxin; Li, Changjiu

    2016-08-10

    Control of the perovskite film formation process to produce high-quality organic-inorganic metal halide perovskite thin films with uniform morphology, high surface coverage, and minimum pinholes is of great importance to highly efficient solar cells. Herein, we report on large-area light-absorbing perovskite films fabrication with a new facile and scalable gas pump method. By decreasing the total pressure in the evaporation environment, the gas pump method can significantly enhance the solvent evaporation rate by 8 times faster and thereby produce an extremely dense, uniform, and full-coverage perovskite thin film. The resulting planar perovskite solar cells can achieve an impressive power conversion efficiency up to 19.00% with an average efficiency of 17.38 ± 0.70% for 32 devices with an area of 5 × 2 mm, 13.91% for devices with a large area up to 1.13 cm(2). The perovskite films can be easily fabricated in air conditions with a relative humidity of 45-55%, which definitely has a promising prospect in industrial application of large-area perovskite solar panels.

  2. High-energy (> 70 KeV) x-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility

    DOE PAGES

    Chen, Hui; Hermann, M. R.; Kalantar, D. H.; ...

    2017-03-16

    Here, the Advanced Radiographic Capability (ARC) laser system at the National Ignition Facility (NIF) is designed to ultimately provide eight beamlets with a pulse duration adjustable from 1 to 30 ps, and energies up to 1.5 kJ per beamlet. Currently, four beamlets have been commissioned. In the first set of 6 commissioning target experiments, the individual beamlets were fired onto gold foil targets with energy up to 1 kJ per beamlet at 20–30 ps pulse length. The x-ray energy distribution and pulse duration were measured, yielding energy conversion efficiencies of 4–9 × 10–4 for x-rays with energies greater than 70more » keV. With greater than 3 J of such x-rays, ARC provides a high-precision x-ray backlighting capability for upcoming inertial confinement fusion and high-energy-density physics experiments on NIF.« less

  3. High-energy (>70 keV) x-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Hermann, M. R.; Kalantar, D. H.; Martinez, D. A.; Di Nicola, P.; Tommasini, R.; Landen, O. L.; Alessi, D.; Bowers, M.; Browning, D.; Brunton, G.; Budge, T.; Crane, J.; Di Nicola, J.-M.; Döppner, T.; Dixit, S.; Erbert, G.; Fishler, B.; Halpin, J.; Hamamoto, M.; Heebner, J.; Hernandez, V. J.; Hohenberger, M.; Homoelle, D.; Honig, J.; Hsing, W.; Izumi, N.; Khan, S.; LaFortune, K.; Lawson, J.; Nagel, S. R.; Negres, R. A.; Novikova, L.; Orth, C.; Pelz, L.; Prantil, M.; Rushford, M.; Shaw, M.; Sherlock, M.; Sigurdsson, R.; Wegner, P.; Widmayer, C.; Williams, G. J.; Williams, W.; Whitman, P.; Yang, S.

    2017-03-01

    The Advanced Radiographic Capability (ARC) laser system at the National Ignition Facility (NIF) is designed to ultimately provide eight beamlets with a pulse duration adjustable from 1 to 30 ps, and energies up to 1.5 kJ per beamlet. Currently, four beamlets have been commissioned. In the first set of 6 commissioning target experiments, the individual beamlets were fired onto gold foil targets with energy up to 1 kJ per beamlet at 20-30 ps pulse length. The x-ray energy distribution and pulse duration were measured, yielding energy conversion efficiencies of 4-9 × 10-4 for x-rays with energies greater than 70 keV. With greater than 3 J of such x-rays, ARC provides a high-precision x-ray backlighting capability for upcoming inertial confinement fusion and high-energy-density physics experiments on NIF.

  4. Facile fabrication of highly efficient carbon nanotube thin film replacing CuS counter electrode with enhanced photovoltaic performance in quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gopi, Chandu V. V. M.; Venkata-Haritha, Mallineni; Kim, Soo-Kyoung; Kim, Hee-Je

    2016-04-01

    An ideal counter electrode (CE), with high electrocatalytic activity, high performance stability, cost-efficient and applicable fabrication simplicity, is necessary to give full play to the advantages of quantum dot-sensitized solar cells (QDSSCs). Herein, we report a facile one-step preparation for carbon nanotubes (CNTs) have been explored as an electrocatalyst and low-cost alternative to platinum (Pt) and cuprous sulfide (CuS) CEs for polysulfide reduction in QDSSCs. QDSSC using this newly prepared CNT as a CE achieves a higher power conversion efficiency of 4.67% than those with a CuS (3.67%) or Pt CE (1.56%). Besides, a preliminary stability test reveals that the new CNT CE exhibits good stability. The results of Tafel polarization and electrochemical impedance spectroscopy measurements revealed that the CNTs had higher electrocatalytic activity for the polysulfide redox reaction and a smaller charge transfer resistance (8.61 Ω) at the CE/electrolyte interface than the CuS (21.87 Ω) and Pt (54.99 Ω) CEs. These results indicate that the CNT CE has superior electrocatalytic activity and can potentially replace CuS and Pt as CEs in QDSSCs. The preparation method of the CNT CE is simple and shows much promise as an efficient, stable, cost-effective and environmentally friendly CE for QDSSCs.

  5. Facile and green reduction of covalently PEGylated nanographene oxide via a `water-only' route for high-efficiency photothermal therapy

    NASA Astrophysics Data System (ADS)

    Chen, Jingqin; Wang, Xiaoping; Chen, Tongsheng

    2014-02-01

    A facile and green strategy is reported for the fabrication of nanosized and reduced covalently PEGylated graphene oxide (nrGO-PEG) with great biocompatibility and high near-infrared (NIR) absorbance. Covalently PEGylated nGO (nGO-PEG) was synthesized by the reaction of nGO-COOH and methoxypolyethylene glycol amine (mPEG-NH2). The neutral and purified nGO-PEG solution was then directly bathed in water at 90°C for 24 h without any additive to obtain nrGO-PEG. Covalent PEGylation not only prevented the aggregation of nGO but also dramatically promoted the reduction extent of nGO during this reduction process. The resulting single-layered nrGO-PEG sheets were approximately 50 nm in average lateral dimension and exhibited great biocompatibility and approximately 7.6-fold increment in NIR absorption. Moreover, this facile reduction process repaired the aromatic structure of GO. CCK-8 and flow cytometry (FCM) assays showed that exposure of A549 cells to 100 μg/mL of nrGO-PEG for 2 h, exhibiting 71.5% of uptake ratio, did not induce significant cytotoxicity. However, after irradiation with 808 nm laser (0.6 W/cm2) for 5 min, the cells incubated with 6 μg/mL of nrGO-PEG solution showed approximately 90% decrease of cell viability, demonstrating the high-efficiency photothermal therapy of nrGO-PEG to tumor cells in vitro. This work established nrGO-PEG as a promising photothermal agent due to its small size, great biocompatibility, high photothermal efficiency, and low cost.

  6. NETL- High-Pressure Combustion Research Facility

    SciTech Connect

    2013-07-08

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  7. NETL- High-Pressure Combustion Research Facility

    ScienceCinema

    None

    2016-07-12

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  8. Facile fabrication of high-efficiency near-infrared absorption film with tungsten bronze nanoparticle dense layer

    NASA Astrophysics Data System (ADS)

    Lee, Seong Yun; Kim, Jae Young; Lee, Jun Young; Song, Ho Jun; Lee, Sangkug; Choi, Kyung Ho; Shin, Gyojic

    2014-06-01

    An excellent transparent film with effective absorption property in near-infrared (NIR) region based on cesium-doped tungsten oxide nanoparticles was fabricated using a facile double layer coating method via the theoretical considerations. The optical performance was evaluated; the double layer-coated film exhibited 10% transmittance at 1,000 nm in the NIR region and over 80% transmittance at 550 nm in the visible region. To optimize the selectivity, the optical spectrum of this film was correlated with a theoretical model by combining the contributions of the Mie-Gans absorption-based localized surface plasmon resonance and reflections by the interfaces of the heterogeneous layers and the nanoparticles in the film. Through comparison of the composite and double layer coating method, the difference of the nanoscale distances between nanoparticles in each layer was significantly revealed. It is worth noting that the nanodistance between the nanoparticles decreased in the double layer film, which enhanced the optical properties of the film, yielding a haze value of 1% or less without any additional process. These results are very attractive for the nanocomposite coating process, which would lead to industrial fields of NIR shielding and thermo-medical applications.

  9. Facile fabrication of high-efficiency near-infrared absorption film with tungsten bronze nanoparticle dense layer

    PubMed Central

    2014-01-01

    An excellent transparent film with effective absorption property in near-infrared (NIR) region based on cesium-doped tungsten oxide nanoparticles was fabricated using a facile double layer coating method via the theoretical considerations. The optical performance was evaluated; the double layer-coated film exhibited 10% transmittance at 1,000 nm in the NIR region and over 80% transmittance at 550 nm in the visible region. To optimize the selectivity, the optical spectrum of this film was correlated with a theoretical model by combining the contributions of the Mie-Gans absorption-based localized surface plasmon resonance and reflections by the interfaces of the heterogeneous layers and the nanoparticles in the film. Through comparison of the composite and double layer coating method, the difference of the nanoscale distances between nanoparticles in each layer was significantly revealed. It is worth noting that the nanodistance between the nanoparticles decreased in the double layer film, which enhanced the optical properties of the film, yielding a haze value of 1% or less without any additional process. These results are very attractive for the nanocomposite coating process, which would lead to industrial fields of NIR shielding and thermo-medical applications. PACS 78.67.Sc; 78.67.Bf; 81.15.-z PMID:24982605

  10. Facile and easily popularized synthesis of L-cysteine-functionalized magnetic nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides.

    PubMed

    Feng, Xiaoyan; Deng, Chunhui; Gao, Mingxia; Zhang, Xiangmin

    2017-09-20

    Protein glycosylation is one of the most important post-translational modifications. Also, efficient enrichment and separation of glycopeptides from complex samples are crucial for the thorough analysis of glycosylation. Developing novel hydrophilic materials with facile and easily popularized synthesis is an urgent need in large-scale glycoproteomics research. Herein, for the first time, a one-step functionalization strategy based on metal-organic coordination was proposed and Fe3O4 nanoparticles were directly functionalized with zwitterionic hydrophilic L-cysteine (L-Cys), greatly simplifying the synthetic procedure. The easily synthesized Fe3O4/L-Cys possessed excellent hydrophilicity and brief composition, contributing to affinity for glycopeptides and reduction in nonspecific interaction. Thus, Fe3O4/L-Cys nanoparticles showed outstanding sensitivity (25 amol/μL), high selectivity (mixture of bovine serum albumin and horseradish peroxidase tryptic digests at a mass ratio of 100:1), good reusability (five repeated times), and stability (room temperature storage of 1 month). Encouragingly, in the glycosylation analysis of human serum, a total of 376 glycopeptides with 393 N-glycosylation sites corresponding to 118 glycoproteins were identified after enrichment with Fe3O4/L-Cys, which was superior to ever reported L-Cys modified magnetic materials. Furthermore, applying the one-step functionalization strategy, cysteamine and glutathione respectively direct-functionalized Fe3O4 nanoparticles were successfully synthesized and also achieved efficient glycopeptide enrichment in human serum. The results indicated that we have presented an efficient and easily popularized strategy in glycoproteomics as well as in the synthesis of novel materials. Graphical abstract Fe3O4/L-Cys nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides.

  11. Facile and highly efficient removal of trace Gd(III) by adsorption of colloidal graphene oxide suspensions sealed in dialysis bag.

    PubMed

    Chen, Weifan; Wang, Linlin; Zhuo, Mingpeng; Liu, Yue; Wang, Yiping; Li, Yongxiu

    2014-08-30

    A facile, highly efficient and second-pollution-free strategy to remove trace Gd(III) from aqueous solutions by adsorption of colloidal graphene oxide (GO) suspensions in dialysis bag has been developed. The effects of pH, ionic strength and temperature on Gd(III) adsorption, and the pH-dependent desorption were investigated. The maximum adsorption capacity of Gd(III)on GO at pH=5.9±0.1 and T=303K was 286.86mgg(-1), higher than any other currently reported. The Gd(III)-saturated GO suspension could resume colloidal state in 0.1M HNO3 with desorption rate of 85.00% in the fifth adsorption-desorption cycle. Gd(III) adsorption rate on GO was dependent more on pH and ionic strength than on temperature. The abundant oxygen-containing functional groups such as carboxyl and hydroxyl played a vital role on adsorption. The thermodynamics and kinetics investigations revealed that the adsorption of Gd(III) on GO was an endothermic, spontaneous and monolayer absorption process, which well fitted the pseudo-second-order model. GO could be a promising adsorbent applied in the enrichment and removal of lanthanides from aqueous solutions. More significantly, the combination of colloidal GO suspension with dialysis membrane facilely solves the re-pollution of the treated solutions due to the great difficulties in separation and recovery of GO.

  12. Facile and highly efficient approach for the fabrication of multifunctional silk nanofibers containing hydroxyapatite and silver nanoparticles.

    PubMed

    Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Park, Hyun Jung; Kim, Jung-Ho; Lee, Ok Joo; Park, Chan Hum

    2014-10-01

    In this study, a good combination consisting of electrospun silk fibroin nanofibers incorporated with high-purity hydroxyapatite (HAp) nanoparticles (NPs) and silver NPs is introduced as antimicrobial for tissue engineering applications. The variable pressure field emission scanning electron microscope results confirmed randomly placed nanofibers are produced with highly dispersed HAp and silver NPs in nanofibers after electrospinning. The X-ray diffraction results demonstrated crystalline features of each of the three components used for electrospinning. Moreover, the TEM-EDS analysis confirmed the presence and chemical nature of each component over individual silk nanofiber. The FT-IR analyses was used confirm the different vibration modes caused due to functional groups present in silk fibroin, Hap, and silver NPs. The obtained nanofibers were checked for antimicrobial activity by using two model organisms Escherichia coli and Staphylococcus aureus. Subsequently, the antimicrobial tests have indicated that prepared nanofibers do possess good bactericidal activity. The ability of N,N-dimethylformamide and silk fibroin used to reduce silver nitrate into silver metal was evaluated using MTT assay. The nanofibers were grown in presence of NIH 3T3 fibroblasts, which revealed toxic behavior to fibroblasts at higher concentrations of silver nitrate used in this study. Furthermore, cell attachment studies on nanofibers for 3 and 12 days of incubation time were minutely observed and correlated with the results of MTT assay. The reported results confirmed the high amounts of silver nitrate can lead to toxic effects on viability of fibroblasts and had bad effect in cell attachment. © 2013 Wiley Periodicals, Inc.

  13. Facile synthesis of single crystalline rhenium (VI) trioxide nanocubes with high catalytic efficiency for photodegradation of methyl orange.

    PubMed

    Chong, Yuan Yi; Fan, Wai Yip

    2013-05-01

    Single-crystalline rhenium trioxide (ReO3) nanocubes have been prepared for the first time without the need of surfactants via controlled reduction of rhenium (VII) oxide (Re2O7), sandwiched between silicon wafers at 250°C. The metallic ReO3 nanocubes are magnetic and possess surface plasmon resonance (SPR) bands down to the NIR region. The nanocubes also show very high catalytic activity toward the photodegradation of methyl orange (MO) under ambient conditions. A mechanism has been proposed to account for the photodegradation process.

  14. High-pressure water facility

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  15. High-pressure water facility

    NASA Image and Video Library

    2006-02-15

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  16. High-pressure water facility

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  17. Facile synthesis of differently shaped, ultrathin, and aligned graphene flakes without a catalyst for highly efficient field emission

    NASA Astrophysics Data System (ADS)

    Wang, Fan-Jie; Deng, Li-Na; Deng, Jian-Hua

    2015-11-01

    Aligned graphene flakes (AGFs) were prepared on different substrates without a catalyst by using radio frequency (rf) sputtering deposition. Their shapes can be readily controlled by adjusting substrate temperatures and rf powers. Ultrathin AGFs (less than 5 layers) can only be prepared with substrate temperatures higher than 1000 K, and AGFs grown at 1100 K are wrinkled graphenes. The rf power controls the AGF shapes by means of hydrogen plasma etching, and the growth rate of AGFs decreases with the increase of rf powers. The catalyst-free growth characteristic determines that the growth of AGFs is substrate independent, but their ultimate shapes greatly depend on the geometric configuration and surface topography of substrates due to the defect-guided nucleation of AGFs. The field emission properties of differently shaped AGFs and AGF composites were measured. Optimal field emission properties are obtained from AGF-Si nanowire composites. They have an ultralow turn-on electric field of 1.80 V/μm, which for the as-grown Si nanowires is 7.33 V/μm, and also have excellent field emission stability after being perfectly aged. We consider that both the nanosharp edges of AGFs and the high aspect ratios of Si nanowires are responsible for this excellent field emission performance.

  18. Facile preparation of a cobalt hybrid/graphene nanocomposite by in situ chemical reduction: high lithium storage capacity and highly efficient removal of Congo red.

    PubMed

    Wang, Lixia; Li, Jianchen; Mao, Chunsheng; Zhang, Lishu; Zhao, Lijun; Jiang, Qing

    2013-06-14

    We report a facile approach to prepare a cobalt hybrid/graphene (Co/G) nanocomposite via a general one-pot hydrothermal synthesis. NaBH4 is used as the reducing agent. Co/G nanocomposite possesses narrow size-distribution and good dispersion, providing tremendous potential for energy and environment applications. As a proof of concept, we demonstrate the use of the Co/G nanocomposite in a lithium-ion battery and an adsorbent for Congo red (CR), respectively. More importantly, more than 97% of capacity retention (605 mAh g(-1)) is retained after 50 cycles, indicative of high charge/discharge reversibility of the Co/G nanocomposite electrode. Furthermore the CR removal ability of the Co/G nanocomposite can reach 934.9 mg g(-1).

  19. High Pressure Industrial Water Facility

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In conjunction with Space Shuttle Main Engine testing at Stennis, the Nordberg Water Pumps at the High Pressure Industrial Water Facility provide water for cooling the flame deflectors at the test stands during test firings.

  20. High-Average Power Facilities

    SciTech Connect

    Dowell, David H.; Power, John G.; /Argonne

    2012-09-05

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  1. Facile and efficient synthesis of isolongifolenone

    USDA-ARS?s Scientific Manuscript database

    An efficient method for preparation of isolongifolenone by oxidation of isolongifolene in high yield with a short reaction time is described. Highly allylic oxidation selectivity was achieved by using tert-butyl hydroperoxide as the oxidant and chromium hexacarbonyl as the catalyst. The oxidative ...

  2. Facile synthesis of porous CuS film as a high efficient counter electrode for quantum-dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lin, Yibing; Lin, Yu; Wu, Jihuai; Zhang, Xiaolong; Fang, Biaopeng

    2016-06-01

    In this paper, porous CuS film has been successfully prepared by a facile method and employed as a counter electrode (CE) in quantum-dot-sensitized solar cells (QDSSCs) for its highest catalytic activity. This CuS thin film was deposited on FTO substrate via spin coating process which is simple to operate, and its electrochemical properties were further studied by EIS and Tafel measurement. With the cycling time of depositing CuS up to 8, it displays high electrocatalytic activity toward polysulfide reduction, rationalizing the improved QDSSCs performance. Using the CdS/CdSe-sensitized QDSSCs, the cells exhibit improved short-circuit photocurrent density ( J sc) and fill factor (FF), achieving solar cell conversion efficiency ( η) as high as 5.60 % under AM 1.5 illumination of 100 mW cm-2. This work provides a novel and simple method for the preparation of CEs, which could be utilized in other metal sulfides CEs for QDSSCs.

  3. Rapid Facile Microwave-assisted Solvothermal Synthesis of Rod-like CuO/TiO2 for High Efficiency photocatalytic Hydrogen Evolution

    NASA Astrophysics Data System (ADS)

    Yu, Yi-Hsien; Chen, Ying-Pin; Cheng, Zhengdong

    2015-03-01

    Rod-like CuO/TiO2 was prepared by a rapid facile microwave-assisted solvothermal method for high efficiency photocatalytic hydrogen evolution. The structure of obtained CuO/TiO2 samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM), and the amount of produced hydrogen was analyzed by gas chromatography (GC). CuO decorated TiO2 rods exhibited greatly improvement of photocatalytic hydrogen evolution. Utilizing 30 mg of CuO/TiO2 rods sample showed highest hydrogen evolution rate over utilizing 50 mg and 100 mg. Comparing to hydrogen evolution rate of 45.4 μmol h-1 g1 by using bare Rod-like TiO2, 1 wt% CuO loaded TiO2 rods presented the highest hydrogen evolution rate of 3508.7 μmol h-1 g-1 while hydrogen evolution rate of 0.5 wt%, 5 wt%, and 10 wt% CuO loaded TiO2 rods were 157.1, 2817, and 2595 μmol h-1 g-1, respectively. Such enhancement of photocatalytic activity could be ascribed to that CuO improves not only light harvesting but also enhanced separation of electron-hole charge carriers

  4. High Power Proton Facilities

    NASA Astrophysics Data System (ADS)

    Nagaitsev, Sergei

    2015-04-01

    This presentation will provide an overview of the capabilities and challenges of high intensity proton accelerators, such as J-PARC, Fermilab MI, SNS, ISIS, PSI, ESS (in the future) and others. The presentation will focus on lessons learned, new concepts, beam loss mechanisms and methods to mitigate them.

  5. Facile in situ growth of highly monodispersed Ag nanoparticles on electrospun PU nanofiber membranes: Flexible and high efficiency substrates for surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Amarjargal, Altangerel; Tijing, Leonard D.; Shon, Ho Kyong; Park, Chan-Hee; Kim, Cheol Sang

    2014-07-01

    In this study, by utilizing a two-step route of electrospinning and polyol immersion, in the absence of any surfactant or sensitizing and stabilizing reagent, a well-distributed assembly of Ag NPs on the electrospun polyurethane (PU) nanofibers was successfully fabricated through a simple and controllable manner. Based on the FE-SEM, XRD and FT-IR analyses, the polyol medium plays an important role in the growth of highly monodispersed Ag NPs, wherein the hydroxyl group of ethylene glycol (EG) can be bridged to the amide group on the surface of the PU nanofibers through intermolecular hydrogen bonds. Fabrication of a polymer fibrous membrane effectively attached/decorated with noble metal NPs, which is essential as flexible and high efficiency substrates for SERS application where the molecule analytes are directly adsorbed on their surfaces is important, could be realized by the present electrospun PU-Ag(EG) nanofibers, employing 4-mercaptobenzoic acid (4-MBA) as probe molecules.

  6. Facile deposition of Ag{sub 3}PO{sub 4} on graphene-like MoS{sub 2} nanosheets for highly efficient photocatalysis

    SciTech Connect

    Wang, Peifu; Shi, Penghui; Hong, Yuanchen; Zhou, Xuejun; Yao, Weifeng

    2015-02-15

    Graphical abstract: The photocatalytic performance of Ag{sub 3}PO{sub 4} was highly improved by the in situ deposition of Ag{sub 3}PO{sub 4} particles on graphene-like MoS{sub 2} nanosheets. - Highlights: • A novel composite photocatalyst was synthesized by depositing Ag{sub 3}PO{sub 4} on the graphene-like MoS{sub 2} nanosheets. • Ag{sub 3}PO{sub 4}/MoS{sub 2} photocatalyst exhibited a high photocatalytic activity for RhB degradation. • Graphene-like MoS{sub 2} nanosheets. • MoS{sub 2} nanosheets play an important role in photocatalytic activity by serving as an effective acceptor of the photogenerated carriers. - Abstract: A facile method for the in situ deposition of Ag{sub 3}PO{sub 4} on graphene-like MoS{sub 2} nanosheets was developed to improve the photocatalytic performance of Ag{sub 3}PO{sub 4} catalysts. The heterostructure of Ag{sub 3}PO{sub 4}/MoS{sub 2} composites was characterized by using X-ray diffraction spectra (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The prepared Ag{sub 3}PO{sub 4}/MoS{sub 2} photocatalyst exhibited a much higher photocatalytic activity than that of Ag{sub 3}PO{sub 4} for the degradation of Rhodamine B (RhB) under visible light irradiation (>400 nm). The improved photocatalytic activity of Ag{sub 3}PO{sub 4}/MoS{sub 2} is attributed to the efficient separation of photogenerated electron–hole pairs in the composite. This result provides a new perspective on the design of high-performance photocatalysts which is promising for energy applications.

  7. High efficiency RCCI combustion

    NASA Astrophysics Data System (ADS)

    Splitter, Derek A.

    An experimental investigation of the pragmatic limits of Reactivity Controlled Compression Ignition (RCCI) engine efficiency was performed. The study utilized engine experiments combined with zero-dimensional modeling. Initially, simulations were used to suggest conditions of high engine efficiency with RCCI. Preliminary simulations suggested that high efficiency could be obtained by using a very dilute charge with a high compression ratio. Moreover, the preliminary simulations further suggested that with simultaneous 50% reductions in heat transfer and incomplete combustion, 60% gross thermal efficiency may be achievable with RCCI. Following the initial simulations, experiments to investigate the combustion process, fuel effects, and methods to reduce heat transfer and incomplete combustion reduction were conducted. The results demonstrated that the engine cycle and combustion process are linked, and if high efficiency is to be had, then the combustion event must be tailored to the initial cycle conditions. It was found that reductions to engine heat transfer are a key enabler to increasing engine efficiency. In addition, it was found that the piston oil jet gallery cooling in RCCI may be unnecessary, as it had a negative impact on efficiency. Without piston oil gallery cooling, it was found that RCCI was nearly adiabatic, achieving 95% of the theoretical maximum cycle efficiency (air standard Otto cycle efficiency).

  8. High Exposure Facility Technical Description

    SciTech Connect

    Carter, Gregory L.; Stithem, Arthur R.; Murphy, Mark K.; Smith, Alex K.

    2008-02-12

    The High Exposure Facility is a collimated high-level gamma irradiator that is located in the basement of the 318 building. It was custom developed by PNNL back in 1982 to meet the needs for high range radiological instrument calibrations and dosimeter irradiations. At the time no commercially available product existed that could create exposure rates up to 20,000 R/h. This document is intended to pass on the design criteria that was employed to create this unique facility, while maintaining compliance with ANSI N543-1974, "General Safety Standard for Installations Using Non-Medical X-Ray and Sealed Gamma-Ray Sources, Energies up to 10 MeV."

  9. Metal-Organic Framework Photosensitized TiO2 Co-catalyst: A Facile Strategy to Achieve a High Efficiency Photocatalytic System.

    PubMed

    Xie, Ming-Hua; Shao, Rong; Xi, Xin-Guo; Hou, Gui-Hua; Guan, Rong-Feng; Dong, Peng-Yu; Zhang, Qin-Fang; Yang, Xiu-Li

    2017-03-17

    A 3D metal-organic framework (ADA-Cd=[Cd2 L2 (DMF)2 ]⋅3 H2 O where H2 L is (2E,2'E)-3,3'-(anthracene-9,10-diyl)diacrylic acid) constructed from diacrylate substituted anthracene, sharing structural characteristics with some frequently employed anthraquinone-type dye sensitizers, was introduced as an effective sensitizer for anatase TiO2 to achieve enhanced visible light photocatalytic performance. A facile mechanical mixing procedure was adopted to prepare the co-catalyst denoted as ADA-Cd/TiO2 , which showed enhanced photodegradation ability, as well as sustainability, towards several dyes under visible light irradiation. Mechanistic studies revealed that ADA-Cd acted as the antenna to harvest visible light energy, generating excited electrons, which were injected to the conduction band (CB) of TiO2 , facilitating the separation efficiency of charge carriers. As suggested by the results of control experiments, combined with the corresponding redox potential of possible oxidative species, (.) O2(-) , generated from the oxygen of ambient air at the CB of TiO2 was believed to play a dominant role over (.) OH and h(+) . UV/Vis and photoluminescence technologies were adopted to monitor the generation of (.) O2(-) and (.) OH, respectively. This work presents a facile strategy to achieve a visible light photocatalyst with enhanced catalytic activity and sustainability; the simplicity, efficiency, and stability of this strategy may provide a promising way to achieve environmental remediation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High efficiency incandescent lighting

    SciTech Connect

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  11. Facile synthesis and characterization of Ti(1-x)CuxO2 nanoparticles for high efficiency dye sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Manju, J.; Jawhar, S. Joseph

    2017-07-01

    In this study, we demonstrate the facile synthesis of Ti(1-x)CuxO2 (x = 0.0, 0.03, 0.06 and 0.09) nanoparticles through solvothermal microwave irradiation (SMI) technique and explored their photocatalytic applications. A combined analysis of XRD, FESEM and TEM studies indicate that doping of Cu2+ in TiO2 lattice do not affect the microstructure of the particles. The UV-Vis. absorption study indicates that the introduction of Cu element lead to decrease in optical bandgap of TiO2 from 3.450 eV to 3.155 eV (for x = 0.0 to 0.09). By using Ti(1-x)CuxO2 nanoparticles photoanodes were prepared on transparent conductive fluorine doped tin oxide substrates by doctor-blade technique. The dye-sensitized solar cells (DSSCs) were assembled and an analysis was made to evaluate the variations in open-circuit voltage depending on the concentration of Cu in Ti(1-x)CuxO2. The optimum efficiency of 6.51% was found at Ti0.94Cu0.06O2 based DSSCs, which gives an efficiency improved by 4% compared with that of the cells based on pure TiO2 (6.26%). This work demonstrates that Ti(1-x)CuxO2 is a most fascinating material and has great potential for application in photoenergy conversion devices.

  12. Energy Efficiency in Water and Wastewater Facilities

    EPA Pesticide Factsheets

    The Local Government Climate and Energy Strategy Series provides a comprehensive, straightforward overview of green-house gas (GHG) emissions reduction strategies for local governments. Developing and implementing energy efficiency improvements in water an

  13. Energy Efficiency in Water and Wastewater Facilities

    EPA Pesticide Factsheets

    The Local Government Climate and Energy Strategy Series provides a comprehensive, straightforward overview of green-house gas (GHG) emissions reduction strategies for local governments. Developing and implementing energy efficiency improvements in water an

  14. High Efficiency Cell Development

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1979-01-01

    The specific activity was to improve the tandem junction Cell (TJC) as a high efficiency solar cell. The TJC development was to be consistent with module assembly and should contribute to the overall goals of the Low-Cost Solar Array Project. During 1978, TJC efficiency improved from approximately 11 percent to approximately 16 percent (AMI). Photogenerated current densities in excess of 42 mA/sq cm were observed at AMO. Open circuit voltages as high as 0.615 V were measured at AMO. Fill factor was only 0.68 - 0.75 due to a nonoptimum metal contact design. A device model was conceived in which the solar cell is modelled as a transitor. There are virtually no interconnect or packaging factor systems and the TJC is compatible with all conventional module fabrication systems. A modification of the TJC, the Front Surface Field (FSF) cell, was also explored.

  15. High efficiency magnetic bearings

    NASA Technical Reports Server (NTRS)

    Studer, Philip A.; Jayaraman, Chaitanya P.; Anand, Davinder K.; Kirk, James A.

    1993-01-01

    Research activities concerning high efficiency permanent magnet plus electromagnet (PM/EM) pancake magnetic bearings at the University of Maryland are reported. A description of the construction and working of the magnetic bearing is provided. Next, parameters needed to describe the bearing are explained. Then, methods developed for the design and testing of magnetic bearings are summarized. Finally, a new magnetic bearing which allows active torque control in the off axes directions is discussed.

  16. Facile Two-Step Synthesis of 1,10-Phenanthroline-Derived Polyaza[7]helicenes with High Fluorescence and CPL Efficiency.

    PubMed

    Otani, Takashi; Tsuyuki, Ami; Iwachi, Taiki; Someya, Satoshi; Tateno, Kotaro; Kawai, Hidetoshi; Saito, Takao; Kanyiva, Kyalo Stephen; Shibata, Takanori

    2017-03-27

    A facile two-step synthesis of aza[7]helicenes possessing a 6-5-6-6-6-5-6 skeleton from commercially available 2,9-dichloro-1,10-phenanthroline via double amination with aniline derivatives followed by hypervalent iodine reagent-mediated intramolecular double-NH/CH couplings was developed. Single-crystal X-ray analyses of the helicenes revealed unique structures, including both a significantly twisted center and planar terminals of the skeleton. The azahelicenes show high fluorescent quantum yields (Φs) under both neutral (Φ: 0.25-0.55) and acidic conditions (Φ: up to 0.80). An enantiomerically pure aza[7]helicene showed high circularly polarized luminescence (CPL) activity under both neutral and acidic conditions (glum : up to 0.009). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High Efficiency, Clean Combustion

    SciTech Connect

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous

  18. Spray nozzle pattern test for the DWPF HEME task technical plan. [Defense Waste Processing Facility (DWPF), High-Efficiency Mist Eliminators (HEME)

    SciTech Connect

    Lee, L.

    1991-11-15

    The DWPF melter off-gas systems have two High-Efficiency Mist Eliminators (HEME) upstream of the High-Efficiency Particulates Air filters (HEPA) to remove fine droplets and particulates from the off-gas. The HEMEs consist of three filter candles. Each filter candle consists of a 0.5 inch layer of 30 micron diameter glass fiber on the upstream face followed by a 2.5 inch layer of 8-micron-diameter glass fiber packed at 11 lbs per cubic foot. The coarse 30-micron filter serves as a prefilter and extends the life of the HEME filter. To have an acceptable fitter life and an efficient HEMIE operation, air atomized water is sprayed into the off-gas stream entering the 14EME and onto the HEMEE surface. The water spray keeps the HEME wet which would dissolve the soluble particulates and enhance the HEME efficiency. A properly designed spray nozzle should wet the three candies of the HEME filter completely.

  19. Superstructure high efficiency photovoltaics

    NASA Technical Reports Server (NTRS)

    Wagner, M.; So, L. C.; Leburton, J. P.

    1987-01-01

    A novel class of photovoltaic cascade structures is introduced which features multijunction upper subcells. These superstructure high efficiency photovoltaics (SHEP's) exhibit enhanced upper subcell spectral response because of the additional junctions which serve to reduce bulk recombination losses by decreasing the mean collection distance for photogenerated minority carriers. Two possible electrical configurations were studied and compared: a three-terminal scheme that allows both subcells to be operated at their individual maximum power points and a two-terminal configuration with an intercell ohmic contact for series interconnection. The three-terminal devices were found to be superior both in terms of beginning-of-life expectancy and radiation tolerance. Realistic simulations of three-terminal AlGaAs/GaAs SHEP's show that one sun AMO efficiencies in excess of 26 percent are possible.

  20. Facile method for synthesis of TiO{sub 2} film and its application in high efficiency dye sensitized-solar cell (DSSC)

    SciTech Connect

    Widiyandari, Hendri Gunawan, S. K.V.; Suseno, Jatmiko Endro; Purwanto, Agus; Diharjo, Kuncoro

    2014-02-24

    Dye-sensitized solar cells (DSSC) is a device which converts a solar energy to electrical energy. Different with semiconductor thin film based solar cell, DSSC utilize the sensitized-dye to absorb the photon and semiconductor such as titanium dioxide (TiO{sub 2}) and zinc oxide (ZnO) as a working electrode photoanode. In this report, the preparation of TiO{sub 2} film using a facile method of spray deposition and its application in DSSC have been presented. TiO{sub 2} photoanode was synthesized by growing the droplet of titanium tetraisopropoxide diluted in acid solution on the substrate of conductive glass flourine-doped tin oxide (FTO) with variation of precursor volume. DSSC was assemblied by sandwiching both of photoanode electrode and platinum counter electrode subsequently filling the area between these electrodes with triodine/iodine electrolite solution as redox pairs. The characterization of the as prepared DSSC using solar simulator (AM 1.5G, 100 mW/cm{sup 2}) and I-V source meter Keithley 2400 showed that the performance of DSSC was affected by the precursor volume.. The overall conversion efficiency of DSSC using the optimum TiO{sub 2} film was about 1.97% with the open circuit voltage (V{sub oc}) of 0.73 V, short circuit current density (J{sub sc}) of 4.61 mA and fill factor (FF) of 0.58.

  1. A facile and green strategy for preparing newly-designed 3D graphene/gold film and its application in highly efficient electrochemical mercury assay.

    PubMed

    Shi, Lei; Wang, Yan; Ding, Shiming; Chu, Zhenyu; Yin, Yu; Jiang, Danfeng; Luo, Jingyi; Jin, Wanqin

    2017-03-15

    In this work, we report a facile and green strategy for in situ and one step preparation of a novel 3D graphene/gold (G/Au) film. Triggering with unique driving force from hydrothermal growth, a 3D interlaced graphene framework with hierarchically porous structures was directly attached on a gold substrate pretreated with a self-assembled monolayer. Simultaneously, highly dispersive Au nanoparticles with tunable morphologies were anchored on the framework utilizing generated graphene as an endogenous reductant. Newly-designed 3D G/Au film possessed excellent properties of significantly large specific area, good electrical conductivity, high structure stability and substrate binding strength, etc. As a paradigm, an electrochemical Hg(2+) biosensor was constructed on 3D G/Au film, in which an exonuclease III-assisted target recycling was introduced. Impressively, an ultralow detection limit of 50 aM (S/N=3), a wide linear range from 0.1 fM to 0.1μM, a high selectivity and a good reliability for Hg(2+) assay in real water and serum samples were realized using prepared biosensor. It is highly envisioned that this work opens the door towards simply fabricating varying types of 3D graphene based hybrid films, and such G/Au film will have widespread applications in electroanalysis and electrocatalysis.

  2. High efficiency multifrequency feed

    NASA Technical Reports Server (NTRS)

    Ajioka, J. S.; Tsuda, G. I.; Leeper, W. A. (Inventor)

    1974-01-01

    Antenna systems and particularly compact and simple antenna feeds which can transmit and receive simultaneously in at least three frequency bands, each with high efficiency and polarization diversity are described. The feed system is applicable for frequency bands having nominal frequency bands with the ratio 1:4:6. By way of example, satellite communications telemetry bands operate in frequency bands 0.8 - 1.0 GHz, 3.7 - 4.2 GHz and 5.9 - 6.4 GHz. In addition, the antenna system of the invention has monopulse capability for reception with circular or diverse polarization at frequency band 1.

  3. High efficiency photoionization detector

    DOEpatents

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  4. High efficiency photoionization detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  5. Facile preparation of MoS2 based polymer composites via mussel inspired chemistry and their high efficiency for removal of organic dyes

    NASA Astrophysics Data System (ADS)

    Huang, Qiang; Liu, Meiying; Chen, Junyu; Wan, Qing; Tian, Jianwen; Huang, Long; Jiang, Ruming; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-10-01

    Molybdenum disulfide (MoS2) is a novel type of two-dimensional nanomaterial, which has attracted great research attention for its excellent physicochemical properties and possible applications. In this work, we prepared a novel MoS2 composite (MoS2-PDOPA) through the self-polymerization of levodopa (DOPA) on the surface of MoS2 under a weak alkaline solution. The obtained samples, including pure MoS2 and MoS2-PDOPA composite were characterized by energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) analyses. The potential environmental applications of MoS2-PDOPA were evaluated by using MoS2-PDOPA as adsorbent to remove methylene blue (MB) from aqueous solution. Batch experiments were carried out to investigate the effect of various operational parameters such as contact time, initial MB concentration, solution pH and temperature on the adsorption of MB by MoS2-PDOPA. According to the adsorption kinetics, isotherms and thermodynamics analysis, the MB adsorption onto MoS2-PDOPA follows the intraparticle diffusion model and Langmuir isotherm model, and the MB adsorption process is spontaneous and endothermic. The maximum adsorption capacity of MoS2-PDOPA is calculated to be 244.03 mg/g at 298 K. As compared with unmodified MoS2, the adsorption capacity of MoS2-PDOPA is obviously improved. Taken together, we developed a facile method to prepare MoS2-PDOPA composites based on mussel inspired chemistry. The resultant composites could be utilized as efficient adsorbents with great potential for environmental adsorption applications.

  6. Efficient rehabilitation care for joint replacement patients: skilled nursing facility or inpatient rehabilitation facility?

    PubMed

    Tian, Wenqiang; DeJong, Gerben; Horn, Susan D; Putman, Koen; Hsieh, Ching-Hui; DaVanzo, Joan E

    2012-01-01

    There has been lengthy debate as to which setting, skilled nursing facility (SNF) or inpatient rehabilitation facility (IRF), is more efficient in treating joint replacement patients. This study aims to determine the efficiency of rehabilitation care provided by SNF and IRF to joint replacement patients with respect to both payment and length of stay (LOS). This study used a prospective multisite observational cohort design. Tobit models were used to examine the association between setting of care and efficiency. The study enrolled 948 knee replacement patients and 618 hip replacement patients from 11 IRFs and 7 SNFs between February 2006 and February 2007. Output was measured by motor functional independence measure (FIM) score at discharge. Efficiency was measured in 3 ways: payment efficiency, LOS efficiency, and stochastic frontier analysis efficiency. IRF patients incurred higher expenditures per case but also achieved larger motor FIM gains in shorter LOS than did SNF patients. Setting of care was not a strong predictor of overall efficiency of rehabilitation care. Great variation in characteristics existed within IRFs or SNFs and severity groups. Medium-volume facilities among both SNFs and IRFs were most efficient. Early rehabilitation was consistently predictive of efficient treatment. The advantage of either setting is not clear-cut. Definition of efficiency depends in part on preference between cost and time. SNFs are more payment efficient; IRFs are more LOS efficient. Variation within SNFs and IRFs blurred setting differences; a simple comparison between SNF and IRF may not be appropriate.

  7. HIGH EFFICIENCY SYNGAS GENERATION

    SciTech Connect

    Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

    2005-02-01

    This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the

  8. High-efficiency CARM

    SciTech Connect

    Bratman, V.L.; Kol`chugin, B.D.; Samsonov, S.V.; Volkov, A.B.

    1995-12-31

    The Cyclotron Autoresonance Maser (CARM) is a well-known variety of FEMs. Unlike the ubitron in which electrons move in a periodical undulator field, in the CARM the particles move along helical trajectories in a uniform magnetic field. Since it is much simpler to generate strong homogeneous magnetic fields than periodical ones for a relatively low electron energy ({Brit_pounds}{le}1-3 MeV) the period of particles` trajectories in the CARM can be sufficiently smaller than in the undulator in which, moreover, the field decreases rapidly in the transverse direction. In spite of this evident advantage, the number of papers on CARM is an order less than on ubitron, which is apparently caused by the low (not more than 10 %) CARM efficiency in experiments. At the same time, ubitrons operating in two rather complicated regimes-trapping and adiabatic deceleration of particles and combined undulator and reversed guiding fields - yielded efficiencies of 34 % and 27 %, respectively. The aim of this work is to demonstrate that high efficiency can be reached even for a simplest version of the CARM. In order to reduce sensitivity to an axial velocity spread of particles, a short interaction length where electrons underwent only 4-5 cyclotron oscillations was used in this work. Like experiments, a narrow anode outlet of a field-emission electron gun cut out the {open_quotes}most rectilinear{close_quotes} near-axis part of the electron beam. Additionally, magnetic field of a small correcting coil compensated spurious electron oscillations pumped by the anode aperture. A kicker in the form of a sloping to the axis frame with current provided a control value of rotary velocity at a small additional velocity spread. A simple cavity consisting of a cylindrical waveguide section restricted by a cut-off waveguide on the cathode side and by a Bragg reflector on the collector side was used as the CARM-oscillator microwave system.

  9. High efficiency motor rewind study

    NASA Astrophysics Data System (ADS)

    Wallace, A. K.; Spee, R.

    1991-02-01

    The objective of performing this work was to evaluate a new technology used for rewinding electric motors. Motor performance evaluation was conducted at the motor test facility at Oregon State University. The test program consisted of comparing new high efficiency motor technology and standard rewind technology with the Unity-Plus system. The Unity-Plus configuration exhibited reduced efficiency over the complete load range compared to the other motors. Appropriately sized capacitors connected to the terminals of the conventional induction motor produced the same power factor improvement as the Unity-Plus system. Torque production and torque pulsation were very similar for all systems. The Unity-Plus configuration drew lower starting currents but the duration of the starting transient was increased. Motor temperature rise was about the same for all systems. Noise levels were about the same in all systems. Although determination of time to failure was not undertaken, the expected lifetime of the Unit-Plus system is probably less due to higher capacitor stress and higher insulation stress. The investigation concludes that a conventional induction motor with terminal capacitors is the most acceptable way of obtaining good efficiency and power factor and the Unity-Plus system cannot be recommended on the basis of any of the evaluation criteria used in this study.

  10. Facile method to prepare poly(S-co-HEA)/Ag nanocomposite particles with high efficient catalytic activity and surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Chao, Zhiyin; Wang, Lan; Song, Linyong; Zhou, Yifeng; Nie, Wangyan; Chen, Pengpeng

    2015-02-01

    Surface hydroxyl-functionalized poly(styrene-co-hydroxyethyl acrylate) [P(S-co-HEA)] microsphere were used to prepare P(S-co-HEA)/silver composite particles. Based on the weak interaction between silver ions and hydroxyl, silver ions were adsorbed onto the polymer surface and reduced by diethanolamine (DEA). The morphology of P(S-co-HEA)/Ag was easily controlled by the molar ratio of DEA/AgNO3. The composite particles were characterized by SEM, XRD, and UV-vis spectroscopy. The obtained P(S-co-HEA)/Ag particles with small and denser silver nanoparticles showed a high efficient activity to catalyze reduction of methylene blue (MB). While the P(S-co-HEA)/Ag particles with big and denser silver nanoparticles showed highly sensitive Raman enhanced performance.

  11. Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation

    NASA Astrophysics Data System (ADS)

    Ding, Rui; Qi, Li; Jia, Mingjun; Wang, Hongyu

    2014-01-01

    Mesoporous spinel nickel cobaltite (NiCo2O4) nanostructures were synthesized via a facile chemical deposition method coupled with a simple post-annealing process. The physicochemical properties were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. The electrocatalytic performances were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit typical agglomerate mesoporous nanostructures with a large surface area (190.1 m2 g-1) and high mesopore volume (0.943 cm3 g-1). Remarkably, the NiCo2O4 shows much higher catalytic activity, lower overpotential, better stability and greater tolerance towards urea electro-oxidation compared to those of cobalt oxide (Co3O4) synthesized by the same procedure. The NiCo2O4 electrode delivers a current density of 136 mA cm-2 mg-1 at 0.7 V (vs. Hg/HgO) in 1 M KOH and 0.33 M urea electrolytes accompanied with a desirable stability. The impressive electrocatalytic activity is largely ascribed to the high intrinsic electronic conductivity, superior mesoporous nanostructures and rich surface Ni active species of the NiCo2O4 materials, which can largely boost the interfacial electroactive sites and charge transfer rates for urea electro-oxidation, indicating promising applications in future wastewater remediation, hydrogen production and fuel cells.Mesoporous spinel nickel cobaltite (NiCo2O4) nanostructures were synthesized via a facile chemical deposition method coupled with a simple post-annealing process. The physicochemical properties were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. The electrocatalytic performances were investigated by cyclic voltammetry

  12. High-efficiency silicon concentrator cell commercialization

    SciTech Connect

    Sinton, R.A.; Swanson, R.M.

    1993-05-01

    This report summarizes the first phase of a forty-one month program to develop a commercial, high-efficiency concentrator solar cell and facility for manufacturing it. The period covered is November 1, 1990 to December 31, 1991. This is a joint program between the Electric Power Research Institute (EPRI) and Sandia National Laboratories. (This report is also published by EPRI as EPRI report number TR-102035.) During the first year of the program, SunPower accomplished the following major objectives: (1) a new solar cell fabrication facility, which is called the Cell Pilot Line (CPL), (2) a baseline concentrator cell process has been developed, and (3) a cell testing facility has been completed. Initial cell efficiencies are about 23% for the baseline process. The long-range goal is to improve this efficiency to 27%.

  13. High Efficiency Integrated Package

    SciTech Connect

    Ibbetson, James

    2013-09-15

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ≥ 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873

  14. Facile synthesis of V(4+) self-doped, [010] oriented BiVO4 nanorods with highly efficient visible light-induced photocatalytic activity.

    PubMed

    Zhang, Yangyang; Guo, Yiping; Duan, Huanan; Li, Hua; Sun, Chongyang; Liu, Hezhou

    2014-11-28

    Monodispersed monoclinic BiVO4 nanorods grown along the [010] direction were prepared using a one-step low temperature hydrothermal method in the presence of the low-cost, nontoxic sodium oleate serving as a chelating agent. The BiVO4 nanorods with diameters of 15-20 nm possess a huge specific surface area as large as 28.2 m(2) g(-1), which can endow them with high photocatalytic activity and strong adsorption of reactants. Meanwhile, the specific [010] growth direction is capable of facilitating efficient electron-hole separation by accumulating electrons on {010} facets. Thus, the highly efficient photocatalytic activity of the as-prepared BiVO4 nanorods under visible light, which far surpasses that of commercial P25, is demonstrated by the degradation of rhodamine B and phenol. Plentiful V(4+) species, which can create oxygen vacancies, is detected implying that the as-obtained nanorods are self-doped BiVO4. Significantly, 61% of rhodamine B is adsorbed by the BiVO4 nanorods before irradiation owing to the appearance of plentiful O(2-) and OH(-) species on the surface adsorbed by oxygen vacancies. More excitingly, the excellent visible-light-driven photocatalytic activity of the as-obtained BiVO4 nanorods can be further elevated to an unprecedented level, roughly doubled, after applying a low temperature heat treatment process at 230 °C for 2 h and this improvement could primarily be ascribed to their optimized charge-carrier transport characteristics resulting from elevated crystallinity and decreased V(4+) species.

  15. Energy-Efficient Design for Florida Educational Facilities.

    ERIC Educational Resources Information Center

    Florida Solar Energy Center, Cape Canaveral.

    This manual provides a detailed simulation analysis of a variety of energy conservation measures (ECMs) with the intent of giving educational facility design teams in Florida a basis for decision making. The manual's three sections cover energy efficiency design considerations that appear throughout the following design processes: schematic…

  16. Facile Preparation of Ultrathin Co3 O4 /Nanocarbon Composites with Greatly Improved Surface Activity as a Highly Efficient Oxygen Evolution Reaction Catalyst.

    PubMed

    Chen, Yanyan; Hu, Jun; Diao, Honglin; Luo, Wenjing; Song, Yu-Fei

    2017-03-17

    The efficient catalytic oxidation of water to dioxygen plays a significant role in solar fuel and artificial photosynthetic systems. It remains highly challenging to develop oxygen evolution reaction (OER) catalysts with high activity and low cost under mild conditions. Here, a new composite material is reported based on ultrathin 2D Co3 O4 nanosheets and reduced graphene oxides (rGO) by means of a one-pot hydrothermal strategy. The ultrathin Co3 O4 /rGO nanocomposite shows superior stability under alkaline conditions and exhibits an overpotential of 290 mV with a Tafel slope of 68 mA dec(-1) , which is much smaller than that of bare Co3 O4 catalyst. Extensive experiments were also carried out using 0D CS and 1D CNTs (CS=carbon spheres, CNTs=carbon nanotubes) in place of the 2D rGO. The overpotentials of as-prepared nanocomposites decrease with the increase of the dimension of nanocarbons, suggesting the electrochemistry activity is closely related to the surface area of carbon substrates. In addition, compared with ultrathin 2D Co3 O4 nanosheets with a Co(2+) /Co(3+) ratio of 1.2, the as-prepared ultrathin Co3 O4 /rGO nanocomposite with a Co(2+) /Co(3+) ratio of 1.4 contributes to the better OER performance as more oxygen vacancies can be formed in the ultrathin Co3 O4 /rGO nanocomposite under the experimental conditions. Compared with other Co3 O4 -containing composite materials reported so far, the ultrathin Co3 O4 /rGO nanocomposites show excellent OER performance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Facile fabrication of large-grain CH3NH3PbI3-xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening

    DOE PAGES

    Yang, Mengjin; Zhang, Taiyang; Schulz, Philip; ...

    2016-08-01

    Organometallic halide perovskite solar cells (PSCs) have shown great promise as a low-cost, high-efficiency photovoltaic technology. Structural and electro-optical properties of the perovskite absorber layer are most critical to device operation characteristics. Here we present a facile fabrication of high-efficiency PSCs based on compact, large-grain, pinhole-free CH3NH3PbI3-xBrx (MAPbI3-xBrx) thin films with high reproducibility. A simple methylammonium bromide (MABr) treatment via spin-coating with a proper MABr concentration converts MAPbI3 thin films with different initial film qualities (for example, grain size and pinholes) to high-quality MAPbI3-xBrx thin films following an Ostwald ripening process, which is strongly affected by MABr concentration and ismore » ineffective when replacing MABr with methylammonium iodide. A higher MABr concentration enhances I-Br anion exchange reaction, yielding poorer device performance. Lastly, this MABr-selective Ostwald ripening process improves cell efficiency but also enhances device stability and thus represents a simple, promising strategy for further improving PSC performance with higher reproducibility and reliability.« less

  18. Facile fabrication of large-grain CH3NH3PbI3-xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening.

    PubMed

    Yang, Mengjin; Zhang, Taiyang; Schulz, Philip; Li, Zhen; Li, Ge; Kim, Dong Hoe; Guo, Nanjie; Berry, Joseph J; Zhu, Kai; Zhao, Yixin

    2016-08-01

    Organometallic halide perovskite solar cells (PSCs) have shown great promise as a low-cost, high-efficiency photovoltaic technology. Structural and electro-optical properties of the perovskite absorber layer are most critical to device operation characteristics. Here we present a facile fabrication of high-efficiency PSCs based on compact, large-grain, pinhole-free CH3NH3PbI3-xBrx (MAPbI3-xBrx) thin films with high reproducibility. A simple methylammonium bromide (MABr) treatment via spin-coating with a proper MABr concentration converts MAPbI3 thin films with different initial film qualities (for example, grain size and pinholes) to high-quality MAPbI3-xBrx thin films following an Ostwald ripening process, which is strongly affected by MABr concentration and is ineffective when replacing MABr with methylammonium iodide. A higher MABr concentration enhances I-Br anion exchange reaction, yielding poorer device performance. This MABr-selective Ostwald ripening process improves cell efficiency but also enhances device stability and thus represents a simple, promising strategy for further improving PSC performance with higher reproducibility and reliability.

  19. Facile fabrication of large-grain CH3NH3PbI3−xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening

    PubMed Central

    Yang, Mengjin; Zhang, Taiyang; Schulz, Philip; Li, Zhen; Li, Ge; Kim, Dong Hoe; Guo, Nanjie; Berry, Joseph J.; Zhu, Kai; Zhao, Yixin

    2016-01-01

    Organometallic halide perovskite solar cells (PSCs) have shown great promise as a low-cost, high-efficiency photovoltaic technology. Structural and electro-optical properties of the perovskite absorber layer are most critical to device operation characteristics. Here we present a facile fabrication of high-efficiency PSCs based on compact, large-grain, pinhole-free CH3NH3PbI3−xBrx (MAPbI3−xBrx) thin films with high reproducibility. A simple methylammonium bromide (MABr) treatment via spin-coating with a proper MABr concentration converts MAPbI3 thin films with different initial film qualities (for example, grain size and pinholes) to high-quality MAPbI3−xBrx thin films following an Ostwald ripening process, which is strongly affected by MABr concentration and is ineffective when replacing MABr with methylammonium iodide. A higher MABr concentration enhances I–Br anion exchange reaction, yielding poorer device performance. This MABr-selective Ostwald ripening process improves cell efficiency but also enhances device stability and thus represents a simple, promising strategy for further improving PSC performance with higher reproducibility and reliability. PMID:27477212

  20. Facile fabrication of large-grain CH3NH3PbI3-xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening

    NASA Astrophysics Data System (ADS)

    Yang, Mengjin; Zhang, Taiyang; Schulz, Philip; Li, Zhen; Li, Ge; Kim, Dong Hoe; Guo, Nanjie; Berry, Joseph J.; Zhu, Kai; Zhao, Yixin

    2016-08-01

    Organometallic halide perovskite solar cells (PSCs) have shown great promise as a low-cost, high-efficiency photovoltaic technology. Structural and electro-optical properties of the perovskite absorber layer are most critical to device operation characteristics. Here we present a facile fabrication of high-efficiency PSCs based on compact, large-grain, pinhole-free CH3NH3PbI3-xBrx (MAPbI3-xBrx) thin films with high reproducibility. A simple methylammonium bromide (MABr) treatment via spin-coating with a proper MABr concentration converts MAPbI3 thin films with different initial film qualities (for example, grain size and pinholes) to high-quality MAPbI3-xBrx thin films following an Ostwald ripening process, which is strongly affected by MABr concentration and is ineffective when replacing MABr with methylammonium iodide. A higher MABr concentration enhances I-Br anion exchange reaction, yielding poorer device performance. This MABr-selective Ostwald ripening process improves cell efficiency but also enhances device stability and thus represents a simple, promising strategy for further improving PSC performance with higher reproducibility and reliability.

  1. On the ELF generation efficiency of the Tromsoe heater facility

    SciTech Connect

    Barr, R. ); Stubbe, P. )

    1991-11-01

    Using amplitude modulation derived from repetitive pulses of varying duty cycle with the Tromsoe heater facility, the authors determine the ratio of the heating to cooling time constants of ELF currents generated in the D-region. This ratio is found to decrease from 1.03 {plus minus} 0.07 at 510 Hz to 0.28 {plus minus} 0.03 at 6,010 kHz. These results, which were obtained using an effective radiated power of 240 MW, suggest that future heater facilities designed to optimize ELF radiation efficiency using the technique of beam painting' will have to operate at considerably higher power levels than the Tromsoe facility if any practical advantages are to be gained.

  2. Facile "living" radical polymerization of methyl methacrylate in the presence of iniferter agents: homogeneous and highly efficient catalysis from copper(II) acetate.

    PubMed

    Jiang, Hongjuan; Zhang, Lifen; Jiang, Xiaowu; Bao, Xiaoguang; Cheng, Zhenping; Zhu, Xiulin

    2014-08-01

    A facile homogeneous polymerization system involving the iniferter agent 1-cyano-1-methylethyl diethyldithiocarbamate (MANDC) and copper(II) acetate (Cu(OAc)2 ) is successfully developed in bulk using methyl methacylate (MMA) as a model monomer. The detailed polymerization kinetics with different molar ratios (e.g., [MMA]0 /[MANDC]0 /[Cu(OAc)2 ]0 = 500/1/x (x = 0.1, 0.2, 0.5, 1.0)) demonstrate that this system has the typical "living"/controlled features of "living" radical polymerization, even with ppm level catalyst Cu(OAc)2 , first order polymerization kinetics, a linear increase in molecular weight with monomer conversion and narrow molecular weight distributions for the resultant PMMA. (1) H NMR spectra and chain-extension experiments further confirm the "living" characteristics of this process. A plausible mechanism is discussed.

  3. High-energy facility development plan

    NASA Technical Reports Server (NTRS)

    Walker, Arthur B. C., Jr.; Roberts, W. T.; Dabbs, J. R.

    1988-01-01

    Approaches to the deployment of instruments for the study of high-energy solar emissions alone or in conjunction with other solar instruments are considered. The Space Station has been identified as the preferred mode for the deployment of the Advanced Solar Observatory, and it is suggested that a proposed High-Energy Facility could be on a coorbiting platform. The implementation plan for the High-Energy Facility involves the definition of the interface structures required to mount the facility instruments to the Space Station and the development of hard X-ray and gamma-ray imaging, spectroscopic, and polarimetric instruments.

  4. High-energy facility development plan

    NASA Technical Reports Server (NTRS)

    Walker, Arthur B. C., Jr.; Roberts, W. T.; Dabbs, J. R.

    1988-01-01

    Approaches to the deployment of instruments for the study of high-energy solar emissions alone or in conjunction with other solar instruments are considered. The Space Station has been identified as the preferred mode for the deployment of the Advanced Solar Observatory, and it is suggested that a proposed High-Energy Facility could be on a coorbiting platform. The implementation plan for the High-Energy Facility involves the definition of the interface structures required to mount the facility instruments to the Space Station and the development of hard X-ray and gamma-ray imaging, spectroscopic, and polarimetric instruments.

  5. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    SciTech Connect

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  6. High efficiency furnace

    SciTech Connect

    Hwang, K. S.; Koestler, D. J.

    1985-12-31

    Disclosed is a dwelling furnace having at least one clam-shell type primary heat exchanger in parallel orientation with a secondary heat exchanger, both the primary and secondary heat exchangers being vertically oriented relative to a furnace housing and parallel to the flow of air to be heated. The primary heat exchanger has a combustion chamber in the lower end thereof, and the lower end of the secondary heat exchanger exhausts into a tertiary heat exchanger oriented approximately perpendicular to the primary and secondary heat exchangers and horizontally relative to the housing, below the combustion chambers of the primary heat exchangers and below the exhaust outlet of the secondary heat exchanger. The tertiary heat exchanger includes a plurality of condensation tubes for retrieving the latent heat of condensation of the combustion gases. The furnace further comprises an induced draft blower for drawing combustion gases through the heat exchangers and inducting sufficient air to the combustion chamber of the primary heat exchanger for efficient combustion.

  7. High efficiency, long-life photocathodes

    NASA Astrophysics Data System (ADS)

    Ives, Lawrence; Montgomery, Eric; Jensen, Kevin; Collins, George; Marsden, David; Karimov, Rasul; Falce, Lou

    2017-03-01

    Research and development on high efficiency, robust, long-life photocathodes is in progress for accelerator, light source, and other commercial applications. The research is investigating detailed physics of photoemission and developing a computational capability to predict performance. Reservoir technology will significantly increase lifetime and allow recovery from many poisoning events. Better understanding of the physics will impact fabrication techniques to optimize performance. A production facility is under construction to provide improved photocathodes to users.

  8. High efficiency gas burner

    DOEpatents

    Schuetz, Mark A.

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  9. High efficiency centrifugal pump

    SciTech Connect

    Nasvytis, P.J.; Jahrstorfer, G.W.

    1983-10-11

    A high speed fuel pump for a gas turnbine engine has a positively-driven shroud positioned between a main impeller and the wall of a pumping cavity to reduce impeller drag. The shroud is formed by a first disc having a boost impeller connected to its central hub portion and a second disc having a gear carried by its central hub portion. The main drive shaft assembly to which the main impeller is connected, carries a gear which meshes with gear mounted upon a shaft. The shaft also carries a gear which meshes with the gear. The gears are sized so that the shroud is driven at one-half the speed of the main impeller in order to maximize impeller drag reduction and enhance pumping capability when severe inlet conditions are present at the pump inlet.

  10. Facile preparation of magnetic carbon nanotubes-immobilized lipase for highly efficient synthesis of 1,3-dioleoyl-2-palmitoylglycerol-rich human milk fat substitutes.

    PubMed

    Zheng, Mingming; Wang, Shi; Xiang, Xia; Shi, Jie; Huang, Juan; Deng, Qianchun; Huang, Fenghong; Xiao, Junyong

    2017-08-01

    In this study, Candida lipolytica lipase (CLL) was immobilized on magnetic multi-walled carbon nanotubes (mMWCNTs) via hydrophobic and cation-exchange interaction. The resultant immobilized CLL showed much better thermal stability, biocatalyst activity and easier recycling than the free form. A method for efficient enzymatic acidolysis of tripalmitin (PPP) with oleic acid (OA), to produce OPO-rich TAGs, was developed, using the immobilized CLL as the biocatalyst. Under optimized conditions (2% water, 20mg/ml enzyme, 1:6 PPP/OA, 50°C, 2h), the content of OPO in the final product reached 46.5%. CLL@mMWCNTs had a better activity and manipulative stability than commercial lipases. More importantly, the feasibility of CLL@mMWCNTs was also validated in the practical production of OPO-rich TAGs, using lard and restructured palm oil as the raw material. These results suggest that CLL@mMWCNTs is a promising biocatalyst for the OPO-rich TAGs production and will be helpful for the infant formula industry.

  11. Facile control of nanoporosity in Cellulose Acetate using Nickel(II) nitrate additive and water pressure treatment for highly efficient battery gel separators.

    PubMed

    Lee, Woong Gi; Kim, Do Hyeong; Jeon, Woo Cheol; Kwak, Sang Kyu; Kang, Seok Ju; Kang, Sang Wook

    2017-04-28

    We succeed in fabricating nearly straight nanopores in cellulose acetate (CA) polymers for use as battery gel separators by utilizing an inorganic hexahydrate (Ni(NO3)2·6H2O) complex and isostatic water pressure treatment. The continuous nanopores are generated when the polymer film is exposed to isostatic water pressure after complexing the nickel(II) nitrate hexahydrate (Ni(NO3)2·6H2O) with the CA. These results can be attributed to the manner in which the polymer chains are weakened because of the plasticization effect of the Ni(NO3)2·6H2O that is incorporated into the CA. Furthermore, we performed extensive molecular dynamics simulation for confirming the interaction between electrolyte and CA separator. The well controlled CA membrane after water pressure treatment enables fabrication of highly reliable cell by utilizing 2032-type coin cell structure. The resulting cell performance exhibits not only the effect of the physical morphology of CA separator, but also the chemical interaction of electrolyte with CA polymer which facilitates the Li-ion in the cell.

  12. High Intensity Radiation Laboratory Reverberation Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This photo depicts the interior of the large Reverberation Chamber located in the High Intensity, Radiation Facility (HIRL). These chambers are used to test susceptibility of aircraft avionics systems responses to high intensity radiated fields. These resources include a Gigahertz Transverse Electromagnetic Cell (GTEM), which provides a uniform field of up to 1000V/m from 10 kHz to 18 Ghz.

  13. Facile electrospinning of an efficient drug delivery system.

    PubMed

    Mei, Lan; Wang, Yuelong; Tong, Aiping; Guo, Gang

    2016-01-01

    Electrospinning is a facile method for fabricating fibers with diameters in the order of several nanometers to a few micrometers. This technology has great potential for preparing drug delivery systems (DDSs) and has received a great deal of attention in recent years. When combined with certain nanocarriers, such as micelles, nanoparticles or vesicles, an electrospun fiber membrane becomes an efficient and helpful platform for the above-mentioned formulations to achieve sustained and targeted drug release. The developmental process of electrospinning technology is briefly summarized and the drugs and the materials electrospun into drug delivery systems are listed . The application of electrospinning technology in the biomedical field and its current progress are emphasized. A safe, efficient and multifunctional electrospinning drug delivery system is urgently needed, which requires further studies. Cross-disciplinary strategies that cover pharmaceutical science, material science and computer science may provide guidance in bringing electrospinning technology in drug delivery to fruition.

  14. High efficiency solar cell processing

    NASA Technical Reports Server (NTRS)

    Ho, F.; Iles, P. A.

    1985-01-01

    At the time of writing, cells made by several groups are approaching 19% efficiency. General aspects of the processing required for such cells are discussed. Most processing used for high efficiency cells is derived from space-cell or concentrator cell technology, and recent advances have been obtained from improved techniques rather than from better understanding of the limiting mechanisms. Theory and modeling are fairly well developed, and adequate to guide further asymptotic increases in performance of near conventional cells. There are several competitive cell designs with promise of higher performance ( 20%) but for these designs further improvements are required. The available cell processing technology to fabricate high efficiency cells is examined.

  15. Hurricane risk mitigation - High Pressure Gas Facility

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A worker pours concrete as part of a nitrogen risk mitigation project at the High Pressure Gas Facility at Stennis Space Center. The concrete slab will provide the foundation needed to place new pumps at the site and is part of ongoing hurricane-related mitigation work at Stennis.

  16. Hurricane risk mitigation - High Pressure Gas Facility

    NASA Image and Video Library

    2008-07-29

    A worker pours concrete as part of a nitrogen risk mitigation project at the High Pressure Gas Facility at Stennis Space Center. The concrete slab will provide the foundation needed to place new pumps at the site and is part of ongoing hurricane-related mitigation work at Stennis.

  17. Advanced high efficiency concentrator cells

    SciTech Connect

    Gale, R. . Varian Research Center)

    1992-06-01

    This report describes research to develop the technology needed to demonstrate a monolithic, multijunction, two-terminal, concentrator solar cell with a terrestrial power conversion efficiency greater than 35%. Under three previous subcontracts, Varian developed many of the aspects of a technology needed to fabricate very high efficiency concentrator cells. The current project was aimed at exploiting the new understanding of high efficiency solar cells. Key results covered in this report are as follows. (1) A 1.93-eV AlGaAs/1.42-eV GaAs metal-interconnected cascade cell was manufactured with a one-sun efficiency at 27.6% at air mass 1.5 (AM1.5) global. (2) A 1.0eV InGaAs cell was fabricated on the reverse'' side of a low-doped GaAs substrate with a one-sun efficiency of 2.5% AM1.5 diffuse and a short-circuit current of 14.4 mA/cm{sup 2}. (3) Small-scale manufacturing of GaAs p/n concentrator cells was attempted and obtained an excellent yield of high-efficiency cells. (4) Grown-in tunnel junction cell interconnects that are transparent and thermally stable using C and Si dopants were developed. 10 refs.

  18. High intensity neutrino oscillation facilities in Europe

    DOE PAGES

    Edgecock, T. R.; Caretta, O.; Davenne, T.; ...

    2013-02-20

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ– beams in a storage ring. The far detector in this case ismore » a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. Furthermore, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.« less

  19. High intensity neutrino oscillation facilities in Europe

    SciTech Connect

    Edgecock, T. R.; Caretta, O.; Davenne, T.; Densam, C.; Fitton, M.; Kelliher, D.; Loveridge, P.; Machida, S.; Prior, C.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Wildner, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoni, S.; Hansen, C.; Benedetto, E.; Jensen, E.; Kosmicki, A.; Martini, M.; Osborne, J.; Prior, G.; Stora, T.; Melo Mendonca, T.; Vlachoudis, V.; Waaijer, C.; Cupial, P.; Chance, A.; Longhin, A.; Payet, J.; Zito, M.; Baussan, E.; Bobeth, C.; Bouquerel, E.; Dracos, M.; Gaudiot, G.; Lepers, B.; Osswald, F.; Poussot, P.; Vassilopoulos, N.; Wurtz, J.; Zeter, V.; Bielski, J.; Kozien, M.; Lacny, L.; Skoczen, B.; Szybinski, B.; Ustrycka, A.; Wroblewski, A.; Marie-Jeanne, M.; Balint, P.; Fourel, C.; Giraud, J.; Jacob, J.; Lamy, T.; Latrasse, L.; Sortais, P.; Thuillier, T.; Mitrofanov, S.; Loiselet, M.; Keutgen, Th.; Delbar, Th.; Debray, F.; Trophine, C.; Veys, S.; Daversin, C.; Zorin, V.; Izotov, I.; Skalyga, V.; Burt, G.; Dexter, A. C.; Kravchuk, V. L.; Marchi, T.; Cinausero, M.; Gramegna, F.; De Angelis, G.; Prete, G.; Collazuol, G.; Laveder, M.; Mazzocco, M.; Mezzetto, M.; Signorini, C.; Vardaci, E.; Di Nitto, A.; Brondi, A.; La Rana, G.; Migliozzi, P.; Moro, R.; Palladino, V.; Gelli, N.; Berkovits, D.; Hass, M.; Hirsh, T. Y.; Schaumann, M.; Stahl, A.; Wehner, J.; Bross, A.; Kopp, J.; Neuffer, D.; Wands, R.; Bayes, R.; Laing, A.; Soler, P.; Agarwalla, S. K.; Cervera Villanueva, A.; Donini, A.; Ghosh, T.; Gomez Cadenas, J. J.; Hernandez, P.; Martin-Albo, J.; Mena, O.; Burguet-Castell, J.; Agostino, L.; Buizza-Avanzini, M.; Marafini, M.; Patzak, T.; Tonazzo, A.; Duchesneau, D.; Mosca, L.; Bogomilov, M.; Karadzhov, Y.; Matev, R.; Tsenov, R.; Akhmedov, E.; Blennow, M.; Lindner, M.; Schwetz, T.; Fernandez Martinez, E.; Maltoni, M.; Menendez, J.; Giunti, C.; Gonzalez Garcia, M. C.; Salvado, J.; Coloma, P.; Huber, P.; Li, T.; Lopez Pavon, J.; Orme, C.; Pascoli, S.; Meloni, D.; Tang, J.; Winter, W.; Ohlsson, T.; Zhang, H.; Scotto-Lavina, L.; Terranova, F.; Bonesini, M.; Tortora, L.; Alekou, A.; Aslaninejad, M.; Bontoiu, C.; Kurup, A.; Jenner, L. J.; Long, K.; Pasternak, J.; Pozimski, J.; Back, J. J.; Harrison, P.; Beard, K.; Bogacz, A.; Berg, J. S.; Stratakis, D.; Witte, H.; Snopok, P.; Bliss, N.; Cordwell, M.; Moss, A.; Pattalwar, S.; Apollonio, M.

    2013-02-20

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. Furthermore, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.

  20. High efficiency SPS klystron design

    NASA Technical Reports Server (NTRS)

    Nalos, E. J.

    1980-01-01

    The most likely compact configuration to realize both high efficiency and high gain (approx. 40 dB) is a 5-6 cavity design focused by an electromagnet. The basic klystron efficiency cannot be expected to exceed 70-75% without collector depression. It was estimated that the net benefit of a 5 stage collector over a 2 stage collector is between 1.5 and 3.5 kW per tube. A modulating anode is incorporated in the design to enable rapid shutoff of the beam current in case the r.f. drive should be removed.

  1. High efficiency solar panel /HESP/

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Gay, C.; Uno, F.; Scott-Monck, J.

    1978-01-01

    A family of high efficiency, weldable silicon solar cells, incorporating nearly every feature of advanced cell technology developed in the past four years, was produced and subjected to space qualification testing. This matrix contained both field and non-field cells ranging in thickness from 0.10 mm to 0.30 mm, and in base resistivity from nominal two to one hundred ohm-cm. Initial power outputs as high as 20 mW/sq cm (14.8% AM0 efficiency) were produced by certain cell types within the matrix.

  2. Test facilities for high power electric propulsion

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Vetrone, Robert H.; Grisnik, Stanley P.; Myers, Roger M.; Parkes, James E.

    1991-01-01

    Electric propulsion has applications for orbit raising, maneuvering of large space systems, and interplanetary missions. These missions involve propulsion power levels from tenths to tens of megawatts, depending upon the application. General facility requirements for testing high power electric propulsion at the component and thrust systems level are defined. The characteristics and pumping capabilities of many large vacuum chambers in the United States are reviewed and compared with the requirements for high power electric propulsion testing.

  3. Very high-vacuum heat treatment facility

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Moody, M. V.; Richard, J.-P.

    1987-01-01

    A vacuum heat treatment facility, with hot zone dimensions of 12 x 19 x 19 cm, has been designed and constructed at a cost substantially below that of a commercial unit. The design incorporates efficient water cooling and a resistive heating element. A vacuum pressure of 1.5 x 10 to the -8th torr at room temperature has been obtained after baking. The temperature limit is approximately 1900 C. This limit results from the choice of niobium as the hot zone material.

  4. Very high-vacuum heat treatment facility

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Moody, M. V.; Richard, J.-P.

    1987-01-01

    A vacuum heat treatment facility, with hot zone dimensions of 12 x 19 x 19 cm, has been designed and constructed at a cost substantially below that of a commercial unit. The design incorporates efficient water cooling and a resistive heating element. A vacuum pressure of 1.5 x 10 to the -8th torr at room temperature has been obtained after baking. The temperature limit is approximately 1900 C. This limit results from the choice of niobium as the hot zone material.

  5. Facile electrochemical co-deposition of a graphene-cobalt nanocomposite for highly efficient water oxidation in alkaline media: direct detection of underlying electron transfer reactions under catalytic turnover conditions.

    PubMed

    Guo, Si-Xuan; Liu, Yuping; Bond, Alan M; Zhang, Jie; Esakki Karthik, P; Maheshwaran, I; Senthil Kumar, S; Phani, K L N

    2014-09-21

    A facile electrochemical co-deposition method has been developed for the fabrication of graphene-cobalt nanocomposite modified electrodes that achieve exceptionally efficient water oxidation in highly alkaline media. In the method reported, a graphene-cobalt nanocomposite film was deposited electrochemically from a medium containing 1 mg ml(-1) graphene oxide, 0.8 mM cobalt nitrate and 0.05 M phytic acid (pH 7). The formation of the nanocomposite film was confirmed using electrochemical, Raman spectroscopic and scanning electron microscopic techniques. The nanocomposite film exhibits excellent activity and stability towards water oxidation to generate oxygen in 1 M NaOH aqueous electrolyte media. A turn over frequency of 34 s(-1) at an overpotential of 0.59 V and a faradaic efficiency of 97.7% were deduced from analysis of data obtained by rotating ring disk electrode voltammetry. Controlled potential electrolysis data suggests that the graphene supported catalyst exhibits excellent stability under these harsh conditions. Phytate anion acts as stabilizer for the electrochemical formation of cobalt nanoparticles. Fourier transformed ac voltammetry allowed the redox chemistry associated with catalysis to be detected directly under catalytic turnover conditions. Estimates of formal reversible potentials obtained from this method and derived from the overall reactions 3Co(OH)2 + 2OH(-) ⇌ Co3O4 + 4H2O + 2e(-), Co3O4 + OH(-) ⇌ 3CoOOH + e(-) and CoOOH + OH(-) ⇌ CoO2 + H2O + e(-) are 0.10, 0.44 and 0.59 V vs. Ag/AgCl, respectively.

  6. High Efficiency Engine Technologies Program

    SciTech Connect

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in

  7. Enabling High Efficiency Ethanol Engines

    SciTech Connect

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  8. High Performance Imaging Streak Camera for the National Ignition Facility

    SciTech Connect

    Opachich, Y. P.; Kalantar, D.; MacPhee, A.; Holder, J.; Kimbrough, J.; Bell, P. M.; Bradley, D.; Hatch, B.; Brown, C.; Landen, O.; Perfect, B. H.; Guidry, B.; Mead, A.; Charest, M.; Palmer, N.; Homoelle, D.; Browning, D.; Silbernagel, C.; Brienza-Larsen, G.; Griffin, M.; Lee, J. J.; Haugh, M. J.

    2012-01-01

    An x-ray streak camera platform has been characterized and implemented for use at the National Ignition Facility. The camera has been modified to meet the experiment requirements of the National Ignition Campaign and to perform reliably in conditions that produce high EMI. A train of temporal UV timing markers has been added to the diagnostic in order to calibrate the temporal axis of the instrument and the detector efficiency of the streak camera was improved by using a CsI photocathode. The performance of the streak camera has been characterized and is summarized in this paper. The detector efficiency and cathode measurements are also presented.

  9. High-power, high-efficiency FELs

    SciTech Connect

    Sessler, A.M.

    1989-04-01

    High power, high efficiency FELs require tapering, as the particles loose energy, so as to maintain resonance between the electromagnetic wave and the particles. They also require focusing of the particles (usually done with curved pole faces) and focusing of the electromagnetic wave (i.e. optical guiding). In addition, one must avoid transverse beam instabilities (primarily resistive wall) and longitudinal instabilities (i.e sidebands). 18 refs., 7 figs., 3 tabs.

  10. High-Explosives Applications Facility (HEAF)

    NASA Astrophysics Data System (ADS)

    Morse, J. L.; Weingart, R. C.

    1989-03-01

    This Safety Analysis Report (SAR) reviews the safety and environmental aspects of the High Explosives Applications Facility (HEAF). Topics covered include the site selected for the HEAF, safety design criteria, operations planned within the facility, and the safety and environmental analyses performed on this project to date. Provided in the Summary section is a review of hazards and the analyses, conclusions, and operating limits developed in this SAR. Appendices provide supporting documents relating to this SAR. This SAR is required by the LLNL Health and Safety Manual and DOE Order 5481.1B(2) to document the safety analysis efforts. The SAR was assembled by the Hazards Control Department, B-Division, and HEAF project personnel. This document was reviewed by B Division, the Chemistry Department, the Hazards Control Department, the Laboratory Associate Director for Administration and Operations, and the Associate Directors ultimately responsible for HEAF operations.

  11. High precision Woelter optic calibration facility

    SciTech Connect

    Morales, R.I.; Remington, B.A.; Schwinn, T. )

    1995-01-01

    We have developed an off-line facility for very precise characterization of the reflectance and spatial resolution of the grazing incidence Woelter type I x-ray optics used at Nova. The primary component of the facility is a new, very versatile, high brightness x-ray source consisting of a focused DC electron beam incident onto a precision manipulated target-pinhole array. The data are recorded with a selection of detectors. For imaging measurements we use direct exposure x-ray film modules or an x-ray charge-coupled device camera. For energy-resolved reflectance measurements, we use lithium drifted silicon detectors and a proportional counter. An [ital in] [ital situ] laser alignment system allows precise location and rapid periodic alignment verification of the x-ray point source, the statically mounted Woelter optic, and the chosen detector.

  12. High precision Woelter optic calibration facility

    SciTech Connect

    Morales, R.I.; Remington, B.A.; Schwinn, T.

    1994-05-02

    We have developed an off-line facility for very precise characterization of the reflectance and spatial resolution of the grazing incidence Woelter Type 1 x-ray optics used at Nova. The primary component of the facility is a high brightness, ``point`` x-ray source consisting of a focussed DC electron beam incident onto a precision manipulated target/pinhole array. The data are recorded with a selection of detectors. For imaging measurements we use direct exposure x-ray film modules or an x-ray CCD camera. For energy-resolved reflectance measurements, we use lithium drifted silicon detectors and a proportional counter. An in situ laser alignment system allows precise location and rapid periodic alignment verification of the x-ray point source, the statically mounted Woelter optic, and the chosen detector.

  13. High Efficiency Room Air Conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  14. High Efficiency IMM Solar Cells

    NASA Astrophysics Data System (ADS)

    Sharps, P.; Cho, B.; Chumney, D.; Cornfeild, A.; Guzie, B.; Hazlett, D.; Lin, Y.; Mackos, C.; Patel, P.; Stan, M.; Steinfeldt, J.; Tourino, C.

    2014-08-01

    We review the status of currently available commercial multi-junction cells, review options for next generation high efficiency cell architectures, and present the latest developments on the inverted metamorphic multi- junction (IMM) solar cell. Over 20,000 IMM cells have been prototyped to date, and efficiencies of up to 37% have been measured. We present the most recent performance data, including the response to particle radiation. The IMM cell can be used in a number of rigid or flexible configurations, and considerable effort is currently focused on cell packaging and panel integration. We discuss several design options, including a "drop in" replacement for the current 29.5% ZTJ cell technology. We will also address the reliability and cost of the IMM cell.

  15. High Efficiency Germanium Immersion Gratings

    SciTech Connect

    Kuzmenko, P J; Davis, P J; Little, S L; Little, L M; Bixler, J V

    2006-05-01

    We have fabricated several germanium immersion gratings by single crystal, single point diamond flycutting on an ultra-precision lathe. Use of a dead sharp tool produces groove corners less than 0.1 micron in radius and consequently high diffraction efficiency. We measured first order efficiencies in immersion of over 80% at 10.6 micron wavelength. Wavefront error was low averaging 0.06 wave rms (at 633 nm) across the full aperture. The grating spectral response was free of ghosts down to our detection limit of 1 part in 10{sup 4}. Scatter should be low based upon the surface roughness. Measurement of the spectral line profile of a CO{sub 2} laser sets an upper bound on total integrated scatter of 0.5%.

  16. High-temperature helium-loop facility

    SciTech Connect

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100/sup 0/F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system.

  17. A simple, high efficiency, high resolution spectropolarimeter

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.

    2012-09-01

    A simple concept is described that uses volume phase holographic gratings as polarizing dispersers for a high efficiency, high resolution spectropolarimeter. Although the idea has previously been mentioned in the literature as possible, such a concept has not been explored in detail. Performance analysis is presented for a VPHG spectropolarimeter concept that could be utilized for both solar and night-time astronomy. Instrumental peak efficiency can approach 100% with spectral dispersions permitting R~200,000 spectral resolution with diffraction limited telescopes. The instrument has 3-channels: two dispersed image planes with orthogonal polarization and an undispersed image plane. The concept has a range of versatility where it could be configured (with appropriate half-wave plates) for slit-fed spectroscopy or without slits for snapshot/hyperspectral/tomographic spectroscopic imaging. Multiplex gratings could also be used for the simultaneous recording of two separate spectral bands or multiple instruments could be daisy chained with beam splitters for further spectral coverage.

  18. High-efficiency photoionization detector

    SciTech Connect

    Anderson, D.F.

    1981-05-12

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 +- 0.02 eV, and a vapor pressure of 0.35 torr at 20/sup 0/C.

  19. High temperature aircraft research furnace facilities

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  20. Efficiency and cost advantages of an advanced-technology nuclear electrolytic hydrogen-energy production facility

    NASA Technical Reports Server (NTRS)

    Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.

    1977-01-01

    The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.

  1. Numerical Simulations of High Enthalpy Pulse Facilities

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory J.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Axisymmetric flows within shock tubes and expansion tubes are simulated including the effects of finite rate chemistry and both laminar and turbulent boundary layers. The simulations demonstrate the usefulness of computational fluid dynamics for characterizing the flows in high enthalpy pulse facilities. The modeling and numerical requirements necessary to simulate these flows accurately are also discussed. Although there is a large body of analysis which explains and quantifies the boundary layer growth between the shock and the interface in a shock tube, there is a need for more detailed solutions. Phenomena such as thermochemical nonequilibrium. or turbulent transition behind the shock are excluded in the assumptions of Mirels' analysis. Additionally there is inadequate capability to predict the influence of the boundary layer on the expanded gas behind the interface. Quantifying the gas in this region is particularly important in expansion tubes because it is the location of the test gas. Unsteady simulations of the viscous flow in shock tubes are computationally expensive because they must follow features such as a shock wave over the length of the facility and simultaneously resolve the small length scales within the boundary layer. As a result, efficient numerical algorithms are required. The numerical approach of the present work is to solve the axisymmetric gas dynamic equations using an finite-volume formulation where the inviscid fluxes are computed with a upwind TVD scheme. Multiple species equations are included in the formulation so that finite-rate chemistry can be modeled. The simulations cluster grid points at the shock and interface and translate this clustered grid with these features to minimize numerical errors. The solutions are advanced at a CFL number of less than one based on the inviscid gas dynamics. To avoid limitations on the time step due to the viscous terms, these terms are treated implicitly. This requires a block tri

  2. High-efficiency photovoltaic cells

    DOEpatents

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  3. Post-occupancy energy efficiency evaluation of a LEED Platinum Federal Government facility

    NASA Astrophysics Data System (ADS)

    Tincher, Theresa

    The purpose of this study was to gain a comprehensive understanding of the Leadership in Energy and Environmental Design (LEEDRTM) certification system and its relevance to Federal policies, building codes, and building standards, develop experience with whole building energy modeling, and determine the actual post-occupancy energy usage as compared with developed model and design projections. This thesis hypothesized the U.S. Green Building Council's LEED rating system compared favorably to other policies, codes, and standards in use at the time, and the U.S. Bureau of Reclamations' LEED Platinum Lower Colorado Regional Office Green Building (LCROGB), located in Boulder City, Nevada, operated at least as energy efficiently as designed. Both hypotheses were shown to be true. Based on the design and development requirements for the 49,818 square foot LCROGB being studied, the primary building requirements addressed were the U.S. Guiding Principles for Federal Leadership in High Performance and Sustainable Buildings, ASHRAE Standard 90.1-2007, and the LEED V2009 certification system for new construction. LEED V2009 certification requirements compared favorably by either meeting or exceeding other stated requirements. The whole building energy simulation, QUick Energy Simulation Tool (eQUEST) Version 3.65, was used for the study, and baseline and proposed models were developed. The eQUEST results compared favorably with the designer's simulations developed using the Hourly Analysis Program (HAP) Version 4.5. eQUEST predicted a 32.7% savings in overall energy usage, compared to the HAP 38.9% prediction. In 2013, the LCROGB used 600,042 kWh of energy, and 60% was electrical and 40% was natural gas. This usage demonstrated high building efficiency with an Energy Use Intensity (EUI) of 41.1 kBtu/sf/yr. Following more than two years of post-occupancy operation, the LCROGB was electrically more efficient than predicted by either HAP or eQUEST, although the facility was

  4. High-efficiency dielectrophoretic ratchet.

    PubMed

    Germs, Wijnand Chr; Roeling, Erik M; van Ijzendoorn, Leo J; Smalbrugge, Barry; de Vries, Tjibbe; Geluk, Erik Jan; Janssen, René A J; Kemerink, Martijn

    2012-10-01

    Brownian ratchets enable the use of thermal motion in performing useful work. They typically employ spatial asymmetry to rectify nondirected external forces that drive the system out of equilibrium (cf. running marbles on a shaking washboard). The major application foreseen for Brownian ratchets is high-selectivity fractionation of particle or molecule distributions. Here, we investigate the functioning of an important model system, the on/off ratchet for water-suspended particles, in which interdigitated finger electrodes can be switched on and off to create a time-dependent, spatially periodic but asymmetric potential. Surprisingly, we find that mainly dielectrophoretic rather than electrophoretic forces are responsible for the ratchet effect. This has major implications for the (a)symmetry of the ratchet potential and the settings needed for optimal performance. We demonstrate that by applying a potential offset the ratchet can be optimized such that its particle displacement efficiency reaches the theoretical upper limit corresponding to the electrode geometry and particle size. Efficient fractionation based on size selectivity is therefore not only possible for charged species, but also for uncharged ones, which greatly expands the applicability range of this type of Brownian ratchet.

  5. High efficiency shale oil recovery

    SciTech Connect

    Adams, C.D.

    1992-07-18

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a larger continuous process kiln. For example, similar conditions of heatup rate, oxidation of the residue and cool-down prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The second quarter agenda consisted of (a) kiln modifications; (b) sample preparation; and (c) Heat Transfer calibration runs (part of proposal task number 3 -- to be completed by the end of month 7).

  6. High efficiency laser spectrum conditioner

    DOEpatents

    Greiner, Norman R.

    1980-01-01

    A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.

  7. High efficiency ozone generation system

    SciTech Connect

    Karlson, E.L.

    1990-01-09

    This final report entails research prepared to verify the workings and the efficiency of producing ozone with the ELK'' Ozone Generator, which operates at an elevated gas pressure of up to 20 MPA (3000 psi) and is an improvement of the corona discharge ozone generator. The increased pressure produces an increase in the density of oxygen gas fed into the generator. This, in turn, leads to an increased yield of ozone in the ozone oxygen gas mixture leaving the generator. The design of this new ozone generator incorporates a novel positioning of the dielectric to preserve its mechanical integrity at high operating pressures and also incorporates a novel heat removal technique. A large number of ozone production runs have been made at different pressures. Large populations of data such as, temperature points throughout the generator, gas flow, cooling water flow parameters, operating gas pressure, ozone concentration, and data on the dielectric cooling, have been compiled and fed into our computer. This new data indicates not only that high pressures used in a controlled fashion will produce more ozone per watt hour but also indicates what problems exist when pressures are increased, such as the generation of high temperatures not only in the area of ozone generation but within the dielectric. The data also shows the necessary residence time for maximum ozone production at a particular pressure, voltage, temperature and electrode spacing. 14 refs., 22 figs.

  8. Evaluating performance of high efficiency mist eliminators

    SciTech Connect

    Waggoner, Charles A.; Parsons, Michael S.; Giffin, Paxton K.

    2013-07-01

    Processing liquid wastes frequently generates off gas streams with high humidity and liquid aerosols. Droplet laden air streams can be produced from tank mixing or sparging and processes such as reforming or evaporative volume reduction. Unfortunately these wet air streams represent a genuine threat to HEPA filters. High efficiency mist eliminators (HEME) are one option for removal of liquid aerosols with high dissolved or suspended solids content. HEMEs have been used extensively in industrial applications, however they have not seen widespread use in the nuclear industry. Filtering efficiency data along with loading curves are not readily available for these units and data that exist are not easily translated to operational parameters in liquid waste treatment plants. A specialized test stand has been developed to evaluate the performance of HEME elements under use conditions of a US DOE facility. HEME elements were tested at three volumetric flow rates using aerosols produced from an iron-rich waste surrogate. The challenge aerosol included submicron particles produced from Laskin nozzles and super micron particles produced from a hollow cone spray nozzle. Test conditions included ambient temperature and relative humidities greater than 95%. Data collected during testing HEME elements from three different manufacturers included volumetric flow rate, differential temperature across the filter housing, downstream relative humidity, and differential pressure (dP) across the filter element. Filter challenge was discontinued at three intermediate dPs and the filter to allow determining filter efficiency using dioctyl phthalate and then with dry surrogate aerosols. Filtering efficiencies of the clean HEME, the clean HEME loaded with water, and the HEME at maximum dP were also collected using the two test aerosols. Results of the testing included differential pressure vs. time loading curves for the nine elements tested along with the mass of moisture and solid

  9. Defeating the Active Shooter: Applying Facility Upgrades in Order to Mitigate the Effects of Active Shooters in High Occupancy Facilities

    DTIC Science & Technology

    2012-06-01

    SHOOTER: APPLYING FACILITY UPGRADES IN ORDER TO MITIGATE THE EFFECTS OF ACTIVE SHOOTERS IN HIGH OCCUPANCY FACILITIES by Charles E. Ergenbright...SUBTITLE Defeating the Active Shooter: Applying Facility Upgrades in Order to Mitigate the Effects of Active Shooters in High Occupancy Facilities 5...facility upgrades capable of mitigating the deadly effects of Active Shooters. 14. SUBJECT TERMS Active Shooter, Mitigation, Facility Upgrades, Victim

  10. Using business intelligence for efficient inter-facility patient transfer.

    PubMed

    Haque, Waqar; Derksen, Beth Ann; Calado, Devin; Foster, Lee

    2015-01-01

    In the context of inter-facility patient transfer, a transfer operator must be able to objectively identify a destination which meets the needs of a patient, while keeping in mind each facility's limitations. We propose a solution which uses Business Intelligence (BI) techniques to analyze data related to healthcare infrastructure and services, and provides a web based system to identify optimal destination(s). The proposed inter-facility transfer system uses a single data warehouse with an Online Analytical Processing (OLAP) cube built on top that supplies analytical data to multiple reports embedded in web pages. The data visualization tool includes map based navigation of the health authority as well as an interactive filtering mechanism which finds facilities meeting the selected criteria. The data visualization is backed by an intuitive data entry web form which safely constrains the data, ensuring consistency and a single version of truth. The overall time required to identify the destination for inter-facility transfers is reduced from hours to a few minutes with this interactive solution.

  11. Improving primary health care facility performance in Ghana: efficiency analysis and fiscal space implications.

    PubMed

    Novignon, Jacob; Nonvignon, Justice

    2017-06-12

    Health centers in Ghana play an important role in health care delivery especially in deprived communities. They usually serve as the first line of service and meet basic health care needs. Unfortunately, these facilities are faced with inadequate resources. While health policy makers seek to increase resources committed to primary healthcare, it is important to understand the nature of inefficiencies that exist in these facilities. Therefore, the objectives of this study are threefold; (i) estimate efficiency among primary health facilities (health centers), (ii) examine the potential fiscal space from improved efficiency and (iii) investigate the efficiency disparities in public and private facilities. Data was from the 2015 Access Bottlenecks, Cost and Equity (ABCE) project conducted by the Institute for Health Metrics and Evaluation. The Stochastic Frontier Analysis (SFA) was used to estimate efficiency of health facilities. Efficiency scores were then used to compute potential savings from improved efficiency. Outpatient visits was used as output while number of personnel, hospital beds, expenditure on other capital items and administration were used as inputs. Disparities in efficiency between public and private facilities was estimated using the Nopo matching decomposition procedure. Average efficiency score across all health centers included in the sample was estimated to be 0.51. Also, average efficiency was estimated to be about 0.65 and 0.50 for private and public facilities, respectively. Significant disparities in efficiency were identified across the various administrative regions. With regards to potential fiscal space, we found that, on average, facilities could save about GH₵11,450.70 (US$7633.80) if efficiency was improved. We also found that fiscal space from efficiency gains varies across rural/urban as well as private/public facilities, if best practices are followed. The matching decomposition showed an efficiency gap of 0.29 between private

  12. Integrated Framework for Patient Safety and Energy Efficiency in Healthcare Facilities Retrofit Projects.

    PubMed

    Mohammadpour, Atefeh; Anumba, Chimay J; Messner, John I

    2016-07-01

    There is a growing focus on enhancing energy efficiency in healthcare facilities, many of which are decades old. Since replacement of all aging healthcare facilities is not economically feasible, the retrofitting of these facilities is an appropriate path, which also provides an opportunity to incorporate energy efficiency measures. In undertaking energy efficiency retrofits, it is vital that the safety of the patients in these facilities is maintained or enhanced. However, the interactions between patient safety and energy efficiency have not been adequately addressed to realize the full benefits of retrofitting healthcare facilities. To address this, an innovative integrated framework, the Patient Safety and Energy Efficiency (PATSiE) framework, was developed to simultaneously enhance patient safety and energy efficiency. The framework includes a step -: by -: step procedure for enhancing both patient safety and energy efficiency. It provides a structured overview of the different stages involved in retrofitting healthcare facilities and improves understanding of the intricacies associated with integrating patient safety improvements with energy efficiency enhancements. Evaluation of the PATSiE framework was conducted through focus groups with the key stakeholders in two case study healthcare facilities. The feedback from these stakeholders was generally positive, as they considered the framework useful and applicable to retrofit projects in the healthcare industry.

  13. The efficiency of healthcare facilities providing PET cancer screening in Japan.

    PubMed

    Liu, Xuanxiu

    2012-04-01

    The number of positron emission tomography (PET) facilities has rapidly increased in Japan in recent years. We assume there has been a downward spiral that low reimbursement prices for PET scans by public health insurance have driven these facilities to provide cancer screening, leading to a decline in efficiency with more cancer screening. The purpose of this study was to confirm this decline and clarify the determinants of efficiency. Questionnaire survey data from 65 facilities that provided PET cancer screening were used. Data envelopment analysis (DEA) was used to measure the efficiency of each facility. Multivariate regression analysis was then performed with each DEA score as a dependent variable, with other potential factors that might affect efficiency as independent variables. We found that from 2004 to 2006 efficiency in PET facilities declined. However, significantly greater efficiency was observed for those facilities that started cancer screening earlier, were located in an area with an aging population, and were clinics and general hospitals. Conversely, significantly lower efficiency was observed for facilities with higher market share and price for PET cancer screening. Our findings on decreasing efficiency imply that reimbursement prices should be raised to halt the downward spiral.

  14. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  15. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

  16. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  17. A facile strategy for the synthesis of NiSe@CoOOH core-shell nanowires on nickel foam with high surface area as efficient electrocatalyst for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Xu, Yuan-Zi; Yuan, Cheng-Zong; Chen, Xue-Ping

    2017-12-01

    In this article, we describe a NiSe@CoOOH core-shell nanostructure nanowires supported on nickel foam(NiSe@CoOOH NWs/NF) have been successfully synthesized by a facile approach for the first time. The NiSe@CoOOH NWs/NF has been confirmed by XRD, SEM images, TEM images, XPS, EDX and HRTEM. The NiSe@CoOOH NWs/NF, as a 3D oxygen-evolving and nonprecious-metal catalyst, shows high catalytic performance for oxygen evolution reaction.

  18. Mathematical modeling of the removal efficiency of hydrogen from steels treated in vacuum facilities

    NASA Astrophysics Data System (ADS)

    Magaon, Miruna; Ardelean, Erika; Şerban, Sorina; PuÅ£an, Vasile

    2017-07-01

    Purity in gases has a considerable influence on the quality of steel, more precisely nitrogen and hydrogen. In this paper are presented the results of researches conducted at an electrical steelwork, equipped with vacuum facilities, in order to establish some correlations between the hydrogen removal efficiency from the liquid steel (ηH) and three main vacuuming parameters: the vacuuming duration Dvac, the duration of ultra-high vacuum Duhv. and the pressure in the vacuum facility Pvac. All the data obtained during the research was processed in the MATLAB calculation program, in order to obtain double correlations, using three types of equations. The results are presented, in this paper, both in analytical and graphical form (the correlation surface and the plane projection of the level curves).

  19. High Efficiency Cascade Solar Cells

    SciTech Connect

    Shuguang Deng, Seamus Curran, Igor Vasiliev

    2010-09-28

    This report summarizes the main work performed by New Mexico State University and University of Houston on a DOE sponsored project High Efficiency Cascade Solar Cells. The main tasks of this project include materials synthesis, characterization, theoretical calculations, organic solar cell device fabrication and test. The objective of this project is to develop organic nano-electronic-based photovoltaics. Carbon nanotubes and organic conjugated polymers were used to synthesize nanocomposites as the new active semiconductor materials that were used for fabricating two device architectures: thin film coating and cascade solar cell fiber. Chemical vapor deposition technique was employed to synthesized a variety of carbon nanotubes (single-walled CNT, doubled-walled CNT, multi-walled CNT, N-doped SWCNT, DWCNT and MWCNT, and B-doped SWCNT, DWCNT and MWCNT) and a few novel carbon structures (CNT-based nanolance, nanocross and supported graphene film) that have potential applications in organic solar cells. Purification procedures were developed for removing amorphous carbons from carbon nanotubes, and a controlled oxidation method was established for partial truncation of fullerene molecules. Carbon nanotubes (DWCNT and DWCNT) were functionalized with fullerenes and dyes covalently and used to form nanocomposites with conjugated polymers. Biologically synthesized Tellurium nanotubes were used to form composite with the conjugated polymers as well, which generated the highest reported optical limiting values from composites. Several materials characterization technique including SEM/TEM, Raman, AFM, UV-vis, adsorption and EDS were employed to characterize the physical and chemical properties of the carbon nanotubes, the functionalized carbon nanotubes and the nanocomposites synthesized in this project. These techniques allowed us to have a spectroscopic and morphological control of the composite formation and to understand the materials assembled. A parallel 136-CPU

  20. Towards highly efficient water photoelectrolysis

    NASA Astrophysics Data System (ADS)

    Elavambedu Prakasam, Haripriya

    ethylene glycol resulted in remarkable growth characteristics of titania nanotube arrays, hexagonal closed packed up to 1 mm in length, with tube aspect ratios of approximately 10,000. For the first time, complete anodization of the starting titanium foil has been demonstrated resulting in back to back nanotube array membranes ranging from 360 mum--1 mm in length. The nanotubes exhibited growth rates of up to 15 mum/hr. A detailed study on the factors affecting the growth rate and nanotube dimensions is presented. It is suggested that faster high field ionic conduction through a thinner barrier layer is responsible for the higher growth rates observed in electrolytes containing ethylene glycol. Methods to fabricate free standing, titania nanotube array membranes ranging in thickness from 50 microm--1000 mum has also been an outcome of this dissertation. In an effort to combine the charge transport properties of titania with the light absorption properties of iron (III) oxide, films comprised of vertically oriented Ti-Fe-O nanotube arrays on FTO coated glass substrates have been successfully synthesized in ethylene glycol electrolytes. Depending upon the Fe content the bandgap of the resulting films varied from about 3.26 to 2.17 eV. The Ti-Fe oxide nanotube array films demonstrated a photocurrent of 2 mA/cm2 under global AM 1.5 illumination with a 1.2% (two-electrode) photoconversion efficiency, demonstrating a sustained, time-energy normalized hydrogen evolution rate by water splitting of 7.1 mL/W·hr in a 1 M KOH solution with a platinum counter electrode under an applied bias of 0.7 V. The Ti-Fe-O material architecture demonstrates properties useful for hydrogen generation by water photoelectrolysis and, more importantly, this dissertation demonstrates that the general nanotube-array synthesis technique can be extended to other ternary oxide compositions of interest for water photoelectrolysis.

  1. Efficiency and reliability assessments of retrofitted high-efficiency motors

    SciTech Connect

    Hsu, John S.; Otaduy, P.J.; Dueck, J.D.

    1994-12-31

    The majority of electric-motor applications are pumps, fans, blowers, and certain compressors that follow the load torque pattern described in this paper. It has been known for many years that simply replacing the old motor with a high-efficiency motor might not produce the expected efficiency gain. This paper suggests the calculations for the effective efficiency and temperature rise of the high-efficiency motor. The reliability in terms of temperature rise, downsizing, power factor, harmonics, mechanical structure, etc., are discussed.

  2. Laboratory 15 kV high voltage solar array facility

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.; Gooder, S. T.

    1976-01-01

    The laboratory high voltage solar array facility is a photoelectric power generating system. Consisting of nine modules with over 23,000 solar cells, the facility is capable of delivering more than a kilowatt of power. The physical and electrical characteristics of the facility are described.

  3. High efficiency, long life terrestrial solar panel

    NASA Technical Reports Server (NTRS)

    Chao, T.; Khemthong, S.; Ling, R.; Olah, S.

    1977-01-01

    The design of a high efficiency, long life terrestrial module was completed. It utilized 256 rectangular, high efficiency solar cells to achieve high packing density and electrical output. Tooling for the fabrication of solar cells was in house and evaluation of the cell performance was begun. Based on the power output analysis, the goal of a 13% efficiency module was achievable.

  4. High-efficiency wind turbine

    NASA Technical Reports Server (NTRS)

    Hein, L. A.; Myers, W. N.

    1980-01-01

    Vertical axis wind turbine incorporates several unique features to extract more energy from wind increasing efficiency 20% over conventional propeller driven units. System also features devices that utilize solar energy or chimney effluents during periods of no wind.

  5. High efficiency turbine blade coatings

    SciTech Connect

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600°C and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the

  6. Contained high explosive firing facility (CHEFF)

    SciTech Connect

    Stacy, H.L.; Seitz, W.L.; Wackerle, J.; Polcyn, M.; Esparza, E.

    1993-08-01

    A cylindrical vessel capable of totally containing the products and shrapnel resulting from the detonation of 10 kg of TNT (or equivalent) has been designed and built by Southwest Research Institute for and according to the requirements of the Detonation Systems Group (M-7) of Los Alamos National Laboratory. The vessel is 6.0-m long by 3.6-m diameter and is manufactured of 50-mm (elliptical end caps) and 38-mm (cylindrical walls) thick high-strength steel (HY-100). The cylindrical walls of the vessel are lined with 13-mm thick replaceable steel plates for shrapnel protection. The floor is made of steel-covered concrete. Ten large-aperture (254 mm) optical ports are available for instrumentation and four ports are provided for cabling and plumbing. Two qualifying detonation tests of 8.8 kg of C-4 explosive (equivalent to 10 kg TNT) have shown that the maximum strain produced is less than 78% of the elastic limit. The vessel is installed in a converted outdoor firing facility that has been modified to include an insulated and heated metal building to house the vessel and additional instrumentation. A computer-based system for data acquisition, firing control, and the monitoring of vessel response is described.

  7. Towards high efficiency heliostat fields

    NASA Astrophysics Data System (ADS)

    Arbes, Florian; Wöhrbach, Markus; Gebreiter, Daniel; Weinrebe, Gerhard

    2017-06-01

    CSP power plants have great potential to substantially contribute to world energy supply. To set this free, cost reductions are required for future projects. Heliostat field layout optimization offers a great opportunity to improve field efficiency. Field efficiency primarily depends on the positions of the heliostats around the tower, commonly known as the heliostat field layout. Heliostat shape also influences efficiency. Improvements to optical efficiency results in electricity cost reduction without adding any extra technical complexity. Due to computational challenges heliostat fields are often arranged in patterns. The mathematical models of the radial staggered or spiral patterns are based on two parameters and thus lead to uniform patterns. Optical efficiencies of a heliostat field do not change uniformly with the distance to the tower, they even differ in the northern and southern field. A fixed pattern is not optimal in many parts of the heliostat field, especially when used as large scaled heliostat field. In this paper, two methods are described which allow to modify field density suitable to inconsistent field efficiencies. A new software for large scale heliostat field evaluation is presented, it allows for fast optimizations of several parameters for pattern modification routines. It was used to design a heliostat field with 23,000 heliostats, which is currently planned for a site in South Africa.

  8. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  9. Facile integration of multiple magnetite nanoparticles for theranostics combining efficient MRI and thermal therapy.

    PubMed

    Huang, Guoming; Zhu, Xianglong; Li, Hui; Wang, Lirong; Chi, Xiaoqin; Chen, Jiahe; Wang, Xiaomin; Chen, Zhong; Gao, Jinhao

    2015-02-14

    Multifunctional nanostructures with both diagnostic and therapeutic capabilities have attracted considerable attention in biomedical research because they can offer great advantages in disease management and prognosis. In this work, a facile way to transfer the hydrophobic iron oxide (IO) nanoparticles into aqueous media by employing carboxylic graphene oxide (GO-COOH) as the transferring agent has been reported. In this one-step process, IO nanoparticles adhere to GO-COOH and form water-dispersible clusters via hydrophobic interactions between the hydrophobic ligands of IO nanoparticles and the basal plane of GO-COOH. The multiple IO nanoparticles on GO-COOH sheets (IO/GO-COOH) present a significant increase in T2 contrast enhancement. Moreover, the IO/GO-COOH nanoclusters also display a high photothermal conversion efficiency and can effectively inhibit tumor growth through the photothermal effects. It is envisioned that such IO/GO-COOH nanocomposites combining efficient MRI and photothermal therapy hold great promise in theranostic applications.

  10. High efficiency stationary hydrogen storage

    SciTech Connect

    Hynek, S.; Fuller, W.; Truslow, S.

    1995-09-01

    Stationary storage of hydrogen permits one to make hydrogen now and use it later. With stationary hydrogen storage, one can use excess electrical generation capacity to power an electrolyzer, and store the resultant hydrogen for later use or transshipment. One can also use stationary hydrogen as a buffer at fueling stations to accommodate non-steady fueling demand, thus permitting the hydrogen supply system (e.g., methane reformer or electrolyzer) to be sized to meet the average, rather than the peak, demand. We at ADL designed, built, and tested a stationary hydrogen storage device that thermally couples a high-temperature metal hydride to a phase change material (PCM). The PCM captures and stores the heat of the hydriding reaction as its own heat of fusion (that is, it melts), and subsequently returns that heat of fusion (by freezing) to facilitate the dehydriding reaction. A key component of this stationary hydrogen storage device is the metal hydride itself. We used nickel-coated magnesium powder (NCMP) - magnesium particles coated with a thin layer of nickel by means of chemical vapor deposition (CVD). Magnesium hydride can store a higher weight fraction of hydrogen than any other practical metal hydride, and it is less expensive than any other metal hydride. We designed and constructed an experimental NCM/PCM reactor out of 310 stainless steel in the form of a shell-and-tube heat exchanger, with the tube side packed with NCMP and the shell side filled with a eutectic mixture of NaCL, KCl, and MgCl{sub 2}. Our experimental results indicate that with proper attention to limiting thermal losses, our overall efficiency will exceed 90% (DOE goal: >75%) and our overall system cost will be only 33% (DOE goal: <50%) of the value of the delivered hydrogen. It appears that NCMP can be used to purify hydrogen streams and store hydrogen at the same time. These prospects make the NCMP/PCM reactor an attractive component in a reformer-based hydrogen fueling station.

  11. High efficiency ground data transmission

    NASA Technical Reports Server (NTRS)

    Dickinson, W. B.

    1973-01-01

    It is demonstrated that state-of-the-art communications technology can be implemented and reliably operated on a global basis to increase the transmission rates and efficiencies on circuits with bandwidths greater than the typical speech channel. Optimization is affected by optimum clock recovery procedures, multilevel pulse amplitude modulation, single sideband amplitude modulation, transversal filter equalizers, data scrambling, and active compensation for phase instability.

  12. Highly Efficient Freestyle Magnetic Nanoswimmer.

    PubMed

    Li, Tianlong; Li, Jinxing; Morozov, Konstantin I; Wu, Zhiguang; Xu, Tailin; Rozen, Isaac; Leshansky, Alexander M; Li, Longqiu; Wang, Joseph

    2017-08-09

    The unique swimming strategies of natural microorganisms have inspired recent development of magnetic micro/nanorobots powered by artificial helical or flexible flagella. However, as artificial nanoswimmers with unique geometries are being developed, it is critical to explore new potential modes for kinetic optimization. For example, the freestyle stroke is the most efficient of the competitive swimming strokes for humans. Here we report a new type of magnetic nanorobot, a symmetric multilinked two-arm nanoswimmer, capable of efficient "freestyle" swimming at low Reynolds numbers. Excellent agreement between the experimental observations and theoretical predictions indicates that the powerful "freestyle" propulsion of the two-arm nanorobot is attributed to synchronized oscillatory deformations of the nanorobot under the combined action of magnetic field and viscous forces. It is demonstrated for the first time that the nonplanar propulsion gait due to the cooperative "freestyle" stroke of the two magnetic arms can be powered by a plane oscillatory magnetic field. These two-arm nanorobots are capable of a powerful propulsion up to 12 body lengths per second, along with on-demand speed regulation and remote navigation. Furthermore, the nonplanar propulsion gait powered by the consecutive swinging of the achiral magnetic arms is more efficient than that of common chiral nanohelical swimmers. This new swimming mechanism and its attractive performance opens new possibilities in designing remotely actuated nanorobots for biomedical operation at the nanoscale.

  13. Strategic interaction among hospitals and nursing facilities: the efficiency effects of payment systems and vertical integration.

    PubMed

    Banks, D; Parker, E; Wendel, J

    2001-03-01

    Rising post-acute care expenditures for Medicare transfer patients and increasing vertical integration between hospitals and nursing facilities raise questions about the links between payment system structure, the incentive for vertical integration and the impact on efficiency. In the United States, policy-makers are responding to these concerns by initiating prospective payments to nursing facilities, and are exploring the bundling of payments to hospitals. This paper develops a static profit-maximization model of the strategic interaction between the transferring hospital and a receiving nursing facility. This model suggests that the post-1984 system of prospective payment for hospital care, coupled with nursing facility payments that reimburse for services performed, induces inefficient under-provision of hospital services and encourages vertical integration. It further indicates that the extension of prospective payment to nursing facilities will not eliminate the incentive to vertically integrate, and will not result in efficient production unless such integration takes place. Bundling prospective payments for hospitals and nursing facilities will neither remove the incentive for vertical integration nor induce production efficiency without such vertical integration. However, bundled payment will induce efficient production, with or without vertical integration, if nursing facilities are reimbursed for services performed. Copyright 2001 John Wiley & Sons, Ltd.

  14. Energy-Efficiency & Water Institute Research Facility, Purdue University, (IN)

    SciTech Connect

    Nnanna, Agbai

    2015-01-30

    The renovation of the Schneider Avenue Building to construct two research laboratories within the building is complete. The research laboratories are for the Purdue Calumet Water Institute and the Energy Efficiency and Reliability Center. The Water Institute occupies approximately 1000+ SF of research space plus supporting offices. The Energy-Efficiency Center occupies approximately 1000+ SF that houses the research space. The labs will enhance the Water & Energy Institute’s research capabilities necessary to tackle these issues through the development of practical approaches critical to local government and industry. The addition of these research laboratories to the Purdue University Calumet campus is in both direct support of the University’s Strategic Plan as well as the 2008 Campus Master Plan that identifies a 20% shortage of research space.

  15. Facile synthesis of efficient visible active C-doped TiO{sub 2} nanomaterials with high surface area for the simultaneous removal of phenol and Cr(VI)

    SciTech Connect

    Mani, A.Daya; Reddy, P.Manoj Kumar; Srinivaas, M.; Ghosal, P.; Xanthopoulos, N.; Subrahmanyam, Ch.

    2015-01-15

    Highlights: • Facile synthesis of C-doped TiO{sub 2} nanomaterials with high surface area. • Utilization of citric acid and ascorbic acid as fuels based on evolution of gases. • Enhanced visible activity for the oxidation of phenol and reduction of Cr(VI). • Study of simultaneous oxidation of phenol and reduction of Cr(VI) for the first time. • Proposed plausible mechanism for the simultaneous removal of phenol and Cr(VI). - Abstract: A single step synthesis of carbon doped TiO{sub 2} (anatase) nanomaterials have been reported by using combustion synthesis using ascorbic acid and citric acid fuels. X-ray diffraction studies indicated the formation of nanosized anatase titania, whereas, transmission electron microscopy confirmed the formation of nanosized TiO{sub 2} anatase. The carbon doping into TiO{sub 2} matrix was identified by X-ray photoelectron spectroscopy, whereas, thermogravimetric study quantified the carbon doping. Diffuse reflectance UV–vis spectra indicated the band gap of less than 3 eV, a prerequisite for the photocatalytic activity under visible light irradiation. The N{sub 2} adsorption studies revealed the high surface area (upto 290 m{sup 2}/g) of the synthesized photocatalysts. Typical photocatalytic activity data indicated that the simultaneous removal of Cr(VI) and phenol is advantageous than degradation of the individual pollutants.

  16. High-efficiency solar concentrator

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Dorman, J.

    1976-01-01

    A new type of solar concentrator is presented using liquid lenses and simple translational tracking mechanism. The concentrator achieves a 100:1 nominal concentration ratio and is compared in performance with a flat-plate collector having two sheets of glazing and non-selective coating. The results of the thermal analysis show that higher temperatures can be obtained with the concentrator than is possible with the non-concentrator flat-plate type. Furthermore, the thermal efficiency far exceeds that of the comparative flat-plate type for all operating conditions.

  17. High-efficiency solar concentrator

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Dorman, J.

    1980-01-01

    A new type of solar concentrator is presented using liquid lenses and simple translational tracking mechanism. The concentrator achieves a 100:1 nominal concentration ratio and is compared in performance with a flat-plate collector having two sheets of glazing and non-selective coating. The results of the thermal analysis show that higher temperatures can be obtained with the concentrator than is possible with the non-concentrator flat-plate type. Furthermore, the thermal efficiency far exceeds that of the comparative flat-plate type for all operating conditions.

  18. High efficiency thermionic converter studies

    NASA Technical Reports Server (NTRS)

    Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, T. R.; Lieb, D.; Oettinger, P. E.; Goodale, D. B.

    1977-01-01

    Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion.

  19. High School Educational Specifications: Facilities Planning Standards. Edition I.

    ERIC Educational Resources Information Center

    Jefferson County School District R-1, Denver, CO.

    The Jefferson County School District (Colorado) has developed a manual of high school specifications for Design Advisory Groups and consultants to use for planning and designing the district's high school facilities. The specifications are provided to help build facilities that best meet the educational needs of the students to be served.…

  20. Competitively priced hydrogen via high-efficiency nuclear electrolysis

    NASA Technical Reports Server (NTRS)

    Escher, W. J. D.; Donakowski, T. D.

    1977-01-01

    A fully dedicated nuclear-electrolytic hydrogen-production facility, based on advanced (1985) technology, has been synthesized and assessed at the conceptual level. The facility integrates an HTGR operating a binary shaftpower-extraction cycle at 980 C top temperature, direct dc electricity generation via acyclic generators, and high-current density high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced. Pipeline-pressure hydrogen and coproduct oxygen are produced at 6900 kPa. On consistent costing bases, the advanced facility concept was found to provide hydrogen costs that were approximately half those associated with conventional, contemporary-technology nuclear electrolysis. The nuclear heat-to-hydrogen energy conversion efficiency for the advanced system was estimated as 43%, against 25% for the baseline present-day approach.

  1. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    SciTech Connect

    Drewmark Communications; Sartor, Dale; Wilson, Mark

    2010-07-01

    High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

  2. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    Recent progress in the development of highly efficient coherent optical sources was reviewed. This work has focused on nonlinear frequency conversion of the highly coherent output of the non-planar ring laser oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  3. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    Recent progress in the development of highly efficient coherent optical sources is reviewed. This work focusses on nonlinear frequency conversion of the highly coherent output of the Non-Planar Ring Laser Oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  4. Energy Efficient Florida Educational Facilities: Phase VI. Progress Report: Phase I and II.

    ERIC Educational Resources Information Center

    Callahan, Michael P.; Parker, Danny S.

    A Florida study examined differences in energy uses in two adjacent portable classrooms to determine if these types of facilities can be made more energy efficient through retrofitting. Retrofitting included an efficient lighting system, new air conditioners, and reflective white metal roofs. Data show the white metal roofing reduced roof,…

  5. Research Support Facility - A Model of Super Efficiency (RSF) (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    This fact sheet published by the National Renewable Energy Laboratory discusses the lab's newest building, the Research Support Facility (RSF). The RSF is a showcase for ultra-efficient workplaces. Various renewable energy and energy efficiency features have been employed so that the building achieves a Leadership in Energy and Environmental Design (LEED) Platinum rating from the U.S. Green Building Council.

  6. Energy efficiency in U.S. Forest Service facilities: a multiregion review

    Treesearch

    Rachelle S. Meyer; David L. Nicholls; Trista M. Patterson; Rachel E. White

    2013-01-01

    We reviewed energy efficiency measures in facilities across the U.S. Department of Agriculture Forest Service, examining opportunities and obstacles, and identifying factors of project success. The adoption of energy efficiency measures at Forest Service sites was seen to be most likely when decision control was local to the site and when budget timing and structures...

  7. A facile and high-yield formation of dipyrrin-boronic acid dyads and triads: a light-harvesting system in the visible region based on the efficient energy transfer.

    PubMed

    Yamamura, Masaki; Yazaki, Shinya; Seki, Motofumi; Matsui, Yasunori; Ikeda, Hiroshi; Nabeshima, Tatsuya

    2015-03-07

    Artificial light-harvesting systems, Ar,O-BODIPY dyads and triads conjugated with a light harvester, were synthesized in high yield by the reaction of an N2O2-type dipyrrin with boronic acids. Dyad 2 having a pyrene unit underwent quantitative Förster resonance energy transfer (FRET) from the antenna unit, pyrene, to the fluorophore unit, Ar,O-BODIPY. Triads 3·5 and 4·5 were quantitatively prepared by mixing pyridine-appended compounds 3 and 4 with saloph·Zn complex 5, respectively. Triad 4·5 underwent efficient FRET from the saloph·Zn complex unit to the fluorophore unit at the rate of 2.0 × 10(11) s(-1). Interestingly, the fluorescence quenching process in the excited state of the triad 3·5 took place following the energy transfer event. Thus, appropriate positioning of the energy donor and acceptor is necessary to construct a highly efficient FRET system.

  8. Design issues for a laboratory high gain fusion facility

    SciTech Connect

    Hogan, W.J.

    1987-11-02

    In an inertial fusion laboratory high gain facility, experiments will be carried out with up to 1000 MJ of thermonuclear yield. The experiment area of such a facility will include many systems and structures that will have to operate successfully in the difficult environment created by the sudden large energy release. This paper estimates many of the nuclear effects that will occur, discusses the implied design issues and suggests possible solutions so that a useful experimental facility can be built. 4 figs.

  9. Efficient high density train operations

    DOEpatents

    Gordon, Susanna P.; Evans, John A.

    2001-01-01

    The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

  10. High Efficiency Thermoelectric Generator: Integration

    DTIC Science & Technology

    2011-02-25

    included: − material barriers such as thermal blankets, glass bubbles and aerogels , − encapsulation with high molecular weight gases (e.g. Xenon... aerogels impregnated with radiation scattering particles (investigated at the thermoelectric group in the NASA Jet Propulsion Laboratory). Thrust

  11. Occupational Safety Review of High Technology Facilities

    SciTech Connect

    Lee Cadwallader

    2005-01-31

    This report contains reviews of operating experiences, selected accident events, and industrial safety performance indicators that document the performance of the major US DOE magnetic fusion experiments and particle accelerators. These data are useful to form a basis for the occupational safety level at matured research facilities with known sets of safety rules and regulations. Some of the issues discussed are radiation safety, electromagnetic energy exposure events, and some of the more widespread issues of working at height, equipment fires, confined space work, electrical work, and other industrial hazards. Nuclear power plant industrial safety data are also included for comparison.

  12. Orion: a high contrast user facility

    NASA Astrophysics Data System (ADS)

    Hillier, D. I.; Danson, C. N.; Duffield, S. J.; Egan, D. A.; Elsmere, S. P.; Girling, M. T.; Harvey, E. J.; Hopps, N. W.; Norman, M. J.; Parker, S. J. F.; Treadwell, P. T.; Winter, D. N.; Bett, T. H.

    2016-03-01

    The Orion facility consists of two synchronized laser systems: two CPA (Chirped Pulse Amplification) beamlines each deliver 500J to target in a 0.5ps pulse (1PW) at 1054nm; and ten long pulse beamlines each deliver 500J in 0.1-5ns temporally shaped pulse at 351nm. One of the CPA beamlines has the option to be frequency doubled at sub-aperture to produce 100J laser pulses with a nanosecond contrast of ∼ 1014. Further work is under way to enhance the contrast of both CPA beamlines in the first harmonic.

  13. Modular High Current Test Facility at LLNL

    SciTech Connect

    Tully, L K; Goerz, D A; Speer, R D; Ferriera, T J

    2008-05-20

    This paper describes the 1 MA, 225 kJ test facility in operation at Lawrence Livermore National Laboratory (LLNL). The capacitor bank is constructed from three parallel 1.5 mF modules. The modules are capable of switching simultaneously or sequentially via solid dielectric puncture switches. The bank nominally operates up to 10 kV and reaches peak current with all three cabled modules in approximately 30 {micro}s. Parallel output plates from the bank allow for cable or busbar interfacing to the load. This versatile bank is currently in use for code validation experiments, railgun related activities, switch testing, and diagnostic development.

  14. High efficiency solar photovoltaic power module concept

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1978-01-01

    The investigation of a preliminary concept for high efficiency solar power generation in space is presented. The concept was a synergistic combination of spectral splitting, tailored bandgap cells, high concentration ratios, and cool cell areas.

  15. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2015-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  16. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N (Inventor); Wintucky, Edwin G (Inventor)

    2013-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  17. High current metal ion implantation facility

    SciTech Connect

    Oztarhan, A.; Brown, I.G.; Evans, P.; Watt, G.; Bakkaloglu, C.; Eltas, A.S.; Oks, E.

    1998-12-31

    A vacuum arc ion source based metal ion implantation facility has been established at Dokuz Eylul University, Izmir, Turkey and a surface modification research and development program is underway. The system is similar to the one in Lawrence Berkeley Laboratory which was first built and developed by Brown et al. The broad-beam ion source is repetitively pulsed at rates up to {approximately}10 pulses per second (can be increased to 50 pulses per second) and the extracted ion beam current can be up to {approximately}1 Amp. peak or {approximately}10 mA time averaged. The ion source extraction voltage was increased to 60 kV corresponding to mean beam energies of up to 150 keV or more because of the ion charge state multiplicity (extraction voltage can be increased to 100 kV if desired). Commissioning of the facility is in progress. Initial emphasis of the R and D programs that will be carried out will be in forming tribologically enhanced materials for industrial applications. In this paper they describe the design and operation of the implanter, summarize the preliminary performance parameters that have been obtained, and outline some of the programs they anticipate doing.

  18. High power transportable VLF transmitter facility

    NASA Astrophysics Data System (ADS)

    Dazey, M. H.; Koons, H. C.

    1982-05-01

    A 100-kW, transportable, very-low-frequency (TVLF) transmitter facility has been used for magnetospheric wave-injection experiments from sites in Alaska, New Zealand and Norway. A unique feature of the TVLF facility is the antenna which is a conducting cable lofted to an altitude of 1000 m by a 1000 cu m3 helium balloon. The antenna is driven at its base as a monopole above a ground plane. The antenna cable also serves as the balloon tether. The lowest operating frequency in this configuration is 6.6 kHz at which the radiated power is 100 W. At the highest operating frequency used in the experiments, 21 kHz, the radiated power is 10 kW. In Norway power lines were used as antennas. The minimum operating frequency was then 1 kHz and the radiated power is estimated to be about 0.5 W. In this report we describe the components and performance of the TVLF as used for these magnetospheric experiments.

  19. Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting.

    PubMed

    Feng, Xiaoyang; Chen, Yubin; Qin, Zhixiao; Wang, Menglong; Guo, Liejin

    2016-07-20

    Herein, sandwich structured tungsten trioxide (WO3) nanoplate arrays were first synthesized for photoelectrochemical (PEC) water splitting via a facile hydrothermal method followed by an annealing treatment. It was demonstrated that the annealing temperature played an important role in determining the morphology and crystal phase of the WO3 film. Only when the hydrothermally prepared precursor was annealed at 500 °C could the sandwich structured WO3 nanoplates be achieved, probably due to the crystalline phase transition and increased thermal stress during the annealing process. The sandwich structured WO3 photoanode exhibited a photocurrent density of 1.88 mA cm(-2) and an incident photon-to-current conversion efficiency (IPCE) as high as 65% at 400 nm in neutral Na2SO4 solution under AM 1.5G illumination. To our knowledge, this value is one of the best PEC performances for WO3 photoanodes. Meanwhile, simultaneous hydrogen and oxygen evolution was demonstrated for the PEC water splitting. It was concluded that the high PEC performance should be attributed to the large electrochemically active surface area and active monoclinic phase. The present study can provide guidance to develop highly efficient nanostructured photoelectrodes with the favorable morphology.

  20. High Efficiency Microwave Power Amplifier (HEMPA) Design

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert

    2004-01-01

    This paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  1. Multicolor, High Efficiency, Nanotextured LEDs

    SciTech Connect

    Jung Han; Arto Nurmikko

    2011-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and green for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) heteroepitaxy of nitrogen-polar LEDs on sapphire, (ii) heteroepitaxy of semipolar (11{bar 2}2) green LEDs on sapphire, (iii) synthesis of quantum-dot loaded nanoporous GaN that emits white light without phosphor conversion, (iv) demonstration of the highest quality semipolar (11{bar 2}2) GaN on sapphire using orientation-controlled epitaxy, (v) synthesis of nanoscale GaN and InGaN medium, and (vi) development of a novel liftoff process for manufacturing GaN thin-film vertical LEDs. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  2. High efficiency fuel cell/advanced turbine power cycles

    SciTech Connect

    Morehead, H.

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  3. Green Schools as High Performance Learning Facilities

    ERIC Educational Resources Information Center

    Gordon, Douglas E.

    2010-01-01

    In practice, a green school is the physical result of a consensus process of planning, design, and construction that takes into account a building's performance over its entire 50- to 60-year life cycle. The main focus of the process is to reinforce optimal learning, a goal very much in keeping with the parallel goals of resource efficiency and…

  4. High-Efficiency Autonomous Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Gatt, Philip; Henderson, Sammy W.; Hannon, Stephen M.

    1999-01-01

    A useful measure of sensor performance is the transceiver system efficiency n (sub sys). Which consists of the antenna efficiency n (sub a) and optical and electronic losses. Typically, the lidar equation and the antenna efficiency are defined in terms of the telescope aperture area. However, during the assembly of a coherent transceiver, it is important to measure the system efficiency before the installation of the beamexpanding telescope (i.e., the untruncated-beam system efficiency). Therefore, to accommodate both truncated and untruncated beam efficiency measurements, we define the lidar equation and the antenna efficiency in terms of the beam area rather than the commonly used aperture area referenced definition. With a well-designed Gaussian-beam lidar, aperture area referenced system efficiencies of 15 to 20 % (23-31% relative to the beam area) are readily achievable. In this paper we compare the differences between these efficiency definitions. We then describe techniques by which high efficiency can be achieved, followed by a discussion several novel auto alignment techniques developed to maintain high efficiency.

  5. High resolution spectrograph for the 4MOST facility

    NASA Astrophysics Data System (ADS)

    Mignot, Shan; Amans, Jean-Philippe; Cohen, Mathieu; Horville, David; Jagourel, Pascal

    2012-09-01

    4MOST (4-metre Multi-Object Spectrograph Telescope) is a wide field and high multiplex fibre-fed spectroscopic facility continuously running a public survey on one of ESO's 4-metre telescopes (NTT or VISTA). It is currently undergoing a concept study and comprises a multi-object (300) high resolution (20 000) spectrograph whose purpose is to provide detailed chemical information in two wavelength ranges (395-456.5 nm and 587-673 nm). It will complement the data produced by ESA's space mission Gaia to form an unprecedented galactic-archaeology picture of the Milky Way as the result of the public survey. Building on the developments carried out for the GYES1 instrument on the Canada- France-Hawaii Telescope in 2010, the spectrograph is intended as being athermal and not featuring any motorised parts for high reliability and minimum maintenance, thereby allowing it to operate every night for five years. In addition to the fixed configuration which allows fine-tuning the spectrograph to a precise need, it features a dual-arm architecture with volume-phase holographic gratings to achieve the required dispersion at a maximum efficiency in each channel. By combining high yield time-wise and photon-wise, the spectrograph is expected to deliver more than a million spectra and make the most out of the selected 4-metre telescope.

  6. EDITORIAL: A Survey of Facilities for High-Temperature, High-Pressure Fluids Experiments

    NASA Astrophysics Data System (ADS)

    Argrow, Brian M.

    2005-09-01

    facilities developed for aero/fluid dynamic systems that range from high-Reynolds number facilities that employ high-pressure water and dense gases, to shock tubes for chemical kinetics and high-enthalpy flows, to a low-pressure shock tube for instrument calibration. The authors in this issue were asked to present new results that highlight some of the unique features of their test facilities that both explore and exploit the physical and thermodynamic properties of fluids. I thank the authors for their response to this call, and on their behalf I offer my sincere thanks to the editorial staff of Measurement Science and Technology for their extremely efficient and professional support in assembling this special feature. I also extend a personal thanks to Professor John Foss for first suggesting this special feature and for his support while it was assembled.

  7. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    NASA Technical Reports Server (NTRS)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2014-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were

  8. Facile synthesis of efficient photocatalytic tantalum nitride nanoparticles

    SciTech Connect

    Wang, Zheng; Wang, Jiangting; Hou, Jungang; Huang, Kai; Jiao, Shuqiang; Zhu, Hongmin

    2012-11-15

    Graphical abstract: Tantalum nitride nanoparticles as a visible-light-driven photocatalyst prepared by a novel homogeneously chemical reduction of tantalum pentachloride using sodium in liquid ammonia and the morphologies, visible-light photocatalytic properties and stability of tantalum nitride nanoparticles were investigated. Highlights: ► Tantalum nitride nanoparticles have been prepared by a homogeneously chemical reduction. ► The crystal structure of tantalum nitride was determined by Rietveld refinement and XRD patterns. ► The Tantalum nitride nanoparticle size was in the range of 20–50 nm. ► Much high photocatalytic activities of Ta{sub 3}N{sub 5} nanoparticles were obtained under visible-light irradiation. -- Abstract: Tantalum nitride nanoparticles, as visible-light photocatalysts were synthesized by a two-step homogeneously chemical reduction without any polymers and templates. The well-crystallized Ta{sub 3}N{sub 5} nanoparticles with a range of 20–50 nm in size have been characterized by a number of techniques, such as XRD, XPS, SEM, TEM, BET and UV–Vis spectrum. Most importantly, the Ta{sub 3}N{sub 5} nanoparticles with good stability exhibited higher photooxidation activities in the water splitting and degradation of methylene blue under visible light irradiation than bulk Ta{sub 3}N{sub 5} particles and commercial P25 TiO{sub 2}, demonstrating that Ta{sub 3}N{sub 5} nanoparticle is a promising candidate as a visible-light photocatalyst.

  9. High Efficiency Lithium-Thionyl Chloride Cell.

    DTIC Science & Technology

    1982-04-01

    AD-Al14 672 HONEYWELL POWER SOURCES CENTER HORSHAM PA F/S 10/3 HIGH EFFICIENCY LITHIUM - THIONYL CHLORIDE CELLo(U) APR 82 N DODDAPANEN! OAAK20-81-C...CHART NATIONAl BUREAU OF STANDARDS 1963 A Research and Development Technical Report DELET-TR-81-0381-3 HIGH EFFICIENCY LITHIUM - THIONYL CHLORIDE CELL...reverse aide it necessary and Identify by block number) Thionyl chloride , lithium , high discharge rates, low temperatures, catalysis, cyclic

  10. Highly-efficient high-power pumps for fiber lasers

    NASA Astrophysics Data System (ADS)

    Gapontsev, V.; Moshegov, N.; Berezin, I.; Komissarov, A.; Trubenko, P.; Miftakhutdinov, D.; Berishev, I.; Chuyanov, V.; Raisky, O.; Ovtchinnikov, A.

    2017-02-01

    We report on high efficiency multimode pumps that enable ultra-high efficiency high power ECO Fiber Lasers. We discuss chip and packaged pump design and performance. Peak out-of-fiber power efficiency of ECO Fiber Laser pumps was reported to be as high as 68% and was achieved with passive cooling. For applications that do not require Fiber Lasers with ultimate power efficiency, we have developed passively cooled pumps with out-of-fiber power efficiency greater than 50%, maintained at operating current up to 22A. We report on approaches to diode chip and packaged pump design that possess such performance.

  11. High-speed seal and bearing test facility

    NASA Technical Reports Server (NTRS)

    Panos, Jean B.

    1994-01-01

    The following topics are discussed in this viewgraph presentation: high speed seal/bearing rig background, project status, facility features, test rig capabilities, EMD testing advantages, and future opportunities.

  12. The Jefferson Lab High Power THz User Facility

    SciTech Connect

    John Klopf; Amelia Greer; Joseph Gubeli; George Neil; Michelle D. Shinn; Timothy Siggins; David W. Waldman; Gwyn Williams; Alan Todd; Vincent Christina; Oleg Chubar

    2007-04-27

    We describe here, a high power (100 Watt average, 10 MW peak) broadband THz facility based on emission from sub-picosecond bunches of relativistic electrons and the beam transport system that delivers this beam in to a user laboratory.

  13. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    SciTech Connect

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  14. The potential to expand antiretroviral therapy by improving health facility efficiency: evidence from Kenya, Uganda, and Zambia.

    PubMed

    Di Giorgio, Laura; Moses, Mark W; Fullman, Nancy; Wollum, Alexandra; Conner, Ruben O; Achan, Jane; Achoki, Tom; Bannon, Kelsey A; Burstein, Roy; Dansereau, Emily; DeCenso, Brendan; Delwiche, Kristen; Duber, Herbert C; Gakidou, Emmanuela; Gasasira, Anne; Haakenstad, Annie; Hanlon, Michael; Ikilezi, Gloria; Kisia, Caroline; Levine, Aubrey J; Maboshe, Mashekwa; Masiye, Felix; Masters, Samuel H; Mphuka, Chrispin; Njuguna, Pamela; Odeny, Thomas A; Okiro, Emelda A; Roberts, D Allen; Murray, Christopher J L; Flaxman, Abraham D

    2016-07-20

    Since 2000, international funding for HIV has supported scaling up antiretroviral therapy (ART) in sub-Saharan Africa. However, such funding has stagnated for years, threatening the sustainability and reach of ART programs amid efforts to achieve universal treatment. Improving health system efficiencies, particularly at the facility level, is an increasingly critical avenue for extending limited resources for ART; nevertheless, the potential impact of increased facility efficiency on ART capacity remains largely unknown. Through the present study, we sought to quantify facility-level technical efficiency across countries, assess potential determinants of efficiency, and predict the potential for additional ART expansion. Using nationally-representative facility datasets from Kenya, Uganda and Zambia, and measures adjusting for structural quality, we estimated facility-level technical efficiency using an ensemble approach that combined restricted versions of Data Envelopment Analysis and Stochastic Distance Function. We then conducted a series of bivariate and multivariate regression analyses to evaluate possible determinants of higher or lower technical efficiency. Finally, we predicted the potential for ART expansion across efficiency improvement scenarios, estimating how many additional ART visits could be accommodated if facilities with low efficiency thresholds reached those levels of efficiency. In each country, national averages of efficiency fell below 50 % and facility-level efficiency markedly varied. Among facilities providing ART, average efficiency scores spanned from 50 % (95 % uncertainty interval (UI), 48-62 %) in Uganda to 59 % (95 % UI, 53-67 %) in Zambia. Of the facility determinants analyzed, few were consistently associated with higher or lower technical efficiency scores, suggesting that other factors may be more strongly related to facility-level efficiency. Based on observed facility resources and an efficiency improvement scenario

  15. Very High Efficiency Solar Cell Modules

    SciTech Connect

    Barnett, A.; Kirkpatrick, D.; Honsberg, C.; Moore, D.; Wanlass, M.; Emery, K.; Schwartz, R.; Carlson, D.; Bowden, S.; Aiken, D.; Gray, A.; Kurtz, S.; Kazmerski, L., et al

    2009-01-01

    The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system - PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42.7 {+-} 2.5% are described.

  16. Biosecurity measures in 48 isolation facilities managing highly infectious diseases.

    PubMed

    Puro, Vincenzo; Fusco, Francesco M; Schilling, Stefan; Thomson, Gail; De Iaco, Giuseppina; Brouqui, Philippe; Maltezou, Helena C; Bannister, Barbara; Gottschalk, René; Brodt, Hans-Rheinhard; Ippolito, Giuseppe

    2012-06-01

    Biosecurity measures are traditionally applied to laboratories, but they may also be usefully applied in highly specialized clinical settings, such as the isolation facilities for the management of patients with highly infectious diseases (eg, viral hemorrhagic fevers, SARS, smallpox, potentially severe pandemic flu, and MDR- and XDR-tuberculosis). In 2009 the European Network for Highly Infectious Diseases conducted a survey in 48 isolation facilities in 16 European countries to determine biosecurity measures for access control to the facility. Security personnel are present in 39 facilities (81%). In 35 facilities (73%), entrance to the isolation area is restricted; control methods include electronic keys, a PIN system, closed-circuit TV, and guards at the doors. In 25 facilities (52%), identification and registration of all staff entering and exiting the isolation area are required. Access control is used in most surveyed centers, but specific lacks exist in some facilities. Further data are needed to assess other biosecurity aspects, such as the security measures during the transportation of potentially contaminated materials and measures to address the risk of an "insider attack."

  17. Biosecurity Measures in 48 Isolation Facilities Managing Highly Infectious Diseases

    PubMed Central

    Puro, Vincenzo; Schilling, Stefan; Thomson, Gail; De Iaco, Giuseppina; Brouqui, Philippe; Maltezou, Helena C.; Bannister, Barbara; Gottschalk, René; Brodt, Hans-Rheinhard; Ippolito, Giuseppe

    2012-01-01

    Biosecurity measures are traditionally applied to laboratories, but they may also be usefully applied in highly specialized clinical settings, such as the isolation facilities for the management of patients with highly infectious diseases (eg, viral hemorrhagic fevers, SARS, smallpox, potentially severe pandemic flu, and MDR- and XDR-tuberculosis). In 2009 the European Network for Highly Infectious Diseases conducted a survey in 48 isolation facilities in 16 European countries to determine biosecurity measures for access control to the facility. Security personnel are present in 39 facilities (81%). In 35 facilities (73%), entrance to the isolation area is restricted; control methods include electronic keys, a PIN system, closed-circuit TV, and guards at the doors. In 25 facilities (52%), identification and registration of all staff entering and exiting the isolation area are required. Access control is used in most surveyed centers, but specific lacks exist in some facilities. Further data are needed to assess other biosecurity aspects, such as the security measures during the transportation of potentially contaminated materials and measures to address the risk of an “insider attack.” PMID:22571373

  18. Facile fabrication of large-grain CH3NH3PbI3-xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening

    SciTech Connect

    Yang, Mengjin; Zhang, Taiyang; Schulz, Philip; Li, Zhen; Li, Ge; Kim, Dong Hoe; Guo, Nanjie; Berry, Joseph J.; Zhu, Kai; Zhao, Yixin

    2016-08-01

    Organometallic halide perovskite solar cells (PSCs) have shown great promise as a low-cost, high-efficiency photovoltaic technology. Structural and electro-optical properties of the perovskite absorber layer are most critical to device operation characteristics. Here we present a facile fabrication of high-efficiency PSCs based on compact, large-grain, pinhole-free CH3NH3PbI3-xBrx (MAPbI3-xBrx) thin films with high reproducibility. A simple methylammonium bromide (MABr) treatment via spin-coating with a proper MABr concentration converts MAPbI3 thin films with different initial film qualities (for example, grain size and pinholes) to high-quality MAPbI3-xBrx thin films following an Ostwald ripening process, which is strongly affected by MABr concentration and is ineffective when replacing MABr with methylammonium iodide. A higher MABr concentration enhances I-Br anion exchange reaction, yielding poorer device performance. Lastly, this MABr-selective Ostwald ripening process improves cell efficiency but also enhances device stability and thus represents a simple, promising strategy for further improving PSC performance with higher reproducibility and reliability.

  19. High efficiency flat plate solar energy collector

    SciTech Connect

    Butler, R. F.

    1985-04-30

    A concentrating flat plate collector for the high efficiency collection of solar energy. Through an arrangement of reflector elements, incoming solar radiation, either directly or after reflection from the reflector elements, impinges upon both surfaces of a collector element.

  20. Multi Band Gap High Efficiency Converter (RAINBOW)

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Lewis, C.; Phillips, W.; Shields, V.; Stella, P.

    1997-01-01

    The RAINBOW multi band gap system represents a unique combination of solar cells, concentrators and beam splitters. RAINBOW is a flexible system which can readily expand as new high efficiency components are developed.

  1. Junior High Gets Energy Efficient VAV System

    ERIC Educational Resources Information Center

    Modern Schools, 1977

    1977-01-01

    Minnesota's Isanti Junior High, designed with an energy efficient variable air volume system, is an innovative school selected for display at the 1977 Exhibition of School Architecture in Las Vegas. (Author/MLF)

  2. High-efficiency silicon solar cell research

    NASA Technical Reports Server (NTRS)

    Daud, T.

    1984-01-01

    Progress reports on research in high-efficiency silicon solar cells were presented by eight contractors and JPL. The presentations covered the issues of Bulk and Surface Loss, Modeling, Measurements, and Proof of Concept.

  3. High efficiency quantum cascade laser frequency comb

    PubMed Central

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-01-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. PMID:28262834

  4. High efficiency quantum cascade laser frequency comb

    NASA Astrophysics Data System (ADS)

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-03-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm‑1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.

  5. High efficiency quantum cascade laser frequency comb.

    PubMed

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-03-06

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm(-1) at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.

  6. Important loss mechanisms in high-efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1984-01-01

    A study was conducted to identify loss mechanisms in high efficiency silicon solar cells. The following were considered: (1) recombination loss mechanisms; (2) high efficiency cells; (3) very high efficiency cells; and (4) ultra high efficiency cells.

  7. High-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Green, M. A.; Blakers, A. W.; Shi, J.; Keller, E. M.; Wenham, S. R.

    1984-01-01

    Silicon solar cells are described which operate at energy conversion efficiencies independently measured at 18.7 percent under standard terrestrial test conditions (AM1.5, 100 mW/sq cm, 28 C). These are apparently the most efficient silicon cells fabricated to date. The high-efficiency results from a combination of high open-circuit voltage due to the careful attention paid to the passivation of the top surface of the cell, high fill factor due to the high open-circuit voltage and low parasitic resistance losses, and high short-circuit current density due to the use of shallow diffusions, a low grid coverage, and an optimized double layer antireflection coating.

  8. Development project of high-field facilities at NRIM

    NASA Astrophysics Data System (ADS)

    Inoue, K.; Kiyoshi, T.; Asano, T.; Itoh, K.; Takeuchi, T.; Wada, H.; Maeda, H.

    1990-06-01

    Several high field facilities are now being developed at the National Research Institute for Metals. The systems of a 80 T class long-pulsed magnet and a 20 T class large-bore superconducting magnet are under construction. The primary design of a 40 T class hybrid magnet with relevant facilities has been worked out as a result of the first stage research and development study.

  9. A High Count Rate Neutron Beam Monitor for Neutron Scattering Facilities

    SciTech Connect

    Barnett, Amanda; Crow, Lowell; Diawara, Yacouba; Hayward, J P; Hayward, Jason P; Menhard, Kocsis; Sedov, Vladislav N; Funk, Loren L

    2013-01-01

    Abstract Beam monitors are an important diagnostic tool in neutron science facilities. Present beam monitors use either ionization chambers in integration mode, which are slow and have no timing information, or pulse counters which can easily be saturated by high beam intensities. At high flux neutron scattering facilities, neutron beam monitors with very low intrinsic efficiency (10-5) are presently selected to keep the counting rate within a feasible range, even when a higher efficiency would improve the counting statistics and yield a better measurement of the incident beam. In this work, we report on a high count rate neutron beam monitor. This beam monitor offers good timing with an intrinsic efficiency of 10-3 and a counting rate capability of over 1,000,000 cps without saturation.

  10. High efficiency pump for space helium transfer

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael G.; Swift, Walter L.; Sixsmith, Herbert

    1991-01-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space.

  11. Microfluidic chip for high efficiency DNA extraction.

    PubMed

    Chung, Yung-Chiang; Jan, Ming-Shiung; Lin, Yu-Cheng; Lin, Ju-Hwa; Cheng, Wang-Chin; Fan, Chia-Yu

    2004-04-01

    A high efficiency DNA extraction microchip was designed to extract DNA from lysed cells using immobilized beads and the solution flowing back and forth. This chip was able to increase the extraction efficiency by 2-fold when there was no serum. When serum existed in the solution, the extraction efficiency of immobilized beads was 88-fold higher than that of free beads. The extraction efficiency of the microchip was tested under different conditions and numbers of E. coli cells. When the number of E. coli cells was between 10(6) and 10(8) in 25 microl of whole blood, the extraction efficiency using immobilized beads was only slightly higher than that using free beads (10(0) to 10(1) fold). When the number of E. coli cells was in the range 10(4) to 10(6) in 25 microl of whole blood, the extraction efficiency of immobilized beads was greater than that of the free beads (10(1) to 10(2) fold). When the number of E. coli cells was lower, in the range 10(3) to 10(4) in 25 microl of whole blood, the extraction efficiency of immobilized beads was much higher than that of the free beads (10(2) to 10(3) fold). This study indicated that DNA could be efficiently extracted even when the number of bacterial cells was smaller (10(5) to 10(3)). This microfluidic extraction chip could find potential applications in rare sample genomic study.

  12. The future of high efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Fan, J. C. C.

    1984-01-01

    Research approaches to obtain solar cell modules with 1 sun efficiencies of 20-30 percent at air mass 1 are now well understood. Such high efficiency modules should become available in the near future. It can be expected that these modules will be extensively used in terrestrial power generation, space power generation, and consumer electronics. To achieve practical module efficiencies significantly above 30 percent, it will be necessary to employ concepts other than spectral splitting, such as spectral compression and broad band detection. A major breakthrough in these areas is not anticipated at this time.

  13. High efficiency wraparound contact solar cells /HEWACS/

    NASA Technical Reports Server (NTRS)

    Gillanders, M.; Opjorden, R.

    1980-01-01

    A cell technology, producing high efficiency wrap-around contact solar cells (HEWACS), with both electrical contacts on the back and AMO conversion efficiencies of almost 15%, is presented. A flow chart indicating the baseline process sequence along with the process changes is given. Tests checking for coating delamination and contact integrity, those measuring contact strength, and thermal cycle tests, successfully demonstrated that this cell technology is ready to be moved to the pilot production stage.

  14. Efficient synthesis of highly substituted tetrahydroindazolone derivatives.

    PubMed

    Scala, Angela; Piperno, Anna; Risitano, Francesco; Cirmi, Santa; Navarra, Michele; Grassi, Giovanni

    2015-08-01

    A straightforward and efficient method for the synthesis of novel highly substituted and diversely functionalized indazolone derivatives has been developed. The transformation consists of a cyclocondensation of selected 1,3,3'-tricarbonyls with monosubstituted hydrazines. The starting β-triketones were prepared by an efficient chemo- and regioselective method under MW irradiation, exploiting the oxazolone chemistry. The reaction is easily accomplished under mild conditions and appears versatile, providing a synthetic diversification method with potential for drug-like compounds preparation.

  15. Laboratory Astrophysics on High Power Lasers and Pulsed Power Facilities

    SciTech Connect

    Remington, B A

    2002-02-05

    Over the past decade a new genre of laboratory astrophysics has emerged, made possible by the new high energy density (HED) experimental facilities, such as large lasers, z-pinch generators, and high current particle accelerators. (Remington, 1999; 2000; Drake, 1998; Takabe, 2001) On these facilities, macroscopic collections of matter can be created in astrophysically relevant conditions, and its collective properties measured. Examples of processes and issues that can be experimentally addressed include compressible hydrodynamic mixing, strong shock phenomena, radiative shocks, radiation flow, high Mach-number jets, complex opacities, photoionized plasmas, equations of state of highly compressed matter, and relativistic plasmas. These processes are relevant to a wide range of astrophysical phenomena, such as supernovae and supernova remnants, astrophysical jets, radiatively driven molecular clouds, accreting black holes, planetary interiors, and gamma-ray bursts. These phenomena will be discussed in the context of laboratory astrophysics experiments possible on existing and future HED facilities.

  16. High-Level Waste Vitrification Facility Feasibility Study

    SciTech Connect

    D. A. Lopez

    1999-08-01

    A ''Settlement Agreement'' between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste now stored at the Idaho Nuclear Technology and Engineering Center will be treated so that it is ready to be moved out of Idaho for disposal by a compliance date of 2035. This report investigates vitrification treatment of the high-level waste in a High-Level Waste Vitrification Facility based on the assumption that no more New Waste Calcining Facility campaigns will be conducted after June 2000. Under this option, the sodium-bearing waste remaining in the Idaho Nuclear Technology and Engineering Center Tank Farm, and newly generated liquid waste produced between now and the start of 2013, will be processed using a different option, such as a Cesium Ion Exchange Facility. The cesium-saturated waste from this other option will be sent to the Calcine Solids Storage Facilities to be mixed with existing calcine. The calcine and cesium-saturated waste will be processed in the High-Level Waste Vitrification Facility by the end of calendar year 2035. In addition, the High-Level Waste Vitrification Facility will process all newly-generated liquid waste produced between 2013 and the end of 2035. Vitrification of this waste is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the waste and pouring it into stainless-steel canisters that will be ready for shipment out of Idaho to a disposal facility by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory until they are sent to a national geologic repository. The operating period for vitrification treatment will be from the end of 2015 through 2035.

  17. The second generation Singapore high resolution proton beam writing facility

    SciTech Connect

    Kan, J. A. van; Malar, P.; Baysic de Vera, Armin

    2012-02-15

    A new proton beam focusing facility, designed for proton beam writing (PBW) applications has been tested. PBW allows for proximity free structuring of high aspect ratio, high-density 3D nanostructures. The new facility is designed around OM52 compact quadrupole lenses capable of operating in a variety of high demagnification configurations. Performance tests show that proton beams can be focused down to 19.0 x 29.9 nm{sup 2} and single line scans show a beam width of 12.6 nm. The ultimate goal of sub 10 nm structuring with MeV protons will be discussed.

  18. High-efficiency solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Wallis, Robert E. (Inventor); Cheng, Sheng (Inventor)

    2005-01-01

    A high-efficiency solid state power amplifier (SSPA) for specific use in a spacecraft is provided. The SSPA has a mass of less than 850 g and includes two different X-band power amplifier sections, i.e., a lumped power amplifier with a single 11-W output and a distributed power amplifier with eight 2.75-W outputs. These two amplifier sections provide output power that is scalable from 11 to 15 watts without major design changes. Five different hybrid microcircuits, including high-efficiency Heterostructure Field Effect Transistor (HFET) amplifiers and Monolithic Microwave Integrated Circuit (MMIC) phase shifters have been developed for use within the SSPA. A highly efficient packaging approach enables the integration of a large number of hybrid circuits into the SSPA.

  19. Technology Development for High Efficiency Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2012-01-01

    Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.

  20. Evaluation of a high-efficiency, filter-bank system.

    PubMed

    Martin, Stephen B; Beamer, Bryan R; Moyer, Ernest S

    2006-04-01

    National Institute for Occupational Safety and Health (NIOSH) investigators evaluated filtration efficiencies at three U.S. Postal Service (USPS) facilities. Ventilation and filtration systems (VFSs) had been installed after the 2001 bioterrorist attacks when the USPS unknowingly processed letters laden with B. anthracis spores. The new VFS units included high-efficiency particulate air (HEPA) filters and were required by USPS contract specifications to provide an overall filtration efficiency of at least 99.97% for particles between 0.3 microm and 3.0 micro m. The USPS evaluation involved a modification of methodology used to test total filtration system efficiency in agricultural tractor cab enclosures. The modified sampling strategy not only proved effective for monitoring the total filtration system component of VFS performance but also distinguished between filtration systems performing to the high USPS performance criteria and those needing repair or replacement. The results clearly showed the importance of choosing a pair of optical particle counters that have been closely matched immediately prior to testing. The modified methodology is readily adaptable to any workplace wishing to evaluate air filtration systems, including high-efficiency systems.

  1. High-Pressure Gaseous Burner (HPGB) Facility Became Operational

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2003-01-01

    A gas-fueled high-pressure combustion facility with optical access, developed over the last 3 years, is now collecting research data in a production mode. The High-Pressure Gaseous Burner (HPGB) rig at the NASA Glenn Research Center can operate at sustained pressures up to 60 atm with a variety of gaseous fuels and liquid jet fuel. The facility is unique because it is the only continuous-flow, hydrogen-capable 60-atm rig in the world with optical access. It will provide researchers with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow s advanced aircraft engines. The facility provides optical access to the flame zone through four fused-silica optical windows, enabling the calibration of nonintrusive optical diagnostics to measure chemical species and temperature. The data from the HPGB rig enable the validation of numerical codes that simulate gas turbine combustors.

  2. Measure Guideline. High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  3. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  4. Highly efficient heralding of entangled single photons.

    PubMed

    Ramelow, Sven; Mech, Alexandra; Giustina, Marissa; Gröblacher, Simon; Wieczorek, Witlef; Beyer, Jörn; Lita, Adriana; Calkins, Brice; Gerrits, Thomas; Nam, Sae Woo; Zeilinger, Anton; Ursin, Rupert

    2013-03-25

    Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupled bolometric transition-edge sensors. Without correcting for background, losses, or detection inefficiencies, we measure an overall heralding efficiency of 83%. By violating a Bell inequality, we confirm the single-photon character and high-quality entanglement of our heralded single photons which, in combination with the high heralding efficiency, are a necessary ingredient for advanced quantum communication protocols such as one-sided device-independent quantum key distribution.

  5. Interface modification for highly efficient organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Steim, Roland; Choulis, Stelios A.; Schilinsky, Pavel; Brabec, Christoph J.

    2008-03-01

    We present highly efficient inverted polymer:fullerene bulk-heterojunction solar cells by incorporation of a nanoscale organic interfacial layer between the indium tin oxide (ITO) and the metal oxide electron-conducting layer. We demonstrate that stacking of solution-processed organic and metal oxide interfacial layers gives highly charged selective low ohmic cathodes. The incorporation of a polyoxyethylene tridecyl ether interfacial layer between ITO and solution-processed titanium oxide (TiOx) raised the power conversion efficiency of inverted organic photovoltaics to 3.6%, an improvement of around 15% in their performance over comparable devices without the organic interfacial layer.

  6. Proposal for superstructure based high efficiency photovoltaics

    NASA Technical Reports Server (NTRS)

    Wagner, M.; Leburton, J. P.

    1986-01-01

    A novel class of cascade structures is proposed which features multijunction upper subcells, referred to as superstructure high-efficiency photovoltaics (SHEPs). The additional junctions enhance spectral response and improve radiation tolerance by reducing bulk recombination losses. This is important because ternary III-V alloys, which tend to have short minority-carrier diffusion lengths, are the only viable materials for the high-bandgap upper subcells required for cascade solar cells. Realistic simulations of AlGaAs SHEPs show that one-sun AM0 efficiencies in excess of 26 percent are possible.

  7. Advanced high efficiency wraparound contact solar cell

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.; Uno, F. M.; Thornhill, J. W.

    1977-01-01

    A significant advancement in the development of thin high efficiency wraparound contact silicon solar cells has been made by coupling space and terrestrial processing procedures. Although this new method for fabricating cells has not been completely reduced to practice, some of the initial cells have delivered over 20 mW/sq cm when tested at 25 C under AMO intensity. This approach not only yields high efficiency devices, but shows promise of allowing complete freedom of choice in both the location and size of the wraparound contact pad area

  8. Advanced high efficiency wraparound contact solar cell

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.; Uno, F. M.; Thornhill, J. W.

    1977-01-01

    A significant advancement in the development of thin high efficiency wraparound contact silicon solar cells has been made by coupling space and terrestrial processing procedures. Although this new method for fabricating cells has not been completely reduced to practice, some of the initial cells have delivered over 20 mW/sq cm when tested at 25 C under AMO intensity. This approach not only yields high efficiency devices, but shows promise of allowing complete freedom of choice in both the location and size of the wraparound contact pad area.

  9. Horizontal equity and efficiency at primary health care facilities in rural Afghanistan: a seemingly unrelated regression approach.

    PubMed

    Johns, Benjamin; Steinhardt, Laura; Walker, Damian G; Peters, David H; Bishai, David

    2013-07-01

    Producing services efficiently and equitably are important goals for health systems. Many countries pursue horizontal equity - providing people with the same illnesses equal access to health services - by locating facilities in remote areas. Staff are often paid incentives to work at such facilities. However, there is little evidence on how many fewer people are treated at remote facilities than facilities in more densely settled areas. This research explores if there is an association between the efficiency of health centers in Afghanistan and the remoteness of their location. Survey teams collected data on facility level inputs and outputs at a stratified random sample of 579 health centers in 2005. Quality of care was measured by observing staff interact with patients and determining if staff completed a set of normative patient care tasks. We used seemingly unrelated regression to determine if facilities in remote areas have fewer outpatient visits than other rural facilities. In this analysis, one equation compares the number of outpatient visits to facility inputs, while another compares quality of care to determinants of quality. The results indicate remote facilities have about 13% fewer outpatient visits than non-remote facilities, holding inputs constant. Our analysis suggests that facilities in remote areas are realizing horizontal equity since their clients are receiving comparable quality of care to those at non-remote facilities. However, we find the average labor cost for a visit at a remote facility is $1.44, but only $0.97 at other rural facilities, indicating that a visit in a remote facility would have to be 'worth' 1.49 times a visit at a rural facility for there to be no equity - efficiency trade-off. In determining where to build or staff health centers, this loss of efficiency may be offset by progress toward a social policy objective of providing services to disadvantaged rural populations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Highly efficient white OLEDs for lighting applications

    NASA Astrophysics Data System (ADS)

    Murano, Sven; Burghart, Markus; Birnstock, Jan; Wellmann, Philipp; Vehse, Martin; Werner, Ansgar; Canzler, Tobias; Stübinger, Thomas; He, Gufeng; Pfeiffer, Martin; Boerner, Herbert

    2005-10-01

    The use of organic light-emitting diodes (OLEDs) for large area general lighting purposes is gaining increasing interest during the recent years. Especially small molecule based OLEDs have already shown their potential for future applications. For white light emission OLEDs, power efficiencies exceeding that of incandescent bulbs could already be demonstrated, however additional improvements are needed to further mature the technology allowing for commercial applications as general purpose illuminating sources. Ultimately the efficiencies of fluorescent tubes should be reached or even excelled, a goal which could already be achieved in the past for green OLEDs.1 In this publication the authors will present highly efficient white OLEDs based on an intentional doping of the charge carrier transport layers and the usage of different state of the art emission principles. This presentation will compare white PIN-OLEDs based on phosphorescent emitters, fluorescent emitters and stacked OLEDs. It will be demonstrated that the reduction of the operating voltage by the use of intentionally doped transport layers leads to very high power efficiencies for white OLEDs, demonstrating power efficiencies of well above 20 lm/W @ 1000 cd/m2. The color rendering properties of the emitted light is very high and CRIs between 85 and 95 are achieved, therefore the requirements for standard applications in the field of lighting applications could be clearly fulfilled. The color coordinates of the light emission can be tuned within a wide range through the implementation of minor structural changes.

  11. High efficiency, variable geometry, centrifugal cryogenic pump

    SciTech Connect

    Forsha, M.D.; Nichols, K.E.; Beale, C.A.

    1994-12-31

    A centrifugal cryogenic pump has been developed which has a basic design that is rugged and reliable with variable speed and variable geometry features that achieve high pump efficiency over a wide range of head-flow conditions. The pump uses a sealless design and rolling element bearings to achieve high reliability and the ruggedness to withstand liquid-vapor slugging. The pump can meet a wide range of variable head, off-design flow requirements and maintain design point efficiency by adjusting the pump speed. The pump also has features that allow the impeller and diffuser blade heights to be adjusted. The adjustable height blades were intended to enhance the pump efficiency when it is operating at constant head, off-design flow rates. For small pumps, the adjustable height blades are not recommended. For larger pumps, they could provide off-design efficiency improvements. This pump was developed for supercritical helium service, but the design is well suited to any cryogenic application where high efficiency is required over a wide range of head-flow conditions.

  12. High level radioactive waste management facility design criteria

    SciTech Connect

    Sheikh, N.A.; Salaymeh, S.R.

    1993-10-01

    This paper discusses the engineering systems for the structural design of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). At the DWPF, high level radioactive liquids will be mixed with glass particles and heated in a melter. This molten glass will then be poured into stainless steel canisters where it will harden. This process will transform the high level waste into a more stable, manageable substance. This paper discuss the structural design requirements for this unique one of a kind facility. A special emphasis will be concentrated on the design criteria pertaining to earthquake, wind and tornado, and flooding.

  13. Replacement of Lighting Fixtures with LED Energy Efficient Lights at the Parking Facility, Milwaukee, Wisconsin

    SciTech Connect

    David Brien

    2012-06-21

    The Forest County Potawatomi Community (FCPC or Tribe) owns a six-story parking facility adjacent to its Potawatomi Bingo Casino (the Casino) in Milwaukee, Wisconsin, as well as a valet parking facility under the Casino (collectively, the Parking Facility). The Parking Facility contained 205-watt metal halide-type lights that, for security reasons, operated 24 hours per day, 7 days per week. Starting on August 30, 2010, the Tribe replaced these fixtures with 1,760 state-of-the-art, energy efficient 55-Watt LED lights. This project resulted in an immediate average reduction in monthly peak demand of 238 kW over the fourth quarter of 2010. The average reduction in monthly peak demand from October 1 through December 31, 2010 translates into a forecast annual electrical energy reduction of approximately 1,995,000 kWh or 47.3% of the pre-project demand. This project was technically effective, economically feasible, and beneficial to the public not only in terms of long term energy efficiency and associated emissions reductions, but also in the short-term jobs provided for the S.E. Wisconsin region. The project was implemented, from approval by U.S. Department of Energy (DOE) to completion, in less than 6 months. The project utilized off-the-shelf proven technologies that were fabricated locally and installed by local trade contractors.

  14. High-efficiency 20 W yellow VECSEL.

    PubMed

    Kantola, Emmi; Leinonen, Tomi; Ranta, Sanna; Tavast, Miki; Guina, Mircea

    2014-03-24

    A high-efficiency optically pumped vertical-external-cavity surface-emitting laser emitting 20 W at a wavelength around 588 nm is demonstrated. The semiconductor gain chip emitted at a fundamental wavelength around 1170-1180 nm and the laser employed a V-shaped cavity. The yellow spectral range was achieved by intra-cavity frequency doubling using a LBO crystal. The laser could be tuned over a bandwidth of ~26 nm while exhibiting watt-level output powers. The maximum conversion efficiency from absorbed pump power to yellow output was 28% for continuous wave operation. The VECSEL's output could be modulated to generate optical pulses with duration down to 570 ns by directly modulating the pump laser. The high-power pulse operation is a key feature for astrophysics and medical applications while at the same time enables higher slope efficiency than continuous wave operation owing to decreased heating.

  15. Requirements for high-efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1986-01-01

    Minimum recombination and low injection level are essential for high efficiency. Twenty percent AM1 efficiency requires a dark recombination current density of 2 x 10 to the minus 13th power A/sq cm and a recombination center density of less than 10 to the 10th power /cu cm. Recombination mechanisms at thirteen locations in a conventional single crystalline silicon cell design are reviewed. Three additional recombination locations are described at grain boundaries in polycrystalline cells. Material perfection and fabrication process optimization requirements for high efficiency are outlined. Innovative device designs to reduce recombination in the bulk and interfaces of single crystalline cells and in the grain boundary of polycrystalline cells are reviewed.

  16. High efficiency novel window air conditioner

    DOE PAGES

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  17. High efficiency novel window air conditioner

    SciTech Connect

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  18. A rapid, efficient, and facile solution for dental hypersensitivity: The tannin–iron complex

    PubMed Central

    Oh, Dongyeop X.; Prajatelistia, Ekavianty; Ju, Sung-Won; Jeong Kim, Hyo; Baek, Soo-Jin; Joon Cha, Hyung; Ho Jun, Sang; Ahn, Jin-Soo; Soo Hwang, Dong

    2015-01-01

    Dental hypersensitivity due to exposure of dentinal tubules under the enamel layer to saliva is a very popular and highly elusive technology priority in dentistry. Blocking water flow within exposed dentinal tubules is a key principle for curing dental hypersensitivity. Some salts used in “at home” solutions remineralize the tubules inside by concentrating saliva ingredients. An “in-office” option of applying dense resin sealants on the tubule entrance has only localized effects on well-defined sore spots. We report a self-assembled film that was formed by facile, rapid (4 min), and efficient (approximately 0.5 g/L concentration) dip-coating of teeth in an aqueous solution containing a tannic acid–iron(III) complex. It quickly and effectively occluded the dentinal tubules of human teeth. It withstood intense tooth brushing and induced hydroxyapatite remineralisation within the dentinal tubules. This strategy holds great promise for future applications as an effective and user-friendly desensitizer for managing dental hypersensitivity. PMID:26039461

  19. Longitudinal aerodynamic characteristics of a subsonic, energy-efficient transport configuration in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Jacobs, Peter F.; Gloss, Blair B.

    1989-01-01

    The Reynolds number, aeroelasticity, boundary layer transition, and nonadiabatic wall temperature effects, and data repeatability was determined in the National Transonic Facility (NTF) for a subsonic, energy efficient transport model. The model was tested over a Mach number range of 0.50 to 0.86 and a Reynolds number range of 1.9 million to approximately 23.0 million (based on mean geometric chord). The majority of the data was taken using cryogenic nitrogen (data at 1.9 million Reynolds number was taken in air). Force and moment, wing pressure, and wing thermocouple data are presented. The data indicate that increasing Reynolds number resulted in greater effective camber of the supercritical wing and horizontal tail, resulting in greater lift and pitching moment coefficients at nearly all angles of attack for M = 0.82. As Reynolds number was increased, untrimmed L/D increased, the angle of attack for maximum L/D decreased, drag creep was reduced significantly, and drag divergence Mach number increased slightly. Data repeatability for both modes of operation of the NTF (air and cryogenic nitrogen) was generally very good, and nonadiabatic wall effects were estimated to be small. Transition-free and transition-fixed configurations had significantly different force and moment data at M = 0.82 for low Reynolds number, and very small differences were noted at high Reynolds numbers.

  20. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok M. Srivastava

    2005-09-30

    This is the Yearly Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. Our chief achievement, during the current contract period, pertains to the successful synthesis and characterization of coated phosphors. We demonstrated several synthesis techniques for the coating of micron sized commercial phosphors with quantum-splitting and UV emitting nanophosphors. We have also continued our fundamental investigations into the physical processes that determine the quantum efficiency of the nanophosphors and this has further helped codify a set of rules for the host lattice that support efficient quantum splitting and UV emission at room temperature. In this report we summarize the technical work completed under the Program, summarize our findings about the performance limits of the various technologies we investigated, and outline promising paths for future work.

  1. High Power RF Test Facility at the SNS

    SciTech Connect

    Y.W. Kang; D.E. Anderson; I.E. Campisi; M. Champion; M.T. Crofford; R.E. Fuja; P.A. Gurd; S. Hasan; K.-U. Kasemir; M.P. McCarthy; D. Stout; J.Y. Tang; A.V. Vassioutchenko; M. Wezensky; G.K. Davis; M. A. Drury; T. Powers; M. Stirbet

    2005-05-16

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavities have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducting and superconducting accelerating cavities and components.

  2. Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)

    SciTech Connect

    Not Available

    2010-01-01

    The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

  3. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  4. Study of the Relevance of the Quality of Care, Operating Efficiency and Inefficient Quality Competition of Senior Care Facilities

    PubMed Central

    Lin, Jwu-Rong; Chen, Ching-Yu; Peng, Tso-Kwei

    2017-01-01

    The purpose of this research is to examine the relation between operating efficiency and the quality of care of senior care facilities. We designed a data envelopment analysis, combining epsilon-based measure and metafrontier efficiency analyses to estimate the operating efficiency for senior care facilities, followed by an iterative seemingly unrelated regression to evaluate the relation between the quality of care and operating efficiency. In the empirical studies, Taiwan census data was utilized and findings include the following: Despite the greater operating scale of the general type of senior care facilities, their average metafrontier technical efficiency is inferior to that of nursing homes. We adopted senior care facility accreditation results from Taiwan as a variable to represent the quality of care and examined the relation of accreditation results and operating efficiency. We found that the quality of care of general senior care facilities is negatively related to operating efficiency; however, for nursing homes, the relationship is not significant. Our findings show that facilities invest more in input resources to obtain better ratings in the accreditation report. Operating efficiency, however, does not improve. Quality competition in the industry in Taiwan is inefficient, especially for general senior care facilities. PMID:28892019

  5. Study of the Relevance of the Quality of Care, Operating Efficiency and Inefficient Quality Competition of Senior Care Facilities.

    PubMed

    Lin, Jwu-Rong; Chen, Ching-Yu; Peng, Tso-Kwei

    2017-09-11

    The purpose of this research is to examine the relation between operating efficiency and the quality of care of senior care facilities. We designed a data envelopment analysis, combining epsilon-based measure and metafrontier efficiency analyses to estimate the operating efficiency for senior care facilities, followed by an iterative seemingly unrelated regression to evaluate the relation between the quality of care and operating efficiency. In the empirical studies, Taiwan census data was utilized and findings include the following: Despite the greater operating scale of the general type of senior care facilities, their average metafrontier technical efficiency is inferior to that of nursing homes. We adopted senior care facility accreditation results from Taiwan as a variable to represent the quality of care and examined the relation of accreditation results and operating efficiency. We found that the quality of care of general senior care facilities is negatively related to operating efficiency; however, for nursing homes, the relationship is not significant. Our findings show that facilities invest more in input resources to obtain better ratings in the accreditation report. Operating efficiency, however, does not improve. Quality competition in the industry in Taiwan is inefficient, especially for general senior care facilities.

  6. Highly efficient solid state magnetoelectric gyrators

    NASA Astrophysics Data System (ADS)

    Leung, Chung Ming; Zhuang, Xin; Friedrichs, Daniel; Li, Jiefang; Erickson, Robert W.; Laletin, V.; Popov, M.; Srinivasan, G.; Viehland, D.

    2017-09-01

    An enhancement in the power-conversion-efficiency (η) of a magneto-electric (ME) gyrator has been found by the use of Mn-substituted nickel zinc ferrite. A trilayer gyrator of Mn-doped Ni0.8Zn0.2Fe2O3 and Pb(Zr,Ti)O3 has η = 85% at low power conditions (˜20 mW/in3) and η ≥ 80% at high power conditions (˜5 W/in3). It works close to fundamental electromechanical resonance in both direct and converse modes. The value of η is by far the highest reported so far, which is due to the high mechanical quality factor (Qm) of the magnetostrictive ferrite. Such highly efficient ME gyrators with a significant power density could become important elements in power electronics, potentially replacing electromagnetic and piezoelectric transformers.

  7. Efficient circuit triggers high-current, high-voltage pulses

    NASA Technical Reports Server (NTRS)

    Green, E. D.

    1964-01-01

    Modified circuit uses diodes to effectively disconnect the charging resistors from the circuit during the discharge cycle. Result is an efficient parallel charging, high voltage pulse modulator with low voltage rating of components.

  8. High-Temperature High-Efficiency Solar Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Baranowski, Lauryn L.; Warren, Emily L.; Toberer, Eric S.

    2014-06-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000°C to 100°C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  9. High-Temperature High-Efficiency Solar Thermoelectric Generators

    SciTech Connect

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  10. Methodologies for high efficiency perovskite solar cells.

    PubMed

    Park, Nam-Gyu

    2016-01-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  11. Methodologies for high efficiency perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Park, Nam-Gyu

    2016-06-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  12. High efficiency electrotransformation of Lactobacillus casei.

    PubMed

    Welker, Dennis L; Hughes, Joanne E; Steele, James L; Broadbent, Jeff R

    2015-01-01

    We investigated whether protocols allowing high efficiency electrotransformation of other lactic acid bacteria were applicable to five strains of Lactobacillus casei (12A, 32G, A2-362, ATCC 334 and BL23). Addition of 1% glycine or 0.9 M NaCl during cell growth, limitation of the growth of the cell cultures to OD600 0.6-0.8, pre-electroporation treatment of cells with water or with a lithium acetate (100 mM)/dithiothreitol (10 mM) solution and optimization of electroporation conditions all improved transformation efficiencies. However, the five strains varied in their responses to these treatments. Transformation efficiencies of 10(6) colony forming units μg(-1) pTRKH2 DNA and higher were obtained with three strains which is sufficient for construction of chromosomal gene knock-outs and gene replacements.

  13. High Power MHD System - Facility Status and Magnet Test Results

    DTIC Science & Technology

    1982-02-01

    AEDC-TR-81.14 C-7 High Power MHD System Facility Status and Magnet Test Results G. L. %hitehead ARO, Inc . February 1982 Final Report for...SYSTEM - FACILITY STATUS AND MAGNET TEST RESULTS 7 AUTHOR(s ) G. L. Whitehead, ARO, Inc ., a Sverdrup Corporation Company g P E R F O R M I N G O R...Air Force Systems Command (AFSC), Arnold Air Force Station, Tennessee, under Program Element 62203F. The results were obtained by ARO, Inc ., AEDC

  14. Helicopter acoustic alerting system for high-security facilities

    NASA Astrophysics Data System (ADS)

    Steadman, Robert L.; Hansen, Scott; Park, Chris; Power, Dennis

    2009-05-01

    Helicopters present a serious threat to high security facilities such as prisons, nuclear sites, armories, and VIP compounds. They have the ability to instantly bypass conventional security measures focused on ground threats such as fences, check-points, and intrusion sensors. Leveraging the strong acoustic signature inherent in all helicopters, this system would automatically detect, classify, and accurately track helicopters using multi-node acoustic sensor fusion. An alert would be generated once the threat entered a predefined 3-dimension security zone in time for security personnel to repel the assault. In addition the system can precisely identify the landing point on the facility grounds.

  15. High Efficiency, Low Emission Refrigeration System

    SciTech Connect

    Fricke, Brian A.; Sharma, Vishaldeep

    2016-08-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Methods for reducing refrigerant leakage and energy consumption are available, but underutilized. Further work needs to be done to reduce costs of advanced system designs to improve market utilization. In addition, refrigeration system retrofits that result in reduced energy consumption are needed since the majority of applications address retrofits rather than new stores. The retrofit market is also of most concern since it involves large-volume refrigerant systems with high leak rates. Finally, alternative refrigerants for new and retrofit applications are needed to reduce emissions and reduce the impact on the environment. The objective of this Collaborative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory and Hill Phoenix is to develop a supermarket refrigeration system that reduces greenhouse gas emissions and has 25 to 30 percent lower energy consumption than existing systems. The outcomes of this project will include the design of a low emission, high efficiency commercial refrigeration system suitable for use in current U.S. supermarkets. In addition, a prototype low emission, high efficiency supermarket refrigeration system will be produced for

  16. High-speed high-efficiency photodetectors based on heterostructures

    NASA Astrophysics Data System (ADS)

    Korolkov, V. I.

    Recent advances in the development of high-speed high-efficiency heterostructure photodetectors (HPs) are reviewed. It is noted that the performance of semiconductor photodetectors has been improved by forbidden bandwidth control. Various types of HPs are examined, including modifications of heterophotodiodes and detectors with internal amplification; avalanche photodiodes; bipolar phototransistors; and planar photoresistance devices and field-effect phototransistors. These devices are compared in terms of speed and efficiency.

  17. Nanopatterned Quantum Dot Lasers for High Speed, High Efficiency, Operation

    DTIC Science & Technology

    2015-04-27

    SECURITY CLASSIFICATION OF: Quantum dot (QD) active regions hold potential for realizing extremely high performance semiconductor diode lasers...2009 31-Dec-2014 Approved for Public Release; Distribution Unlimited Final Report: Nanopatterned Quantum Dot Lasers for High Speed, High Efficiency...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 quantum dots , nanopatterning, MOCVD, laser REPORT DOCUMENTATION PAGE 11

  18. Development of a Large Scale, High Speed Wheel Test Facility

    NASA Technical Reports Server (NTRS)

    Kondoleon, Anthony; Seltzer, Donald; Thornton, Richard; Thompson, Marc

    1996-01-01

    Draper Laboratory, with its internal research and development budget, has for the past two years been funding a joint effort with the Massachusetts Institute of Technology (MIT) for the development of a large scale, high speed wheel test facility. This facility was developed to perform experiments and carry out evaluations on levitation and propulsion designs for MagLev systems currently under consideration. The facility was developed to rotate a large (2 meter) wheel which could operate with peripheral speeds of greater than 100 meters/second. The rim of the wheel was constructed of a non-magnetic, non-conductive composite material to avoid the generation of errors from spurious forces. A sensor package containing a multi-axis force and torque sensor mounted to the base of the station, provides a signal of the lift and drag forces on the package being tested. Position tables mounted on the station allow for the introduction of errors in real time. A computer controlled data acquisition system was developed around a Macintosh IIfx to record the test data and control the speed of the wheel. This paper describes the development of this test facility. A detailed description of the major components is presented. Recently completed tests carried out on a novel Electrodynamic (EDS) suspension system, developed by MIT as part of this joint effort are described and presented. Adaptation of this facility for linear motor and other propulsion and levitation testing is described.

  19. A Measurement Management Technology for Improving Energy Efficiency in Data Centers and Telecommunication Facilities

    SciTech Connect

    Hendrik Hamann, Levente Klein

    2012-06-28

    Data center (DC) electricity use is increasing at an annual rate of over 20% and presents a concern for the Information Technology (IT) industry, governments, and the society. A large fraction of the energy use is consumed by the compressor cooling to maintain the recommended operating conditions for IT equipment. The most common way to improve the DC efficiency is achieved by optimally provisioning the cooling power to match the global heat dissipation in the DC. However, at a more granular level, the large range of heat densities of today's IT equipment makes the task of provisioning cooling power optimized to the level of individual computer room air conditioning (CRAC) units much more challenging. Distributed sensing within a DC enables the development of new strategies to improve energy efficiency, such as hot spot elimination through targeted cooling, matching power consumption at rack level with workload schedule, and minimizing power losses. The scope of Measurement and Management Technologies (MMT) is to develop a software tool and the underlying sensing technology to provide critical decision support and control for DC and telecommunication facilities (TF) operations. A key aspect of MMT technology is integration of modeling tools to understand how changes in one operational parameter affect the overall DC response. It is demonstrated that reduced ordered models for DC can generate, in less than 2 seconds computational time, a three dimensional thermal model in a 50 kft{sup 2} DC. This rapid modeling enables real time visualization of the DC conditions and enables 'what if' scenarios simulations to characterize response to 'disturbances'. One such example is thermal zone modeling that matches the cooling power to the heat generated at a local level by identifying DC zones cooled by a specific CRAC. Turning off a CRAC unit can be simulated to understand how the other CRAC utilization changes and how server temperature responds. Several new sensing

  20. Breeding for high water-use efficiency.

    PubMed

    Condon, A G; Richards, R A; Rebetzke, G J; Farquhar, G D

    2004-11-01

    There is a pressing need to improve the water-use efficiency of rain-fed and irrigated crop production. Breeding crop varieties with higher water-use efficiency is seen as providing part of the solution. Three key processes can be exploited in breeding for high water-use efficiency: (i) moving more of the available water through the crop rather than it being wasted as evaporation from the soil surface or drainage beyond the root zone or being left behind in the root zone at harvest; (ii) acquiring more carbon (biomass) in exchange for the water transpired by the crop, i.e. improving crop transpiration efficiency; (iii) partitioning more of the achieved biomass into the harvested product. The relative importance of any one of these processes will vary depending on how water availability varies during the crop cycle. However, these three processes are not independent. Targeting specific traits to improve one process may have detrimental effects on the other two, but there may also be positive interactions. Progress in breeding for improved water-use efficiency of rain-fed wheat is reviewed to illustrate the nature of some of these interactions and to highlight opportunities that may be exploited in other crops as well as potential pitfalls. For C3 species, measuring carbon isotope discrimination provides a powerful means of improving water-use efficiency of leaf gas exchange, but experience has shown that improvements in leaf-level water-use efficiency may not always translate into higher crop water-use efficiency or yield. In fact, the reverse has frequently been observed. Reasons for this are explored in some detail. Crop simulation modelling can be used to assess the likely impact on water-use efficiency and yield of changing the expression of traits of interest. Results of such simulations indicate that greater progress may be achieved by pyramiding traits so that potential negative effects of individual traits are neutralized. DNA-based selection techniques may

  1. Creation of High Efficient Firefly Luciferase

    NASA Astrophysics Data System (ADS)

    Nakatsu, Toru

    Firefly emits visible yellow-green light. The bioluminescence reaction is carried out by the enzyme luciferase. The bioluminescence of luciferase is widely used as an excellent tool for monitoring gene expression, the measurement of the amount of ATP and in vivo imaging. Recently a study of the cancer metastasis is carried out by in vivo luminescence imaging system, because luminescence imaging is less toxic and more useful for long-term assay than fluorescence imaging by GFP. However the luminescence is much dimmer than fluorescence. Then bioluminescence imaging in living organisms demands the high efficient luciferase which emits near infrared lights or enhances the emission intensity. Here I introduce an idea for creating the high efficient luciferase based on the crystal structure.

  2. Efficient High-Pressure State Equations

    NASA Technical Reports Server (NTRS)

    Harstad, Kenneth G.; Miller, Richard S.; Bellan, Josette

    1997-01-01

    A method is presented for a relatively accurate, noniterative, computationally efficient calculation of high-pressure fluid-mixture equations of state, especially targeted to gas turbines and rocket engines. Pressures above I bar and temperatures above 100 K are addressed The method is based on curve fitting an effective reference state relative to departure functions formed using the Peng-Robinson cubic state equation Fit parameters for H2, O2, N2, propane, methane, n-heptane, and methanol are given.

  3. High-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Olsen, L. C.

    1985-01-01

    Fabrication and characterization of high-efficiency metal insulator, n-p (MINP) cells is described. Particular attention was paid to development of measurement methods for surface recombination and density of surface states. A modified Rosier test structure was used successfully for density of surface states. Silicon oxide and silicon nitride passivants were studied. Heat treatment after plasma enhanced chemical vapor deposition (CVD) of silicon nitride was shown to be beneficial. A more optimum emitter concentration profile was modeled.

  4. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.

  5. High Efficiency Thermoelectric Materials and Devices

    NASA Technical Reports Server (NTRS)

    Kochergin, Vladimir (Inventor)

    2013-01-01

    Growth of thermoelectric materials in the form of quantum well super-lattices on three-dimensionally structured substrates provide the means to achieve high conversion efficiency of the thermoelectric module combined with inexpensiveness of fabrication and compatibility with large scale production. Thermoelectric devices utilizing thermoelectric materials in the form of quantum well semiconductor super-lattices grown on three-dimensionally structured substrates provide improved thermoelectric characteristics that can be used for power generation, cooling and other applications..

  6. Efficient High-Pressure State Equations

    NASA Technical Reports Server (NTRS)

    Harstad, Kenneth G.; Miller, Richard S.; Bellan, Josette

    1997-01-01

    A method is presented for a relatively accurate, noniterative, computationally efficient calculation of high-pressure fluid-mixture equations of state, especially targeted to gas turbines and rocket engines. Pressures above I bar and temperatures above 100 K are addressed The method is based on curve fitting an effective reference state relative to departure functions formed using the Peng-Robinson cubic state equation Fit parameters for H2, O2, N2, propane, methane, n-heptane, and methanol are given.

  7. Facile Preparation of Nanostructured, Superhydrophobic Filter Paper for Efficient Water/Oil Separation.

    PubMed

    Wang, Jianhua; Wong, Jessica X H; Kwok, Honoria; Li, Xiaochun; Yu, Hua-Zhong

    2016-01-01

    In this paper, we present a facile and cost-effective method to obtain superhydrophobic filter paper and demonstrate its application for efficient water/oil separation. By coupling structurally distinct organosilane precursors (e.g., octadecyltrichlorosilane and methyltrichlorosilane) to paper fibers under controlled reaction conditions, we have formulated a simple, inexpensive, and efficient protocol to achieve a desirable superhydrophobic and superoleophilic surface on conventional filter paper. The silanized superhydrophobic filter paper showed nanostructured morphology and demonstrated great separation efficiency (up to 99.4%) for water/oil mixtures. The modified filter paper is stable in both aqueous solutions and organic solvents, and can be reused multiple times. The present study shows that our newly developed binary silanization is a promising method of modifying cellulose-based materials for practical applications, in particular the treatment of industrial waste water and ecosystem recovery.

  8. Facile Preparation of Nanostructured, Superhydrophobic Filter Paper for Efficient Water/Oil Separation

    PubMed Central

    Wang, Jianhua; Wong, Jessica X. H.; Kwok, Honoria; Li, Xiaochun; Yu, Hua-Zhong

    2016-01-01

    In this paper, we present a facile and cost-effective method to obtain superhydrophobic filter paper and demonstrate its application for efficient water/oil separation. By coupling structurally distinct organosilane precursors (e.g., octadecyltrichlorosilane and methyltrichlorosilane) to paper fibers under controlled reaction conditions, we have formulated a simple, inexpensive, and efficient protocol to achieve a desirable superhydrophobic and superoleophilic surface on conventional filter paper. The silanized superhydrophobic filter paper showed nanostructured morphology and demonstrated great separation efficiency (up to 99.4%) for water/oil mixtures. The modified filter paper is stable in both aqueous solutions and organic solvents, and can be reused multiple times. The present study shows that our newly developed binary silanization is a promising method of modifying cellulose-based materials for practical applications, in particular the treatment of industrial waste water and ecosystem recovery. PMID:26982055

  9. Bioblendstocks that Enable High Efficiency Engine Designs

    SciTech Connect

    McCormick, Robert L.; Fioroni, Gina M.; Ratcliff, Matthew A.; Zigler, Bradley T.; Farrell, John

    2016-11-03

    The past decade has seen a high level of innovation in production of biofuels from sugar, lipid, and lignocellulose feedstocks. As discussed in several talks at this workshop, ethanol blends in the E25 to E50 range could enable more highly efficient spark-ignited (SI) engines. This is because of their knock resistance properties that include not only high research octane number (RON), but also charge cooling from high heat of vaporization, and high flame speed. Emerging alcohol fuels such as isobutanol or mixed alcohols have desirable properties such as reduced gasoline blend vapor pressure, but also have lower RON than ethanol. These fuels may be able to achieve the same knock resistance benefits, but likely will require higher blend levels or higher RON hydrocarbon blendstocks. A group of very high RON (>150) oxygenates such as dimethyl furan, methyl anisole, and related compounds are also produced from biomass. While providing no increase in charge cooling, their very high octane numbers may provide adequate knock resistance for future highly efficient SI engines. Given this range of options for highly knock resistant fuels there appears to be a critical need for a fuel knock resistance metric that includes effects of octane number, heat of vaporization, and potentially flame speed. Emerging diesel fuels include highly branched long-chain alkanes from hydroprocessing of fats and oils, as well as sugar-derived terpenoids. These have relatively high cetane number (CN), which may have some benefits in designing more efficient CI engines. Fast pyrolysis of biomass can produce diesel boiling range streams that are high in aromatic, oxygen and acid contents. Hydroprocessing can be applied to remove oxygen and consequently reduce acidity, however there are strong economic incentives to leave up to 2 wt% oxygen in the product. This oxygen will primarily be present as low CN alkyl phenols and aryl ethers. While these have high heating value, their presence in diesel fuel

  10. High energy-density science on the National Ignition Facility

    SciTech Connect

    Campbell, E.M.; Cauble, R.; Remington, B.A.

    1997-08-01

    The National Ignition Facility, as well as its French counterpart Le Laser Megajoule, have been designed to confront one of the most difficult and compelling problem in shock physics - the creation of a hot, compassed DT plasma surrounded and confined by cold, nearly degenerate DT fuel. At the same time, these laser facilities will present the shock physics community with unique tools for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers can contribute to investigations of high energy density in the area of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.

  11. High efficiency crystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Sah, C. Tang

    1986-01-01

    A review of the entire research program since its inception ten years ago is given. The initial effort focused on the effects of impurities on the efficiency of silicon solar cells to provide figures of maximum allowable impurity density for efficiencies up to about 16 to 17%. Highly accurate experimental techniques were extended to characterize the recombination properties of the residual imputities in the silicon solar cell. A numerical simulator of the solar cell was also developed, using the Circuit Technique for Semiconductor Analysis. Recent effort focused on the delineation of the material and device parameters which limited the silicon efficiency to below 20% and on an investigation of cell designs to break the 20% barrier. Designs of the cell device structure and geometry can further reduce recombination losses as well as the sensitivity and criticalness of the fabrication technology required to exceed 20%. Further research is needed on the fundamental characterization of the carrier recombination properties at the chemical impurity and physical defect centers. It is shown that only single crystalline silicon cell technology can be successful in attaining efficiencies greater than 20%.

  12. High-efficiency organic electrophosphorescent devices

    NASA Astrophysics Data System (ADS)

    Thompson, Mark E.; Lamansky, Sergey; Djurovich, Peter; Murphy, Drew; Abdel-Razaq, Feras; Forrest, Stephen R.; Baldo, Marc A.; Burrows, Paul E.; Adachi, Chihaya; Zhou, Theodore X.; Michalski, Lech A.; Rajan, Kamala; Brown, Julie J.

    2001-02-01

    We have fabricated saturated red, orange, yellow and green OLEDs, utilizing phosphorescent dopants. Using phosphorescence based emitters we have eliminated the inherent 25% upper limit on emission observed for traditional fluorescence based systems. The quantum efficiencies of these devices are quite good, with measured external efficiencies > 15% and > 40 lum/W (green) in the best devices. The phosphorescent dopants in these devices are heavy metal containing molecules (i.e. Pt, and Ir), prepared as both metalloporphyrins and organometallic complexes. The high level of spin orbit coupling in these metal complexes gives efficient emission from triplet states. In addition to emission from the heavy metal dopant, it is possible to transfer the exciton energy to a fluorescent dye, by Forster energy transfer. The heavy metal dopant in this case acts as a sensitizer, utilizing both singlet and triplet excitons to efficiently pump a fluorescent dye. We discuss the important parameters in designing electrophosphorescent OLEDs as well as their strengths and limitations. Accelerated aging studies, on packaged devices, have shown that phosphorescence based OLEDs can have very long device lifetimes.

  13. A decision support system for quantitative measurement of operational efficiency in a blood collection facility.

    PubMed

    Kros, John F; Yim Pang, Robyn

    2004-04-01

    A decision support system (DSS) is presented that allows users to input, analyze, and output data derived from blood banking operations. The DSS developed is a hybrid system that is both data and model driven. The system provides information, models, and data manipulation tools to assist users in the quantitative measurement of the operational efficiency in a blood collection facility. A relational database was developed to address the four major variables, which impact the cost per unit of blood being collected. Using visual basic, a user interface and mathematical model were developed establishing the relationships to analyze cost per unit of collected blood. Using inputs from users and historical financial data, the DSS calculates the cost per unit as each of the major variables is altered. Real life situations by the mobile operations team at a blood collection facility were used to test the DSS.

  14. Highly efficient fully transparent inverted OLEDs

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.

    2007-09-01

    One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.

  15. Development of manufacturing capability for high-concentration, high-efficiency silicon solar cells

    SciTech Connect

    Sinton, R.A.; Verlinden, P.J.; Crane, R.A.; Swanson, R.N.

    1996-10-01

    This report presents a summary of the major results from a program to develop a manufacturable, high-efficiency silicon concentrator solar cell and a cost-effective manufacturing facility. The program was jointly funded by the Electric Power Research Institute, Sandia National Laboratories through the Concentrator Initiative, and SunPower Corporation. The key achievements of the program include the demonstration of 26%-efficient silicon concentrator solar cells with design-point (20 W/cm{sup 2}) efficiencies over 25%. High-performance front-surface passivations; that were developed to achieve this result were verified to be absolutely stable against degradation by 475 days of field exposure at twice the design concentration. SunPower demonstrated pilot production of more than 1500 of these cells. This cell technology was also applied to pilot production to supply 7000 17.7-cm{sup 2} one-sun cells (3500 yielded wafers) that demonstrated exceptional quality control. The average efficiency of 21.3% for these cells approaches the peak efficiency ever demonstrated for a single small laboratory cell within 2% (absolute). Extensive cost models were developed through this program and calibrated by the pilot-production project. The production levels achieved indicate that SunPower could produce 7-10 MW of concentrator cells per year in the current facility based upon the cell performance demonstrated during the program.

  16. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation.

    PubMed

    Yang, Cheng-Xiong; Liu, Chang; Cao, Yi-Meng; Yan, Xiu-Ping

    2015-08-07

    A simple and facile room-temperature solution-phase synthesis was developed to fabricate a spherical covalent organic framework with large surface area, good solvent stability and high thermostability for high-resolution chromatographic separation of diverse important industrial analytes including alkanes, cyclohexane and benzene, α-pinene and β-pinene, and alcohols with high column efficiency and good precision.

  17. High Efficiency Colloidal Quantum Dot Phosphors

    SciTech Connect

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of

  18. Practical high efficiency bifacial solar cells

    SciTech Connect

    Moehlecke, A.; Zanesco, I.; Luque, A.

    1994-12-31

    In this paper, the authors present a practical process to obtain bifacial solar cells. These cells are made using p{sup +}nn{sup +} structure on high-medium base resistivity, continuous emitters and with a process that maintains high bulk minority carrier lifetime. Efficiencies of 19.1% and 18.1% are achieved under standard conditions when the cell is illuminated by n{sup +}n high-low junction and when it is illuminated by P{sup +}n junction, respectively. The authors remark that the n{sup +}n high-low junction provides a higher current density and a good ratio between generated current of each face is found to be of about 103%.

  19. Facile and controlled synthesis of aligned WO3 nanorods and nanosheets as an efficient photocatalyst material.

    PubMed

    Ahmed, Bilal; Kumar, Sumeet; Ojha, Animesh K; Donfack, P; Materny, A

    2017-03-15

    In this work, we have performed a facile and controlled synthesis of WO3 nanorods and sheets in different crystal phases (triclinic, orthorhombic and monoclinic) of WO3 using the sol-gel method. The detailed structures of the synthesized materials were examined by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy measurements. The shapes and crystal phases of the WO3 nanostructures were found to be highly dependent on the calcination temperature. The variation in crystalline phases and shapes is modified the electronic structure of the samples, which causes a variation in the value of optical band gap. The value of the Raman line intensity ratio I264/I320 has been successfully used to identify the structural transition from the triclinic to the orthorhombic phase of WO3. The PL spectra of the synthesized products excited at wavelengths 380, 400, and 420nm exhibit intense emission peaks that cover the complete visible range (blue-green-red). The emission peaks at ~460 and ~486nm were caused by the near band-edge and band to band transition, respectively. The peaks in spectral range 500-600nm might be originated from the presence of oxygen vacancies lying within the energy band gap. The synthesized WO3 nanostructures showed improved photocatalytic activity for the photodegradation of MB dye. The enhanced photocatalytic activity of WO3 nanosheets compared to WO3 nanorods for photodegradation of methylene blue (MB) dye could be due to the shape of the nanostructured WO3. The sheet type of structure provides more active surface for the interaction of dye molecules compared to the rods, which results in a more efficient degradation of the dye molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Facile and controlled synthesis of aligned WO3 nanorods and nanosheets as an efficient photocatalyst material

    NASA Astrophysics Data System (ADS)

    Ahmed, Bilal; Kumar, Sumeet; Ojha, Animesh K.; Donfack, P.; Materny, A.

    2017-03-01

    In this work, we have performed a facile and controlled synthesis of WO3 nanorods and sheets in different crystal phases (triclinic, orthorhombic and monoclinic) of WO3 using the sol-gel method. The detailed structures of the synthesized materials were examined by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy measurements. The shapes and crystal phases of the WO3 nanostructures were found to be highly dependent on the calcination temperature. The variation in crystalline phases and shapes is modified the electronic structure of the samples, which causes a variation in the value of optical band gap. The value of the Raman line intensity ratio I264/I320 has been successfully used to identify the structural transition from the triclinic to the orthorhombic phase of WO3. The PL spectra of the synthesized products excited at wavelengths 380, 400, and 420 nm exhibit intense emission peaks that cover the complete visible range (blue-green-red). The emission peaks at 460 and 486 nm were caused by the near band-edge and band to band transition, respectively. The peaks in spectral range 500-600 nm might be originated from the presence of oxygen vacancies lying within the energy band gap. The synthesized WO3 nanostructures showed improved photocatalytic activity for the photodegradation of MB dye. The enhanced photocatalytic activity of WO3 nanosheets compared to WO3 nanorods for photodegradation of methylene blue (MB) dye could be due to the shape of the nanostructured WO3. The sheet type of structure provides more active surface for the interaction of dye molecules compared to the rods, which results in a more efficient degradation of the dye molecules.

  1. New high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1985-01-01

    A design for silicon solar cells was investigated as an approach to increasing the cell open-circuit voltage and efficiency for flat-plate terrestrial photovoltaic applications. This deviates from past designs, where either the entire front surface of the cell is covered by a planar junction or the surface is textured before junction formation, which results in an even greater (up to 70%) junction area. The heavily doped front region and the junction space charge region are potential areas of high recombination for generated and injected minority carriers. The design presented reduces junction area by spreading equidiameter dot junctions across the surface of the cell, spaced about a diffusion length or less from each other. Various dot diameters and spacings allowed variations in total junction area. A simplified analysis was done to obtain a first-order design optimization. Efficiencies of up to 19% can be obtained. Cell fabrication involved extra masking steps for selective junction diffusion, and made surface passivation a key element in obtaining good collection. It also involved photolithography, with line widths down to microns. A method is demonstrated for achieving potentially high open-circuit voltages and solar-cell efficiencies.

  2. High-efficiency indoor air mover

    SciTech Connect

    Ariewitz, D.; Lackey, R.S.; Veyo, S.E.

    1983-01-06

    A high-efficiency indoor air mover has been developed for the advanced electric heat pump. Preprototype air mover overall efficiency is approximately 40 percent, twice that of the conventionally applied squirrel-cage blower. The air mover consists of a 411 mm (16.2 inch) diameter single entry blower wheel carried in a volute sheet steel scroll and driven by a 250 W (1/3 horsepower) high-efficiency motor. The blower wheel uses ten backward curved, uniformly spaced, cambered plate blades. As installed in the advanced heat pump the air mover consumes 390 W of electrical power and delivers 662 l/s (1405 scfm) at 1092 rpm into an external static flow resistance of 87 Pa (0.35 inches of water). Although this air mover will cost about twice as much as the conventional squirrel-cage blower and motor of comparable flow performance the incremental premium cost at the retail level can be recovered in less than one year through energy savings assuming 6000 hours of operation per year with electricity at $0.05/kWh.

  3. A high-efficiency indoor air mover

    SciTech Connect

    Ariewitz, D.; Lackey, R.S.; Veyo, S.E.

    1983-06-01

    A high-efficiency indoor air mover has been developed for the advanced electric heat pump. Preprototype air mover overall efficiency is approximately 46%, more than twice that of the conventionally applied squirrel-cage blower. The air mover consists of a 16.25 in (413 mm) diameter single-entry blower wheel carried in a volute sheet steel scroll and driven by a 1/3 hp (250 W) high-efficiency motor. The blower wheel uses ten backward curved, uniformly spaced, cambered plate blades. As installed in the advanced heat pump, the air mover consumes 390 W of electrical power and delivers 1405 scfm (663 L/s) at 1092 rpm into an estimated overall static-flow resistance of 1.09 in of water (271 Pa). Although this air mover will cost about twice as much as the conventional squirrel-cage blower and motor of comparable flow performance, the incremental premium cost at the retail level can be recovered in less than one year through energy savings with electricity at $0.05/kWh in Minneapolis, where the blower would run approximately 4900 hours per year.

  4. High-efficiency red electrophosphorescence devices

    NASA Astrophysics Data System (ADS)

    Adachi, Chihaya; Baldo, Marc A.; Forrest, Stephen R.; Lamansky, Sergey; Thompson, Mark E.; Kwong, Raymond C.

    2001-03-01

    We demonstrate high-efficiency red electrophosphorescent organic light-emitting devices employing bis(2-(2'-benzo[4,5-a]thienyl)pyridinato-N,C3') iridium(acetylacetonate) [Btp2Ir(acac)] as a red phosphor. A maximum external quantum efficiency of ηext=(7.0±0.5)% and power efficiency of ηp=(4.6±0.5) lm/W are achieved at a current density of J=0.01 mA/cm2. At a higher current density of J=100 mA/cm2, ηext=(2.5±0.3)% and ηp=(0.56±0.05) lm/W are obtained. The electroluminescent spectrum has a maximum at a wavelength of λmax=616 nm with additional intensity peaks at λsub=670 and 745 nm. The Commission Internationale de L'Eclairage coordinates of (x=0.68, y=0.32) are close to meeting video display standards. The short phosphorescence lifetime (˜4 μs) of Btp2Ir(acac) leads to a significant improvement in ηext at high currents as compared to the previously reported red phosphor, 2,3,7,8,12,13,17,18-octaethyl-12H, 23H-prophine platinum (II) PtOEP with a lifetime of ˜50 μs.

  5. Facile Preparation of Molybdenum Bronzes as an Efficient Hole Extraction Layer in Organic Photovoltaics.

    PubMed

    Wang, Jiantai; Zhang, Jun; Meng, Bin; Zhang, Baohua; Xie, Zhiyuan; Wang, Lixiang

    2015-06-24

    We proposed a facile and green one-pot strategy to synthesize Mo bronzes nanoparticles to serve as an efficient hole extraction layer in polymer solar cells. Mo bronzes were obtained through reducing the fractional self-aggregated ammonium heptamolybdate with appropriate reducing agent ascorbic acid, and its optoelectronic properties were fully characterized. The synthesized Mo bronzes displayed strong n-type semiconductor characteristics with a work function of 5.2-5.4 eV, matched well with the energy levels of current donor polymers. The presented gap states of the Mo bronzes near the Fermi level were beneficial for facilitating charge extraction. The as-synthesized Mo bronzes were used as hole extraction layer in polymer solar cells and significantly enhanced the photovoltaic performance and stability. The power conversion efficiency was increased by more than 18% compared with the polyethylene dioxythiophene:polystyrenesulfonate-based reference cell. The excellent performance and facile preparation render the as-synthesized solution-processed Mo bronzes nanoparticles a promising candidate for hole extraction layer in low-cost and efficient polymer solar cells.

  6. High-efficiency Autonomous Laser Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Riddle, Reed; Law, Nicholas M.; Ramaprakash, A. N.; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2014-07-01

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  7. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    SciTech Connect

    Baranec, Christoph; Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas; Law, Nicholas M.; Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit

    2014-07-20

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  8. Highly efficient Raman distributed feedback fibre lasers.

    PubMed

    Shi, Jindan; Alam, Shaif-ul; Ibsen, Morten

    2012-02-27

    We demonstrate highly efficient Raman distributed feedback (DFB) fibre lasers for the first time with up to 1.6 W of continuous wave (CW) output power. The DFB Bragg gratings are written directly into two types of commercially available passive germano-silica fibres. Two lasers of 30 cm length are pumped with up to 15 W of CW power at 1068 nm. The threshold power is ~2 W for a Raman-DFB (R-DFB) laser written in standard low-NA fibre, and only ~1 W for a laser written in a high-NA fibre, both of which oscillate in a narrow linewidth of <0.01 nm at ~1117 nm and ~1109 nm, respectively. The slope efficiencies are ~74% and ~93% with respect to absorbed pump power in the low-NA fibre and high-NA fibre respectively. Such high conversion efficiency suggests that very little energy is lost in the form of heat through inefficient energy transfer. Our results are supported by numerical simulations, and furthermore open up for the possibility of having narrow linewidth all-fibre laser sources in wavelength bands not traditionally covered by rare-earth doped silica fibres. Simulations also imply that this technology has the potential to produce even shorter R-DFB laser devices at the centimetre-level and with mW-level thresholds, if Bragg gratings formed in fibre materials with higher intrinsic Raman gain coefficient than silica are used. These materials include for example tellurite or chalcogenide glasses. Using glasses like these would also open up the possibility of having narrow linewidth fibre sources with DFB laser oscillating much further into the IR than what currently is possible with rare-earth doped silica glasses.

  9. Solvent extraction studies with high-burnup Fast Flux Test Facility fuel in the Solvent Extraction Test Facility

    SciTech Connect

    Benker, D.E.; Bigelow, J.E.; Bond, W.D.; Chattin, F.R.; King, L.J.; Kitts, F.G.; Ross, R.G.; Stacy, R.G.

    1986-10-01

    A batch of high-burnup fuel from the Fast Flux Test Facility (FFTF) was processed in the Solvent Extraction Test Facility (SETF) during Campaign 9. The fuel had a burnup of {similar_to}0 MWd/kg and a cooling time of {similar_to} year. Two runs were made with this fuel; in the first, the solvent contained 30% tri-n-butyl phosphate (TBP) and partitioning of the uranium and plutonium was effected by reducing the plutonium with hydroxylamine nitrate (HAN); in the second, the solvent contained 10% TBP and a low operating temperature was used in an attempt to partition without reducing the plutonium valence. The plutonium reoxidation problem, which was present in previous runs that used HAN, may have been solved by lowering the temperature and acidity in the partition contactor. An automatic control system was used to maintain high loadings of heavy metals in the coextraction-coscrub contactor in order to increase its efficiency while maintaining low losses of uranium and plutonium to the aqueous raffinate. An in-line photometer system was used to measure the plutonium concentration in an intermediate extraction stage; and based on this data, a computer algorithm determined the appropriate adjustments in the addition rate of the extractant. The control system was successfully demonstrated in a preliminary run with purified uranium. However, a variety of equipment and start up problems prevented an extended demonstration from being accomplished during the runs with the FFTF fuel.

  10. Highly efficient palladium-catalyzed hydrostannation of ethyl ethynyl ether.

    PubMed

    Andrews, Ian P; Kwon, Ohyun

    2008-12-08

    The palladium-catalyzed hydrostannation of acetylenes is widely exploited in organic synthesis as a means of forming vinyl stannanes for use in palladium-catalyzed cross-coupling reactions. Application of this methodology to ethyl ethynyl ether results in an enol ether that is challenging to isolate from the crude reaction mixture because of incompatibility with typical silica gel chromatography. Reported here is a highly efficient procedure for the palladium-catalyzed hydrostannation of ethyl ethynyl ether using 0.1% palladium(0) catalyst and 1.0 equiv of tributyltin hydride. The product obtained is a mixture of regioisomers that can be carried forward with exclusive reaction of the beta-isomer. This method is highly reproducible; relative to previously reported procedures, it is more economical and involves a more facile purification procedure.

  11. Expanding the Scope of High-Performance Computing Facilities

    SciTech Connect

    Uram, Thomas D.; Papka, Michael E.

    2016-05-01

    The high-performance computing centers of the future will expand their roles as service providers, and as the machines scale up, so should the sizes of the communities they serve. National facilities must cultivate their users as much as they focus on operating machines reliably. The authors present five interrelated topic areas that are essential to expanding the value provided to those performing computational science.

  12. High-temperature acoustic test facilities and methods

    NASA Astrophysics Data System (ADS)

    Pearson, Jerome

    1994-09-01

    The Wright Laboratory is the Air Force center for air vehicles, responsible for developing advanced technology and incorporating it into new flight vehicles and for continuous technological improvement of operational air vehicles. Part of that responsibility is the problem of acoustic fatigue. With the advent of jet aircraft in the 1950's, acoustic fatigue of aircraft structure became a significant problem. In the 1960's the Wright Laboratory constructed the first large acoustic fatigue test facilities in the United States, and the laboratory has been a dominant factor in high-intensity acoustic testing since that time. This paper discusses some of the intense environments encountered by new and planned Air Force flight vehicles, and describes three new acoustic test facilities of the Wright Laboratory designed for testing structures in these dynamic environments. These new test facilities represent the state of the art in high-temperature, high-intensity acoustic testing and random fatigue testing. They will allow the laboratory scientists and engineers to test the new structures and materials required to withstand the severe environments of captive-carry missiles, augmented lift wings and flaps, exhaust structures of stealth aircraft, and hypersonic vehicle structures well into the twenty-first century.

  13. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect

    Shiang, Joseph

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  14. High Purity Germanium Gamma-PHA Assay of Uranium Scrap Cans Used in 321-M Facility

    NASA Astrophysics Data System (ADS)

    Salaymeh, S. R.; Dewberry, R. A.; Casella, V.

    2001-12-01

    The Analytical Development Section of SRTC was requested by the Facilities Disposition Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The facility also includes the 324-M storage building and the passageway connecting it to 321-M. The results of the holdup assays are essential for determining compliance with the Solid Waste's Waste Acceptance Criteria, Material Control & Accountability, and to meet criticality safety controls. This report describes and documents the use of a portable HPGe detector and EG&G DART system that contains a high voltage power supply, signal processing electronics, a personal computer with Gamma-Vision software, and space to store and manipulate multiple 4096-channel gamma-ray spectra to assay for 235U content. The system was used to assay a large number of scrap cans used to store highly enriched uranium (HEU) chips and filings. This report includes a description of two efficiency calibration configurations and also the results of the assay. A description of the quality control checks is included as well.

  15. Efficiency of private and public primary health facilities accredited by the National Health Insurance Authority in Ghana.

    PubMed

    Alhassan, Robert Kaba; Nketiah-Amponsah, Edward; Akazili, James; Spieker, Nicole; Arhinful, Daniel Kojo; Rinke de Wit, Tobias F

    2015-01-01

    Despite improvements in a number of health outcome indicators partly due to the National Health Insurance Scheme (NHIS), Ghana is unlikely to attain all its health-related millennium development goals before the end of 2015. Inefficient use of available limited resources has been cited as a contributory factor for this predicament. This study sought to explore efficiency levels of NHIS-accredited private and public health facilities; ascertain factors that account for differences in efficiency and determine the association between quality care and efficiency levels. The study is a cross-sectional survey of NHIS-accredited primary health facilities (n = 64) in two regions in southern Ghana. Data Envelopment Analysis was used to estimate technical efficiency of sampled health facilities while Tobit regression was employed to predict factors associated with efficiency levels. Spearman correlation test was performed to determine the association between quality care and efficiency. Overall, 20 out of the 64 health facilities (31 %) were optimally efficient relative to their peers. Out of the 20 efficient facilities, 10 (50 %) were Public/government owned facilities; 8 (40 %) were Private-for-profit facilities and 2 (10 %) were Private-not-for-profit/Mission facilities. Mission (Coef. = 52.1; p = 0.000) and Public (Coef. = 42.9; p = 0.002) facilities located in the Western region (predominantly rural) had higher odds of attaining the 100 % technical efficiency benchmark than those located in the Greater Accra region (largely urban). No significant association was found between technical efficiency scores of health facilities and many technical quality care proxies, except in overall quality score per the NHIS accreditation data (Coef. = -0.3158; p < 0.05) and SafeCare Essentials quality score on environmental safety for staff and patients (Coef. = -0.2764; p < 0.05) where the association was negative. The findings suggest some level of wastage of

  16. High-efficiency concentrator silicon solar cells

    SciTech Connect

    Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. . Solid-State Electronics Lab.)

    1990-11-01

    This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

  17. High efficiency quadruple junction solar cells

    NASA Astrophysics Data System (ADS)

    Bestam, R.; Aissat, A.; Vilcot, J. P.

    2016-03-01

    This work focuses on the modeling and optimization of a structure based on InGaP/InGaAs/InGaAsN/Ge for photovoltaic. In this study we took into consideration the concentration effect of alloys x (In) and y (N) on the strain, the bandgap, the absorption and structure efficiency. It has been shown that the concentration of indium varies the strain and the bandgap. These two parameters change considerably the yield. Also it optimized the effect of alloys on the total absorption of the structure. For a concentration of indium x = 0.40 and y = 0.03 we had a absorption coefficient which is equal to 2 × 106 cm-1. We have found 50% efficiency for the multi-junction structure based on In0.55Ga0.45P/In0.40Ga0.60As/In0.30Ga0.70As0.97N0.03/Ge. To achieve a reliable high efficiency multi-junction structure, we just need to optimize the concentrations of different alloys.

  18. Nanooptics for high efficient photon managment

    NASA Astrophysics Data System (ADS)

    Wyrowski, Frank; Schimmel, Hagen

    2005-09-01

    Optical systems for photon management, that is the generation of tailored electromagnetic fields, constitute one of the keys for innovation through photonics. An important subfield of photon management deals with the transformation of an incident light field into a field of specified intensity distribution. In this paper we consider some basic aspects of the nature of systems for those light transformations. It turns out, that the transversal redistribution of energy (TRE) is of central concern to achieve systems with high transformation efficiency. Besides established techniques nanostructured optical elements (NOE) are demanded to implement transversal energy redistribution. That builds a bridge between the needs of photon management, optical engineering, and nanooptics.

  19. Efficient High Pressure MixtureState Equations

    NASA Technical Reports Server (NTRS)

    Harstad, K. G.; Miller, R. S.; Bellan, J.

    1996-01-01

    A method is presented for an accurate noniterative, computationally efficient calculation of high pressure fluid mixture equations of state, especially targeted to gas turbines and rocket engines. Pressures above 1 bar and temperatures above 100 K are addressed. The method is based on curve fitting an effective reference state relative to departure funcitons formed using the Peng-Robinson cubic state equation. Fit parameters for H(sub 2), O(sub 2), N(sub 2), propane, n-heptane and methanol are given.

  20. Highly Efficient Prion Transmission by Blood Transfusion

    PubMed Central

    Andréoletti, Olivier; Litaise, Claire; Simmons, Hugh; Corbière, Fabien; Lugan, Séverine; Costes, Pierrette; Schelcher, François; Vilette, Didier; Grassi, Jacques; Lacroux, Caroline

    2012-01-01

    It is now clearly established that the transfusion of blood from variant CJD (v-CJD) infected individuals can transmit the disease. Since the number of asymptomatic infected donors remains unresolved, inter-individual v-CJD transmission through blood and blood derived products is a major public health concern. Current risk assessments for transmission of v-CJD by blood and blood derived products by transfusion rely on infectious titers measured in rodent models of Transmissible Spongiform Encephalopathies (TSE) using intra-cerebral (IC) inoculation of blood components. To address the biological relevance of this approach, we compared the efficiency of TSE transmission by blood and blood components when administrated either through transfusion in sheep or by intra-cerebral inoculation (IC) in transgenic mice (tg338) over-expressing ovine PrP. Transfusion of 200 µL of blood from asymptomatic infected donor sheep transmitted prion disease with 100% efficiency thereby displaying greater virulence than the transfusion of 200 mL of normal blood spiked with brain homogenate material containing 103ID50 as measured by intracerebral inoculation of tg338 mice (ID50 IC in tg338). This was consistent with a whole blood titer greater than 103.6 ID50 IC in tg338 per mL. However, when the same blood samples were assayed by IC inoculation into tg338 the infectious titers were less than 32 ID per mL. Whereas the transfusion of crude plasma to sheep transmitted the disease with limited efficacy, White Blood Cells (WBC) displayed a similar ability to whole blood to infect recipients. Strikingly, fixation of WBC with paraformaldehyde did not affect the infectivity titer as measured in tg338 but dramatically impaired disease transmission by transfusion in sheep. These results demonstrate that TSE transmission by blood transfusion can be highly efficient and that this efficiency is more dependent on the viability of transfused cells than the level of infectivity measured by IC

  1. Broad-beam, high current, metal ion implantation facility

    SciTech Connect

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs.

  2. Conceptual definition of a high voltage power supply test facility

    NASA Technical Reports Server (NTRS)

    Biess, John J.; Chu, Teh-Ming; Stevens, N. John

    1989-01-01

    NASA Lewis Research Center is presently developing a 60 GHz traveling wave tube for satellite cross-link communications. The operating voltage for this new tube is - 20 kV. There is concern about the high voltage insulation system and NASA is planning a space station high voltage experiment that will demonstrate both the 60 GHz communications and high voltage electronics technology. The experiment interfaces, requirements, conceptual design, technology issues and safety issues are determined. A block diagram of the high voltage power supply test facility was generated. It includes the high voltage power supply, the 60 GHz traveling wave tube, the communications package, the antenna package, a high voltage diagnostics package and a command and data processor system. The interfaces with the space station and the attached payload accommodations equipment were determined. A brief description of the different subsystems and a discussion of the technology development needs are presented.

  3. Sandia National Laboratories' new high level acoustic test facility

    SciTech Connect

    Rogers, J. D.; Hendrick, D. M.

    1989-01-01

    A high intensity acoustic test facility has been designed and is under construction at Sandia National Laboratories in Albuquerque, NM. The chamber is designed to provide an acoustic environment of 154dB (re 20 {mu}Pa) overall sound pressure level over the bandwidth of 50 Hz to 10,000 Hz. The chamber has a volume of 16,000 cubic feet with interior dimensions of 21.6 ft {times} 24.6 ft {times} 30 ft. The construction of the chamber should be complete by the summer of 1990. This paper discusses the design goals and constraints of the facility. The construction characteristics are discussed in detail, as are the acoustic performance design characteristics. The authors hope that this work will help others in designing acoustic chambers. 12 refs., 6 figs.

  4. Vacuum MOCVD fabrication of high efficience cells

    NASA Technical Reports Server (NTRS)

    Partain, L. D.; Fraas, L. M.; Mcleod, P. S.; Cape, J. A.

    1985-01-01

    Vacuum metal-organic-chemical-vapor-deposition (MOCVD) is a new fabrication process with improved safety and easier scalability due to its metal rather than glass construction and its uniform multiport gas injection system. It uses source materials more efficiently than other methods because the vacuum molecular flow conditions allow the high sticking coefficient reactants to reach the substrates as undeflected molecular beams and the hot chamber walls cause the low sticking coefficient reactants to bounce off the walls and interact with the substrates many times. This high source utilization reduces the materials costs power device and substantially decreases the amounts of toxic materials that must be handled as process effluents. The molecular beams allow precise growth control. With improved source purifications, vacuum MOCVD has provided p GaAs layers with 10-micron minority carrier diffusion lengths and GaAs and GaAsSb solar cells with 20% AMO efficiencies at 59X and 99X sunlight concentration ratios. Mechanical stacking has been identified as the quickest, most direct and logical path to stacked multiple-junction solar cells that perform better than the best single-junction devices. The mechanical stack is configured for immediate use in solar arrays and allows interconnections that improve the system end-of-life performance in space.

  5. Efficient high-permeability fracturing offshore

    SciTech Connect

    Phillipi, M.; Farabee, M.

    1996-12-31

    Offshore operators can more efficiently and effectively perform high-permeability and conventional hydraulic fracture treatments by blending treatment slurries under microprocessor control, adding undiluted acid on-the-fly, and altering sand concentrations and other slurry properties instantaneously. A two-skid system has been designed with these considerations in mind. The system, which can be shipped efficiently in ISO containers, has been tested on fluids up to 210-cp viscosity and can step or ramp sand concentrations up to a maximum of 20 lb/gal. All additives, including acid treatments, are added on-the-fly; leftover additives and acids may be stored for future jobs. The system may be applied in most conditions, including offshore wells requiring conventional or high-permeability fracture treatments and certain land-based wells in remote areas where a compact skid is needed. Three significant benefits have resulted from using the compact-skid system: offshore operators have been able to ship the skid system at 20% of shipping costs of non-ISO equipment; on-the-fly mixing has prevented material waste associated with batch-mixing; and volumes pumped on actual jobs have closely matched job designs. Data have been collected from several Gulf of Mexico jobs run with the two-part skid system that has been designed for conducting hydraulic fracture treatments from offshore rigs.

  6. HITRAP: A Facility for Experiments with Trapped Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Quint, W.; Dilling, J.; Djekic, S.; Häffner, H.; Hermanspahn, N.; Kluge, H.-J.; Marx, G.; Moore, R.; Rodriguez, D.; Schönfelder, J.; Sikler, G.; Valenzuela, T.; Verdú, J.; Weber, C.; Werth, G.

    2001-01-01

    HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogen-like ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at well-defined low energies (eV/u), high-accuracy measurements to determine the g-factor of the electron bound in a hydrogen-like heavy ion and the atomic binding energies of few-electron systems, laser spectroscopy of HFS transitions and X-ray spectroscopy.

  7. High Performance Computing Facility Operational Assessment, CY 2011 Oak Ridge Leadership Computing Facility

    SciTech Connect

    Baker, Ann E; Barker, Ashley D; Bland, Arthur S Buddy; Boudwin, Kathlyn J.; Hack, James J; Kendall, Ricky A; Messer, Bronson; Rogers, James H; Shipman, Galen M; Wells, Jack C; White, Julia C; Hudson, Douglas L

    2012-02-01

    Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.4 billion core hours in calendar year (CY) 2011 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Users reported more than 670 publications this year arising from their use of OLCF resources. Of these we report the 300 in this review that are consistent with guidance provided. Scientific achievements by OLCF users cut across all range scales from atomic to molecular to large-scale structures. At the atomic scale, researchers discovered that the anomalously long half-life of Carbon-14 can be explained by calculating, for the first time, the very complex three-body interactions between all the neutrons and protons in the nucleus. At the molecular scale, researchers combined experimental results from LBL's light source and simulations on Jaguar to discover how DNA replication continues past a damaged site so a mutation can be repaired later. Other researchers combined experimental results from ORNL's Spallation Neutron Source and simulations on Jaguar to reveal the molecular structure of ligno-cellulosic material used in bioethanol production. This year, Jaguar has been used to do billion-cell CFD calculations to develop shock wave compression turbo machinery as a means to meet DOE goals for reducing carbon sequestration costs. General Electric used Jaguar to calculate the unsteady flow through turbo machinery to learn what efficiencies the traditional steady flow assumption is hiding from designers. Even a 1% improvement in turbine design can save the nation billions of gallons of

  8. Simple Motor Control Concept Results High Efficiency at High Velocities

    NASA Astrophysics Data System (ADS)

    Starin, Scott; Engel, Chris

    2013-09-01

    The need for high velocity motors in space applications for reaction wheels and detectors has stressed the limits of Brushless Permanent Magnet Motors (BPMM). Due to inherent hysteresis core losses, conventional BPMMs try to balance the need for torque verses hysteresis losses. Cong-less motors have significantly less hysteresis losses but suffer from lower efficiencies. Additionally, the inherent low inductance in cog-less motors result in high ripple currents or high switching frequencies, which lowers overall efficiency and increases performance demands on the control electronics.However, using a somewhat forgotten but fully qualified technology of Isotropic Magnet Motors (IMM), extremely high velocities may be achieved at low power input using conventional drive electronics. This paper will discuss the trade study efforts and empirical test data on a 34,000 RPM IMM.

  9. High Efficiency Targets for High Gain Inertial Confinement Fusion.

    DTIC Science & Technology

    1986-09-19

    Inertial Confinement Fusion JOHN H. GARDNER AND STEPHEN E. BODNER Laboratory for Computational Physics DTIC CD ELECTEf OCT 241986 j NU Aproedfr...81425 " 11 TITLE (include Security Classification) High Efficiency Targets for High Gain Inertial Confinement Fusion 12. PERSONAL AUTHOR(S) Gardner, John ...ArearCod) 22c OFFICE SYMBOL % John H. Gardner (202) 767-3055 Code 4040 DO FORM 1473. 84 MAR 83 APR edtion may be used until exhausted SECURITY

  10. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In

  11. A minimum data set of water quality parameters to assess and compare treatment efficiency of stormwater facilities.

    PubMed

    Ingvertsen, Simon Toft; Jensen, Marina Bergen; Magid, Jakob

    2011-01-01

    Urban stormwater runoff is often of poor quality, impacting aquatic ecosystems and limiting the use of stormwater runoff for recreational purposes. Several stormwater treatment facilities (STFs) are in operation or at the pilot testing stage, but their efficiencies are neither well documented nor easily compared due to the complex contaminant profile of stormwater and the highly variable runoff hydrograph. On the basis of a review of available data sets on urban stormwater quality and environmental contaminant behavior, we suggest a few carefully selected contaminant parameters (the minimum data set) to be obligatory when assessing and comparing the efficiency of STFs. Consistent use of the minimum data set in all future monitoring schemes for STFs will ensure broad-spectrum testing at low costs and strengthen comparability among facilities. The proposed minimum data set includes: (i) fine fraction of suspended solids (<63 μm), (ii) total concentrations of zinc and copper, (iii) total concentrations of phenanthrene, fluoranthene, and benzo(b,k)fluoranthene, and (iv) total concentrations of phosphorus and nitrogen. Indicator pathogens and other specific contaminants (i.e., chromium, pesticides, phenols) may be added if recreational or certain catchment-scale objectives are to be met. Issues that need further investigation have been identified during the iterative process of developing the minimum data set. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. High-Efficiency Microwave Power Amplifier

    NASA Technical Reports Server (NTRS)

    Sims, Williams H.

    2005-01-01

    A high-efficiency power amplifier that operates in the S band (frequencies of the order of a few gigahertz) utilizes transistors operating under class-D bias and excitation conditions. Class-D operation has been utilized at lower frequencies, but, until now, has not been exploited in the S band. Nominally, in class D operation, a transistor is switched rapidly between "on" and "off" states so that at any given instant, it sustains either high current or high voltage, but not both at the same time. In the ideal case of zero "on" resistance, infinite "off" resistance, zero inductance and capacitance, and perfect switching, the output signal would be a perfect square wave. Relative to the traditional classes A, B, and C of amplifier operation, class D offers the potential to achieve greater power efficiency. In addition, relative to class-A amplifiers, class-D amplifiers are less likely to go into oscillation. In order to design this amplifier, it was necessary to derive mathematical models of microwave power transistors for incorporation into a larger mathematical model for computational simulation of the operation of a class-D microwave amplifier. The design incorporates state-of-the-art switching techniques applicable only in the microwave frequency range. Another major novel feature is a transmission-line power splitter/combiner designed with the help of phasing techniques to enable an approximation of a square-wave signal (which is inherently a wideband signal) to propagate through what would, if designed in a more traditional manner, behave as a more severely band-limited device (see figure). The amplifier includes an input, a driver, and a final stage. Each stage contains a pair of GaAs-based field-effect transistors biased in class D. The input signal can range from -10 to +10 dBm into a 50-ohm load. The table summarizes the performances of the three stages

  13. High Performance Rh2P Electrocatalyst for Efficient Water Splitting.

    PubMed

    Duan, Haohong; Li, Dongguo; Tang, Yan; He, Yang; Fang, Ji Shu; Wang, Rongyue; Lv, Haifeng; Lopes, Pietro P; Paulikas, Arvydas P; Li, Haoyi; Mao, Scott X; Wang, Chong-Min; Markovic, Nenad M; Li, Jun; Stamenkovic, Vojislav R; Li, Yadong

    2017-03-26

    Search for active, stable and cost-efficient electrocataltysts for hydrogen production via water splitting could make substantial impact to the energy technologies that do not rely on fossil fuels. Here we report the synthesis of rhodium phosphide electrocatalyst with low metal loading in the form of nanocubes (NCs) dispersed in high surface area carbon (Rh2P/C) by a facile solvo-thermal approach. The Rh2P/C exhibit remarkable performance for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) compared to Rh/C and Pt/C catalysts. The atomic structure of the Rh2P NCs was directly observed by annular dark-field scanning transmission electron microscopy (ADF-STEM), which revealed phosphorous-rich outermost atomic layer. Combined experimental and computational studies suggest that surface phosphorous plays crucial role in determining the robust catalyst properties.

  14. Screw pumps provide high efficiency in transport of Orinoco bitumen

    SciTech Connect

    Brennan, J.R.

    1995-03-01

    One of the world`s largest known deposits of extra natural bitumen is located in the Orinoco River basin of eastern Venezuela. Production and transportation of an emulsion of bitumen and water is one of the major projects being directed by Petroleos de Venezuela S.A. This paper reviews the pump selection options considered in transporting this bitumen to a viable processing facility. The three pump types evaluated were centrifugal, reciprocating, or rotary screw. Performance and cost parameters are evaluated and the screw pump was determined to be the most economical, high performance choice. The paper goes on to describe the installation of the main transport lines and efficiency of these new pumps.

  15. High Purity Germanium Gamma-PHA Assay of Uranium Storage Pigs for 321-M Facility

    SciTech Connect

    Dewberry, R.A.

    2001-09-18

    The Analytical Development Section of SRTC was requested by the Facilities Disposition Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The facility also includes the 324-M storage building and the passageway connecting it to 321-M. The results of the holdup assays are essential for determining compliance with the Solid Waste's Waste Acceptance Criteria, Material Control and Accountability, and to meet criticality safety controls. This report describes and documents the use of a portable HPGe detector and EG and G Dart system that contains a high voltage power supply, signal processing electronics, a personal computer with Gamma-Vision software, and space to store and manipulate multiple 4096-channel g-ray spectra to assay for 235U content in 268 uranium shipping and storage pigs. This report includes a description of three efficiency calibration configurations and also the results of the assay. A description of the quality control checks is included as well.

  16. Highly efficient polarization control using subwavelength high contrast transmitarrays

    NASA Astrophysics Data System (ADS)

    Arbabi, Amir; Horie, Yu; Bagheri, Mahmood; Faraon, Andrei

    2015-02-01

    We report efficient wave plates with different retardations and orientations of fast axes realized using transmitarrays composed of a periodic arrangement of amorphous silicon elliptical cylinders on glass. We show that novel polarization devices which locally rotate the polarization by different angles while preserving the wavefront can be demonstrated using such a high contrast transmitarray. We present design, fabrication and experimental characterization results for near infrared transmissive wave retarders with efficiencies in excess of 90%, and discuss the potential applications of atwill local polarization control enabled by this technology.

  17. High Purity Germanium Gamma-PHA Assay of Uranium in Scrap Cans for 321-M Facility

    SciTech Connect

    Salaymeh, S.R.

    2002-03-22

    The Analytical Development Section of SRTC was requested by the Facilities Disposition Division to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. This report includes a description of two efficiency calibration configurations and also the results of the assay. A description of the quality control checks is included as well.

  18. Efficient Compression of High Resolution Climate Data

    NASA Astrophysics Data System (ADS)

    Yin, J.; Schuchardt, K. L.

    2011-12-01

    resolution climate data can be massive. Those data can consume a huge amount of disk space for storage, incur significant overhead for outputting data during simulation, introduce high latency for visualization and analysis, and may even make interactive visualization and analysis impossible given the limit of the data that a conventional cluster can handle. These problems can be alleviated by with effective and efficient data compression techniques. Even though HDF5 format supports compression, previous work has mainly focused on employ traditional general purpose compression schemes such as dictionary coder and block sorting based compression scheme. Those compression schemes mainly focus on encoding repeated byte sequences efficiently and are not well suitable for compressing climate data consist mainly of distinguished float point numbers. We plan to select and customize our compression schemes according to the characteristics of high-resolution climate data. One observation on high resolution climate data is that as the resolution become higher, values of various climate variables such as temperature and pressure, become closer in nearby cells. This provides excellent opportunities for predication-based compression schemes. We have performed a preliminary estimation of compression ratios of a very simple minded predication-based compression ratio in which we compute the difference between current float point number with previous float point number and then encoding the exponent and significance part of the float point number with entropy-based compression scheme. Our results show that we can achieve higher compression ratios between 2 and 3 in lossless compression, which is significantly higher than traditional compression algorithms. We have also developed lossy compression with our techniques. We can achive orders of magnitude data reduction while ensure error bounds. Moreover, our compression scheme is much more efficient and introduces much less overhead

  19. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    SciTech Connect

    Alok Srivatava

    2007-03-31

    This is the Final Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet (UV) emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. Our work started by investigating through modeling calculations the requirement for the particle size of the NCP. Our work to develop suitable nanocrystalline phosphors started with the known oxide quantum splitting and UV emitting phosphors. We demonstrated several synthesis techniques for the production of high quality nanocrystalline materials that crystallizes in the desired phase and with the desired particle size. In collaboration with our subcontractor we demonstrated the feasibility for the manufacture of NC phosphors. We also demonstrated novel techniques of coating the NCP on the surface of micron sized phosphors. Our chief achievement pertains to the successful testing of the coated hybrid phosphor systems in linear fluorescent lamps. In linear fluorescent lamp tests, we have demonstrated up to 7% increase in the efficacy of hybrid phosphors over the conventional (uncoated) phosphors. We have also demonstrated the improvement in the lumen maintenance of the coated phosphors. A hybrid phosphor system based on the commercial red emitting phosphor, Y{sub 2}O{sub 3}:Eu{sup 3+} did not show the anticipated improvement in lamp efficacy. We explored the reasons for this observation

  20. High Vacuum Creep Facility in the Materials Processing Laboratory

    NASA Image and Video Library

    1973-01-21

    Technicians at work in the Materials Processing Laboratory’s Creep Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The technicians supported the engineers’ studies of refractory materials, metals, and advanced superalloys. The Materials Processing Laboratory contained laboratories and test areas equipped to prepare and develop these metals and materials. The ultra-high vacuum lab, seen in this photograph, contained creep and tensile test equipment. Creep testing is used to study a material’s ability to withstand long durations under constant pressure and temperatures. The equipment measured the strain over a long period of time. Tensile test equipment subjects the test material to strain until the material fails. The two tests were used to determine the strength and durability of different materials. The Materials Processing Laboratory also housed arc and electron beam melting furnaces, a hydraulic vertical extrusion press, compaction and forging equipment, and rolling mills and swagers. There were cryogenic and gas storage facilities and mechanical and oil diffusion vacuum pumps. The facility contained both instrumental and analytical chemistry laboratories for work on radioactive or toxic materials and the only shop to machine toxic materials in the Midwest.

  1. High Reynolds number pump facility for cavitation research

    NASA Astrophysics Data System (ADS)

    Farrell, K. J.; McBride, M. W.; Billet, M. L.

    1987-09-01

    A High Reynolds Number Pump Facility (HIREP) designed for cavitation studies in the bladetip/endwall region of an axial flow pump is described. The facility consists of a 1.07-m diameter pump state driven by a 1.22-m diameter downstream turbine. An incompressible Reynolds Number of 6,000,000 at the rotor tip is achievable. The two units rotate on a common shaft and operate in the 1.22-m diameter test section of the Garfield Thomas Water Tunnel of the Applied Research Laboratory at Penn State. The facility was designed to accommodate laser velocimeter (LV) measurements in the pump stage, radially traversing five-hole probes in every stage, and a number of transducers in the rotating frame of reference: steady and unsteady pressure transducers force and torque cells, and accelerometers. The latter capability is provided by a slip-ring unit and hollow blade passage ways for conductors from the instrumentation in rotor-tip region. An optical quality window for LV measurements and other windows and ports are available for visual observation and instrumentation access.

  2. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    SciTech Connect

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

    2009-04-01

    This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  3. Highly Efficient Vector-Inversion Pulse Generators

    NASA Technical Reports Server (NTRS)

    Rose, Franklin

    2004-01-01

    Improved transmission-line pulse generators of the vector-inversion type are being developed as lightweight sources of pulsed high voltage for diverse applications, including spacecraft thrusters, portable x-ray imaging systems, impulse radar systems, and corona-discharge systems for sterilizing gases. In this development, more than the customary attention is paid to principles of operation and details of construction so as to the maximize the efficiency of the pulse-generation process while minimizing the sizes of components. An important element of this approach is segmenting a pulse generator in such a manner that the electric field in each segment is always below the threshold for electrical breakdown. One design of particular interest, a complete description of which was not available at the time of writing this article, involves two parallel-plate transmission lines that are wound on a mandrel, share a common conductor, and are switched in such a manner that the pulse generator is divided into a "fast" and a "slow" section. A major innovation in this design is the addition of ferrite to the "slow" section to reduce the size of the mandrel needed for a given efficiency.

  4. Tips for selecting highly efficient cyclones

    SciTech Connect

    Amrein, D.L.

    1995-05-01

    Cyclone dust collectors have been used--and misused--all over the world for more than 100 years. One reason for the misuse is a common perception among users that all cyclones are created equal--that is, as long as a cyclone resembles a cylinder with an attached cone, it will do its job. However, to maximize separation efficiency in a specific application requires a precise cyclone design, engineered to exact fit many possible variables. A well-designed cyclone, for instance, can achieve efficiencies as high s 99.9+% when operated properly within the envelope of its specifications. Nonetheless, cyclones are often used only as first-stage filters for performing crude separations, with final collections being carried out by more-costly baghouses and scrubbers. Compared with baghouses and scrubbers, cyclones have two important considerations in their favor. One, they are almost invariably safer--in terms of the potential for generating fires and explosions--than fabric filters. Second, cyclones have lower maintenance costs since there are no filter media to replace. The paper discusses the operation, design, and troubleshooting of cyclones.

  5. A ternary TiO2/WO3/graphene nanocomposite adsorbent: facile preparation and efficient removal of Rhodamine B

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-qiang; Li, Xiao-hui; Lü, Jie; Si, Chong-dian; Liu, Guang-jun; Gao, Hong-tao; Wang, Pi-bo

    2014-08-01

    Ternary TiO2/WO3/graphene (TWG) nanocomposites were prepared by a facile salt-ultrasonic assisted hydrothermal method. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption. Both anatase TiO2 and orthorhombic WO3 formed in the nanocomposites, along with a highly disordered overlay of individual graphene nanosheets. Polyhedral and spherical TiO2 and WO3 nanoparticles of uniform size 10-30 nm were densely anchored to the graphene sheets. The maximum specific surface area of the products was 144.59 m2·g-1. The products showed clear abilities for the removal of Rhodamine B in the absence of illumination. Furthermore, the adsorption activity of the products exhibited only a slight decrease after three successive cycles. The results demonstrate that the ternary nanocomposites could be used as a high-efficiency adsorbent for the removal of environmental contaminants.

  6. High efficiency Brayton cycles using LNG

    DOEpatents

    Morrow, Charles W.

    2006-04-18

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  7. High efficiency porphyrin sensitized mesoscopic solar cells

    NASA Astrophysics Data System (ADS)

    Giordano, Fabrizio; Yi, Chenyi; Teuscher, Joël.; Zakeeruddin, Shaik M.; Grätzel, Michael

    2014-10-01

    Dye-Sensitized Solar Cells (DSSC) represents a reliable technology, ready for the market and able to compete with silicon solar cells for specific fields of application. Porphyrin dyes allow reaching high power conversion efficiency in conjunction with cobalt redox electrolytes due to larger open circuit potentials. The bigger size of the cobalt complexes compared to standard iodide/triiodide redox couple hampers its percolation through the meso-porous TiO2 network, thus impairing the regeneration process. In case of porphyrin dyes mass transport problems in the electrolyte need to be carefully handled, due to the large size of the sensitizing molecule and the bulky cobalt complexes. Herein we report the study of structural variations on porphyrin sensitizers and their influence on the DSSC performance with cobalt based redox electrolyte.

  8. X-29 High Alpha Test in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Underwood, Pamela J.; Owens, Lewis R.; Wahls, Richard A.; Williams, Susan

    2003-01-01

    This paper describes the X-29A research program at the National Transonic Facility. This wind tunnel test leveraged the X-29A high alpha flight test program by enabling ground-to-flight correlation studies with an emphasis on Reynolds number effects. The background and objectives of this test program, as well as the comparison of high Reynolds number wind tunnel data to X-29A flight test data are presented. The effects of Reynolds number on the forebody pressures at high angles of attack are also presented. The purpose of this paper is to document this test and serve as a reference for future ground-to-flight correlation studies, and high angle-of-attack investigations. Good ground-to-flight correlations were observed for angles of attack up to 50 deg, and Reynolds number effects were also observed.

  9. A high-efficiency superhydrophobic plasma separator.

    PubMed

    Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M; Yang, Shu; Bau, Haim H

    2016-02-07

    To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device's superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a "blood in-plasma out" capability, consistently extracting 65 ± 21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of >84.5 ± 25.8%. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method.

  10. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Wang, Yi-Qing; Fan, Zhen; Taft, Charles; Maaref, Shahin; Bailey, Sheila (Technical Monitor)

    2003-01-01

    Solar energy is a renewable, nonpolluting, and most abundant energy source for human exploration of a remote site or outer space. In order to generate appreciable electrical power in space or on the earth, it is necessary to collect sunlight from large areas and with high efficiency due to the low density of sunlight. Future organic or polymer (plastic) solar cells appear very attractive due to their unique features such as light weight, flexible shape, tunability of energy band-gaps via versatile molecular or supramolecular design, synthesis, processing and device fabrication schemes, and much lower cost on large scale industrial production. It has been predicted that supramolecular and nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration due to improved electronic ultrastructure and morphology in comparison to polymer composite system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel block copolymer system containing donor and acceptor blocks covalently attached. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (RO-PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (SF-PPV). The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block has a strong PL emission at around 560 nm, and acceptor block has a strong PL emission at around 520 nm, the PL emissions of final block copolymers are severely quenched. This verifies the expected electron transfer and charge separation due to interfaces of donor and acceptor nano phase separated blocks. The system therefore has potential for variety light harvesting applications, including high efficient photovoltaic applications.

  11. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Wang, Yi-Qing; Fan, Zhen; Taft, Charles; Maaref, Shahin; Bailey, Sheila (Technical Monitor)

    2003-01-01

    Solar energy is a renewable, nonpolluting, and most abundant energy source for human exploration of a remote site or outer space. In order to generate appreciable electrical power in space or on the earth, it is necessary to collect sunlight from large areas and with high efficiency due to the low density of sunlight. Future organic or polymer (plastic) solar cells appear very attractive due to their unique features such as light weight, flexible shape, tunability of energy band-gaps via versatile molecular or supramolecular design, synthesis, processing and device fabrication schemes, and much lower cost on large scale industrial production. It has been predicted that supramolecular and nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration due to improved electronic ultrastructure and morphology in comparison to polymer composite system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel block copolymer system containing donor and acceptor blocks covalently attached. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (RO-PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (SF-PPV). The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block has a strong PL emission at around 560 nm, and acceptor block has a strong PL emission at around 520 nm, the PL emissions of final block copolymers are severely quenched. This verifies the expected electron transfer and charge separation due to interfaces of donor and acceptor nano phase separated blocks. The system therefore has potential for variety light harvesting applications, including high efficient photovoltaic applications.

  12. A High-Efficiency Superhydrophobic Plasma Separator

    PubMed Central

    Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G.; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M.; Yang, Shu; Bau, Haim H.

    2016-01-01

    To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device’s superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a “blood in-plasma out” capability, consistently extracting 65±21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of > 84.5 ± 25.8 %. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method. PMID:26732765

  13. Open air demolition of facilities highly contaminated with plutonium

    SciTech Connect

    Lloyd, E.R.; Lackey, M.B.; Stevens, J.M.; Zinsli, L.C.

    2007-07-01

    The demolition of highly contaminated plutonium buildings usually is a long and expensive process that involves decontaminating the building to near free- release standards and then using conventional methods to remove the structure. It doesn't, however, have to be that way. Fluor has torn down buildings highly contaminated with plutonium without excessive decontamination. By removing the select source term and fixing the remaining contamination on the walls, ceilings, floors, and equipment surfaces; open-air demolition is not only feasible, but it can be done cheaper, better (safer), and faster. Open-air demolition techniques were used to demolish two highly contaminated buildings to slab-on-grade. These facilities on the Department of Energy's Hanford Site were located in, or very near, compounds of operating nuclear facilities that housed hundreds of people working on a daily basis. To keep the facilities operating and the personnel safe, the projects had to be creative in demolishing the structures. Several key techniques were used to control contamination and keep it within the confines of the demolition area: spraying fixatives before demolition; applying fixative and misting with a fine spray of water as the buildings were being taken down; and demolishing the buildings in a controlled and methodical manner. In addition, detailed air-dispersion modeling was done to establish necessary building and meteorological conditions and to confirm the adequacy of the proposed methods. Both demolition projects were accomplished without any spread of contamination outside the modest buffer areas established for contamination control. Furthermore, personnel exposure to radiological and physical hazards was significantly reduced by using heavy equipment rather than 'hands on' techniques. (authors)

  14. OPEN AIR DEMOLITION OF FACILITIES HIGHLY CONTAMINATED WITH PLUTONIUM

    SciTech Connect

    LLOYD, E.R.

    2007-05-31

    The demolition of highly contaminated plutonium buildings usually is a long and expensive process that involves decontaminating the building to near free- release standards and then using conventional methods to remove the structure. It doesn't, however, have to be that way. Fluor has torn down buildings highly contaminated with plutonium without excessive decontamination. By removing the select source term and fixing the remaining contamination on the walls, ceilings, floors, and equipment surfaces; open-air demolition is not only feasible, but it can be done cheaper, better (safer), and faster. Open-air demolition techniques were used to demolish two highly contaminated buildings to slab-on-grade. These facilities on the Department of Energy's Hanford Site were located in, or very near, compounds of operating nuclear facilities that housed hundreds of people working on a daily basis. To keep the facilities operating and the personnel safe, the projects had to be creative in demolishing the structures. Several key techniques were used to control contamination and keep it within the confines of the demolition area: spraying fixatives before demolition; applying fixative and misting with a fine spray of water as the buildings were being taken down; and demolishing the buildings in a controlled and methodical manner. In addition, detailed air-dispersion modeling was done to establish necessary building and meteorological conditions and to confirm the adequacy of the proposed methods. Both demolition projects were accomplished without any spread of contamination outside the modest buffer areas established for contamination control. Furthermore, personnel exposure to radiological and physical hazards was significantly reduced by using heavy equipment rather than ''hands on'' techniques.

  15. Facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An expansion of medical data collection facilities was necessary to implement the Extended Duration Orbiter Medical Project (EDOMP). The primary objective of the EDOMP was to ensure the capability of crew members to reenter the Earth's atmosphere, land, and egress safely following a 16-day flight. Therefore, access to crew members as soon as possible after landing was crucial for most data collection activities. Also, with the advent of EDOMP, the quantity of investigations increased such that the landing day maximum data collection time increased accordingly from two hours to four hours. The preflight and postflight testing facilities at the Johnson Space Center (JSC) required only some additional testing equipment and minor modifications to the existing laboratories in order to fulfill EDOMP requirements. Necessary modifications at the landing sites were much more extensive.

  16. High efficient ZnO nanowalnuts photocatalyst: A case study

    SciTech Connect

    Yan, Feng; Zhang, Siwen; Liu, Yang; Liu, Hongfeng; Qu, Fengyu; Cai, Xue; Wu, Xiang

    2014-11-15

    Highlights: • Walnut-like ZnO nanostructures are synthesized through a facile hydrothermal method. • Morphologies and microstructures of the as-obtained ZnO products were investigated. • The photocatalytic results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. - Abstract: Walnut-like ZnO nanostructures are successfully synthesized through a facile hydrothermal method. The structure and morphology of the as-synthesized products were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The photocatalytic properties of ZnO nanowalnuts are investigated by photodegradating several organic dyes, such as Congo red (CR), methyl orange (MO) and eosin red aqueous solutions under UV irradiation, respectively. The results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. In addition, eosin red and Congo red (CR) aqueous solution degradation experiments are also conducted in the same condition, respectively. It showed that ZnO nanowalnuts represent high photocatalytic activities with a degradation efficiency of 87% for CR with 115 min of irradiation and 97% for eosin red with 55 min of irradiation. The reported ZnO products may be promising candidates as the photocatalysts in waste water treatment.

  17. The GALATEA test-facility for high purity germanium detectors

    NASA Astrophysics Data System (ADS)

    Abt, I.; Caldwell, A.; Dönmez, B.; Garbini, L.; Irlbeck, S.; Majorovits, B.; Palermo, M.; Schulz, O.; Seitz, H.; Stelzer, F.

    2015-05-01

    GALATEA is a test facility designed to investigate bulk and surface effects in high purity germanium detectors. A vacuum tank houses a cold volume with the detector inside. A system of three precision motorized stages allows an almost complete scan of the detector. The main feature of GALATEA is that there is no material between source and detector. This allows the usage of alpha and beta sources to study surface effects. A 19-fold segmented true-coaxial germanium detector was used for commissioning. A first analysis of data obtained with an alpha source is presented here.

  18. Efficiency of antenatal care and childbirth services in selected primary health care facilities in rural Tanzania: a cross-sectional study

    PubMed Central

    2014-01-01

    Background Cost studies are paramount for demonstrating how resources have been spent and identifying opportunities for more efficient use of resources. The main objective of this study was to assess the actual dimension and distribution of the costs of providing antenatal care (ANC) and childbirth services in selected rural primary health care facilities in Tanzania. In addition, the study analyzed determining factors of service provision efficiency in order to inform health policy and planning. Methods This was a retrospective quantitative cross-sectional study conducted in 11 health centers and dispensaries in Lindi and Mtwara rural districts. Cost analysis was carried out using step down cost accounting technique. Unit costs reflected efficiency of service provision. Multivariate regression analysis on the drivers of observed relative efficiency in service provision between the study facilities was conducted. Reported personnel workload was also described. Results The health facilities spent on average 7 USD per capita in 2009. As expected, fewer resources were spent for service provision at dispensaries than at health centers. Personnel costs contributed a high approximate 44% to total costs. ANC and childbirth consumed approximately 11% and 12% of total costs; and 8% and 10% of reported service provision time respectively. On average, unit costs were rather high, 16 USD per ANC visit and 79.4 USD per childbirth. The unit costs showed variation in relative efficiency in providing the services between the health facilities. The results showed that efficiency in ANC depended on the number of staff, structural quality of care, process quality of care and perceived quality of care. Population-staff ratio and structural quality of basic emergency obstetric care services highly influenced childbirth efficiency. Conclusions Differences in the efficiency of service provision present an opportunity for efficiency improvement. Taking into consideration client

  19. Supporting facilities for synchrotron high-pressure high/low temperature research at HPCAT, APS

    NASA Astrophysics Data System (ADS)

    Sinogeikin, S. V.; Rod, E.; Kenney-Benson, C.; Shen, G.

    2012-12-01

    High Pressure Collaborative Access Team (HPCAT) is dedicated to advancing cutting-edge, multidisciplinary, high-pressure science and technology using synchrotron radiation at Sector 16 of the Advanced Photon Source (APS) of Argonne National Laboratory. At HPCAT an array of novel x-ray diffraction and spectroscopic techniques has been integrated with high pressure and extreme temperature instrumentation. Over the last several years a number of supporting facilities have been developed and implemented to expand the available P-T range of the experimental conditions, increase efficiency and productivity of the beamlines, improve the quality of experimental data, and integrate additional methods of sample characterization with synchrotron investigations. A considerable effort was put into developing instrumentation which allows remote and automatic pressure control in diamond anvil cells (DACs) during synchrotron experiments. We have developed a number mechanical devices (gearboxes) for controlling pressure in DACs at a variety pressure and temperature conditions. Such devices can be used for automated data collection along predefined P-T paths. We also designed and implemented a double-diaphragm (membrane) pressure control system is capable of adopting many types of DAC and allows accurate sample pressure control at a variety of PT conditions - from cryogenic to laser heating experiments. These remote pressure control instrumentation can be easily integrated into cryostats and devices for high-temperature measurements at high pressure. In addition to existing cryogenic facilities, we have designed and implemented a variety of compact cryostats for different synchrotron techniques (powder and single crystal diffraction, inelastic scattering, etc.) The cryostats can accommodate a variety of standard and novel DACs, can be easily integrated with remote pressure control devices, and allow for high-pressure measurements at temperatures down to 2-4 K. We have designed a

  20. White LED with High Package Extraction Efficiency

    SciTech Connect

    Yi Zheng; Matthew Stough

    2008-09-30

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W{sub e} using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat

  1. Tailored Materials for High Efficiency CIDI Engines

    SciTech Connect

    Grant, G.J.; Jana, S.

    2012-03-30

    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in

  2. High-efficiency multiphoton boson sampling

    NASA Astrophysics Data System (ADS)

    Wang, Hui; He, Yu; Li, Yu-Huai; Su, Zu-En; Li, Bo; Huang, He-Liang; Ding, Xing; Chen, Ming-Cheng; Liu, Chang; Qin, Jian; Li, Jin-Peng; He, Yu-Ming; Schneider, Christian; Kamp, Martin; Peng, Cheng-Zhi; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei

    2017-06-01

    Boson sampling is considered as a strong candidate to demonstrate 'quantum computational supremacy' over classical computers. However, previous proof-of-principle experiments suffered from small photon number and low sampling rates owing to the inefficiencies of the single-photon sources and multiport optical interferometers. Here, we develop two central components for high-performance boson sampling: robust multiphoton interferometers with 99% transmission rate and actively demultiplexed single-photon sources based on a quantum dot-micropillar with simultaneously high efficiency, purity and indistinguishability. We implement and validate three-, four- and five-photon boson sampling, and achieve sampling rates of 4.96 kHz, 151 Hz and 4 Hz, respectively, which are over 24,000 times faster than previous experiments. Our architecture can be scaled up for a larger number of photons and with higher sampling rates to compete with classical computers, and might provide experimental evidence against the extended Church-Turing thesis.

  3. High efficiency diffusion molecular retention tumor targeting.

    PubMed

    Guo, Yanyan; Yuan, Hushan; Cho, Hoonsung; Kuruppu, Darshini; Jokivarsi, Kimmo; Agarwal, Aayush; Shah, Khalid; Josephson, Lee

    2013-01-01

    Here we introduce diffusion molecular retention (DMR) tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT) injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding) and RAD (control) probes were synthesized bearing DOTA (for (111) In(3+)), a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or i.v. methods was assessed by surface fluorescence, biodistribution of [(111)In] RGD and [(111)In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [(111)In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by i.v.). The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide), which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters) for radiotherapy, or the delivery of photosensitizers to tumors accessible to light.

  4. High SO2 Removal Efficiency Testing

    SciTech Connect

    Blythe, Gary

    1997-07-29

    This document provides a discussion of the technical progress on DOE/PETC project number DE-AC22-92PC91338, "High Efficiency SO2 Removal Testing", for the time period 1 April through 30 June 1997. The project involves testing at six full-scale utility flue gas desulfurization (FGD) systems to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO2 removal efficiency. The upgrades being evaluated mostly involve using performance additives in the FGD systems. The "base" project involved testing at the Tampa Electric Company's Big Bend Station. All five potential options to the base program have been exercised by DOE, involving testing at Hoosier Energy's Merom Station (Option I), Southwestern Electric Power Company's Pirkey Station (Option II), PSI Energy's Gibson Station (Option III), Duquesne Light's Elrama Station (Option IV), and New York State Electric and Gas Corporation's Kintigh Station (Option V). The originally planned testing has been completed for all six sites. However, additional testing is being conducted at the Big Bend Station. The remainder of this document is divided into four sections. Section 2, Project Summary, provides a brief overview of the status of technical efforts on this project. Section 3, Results, summarizes the outcome from technical efforts during the quarter, or results from prior quarters that have not been previously reported. In Section 4, Plans for the Next Reporting Period, an overview is provided of the technical efforts that are anticipated for the third quarter of calendar year 1997. Section 5 contains a brief acknowledgment.

  5. An efficient test facility for the Cherenkov telescope array FlashCam readout electronics production

    NASA Astrophysics Data System (ADS)

    Eisenkolb, F.; Diebold, S.; Kalkuhl, C.; Pühlhofer, G.; Santangelo, A.; Schanz, T.; Tenzer, C.

    2017-01-01

    The Cherenkov Telescope Array (CTA) is the planned next-generation instrument for ground-based gamma-ray astronomy, currently under preparation by a world-wide consortium. The FlashCam group is preparing a photomultiplier-based camera for the Medium Size Telescopes of CTA, with a fully digital Readout System (ROS). For the forthcoming mass production of a substantial number of cameras, efficient test routines for all components are currently under development. We report here on a test facility for the ROS components. A test setup and routines have been developed and an early version of that setup has successfully been used to test a significant fraction of the ROS for the FlashCam camera prototype in January 2016. The test setup with its components and interface, as well as first results, are presented here.

  6. Efficiency in reducing lost-time injuries of a nurse-based and a first-aid-based on-site medical facility.

    PubMed

    Spangenberg, Søren; Mikkelsen, Kim L; Kines, Pete; Dyreborg, Johnny

    2005-01-01

    The purpose of the study was to evaluate the efficiency of two standards for on-site medical facilities in reducing lost-time injuries during the construction of the link across the Oresund sound between Sweden and Denmark. One medical facility employed licensed nurses, who had advanced medical assistance at their disposal. The other medical facility utilized first-aid-trained watchmen. The on-site medical facilities aimed both at providing immediate medical assistance to workers subjected to occupational injuries and at reducing lost worktime. The distributions of injuries treated on-site (the worker resumed work after treatment) and injuries sent to hospitals or to specialists were compared for each type of injury and for each category of injured body part. The on-site medical facilities dealt, in particular, with the treatment of ocular injuries (21%), wounds (21%), and sprains or strains (15%). The study showed a statistically significant on-site treatment (and resume work) rate ratio of 3.3 between the nurse-based (76%) and the first-aid-based (23%) medical facility. The construction of the Oresund Link shows a need for on-site medical facilities, particularly at remote construction sites, and that it is essential that the medical personnel have both the qualifications and authorization to treat site-specific workplace injuries effectively in order to obtain high on-site treatment rates.

  7. Background field coils for the High Field Test Facility

    SciTech Connect

    Zbasnik, J.P.; Cornish, D.N.; Scanlan, R.M.; Jewell, A.M.; Leber, R.L.; Rosdahl, A.R.; Chaplin, M.R.

    1980-09-22

    The High Field Test Facility (HFTF), presently under construction at LLNL, is a set of superconducting coils that will be used to test 1-m-o.d. coils of prototype conductors for fusion magnets in fields up to 12 T. The facility consists of two concentric sets of coils; the outer set is a stack of Nb-Ti solenoids, and the inner set is a pair of solenoids made of cryogenically-stabilized, multifilamentary Nb/sub 3/Sn superconductor, developed for use in mirror-fusion magnets. The HFTF system is designed to be parted along the midplane to allow high-field conductors, under development for Tokamak fusion machines, to be inserted and tested. The background field coils were wound pancake-fashion, with cold-welded joints at both the inner and outer diameters. Turn-to-turn insulation was fabricated at LLNL from epoxy-fiberglass strip. The coils were assembled and tested in our 2-m-diam cryostat to verify their operation.

  8. High bandgap III-V alloys for high efficiency optoelectronics

    DOEpatents

    Alberi, Kirstin; Mascarenhas, Angelo; Wanlass, Mark

    2017-01-10

    High bandgap alloys for high efficiency optoelectronics are disclosed. An exemplary optoelectronic device may include a substrate, at least one Al.sub.1-xIn.sub.xP layer, and a step-grade buffer between the substrate and at least one Al.sub.1-xIn.sub.xP layer. The buffer may begin with a layer that is substantially lattice matched to GaAs, and may then incrementally increase the lattice constant in each sequential layer until a predetermined lattice constant of Al.sub.1-xIn.sub.xP is reached.

  9. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Fan, Zben; Taft, Charles; Wang, Yi-Qing; Maaref, Shahin; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    In man's mission to the outer space or a remote site, the most abundant, renewable, nonpolluting, and unlimited external energy source is light. Photovoltaic (PV) materials can convert light into electrical power. In order to generate appreciable electrical power in space or on the Earth, it is necessary to collect sunlight from large areas due to the low density of sunlight, and this would be very costly using current commercially available inorganic solar cells. Future organic or polymer based solar cells seemed very attractive due to several reasons. These include lightweight, flexible shape, ultra-fast optoelectronic response time (this also makes organic PV materials attractive for developing ultra-fast photo detectors), tunability of energy band-gaps via molecular design, versatile materials synthesis and device fabrication schemes, and much lower cost on large-scale industrial production. It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks will facilitate the charge separation and migration due to improved electronic ultrastructure and morphology in comparison to current polymer composite photovoltaic system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel donor-bridge-acceptor block copolymer system for potential high-efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene, the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene, and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes the holes, the acceptor block stabilizes the electrons. The bridge block is designed to hinder

  10. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Fan, Zben; Taft, Charles; Wang, Yi-Qing; Maaref, Shahin; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    In man's mission to the outer space or a remote site, the most abundant, renewable, nonpolluting, and unlimited external energy source is light. Photovoltaic (PV) materials can convert light into electrical power. In order to generate appreciable electrical power in space or on the Earth, it is necessary to collect sunlight from large areas due to the low density of sunlight, and this would be very costly using current commercially available inorganic solar cells. Future organic or polymer based solar cells seemed very attractive due to several reasons. These include lightweight, flexible shape, ultra-fast optoelectronic response time (this also makes organic PV materials attractive for developing ultra-fast photo detectors), tunability of energy band-gaps via molecular design, versatile materials synthesis and device fabrication schemes, and much lower cost on large-scale industrial production. It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks will facilitate the charge separation and migration due to improved electronic ultrastructure and morphology in comparison to current polymer composite photovoltaic system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel donor-bridge-acceptor block copolymer system for potential high-efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene, the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene, and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes the holes, the acceptor block stabilizes the electrons. The bridge block is designed to hinder

  11. High efficiency crystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1986-01-01

    The factors which may limit current crystalline silicon solar cells to less than 20 percent efficiency at AM 1 are investigated together with the factors which may limit the ultimate efficiency achievable. It was found that base recombination at residual defect and impurity recombination centers was the likely cause of the 20-percent efficiency barrier. Suggestions for design changes that would cut the losses due to recombinations are presented.

  12. Counterfactual quantum key distribution with high efficiency

    SciTech Connect

    Sun Ying; Wen Qiaoyan

    2010-11-15

    In a counterfactual quantum key distribution scheme, a secret key can be generated merely by transmitting the split vacuum pulses of single particles. We improve the efficiency of the first quantum key distribution scheme based on the counterfactual phenomenon. This scheme not only achieves the same security level as the original one but also has higher efficiency. We also analyze how to achieve the optimal efficiency under various conditions.

  13. THE COMPONENT TEST FACILITY – A NATIONAL USER FACILITY FOR TESTING OF HIGH TEMPERATURE GAS-COOLED REACTOR (HTGR) COMPONENTS AND SYSTEMS

    SciTech Connect

    David S. Duncan; Vondell J. Balls; Stephanie L. Austad

    2008-09-01

    The Next Generation Nuclear Plant (NGNP) and other High-Temperature Gas-cooled Reactor (HTGR) Projects require research, development, design, construction, and operation of a nuclear plant intended for both high-efficiency electricity production and high-temperature industrial applications, including hydrogen production. During the life cycle stages of an HTGR, plant systems, structures and components (SSCs) will be developed to support this reactor technology. To mitigate technical, schedule, and project risk associated with development of these SSCs, a large-scale test facility is required to support design verification and qualification prior to operational implementation. As a full-scale helium test facility, the Component Test facility (CTF) will provide prototype testing and qualification of heat transfer system components (e.g., Intermediate Heat Exchanger, valves, hot gas ducts), reactor internals, and hydrogen generation processing. It will perform confirmation tests for large-scale effects, validate component performance requirements, perform transient effects tests, and provide production demonstration of hydrogen and other high-temperature applications. Sponsored wholly or in part by the U.S. Department of Energy, the CTF will support NGNP and will also act as a National User Facility to support worldwide development of High-Temperature Gas-cooled Reactor technologies.

  14. Facile and efficient one-pot synthesis of 2-arylbenzoxazoles using hydrogen tetrachloroaurate as catalyst under oxygen atmosphere*

    PubMed Central

    Liu, Yun-kui; Mao, Da-jie; Lou, Shao-jie; Qian, Jian-qiang; Xu, Zhen-yuan

    2009-01-01

    In this paper, we presented a novel method for the facile and efficient one-pot synthesis of 2-arylbenzoxazoles, which were directly synthesized from 2-aminophenol and aldehydes catalyzed by hydrogen tetrachloroaurate (HAuCl4·4H2O) under an oxygen atmosphere with anhydrous tetrahydrofuran (THF) as solvent or in solvent-free condition. The results show that this method could bring excellent yields as high as 96%. THF was proven to be the best choice among several solvents screened and the reaction was tolerated with a variety of aromatic aldehydes possessing electron-donating or withdrawing groups. The advantages of the present method lie in catalytic process using economic and environmentally benign dioxygen as oxidant. PMID:19489113

  15. Multi-petascale highly efficient parallel supercomputer

    DOEpatents

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2015-07-14

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.

  16. Highly Efficient Contactless Electrical Energy Transmission System

    NASA Astrophysics Data System (ADS)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  17. A high-efficiency aerothermoelastic analysis method

    NASA Astrophysics Data System (ADS)

    Wan, ZhiQiang; Wang, YaoKun; Liu, YunZhen; Yang, Chao

    2014-06-01

    In this paper, a high-efficiency aerothermoelastic analysis method based on unified hypersonic lifting surface theory is established. The method adopts a two-way coupling form that couples the structure, aerodynamic force, and aerodynamic thermo and heat conduction. The aerodynamic force is first calculated based on unified hypersonic lifting surface theory, and then the Eckert reference temperature method is used to solve the temperature field, where the transient heat conduction is solved using Fourier's law, and the modal method is used for the aeroelastic correction. Finally, flutter is analyzed based on the p-k method. The aerothermoelastic behavior of a typical hypersonic low-aspect ratio wing is then analyzed, and the results indicate the following: (1) the combined effects of the aerodynamic load and thermal load both deform the wing, which would increase if the flexibility, size, and flight time of the hypersonic aircraft increase; (2) the effect of heat accumulation should be noted, and therefore, the trajectory parameters should be considered in the design of hypersonic flight vehicles to avoid hazardous conditions, such as flutter.

  18. Energy Efficient Graphene Based High Performance Capacitors.

    PubMed

    Bae, Joonwon; Lee, Chang-Soo; Kwon, Oh Seok

    2016-10-27

    Graphene (GRP) is an interesting class of nano-structured electronic materials for various cutting-edge applications. To date, extensive research activities have been performed on the investigation of diverse properties of GRP. The incorporation of this elegant material can be very lucrative in terms of practical applications in energy storage/conversion systems. Among various those systems, high performance electrochemical capacitors (ECs) have become popular due to the recent need for energy efficient and portable devices. Therefore, in this article, the application of GRP for capacitors is described succinctly. In particular, a concise summary on the previous research activities regarding GRP based capacitors is also covered extensively. It was revealed that a lot of secondary materials such as polymers and metal oxides have been introduced to improve the performance. Also, diverse devices have been combined with capacitors for better use. More importantly, recent patents related to the preparation and application of GRP based capacitors are also introduced briefly. This article can provide essential information for future study.

  19. High-Efficiency Klystron For Television Transmitters

    NASA Technical Reports Server (NTRS)

    Ramins, Peter; Dayton, James; Mccune, Earl, Sr.; Kosmahl, Henry

    1990-01-01

    Improved klystron designed for use as final amplifier in ultrahigh-frequency (UHF) television transmitter. New device incorporates multistage depressed collector (MSDC) of advanced design to increase efficiency by recovering, from spent electron beam, some of residual kinetic energy otherwise dissipated as heat. Concept applied to increase efficiencies of microwave communication, equipment, radar systems, and particle-beam accelerators.

  20. High-Efficiency Klystron For Television Transmitters

    NASA Technical Reports Server (NTRS)

    Ramins, Peter; Dayton, James; Mccune, Earl, Sr.; Kosmahl, Henry

    1990-01-01

    Improved klystron designed for use as final amplifier in ultrahigh-frequency (UHF) television transmitter. New device incorporates multistage depressed collector (MSDC) of advanced design to increase efficiency by recovering, from spent electron beam, some of residual kinetic energy otherwise dissipated as heat. Concept applied to increase efficiencies of microwave communication, equipment, radar systems, and particle-beam accelerators.

  1. High gain high efficiency resonant DC-DC converter

    NASA Astrophysics Data System (ADS)

    Shang, Fei

    Low voltage power sources have played an important role in applications such as automotive system, renewable energy power generation and so on, where require a high gain DC-DC step-up converter. The converter is going to sustain a very high input current which can bring many design challenges in the existing topologies, such as high component current stress and power loss, complex and costly design for magnetic components, high input current ripple, etc. A new topology of high gain DCDC step-up converter proposed in this dissertation. The topology has many merits such as high gain capability, high efficiency, low components stress and requirement of the transformer, simple topology with less number of active switching devices, and easy to control. The dissertation carries out theoretical analysis of the proposed topology under different operating modes and the voltage gain has been deduced for each mode. The design of circuit components has been well studied, including the power devices current stress and power, the selection of transformer turns-ratio, the design method of the resonant tank and input current ripple. System dynamic state-space models are acquired by using generalized averaging method. Small signal model of the converter is achieved by linearization of the dynamic model around the operating points. The stability study indicates that the open loop system is stable at all operating points, except some operating points containing RHP zeros which can cause closed loop system unstable. The parameter sensitivity study shows that the system transfer function is not greatly affected by the variation of the leakage inductance and load resistance. A design of PI controller is implemented to achieve the output voltage regulation. Simulations have been carried out to validate the circuit operation and support the design analysis. A 2kW prototype has been built for experimental testing. The experimental results are in a good agreement with the theoretical

  2. High-performance superconductors for Fusion Nuclear Science Facility

    SciTech Connect

    Zhai, Yuhu; Kessel, Chuck; Barth, Christian; Senatore, Carmine

    2016-11-09

    High-performance superconducting magnets play an important role in the design of the next step large-scale, high-field fusion reactors such as the fusion nuclear science facility (FNSF) and the spherical tokamak (ST) pilot plant beyond ITER. Here, Princeton Plasma Physics Laboratory is currently leading the design studies of the FNSF and the ST pilot plant study. ITER, which is under construction in the south of France, utilizes the state-of-the-art low temperature superconducting magnet technology based on the cable-in-conduit conductor design, where over a thousand multifilament Nb3Sn superconducting strands are twisted together to form a high-current-carrying cable inserted into a steel jacket for coil windings. We present design options of the high-performance superconductors in the winding pack for the FNSF toroidal field magnet system based on the toroidal field radial build from the system code. For the low temperature superconductor options, the advanced JcNb3Sn RRP strands (Jc > 1000 A/mm2 at 16 T, 4 K) from Oxford Superconducting Technology are under consideration. For the high-temperature superconductor options, the rectangular-shaped high-current HTS cable made of stacked YBCO tapes will be considered to validate feasibility of TF coil winding pack design for the ST-FNSF magnets.

  3. High-performance superconductors for Fusion Nuclear Science Facility

    DOE PAGES

    Zhai, Yuhu; Kessel, Chuck; Barth, Christian; ...

    2016-11-09

    High-performance superconducting magnets play an important role in the design of the next step large-scale, high-field fusion reactors such as the fusion nuclear science facility (FNSF) and the spherical tokamak (ST) pilot plant beyond ITER. Here, Princeton Plasma Physics Laboratory is currently leading the design studies of the FNSF and the ST pilot plant study. ITER, which is under construction in the south of France, utilizes the state-of-the-art low temperature superconducting magnet technology based on the cable-in-conduit conductor design, where over a thousand multifilament Nb3Sn superconducting strands are twisted together to form a high-current-carrying cable inserted into a steel jacketmore » for coil windings. We present design options of the high-performance superconductors in the winding pack for the FNSF toroidal field magnet system based on the toroidal field radial build from the system code. For the low temperature superconductor options, the advanced JcNb3Sn RRP strands (Jc > 1000 A/mm2 at 16 T, 4 K) from Oxford Superconducting Technology are under consideration. For the high-temperature superconductor options, the rectangular-shaped high-current HTS cable made of stacked YBCO tapes will be considered to validate feasibility of TF coil winding pack design for the ST-FNSF magnets.« less

  4. High power klystrons for efficient reliable high power amplifiers

    NASA Astrophysics Data System (ADS)

    Levin, M.

    1980-11-01

    This report covers the design of reliable high efficiency, high power klystrons which may be used in both existing and proposed troposcatter radio systems. High Power (10 kW) klystron designs were generated in C-band (4.4 GHz to 5.0 GHz), S-band (2.5 GHz to 2.7 GHz), and L-band or UHF frequencies (755 MHz to 985 MHz). The tubes were designed for power supply compatibility and use with a vapor/liquid phase heat exchanger. Four (4) S-band tubes were developed in the course of this program along with two (2) matching focusing solenoids and two (2) heat exchangers. These tubes use five (5) tuners with counters which are attached to the focusing solenoids. A reliability mathematical model of the tube and heat exchanger system was also generated.

  5. A High Efficiency Grazing Incidence Pumped X-ray Laser

    SciTech Connect

    Dunn, J; Keenan, R; Price, D F; Patel, P K; Smith, R F; Shlyaptsev, V N

    2006-08-31

    The main objective of the project is to demonstrate a proof-of-principle, new type of high efficiency, short wavelength x-ray laser source that will operate at unprecedented high repetition rates (10Hz) that could be scaled to 1kHz or higher. The development of a high average power, tabletop x-ray laser would serve to complement the wavelength range of 3rd and future 4th generation light sources, e.g. the LCLS, being developed by DOE-Basic Energy Sciences. The latter are large, expensive, central, synchrotron-based facilities while the tabletop x-ray laser is compact, high-power laser-driven, and relatively inexpensive. The demonstration of such a unique, ultra-fast source would allow us to attract funding from DOE-BES, NSF and other agencies to pursue probing of diverse materials undergoing ultrafast changes. Secondly, this capability would have a profound impact on the semiconductor industry since a coherent x-ray laser source would be ideal for ''at wavelength'' {approx}13 nm metrology and microscopy of optics and masks used in EUV lithography. The project has major technical challenges. We will perform grazing-incidence pumped laser-plasma experiments in flat or groove targets which are required to improve the pumping efficiency by ten times. Plasma density characterization using our existing unique picosecond x-ray laser interferometry of laser-irradiated targets is necessary. Simulations of optical laser propagation as well as x-ray laser production and propagation through freely expanding and confined plasma geometries are essential. The research would be conducted using the Physics Directorate Callisto and COMET high power lasers. At the end of the project, we expect to have a high-efficiency x-ray laser scheme operating below 20 nm at 10Hz with a pulse duration of {approx}2 ps. This will represent the state-of-the-art in x-ray lasers and would be a major step forward from our present picosecond laser-driven x-ray lasers. There is an added bonus of creating

  6. High efficiency quasi-monochromatic infrared emitter

    NASA Astrophysics Data System (ADS)

    Brucoli, Giovanni; Bouchon, Patrick; Haïdar, Riad; Besbes, Mondher; Benisty, Henri; Greffet, Jean-Jacques

    2014-02-01

    Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

  7. High efficiency quasi-monochromatic infrared emitter

    SciTech Connect

    Brucoli, Giovanni; Besbes, Mondher; Benisty, Henri Greffet, Jean-Jacques; Bouchon, Patrick; Haïdar, Riad

    2014-02-24

    Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

  8. High Efficiency Submillimeter-Wave Imaging Array

    NASA Technical Reports Server (NTRS)

    Llombart, Nuria; Skalare, Anders; Gill, John J.; Siegel, Peter H.

    2008-01-01

    The period of a focal array is limited by the angular sampling and the f number of the system. This fact will limit the efficiency of imaging array systems to around 50%. Recently it been demonstrated that the use of a dielectric layer on top of an array of apertures can improve this efficiency limit. In this paper, we describe a similar structure that improves the efficiency in imaging applications and that it is easy to manufacture due to its compatibility with planar lithographic techniques.

  9. A high-efficiency energy conversion system

    SciTech Connect

    Belcher, A.E.

    1996-12-31

    A fundamentally new method for converting pressure into rotative motion is introduced. A historical background is given and an idealized non-turbine Brayton cycle engine and associated equations are described. Salient features are explained, together with suggested applications. Concerns over global warming, unacceptable levels of air pollution, and the need for more efficient utilization of nonrenewable energy resources, are issues which continue to plague us. The situation is further exacerbated by the possibility that underdeveloped countries, under pressure to expand their economies, might adopt power generating systems which could produce high levels of emissions. This scenario could easily develop if equipment, which once complied with stringent standards, failed to be adequately maintained through the absence of a reliable technical infrastructure. The Brayton cycle manometric engine has the potential for eliminating, or at least mitigating, many of the above issues. It is therefore of considerable importance to all populations, irrespective of demographic or economic considerations. This engine is inherently simple--the engine proper has only one moving part. It has no pistons, vanes, or other such conventional occlusive devices, yet it is a positive displacement machine. Sealing is achieved by what can best be described as a series of traveling U-tube manometers. Its construction does not require precision engineering nor the use of exotic materials, making it easy to maintain with the most rudimentary resources. Rotational velocity is low, and its normal life cycle is expected to extend to several decades. These advantages more than offset the machine`s large size. It is suited only to large and medium-scale stationary applications.

  10. New high temperature plasma ion source for the TRISTAN ISOL facility

    SciTech Connect

    Piotrowski, A.; Gill, R.L.; McDonald, D.C.

    1986-08-01

    A vigorous program of ion source development at TRISTAN has led to several types of ion sources that are especially suited to extended operation at a reactor-based ISOL facility. The latest of these is a high temperature plasma ion source in which a 5 gm /sup 235/U target is located in the cathode and can be heated to 2500/sup 0/C. The ion source has a lifetime of >1000 hours and produces a wide array of elements, including Pd. Off-line investigations indicate that the source functions primarily in an electron impact mode of ionization and exhibits typical ionzation efficiencies of >30% for Xe.

  11. Comparison of Two High Intensity Acoustic Test Facilities

    NASA Astrophysics Data System (ADS)

    Launay, A.; Tadao Sakita, M.; Kim, Youngkey K.

    2004-08-01

    In two different countries, at the same period of time, the institutes in charge of the development of space activities have decided to extend their satellite integration and test center, and to implement a reverberant acoustic chamber. In Brazil the INPE laboratory (LIT : Laboratorio de Integracao e Testes) and in South Korea the KARI laboratory (SITC : Satellite Integration and Test Center) started their projects in July 2000 for the RATF (Reverberant Acoustic Test Facility) and in May 2001 for the HIAC (High Intensity Acoustic Chamber) respectively, writing the technical specifications. The kick-off meetings took place in December 2000 and in February 2002 and the opening ceremonies in December 19, 2002 in Brazil and in August 22, 2003 in Korea. This paper compares the two projects in terms of design choices, manufacturing processes, equipment installed and technical final characteristics.

  12. High efficiency silicon solar cell review

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P. (Editor)

    1975-01-01

    An overview is presented of the current research and development efforts to improve the performance of the silicon solar cell. The 24 papers presented reviewed experimental and analytic modeling work which emphasizes the improvment of conversion efficiency and the reduction of manufacturing costs. A summary is given of the round-table discussion, in which the near- and far-term directions of future efficiency improvements were discussed.

  13. Future carbon beams at SPIRAL1 facility: Which method is the most efficient?

    SciTech Connect

    Maunoury, L. Delahaye, P.; Dubois, M.; Dupuis, M.; Frigot, R.; Grinyer, J.; Jardin, P.; Leboucher, C.

    2014-02-15

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO{sub 2}), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.

  14. Future carbon beams at SPIRAL1 facility: which method is the most efficient?

    PubMed

    Maunoury, L; Delahaye, P; Angot, J; Dubois, M; Dupuis, M; Frigot, R; Grinyer, J; Jardin, P; Leboucher, C; Lamy, T

    2014-02-01

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO2), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.

  15. Future carbon beams at SPIRAL1 facility: Which method is the most efficient?

    NASA Astrophysics Data System (ADS)

    Maunoury, L.; Delahaye, P.; Angot, J.; Dubois, M.; Dupuis, M.; Frigot, R.; Grinyer, J.; Jardin, P.; Leboucher, C.; Lamy, T.

    2014-02-01

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO2), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.

  16. An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor

    SciTech Connect

    Yoder Jr, Graydon L; Aaron, Adam M; Cunningham, Richard Burns; Fugate, David L; Holcomb, David Eugene; Kisner, Roger A; Peretz, Fred J; Robb, Kevin R; Wilgen, John B; Wilson, Dane F

    2014-01-01

    The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.

  17. High accuracy radiation efficiency measurement techniques

    NASA Technical Reports Server (NTRS)

    Kozakoff, D. J.; Schuchardt, J. M.

    1981-01-01

    The relatively large antenna subarrays (tens of meters) to be used in the Solar Power Satellite, and the desire to accurately quantify antenna performance, dictate the requirement for specialized measurement techniques. The error contributors associated with both far-field and near-field antenna measurement concepts were quantified. As a result, instrumentation configurations with measurement accuracy potential were identified. In every case, advances in the state of the art of associated electronics were found to be required. Relative cost trade-offs between a candidate far-field elevated antenna range and near-field facility were also performed.

  18. High Performance Computing Facility Operational Assessment 2015: Oak Ridge Leadership Computing Facility

    SciTech Connect

    Barker, Ashley D.; Bernholdt, David E.; Bland, Arthur S.; Gary, Jeff D.; Hack, James J.; McNally, Stephen T.; Rogers, James H.; Smith, Brian E.; Straatsma, T. P.; Sukumar, Sreenivas Rangan; Thach, Kevin G.; Tichenor, Suzy; Vazhkudai, Sudharshan S.; Wells, Jack C.

    2016-03-01

    Oak Ridge National Laboratory’s (ORNL’s) Leadership Computing Facility (OLCF) continues to surpass its operational target goals: supporting users; delivering fast, reliable systems; creating innovative solutions for high-performance computing (HPC) needs; and managing risks, safety, and security aspects associated with operating one of the most powerful computers in the world. The results can be seen in the cutting-edge science delivered by users and the praise from the research community. Calendar year (CY) 2015 was filled with outstanding operational results and accomplishments: a very high rating from users on overall satisfaction that ties the highest-ever mark set in CY 2014; the greatest number of core-hours delivered to research projects; the largest percentage of capability usage since the OLCF began tracking the metric in 2009; and success in delivering on the allocation of 60, 30, and 10% of core hours offered for the INCITE (Innovative and Novel Computational Impact on Theory and Experiment), ALCC (Advanced Scientific Computing Research Leadership Computing Challenge), and Director’s Discretionary programs, respectively. These accomplishments, coupled with the extremely high utilization rate, represent the fulfillment of the promise of Titan: maximum use by maximum-size simulations. The impact of all of these successes and more is reflected in the accomplishments of OLCF users, with publications this year in notable journals Nature, Nature Materials, Nature Chemistry, Nature Physics, Nature Climate Change, ACS Nano, Journal of the American Chemical Society, and Physical Review Letters, as well as many others. The achievements included in the 2015 OLCF Operational Assessment Report reflect first-ever or largest simulations in their communities; for example Titan enabled engineers in Los Angeles and the surrounding region to design and begin building improved critical infrastructure by enabling the highest-resolution Cybershake map for Southern

  19. Energy efficiency and saving potential analysis of the high intensity proton accelerator HIPA at PSI

    NASA Astrophysics Data System (ADS)

    Kovach, A.; Parfenova, A.; Grillenberger, J.; Seidel, M.

    2017-07-01

    High power proton machines consume a large amount of energy. Thus, the energy efficiency of grid to beam power conversion is particularly important for the overall power consumption of such facilities. In this study, we analyse the energy efficiency of PSI’s cyclotron-based HIPA facility, which presently delivers a maximum of 1.4 MW beam power. The total power consumption of the entire facility is 12.5 MW at 2.2 mA beam current (1.3 MW). Main power consumers are: RF systems, electromagnets, water cooling and auxiliary systems including infrastructure, each consuming 5.3 MW, 3.6 MW, 1.65 MW and 1.95 MW, respectively. HIPA’s grid to beam efficiency is 18.3% when considering only those parts of any subsystems (RF components, magnets, cooling, and auxiliary systems), which are minimally required to produce a full 1.3 MW beam. The dependency of individual subsystems on beam power was also studied. These findings serve as a basis for further optimizations of the HIPA facility and give a reference of the efficiency estimate for the cyclotron-based high power machines.

  20. High Performance Computing Facility Operational Assessment, FY 2010 Oak Ridge Leadership Computing Facility

    SciTech Connect

    Bland, Arthur S Buddy; Hack, James J; Baker, Ann E; Barker, Ashley D; Boudwin, Kathlyn J.; Kendall, Ricky A; Messer, Bronson; Rogers, James H; Shipman, Galen M; White, Julia C

    2010-08-01

    Oak Ridge National Laboratory's (ORNL's) Cray XT5 supercomputer, Jaguar, kicked off the era of petascale scientific computing in 2008 with applications that sustained more than a thousand trillion floating point calculations per second - or 1 petaflop. Jaguar continues to grow even more powerful as it helps researchers broaden the boundaries of knowledge in virtually every domain of computational science, including weather and climate, nuclear energy, geosciences, combustion, bioenergy, fusion, and materials science. Their insights promise to broaden our knowledge in areas that are vitally important to the Department of Energy (DOE) and the nation as a whole, particularly energy assurance and climate change. The science of the 21st century, however, will demand further revolutions in computing, supercomputers capable of a million trillion calculations a second - 1 exaflop - and beyond. These systems will allow investigators to continue attacking global challenges through modeling and simulation and to unravel longstanding scientific questions. Creating such systems will also require new approaches to daunting challenges. High-performance systems of the future will need to be codesigned for scientific and engineering applications with best-in-class communications networks and data-management infrastructures and teams of skilled researchers able to take full advantage of these new resources. The Oak Ridge Leadership Computing Facility (OLCF) provides the nation's most powerful open resource for capability computing, with a sustainable path that will maintain and extend national leadership for DOE's Office of Science (SC). The OLCF has engaged a world-class team to support petascale science and to take a dramatic step forward, fielding new capabilities for high-end science. This report highlights the successful delivery and operation of a petascale system and shows how the OLCF fosters application development teams, developing cutting-edge tools and resources for next

  1. Facile one-pot surfactant-free synthesis of uniform Pd6Co nanocrystals on 3D graphene as an efficient electrocatalyst toward formic acid oxidation.

    PubMed

    Zhang, Lian Ying; Zhao, Zhi Liang; Yuan, Weiyong; Li, Chang Ming

    2016-01-28

    Ultrasmall and uniform Pd6Co nanocrystals were deposited on 3D graphene by a facile one-pot surfactant-free route for a catalyst toward formic acid oxidation, showing a much higher electrocatalytic activity, larger peak current density and better stability than Pd/3DG, Pd/C as well as commercial Pd-C, and thus offering great potential for an efficient anode catalyst toward high performance direct formic acid fuel cells.

  2. Facile Method To Prepare Microcapsules Inspired by Polyphenol Chemistry for Efficient Enzyme Immobilization.

    PubMed

    Zhang, Shaohua; Jiang, Zhongyi; Wang, Xiaoli; Yang, Chen; Shi, Jiafu

    2015-09-09

    In this study, a method inspired by polyphenol chemistry is developed for the facile preparation of microcapsules under mild conditions. Specifically, the preparation process includes four steps: formation of the sacrificial template, generation of the polyphenol coating on the template surface, cross-linking of the polyphenol coating by cationic polymers, and removal of the template. Tannic acid (TA) is chosen as a representative polyphenol coating precursor for the preparation of microcapsules. The strong interfacial affinity of TA contributes to the formation of polyphenol coating through oxidative oligomerization, while the high reactivity of TA is in charge of reacting/cross-linking with cationic polymer polyethylenimine (PEI) through Schiff base/Michael addition reaction. The chemical/topological structures of the resultant microcapsules are simultaneously characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier Transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), etc. The wall thickness of the microcapsules could be tailored from 257±20 nm to 486±46 nm through changing the TA concentration. The microcapsules are then utilized for encapsulating glucose oxidase (GOD), and the immobilized enzyme exhibits desired catalytic activity and enhanced pH and thermal stabilities. Owing to the structural diversity and functional versatility of polyphenols, this study may offer a facile and generic method to prepare microcapsules and other kinds of functional porous materials.

  3. Sterilization efficiency of the photocatalyst against environmental microorganisms in a health care facility.

    PubMed

    Shintani, Hideharu; Kurosu, Sinobu; Miki, Akiko; Hayashi, Fumie; Kato, Shigekazu

    2006-03-01

    The photocatalyst equipment consists of a titanium dioxide membrane and an ultraviolet lamp. The authors studied if the photocatalyst equipment is practically useful in sterilizing environmental microorganisms in the health care facility. The number of microorganisms was compared in the cases of no sterilization (control) and the photocatalyst sterilization. As a result, a statistical difference was observed between control and the photocatalyst sterilization against airborne microorganisms (p < 0.01), but not against surface microorganisms (p > 0.2). The photocatalyst uses an air sucking system, so it may be ineffective against microorganisms tightly attached to surfaces. However, the effectiveness of the photocatalyst to sterilize airborne microorganisms in the health care facility was successfully confirmed. Concerning the humidity effect on the photocatalyst sterilization, the authors compared the number of airborne microorganisms in cases of the control, UV alone and photocatalyst sterilization when humidity was changed. A statistical difference was observed between UV and the photocatalyst sterilization (p < 0.01) when humidity was increased to 60-70%, but not observed between UV and the photocatalyst sterilization (p > 0.2) when humidity was not controlled and was around 10-20%. This indicates that maintaining high humidity levels will present satisfactory sterilization results due to a greater production of OH radicals. From data obtained, no effect of the adsorption on the TiO2 membrane could be observed.

  4. High efficiency fuel cell/advanced turbine power cycles

    SciTech Connect

    Morehead, H.

    1996-12-31

    The following figures are included: Westinghouse (W.) SOFC pilot manufacturing facility; cell scale-up plan; W. 25 kW SOFC unit at the utility`s facility on Rokko Island; pressure effect on SOFC power and efficiency; SureCELL{trademark} vs conventional gas turbine plants; SureCELL{trademark} product line for distributed power applications; 20 MW pressurized SOFC/gas turbine power plant; 10 MW SOFT/CT power plant; SureCELL{trademark} plant concept design requirements; and W. SOFC market entry.

  5. Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions.

    PubMed

    Luo, Paifeng; Liu, Zhaofan; Xia, Wei; Yuan, Chenchen; Cheng, Jigui; Lu, Yingwei

    2015-02-04

    Recently, hybrid perovskite solar cells (PSCs) have attracted extensive attention due to their high efficiency and simple preparing process. Herein, a facile low-pressure chemical vapor deposition (LPCVD) technology is first developed to fabricate PSCs, which can effectively reduce the over-rapid intercalating reaction rate and easily overcome this blocking issue during the solution process. As a result, the prepared uniform perovskite films exhibit good crystallization, strong absorption, and long carrier diffusion length. More strikingly, CH3NH3PbI3 absorbers by LPCVD demonstrate excellent moisture-resistant feature even under laser illumination and high-temperature conditions, which indicates that our proprietary method is very suitable for the future low-cost, nonvacuum production of the new generation photovoltaic devices. Finally, high efficiency of 12.73% is successfully achieved under fully open-air conditions. To the best of our knowledge, this is the first report of efficient PSCs with such a high humidity above 60%.

  6. Providing Adequate Vo-Ag Facilities--A High Priority

    ERIC Educational Resources Information Center

    Carson, A. L.

    1977-01-01

    Discusses factors and features for consideration in planning facilities for agriculture programs. Issues covered are industry relocation, school consolidation, legislation, and program diversification and specialization. (TA)

  7. High Efficiency Large Area Polysilicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.; Winter, C.

    1985-01-01

    Large area (100 sq cm) polysilicon solar cells having efficiencies of up to 14.1% (100 mW/sq cm, 25 C) were fabricated and a detailed analysis was performed to identify the efficiency loss mechanisms. The 1-5 characteristics of the best cell were dominated by recombination in the quasi-neutral base due to the combination of minority carrier diffusion length and base resistivity. An analysis of the microstructural defects present in the material and their effect on the electrical properties is presented.

  8. Atlas Pulsed Power Facility for High Energy Density Physics Experiments

    SciTech Connect

    Miller, R.B.; Ballard, E.O.; Barr, G.W.; Bowman, D.W.; Chochrane, J.C.; Davis, H.A.; Elizondo, J.M.; Gribble, R.F.; Griego, J.R.; Hicks, R.D.; Hinckley, W.B.; Hosack, K.W.; Nielsen, K.E.; Parker, J.V.; Parsons, M.O.; Rickets, R.L.; Salazar, H.R.; Sanchez, P.G.; Scudder, D.W.; Shapiro, C.; Thompson, M.C.; Trainor, R.J.; Valdez, G.A.; Vigil, B.N.; Watt, R.G.; Wysock, F.J.

    1999-06-07

    The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. It is intended to be an international user facility, providing opportunities for researchers from national laboratories and academic institutions around the world. Emphasizing institutions around the world. Emphasizing hydrodynamic experiments, Atlas will provide the capability for achieving steady shock pressures exceeding 10-Mbar in a volume of several cubic centimeters. In addition, the kinetic energy associated with solid liner implosion velocities exceeding 12 km/s is sufficient to drive dense, hydrodynamic targets into the ionized regime, permitting the study of complex issues associated with strongly-coupled plasmas. The primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently-removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-{micro}s risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line components has been completed. A complete maintenance module and its associated transmission line (the First Article) are now under construction and testing. The current Atlas schedule calls for construction of the machine to be complete by August, 2000. Acceptance testing is scheduled to begin in November, 2000, leading to initial operations in January, 2001.

  9. High-Tech Means High-Efficiency: The Business Case for EnergyManagement in High-Tech Industries

    SciTech Connect

    Shanshoian, Gary; Blazek, Michele; Naughton, Phil; Seese, RobertS.; Mills, Evan; Tschudi, William

    2005-11-15

    In the race to apply new technologies in ''high-tech'' facilities such as data centers, laboratories, and clean rooms, much emphasis has been placed on improving service, building capacity, and increasing speed. These facilities are socially and economically important, as part of the critical infrastructure for pharmaceuticals,electronics, communications, and many other sectors. With a singular focus on throughput, some important design issues can be overlooked, such as the energy efficiency of individual equipment (e.g., lasers, routers and switches) as well as the integration of high-tech equipment into the power distribution system and the building envelope. Among technology-based businesses, improving energy efficiency presents an often untapped opportunity to increase profits, enhance process control,maximize asset value, improve the work place environment, and manage a variety of business risks. Oddly enough, the adoption of energy efficiency improvements in this sector lags behind many others. As a result, millions of dollars are left on the table with each year ofoperation.

  10. High efficiency germanium-assisted grating coupler.

    PubMed

    Yang, Shuyu; Zhang, Yi; Baehr-Jones, Tom; Hochberg, Michael

    2014-12-15

    We propose a fiber to submicron silicon waveguide vertical coupler utilizing germanium-on-silicon gratings. The germanium is epitaxially grown on silicon in the same step for building photodetectors. Coupling efficiency based on FDTD simulation is 76% at 1.55 µm and the optical 1dB bandwidth is 40 nm.

  11. Facile and Efficient Synthesis of Carbosiloxane Dendrimers via Orthogonal Click Chemistry Between Thiol and Ene.

    PubMed

    Zhang, Zhida; Feng, Shengyu; Zhang, Jie

    2016-02-01

    A combination of a thiol-Michael addition reaction and a free radical mediated thiol-ene reaction is employed as a facile and efficient approach to carbosiloxane dendrimer synthesis. For the first time, carbosiloxane dendrimers are constructed rapidly by an orthogonal click strategy without protection/deprotection procedures. The chemoselectivity of these two thiol-ene click reactions leads to a design of a new monomer containing both electron-deficient carbon-carbon double bonds and unconjugated carbon-carbon double bonds. Siloxane bonds are introduced as the linker between these two kinds of carbon-carbon double bonds. Starting from a bifunctional thiol core, the dendrimers are constructed by iterative thiol-ene click reactions under different but both mild reaction conditions. After simple purification steps the fifth dendrimer with 54 peripheral functional groups is obtained with an excellent overall yield in a single day. Furthermore, a strong blue glow is observed when the dendrimer is excited by a UV lamp.

  12. Facile preparation of smooth perovskite films for efficient meso/planar hybrid structured perovskite solar cells.

    PubMed

    Zhang, Meng; Yu, Hua; Yun, Jung-Ho; Lyu, Miaoqiang; Wang, Qiong; Wang, Lianzhou

    2015-06-21

    Smooth organolead halide perovskite films for meso/planar hybrid structured perovskite solar cells were prepared by a simple compressed air blow-drying method under ambient conditions. The resultant perovskite films show high surface coverage, leading to a device power conversion efficiency of over 10% with an open circuit voltage up to 1.003 V merely using pristine poly(3-hexylthiophene) (P3HT) as a hole transporter.

  13. Facile fabrication of gold nanoparticles-poly(vinyl alcohol) electrospun water-stable nanofibrous mats: efficient substrate materials for biosensors.

    PubMed

    Wang, Juan; Yao, Hong-Bin; He, Dian; Zhang, Chuan-Ling; Yu, Shu-Hong

    2012-04-01

    Electrospun nanofibrous mats are intensively studied as efficient scaffold materials applied in the fields of tissue engineering, catalysis, and biosensors due to their flexibility and porosity. In this paper, we report a facile route to fabricate gold nanoparticles-poly(vinyl alcohol) (Au NPs-PVA) hybrid water stable nanofibrous mats with tunable densities of Au NPs and further demonstrate the potential application of as-prepared Au NPs-PVA nanofibrous mats as efficient biosensor substrate materials. First, through the designed in situ cross-linkage in coelectrospun PVA-glutaraldehyde nanofibers, water insoluble PVA nanofibrous mats with suitable tensile strength were successfully prepared. Then, 3-mercaptopropyltrimethoxysilane (MPTES) was modified on the surface of obtained PVA nanofibrous films, which triggered successful homogeneous decoration of Au NPs through gold-sulfur bonding interactions. Finally, the Au NPs-PVA nanofibrous mats embedded with horseradish peroxidase (HRP) by electrostatic interactions were used as biosensor substrate materials for H(2)O(2) detection. The fabricated HRP-Au NPs/PVA biosensor showed a highly sensitive detection of H(2)O(2) with a detection limit of 0.5 μM at a signal-to-noise ratio of 3. By modifying other different functional nanaoparticles or enzyme on the PVA nanofibrous film will further expand their potential applications as substrate materials of different biosensors.

  14. Facile synthesis of high surface area molybdenum nitride and carbide

    SciTech Connect

    Roy, Aaron; Serov, Alexey; Artyushkova, Kateryna; Brosha, Eric L.; Atanassov, Plamen; Ward, Tim L.

    2015-08-15

    The synthesis of high surface area γ-Mo{sub 2}N and α-Mo{sub 2}C is reported (116 and 120 m{sup 2}/g) without the temperature programmed reduction of MoO{sub 3}. γ-Mo{sub 2}N was prepared in an NH{sub 3}-free synthesis using forming gas (7 at% H{sub 2}, N{sub 2}-balance) as the reactive atmosphere. Three precursors were studied ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}·4H{sub 2}O, (NH{sub 4}){sub 2} Mg(MoO{sub 4}){sub 2}, and MgMoO{sub 4}) along with the sacrificial support method (SSM) as a means of reducing the particle size of Mo{sub 2}N and Mo{sub 2}C. In situ X-ray diffraction (XRD) studies were carried out to identify reaction intermediates, the temperature at which various intermediates form, and the average domain size of the Mo{sub 2}N products. Materials were synthesized in bulk and further characterized by XRD, HRTEM, XPS, and BET. - Highlights: • Facile synthesis of γ-Mo2N and α-Mo2C with surface area exceeding 100 m{sup 2}/g. • Sacrificial support method was used to achieve these high surface areas. • Materials can serve as catalysts or supports in (electro)chemical processes.

  15. Energy efficiency indicators for high electric-load buildings

    SciTech Connect

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  16. High Performance Computing Facility Operational Assessment, FY 2011 Oak Ridge Leadership Computing Facility

    SciTech Connect

    Baker, Ann E; Bland, Arthur S Buddy; Hack, James J; Barker, Ashley D; Boudwin, Kathlyn J.; Kendall, Ricky A; Messer, Bronson; Rogers, James H; Shipman, Galen M; Wells, Jack C; White, Julia C

    2011-08-01

    Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.5 billion core hours in calendar year (CY) 2010 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Scientific achievements by OLCF users range from collaboration with university experimentalists to produce a working supercapacitor that uses atom-thick sheets of carbon materials to finely determining the resolution requirements for simulations of coal gasifiers and their components, thus laying the foundation for development of commercial-scale gasifiers. OLCF users are pushing the boundaries with software applications sustaining more than one petaflop of performance in the quest to illuminate the fundamental nature of electronic devices. Other teams of researchers are working to resolve predictive capabilities of climate models, to refine and validate genome sequencing, and to explore the most fundamental materials in nature - quarks and gluons - and their unique properties. Details of these scientific endeavors - not possible without access to leadership-class computing resources - are detailed in Section 4 of this report and in the INCITE in Review. Effective operations of the OLCF play a key role in the scientific missions and accomplishments of its users. This Operational Assessment Report (OAR) will delineate the policies, procedures, and innovations implemented by the OLCF to continue delivering a petaflop-scale resource for cutting-edge research. The 2010 operational assessment of the OLCF yielded recommendations that have been addressed (Reference Section 1) and where

  17. Highly Efficient Protein Misfolding Cyclic Amplification

    PubMed Central

    Ostapchenko, Valeriy G.; Savtchenk, Regina; Alexeeva, Irina; Rohwer, Robert G.; Baskakov, Ilia V.

    2011-01-01

    Protein misfolding cyclic amplification (PMCA) provides faithful replication of mammalian prions in vitro and has numerous applications in prion research. However, the low efficiency of conversion of PrPC into PrPSc in PMCA limits the applicability of PMCA for many uses including structural studies of infectious prions. It also implies that only a small sub-fraction of PrPC may be available for conversion. Here we show that the yield, rate, and robustness of prion conversion and the sensitivity of prion detection are significantly improved by a simple modification of the PMCA format. Conducting PMCA reactions in the presence of Teflon beads (PMCAb) increased the conversion of PrPC into PrPSc from ∼10% to up to 100%. In PMCAb, a single 24-hour round consistently amplified PrPSc by 600-700-fold. Furthermore, the sensitivity of prion detection in one round (24 hours) increased by 2-3 orders of magnitude. Using serial PMCAb, a 1012-fold dilution of scrapie brain material could be amplified to the level detectible by Western blotting in 3 rounds (72 hours). The improvements in amplification efficiency were observed for the commonly used hamster 263K strain and for the synthetic strain SSLOW that otherwise amplifies poorly in PMCA. The increase in the amplification efficiency did not come at the expense of prion replication specificity. The current study demonstrates that poor conversion efficiencies observed previously have not been due to the scarcity of a sub-fraction of PrPC susceptible to conversion nor due to limited concentrations of essential cellular cofactors required for conversion. The new PMCAb format offers immediate practical benefits and opens new avenues for developing fast ultrasensitive assays and for producing abundant quantities of PrPSc in vitro. PMID:21347353

  18. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  19. Does High School Facility Quality Affect Student Achievement? A Two-Level Hierarchical Linear Model

    ERIC Educational Resources Information Center

    Bowers, Alex J.; Urick, Angela

    2011-01-01

    The purpose of this study is to isolate the independent effects of high school facility quality on student achievement using a large, nationally representative U.S. database of student achievement and school facility quality. Prior research on linking school facility quality to student achievement has been mixed. Studies that relate overall…

  20. Does High School Facility Quality Affect Student Achievement? A Two-Level Hierarchical Linear Model

    ERIC Educational Resources Information Center

    Bowers, Alex J.; Urick, Angela

    2011-01-01

    The purpose of this study is to isolate the independent effects of high school facility quality on student achievement using a large, nationally representative U.S. database of student achievement and school facility quality. Prior research on linking school facility quality to student achievement has been mixed. Studies that relate overall…

  1. Recovery Act: High-Efficiency, Wideband Three-Phase Rectifiers and Adaptive Rectifier Management for Telecomm Central Office and Large Data Center Applications

    SciTech Connect

    Mark A. Johnson

    2012-06-29

    Lineage Power and Verizon teamed up to address a DOE funding opportunity focused on improving the power conversion chain in telecommunications facilities and data centers. The project had three significant elements: the design and development of high efficiency and high power three-phase rectifiers by Lineage Power, design and development of software to optimize overall plant energy efficiency by Lineage Power, and a field trial in active Verizon telecommunications facilities where energy consumption was measured before and after efficiency upgrades.

  2. Comparison of diesel spray combustion in different high-temperature, high-pressure facilities.

    SciTech Connect

    Christiansen, Caspar; Hermant, Laurent; Malbec, Louis-Marie; Bruneaux, Gilles; Genzale, Caroline L.; Pickett, Lyle M.; Schramm, Jesper

    2010-05-01

    Diesel spray experiments at controlled high-temperature and high-pressure conditions offer the potential for an improved understanding of diesel combustion, and for the development of more accurate CFD models that will ultimately be used to improve engine design. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but uncertainties about their operation exist because of the uniqueness of each facility. For the IMEM meeting, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP. Targeting the same ambient gas conditions (900 K, 60 bar, 22.8 kg/m{sup 3}, 15% oxygen) and sharing the same injector (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K), we describe detailed measurements of the temperature and pressure boundary conditions at each facility, followed by observations of spray penetration, ignition, and combustion using high-speed imaging. Performing experiments at the same high-temperature, high-pressure operating conditions is an objective of the Engine Combustion Network (http://www.ca.sandia.gov/ECN/), which seeks to leverage the research capabilities and advanced diagnostics of all participants in the ECN. We expect that this effort will generate a high-quality dataset to be used for advanced computational model development at engine conditions.

  3. The National Ignition Facility (NIF) and High Energy Density Science Research at LLNL (Briefing Charts)

    DTIC Science & Technology

    2013-06-21

    enable exciting new opportunities for scientific discovery 2 • “Science on (NIF, Omega, Jupiter , Z,…) science is more than HED science” 1492...Japan) UFL-2M (Russia) NIF Laser 1494 The NIF and Jupiter lasers are the primary HED facilities at LLNL 5 NIF Large-scale facility for high energy...applications Jupiter “Intermediate scale” facility ideal for student training 1495 6 1496 Jupiter has operated as a user facility since 2008

  4. PMMA lens with high efficiency and reliability

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Ichiro; Abe, Koji; Fujita, Katsuhiro

    2013-09-01

    Polymethyl Methacrylate (PMMA) Fresnel lenses are increasingly being used in concentrated photovoltaic (CPV) systems installed outdoors and, accordingly, emphasis is being placed on the durability of such lenses with regard to light transmittance when subject to ultraviolet (UV) light and dust exposure. Accelerated testing methods for evaluating durability under UV exposure were established, allowing development of a lens material with improved UV resistance. Simultaneously, through a proprietary molding method, a Fresnel lens that boasts favorable light concentration efficiency with little deformation even after prolonged outdoor use was developed. Moreover, the lens incorporates a new hard-coat finish that possesses sand durability and UV resistance comparable to that of tempered glass.

  5. High Efficiency Transverse D. C. Electron Beams.

    DTIC Science & Technology

    1984-10-01

    Research: The proposed new sintered metal oxide-metal (e.g. AI203 -Mo) cathodes have been tested. As originally predicted these cathode meterials produce...improvement over that obtained in hollow cathode lasers. These experiments show that a cw Ag laser operating at a power between 0.1 and 1 watt at...concentrated in the construction of an electron beam pumped Ag II and Cu II laser with the goal of obtaining a cw ultraviolet power of 1W at efficiencies over

  6. High Efficiency Electron-Laser Interactions in Tapered Helical Undulators

    NASA Astrophysics Data System (ADS)

    Duris, Joseph Patrick

    Efficient coupling of relativistic electron beams with high power radiation lies at the heart of advanced accelerator and light source research and development. The inverse free electron laser is a stable accelerator capable of harnessing very high intensity laser electric fields to efficiently transfer large powers from lasers to electron beams. In this dissertation, we first present the theoretical framework to describe the interaction, and then apply our improved understanding of the IFEL to the design and numerical study of meter-long, GeV IFELs for compact light sources. The central experimental work of the dissertation is the UCLA BNL helical inverse free electron laser experiment at the Accelerator Test Facility in Brookhaven National Laboratory which used a strongly tapered 54cm long, helical, permanent magnet undulator and a several hundred GW CO2 laser to accelerate electrons from 52 to 106MeV, setting new records for inverse free electron laser energy gain (54MeV) and average accelerating gradient (100MeV/m). The undulator design and fabrication as well as experimental diagnostics are presented. In order to improve the stability and quality of the accelerated electron beam, we redesigned the undulator for a slightly reduced output energy by modifying the magnet gap throughout the undulator, and we used this modified undulator to demonstrated capture of >25% of the injected beam without prebunching. In the study of heavily loaded GeV inverse free electron lasers, we show that a majority of the power may be transferred from a laser to the accelerated electron beam. Reversing the process to decelerate high power electron beams, a mechanism we refer to as tapering enhanced stimulated superradiant amplification, offers a clear path to high power light sources. We present studies of radiation production for a wide range of wavelengths (10mum, 13nm, and 0.3nm) using this method and discuss the design for a deceleration experiment using the same undulator used

  7. The Grizzly Powerhouse: A modern high-head hydrogenerating facility

    SciTech Connect

    Siebensohn, F.B.

    1995-12-31

    With the emphasis on the modernization of existing plants, there are not all that many new hydropower stations being built nowadays. A noteworthy exception from this trend is the Grizzly Powerhouse, located in the High Sierra near Quincy in northern California. This new $75 million facility is an addition to the existing 65 MW Bucks Creek hydroelectric project on the North Fork Feather River watershed in Plumas County, that is owned and operated by Pacific Gas and Electric Company. The Grizzly project is a cooperative development between Pacific Gas and Electric and the City of Santa Clara. The City paid for the powerhouse and will receive its electricity for at least 30 years. Pacific Gas and Electric has an option to buy the Grizzly project thereafter. The energy generated serves about 15,000 homes in Santa Clara and meets approximately seven percent of the City`s current peak power needs. AMERICAN HYDRO CORPORATION of York, Pennsylvania was the Prime Contractor for the supply of the power generation equipment, and as such was responsible for the performance of the system components. These included the turbine with the inlet/shut-off valve, the pressure relief valve, the governor and the generator with its excitation system.

  8. Facile and selective synthesis of oligothiophene-based sensitizer isomers: an approach toward efficient dye-sensitized solar cells.

    PubMed

    Feng, Quanyou; Zhang, Qian; Lu, Xuefeng; Wang, Hong; Zhou, Gang; Wang, Zhong-Sheng

    2013-09-25

    Two sets of isomeric organic dyes with n-hexyl (DH and AH) or 2-ethylhexyl (DEH and AEH) groups substituted at the spacer part have been designed and straightforwardly synthesized via a facile and selective synthetic route. The structure difference between the isomers stands at the position of the incorporated alkyl chains which are introduced into the terthiophene spacer close to the donor (D) or anchor (A) side. The relationship between the isomeric structures and the optoelectronic properties are systematically investigated. It is found that, in the D series dyes, the alkyl group is much closer to the aromatic donor moiety, which brings about strong steric hindrance and therefore causes a remarkable twist in the molecular skeleton. In contrast, a more planar chemical structure and more effective π-conjugation are realized in the A series dye isomers. Consequently, the A series isomeric dyes demonstrate bathochromically shifted absorption bands, resulting in the improved light-harvesting capability and enhanced photo-generated current. However, the D series isomeric dyes with more twisted molecular skeleton have suppressed the intermolecular interactions and retarded the charge recombination more efficiently, which induces higher open-circuit photovoltage. Combining the two effects on the performance of the fabricated dye-sensitized solar cells (DSSC), the influence from the short-circuit photocurrent plays a more significant role on the power conversion efficiency (η). As a result, isomer AEH-based DSSC with quasi-solid-state electrolyte displays the highest η of 7.10% which remained at 98% of the initial value after continuous light soaking for 1000 h. Promisingly, a η of 8.66% has been achieved for AEH-based DSSC with liquid electrolyte containing Co(II)/(III) redox couple. This work presents the crucial issue of molecular engineering and paves a way to design organic sensitizers for highly efficient and stable DSSCs.

  9. The development of high resolution coordinate detectors for the DEUTERON facility

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, V. N.; Shekhtman, L. I.; Bobrovnikov, V. S.; Maltsev, T. V.; Nikolenko, D. N.; Rachek, I. A.

    2014-09-01

    The DEUTERON internal target facility at the VEPP-3 storage ring at BINP is intended for the experiments on interaction of electrons and positrons with proton and deuteron. These experiments require high resolution tracking detectors which can provide the energy and angles of scattered electron. The prototype detector with a sensitive area of 160 × 40 mm2 was built and proved to be operational. It consists of three cascades of gaseous electron multiplier (GEM), the readout structure and detector electronics. Readout structure has 640 strips which are uniformly distributed in two layers skewed by 30 degrees. Electronics of the detector includes APC128 ASICs, Altera Cyclone III FPGA, 100 MBit ethernet. In the APC128 ASIC each channel has a separate analog pipeline consisting of 32 cells which are cyclically switched by a global clock synchronized to the bunch crossing rate ( ~ 4 MHz). For the needs of DEUTERON facility the expected resolution of less than 100 μm and thickness of ~ 0.15% of radiation length are considered to be quite satisfactory. The latest results obtained at the test beam facility at the VEPP-4M collider show that detector is fully operational with maximum detection efficiency reached 98%.

  10. Quantum Confined Semiconductors for High Efficiency Photovoltaics

    NASA Astrophysics Data System (ADS)

    Beard, Matthew

    2014-03-01

    Semiconductor nanostructures, where at least one dimension is small enough to produce quantum confinement effects, provide new pathways for controlling energy flow and therefore have the potential to increase the efficiency of the primary photon-to-free energy conversion step. In this discussion, I will present the current status of research efforts towards utilizing the unique properties of colloidal quantum dots (NCs confined in three dimensions) in prototype solar cells and demonstrate that these unique systems have the potential to bypass the Shockley-Queisser single-junction limit for solar photon conversion. The solar cells are constructed using a low temperature solution based deposition of PbS or PbSe QDs as the absorber layer. Different chemical treatments of the QD layer are employed in order to obtain good electrical communication while maintaining the quantum-confined properties of the QDs. We have characterized the transport and carrier dynamics using a transient absorption, time-resolved THz, and temperature-dependent photoluminescence. I will discuss the interplay between carrier generation, recombination, and mobility within the QD layers. A unique aspect of our devices is that the QDs exhibit multiple exciton generation with an efficiency that is ~ 2 to 3 times greater than the parental bulk semiconductor.

  11. Highly efficient, high speed vertical photodiodes based on few-layer MoS2

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Chen, Jihan; Dhall, Rohan; Cronin, Stephen B.

    2017-03-01

    Layered transition metal dichalcogenides, such as MoS2, have recently emerged as a promising material system for electronic and optoelectronic applications. The two-dimensional nature of these materials enables facile integration for vertical device design with novel properties. Here, we report highly efficient photocurrent generation from vertical MoS2 devices fabricated using asymmetric metal contacts, exhibiting an external quantum efficiency of up to 7%. Compared to in-plane MoS2 devices, the vertical design of these devices has a much larger junction area, which is essential for achieving highly efficient photovoltaic devices. Photocurrent and photovoltage spectra are measured over the photon energy range from 1.25 to 2.5 eV, covering both the 1.8 eV direct K-point optical transition and the 1.3 eV Σ-point indirect transition in MoS2. Photocurrent peaks corresponding to both direct and indirect transitions are observed in the photocurrent spectra and exhibit different photovoltage-current characteristics. Compared to previous in-plane devices, a substantially shorter photoresponse time of 7.3 μs is achieved due to fast carrier sweeping in the vertical devices, which exhibit a -3 dB cutoff frequency of 48 kHz.

  12. Highlighting High Performance: The Solar Energy Research Facility, Golden, Colorado

    SciTech Connect

    2001-06-01

    The Solar Energy Research Facility uses a stair-step configuration to allow daylight and heat into the office areas, while the laboratories in the back of the building are in a more controlled environment.

  13. Phytoscreening as an efficient tool to delineate chlorinated solvent sources at a chlor-alkali facility.

    PubMed

    Yung, Loïc; Lagron, Jérôme; Cazaux, David; Limmer, Matt; Chalot, Michel

    2017-05-01

    Chlorinated ethenes (CE) are among the most common volatile organic compounds (VOC) that contaminate groundwater, currently representing a major source of pollution worldwide. Phytoscreening has been developed and employed through different applications at numerous sites, where it was generally useful for detection of subsurface chlorinated solvents. We aimed at delineating subsurface CE contamination at a chlor-alkali facility using tree core data that we compared with soil data. For this investigation a total of 170 trees from experimental zones was sampled and analyzed for perchloroethene (PCE) and trichloroethene (TCE) concentrations, measured by solid phase microextraction gas chromatography coupled to mass spectrometry. Within the panel of tree genera sampled, Quercus and Ulmus appeared to be efficient biomonitors of subjacent TCE and PCE contamination, in addition to the well known and widely used Populus and Salix genera. Among the 28 trees located above the dense non-aqueous phase liquid (DNAPL) phase zone, 19 tree cores contained detectable amounts of CE, with concentrations ranging from 3 to 3000 μg L(-1). Our tree core dataset was found to be well related to soil gas sampling results, although the tree coring data were more informative. Our data further emphasized the need for choosing the relevant tree species and sampling periods, as well as taking into consideration the nature of the soil and its heterogeneity. Overall, this low-invasive screening method appeared useful to delineate contaminants at a small-scale site impacted by multiple sources of chlorinated solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Chemical Entity Semantic Specification: Knowledge representation for efficient semantic cheminformatics and facile data integration

    PubMed Central

    2011-01-01

    Background Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Results Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. Conclusions By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full

  15. On-shot laser beam diagnostics for high-power laser facility with phase modulation imaging

    NASA Astrophysics Data System (ADS)

    Pan, X.; Veetil, S. P.; Liu, C.; Tao, H.; Jiang, Y.; Lin, Q.; Li, X.; Zhu, J.

    2016-05-01

    A coherent-modulation-imaging-based (CMI) algorithm has been employed for on-shot laser beam diagnostics in high-power laser facilities, where high-intensity short-pulsed lasers from terawatt to petawatt are designed to realize inertial confinement fusion (ICF). A single-shot intensity measurement is sufficient for wave-front reconstruction, both for the near-field and far-field at the same time. The iterative reconstruction process is computationally very efficient and was completed in dozens of seconds by the additional use of a GPU device to speed it up. The compact measurement unit—including a CCD and a piece of pre-characterized phase plate—makes it convenient for focal-spot intensity prediction in the target chamber. It can be placed almost anywhere in high-power laser facilities to achieve near-field wave-front diagnostics. The feasibility of the method has been demonstrated by conducting a series of experiments with diagnostic beams and seed pulses with deactivated amplifiers in our high-power laser system.

  16. Experimental Demonstration of a Highly Efficient Fan-out Polarization Grating

    NASA Astrophysics Data System (ADS)

    Wan, Chenhao; Chen, Jian; Tang, Xiahui; Zhan, Qiwen

    2016-12-01

    Highly efficient fan-out elements are crucial in coherent beam combining architectures especially in coupled laser resonators where the beam passes through the fan-out element twice per round trip. Although the theoretical efficiency is usually less than 86%, the Dammann gratings are ubiquitously utilized in a variety of types of coherent beam combining systems due to the facile design and fabrication. In the current paper, we experimentally demonstrate a highly efficient fan-out polarization grating. It is the first time to our knowledge that all the three space-variant parameters of a polarization grating are simultaneously optimized to achieve the function of multi-beam splitting. Besides the high fan-out efficiency, the ability to control the polarization states of individual split beams is another advantage of this polarization grating. The novel polarization grating is promising to find applications in laser beam combining systems.

  17. Experimental Demonstration of a Highly Efficient Fan-out Polarization Grating.

    PubMed

    Wan, Chenhao; Chen, Jian; Tang, Xiahui; Zhan, Qiwen

    2016-12-23

    Highly efficient fan-out elements are crucial in coherent beam combining architectures especially in coupled laser resonators where the beam passes through the fan-out element twice per round trip. Although the theoretical efficiency is usually less than 86%, the Dammann gratings are ubiquitously utilized in a variety of types of coherent beam combining systems due to the facile design and fabrication. In the current paper, we experimentally demonstrate a highly efficient fan-out polarization grating. It is the first time to our knowledge that all the three space-variant parameters of a polarization grating are simultaneously optimized to achieve the function of multi-beam splitting. Besides the high fan-out efficiency, the ability to control the polarization states of individual split beams is another advantage of this polarization grating. The novel polarization grating is promising to find applications in laser beam combining systems.

  18. Experimental Demonstration of a Highly Efficient Fan-out Polarization Grating

    PubMed Central

    Wan, Chenhao; Chen, Jian; Tang, Xiahui; Zhan, Qiwen

    2016-01-01

    Highly efficient fan-out elements are crucial in coherent beam combining architectures especially in coupled laser resonators where the beam passes through the fan-out element twice per round trip. Although the theoretical efficiency is usually less than 86%, the Dammann gratings are ubiquitously utilized in a variety of types of coherent beam combining systems due to the facile design and fabrication. In the current paper, we experimentally demonstrate a highly efficient fan-out polarization grating. It is the first time to our knowledge that all the three space-variant parameters of a polarization grating are simultaneously optimized to achieve the function of multi-beam splitting. Besides the high fan-out efficiency, the ability to control the polarization states of individual split beams is another advantage of this polarization grating. The novel polarization grating is promising to find applications in laser beam combining systems. PMID:28008972

  19. High Efficiency Thermoelectric Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed; Saber, Hamed; Caillat, Thierry

    2004-01-01

    The work performed and whose results presented in this report is a joint effort between the University of New Mexico s Institute for Space and Nuclear Power Studies (ISNPS) and the Jet Propulsion Laboratory (JPL), California Institute of Technology. In addition to the development, design, and fabrication of skutterudites and skutterudites-based segmented unicouples this effort included conducting performance tests of these unicouples for hundreds of hours to verify theoretical predictions of the conversion efficiency. The performance predictions of these unicouples are obtained using 1-D and 3-D models developed for that purpose and for estimating the actual performance and side heat losses in the tests conducted at ISNPS. In addition to the performance tests, the development of the 1-D and 3-D models and the development of Advanced Radioisotope Power systems for Beginning-Of-Life (BOM) power of 108 We are carried out at ISNPS. The materials synthesis and fabrication of the unicouples are carried out at JPL. The research conducted at ISNPS is documented in chapters 2-5 and that conducted at JP, in documented in chapter 5. An important consideration in the design and optimization of segmented thermoelectric unicouples (STUs) is determining the relative lengths, cross-section areas, and the interfacial temperatures of the segments of the different materials in the n- and p-legs. These variables are determined using a genetic algorithm (GA) in conjunction with one-dimensional analytical model of STUs that is developed in chapter 2. Results indicated that when optimized for maximum conversion efficiency, the interfacial temperatures between various segments in a STU are close to those at the intersections of the Figure-Of-Merit (FOM), ZT, curves of the thermoelectric materials of the adjacent segments. When optimizing the STUs for maximum electrical power density, however, the interfacial temperatures are different from those at the intersections of the ZT curves, but

  20. Facile mesoporous template-assisted hydrothermal synthesis of ordered mesoporous magnesium silicate as an efficient adsorbent

    NASA Astrophysics Data System (ADS)

    Lu, Qingshan; Li, Qiang; Zhang, Jingjing; Li, Jingfeng; Lu, Jinhua

    2016-01-01

    Mesoporous materials with unique structure as well as special morphology have potential applications in pollutant adsorption. In this work, using mesoporous silica SBA-15 filled with carbon (C@SBA-15) as both silicon source and assisted template, the ordered mesoporous magnesium silicate (Mg3Si4O9(OH)4) has been fabricated at 140 °C by a novel and facile hydrothermal method. During the hydrothermal process, the magnesium silicate grew along the silica walls at the expense of consuming silica and deposited on the carbon surface of the C@SBA-15. Meanwhile, the rigid carbon inside the pores of the SBA-15 supported the magnesium silicate as mesoporous walls under hydrothermal condition. The obtained magnesium silicate possessed ordered mesoporous structure, high specific surface area of 446 m2/g, large pore volume of 0.84 cm3/g, and hierarchical structure assembled with ultrathin nanosheets of 15 nm in thickness. These characteristics endow the ordered mesoporous magnesium silicate with the fast adsorption rate and high adsorption capacity of 382 mg/g for methylene blue. In addition, this synthesis method opens a new approach to fabricate other ordered mesoporous silicates.

  1. Development of high efficiency neutron detectors

    SciTech Connect

    Pickrell, M.M.; Menlove, H.O.

    1993-08-01

    We have designed a novel neutron detector system using conventional {sup 3}He detector tubes and composites of polyethylene, and graphite. At this time the design consists entirely of MCNP simulations of different detector configurations and materials. These detectors are applicable to low-level passive and active neutron assay systems such as the passive add-a-source and the {sup 252}Cf shuffler. Monte Carlo simulations of these neutron detector designs achieved efficiencies of over 35% for assay chambers that can accommodate 55-gal. drums. Only slight increases in the number of detector tubes and helium pressure are required. The detectors also have reduced die-away times. Potential applications are coincident and multiplicity neutron counting for waste disposal and safeguards. We will present the general design philosophy, underlying physics, calculation mechanics, and results.

  2. New type of transformerless high efficiency inverter

    NASA Astrophysics Data System (ADS)

    Naaijer, G. J.

    Inverter architectures are presented which allow economical ac/dc switching for solar cell array and battery power use in domestic and industrial applications. The efficiencies of currently available inverters are examined and compared with a new 2.2 kW transformerless stepped wave inverter. The inverter has low no-load losses, amounting to 200 Wh/24 hr, and features voltage steps occurring 15-30 times/sine wave period. An example is provided for an array/battery/inverter assembly with the inverter control electronics activating or disconnecting the battery subassemblies based on the total number of activated subassemblies in relation to a reference sinewave, and the need to average the battery subassembly discharge rates. A total harmonic distortion of 6 percent was observed, and the system is noted to be usable as a battery charger.

  3. High-efficiency thermoelectrics with functionalized graphene.

    PubMed

    Kim, Jeong Yun; Grossman, Jeffrey C

    2015-05-13

    Graphene superlattices made with chemical functionalization offer the possibility of tuning both the thermal and electronic properties via nanopatterning of the graphene surface. Using classical and quantum mechanical calculations, we predict that suitable chemical functionalization of graphene can introduce peaks in the density of states at the band edge that result in a large enhancement in the Seebeck coefficient, leading to an increase in the room-temperature power factor of a factor of 2 compared to pristine graphene, despite the degraded electrical conductivity. Furthermore, the presence of patterns on graphene reduces the thermal conductivity, which when taken together leads to an increase in the figure of merit for functionalized graphene by up to 2 orders of magnitude over that of pristine graphene, reaching its maximum ZT ∼ 3 at room temperature according to our calculations. These results suggest that appropriate chemical functionalization could lead to efficient graphene-based thermoelectric materials.

  4. Highly efficient multimode diode-pumped Yb:KYW laser

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. A.; Pivtsov, V. S.; Semenko, A. V.; Bagayev, S. N.

    2017-01-01

    Record high differential efficiency (53.2%) and full optical efficiency (48%) for a multimode diode-pumped Yb:KYW laser have been achieved. The characteristics of the laser and methods for improving its efficiency using a distributed Bragg reflector tapered diode laser (DBR TDL) are discussed.

  5. A review of high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.

    1986-01-01

    Various parameters that affect solar cell efficiency were discussed. It is not understood why solar cells produced from less expensive Czochralski (Cz) silicon are less efficient than cells fabricated from more expensive float-zone (Fz) silicon. Performance characteristics were presented for recently produced, high-efficient solar cells fabricated by Westinghouse Electric Corp., Spire Corp., University of New South Wales, and Stanford University.

  6. High-gain test facility driven by a multimegajoule solid-state laser

    SciTech Connect

    Powell, H.T.; Manes, K.R.; Hogan, W.J.

    1986-01-01

    An ICF high-gain test facility (HGTF) will most certainly be in demand for other applications than ICF target physics. These will include advanced weapon physics, vulnerability and nuclear effects, and x-ray laser studies. These other applications will place additional demands on driver flexibility and will extend the desirable range of some of the driver variables (e.g., the desirable pulse length range would be 0.1 to 100 ns and the wavelength range would be 0.25 to 1.0 ..mu..m). It is also likely that to utilize the driver efficiently for the variety of applications foreseen will require multiple target chambers and experiment areas. Thus, it is important that the driver beams be efficiently transported to these different experimental areas. At the present time, the only driver capable of meeting this broad set of requirements is the Nd:glass laser. It has long been believed that an Nd:glass laser with the above requirements could be built but that it would be unreasonably expensive. There is still much work to be done. However, the progress to date and the track record for lowering system cost in past solid-state facilities, leads us to be optimistic that we can achieve our goal of building an affordable HGTF that will meet all the requirements.

  7. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.

    1985-01-01

    High-efficiency dendritic cells were discussed. The influence of twin planes and heat treatment on the location and effect of trace impurities was of particular interest. Proper heat treatment often increases efficiency by causing impurities to pile up at twin planes. Oxide passivation had a beneficial effect on efficiency. A very efficient antireflective (AR) coating of zinc selenide and magnesium fluoride was designed and fabricated. An aluminum back-surface reflector was also effective.

  8. Preparation of highly efficient manganese catalase mimics.

    PubMed

    Triller, Michael U; Hsieh, Wen-Yuan; Pecoraro, Vincent L; Rompel, Annette; Krebs, Bernt

    2002-10-21

    The series of compounds [Mn(bpia)(mu-OAc)](2)(ClO(4))(2) (1), [Mn(2)(bpia)(2)(muO)(mu-OAc)](ClO(4))(3).CH(3)CN (2), [Mn(bpia)(mu-O)](2)(ClO(4))(2)(PF(6)).2CH(3)CN (3), [Mn(bpia)(Cl)(2)](ClO)(4) (4), and [(Mn(bpia)(Cl))(2)(mu-O)](ClO(4))(2).2CH(3)CN (5) (bpia = bis(picolyl)(N-methylimidazol-2-yl)amine) represents a structural, spectroscopic, and functional model system for manganese catalases. Compounds 3 and 5 have been synthesized from 2 via bulk electrolysis and ligand exchange, respectively. All complexes have been structurally characterized by X-ray crystallography and by UV-vis and EPR spectroscopies. The different bridging ligands including the rare mono-mu-oxo and mono-mu-oxo-mono-mu-carboxylato motifs lead to a variation of the Mn-Mn separation across the four binuclear compounds of 1.50 A (Mn(2)(II,II) = 4.128 A, Mn(2)(III,III) = 3.5326 and 3.2533 A, Mn(2)(III,IV) = 2.624 A). Complexes 1, 2, and 3 are mimics for the Mn(2)(II,II), the Mn(2)(III,III), and the Mn(2)(III,IV) oxidation states of the native enzyme. UV-vis spectra of these compounds show similarities to those of the corresponding oxidation states of manganese catalase from Thermus thermophilus and Lactobacillus plantarum. Compound 2 exhibits a rare example of a Jahn-Teller compression. While complexes 1 and 3 are efficient catalysts for the disproportionation of hydrogen peroxide and contain an N(4)O(2) donor set, 4 and 5 show no catalase activity. These complexes have an N(4)Cl(2) and N(4)OCl donor set, respectively, and serve as mimics for halide inhibited manganese catalases. Cyclovoltammetric data show that the substitution of oxygen donor atoms with chloride causes a shift of redox potentials to more positive values. To our knowledge, complex 1 is the most efficient binuclear functional manganese catalase mimic exhibiting saturation kinetics to date.

  9. Efficient high-capacity steganography technique

    NASA Astrophysics Data System (ADS)

    Abdulla, Alan A.; Jassim, Sabah A.; Sellahewa, Harin

    2013-05-01

    Performance indicators characterizing modern steganographic techniques include capacity (i.e. the quantity of data that can be hidden in the cover medium), stego quality (i.e. artifacts visibility), security (i.e. undetectability), and strength or robustness (intended as the resistance against active attacks aimed to destroy the secret message). Fibonacci based embedding techniques have been researched and proposed in the literature to achieve efficient steganography in terms of capacity with respect to stego quality. In this paper, we investigated an innovative idea that extends Fibonacci-like steganography by bit-plane(s) mapping instead of bit-plane(s) replacement. Our proposed algorithm increases embedding capacity using bit-plane mapping to embed two bits of the secret message in three bits of a pixel of the cover, at the expense of a marginal loss in stego quality. While existing Fibonacci embedding algorithms do not use certain intensities of the cover for embedding due to the limitation imposed by the Zeckendorf theorem, our proposal solve this problem and make all intensity values candidates for embedding. Experimental results demonstrate that the proposed technique double the embedding capacity when compared to existing Fibonacci methods, and it is secure against statistical attacks such as RS, POV, and difference image histogram (DIH).

  10. Microalgae from domestic wastewater facility's high rate algal pond: Lipids extraction, characterization and biodiesel production.

    PubMed

    Drira, Neila; Piras, Alessandra; Rosa, Antonella; Porcedda, Silvia; Dhaouadi, Hatem

    2016-04-01

    In this study, the harvesting of a biomass from a high rate algal pond (HRAP) of a real-scale domestic wastewater treatment facility and its potential as a biomaterial for the production of biodiesel were investigated. Increasing the medium pH to 12 induced high flocculation efficiency of up to 96% of the biomass through both sweep flocculation and charge neutralization. Lipids extracted by ultrasounds from this biomass contained around 70% of fatty acids, with palmitic and stearic acids being the most abundant. The extract obtained by supercritical CO2 contained 86% of fatty acids. Both conventional solvents extracts contained only around 10% of unsaturated fats, whereas supercritical CO2 extract contained more than 40% of unsaturated fatty acids. This same biomass was also subject to direct extractive-transesterification in a microwave reactor to produce fatty acid methyl esters, also known as, raw biodiesel.

  11. TLD efficiency of 7LiF for doses deposited by high-LET particles

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Frank, A. L.; Benton, E. V.

    2000-01-01

    The efficiency of 7 LiF TLDs (TLD-700) in registering dose from high-LET (> or = 10 keV/micrometers) charged particles (relative to 137Cs gamma rays) has been measured for a number of accelerated heavy ions at various particle accelerator facilities. These measured efficiency values have been compared with similar results obtained from the open literature and a dose efficiency function has been fitted to the combined data set. While it was found that the dose efficiency is not only a function of LET, but also of the charge of the incident particle, the fitted function can be used to correct the undermeasured value of dose from exposures made in mixed radiation fields where LET information is available. This LET-dependent dose efficiency function is used in our laboratory in determining total absorbed dose and dose equivalent from combined TLD and CR-39 plastic nuclear track detector measurements.

  12. TLD efficiency of 7LiF for doses deposited by high-LET particles

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Frank, A. L.; Benton, E. V.

    2000-01-01

    The efficiency of 7 LiF TLDs (TLD-700) in registering dose from high-LET (> or = 10 keV/micrometers) charged particles (relative to 137Cs gamma rays) has been measured for a number of accelerated heavy ions at various particle accelerator facilities. These measured efficiency values have been compared with similar results obtained from the open literature and a dose efficiency function has been fitted to the combined data set. While it was found that the dose efficiency is not only a function of LET, but also of the charge of the incident particle, the fitted function can be used to correct the undermeasured value of dose from exposures made in mixed radiation fields where LET information is available. This LET-dependent dose efficiency function is used in our laboratory in determining total absorbed dose and dose equivalent from combined TLD and CR-39 plastic nuclear track detector measurements.

  13. High Thermal Efficiency in Airplane Service

    NASA Technical Reports Server (NTRS)

    Sparrow, S W

    1920-01-01

    Described here is a method by which high average fuel economy has been achieved in aircraft engines. Details are given of the design of certain foreign engines that employ an unusual type of fuel-air ratio control in which the change in power produced by a mixture change is due almost entirely to the change in the power producing ability of the unit weight of the mixture. The safety and performance features of this type of control are explained.

  14. High Efficiency Micromachining System Applied in Nanolithography

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Lee, Dong Weon; Choi, Young Soo

    Scanning probe lithography such as direct-writing lithographic processes and nanoscratching techniques based on scanning probe microscopy have presented new micromachining methods for microelectromechanical system (MEMS). In this paper, a micromachining system for thermal scanning probe lithography is introduced, which consists of the cantilever arrays and a big stroke micro XY-stage. A large machining area and high machining speed can be realized by combining arrays of cantilevers possessing sharp tips at their top with the novel micro XY-stage which can obtain big displacements under relatively low driving voltage and in a small size. According to the above configuration, this micromachining system is provided with high throughputs and suitable for industrialization due to its MEMS-based simple fabrication process. The novel micro XY-stage applied in this system is presented in detail including the unique structure and principles, which shows an obvious improvement and distinct advantages in comparison with traditional structures. It is analyzed by mathematical model and then simulated using finite element method (FEM), it is proved to be able to practically serve the micromachining system with high capability.

  15. Highly efficient retinal metabolism in cones

    PubMed Central

    Miyazono, Sadaharu; Shimauchi-Matsukawa, Yoshie; Tachibanaki, Shuji; Kawamura, Satoru

    2008-01-01

    After bleaching of visual pigment in vertebrate photoreceptors, all-trans retinal is reduced to all-trans retinol by retinol dehydrogenases (RDHs). We investigated this reaction in purified carp rods and cones, and we found that the reducing activity toward all-trans retinal in the outer segment (OS) of cones is >30 times higher than that of rods. The high activity of RDHs was attributed to high content of RDH8 in cones. In the inner segment (IS) in both rods and cones, RDH8L2 and RDH13 were found to be the major enzymes among RDH family proteins. We further found a previously undescribed and effective pathway to convert 11-cis retinol to 11-cis retinal in cones: this oxidative conversion did not require NADP+ and instead was coupled with reduction of all-trans retinal to all-trans retinol. The activity was >50 times effective than the oxidizing activity of RDHs that require NADP+. These highly effective reactions of removal of all-trans retinal by RDH8 and production of 11-cis retinal by the coupling reaction are probably the underlying mechanisms that ensure effective visual pigment regeneration in cones that function under much brighter light conditions than rods. PMID:18836074

  16. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Technical Reports Server (NTRS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-01-01

    250 Watts of heat input, we expect this prototype to produce over 300 Watts of electrical energy output for a system energy conversion efficiency of over 12%. This low risk, near term design provides advances relative to present radioisotope thermophotovoltaic generators and has the additional advantage of allowing component and system development and testing to begin immediately. Improved cells and filters can easily be incorporated in this baseline system if they should become available in the future.

  17. Biologically inspired highly efficient buoyancy engine

    NASA Astrophysics Data System (ADS)

    Akle, Barbar; Habchi, Wassim; Abdelnour, Rita; Blottman, John, III; Leo, Donald

    2012-04-01

    Undersea distributed networked sensor systems require a miniaturization of platforms and a means of both spatial and temporal persistence. One aspect of this system is the necessity to modulate sensor depth for optimal positioning and station-keeping. Current approaches involve pneumatic bladders or electrolysis; both require mechanical subsystems and consume significant power. These are not suitable for the miniaturization of sensor platforms. Presented in this study is a novel biologically inspired method that relies on ionic motion and osmotic pressures to displace a volume of water from the ocean into and out of the proposed buoyancy engine. At a constant device volume, the displaced water will alter buoyancy leading to either sinking or floating. The engine is composed of an enclosure sided on the ocean's end by a Nafion ionomer and by a flexible membrane separating the water from a gas enclosure. Two electrodes are placed one inside the enclosure and the other attached to the engine on the outside. The semi-permeable membrane Nafion allows water motion in and out of the enclosure while blocking anions from being transferred. The two electrodes generate local concentration changes of ions upon the application of an electrical field; these changes lead to osmotic pressures and hence the transfer of water through the semi-permeable membrane. Some aquatic organisms such as pelagic crustacean perform this buoyancy control using an exchange of ions through their tissue to modulate its density relative to the ambient sea water. In this paper, the authors provide an experimental proof of concept of this buoyancy engine. The efficiency of changing the engine's buoyancy is calculated and optimized as a function of electrode surface area. For example electrodes made of a 3mm diameter Ag/AgCl proved to transfer approximately 4mm3 of water consuming 4 Joules of electrical energy. The speed of displacement is optimized as a function of the surface area of the Nafion

  18. High Efficiency, High Density Terrestrial Panel. [for solar cell modules

    NASA Technical Reports Server (NTRS)

    Wohlgemuth, J.; Wihl, M.; Rosenfield, T.

    1979-01-01

    Terrestrial panels were fabricated using rectangular cells. Packing densities in excess of 90% with panel conversion efficiencies greater than 13% were obtained. Higher density panels can be produced on a cost competitive basis with the standard salami panels.

  19. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the...

  20. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the...

  1. 40 CFR 761.71 - High efficiency boilers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the...

  2. High efficiency low cost GaAs/Ge cell technology

    NASA Technical Reports Server (NTRS)

    Ho, Frank

    1990-01-01

    Viewgraphs on high efficiency low cost GaAs/Ge cell technology are presented. Topics covered include: high efficiency, low cost GaAs/Ge solar cells; advantages of Ge; comparison of typical production cells for space applications; panel level comparisons; and solar cell technology trends.

  3. High efficiency low cost GaAs/Ge cell technology

    NASA Technical Reports Server (NTRS)

    Ho, Frank

    1990-01-01

    Viewgraphs on high efficiency low cost GaAs/Ge cell technology are presented. Topics covered include: high efficiency, low cost GaAs/Ge solar cells; advantages of Ge; comparison of typical production cells for space applications; panel level comparisons; and solar cell technology trends.

  4. A high temperature fatigue and structures testing facility

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.; Mcgaw, Michael A.

    1987-01-01

    As man strives for higher levels of sophistication in air and space transportation, awareness of the need for accurate life and material behavior predictions for advanced propulsion system components is heightened. Such sophistication will require complex operating conditions and advanced materials to meet goals in performance, thrust-to-weight ratio, and fuel efficiency. To accomplish these goals will require that components be designed using a high percentage of the material's ultimate capabilities. This serves only to complicate matters dealing with life and material behavior predictions. An essential component of material behavior model development is the underlying experimentation which must occur to identify phenomena. To support experimentation, the NASA Lewis Research Center's High Temperature Fatigue and Structures Laboratory has been expanded significantly. Several new materials testing systems have been added, as well as an extensive computer system. The intent of this paper is to present an overview of the laboratory, and to discuss specific aspects of the test systems. A limited discussion of computer capabilities will also be presented.

  5. Some approaches for fabricating high-efficiency OLEDs

    NASA Astrophysics Data System (ADS)

    Jou, Jwo-Huei; Wang, Wei-Ben; Shen, Shih-Ming; Wu, Ming-Hsuan

    2009-08-01

    High-efficiency is strongly desired for organic light-emitting diodes (OLEDs) to be fully realized as the future display and lighting technology. To replace current illumination tools, such as incandescent bulbs and fluorescent tubes, for examples, OLEDs with much higher efficiency are demanded. We will present herein some approaches for fabricating high-efficiency OLEDs of blue and white emission. Besides employing highly efficient electroluminescent guests and thin device architecture, low injection barriers to carriers, high carrier-transporting character, effective carrier/exciton confinement, balanced carrier-injection, exciton generation on host, effective host-to-guest energy-transfer and improved light-coupling efficiency are essential. Amongst, the incorporation of nano-dots in emissive- and non-emissive-layers can markedly improve the device efficiency. The enhancement is especially marked as small polymeric nano-dots are incorporated into the non-emissive layers. Since the incorporation is not in the emissive layer, the efficiency improvement mechanism works for both fluorescent and phosphorescent devices. Importantly, the efficiency improvement is also a strong function of the surface charge density of the nano-dots. Regardless positively or negatively charged, the improvement becomes more pronounced as the charge density increases. Results regarding some lately achieved extraordinarily highly-efficient OLEDs containing nano-dots with high surface charge will be presented.

  6. Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons

    DTIC Science & Technology

    2011-05-24

    Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons Kris J. Erickson,†,‡,§ Ashley...We report the synthesis of BNNRs through the potassium-intercalation-induced longitudinal splitting of boron nitride nanotubes (BNNTs). This facile...COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High

  7. DART: A Community Facility Providing State-of-the-Art, Efficient Ensemble Data Assimilation for Large (Coupled) Geophysical Models

    NASA Astrophysics Data System (ADS)

    Hoar, T. J.; Anderson, J. L.; Collins, N.; Kershaw, H.; Hendricks, J.; Raeder, K.; Mizzi, A. P.; Barré, J.; Gaubert, B.; Madaus, L. E.; Aydogdu, A.; Raeder, J.; Arango, H.; Moore, A. M.; Edwards, C. A.; Curchitser, E. N.; Escudier, R.; Dussin, R.; Bitz, C. M.; Zhang, Y. F.; Shrestha, P.; Rosolem, R.; Rahman, M.

    2016-12-01

    Strongly-coupled ensemble data assimilation with multiple high-resolution model components requires massive state vectors which need to be efficiently stored and accessed throughout the assimilation process. Supercomputer architectures are tending towards increasing the number of cores per node but have the same or less memory per node. Recent advances in the Data Assimilation Research Testbed (DART), a freely-available community ensemble data assimilation facility that works with dozens of large geophysical models, have addressed the need to run with a smaller memory footprint on a higher node count by utilizing MPI-2 one-sided communication to do non-blocking asynchronous access of distributed data. DART runs efficiently on many computational platforms ranging from laptops through thousands of cores on the newest supercomputers. Benefits of the new DART implementation will be shown. In addition, overviews of the most recently supported models will be presented: CAM-CHEM, WRF-CHEM, CM1, OpenGGCM, FESOM, ROMS, CICE5, TerrSysMP (COSMO, CLM, ParFlow), JULES, and CABLE. DART provides a comprehensive suite of software, documentation, and tutorials that can be used for ensemble data assimilation research, operations, and education. Scientists and software engineers at NCAR are available to support DART users who want to use existing DART products or develop their own applications. Current DART users range from university professors teaching data assimilation, to individual graduate students working with simple models, through national laboratories and state agencies doing operational prediction with large state-of-the-art models.

  8. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    SciTech Connect

    Anirban Mukherjee; Kwang-Bok Yi; Elizabeth J. Podlaha; Douglas P. Harrison

    2001-11-01

    Mixed metal oxides containing CeO{sub 2} and ZrO{sub 2} are being studied as high temperature desulfurization sorbents capable of achieving the DOE Vision 21 target of 1 ppmv of less H{sub 2}S. The research is justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeO{sub n} (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and should have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} has been developed and the products have been characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} have been prepared. XRD showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Phase separation did not occur when the solid solutions were heat treated at 700 C. A flow reactor system constructed of quartz and teflon has been constructed, and a gas chromatograph equipped with a pulsed flame photometric detector (PFPD) suitable for measuring sub-ppmv levels of H{sub 2}S has been purchased with LSU matching funds. Preliminary desulfurization tests using commercial CeO{sub 2} and CeO{sub 2}-ZrO{sub 2} in highly reducing gas compositions has confirmed that CeO{sub 2}-ZrO{sub 2} is more effective than CeO{sub 2} in removing H{sub 2}S. At 700 C the product H{sub 2}S concentration using CeO{sub 2}-ZrO{sub 2} sorbent was near the 0.1 ppmv PFPD detection limit during the prebreakthrough period.

  9. Compact and highly efficient laser pump cavity

    DOEpatents

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  10. Los Alamos High-Brightness Accelerator FEL (HIBAF) facility

    SciTech Connect

    Cornelius, W.D.; Bender, S.; Meier, K.; Thode, L.E.; Watson, J.M.

    1989-01-01

    The 10-/mu/m Los Alamos free-electron laser (FEL) facility is being upgraded. The conventional electron gun and bunchers have been replaced with a much more compact 6-MeV photoinjector accelerator. By adding existing parts from previous experiments, the primary beam energy will be doubled to 40 MeV. With the existing 1-m wiggler (/lambda//sub w/ = 2.7 cm) and resonator, the facility can produce photons with wavelengths from 3 to 100 /mu/m when lasing on the fundamental mode and produce photons in the visible spectrum with short-period wigglers or harmonic operation. After installation of a 150/degree/ bend, a second wiggler will be added as an amplifier. The installation of laser transport tubes between the accelerator vault and an upstairs laboratory will provide experimenters with a radiation-free environment for experiments. Although the initial experimental program of the upgraded facility will be to test the single accelerator-master oscillator/power amplifier configuration, some portion of the operational time of the facility can be dedicated to user experiments. 13 refs., 5 figs., 6 tabs.

  11. Factors Of Environmental Safety And Environmentally Efficient Technologies Transportation Facilities Gas Transportation Industry

    NASA Astrophysics Data System (ADS)

    Vasiliev, Bogdan U.

    2017-01-01

    The stable development of the European countries depends on a reliable and efficient operation of the gas transportation system (GTS). With high reliability of GTS it is necessary to ensure its industrial and environmental safety. In this article the major factors influencing on an industrial and ecological safety of GTS are analyzed, sources of GTS safety decreasing is revealed, measures for providing safety are proposed. The article shows that use of gas-turbine engines of gas-compressor units (GCU) results in the following phenomena: emissions of harmful substances in the atmosphere; pollution by toxic waste; harmful noise and vibration; thermal impact on environment; decrease in energy efficiency. It is shown that for the radical problem resolution of an industrial and ecological safety of gas-transmission system it is reasonable to use gas-compressor units driven by electric motors. Their advantages are shown. Perspective technologies of these units and experience of their use in Europe and the USA are given in this article.

  12. The LLNL HFTF (High-Field Test Facility): A flexible superconducting test facility for fusion magnet development

    SciTech Connect

    Miller, J.R.; Chaplin, M.R.; Leber, R.L.; Rosdahl, A.R.

    1987-09-17

    The High-Field Test Facility (HFTF) is a flexible and, in many ways, unique facility at Lawrence Livermore National Laboratory (LLNL) for providing the test capabilities needed to develop the superconducting magnet systems of the next generation fusion machines. The superconducting coil set in HFTF has been operated successfully at LLNL, but in its original configuration, its utility as a test facility was somewhat restricted and cryogenic losses were intolerable. A new cryostat for the coil set allows the magnet system to remain cold indefinitely so the system is available on short notice to provide high fields (about 11 T) inside a reasonably large test volume (0.3-m diam). The test volume is physically and thermally isolated from the coil volume, allowing test articles to be inserted and removed without disturbing the coil cryogenic volume, which is maintained by an on-line refrigerator. Indeed, with the proper precautions, it is even unnecessary to drop the field in the HFTF during such an operation. The separate test volume also allows reduced temperature operation without the expense and complication of subcooling the entire coil set (about 20-t cold mass). The HFTF has thus become a key facility in the LLNL magnet development program, where the primary goal is to demonstrate the technology for producing fields to 15 T with winding-pack current densities of 40 A.mm/sup -2/ in coils sized for fusion applications. 4 refs., 4 figs., 1 tab.

  13. A Facile Reduction Method for Roll-to-Roll Production of High Performance Graphene-Based Transparent Conductive Films.

    PubMed

    Ning, Jing; Hao, Long; Jin, Meihua; Qiu, Xiongying; Shen, Yudi; Liang, Jiaxu; Zhang, Xinghao; Wang, Bin; Li, Xianglong; Zhi, Linjie

    2017-03-01

    A facile roll-to-roll method is developed for fabricating reduced graphene oxide (rGO)-based flexible transparent conductive films. A Sn(2+) /ethanol reduction system and a rationally designed fast coating-drying-washing technique are proven to be highly efficient for low-cost continuous production of large-area rGO films and patterned rGO films, extremely beneficial toward the manufacture of flexible photoelectronic devices.

  14. 2250-MHz High Efficiency Microwave Power Amplifier (HEMPA)

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Tnis paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  15. Strategies to improve compensation and pension timeliness: lessons learned from high-performing facilities.

    PubMed

    Luk, Belinda V; Shiner, Brian; Watts, Bradley V; Zubkoff, Lisa; Schlosser, James E

    2010-12-01

    The compensation and pension (C&P) process is the mechanism by which injured Veterans are assigned their medical and disability benefits. As part of the documentation and rating process performed by the Veterans Benefits Administration (VBA), many Veterans need supplemental medical examinations performed by the Veterans Health Administration (VHA). Improving C&P examination timeliness is a goal of many VHA facilities. To identify strategies to improve examination timeliness, we used national performance measures to identify high-performing VHA facilities. We then interviewed seven facilities using Donabedian's structure-process-outcome framework to determine characteristics attributed to their high-performance. We developed a list of high-performance characteristics common to all facilities, which relied on a tailored relationship between each VHA facility and VBA office. Additional characteristics were grouped thematically into three management foci - financial incentives, role specialization, and process reliability. Distillation of these characteristics provides guidance to other VHA facilities seeking to improve their C&P timeliness.

  16. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    SciTech Connect

    Kwang-Bok Yi; Anirban Mukherjee; Elizabeth J. Podlaha; Douglas P. Harrison

    2004-03-01

    Mixed metal oxides containing ceria and zirconia have been studied as high temperature desulfurization sorbents with the objective of achieving the DOE Vision 21 target of 1 ppmv or less H{sub 2}S in the product gas. The research was justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeOn (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and was postulated to have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} mixtures was developed and the products were characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} were prepared. XRD analysis showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Unfortunately, the quantity of CeO{sub 2}-ZrO{sub 2} that could be prepared electrochemically was too small to permit desulfurization testing. Also during year 01 a laboratory-scale fixed-bed reactor was constructed for desulfurization testing. All components of the reactor and analytical systems that were exposed to low concentrations of H{sub 2}S were constructed of quartz, Teflon, or silcosteel. Reactor product gas composition as a function of time was determined using a Varian 3800 gas chromatograph equipped with a pulsed flame photometric detector (PFPD) for measuring low H{sub 2}S concentrations from approximately 0.1 to 10 ppmv, and a thermal conductivity detector (TCD) for higher concentrations of H{sub 2}S. Larger quantities of CeO{sub 2}-ZrO{sub 2} mixtures from other sources, including mixtures prepared in this laboratory using a coprecipitation procedure, were obtained

  17. Energy efficient engine high-pressure turbine detailed design report

    NASA Technical Reports Server (NTRS)

    Thulin, R. D.; Howe, D. C.; Singer, I. D.

    1982-01-01

    The energy efficient engine high-pressure turbine is a single stage system based on technology advancements in the areas of aerodynamics, structures and materials to achieve high performance, low operating economics and durability commensurate with commercial service requirements. Low loss performance features combined with a low through-flow velocity approach results in a predicted efficiency of 88.8 for a flight propulsion system. Turbine airfoil durability goals are achieved through the use of advanced high-strength and high-temperature capability single crystal materials and effective cooling management. Overall, this design reflects a considerable extension in turbine technology that is applicable to future, energy efficient gas-turbine engines.

  18. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    SciTech Connect

    Kwang-Bok Yi; Elizabeth J. Podlaha; Douglas P. Harrison

    2003-11-01

    Mixed metal oxides containing CeO{sub 2} and ZrO{sub 2} are being studied as high temperature desulfurization sorbents capable of achieving the DOE Vision 21 target of 1 ppmv or less H{sub 2}S. The research is justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeOn (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and should have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} was developed and the products were characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} were prepared. XRD analysis showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Unfortunately, the quantity of CeO{sub 2}-ZrO{sub 2} that could be prepared electrochemically was too small to permit full desulfurization testing. Also during year 01 a laboratory-scale fixed-bed reactor was constructed for desulfurization testing. All components of the reactor and analytical systems that may be exposed to low concentrations of H{sub 2}S are constructed of quartz, Teflon, or silcosteel. Reactor product gas composition as a function of time is determined using a Varian 3800 gas chromatograph equipped with a pulsed flame photometric detector (PFPD) for measuring low H{sub 2}S concentrations (<{approx}10 ppmv) and a thermal conductivity detector (TCD) for higher concentrations of H{sub 2}S. Larger quantities of CeO{sub 2}-ZrO{sub 2} mixtures from other sources, including mixtures prepared in this laboratory using a coprecipitation procedure, have been obtained. Much of the work during year 02 consisted of

  19. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    SciTech Connect

    Kwang-Bok Yi; Elizabeth J. Podlaha; Douglas P. Harrison

    2002-11-01

    Mixed metal oxides containing CeO{sub 2} and ZrO{sub 2} are being studied as high temperature desulfurization sorbents capable of achieving the DOE Vision 21 target of 1 ppmv or less H{sub 2}S. The research is justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeO{sub n} (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and should have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} was developed and the products were characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} were prepared. XRD showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Unfortunately, the quantity of CeO{sub 2}-ZrO{sub 2} that could be prepared electrochemically was too small to permit full testing in our desulfurization reactor. Also during year 01 a laboratory-scale fixed-bed reactor was constructed for desulfurization testing. All components of the reactor and analytical systems that may be exposed to low concentrations of H{sub 2}S are constructed of quartz, Teflon, or silcosteel. Reactor product gas composition as a function of time is determined using a Varian 3800 gas chromatograph equipped with a pulsed flame photometric detector (PFPD) for measuring low H{sub 2}S concentrations ({approx}< 10 ppmv) and a thermal conductivity detector (TCD) for higher concentrations of H{sub 2}S. Larger quantities of CeO{sub 2}-ZrO{sub 2} mixtures from other sources, including mixtures prepared in this laboratory using a coprecipitation procedure, have been obtained. Characterization and desulfurization

  20. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    SciTech Connect

    Singer, Brett C.; Tschudi, William F.

    2009-09-08

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  1. N-231 High Reynolds Number Channel I is a blowdown Facility that utilizes interchangeable test

    NASA Technical Reports Server (NTRS)

    1980-01-01

    N-231 High Reynolds Number Channel I is a blowdown Facility that utilizes interchangeable test sections and nozzles. The facility provides experimental support for the fluid mechanics research, including experimental verification of aerodynamic computer codes and boundary-layer and airfoil studies that require high Reynolds number simulation. (Tunnel 1)

  2. The Pain in Storage: Work Safety in a High-Density Shelving Facility

    ERIC Educational Resources Information Center

    Atkins, Stephanie A.

    2005-01-01

    An increasing number of academic and research libraries have built high-density shelving facilities to address overcrowding conditions in their regular stacks. However, the work performed in these facilities is physically strenuous and highly repetitive in nature and may require the use of potentially dangerous equipment. This article will examine…

  3. N-231 High Reynolds Number Channel I is a blowdown Facility that utilizes interchangeable test

    NASA Technical Reports Server (NTRS)

    1980-01-01

    N-231 High Reynolds Number Channel I is a blowdown Facility that utilizes interchangeable test sections and nozzles. The facility provides experimental support for the fluid mechanics research, including experimental verification of aerodynamic computer codes and boundary-layer and airfoil studies that require high Reynolds number simulation. (Tunnel 1)

  4. The CERN-EU high-energy Reference Field (CERF) facility: applications and latest developments

    NASA Astrophysics Data System (ADS)

    Silari, Marco; Pozzi, Fabio

    2017-09-01

    The CERF facility at CERN provides an almost unique high-energy workplace reference radiation field for the calibration and test of radiation protection instrumentation employed at high-energy accelerator facilities and for aircraft and space dosimetry. This paper describes the main features of the facility and supplies a non-exhaustive list of recent (as of 2005) applications for which CERF is used. Upgrade work started in 2015 to provide the scientific and industrial communities with a state-of-the-art reference facility is also discussed.

  5. 100 kW CW highly-efficient multi-beam klystron for a future electron-ion collider

    NASA Astrophysics Data System (ADS)

    Teryaev, Vladimir E.; Shchelkunov, Sergey V.; Jiang, Yong; Hirshfield, Jay L.

    2017-03-01

    Initial results are presented for the development of a CW highly-efficient RF source needed for operation of a future electron-ion collider. The design of this compact multi-beam klystron yields high efficiency (above 70%) for the power output of 125 kW at 952.6 MHz. The klystron is to work for the RF systems for ion acceleration in the polarized Medium-energy Electron Ion Collider as being developed at Thomas Jefferson National Accelerator Facility.

  6. Summary of efficiency testing of standard and high-capacity high-efficiency particulate air filters subjected to simulated tornado depressurization and explosive shock waves

    SciTech Connect

    Smith, P.R.; Gregory, W.S.

    1985-04-01

    Pressure transients in nuclear facility air cleaning systems can originate from natural phenomena such as tornadoes or from accident-induced explosive blast waves. This study was concerned with the effective efficiency of high-efficiency particulate air (HEPA) filters during pressure surges resulting from simulated tornado and explosion transients. The primary objective of the study was to examine filter efficiencies at pressure levels below the point of structural failure. Both standard and high-capacity 0.61-m by 0.61-m HEPA filters were evaluated, as were several 0.2-m by 0.2-m HEPA filters. For a particular manufacturer, the material release when subjected to tornado transients is the same (per unit area) for both the 0.2-m by 0.2-m and the 0.61-m by 0.61-m filters. For tornado transients, the material release was on the order of micrograms per square meter. When subjecting clean HEPA filters to simulated tornado transients with aerosol entrained in the pressure pulse, all filters tested showed a degradation of filter efficiency. For explosive transients, the material release from preloaded high-capacity filters was as much as 340 g. When preloaded high-capacity filters were subjected to shock waves approximately 50% of the structural limit level, 1 to 2 mg of particulate was released.

  7. Summary of high-efficiency solar-cell research

    NASA Technical Reports Server (NTRS)

    Kachare, R.

    1985-01-01

    High-efficiency solar-cell activities supporting efforts to achieve the DOE Five-Year Plan goals are summarized. Specific objectives are to identify and resolve key generic problems that limit cell efficiency to below theoretically predicted values and to design and fabricate cells having efficiences equal to or greater than 20% (AM1.5). Theoretical curves for various p-n junction cells were shown. The effects of practical barriers on cell efficiency was depicted along with the modeling parameters. Cell design parameters used in the analyses were described. The usefulness and present limitations of the existing modeling capabilities were presented. The historical evolution of the efficiencies of cells made from web and edge-defined film-fed growth (EFG) silicon ribbons were also described. The status of contemporary higher-efficiency technical capabilities and future activities to raise efficiencies were stated.

  8. High efficiency endocrine operation protocol: From design to implementation.

    PubMed

    Mascarella, Marco A; Lahrichi, Nadia; Cloutier, Fabienne; Kleiman, Simcha; Payne, Richard J; Rosenberg, Lawrence

    2016-10-01

    We developed a high efficiency endocrine operative protocol based on a mathematical programming approach, process reengineering, and value-stream mapping to increase the number of operations completed per day without increasing operating room time at a tertiary-care, academic center. Using this protocol, a case-control study of 72 patients undergoing endocrine operation during high efficiency days were age, sex, and procedure-matched to 72 patients undergoing operation during standard days. The demographic profile, operative times, and perioperative complications were noted. The average number of cases per 8-hour workday in the high efficiency and standard operating rooms were 7 and 5, respectively. Mean procedure times in both groups were similar. The turnaround time (mean ± standard deviation) in the high efficiency group was 8.5 (±2.7) minutes as compared with 15.4 (±4.9) minutes in the standard group (P < .001). Transient postoperative hypocalcemia was 6.9% (5/72) and 8.3% (6/72) for the high efficiency and standard groups, respectively (P = .99). In this study, patients undergoing high efficiency endocrine operation had similar procedure times and perioperative complications compared with the standard group. The proposed high efficiency protocol seems to better utilize operative time and decrease the backlog of patients waiting for endocrine operation in a country with a universal national health care program. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. High brilliance and high efficiency: optimized high power diode laser bars

    NASA Astrophysics Data System (ADS)

    Hülsewede, R.; Schulze, H.; Sebastian, J.; Schröder, D.; Meusel, J.; Hennig, P.

    2008-02-01

    The strong increasing laser market has ongoing demands to reduce the costs of diode laser pumped systems. For that reason JENOPTIK Diode Lab GmbH (JDL) optimized the bar brilliance (small vertical far field divergence) and bar efficiency (higher optical power operation) with respect to the pump applications. High efficiency reduces the costs for mounting and cooling and high brilliance increases the coupling efficiency. Both are carefully adjusted in the 9xx nm - high power diode laser bars for pump applications in disc- and fiber lasers. Based on low loss waveguide structures high brilliance bars with 19° fast axis beam divergence (FWHM) with 58 % maximum efficiency and 27° fast axis beam divergence (FWHM) with 62 % maximum efficiency are developed. Mounted on conductive cooled heat sinks high power operation with lifetime > 20.000 hours at 120 W output power level (50 % filling factor bars) and 80W (20 % filling factor bars) is demonstrated. 808nm bars used as pump sources for Nd:YAG solid state lasers are still dominating in the market. With respect to the demands on high reliability at high power operation current results of a 100 W high power life time test are showing more than 9000 hour operation time for passively cooled packaged high efficiency 50 % filling factor bars. Measurement of the COMD-level after this hard pulse life time test demonstrates very high power levels with no significant droop in COMD-power level. This confirms the high facet stability of JDL's facet technology. New high power diode laser bars with wavelength of 825 nm and 885 nm are still under development and first results are presented.

  10. Remote Steric Effect as a Facile Strategy for Improving the Efficiency of Exciplex-Based OLEDs.

    PubMed

    Hung, Wen-Yi; Wang, Ting-Chih; Chiang, Pin-Yi; Peng, Bo-Ji; Wong, Ken-Tsung

    2017-03-01

    This work reports a new strategy of introducing remote steric effect onto the electron donor for giving the better performance of the exciplex-based organic light-emitting device (OLED). The bulky triphenylsilyl group (SiPh3) was introduced onto the fluorene bridge of 4,4'-(9H-fluorene-9,9-diyl)bis(N,N-di-p-tolylaniline) (DTAF) to create remote steric interactions for increasing the possibility of effective contacts between electron-donating chromophores and acceptor molecules, rendering the resulting exciplex to have a higher photoluminescence quantum yield (PLQY). The green exciplex device based on DSDTAF:3N-T2T (1:1) as an emitting layer exhibits a low turn-on voltage of 2.0 V, high maximum efficiencies (13.2%, 42.9 cd A(-1), 45.5 lm W(-1)), which are higher than the device employed DTAF (without SiPh3 groups) (11.6%, 35.3 cd A(-1), 41.3 lm W(-1)) as donor under the same device structure. This strategy was further examined for blue exciplex, where the EQE was enhanced from 9.5% to 12.5% as the electron acceptor PO-T2T mixed with a tert-butyl group substituted carbazole-based donor (CPTBF) as the emitting exciplex in device. This strategy is simple and useful for developing high performance exciplex OLEDs.

  11. Classical Keggin Intercalated into Layered Double Hydroxides: Facile Preparation and Catalytic Efficiency in Knoevenagel Condensation Reactions.

    PubMed

    Jia, Yueqing; Fang, Yanjun; Zhang, Yingkui; Miras, Haralampos N; Song, Yu-Fei

    2015-10-12

    The family of polyoxometalate (POM) intercalated layered double hydroxide (LDH) composite materials has shown great promise for the design of functional materials with numerous applications. It is known that intercalation of the classical Keggin polyoxometalate (POM) of [PW12 O40 ](3-) (PW12 ) into layered double hydroxides (LDHs) is very unlikely to take place by conventional ion exchange methods due to spatial and geometrical restrictions. In this paper, such an intercalated compound of Mg0.73 Al0.22 (OH)2 [PW12 O40 ]0.04 ⋅0.98 H2 O (Mg3 Al-PW12 ) has been successfully obtained by applying a spontaneous flocculation method. The Mg3 Al-PW12 has been fully characterized by using a wide range of methods (XRD, SEM, TEM, XPS, EDX, XPS, FT-IR, NMR, BET). XRD patterns of Mg3 Al-PW12 exhibit no impurity phase usually observed next to the (003) diffraction peak. Subsequent application of the Mg3 Al-PW12 as catalyst in Knoevenagel condensation reactions of various aldehydes and ketones with Z-CH2 -Z' type substrates (ethyl cyanoacetate and malononitrile) at 60 °C in mixed solvents (V2-propanol :Vwater =2:1) demonstrated highly efficient catalytic activity. The synergistic effect between the acidic and basic sites of the Mg3 Al-PW12 composite proved to be crucial for the efficiency of the condensation reactions. Additionally, the Mg3 Al-PW12 -catalyzed Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate demonstrated the highest turnover number (TON) of 47 980 reported so far for this reaction.

  12. High efficiency IMPATT diodes for 60 GHz intersatellite link applications

    NASA Technical Reports Server (NTRS)

    Haugland, E. J.

    1984-01-01

    Intersatellite links are expected to play an increasingly important role in future satellite systems. Improved components are required to properly utilize the wide bandwidth allocated for intersatellite link applications around 60 GHz. IMPATT diodes offer the highest potential performance as solid state power sources for a 60 GHz transmitter. Presently available devices do not have the desired power and efficiency. High efficiency, high power IMPATT diodes for intersatellite link applications are being developed by NASA and other government agencies. This paper describes the development of high efficiency 60 GHz IMPATT diodes by NASA. These programs are cofunded by the U.S. Air Force, Space Division.

  13. High efficiency IMPATT diodes for 60 GHz intersatellite link applications

    NASA Technical Reports Server (NTRS)

    Haugland, E. J.

    1984-01-01

    Intersatellite links are expected to play an increasingly important role in future satellite systems. Improved components are required to properly utilize the wide bandwidth allocated for intersatellite link applications around 60 GHz. IMPATT diodes offer the highest potential performance as solid state power sources for a 60 GHz transmitter. Presently available devices do not have the desired power and efficiency. High efficiency, high power IMPATT diodes for intersatellite link applications are being developed by NASA and other government agencies. The development of high efficiency 60 GHz IMPATT diodes by NASA is described.

  14. High-efficiency backlight module with two guiding modes.

    PubMed

    Li, Chang-Yi; Pan, Jui-Wen

    2014-03-10

    We propose a design for a high-efficiency backlight module that does not require a brightness enhancement film (BEF). With the high-efficiency backlight module it is possible to achieve almost the same half-luminance angle as a conventional edge-lit backlight module can achieve. The backlight system is comprised of a crisscross light guide plate (LGP) and one diffuser sheet. The crisscross LGP is composed of a LGP and optically patterned film (OPF). The backlight module allows light to be extracted through the direct guiding mode and top guiding mode, respectively. We controlled arrangement of the microstructures to increase the optical efficiency and the uniformity by two modes. Compared to the conventional edge-lit backlight module, there is a two-fold improvement in both the total optical efficiency and on-axis luminance with the high-efficiency backlight module.

  15. Repositioning the Facilities in Technical College Workshops for Efficiency: A Case Study of North Central Nigeria

    ERIC Educational Resources Information Center

    Umar, Ibrahim Y.; Ma'aji, Abdullahi S.

    2010-01-01

    This article focuses on assessing the facilities in Government Technical College workshops in the context of a developing country. A descriptive survey design was adopted. Two research questions and a hypothesis were formulated to guide the study. A 35-item questionnaire was developed based on the National Board for Technical Education (NBTE)…

  16. Development of High Efficient Organic Thin-film Solar Cells

    NASA Astrophysics Data System (ADS)

    Hiramoto, Masahiro

    Fundamental principles and p-i-n junction concept of organic solar cells are described. Methods for improvement of conversion efficiency such as nanostructure design of co-deposited i-layer and high-purification of organic semiconductors are explained. Conversion efficiency exceeding 5% was observed. Cell operation for 1000 hours (42 days) was successfully accomplished.

  17. Efficient High Performance Collective Communication for Distributed Memory Environments

    ERIC Educational Resources Information Center

    Ali, Qasim

    2009-01-01

    Collective communication allows efficient communication and synchronization among a collection of processes, unlike point-to-point communication that only involves a pair of communicating processes. Achieving high performance for both kernels and full-scale applications running on a distributed memory system requires an efficient implementation of…

  18. Development of an Improved High Efficiency Thin Solar Cell

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.; Wrigley, C.; Storti, G.

    1979-01-01

    High efficiency cells (up to 14 AMO at 25 C)were fabricated from 10 - 15 ohm-cm silicon by using screen printed aluminum paste as the alloy source for the production of back surface fields. Thick consistency pastes that have been cured prior to a short heat treatment at 850 C were most effective in achieving these efficiency levels.

  19. Space solar cells: High efficiency and radiation damage

    NASA Technical Reports Server (NTRS)

    Brandhorst, H., Jr.; Bernatowicz, D. T.

    1980-01-01

    The progress and status of efforts to increase the end-of-life efficiency of solar cells for space use is assessed. High efficiency silicon solar cells, silicon solar cell radiation damage, GaAs solar cell performance and radiation damage and 30 percent devices are discussed.

  20. High efficiency hydrocarbon-free resonance transition potassium laser

    NASA Astrophysics Data System (ADS)

    Zweiback, Jason; Hager, Gordon; Krupke, William F.

    2009-05-01

    We experimentally demonstrate a high efficiency potassium laser using a 0.15 nm bandwidth alexandrite laser as the pump source. The laser uses naturally occurring helium as the buffer gas. We achieve a 64% slope efficiency and a 57% optical to optical conversion. A pulsed laser model shows good agreement with the data.