Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin
2014-07-01
A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high nitrogen utilization efficiency had a strong ability of dry matter production and nitrogen accumulation. It could synergistically improve yield and nitrogen utilization efficiency by enhancing the ability of nitrogen uptake and dry matter formation before jointing stage in barley.
Wang, Chu; Li, Xianglong; Pan, Yuyu; Zhang, Shitong; Yao, Liang; Bai, Qing; Li, Weijun; Lu, Ping; Yang, Bing; Su, Shijian; Ma, Yuguang
2016-02-10
Photoluminescence (PL) efficiency and exciton utilization efficiency are two key parameters to harvest high-efficiency electroluminescence (EL) in organic light-emitting diodes (OLEDs). But it is not easy to simultaneously combine these two characteristics (high PL efficiency and high exciton utilization) into a fluorescent material. In this work, an efficient combination was achieved through two concepts of hybridized local and charge-transfer (CT) state (HLCT) and "hot exciton", in which the former is responsible for high PL efficiency while the latter contributes to high exciton utilization. On the basis of a tiny chemical modification in TPA-BZP, a green-light donor-acceptor molecule, we designed and synthesized CzP-BZP with this efficeient combination of high PL efficiency of η(PL) = 75% in the solid state and maximal exciton utilization efficiency up to 48% (especially, the internal quantum efficiency of η(IQE) = 35% substantially exceed 25% of spin statistics limit) in OLED. The nondoped OLED of CzP-BZP exhibited an excellent performance: a green emission with a CIE coordinate of (0.34, 0.60), a maximum current efficiency of 23.99 cd A(-1), and a maximum external quantum efficiency (EQE, η(EQE)) of 6.95%. This combined HLCT state and "hot exciton" strategy should be a practical way to design next-generation, low-cost, high-efficiency fluorescent OLED materials.
Gao, Jing; Lu, Qi-Peng; Peng, Zhong-Qi; Ding, Hai-Quan; Gao, Hong-Zhi
2013-05-01
High signal-to-noise ratio (SNR) of system is necessary to obtain accurate blood components in near infrared noninvasive biochemical analysis. In order to improve SNR of analytical system, high-efficiency double compound parabolic concentrator (DCPC) system was researched, which was aimed at increasing light utilization efficiency. Firstly, with the request of collection efficiency in near infrared noninvasive biochemical analysis, the characteristic of emergent rays through compound parabolic concentrator (CPC) was analyzed. Then the maximum focusing angle range of the first stage CPC was determined. Secondly, the light utilization efficiency of truncated type was compared with standard DCPC, thus the best structure parameters of DCPC system were optimized. Lastly, combined with optical parameters of skin tissue, calculations were operated when incident wavelength is 1 000 nm. The light utilization efficiency of DCPC system, CPC-focusing mirror system, and non-optical collecting system was calculated. The results show that the light utilization efficiency of the three optical systems is 1.46%, 0.84% and 0.26% respectively. So DCPC system enhances collecting ability for human diffuse reflection light, and helps improve SNR of noninvasive biochemical analysis system and overall analysis accuracy effectively.
Lai, Jianping; Guo, Shaojun
2017-12-01
Nanocatalysts with high platinum (Pt) utilization efficiency are attracting extensive attention for oxygen reduction reactions (ORR) conducted at the cathode of fuel cells. Ultrathin Pt-based multimetallic nanostructures show obvious advantages in accelerating the sluggish cathodic ORR due to their ultrahigh Pt utilization efficiency. A focus on recent important developments is provided in using wet chemistry techniques for making/tuning the multimetallic nanostructures with high Pt utilization efficiency for boosting ORR activity and durability. First, new synthetic methods for multimetallic core/shell nanoparticles with ultrathin shell sizes for achieving highly efficient ORR catalysts are reviewed. To obtain better ORR activity and stability, multimetallic nanowires or nanosheets with well-defined structure and surface are further highlighted. Furthermore, ultrathin Pt-based multimetallic nanoframes that feature 3D molecularly accessible surfaces for achieving more efficient ORR catalysis are discussed. Finally, the remaining challenges and outlooks for the future will be provided for this promising research field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Progress and prospects of silicon-based design for optical phased array
NASA Astrophysics Data System (ADS)
Hu, Weiwei; Peng, Chao; Chang-Hasnain, Connie
2016-03-01
The high-speed, high-efficient, compact phase modulator array is indispensable in the Optical-phased array (OPA) which has been considered as a promising technology for realizing flexible and efficient beam steering. In our research, two methods are presented to utilize high-contrast grating (HCG) as high-efficient phase modulator. One is that HCG possesses high-Q resonances that origins from the cancellation of leaky waves. As a result, sharp resonance peaks appear on the reflection spectrum thus HCGs can be utilized as efficient phase shifters. Another is that low-Q mode HCG is utilized as ultra-lightweight mirror. With MEMS technology, small HCG displacement (~50 nm) leads to large phase change (~1.7π). Effective beam steering is achieved in Connie Chang-Hasnian's group. On the other hand, we theoretically and experimentally investigate the system design for silicon-based optical phased array, including the star coupler, phased array, emission elements and far-field patterns. Further, the non-uniform optical phased array is presented.
Power Budget Analysis for High Altitude Airships
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Elliott, James R.; King, Glen C.
2006-01-01
The High Altitude Airship (HAA) has various potential applications and mission scenarios that require onboard energy harvesting and power distribution systems. The energy source considered for the HAA s power budget is solar photon energy that allows the use of either photovoltaic (PV) cells or advanced thermoelectric (ATE) converters. Both PV cells and an ATE system utilizing high performance thermoelectric materials were briefly compared to identify the advantages of ATE for HAA applications in this study. The ATE can generate a higher quantity of harvested energy than PV cells by utilizing the cascaded efficiency of a three-staged ATE in a tandem mode configuration. Assuming that each stage of ATE material has the figure of merit of 5, the cascaded efficiency of a three-staged ATE system approaches the overall conversion efficiency greater than 60%. Based on this estimated efficiency, the configuration of a HAA and the power utility modules are defined.
NASA Astrophysics Data System (ADS)
Wang, Shuaijun; Liu, Chentao; Zhou, Yao
2018-01-01
Based on using the waste heat recycling from high temperature freshwater in marine diesel engine to heat fuel oil tank, lubrication oil tank and settling tank and so on to achieve energy saving, improve fuel efficiency as the goal, study on waste heat utilization device of high-temperature freshwater in the modern marine diesel engine to make the combustion chamber effectively cooled by high-temperature freshwater and the inner liner freshwater temperature heat is effectively utilized and so on to improve the overall efficiency of the power plant of the ship and the diesel optimum working condition.
High efficiency, long life terrestrial solar panel
NASA Technical Reports Server (NTRS)
Chao, T.; Khemthong, S.; Ling, R.; Olah, S.
1977-01-01
The design of a high efficiency, long life terrestrial module was completed. It utilized 256 rectangular, high efficiency solar cells to achieve high packing density and electrical output. Tooling for the fabrication of solar cells was in house and evaluation of the cell performance was begun. Based on the power output analysis, the goal of a 13% efficiency module was achievable.
Heart failure in primary care: co-morbidity and utilization of health care resources.
Carmona, Montserrat; García-Olmos, Luis M; García-Sagredo, Pilar; Alberquilla, Ángel; López-Rodríguez, Fernando; Pascual, Mario; Muñoz, Adolfo; Salvador, Carlos H; Monteagudo, José L; Otero-Puime, Ángel
2013-10-01
In order to ensure proper management of primary care (PC) services, the efficiency of the health professionals tasked with such services must be known. Patients with heart failure (HF) are characterized by advanced age, high co-morbidity and high resource utilization. To ascertain PC resource utilization by HF patients and variability in the management of such patients by GPs. Descriptive, cross-sectional study targeting a population attended by 129 GPs over the course of 1 year. All patients with diagnosis of HF in their clinical histories were included, classified using the Adjusted Clinical Group system and then grouped into six resource utilization bands (RUBs). Resource utilization and Efficiency Index were both calculated. One hundred per cent of patients with HF were ranked in RUBs 3, 4 and 5. The highest GP visit rate was 20 and the lowest in excess of 10 visits per year. Prescription drug costs for these patients ranged from €885 to €1422 per patient per year. Health professional efficiency varied notably, even after adjustment for co-morbidity (Efficiency Index Variation Ratio of 28.27 for visits and 404.29 for prescription drug cost). Patients with HF register a high utilization of resources, and there is great variability in the management of such patients by health professionals, which cannot be accounted for by the degree of case complexity.
Miller, Gabriel A.; Clissold, Fiona J.; Mayntz, David; Simpson, Stephen J.
2009-01-01
Ectotherms have evolved preferences for particular body temperatures, but the nutritional and life-history consequences of such temperature preferences are not well understood. We measured thermal preferences in Locusta migratoria (migratory locusts) and used a multi-factorial experimental design to investigate relationships between growth/development and macronutrient utilization (conversion of ingesta to body mass) as a function of temperature. A range of macronutrient intake values for insects at 26, 32 and 38°C was achieved by offering individuals high-protein diets, high-carbohydrate diets or a choice between both. Locusts placed in a thermal gradient selected temperatures near 38°C, maximizing rates of weight gain; however, this enhanced growth rate came at the cost of poor protein and carbohydrate utilization. Protein and carbohydrate were equally digested across temperature treatments, but once digested both macronutrients were converted to growth most efficiently at the intermediate temperature (32°C). Body temperature preference thus yielded maximal growth rates at the expense of efficient nutrient utilization. PMID:19625322
Su, Fei; Xu, Ke; Zhao, Bo; Tai, Cui; Tao, Fei; Tang, Hongzhi; Xu, Ping
2011-11-01
Bacillus coagulans XZL4 is an efficient pentose-utilizing producer of important platform compounds, such as l-lactic acid, 2,3-butanediol, and acetoin. Here we present a 2.8-Mb assembly of its genome. Simple and efficient carbohydrate metabolism systems, especially the transketolase/transaldolase pathway, make it possible to convert pentose sugars to products at high levels.
Gan, Shifeng; Hu, Shimin; Li, Xiang-Long; Zeng, Jiajie; Zhang, Dongdong; Huang, Tianyu; Luo, Wenwen; Zhao, Zujin; Duan, Lian; Su, Shi-Jian; Tang, Ben Zhong
2018-05-23
Raising triplet exciton utilization of pure organic luminescent materials is of significant importance for efficiency advancement of organic light-emitting diodes (OLEDs). Herein, by introducing bromine atom(s) onto a typical molecule (bis(carbazol-9-yl)-4,5-dicyanobenzene) with thermally activated delayed fluorescence, we demonstrate that the heavy atom effect of bromine can increase spin-orbit coupling and promote the reverse intersystem crossing, which endow the molecules with more distinct delayed fluorescence. In consequence, the triplet exciton utilization is improved greatly with the increase of bromine atoms, affording apparently advanced external quantum efficiencies of OLEDs. Utilizing the enhancement effect of bromine atoms on delayed fluorescence should be a simple and promising design concept for efficient organic luminogens with high exciton utilization.
Basic concepts for the design of high-efficiency single-junction and multibandgap solar cells
NASA Technical Reports Server (NTRS)
Fan, J. C. C.
1985-01-01
Concepts for obtaining practical solar-cell modules with one-sun efficiencies up to 30 percent at air mass 1 are now well understood. Such high-efficiency modules utilize multibandgap structures. To achieve module efficiencies significantly above 30 percent, it is necessary to employ different concepts such as spectral compression and broad-band detection. A detailed description of concepts for the design of high-efficiency multibandgap solar cells is given.
Wang, Zixing; Wang, Hedan; Zhu, Jun; Wu, Peng; Shen, Bowen; Dou, Dehai; Wei, Bin
2017-06-28
The application of exciplex energy has become a unique way to achieve organic light-emitting diodes (OLEDs) with high efficiencies, low turn-on voltage, and low roll-off. Novel δ-carboline derivatives with high triplet energy (T 1 ≈ 2.92 eV) and high glass transition temperature (T g ≈ 153 °C) were employed to manipulate exciplex emissions in this paper. Deep blue (peak at 436 nm) and pure blue (peak at 468 nm) thermally activated delayed fluorescence (TADF) of exciplex OLEDs were demonstrated by utilizing them as emitters with the maximum current efficiency (CE) of 4.64 cd A -1 , power efficiency (PE) of 2.91 lm W -1 , and external quantum efficiency (EQE) of 2.36%. Highly efficient blue phosphorescent OLEDs doped with FIrpic showed a maximum CE of 55.6 cd A -1 , PE of 52.9 lm W -1 , and EQE of 24.6% respectively with very low turn on voltage at 2.7 V. The devices still remain high CE of 46.5 cd A -1 at 100 cd m -2 , 45.4 cd A -1 at 1000 cd m -2 and 42.3 cd A -1 at 5000 cd m -2 with EQE close to 20% indicating low roll-off. Manipulating blue exciplex emissions by chemical structure gives an ideal strategy to fully utilize all exciton energies for lighting of OLEDs.
Energy minimization strategies and renewable energy utilization for desalination: a review.
Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G
2011-02-01
Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. Copyright © 2011 Elsevier Ltd. All rights reserved.
Su, Fei; Xu, Ke; Zhao, Bo; Tai, Cui; Tao, Fei; Tang, Hongzhi; Xu, Ping
2011-01-01
Bacillus coagulans XZL4 is an efficient pentose-utilizing producer of important platform compounds, such as l-lactic acid, 2,3-butanediol, and acetoin. Here we present a 2.8-Mb assembly of its genome. Simple and efficient carbohydrate metabolism systems, especially the transketolase/transaldolase pathway, make it possible to convert pentose sugars to products at high levels. PMID:22038963
NASA Astrophysics Data System (ADS)
Sumariyah; Kusminart; Hermanto, A.; Nuswantoro, P.
2016-11-01
EHD flow or ionic wind yield corona discharge is a stream coming from the ionized gas. EHD is generated by a strong electric field and its direction follows the electric field lines. In this study, the efficiency of the EHD flow generators utilizing pin-multi concentric rings electrodes (P-MRE) and the EHD pin-single ring electrode (P-SRE) have been measured. The comparison of efficiencies two types of the generator has been done. EHD flow was generated by using a high-voltage DC 0-10 KV on the electrode pin with a positive polarity and electrode ring/ multi-concentric rings of negative polarity. The efficiency was calculated by comparison between the mechanical power of flow to the electrical power that consumed. We obtained that the maximum efficiency of EHD flow generator utilizing pin-multi concentric rings electrodes was 0.54% and the maximum efficiency of EHD flow generator utilizing a pin-single ring electrode was 0.23%. Efficiency of EHD with P-MRE 2.34 times Efficiency of EHD with P-SRE
Yang, Shuo; Lin, Ling; Li, Shao Peng; Li, Qiang; Wang, Xiu Teng; Sun, Liang
2017-05-01
Utilization of fly ash is of great importance in China in the context of resource and environmental crises. Different fly ash utilization processes are proposed, and some have been practically applied. However, none of these fly ash utilization pathways has been evaluated comprehensively by integrating both environmental and economic perspectives. In this study, three high-aluminum fly ash utilization methods in Mongolia were assessed and compared based on the concept of eco-efficiency. The environmental assessment was conducted in accordance with life-cycle assessment principles, and a monetization-weighting approach was applied to obtain social willingness-to-pay as a reflection of environmental impact. The environmental assessment results revealed that the reuse of fly ash had significant advantage for saving primary resource, while solid waste, depletion of water, and global warming were the three highest environmental impacts from the life cycle perspective. The economic performance assessment showed positive net profits for fly ash utilization, but high value-added products were not necessarily indicative of better economic performance due to the relatively high operation cost. Comparison of the eco-efficiency indicators (EEIs) implied that the process of scenario 1#, which produced mullite ceramic and active calcium silicate, was the most recommended out of the three scenarios on the present scale. This judgment was consistent with the evaluation of the resource utilization rate. The present study showed that the EEI could be used to compare different fly ash utilization processes in a comprehensive and objective manner, thus providing definitive and insightful suggestions for decision-making and technical improvement.
Efficiency Analysis of a High-Specific Impulse Hall Thruster
NASA Technical Reports Server (NTRS)
Jacobson, David (Technical Monitor); Hofer, Richard R.; Gallimore, Alec D.
2004-01-01
Performance and plasma measurements of the high-specific impulse NASA-173Mv2 Hall thruster were analyzed using a phenomenological performance model that accounts for a partially-ionized plasma containing multiply-charged ions. Between discharge voltages of 300 to 900 V, the results showed that although the net decrease of efficiency due to multiply-charged ions was only 1.5 to 3.0 percent, the effects of multiply-charged ions on the ion and electron currents could not be neglected. Between 300 to 900 V, the increase of the discharge current was attributed to the increasing fraction of multiply-charged ions, while the maximum deviation of the electron current from its average value was only +5/-14 percent. These findings revealed how efficient operation at high-specific impulse was enabled through the regulation of the electron current with the applied magnetic field. Between 300 to 900 V, the voltage utilization ranged from 89 to 97 percent, the mass utilization from 86 to 90 percent, and the current utilization from 77 to 81 percent. Therefore, the anode efficiency was largely determined by the current utilization. The electron Hall parameter was nearly constant with voltage, decreasing from an average of 210 at 300 V to an average of 160 between 400 to 900 V. These results confirmed our claim that efficient operation can be achieved only over a limited range of Hall parameters.
McGregor, Douglas S.; Shultis, John K.; Rice, Blake B.; McNeil, Walter J.; Solomon, Clell J.; Patterson, Eric L.; Bellinger, Steven L.
2010-12-21
Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.
Self-powered microthermionic converter
Marshall, Albert C.; King, Donald B.; Zavadil, Kevin R.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.
2004-08-10
A self-powered microthermionic converter having an internal thermal power source integrated into the microthermionic converter. These converters can have high energy-conversion efficiencies over a range of operating temperatures. Microengineering techniques are used to manufacture the converter. The utilization of an internal thermal power source increases potential for mobility and incorporation into small devices. High energy efficiency is obtained by utilization of micron-scale interelectrode gap spacing. Alpha-particle emitting radioisotopes can be used for the internal thermal power source, such as curium and polonium isotopes.
Efficient resource allocation scheme for visible-light communication system
NASA Astrophysics Data System (ADS)
Kim, Woo-Chan; Bae, Chi-Sung; Cho, Dong-Ho; Shin, Hong-Seok; Jung, D. K.; Oh, Y. J.
2009-01-01
A visible-light communication utilizing LED has many advantagies such as visibility of information, high SNR (Signal to Noise Ratio), low installation cost, usage of existing illuminators, and high security. Furthermore, exponentially increasing needs and quality of LED have helped the development of visible-light communication. The visibility is the most attractive property in visible-light communication system, but it is difficult to ensure visibility and transmission efficiency simultaneously during initial access because of the small amount of initial access process signals. In this paper, we propose an efficient resource allocation scheme at initial access for ensuring visibility with high resource utilization rate and low data transmission failure rate. The performance has been evaluated through the numerical analysis and simulation results.
NASA Technical Reports Server (NTRS)
Komatsu, G. K.; Stellen, J. M., Jr.
1976-01-01
Measurements have been made of the high energy thrust ions, (Group I), high angle/high energy ions (Group II), and high angle/low energy ions (Group IV) of a mercury electron bombardment thruster in the angular divergence range from 0 deg to greater than 90 deg. The measurements have been made as a function of thrust ion current, propellant utilization efficiency, bombardment discharge voltage, screen and accelerator grid potential (accel-decel ratio) and neutralizer keeper potential. The shape of the Group IV (charge exchange) ion plume has remained essentially fixed within the range of variation of the engine operation parameters. The magnitude of the charge exchange ion flux scales with thrust ion current, for good propellant utilization conditions. For fixed thrust ion current, charge exchange ion flux increases for diminishing propellant utilization efficiency. Facility effects influence experimental accuracies within the range of propellant utilization efficiency used in the experiments. The flux of high angle/high energy Group II ions is significantly diminished by the use of minimum decel voltages on the accelerator grid. A computer model of charge exchange ion production and motion has been developed. The program allows computation of charge exchange ion volume production rate, total production rate, and charge exchange ion trajectories for "genuine" and "facilities effects" particles. In the computed flux deposition patterns, the Group I and Group IV ion plumes exhibit a counter motion.
Li, Xiaomeng; Yang, Zhuo
2017-01-01
As a sustainable transportation mode, high-speed railway (HSR) has become an efficient way to meet the huge travel demand. However, due to the high acquisition and maintenance cost, it is impossible to build enough infrastructure and purchase enough train-sets. Great efforts are required to improve the transport capability of HSR. The utilization efficiency of train-sets (carrying tools of HSR) is one of the most important factors of the transport capacity of HSR. In order to enhance the utilization efficiency of the train-sets, this paper proposed a train-set circulation optimization model to minimize the total connection time. An innovative two-stage approach which contains segments generation and segments combination was designed to solve this model. In order to verify the feasibility of the proposed approach, an experiment was carried out in the Beijing-Tianjin passenger dedicated line, to fulfill a 174 trips train diagram. The model results showed that compared with the traditional Ant Colony Algorithm (ACA), the utilization efficiency of train-sets can be increased from 43.4% (ACA) to 46.9% (Two-Stage), and 1 train-set can be saved up to fulfill the same transportation tasks. The approach proposed in the study is faster and more stable than the traditional ones, by using which, the HSR staff can draw up the train-sets circulation plan more quickly and the utilization efficiency of the HSR system is also improved. PMID:28489933
NASA Astrophysics Data System (ADS)
Zhou, Jie; Zhang, Feng-tai; Gai, Yuan-jin; Deng, Bao-kun; Shao, Ji-xin; An, You-zhi
2017-08-01
Through literature review, the article points out that the existing of the high-efficiency agriculture definition is limited to results oriented thinking, apparently lack of process oriented thinking. Combined with the connotation of fusion agriculture and tourism, respectively from the time and space utilization efficiency, cash cost, elements of input and output form, etc, gives high-efficiency agriculture a new connotation. Under the perspective of a combined agriculture with tourism, efficient use of time and space, low realized cost, less costs and output form of agriculture, this is highly effective agriculture.
Efficient Design in a DC to DC Converter Unit
NASA Technical Reports Server (NTRS)
Bruemmer, Joel E.; Williams, Fitch R.; Schmitz, Gregory V.
2002-01-01
Space Flight hardware requires high power conversion efficiencies due to limited power availability and weight penalties of cooling systems. The International Space Station (ISS) Electric Power System (EPS) DC-DC Converter Unit (DDCU) power converter is no exception. This paper explores the design methods and tradeoffs that were utilized to accomplish high efficiency in the DDCU. An isolating DC to DC converter was selected for the ISS power system because of requirements for separate primary and secondary grounds and for a well-regulated secondary output voltage derived from a widely varying input voltage. A flyback-current-fed push-pull topology or improved Weinberg circuit was chosen for this converter because of its potential for high efficiency and reliability. To enhance efficiency, a non-dissipative snubber circuit for the very-low-Rds-on Field Effect Transistors (FETs) was utilized, redistributing the energy that could be wasted during the switching cycle of the power FETs. A unique, low-impedance connection system was utilized to improve contact resistance over a bolted connection. For improved consistency in performance and to lower internal wiring inductance and losses a planar bus system is employed. All of these choices contributed to the design of a 6.25 KW regulated dc to dc converter that is 95 percent efficient. The methodology used in the design of this DC to DC Converter Unit may be directly applicable to other systems that require a conservative approach to efficient power conversion and distribution.
Evaluation of high-energy-efficiency powertrain approaches: the 1996 futurecar challenge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sluder, S.; Duoba, M.; Larsen, R.
Twelve colleges and universities were selected to design, build, and develop a mid-size vehicle that could achieve high energy economy while maintaining the performance characteristics of today`s mid-size vehicle. Many of the teams were able to increase the fuel economy of their vehicles, but most of these increases came at the expense of decreased performance or worsened emissions. This paper evaluates and summarizes the high-energy-efficiency powertrain technology approaches that were utilized in the 1996 FutureCar Challenge, which was the first evaluation of these vehicles in a two-year program. Of the 11 vehicles evaluated in the competition, nine utilized hybrid electricmore » vehicle approaches. This paper discusses the design trade- offs made by the teams to achieve high efficiency while trying to maintain stock performance.« less
Detrimental Effects of “Stretch” Goals in Specialty Substance Use Disorder Treatment Organizations
Lemoine, G. James; Blum, Terry C.; Roman, Paul M.
2016-01-01
Background “Stretch” goals, a rarely examined concept that represents seemingly impossible, highly ambitious organizational goals ostensibly established to fill performance gaps and motivate employees, are examined within a sample of substance use disorder (SUD) treatment centers in the United States in terms of their prevalence and effects on organizational behavior. Stretch goals are defined as “seemingly impossible” goals intended to motivate employees to achieve high performance. In light of the high level of environmental change and unpredictability faced by SUD treatment centers in recent decades, we theorize that stretch goals would be both common and often detrimental (in terms of capacity utilization rate and efficiency) in these settings. Methods In a longitudinal analysis of data from leaders of a representative U. S. national sample of 219 SUD treatment centers characterized by entrepreneurial management structures, we examined the prevalence of stretch goals and their impact on key outcome variables of capacity utilization rate and efficiency. Results Widespread adoption of stretch goals was found, with 43% of our sample falling within the stretch category. Stretch goals had a negative main effect on capacity utilization rate as compared to less ambitious challenging goals. Stretch and prior performance interacted to further predict capacity utilization rate, whereas stretch and slack resource availability interacted to predict center efficiency. Discussion Although stretch goals are frequently used in the SUD treatment industry, we find them mostly detrimental to performance. Stretch goals may enhance the efficiency of treatment centers with prior limited resource availability, but they are negatively associated with capacity utilization, especially in centers with a record of already strong performance. Despite the high prevalence of such goals and positive values centered on aspirational behavior, these results strongly suggest caution in such goal setting in SUD treatment centers. PMID:26976811
International Comparison of Water Resources Utilization Efficiency in the Silk Road Economic Belt
NASA Astrophysics Data System (ADS)
Yan, Long; Ma, Jing; Deng, Wei; Wang, Yong
2018-03-01
In order to get knowledge of the standard of water utilization of the Silk Road Economic Belt from international point of view, the paper analyzes the annual variation of water resources utilization in the Silk Road Economic Belt, and compares with other typical countries. The study shows that Water resources utilization efficiency has been greatly improved in recent 20 years and the water consumption per USD 10000 of GDP has been declined 87.97%. the improvement of industrial water consumption efficiency is the key driving factors for substantial decrease in water consumption.The comparison of water utilization and human development shows that the higher HDI the country is, the more efficient water utilization the country has. water consumption per USD 10000 of GDP in country with HDI>0.9 is 194m³, being 8.5% of that in country with HDI from 0.5 to 0.6. On the premise of maintaining the stable economic and social development of the Silk Road Economic Belt, the realization of the control target of total water consumption must depend on the strict control over the disorderly expansion of irrigated area, the change in the mode of economic growth, the implementation of the development strategy for new industrialization and urbanization, vigorous development of the processing industry with low water consumption as well as the high-tech and high value-added industry. Only in this way, the control target of total water consumption can be realized in the process of completing the industrialization task.
Tomasik, M
1982-01-01
Glucose utilization by the erythrocytes, lactic acid concentration in the blood and erythrocytes, and haematocrit value were determined before exercise and during one hour rest following maximal exercise in 97 individuals of either sex differing in physical efficiency. In the investigations reported by the author individuals with strikingly high physical fitness performed maximal work one-third greater than that performed by individuals with medium fitness. The serum concentration of lactic acid was in all individuals above the resting value still after 60 minutes of rest. On the other hand, this concentration returned to the normal level in the erythrocytes but only in individuals with strikingly high efficiency. Glucose utilization by the erythrocytes during the restitution period was highest immediately after the exercise in all studied individuals and showed a tendency for more rapid return to resting values again in individuals with highest efficiency. The investigation of very efficient individuals repeated twice demonstrated greater utilization of glucose by the erythrocytes at the time of greater maximal exercise. This was associated with greater lactic acid concentration in the serum and erythrocytes throughout the whole one-hour rest period. The observed facts suggest an active participation of erythrocytes in the process of adaptation of the organism to exercise.
Wallhead, Ian; Jiménez, Teresa Molina; Ortiz, Jose Vicente García; Toledo, Ignacio Gonzalez; Toledo, Cristóbal Gonzalez
2012-11-05
A novel of Fresnel-type lens for use as a solar collector has been designed which utilizes double total internal reflection (D-TIR) to optimize collection efficiency for high numerical aperture lenses (in the region of 0.3 to 0.6 NA). Results show that, depending on the numerical aperture and the size of the receiver, a collection efficiency theoretical improvement on the order of 20% can be expected with this new design compared with that of a conventional Fresnel lens.
Jung, Moo-Young; Jung, Hwi-Min; Lee, Jinwon; Oh, Min-Kyu
2015-01-01
Due to its cost-effectiveness and rich sugar composition, sugarcane molasses is considered to be a promising carbon source for biorefinery. However, the sugar mixture in sugarcane molasses is not consumed as efficiently as glucose in microbial fermentation due to complex interactions among their utilizing pathways, such as carbon catabolite repression (CCR). In this study, 2,3-butanediol-producing Enterobacter aerogenes was engineered to alleviate CCR and improve sugar utilization by modulating its carbon preference. The gene encoding catabolite repressor/activator (Cra) was deleted in the genome of E. aerogenes to increase the fructose consumption rate. However, the deletion mutation repressed sucrose utilization, resulting in the accumulation of sucrose in the fermentation medium. Cra regulation on expression of the scrAB operon involved in sucrose catabolism was verified by reverse transcription and real-time PCR, and the efficiency of sucrose utilization was restored by disrupting the scrR gene and overexpressing the scrAB operon. In addition, overexpression of the ptsG gene involved in glucose utilization enhanced the glucose preference among mixed sugars, which relieved glucose accumulation in fed-batch fermentation. In fed-batch fermentation using sugarcane molasses, the maximum titer of 2,3-butanediol production by the mutant reached 140.0 g/L at 54 h, which was by far the highest titer of 2,3-butanediol with E. aerogenes achieved through genetic engineering. We have developed genetically engineered E. aerogenes as a 2,3-butanediol producer that efficiently utilizes sugarcane molasses. The fermentation efficiency was dramatically improved by the alleviation of CCR and modulation of carbon preference. These results offer a metabolic engineering approach for achieving highly efficient utilization of mixed sugars for the biorefinery industry.
Composite isogrid structures for parabolic surfaces
NASA Technical Reports Server (NTRS)
Silverman, Edward M. (Inventor); Boyd, Jr., William E. (Inventor); Rhodes, Marvin D. (Inventor); Dyer, Jack E. (Inventor)
2000-01-01
The invention relates to high stiffness parabolic structures utilizing integral reinforced grids. The parabolic structures implement the use of isogrid structures which incorporate unique and efficient orthotropic patterns for efficient stiffness and structural stability.
FRACTIONAL AEROSOL FILTRATION EFFICIENCY OF IN-DUCT VENTILATION AIR CLEANERS
The filtration efficiency of ventilation air cleaners is highly particle-size dependent over the 0.01 to 3 μm diameter size range. Current standardized test methods, which determine only overall efficiencies for ambient aerosol or other test aerosols, provide data of limited util...
Reducing Operating Costs and Energy Consumption at Water Utilities
Due to their unique combination of high energy usage and potential for significant savings, utilities are turning to energy-efficient technologies to help save money. Learn about cost and energy saving technologies from this brochure.
NASA Technical Reports Server (NTRS)
Billings, W. W.
1981-01-01
Three types of solid state power controllers (SSPC's) for high voltage, high power DC system applications were developed. The first type utilizes a SCR power switch. The second type employes an electromechanical power switch element with solid state commutation. The third type utilizes a transistor power switch. Significant accomplishments include high operating efficiencies, fault clearing, high/low temperature performance and vacuum operation.
NASA Technical Reports Server (NTRS)
Hein, L. A.; Myers, W. N.
1980-01-01
Vertical axis wind turbine incorporates several unique features to extract more energy from wind increasing efficiency 20% over conventional propeller driven units. System also features devices that utilize solar energy or chimney effluents during periods of no wind.
Liu, Huijun; Zeng, Jiajie; Guo, Jingjing; Nie, Han; Zhao, Zujin; Tang, Ben Zhong
2018-06-01
Nondoped organic light-emitting diodes (OLEDs) possess merits of higher stability and easier fabrication than doped devices. However, luminescent materials with high exciton utilization are generally unsuitable for nondoped OLEDs because of severe emission quenching and exciton annihilation in neat films. Herein, we wish to report a novel molecular design of integrating aggregation-induced delayed fluorescence (AIDF) moiety within host materials to explore efficient luminogens for nondoped OLEDs. By grafting 4-(phenoxazin-10-yl)benzoyl to common host materials, we develop a series of new luminescent materials with prominent AIDF property. Their neat films fluoresce strongly and can fully harvest both singlet and triplet excitons with suppressed exciton annihilation. Nondoped OLEDs of these AIDF luminogens exhibit excellent luminance (~100000 cd m-2), outstanding external quantum efficiencies (22.1-22.6%), negligible efficiency roll-off and improved operational stability. To the best of our knowledge, these are the most efficient nondoped OLEDs reported so far. This convenient and versatile molecular design is of high significance for the advance of nondoped OLEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Demeke, Mekonnen M; Dumortier, Françoise; Li, Yingying; Broeckx, Tom; Foulquié-Moreno, María R; Thevelein, Johan M
2013-08-26
In addition to efficient pentose utilization, high inhibitor tolerance is a key trait required in any organism used for economically viable industrial bioethanol production with lignocellulose biomass. Although recent work has succeeded in establishing efficient xylose fermentation in robust industrial Saccharomyces cerevisiae strains, the resulting strains still lacked sufficient inhibitor tolerance for efficient sugar fermentation in lignocellulose hydrolysates. The aim of the present work was to combine high xylose fermentation activity and high inhibitor tolerance in a single industrial yeast strain. We have screened 580 yeast strains for high inhibitor tolerance using undetoxified acid-pretreated spruce hydrolysate and identified a triploid industrial baker's yeast strain as having the highest inhibitor tolerance. From this strain, a mating competent diploid segregant with even higher inhibitor tolerance was obtained. It was crossed with the recently developed D-xylose fermenting diploid industrial strain GS1.11-26, with the Ethanol Red genetic background. Screening of 819 diploid segregants from the tetraploid hybrid resulted in two strains, GSF335 and GSF767, combining high inhibitor tolerance and efficient xylose fermentation. In a parallel approach, meiotic recombination of GS1.11-26 with a haploid segregant of Ethanol Red and screening of 104 segregants resulted in a similar inhibitor tolerant diploid strain, GSE16. The three superior strains exhibited significantly improved tolerance to inhibitors in spruce hydrolysate, higher glucose consumption rates, higher aerobic growth rates and higher maximal ethanol accumulation capacity in very-high gravity fermentation, compared to GS1.11-26. In complex medium, the D-xylose utilization rate by the three superior strains ranged from 0.36 to 0.67 g/g DW/h, which was lower than that of GS1.11-26 (1.10 g/g DW/h). On the other hand, in batch fermentation of undetoxified acid-pretreated spruce hydrolysate, the three superior strains showed comparable D-xylose utilization rates as GS1.11-26, probably because of their higher inhibitor tolerance. They produced up to 23% more ethanol compared to Ethanol Red. We have successfully constructed three superior industrial S. cerevisiae strains that combine efficient D-xylose utilization with high inhibitor tolerance. Since the background strain Ethanol Red has a proven record of successful industrial application, the three new superior strains have strong potential for direct application in industrial bioethanol production.
2013-01-01
Background In addition to efficient pentose utilization, high inhibitor tolerance is a key trait required in any organism used for economically viable industrial bioethanol production with lignocellulose biomass. Although recent work has succeeded in establishing efficient xylose fermentation in robust industrial Saccharomyces cerevisiae strains, the resulting strains still lacked sufficient inhibitor tolerance for efficient sugar fermentation in lignocellulose hydrolysates. The aim of the present work was to combine high xylose fermentation activity and high inhibitor tolerance in a single industrial yeast strain. Results We have screened 580 yeast strains for high inhibitor tolerance using undetoxified acid-pretreated spruce hydrolysate and identified a triploid industrial baker’s yeast strain as having the highest inhibitor tolerance. From this strain, a mating competent diploid segregant with even higher inhibitor tolerance was obtained. It was crossed with the recently developed D-xylose fermenting diploid industrial strain GS1.11-26, with the Ethanol Red genetic background. Screening of 819 diploid segregants from the tetraploid hybrid resulted in two strains, GSF335 and GSF767, combining high inhibitor tolerance and efficient xylose fermentation. In a parallel approach, meiotic recombination of GS1.11-26 with a haploid segregant of Ethanol Red and screening of 104 segregants resulted in a similar inhibitor tolerant diploid strain, GSE16. The three superior strains exhibited significantly improved tolerance to inhibitors in spruce hydrolysate, higher glucose consumption rates, higher aerobic growth rates and higher maximal ethanol accumulation capacity in very-high gravity fermentation, compared to GS1.11-26. In complex medium, the D-xylose utilization rate by the three superior strains ranged from 0.36 to 0.67 g/g DW/h, which was lower than that of GS1.11-26 (1.10 g/g DW/h). On the other hand, in batch fermentation of undetoxified acid-pretreated spruce hydrolysate, the three superior strains showed comparable D-xylose utilization rates as GS1.11-26, probably because of their higher inhibitor tolerance. They produced up to 23% more ethanol compared to Ethanol Red. Conclusions We have successfully constructed three superior industrial S. cerevisiae strains that combine efficient D-xylose utilization with high inhibitor tolerance. Since the background strain Ethanol Red has a proven record of successful industrial application, the three new superior strains have strong potential for direct application in industrial bioethanol production. PMID:23971950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cloutier, Deborah; Hosseini, Farshid; White, Andrew
Evidence has shown that owning and operating energy-efficient, high-performance, “green” properties results in multiple benefits including lower utility bills, higher rents, improved occupancy, and greater net operating income. However, it is difficult to isolate and control moderating factors to identify the specific drivers behind improved financial performance and value to investors that results from sustainability in real estate. DOE is interested in facilitating deeper investigation of the correlation between energy efficiency and financial performance, reducing data acquisition and matching challenges, and developing a stronger understanding of how sustainable design and energy efficiency impact value. DOE commissioned this pilot study tomore » test the logistical and empirical procedures required to establish a Commercial Real Estate Data Aggregation & Trends Analysis lab, determine the potential benefits available through the lab, and contribute to the existing body of evidence in this field.« less
Optimization of hybrid power system composed of SMES and flywheel MG for large pulsed load
NASA Astrophysics Data System (ADS)
Niiyama, K.; Yagai, T.; Tsuda, M.; Hamajima, T.
2008-09-01
A superconducting magnetic storage system (SMES) has some advantages such as rapid large power response and high storage efficiency which are superior to other energy storage systems. A flywheel motor generator (FWMG) has large scaled capacity and high reliability, and hence is broadly utilized for a large pulsed load, while it has comparatively low storage efficiency due to high mechanical loss compared with SMES. A fusion power plant such as International Thermo-Nuclear Experimental Reactor (ITER) requires a large and long pulsed load which causes a frequency deviation in a utility power system. In order to keep the frequency within an allowable deviation, we propose a hybrid power system for the pulsed load, which equips the SMES and the FWMG with the utility power system. We evaluate installation cost and frequency control performance of three power systems combined with energy storage devices; (i) SMES with the utility power, (ii) FWMG with the utility power, (iii) both SMES and FWMG with the utility power. The first power system has excellent frequency power control performance but its installation cost is high. The second system has inferior frequency control performance but its installation cost is the lowest. The third system has good frequency control performance and its installation cost is attained lower than the first power system by adjusting the ratio between SMES and FWMG.
Pan, Jui-Wen; Tu, Sheng-Han
2012-05-20
A cost-effective, high-throughput, and high-yield method for the efficiency enhancement of an optical mouse lighting module is proposed. We integrated imprinting technology and free-form surface design to obtain a lighting module with high illumination efficiency and uniform intensity distribution. The imprinting technique can increase the light extraction efficiency and modulate the intensity distribution of light-emitting diodes. A modulated light source was utilized to add a compact free-form surface element to create a lighting module with 95% uniformity and 80% optical efficiency.
Wu, Zhongbin; Sun, Ning; Zhu, Liping; Sun, Hengda; Wang, Jiaxiu; Yang, Dezhi; Qiao, Xianfeng; Chen, Jiangshan; Alshehri, Saad M; Ahamad, Tansir; Ma, Dongge
2016-02-10
It has been demonstrated that the efficiency roll-off is generally caused by the accumulation of excitons or charge carriers, which is intimately related to the emissive layer (EML) architecture in organic light-emitting diodes (OLEDs). In this article, an efficient sandwich-type EML structure with a mixed-host EML sandwiched between two single-host EMLs was designed to eliminate this accumulation, thus simultaneously achieving high efficiency, low efficiency roll-off and good operational stability in the resulting OLEDs. The devices show excellent electroluminescence performances, realizing a maximum external quantum efficiency (EQE) of 24.6% with a maximum power efficiency of 105.6 lm W(-1) and a maximum current efficiency of 93.5 cd A(-1). At the high brightness of 5,000 cd m(-2), they still remain as high as 23.3%, 71.1 lm W(-1), and 88.3 cd A(-1), respectively. And, the device lifetime is up to 2000 h at initial luminance of 1000 cd m(-2), which is significantly higher than that of compared devices with conventional EML structures. The improvement mechanism is systematically studied by the dependence of the exciton distribution in EML and the exciton quenching processes. It can be seen that the utilization of the efficient sandwich-type EML broadens the recombination zone width, thus greatly reducing the exciton quenching and increasing the probability of the exciton recombination. It is believed that the design concept provides a new avenue for us to achieve high-performance OLEDs.
NASA Astrophysics Data System (ADS)
Perl, Emmett Edward
Solar cells based on III-V compound semiconductors are ideally suited to convert solar energy into electricity. The highest efficiency single-junction solar cells are made of gallium arsenide, and have attained an efficiency of 28.8%. Multiple III-V materials can be combined to construct multijunction solar cells, which have reached record efficiencies greater than 45% under concentration. III-V solar cells are also well suited to operate efficiently at elevated temperatures, due in large part to their high material quality. These properties make III-V solar cells an excellent choice for use in concentrator systems. Concentrator photovoltaic systems have attained module efficiencies that exceed 40%, and have the potential to reach the lowest levelized cost of electricity in sunny places like the desert southwest. Hybrid photovoltaic-thermal solar energy systems can utilize high-temperature III-V solar cells to simultaneously achieve dispatchability and a high sunlight-to-electricity efficiency. This dissertation explores material science to advance the state of III-V multijunction solar cells for use in concentrator photovoltaic and hybrid photovoltaic-thermal solar energy systems. The first half of this dissertation describes work on advanced optical designs to improve the efficiency of multijunction solar cells. As multijunction solar cells move to configurations with four or more subcells, they utilize a larger portion of the solar spectrum. Broadband antireflection coatings are essential to realizing efficiency gains for these state-of-the-art cells. A hybrid design consisting of antireflective nanostructures placed on top of multilayer interference-based optical coatings is developed. Antireflection coatings that utilize this hybrid approach yield unparalleled performance, minimizing reflection losses to just 0.2% on sapphire and 0.6% on gallium nitride for 300-1800nm light. Dichroic mirrors are developed for bonded 5-junction solar cells that utilize InGaN as a top junction. These designs maximize reflection of high-energy light for an InGaN top junction while minimizing reflection of low-energy light that would be absorbed by the lower four junctions. Increasing the reflectivity of high-energy photons enables a second pass of light through the InGaN cell, leading to increased absorption and a higher photocurrent. These optical designs enhanced the efficiency of a 2.65eV InGaN solar cell to a value of 3.3% under the AM0 spectrum, the highest reported efficiency for a standalone InGaN solar cell. The second half of the dissertation describes the development of III-V solar cells for high-temperature applications. As the operating temperature of a solar cell is increased, the ideal bandgap of the top junction increases. AlGaInP solar cells with bandgaps ranging from 1.9eV to 2.2eV are developed. A 2.03eV AlGaInP solar cell is demonstrated with a bandgap-voltage offset of 440mV, the lowest of any AlGaInP solar cell reported to date. Single-junction AlGaInP, GaInP, and GaAs solar cells designed for high-temperature operation are characterized up to a temperature of 400°C. The cell properties are compared to an analytical drift-diffusion model, and we find that a fundamental increase in the intrinsic carrier concentration, ni, dominates the temperature dependence of the dark currents, open-circuit voltage, and cell efficiency. These findings provide a valuable guide to the design of any system that requires high-temperature solar cell operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Piaoran; Cao, Peng -Fei; Su, Zhe
Here, utilization of a flow reactor under high pressure allows highly efficient polymer synthesis via reversible addition–fragmentation chain-transfer (RAFT) polymerization in an aqueous system. Compared with the batch reaction, the flow reactor allows the RAFT polymerization to be performed in a high-efficiency manner at the same temperature. The adjustable pressure of the system allows further elevation of the reaction temperature and hence faster polymerization. Other reaction parameters, such as flow rate and initiator concentration, were also well studied to tune the monomer conversion and the molar mass dispersity (Ð) of the obtained polymers. Gel permeation chromatography, nuclear magnetic resonance (NMR),more » and Fourier transform infrared spectroscopies (FTIR) were utilized to monitor the polymerization process. With the initiator concentration of 0.15 mmol L –1, polymerization of poly(ethylene glycol) methyl ethermethacrylate with monomer conversion of 52% at 100 °C under 73 bar can be achieved within 40 min with narrow molar mass dispersity (D) Ð (<1.25). The strategy developed here provides a method to produce well-defined polymers via RAFT polymerization with high efficiency in a continuous manner.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sun-Ki; Chung, Daehwan; Himmel, Michael E.
Members of the genus Caldicellulosiruptor are the most thermophilic cellulolytic bacteria so far described and are capable of efficiently utilizing complex lignocellulosic biomass without conventional pretreatment. Previous studies have shown that accumulation of high concentrations of cellobiose and, to a lesser extent, cellotriose, inhibits cellulase activity both in vivo and in vitro and high concentrations of cellobiose are present in C. bescii fermentations after 90 h of incubation. For some cellulolytic microorganisms, β-d-glucosidase is essential for the efficient utilization of cellobiose as a carbon source and is an essential enzyme in commercial preparations for efficient deconstruction of plant biomass. Inmore » spite of its ability to grow efficiently on crystalline cellulose, no extracellular β-d-glucosidase or its GH1 catalytic domain could be identified in the C. bescii genome. In order to investigate whether the addition of a secreted β-d-glucosidase would improve growth and cellulose utilization by C. bescii, we also cloned and expressed a thermostable β-d-glucosidase from Acidothermus cellulolyticus (Acel_0133) in C. bescii using the CelA signal sequence for protein export. The effect of this addition was modest, suggesting that ..beta..-d-glucosidase is not rate limiting for cellulose deconstruction and utilization by C. bescii.« less
Kim, Sun-Ki; Chung, Daehwan; Himmel, Michael E.; ...
2017-09-23
Members of the genus Caldicellulosiruptor are the most thermophilic cellulolytic bacteria so far described and are capable of efficiently utilizing complex lignocellulosic biomass without conventional pretreatment. Previous studies have shown that accumulation of high concentrations of cellobiose and, to a lesser extent, cellotriose, inhibits cellulase activity both in vivo and in vitro and high concentrations of cellobiose are present in C. bescii fermentations after 90 h of incubation. For some cellulolytic microorganisms, β-d-glucosidase is essential for the efficient utilization of cellobiose as a carbon source and is an essential enzyme in commercial preparations for efficient deconstruction of plant biomass. Inmore » spite of its ability to grow efficiently on crystalline cellulose, no extracellular β-d-glucosidase or its GH1 catalytic domain could be identified in the C. bescii genome. In order to investigate whether the addition of a secreted β-d-glucosidase would improve growth and cellulose utilization by C. bescii, we also cloned and expressed a thermostable β-d-glucosidase from Acidothermus cellulolyticus (Acel_0133) in C. bescii using the CelA signal sequence for protein export. The effect of this addition was modest, suggesting that ..beta..-d-glucosidase is not rate limiting for cellulose deconstruction and utilization by C. bescii.« less
Static Converter for High Energy Utilization, Modular, Small Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Genk, Mohamed S.; Tournier, Jean-Michel P.
2002-07-01
This paper presents and analyzes the performance of high efficiency, high total energy utilization, static converters, which could be used in conjunction with small nuclear reactor plants in remote locations and in undersea applications, requiring little or no maintenance. The converters consist of a top cycle of Alkali Metal Thermal-to-Electric Conversion (AMTEC) units and PbTe thermoelectric (TE) bottom cycle. In addition to converting the reactor thermal power to electricity at 1150 K or less, at a thermodynamic efficiency in the low to mid thirties, the heat rejection from the TE bottom cycle could be used for space heating, industrial processing,more » or sea water desalination. The results indicated that for space heating applications, where the rejected thermal power from the TE bottom cycle is removed by natural convection of ambient air, a total utilization of the reactor thermal power of > 80% is possible. When operated at 1030 K, potassium AMTEC/TE converters are not only more efficient than the sodium AMTEC/TE converters but produce more electrical power. The present analysis showed that a single converter could be sized to produce up to 100 kWe and 70 kWe, for the Na-AMTEC/TE units when operating at 1150 K and the K-AMTEC/TE units when operating at 1030 K, respectively. Such modularity is an added advantage to the high-energy utilization of the present AMTEC/TE converters. (authors)« less
Overcoming the Adoption Barrier to Electric Flight
NASA Technical Reports Server (NTRS)
Borer, Nicholas K.; Nickol, Craig L.; Jones, Frank P.; Yasky, Richard J.; Woodham, Kurt; Fell, Jared S.; Litherland, Brandon L.; Loyselle, Patricia L.; Provenza, Andrew J.; Kohlman, Lee W.;
2016-01-01
Electrically-powered aircraft can enable dramatic increases in efficiency and reliability, reduced emissions, and reduced noise as compared to today's combustion-powered aircraft. This paper describes a novel flight demonstration concept that will enable the benefits of electric propulsion, while keeping the extraordinary convenience and utility of common fuels available at today's airports. A critical gap in airborne electric propulsion research is addressed by accommodating adoption at the integrated aircraft-airport systems level, using a confluence of innovative but proven concepts and technologies in power generation and electricity storage that need to reside only on the airframe. Technical discriminators of this demonstrator concept include (1) a novel, high-efficiency power system that utilizes advanced solid oxide fuel cells originally developed for ultra-long-endurance aircraft, coupled with (2) a high-efficiency, high-power electric propulsion system selected from mature products to reduce technical risk, assembled into (3) a modern, high-performance demonstration platform to provide useful and compelling data, both for the targeted early adopters and the eventual commercial market.
NASA Technical Reports Server (NTRS)
Stupl, Jan; Faber, Nicolas; Foster, Cyrus; Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Nuttall, Andrew; Henze, Chris; Levit, Creon
2014-01-01
This paper provides an updated efficiency analysis of the LightForce space debris collision avoidance scheme. LightForce aims to prevent collisions on warning by utilizing photon pressure from ground based, commercial off the shelf lasers. Past research has shown that a few ground-based systems consisting of 10 kilowatt class lasers directed by 1.5 meter telescopes with adaptive optics could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. Our simulation approach utilizes the entire Two Line Element (TLE) catalogue in LEO for a given day as initial input. Least-squares fitting of a TLE time series is used for an improved orbit estimate. We then calculate the probability of collision for all LEO objects in the catalogue for a time step of the simulation. The conjunctions that exceed a threshold probability of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the probability of collision and evaluate the efficiency of the system. This paper describes new simulations with three updated aspects: 1) By utilizing a highly parallel simulation approach employing hundreds of processors, we have extended our analysis to a much broader dataset. The simulation time is extended to one year. 2) We analyze not only the efficiency of LightForce on conjunctions that naturally occur, but also take into account conjunctions caused by orbit perturbations due to LightForce engagements. 3) We use a new simulation approach that is regularly updating the LightForce engagement strategy, as it would be during actual operations. In this paper we present our simulation approach to parallelize the efficiency analysis, its computational performance and the resulting expected efficiency of the LightForce collision avoidance system. Results indicate that utilizing a network of four LightForce stations with 20 kilowatt lasers, 85% of all conjunctions with a probability of collision Pc > 10 (sup -6) can be mitigated.
Solar energy collection system
NASA Technical Reports Server (NTRS)
Miller, C. G.; Stephens, J. B. (Inventor)
1979-01-01
A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency.
High Power Klystrons for Efficient Reliable High Power Amplifiers.
1980-11-01
techniques to obtain high overall efficiency. One is second harmonic space charge bunching. This is a process whereby the fundamental and second harmonic...components of the space charge waves in the electron beam of a microwave tube are combined to produce more highly concentrated electron bunches raising the...the drift lengths to enhance the 2nd harmonic component in the space charge waves. The latter method was utilized in the VKC-7790. Computer
Characteristics of High- and Low-Efficiency Hospitals.
Rosko, Michael; Wong, Herbert S; Mutter, Ryan
2017-01-01
We compared performance, operating characteristics, and market environments of low- and high-efficiency hospitals in the 37 states that supplied inpatient data to the Healthcare Cost and Utilization Project from 2006 to 2010. Hospital cost-inefficiency estimates using stochastic frontier analysis were generated. Hospitals were then grouped into the 100 most- and 100 least-efficient hospitals for subsequent analysis. Compared with the least efficient hospitals, high-efficiency hospitals tended to have lower average costs, higher labor productivity, and higher profit margins. The most efficient hospitals tended to be nonteaching, investor-owned, and members of multihospital systems. Hospitals in the high-efficiency group were located in areas with lower health maintenance organization penetration and less competition, and they had a higher share of Medicaid and Medicare admissions. Results of the analysis suggest there are opportunities for public policies to support improved efficiency in the hospital sector.
Review of Heterojunctin Bipolar Transistor Structure, Applications, and Reliability
NASA Technical Reports Server (NTRS)
Lee, C.; Kayali, S.
1993-01-01
Heterojunction Bipolar Transistors (HBTs) are increasingly employed in high frequency, high linerity, and high efficiency applications. As the utilization of these devices becomes more widespread, their operation will be viewed with more scrutiny.
Solar photovoltaic power systems: an electric utility R & d perspective.
Demeo, E A; Taylor, R W
1984-04-20
Solar photovoltaic technology is receiving increasing attention as a prospective source of bulk, electric utility power within the next 10 to 20 years. Successful development will require solar energy conversion efficiencies of about 15 percent for photovoltaic flat-plate modules, or about 25 percent for photovoltaic cells using highly concentrated sunlight. Three different cell technologies have a better than even chance of achieving these target efficiencies with costs and operating lifetimes that would allow significant use by electric utilities. The challenge for the next decade is to push photovoltaic technology to its physical limits while expanding markets and user confidence with currently available systems.
Compressed air production with waste heat utilization in industry
NASA Astrophysics Data System (ADS)
Nolting, E.
1984-06-01
The centralized power-heat coupling (PHC) technique using block heating power stations, is presented. Compressed air production in PHC technique with internal combustion engine drive achieves a high degree of primary energy utilization. Cost savings of 50% are reached compared to conventional production. The simultaneous utilization of compressed air and heat is especially interesting. A speed regulated drive via an internal combustion motor gives a further saving of 10% to 20% compared to intermittent operation. The high fuel utilization efficiency ( 80%) leads to a pay off after two years for operation times of 3000 hr.
Jung, Jae Woong; Chueh, Chu-Chen; Jen, Alex K. -Y.
2015-07-06
High-performance planar heterojunction perovskite (CH3NH3PbI3) solar cell (PVSC) is demonstrated by utilizing CuSCN as a hole-transporting layer. Efficient hole-transport and hole-extraction at the CuSCN/CH3NH3PbI3 interface facilitate the PVSCs to reach 16% power conversion efficiency (PCE). In addition, excellent transparency of CuSCN enables high-performance semitransparent PVSC (10% PCE and 25% average visible transmittance) to be realized.
NASA Astrophysics Data System (ADS)
Yonkee, B. P.; Young, E. C.; DenBaars, S. P.; Nakamura, S.; Speck, J. S.
2016-11-01
A molecular beam epitaxy regrowth technique was demonstrated on standard industrial patterned sapphire substrate light-emitting diode (LED) epitaxial wafers emitting at 455 nm to form a GaN tunnel junction. By using an HF pretreatment on the wafers before regrowth, a voltage of 3.08 V at 20 A/cm2 was achieved on small area devices. A high extraction package was developed for comparison with flip chip devices which utilize an LED floating in silicone over a BaSO4 coated header and produced a peak external quantum efficiency (EQE) of 78%. A high reflectivity mirror was designed using a seven-layer dielectric coating backed by aluminum which has a calculated angular averaged reflectivity over 98% between 400 and 500 nm. This was utilized to fabricate a flip chip LED which had a peak EQE and wall plug efficiency of 76% and 73%, respectively. This flip chip could increase light extraction over a traditional flip chip LED due to the increased reflectivity of the dielectric based mirror.
Advanced gas turbine systems program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeh, C.M.
1995-06-01
The U.S. Department of Energy (DOE) is sponsoring a program to develop fuel-efficient gas turbine-based power systems with low emissions. DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE) have initiated an 8-year program to develop high-efficiency, natural gas-fired advanced gas turbine power systems. The Advanced Turbine Systems (ATS) Program will support full-scale prototype demonstration of both industrial- and utility-scale systems that will provide commercial marketplace entries by the year 2000. When the program targets are met, power system emissions will be lower than from the best technology in use today. Efficiency of themore » utility-scale units will be greater than 60 percent on a lower heating value basis, and emissions of carbon dioxide will be reduced inversely with this increase. Industrial systems will also see an improvement of at least 15 percent in efficiency. Nitrogen oxides will be reduced by at least 10 percent, and carbon monoxide and hydrocarbon emissions will each be kept below 20 parts per million, for both utility and industrial systems.« less
High Frequency Plasma Generators for Ion Thrusters
NASA Technical Reports Server (NTRS)
Divergilio, W. F.; Goede, H.; Fosnight, V. V.
1981-01-01
The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.
Enhancing the Photovoltaic Performance of Perovskite Solar Cells with a Down-Conversion Eu-Complex.
Jiang, Ling; Chen, Wangchao; Zheng, Jiawei; Zhu, Liangzheng; Mo, Li'e; Li, Zhaoqian; Hu, Linhua; Hayat, Tasawar; Alsaedi, Ahmed; Zhang, Changneng; Dai, Songyuan
2017-08-16
Organometal halide perovskite solar cells (PSCs) have shown high photovoltaic performance but poor utilization of ultraviolet (UV) irradiation. Lanthanide complexes have a wide absorption range in the UV region and they can down-convert the absorbed UV light into visible light, which provides a possibility for PSCs to utilize UV light for higher photocurrent, efficiency, and stability. In this study, we use a transparent luminescent down-converting layer (LDL) of Eu-4,7-diphenyl-1,10-phenanthroline (Eu-complex) to improve the light utilization efficiency of PSCs. Compared with the uncoated PSC, the PSC coated with Eu-complex LDL on the reverse of the fluorine-doped tin oxide glass displayed an enhancement of 11.8% in short-circuit current density (J sc ) and 15.3% in efficiency due to the Eu-complex LDL re-emitting UV light (300-380 nm) in the visible range. It is indicated that the Eu-complex LDL plays the role of enhancing the power conversion efficiency as well as reducing UV degradation for PSCs.
Maximizing coupling-efficiency of high-power diode lasers utilizing hybrid assembly technology
NASA Astrophysics Data System (ADS)
Zontar, D.; Dogan, M.; Fulghum, S.; Müller, T.; Haag, S.; Brecher, C.
2015-03-01
In this paper, we present hybrid assembly technology to maximize coupling efficiency for spatially combined laser systems. High quality components, such as center-turned focusing units, as well as suitable assembly strategies are necessary to obtain highest possible output ratios. Alignment strategies are challenging tasks due to their complexity and sensitivity. Especially in low-volume production fully automated systems are economically at a disadvantage, as operator experience is often expensive. However reproducibility and quality of automatically assembled systems can be superior. Therefore automated and manual assembly techniques are combined to obtain high coupling efficiency while preserving maximum flexibility. The paper will describe necessary equipment and software to enable hybrid assembly processes. Micromanipulator technology with high step-resolution and six degrees of freedom provide a large number of possible evaluation points. Automated algorithms are necess ary to speed-up data gathering and alignment to efficiently utilize available granularity for manual assembly processes. Furthermore, an engineering environment is presented to enable rapid prototyping of automation tasks with simultaneous data ev aluation. Integration with simulation environments, e.g. Zemax, allows the verification of assembly strategies in advance. Data driven decision making ensures constant high quality, documents the assembly process and is a basis for further improvement. The hybrid assembly technology has been applied on several applications for efficiencies above 80% and will be discussed in this paper. High level coupling efficiency has been achieved with minimized assembly as a result of semi-automated alignment. This paper will focus on hybrid automation for optimizing and attaching turning mirrors and collimation lenses.
Online performance evaluation of RAID 5 using CPU utilization
NASA Astrophysics Data System (ADS)
Jin, Hai; Yang, Hua; Zhang, Jiangling
1998-09-01
Redundant arrays of independent disks (RAID) technology is the efficient way to solve the bottleneck problem between CPU processing ability and I/O subsystem. For the system point of view, the most important metric of on line performance is the utilization of CPU. This paper first employs the way to calculate the CPU utilization of system connected with RAID level 5 using statistic average method. From the simulation results of CPU utilization of system connected with RAID level 5 subsystem can we see that using multiple disks as an array to access data in parallel is the efficient way to enhance the on-line performance of disk storage system. USing high-end disk drivers to compose the disk array is the key to enhance the on-line performance of system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosaka, Hitoshi; Iwahashi, Takashi; Yoshida, Nobuhiro
1998-07-01
A new concept of a gasifier for coal and wastes is proposed where entrained bed and fixed pebble bed are combined. Main features of this pebble bed gasifier are high efficiency molten slag capture, high efficiency gasification and compactness. Coal and RFD combustion experiments using the pebble bed gasifier demonstrated high efficiency capture and continuous extraction of molten slag as well as complete char combustion with extra ordinarily short residence time of pulverized coal and crushed RDF at the temperature level of about 1,500 C within the pebble bed. Durability tests using high temperature electric furnace has shown that highmore » density alumna is a good candidate for pebble material.« less
Zhang, Min; Gu, Lei; Cheng, Chao; Ma, Jiangfeng; Xin, Fengxue; Liu, Junli; Wu, Hao; Jiang, Min
2018-02-26
Mannitol has been widely used in fine chemicals, pharmaceutical industries, as well as functional foods due to its excellent characteristics, such as antioxidant protecting, regulation of osmotic pressure and non-metabolizable feature. Mannitol can be naturally produced by microorganisms. Compared with chemical manufacturing, microbial production of mannitol provides high yield and convenience in products separation; however the fermentative process has not been widely adopted yet. A major obstacle to microbial production of mannitol under industrial-scale lies in the low economical efficiency, owing to the high cost of fermentation medium, leakage of fructose, low mannitol productivity. In this review, recent advances in improving the economical efficiency of microbial production of mannitol were reviewed, including utilization of low-cost substrates, strain development for high mannitol yield and process regulation strategies for high productivity.
HPC on Competitive Cloud Resources
NASA Astrophysics Data System (ADS)
Bientinesi, Paolo; Iakymchuk, Roman; Napper, Jeff
Computing as a utility has reached the mainstream. Scientists can now easily rent time on large commercial clusters that can be expanded and reduced on-demand in real-time. However, current commercial cloud computing performance falls short of systems specifically designed for scientific applications. Scientific computing needs are quite different from those of the web applications that have been the focus of cloud computing vendors. In this chapter we demonstrate through empirical evaluation the computational efficiency of high-performance numerical applications in a commercial cloud environment when resources are shared under high contention. Using the Linpack benchmark as a case study, we show that cache utilization becomes highly unpredictable and similarly affects computation time. For some problems, not only is it more efficient to underutilize resources, but the solution can be reached sooner in realtime (wall-time). We also show that the smallest, cheapest (64-bit) instance on the studied environment is the best for price to performance ration. In light of the high-contention we witness, we believe that alternative definitions of efficiency for commercial cloud environments should be introduced where strong performance guarantees do not exist. Concepts like average, expected performance and execution time, expected cost to completion, and variance measures--traditionally ignored in the high-performance computing context--now should complement or even substitute the standard definitions of efficiency.
Demonstration Of Ultra HI-FI (UHF) Methods
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.
2004-01-01
Computational aero-acoustics (CAA) requires efficient, high-resolution simulation tools. Most current techniques utilize finite-difference approaches because high order accuracy is considered too difficult or expensive to achieve with finite volume or finite element methods. However, a novel finite volume approach (Ultra HI-FI or UHF) which utilizes Hermite fluxes is presented which can achieve both arbitrary accuracy and fidelity in space and time. The technique can be applied to unstructured grids with some loss of fidelity or with multi-block structured grids for maximum efficiency and resolution. In either paradigm, it is possible to resolve ultra-short waves (less than 2 PPW). This is demonstrated here by solving the 4th CAA workshop Category 1 Problem 1.
Improved Engine Performance and Efficiency Utilizing a Superturbocharger
2012-08-01
supercharger, turbocharger and turbo-compounder in one single device. This is accomplished by mechanically controlling the speed ratio between the...the engine. This is made possible by a high efficiency turbine wheel. Normal turbochargers must balance the turbine power against the compressor...SuperTurbocharger and compare it against the currently used turbocharger in military vehicles to evaluate the impact on performance and efficiency
Operating room efficiency improvement after implementation of a postoperative team assessment.
Porta, Christopher R; Foster, Andrew; Causey, Marlin W; Cordier, Patricia; Ozbirn, Roger; Bolt, Stephen; Allison, Dennis; Rush, Robert
2013-03-01
Operating room time is highly resource intensive, and delays can be a source of lost revenue and surgeon frustration. Methods to decrease these delays are important not only for patient care, but to maximize operating room resource utilization. The purpose of this study was to determine the root cause of operating room delays in a standardized manner to help improve overall operating room efficiency. We performed a single-center prospective observational study analyzing operating room utilization and efficiency after implementing an executive-driven standardized postoperative team debriefing system from January 2010 to December 2010. A total of 11,342 procedures were performed over the 1-y study period (elective 86%, urgent 11%, and emergent 3%), with 1.3 million min of operating room time, 865,864 min of surgeon operative time (62.5%), and 162,958 min of anesthesia time (11.8%). Overall, the average operating room delay was 18 min and varied greatly based on the surgical specialty. The longest delays were due to need for radiology (40 min); other significant delays were due to supply issues (22.7 min), surgeon issues (18 min), nursing issues (14 min), and room turnover (14 min). Over the 1-y period, there was a decrease in mean delay duration, averaging a decrease in delay of 0.147 min/mo with an overall 9% decrease in the mean delay times. With regard to overall operating room utilization, there was a 39% decrease in overall un-utilized available OR time that was due to delays, improving efficiency by 2334 min (212 min/mo). During this study interval no sentinel events occurred in the operating room. A standardized postoperative debrief tracking system is highly beneficial in identifying and reducing overall operative delays and improving operating room utilization. Published by Elsevier Inc.
Investigation of high efficiency GaAs solar cells
NASA Technical Reports Server (NTRS)
Olsen, Larry C.; Dunham, Glen; Addis, F. W.; Huber, Dan; Linden, Kurt
1989-01-01
Investigations of basic mechanisms which limit the performance of high efficiency GaAs solar cells are discussed. P/N heteroface structures have been fabricated from MOCVD epiwafers. Typical AM1 efficiencies are in the 21 to 22 percent range, with a SERI measurement for one cell being 21.5 percent. The cells are nominally 1.5 x 1.5 cm in size. Studies have involved photoresponse, T-I-V analyses, and interpretation of data in terms of appropriate models to determine key cell parameters. Results of these studies are utilized to determine future approaches for increasing GaAs solar cell efficiencies.
[Degradation of p-nitrophenol by high voltage pulsed discharge and ozone processes].
Pan, Li-li; Yan, Guo-qi; Zheng, Fei-yan; Liang, Guo-wei; Fu, Jian-jun
2005-11-01
The vigorous oxidation by ozone and the high energy by pulsed discharge are utilized to degrade the big hazardous molecules. And these big hazardous molecules become small and less hazardous by this process in order to improve the biodegradability. When pH value is 8-9, the concentration of p-nitrophenol solution can be degraded by 96.8% and the degradation efficiency of TOC is 38.6% by ozone and pulsed discharge treatment for 30 mins. The comparison results show that the combination treatment efficiency is higher than the separate, so the combination of ozone and pulsed discharge has high synergism. It is approved that the phenyl degradation efficiency is high and the degradation efficiency of linear molecules is relative low.
High altitude airship configuration and power technology and method for operation of same
NASA Technical Reports Server (NTRS)
Choi, Sang H. (Inventor); Elliott, Jr., James R. (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Kim, Jae-Woo (Inventor); Chu, Sang-Hyon (Inventor)
2011-01-01
A new High Altitude Airship (HAA) capable of various extended applications and mission scenarios utilizing inventive onboard energy harvesting and power distribution systems. The power technology comprises an advanced thermoelectric (ATE) thermal energy conversion system. The high efficiency of multiple stages of ATE materials in a tandem mode, each suited for best performance within a particular temperature range, permits the ATE system to generate a high quantity of harvested energy for the extended mission scenarios. When the figure of merit 5 is considered, the cascaded efficiency of the three-stage ATE system approaches an efficiency greater than 60 percent.
Blackbody absorption efficiencies for six lamp pumped Nd laser materials
NASA Technical Reports Server (NTRS)
Cross, Patricia L.; Barnes, Norman P.; Skolaut, Milton W., Jr.; Storm, Mark E.
1990-01-01
Utilizing high resolution spectra, the absorption efficiencies for six Nd laser materials were calculated as functions of the effective blackbody temperature of the lamp and laser crystal size. The six materials were Nd:YAG, Nd:YLF, Nd:Q-98 Glass, Nd:YVO4, Nd:BEL, and Nd:Cr:GSGG. Under the guidelines of this study, Nd:Cr:GSGG's absorption efficiency is twice the absorption efficiency of any of the other laser materials.
Jiang, Feng; Liu, He; Li, Yiju; Kuang, Yudi; Xu, Xu; Chen, Chaoji; Huang, Hao; Jia, Chao; Zhao, Xinpeng; Hitz, Emily; Zhou, Yubing; Yang, Ronggui; Cui, Lifeng; Hu, Liangbing
2018-01-10
The global fresh water shortage has driven enormous endeavors in seawater desalination and wastewater purification; among these, solar steam generation is effective in extracting fresh water by efficient utilization of naturally abundant solar energy. For solar steam generation, the primary focus is to design new materials that are biodegradable, sustainable, of low cost, and have high solar steam generation efficiency. Here, we designed a bilayer aerogel structure employing naturally abundant cellulose nanofibrils (CNFs) as basic building blocks to achieve sustainability and biodegradability as well as employing a carbon nanotube (CNT) layer for efficient solar utilization with over 97.5% of light absorbance from 300 to 1200 nm wavelength. The ultralow density (0.0096 g/cm 3 ) of the aerogel ensures that minimal material is required, reducing the production cost while at the same time satisfying the water transport and thermal-insulation requirements due to its highly porous structure (99.4% porosity). Owing to its rationally designed structure and thermal-regulation performance, the bilayer CNF-CNT aerogel exhibits a high solar-energy conversion efficiency of 76.3% and 1.11 kg m -2 h -1 at 1 kW m -2 (1 Sun) solar irradiation, comparable or even higher than most of the reported solar steam generation devices. Therefore, the all-nanofiber aerogel presents a new route for designing biodegradable, sustainable, and scalable solar steam generation devices with superb performance.
Reduced-droop green III-nitride light-emitting diodes utilizing GaN tunnel junction
NASA Astrophysics Data System (ADS)
Alhassan, Abdullah I.; Young, Erin C.; Alyamani, Ahmed Y.; Albadri, Abdulrahman; Nakamura, Shuji; DenBaars, Steven P.; Speck, James S.
2018-04-01
We report the fabrication of low-droop high-efficiency green c-plane light-emitting diodes (LEDs) utilizing GaN tunnel junction (TJ) contacts. The LED epitaxial layers with a top p-GaN layer were grown by metal organic chemical vapor deposition and an n++-GaN layer was deposited by molecular beam epitaxy to form a TJ. The TJ LEDs were then compared with equivalent LEDs having a tin-doped indium oxide (ITO) contact. The TJ LEDs exhibited a higher performance and a lower efficiency droop than did the ITO LEDs. At 35 A/cm2, the external quantum efficiencies for the TJ and ITO LEDs were 31.2 and 27%, respectively.
Duque, Hernando; Baxt, Barry
2003-01-01
Three members of the αV integrin family of cellular receptors, αVβ1, αVβ3, and αVβ6, have been identified as receptors for foot-and-mouth disease virus (FMDV) in vitro. The virus interacts with these receptors via a highly conserved arginine-glycine-aspartic acid (RGD) amino acid sequence motif located within the βG-βH (G-H) loop of VP1. Other αV integrins, as well as several other integrins, recognize and bind to RGD motifs on their natural ligands and also may be candidate receptors for FMDV. To analyze the roles of the αV integrins from a susceptible species as viral receptors, we molecularly cloned the bovine β1, β5, and β6 integrin subunits. Using these subunits, along with previously cloned bovine αV and β3 subunits, in a transient expression assay system, we compared the efficiencies of infection mediated by αVβ1, αVβ3, αVβ5, and αVβ6 among three strains of FMDV serotype A and two strains of serotype O. While all the viruses could infect cells expressing these integrins, they exhibited different efficiencies of integrin utilization. All the type A viruses used αVβ3 and αVβ6 with relatively high efficiency, while only one virus utilized αVβ1 with moderate efficiency. In contrast, both type O viruses utilized αVβ6 and αVβ1 with higher efficiency than αVβ3. Only low levels of viral replication were detected in αVβ5-expressing cells infected with either serotype. Experiments in which the ligand-binding domains among the β subunits were exchanged indicated that this region of the integrin subunit appears to contribute to the differences in integrin utilizations among strains. In contrast, the G-H loops of the different viruses do not appear to be involved in this phenomenon. Thus, the ability of the virus to utilize multiple integrins in vitro may be a reflection of the use of multiple receptors during the course of infection within the susceptible host. PMID:12551988
High efficiency thin-film multiple-gap photovoltaic device
Dalal, Vikram L.
1983-01-01
A photovoltaic device includes at least two solar cells made from Group IV elements or their alloys in the amorphous state mounted on a substrate. The outermost or first cell has a larger bandgap than the second cell. Various techniques are utilized to improve the efficiency of the device.
Transmission and Distribution Efficiency Improvement Rearch and Development Survey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, C.L.; Westinghouse Electric Corporation. Advanced Systems Technology.
Purpose of this study was to identify and quantify those technologies for improving transmission and distribution (T and D) system efficiency that could provide the greatest benefits for utility customers in the Pacific Northwest. Improving the efficiency of transmission and distribution systems offers a potential source of conservation within the utility sector. An extensive review of this field resulted in a list of 49 state-of-the-art technologies and 39 future technologies. Of these, 15 from the former list and 7 from the latter were chosen as the most promising and then submitted to an evaluative test - a modeled sample systemmore » for Benton County PUD, a utility with characteristics typical of a BPA customer system. Reducing end-use voltage on secondary distribution systems to decrease the energy consumption of electrical users when possible, called ''Conservation Voltage Reduction,'' was found to be the most cost effective state-of-the-art technology. Voltampere reactive (var) optimization is a similarly cost effective alternative. The most significant reduction in losses on the transmission and distribution system would be achieved through the replacement of standard transformers with high efficiency transformers, such as amorphous steel transformers. Of the future technologies assessed, the ''Distribution Static VAR Generator'' appears to have the greatest potential for technological breakthroughs and, therefore in time, commercialization. ''Improved Dielectric Materials,'' with a relatively low cost and high potential for efficiency improvement, warrant R and D consideration. ''Extruded Three-Conductor Cable'' and ''Six- and Twelve-Phase Transmission'' programs provide only limited gains in efficiency and applicability and are therefore the least cost effective.« less
NASA Technical Reports Server (NTRS)
Sofie, Stephen W.; Cable, Thomas L.; Salamone, Sam M.
2005-01-01
Solid oxide fuel cells (SOFCs) have tremendous commercial potential because of their high efficiency, high energy density, and flexible fuel capability (ability to use fossil fuels). The drive for high-power-utilizing, ultrathin electrolytes (less than 10 microns), has placed an increased demand on the anode to provide structural support, yet allow sufficient fuel entry for sustained power generation. Concentration polarization, a condition where the fuel demand exceeds the supply, is evident in all commercial-based anode-supported cells, and it presents a significant roadblock to SOFC commercialization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitaker, B; Barkley, A; Cole, Z
2014-05-01
This paper presents an isolated on-board vehicular battery charger that utilizes silicon carbide (SiC) power devices to achieve high density and high efficiency for application in electric vehicles (EVs) and plug-in hybrid EVs (PHEVs). The proposed level 2 charger has a two-stage architecture where the first stage is a bridgeless boost ac-dc converter and the second stage is a phase-shifted full-bridge isolated dc-dc converter. The operation of both topologies is presented and the specific advantages gained through the use of SiC power devices are discussed. The design of power stage components, the packaging of the multichip power module, and themore » system-level packaging is presented with a primary focus on system density and a secondary focus on system efficiency. In this work, a hardware prototype is developed and a peak system efficiency of 95% is measured while operating both power stages with a switching frequency of 200 kHz. A maximum output power of 6.1 kW results in a volumetric power density of 5.0 kW/L and a gravimetric power density of 3.8 kW/kg when considering the volume and mass of the system including a case.« less
152 W average power Tm-doped fiber CPA system.
Stutzki, Fabian; Gaida, Christian; Gebhardt, Martin; Jansen, Florian; Wienke, Andreas; Zeitner, Uwe; Fuchs, Frank; Jauregui, Cesar; Wandt, Dieter; Kracht, Dietmar; Limpert, Jens; Tünnermann, Andreas
2014-08-15
A high-power thulium (Tm)-doped fiber chirped-pulse amplification system emitting a record compressed average output power of 152 W and 4 MW peak power is demonstrated. This result is enabled by utilizing Tm-doped photonic crystal fibers with mode-field diameters of 35 μm, which mitigate detrimental nonlinearities, exhibit slope efficiencies of more than 50%, and allow for reaching a pump-power-limited average output power of 241 W. The high-compression efficiency has been achieved by using multilayer dielectric gratings with diffraction efficiencies higher than 98%.
High efficiency low cost monolithic module for SARSAT distress beacons
NASA Technical Reports Server (NTRS)
Petersen, Wendell C.; Siu, Daniel P.
1992-01-01
The program objectives were to develop a highly efficient, low cost RF module for SARSAT beacons; achieve significantly lower battery current drain, amount of heat generated, and size of battery required; utilize MMIC technology to improve efficiency, reliability, packaging, and cost; and provide a technology database for GaAs based UHF RF circuit architectures. Presented in viewgraph form are functional block diagrams of the SARSAT distress beacon and beacon RF module as well as performance goals, schematic diagrams, predicted performances, and measured performances for the phase modulator and power amplifier.
Park, In Seob; Komiyama, Hideaki; Yasuda, Takuma
2017-02-01
Deep-blue emitters that can harvest both singlet and triplet excited states to give high electron-to-photon conversion efficiencies are highly desired for applications in full-color displays and white lighting devices based on organic light-emitting diodes (OLEDs). Thermally activated delayed fluorescence (TADF) molecules based on highly twisted donor-acceptor (D-A) configurations are promising emitting dopants for the construction of efficient deep-blue OLEDs. In this study, a simple and versatile D-A system combining acridan-based donors and pyrimidine-based acceptors has been developed as a new platform for high-efficiency deep-blue TADF emitters. The designed pre-twisted acridan-pyrimidine D-A molecules exhibit small singlet-triplet energy splitting and high photoluminescence quantum yields, functioning as efficient deep-blue TADF emitters. The OLEDs utilizing these TADF emitters display bright blue electroluminescence with external quantum efficiencies of up to 20.4%, maximum current efficiencies of 41.7 cd A -1 , maximum power efficiencies of 37.2 lm W -1 , and color coordinates of (0.16, 0.23). The design strategy featuring such acridan-pyrimidine D-A motifs can offer great prospects for further developing high-performance deep-blue TADF emitters and TADF-OLEDs.
NASA Astrophysics Data System (ADS)
Kosar, Sonya; Pihosh, Yuriy; Bekarevich, Raman; Mitsuishi, Kazutaka; Mawatari, Kazuma; Kazoe, Yutaka; Kitamori, Takehiko; Tosa, Masahiro; Tarasov, Alexey B.; Goodilin, Eugene A.; Struk, Yaroslav M.; Kondo, Michio; Turkevych, Ivan
2018-04-01
Photocatalytic splitting of water under solar light has proved itself to be a promising approach toward the utilization of solar energy and the generation of environmentally friendly fuel in a form of hydrogen. In this work, we demonstrate highly efficient solar-to-hydrogen conversion efficiency of 7.7% by photovoltaic-photoelectrochemical (PV-PEC) device based on hybrid MAPbI3 perovskite PV cell and WO3/BiVO4 core-shell nanorods PEC cell tandem that utilizes spectral splitting approach. Although BiVO4 is characterized by intrinsically high recombination rate of photogenerated carriers, this is not an issue for WO3/BiVO4 core-shell nanorods, where highly conductive WO3 cores are combined with extremely thin absorber BiVO4 shell layer. Since the BiVO4 layer is thinner than the characteristic carrier diffusion length, the photogenerated charge carriers are separated at the WO3/BiVO4 heterojunction before their recombination. Also, such architecture provides sufficient optical thickness even for extremely thin BiVO4 layer due to efficient light trapping in the core-shell WO3/BiVO4 nanorods with high aspect ratio. We also demonstrate that the concept of fill factor can be used to compare I-V characteristics of different photoanodes regarding their optimization for PV/PEC tandem devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotlin, J.J.; Dunteman, N.R.; Scott, D.I.
1983-01-01
The current Electro-Motive Division 645 Series turbocharged engines are the Model FB and EC. The FB engine combines the highest thermal efficiency with the highest specific output of any EMD engine to date. The FB Series incorporates 16:1 compression ratio with a fire ring piston and an improved turbocharger design. Engine components included in the FB engine provide very high output levels with exceptional reliability. This paper also describes the performance of the lower rated Model EC engine series which feature high thermal efficiency and utilize many engine components well proven in service and basic to the Model FB Series.
Experimental Demonstration of a Highly Efficient Fan-out Polarization Grating
Wan, Chenhao; Chen, Jian; Tang, Xiahui; Zhan, Qiwen
2016-01-01
Highly efficient fan-out elements are crucial in coherent beam combining architectures especially in coupled laser resonators where the beam passes through the fan-out element twice per round trip. Although the theoretical efficiency is usually less than 86%, the Dammann gratings are ubiquitously utilized in a variety of types of coherent beam combining systems due to the facile design and fabrication. In the current paper, we experimentally demonstrate a highly efficient fan-out polarization grating. It is the first time to our knowledge that all the three space-variant parameters of a polarization grating are simultaneously optimized to achieve the function of multi-beam splitting. Besides the high fan-out efficiency, the ability to control the polarization states of individual split beams is another advantage of this polarization grating. The novel polarization grating is promising to find applications in laser beam combining systems. PMID:28008972
High Efficiency Thermoelectric Materials and Devices
NASA Technical Reports Server (NTRS)
Kochergin, Vladimir (Inventor)
2013-01-01
Growth of thermoelectric materials in the form of quantum well super-lattices on three-dimensionally structured substrates provide the means to achieve high conversion efficiency of the thermoelectric module combined with inexpensiveness of fabrication and compatibility with large scale production. Thermoelectric devices utilizing thermoelectric materials in the form of quantum well semiconductor super-lattices grown on three-dimensionally structured substrates provide improved thermoelectric characteristics that can be used for power generation, cooling and other applications..
Charge-Carrier Balance for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells.
Chen, Ke; Hu, Qin; Liu, Tanghao; Zhao, Lichen; Luo, Deying; Wu, Jiang; Zhang, Yifei; Zhang, Wei; Liu, Feng; Russell, Thomas P; Zhu, Rui; Gong, Qihuang
2016-12-01
The charge-carrier balance strategy by interface engineering is employed to optimize the charge-carrier transport in inverted planar heterojunction perovskite solar cells. N,N-Dimethylformamide-treated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and poly(methyl methacrylate)-modified PCBM are utilized as the hole and electron selective contacts, respectively, leading to a high power conversion efficiency of 18.72%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Marshalkin, V. E.; Povyshev, V. M.
2015-12-01
A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium-uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D2O, H2O) is proposed. The method is characterized by efficient breeding of the 233U isotope and safe reactor operation and is comparatively simple to implement.
Projection screen having reduced ambient light scattering
Sweatt, William C [Albuquerque, NM
2010-05-11
An apparatus and method for improving the contrast between incident projected light and ambient light reflected from a projection screen are described. The efficiency of the projection screen for reflection of the projected light remains high, while permitting the projection screen to be utilized in a brightly lighted room. Light power requirements from the projection system utilized may be reduced.
Spectral sensitization of nanocrystalline solar cells
Spitler, Mark T.; Ehret, Anne; Stuhl, Louis S.
2002-01-01
This invention relates to dye sensitized polycrystalline photoelectrochemical solar cells for use in energy transduction from light to electricity. It concerns the utility of highly absorbing organic chromophores as sensitizers in such cells and the degree to which they may be utilized alone and in combination to produce an efficient photoelectrochemical cell, e.g., a regenerative solar cell.
Rechargeable Al-CO2 Batteries for Reversible Utilization of CO2.
Ma, Wenqing; Liu, Xizheng; Li, Chao; Yin, Huiming; Xi, Wei; Liu, Ruirui; He, Guang; Zhao, Xian; Luo, Jun; Ding, Yi
2018-05-21
The excessive emission of CO 2 and the energy crisis are two major issues facing humanity. Thus, the electrochemical reduction of CO 2 and its utilization in metal-CO 2 batteries have attracted wide attention because the batteries can simultaneously accelerate CO 2 fixation/utilization and energy storage/release. Here, rechargeable Al-CO 2 batteries are proposed and realized, which use chemically stable Al as the anode. The batteries display small discharge/charge voltage gaps down to 0.091 V and high energy efficiencies up to 87.7%, indicating an efficient battery performance. Their chemical reaction mechanism to produce the performance is revealed to be 4Al + 9CO 2 ↔ 2Al 2 (CO 3 ) 3 + 3C, by which CO 2 is reversibly utilized. These batteries are envisaged to effectively and safely serve as a potential CO 2 fixation/utilization strategy with stable Al. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems
NASA Astrophysics Data System (ADS)
Nguyen, Victor; Montalbo, Trisha; Manolatou, Christina; Agarwal, Anu; Hong, Ching-yin; Yasaitis, John; Kimerling, L. C.; Michel, Jurgen
2006-02-01
A coupler to efficiently transfer broadband light from a single-mode optical fiber to a single-mode high-index contrast waveguide has been fabricated on a silicon substrate. We utilized a novel coupling scheme, with a vertically asymmetric design consisting of a stepwise parabolic graded index profile combined with a horizontal taper, to simultaneously confine light in both directions. Coupling efficiency has been measured as a function of the device dimensions. The optimal coupling efficiency is achieved for structures whose length equals the focal distance of the graded index and whose input width is close to the mode field diameter of the fiber. The fabricated structure is compact, robust and highly efficient, with an insertion loss of 2.2dB at 1550nm. The coupler exhibits less than 1dB variation in coupling efficiency in the measured spectral range from 1520nmto1620nm. The lowest insertion loss of 1.9dB is measured at 1540nm. The coupler design offers highly efficient coupling for single mode waveguides of core indices up to 2.2.
Aligning Utility Incentives with Investment in Energy Efficiency
Describes the financial effects on a utility of its spending on energy efficiency programs, how those effects could constitute barriers to more aggressive and sustained utility investment in energy efficiency.
Production of high concentrated cellulosic ethanol by acetone/water oxidized pretreated beech wood.
Katsimpouras, Constantinos; Kalogiannis, Konstantinos G; Kalogianni, Aggeliki; Lappas, Angelos A; Topakas, Evangelos
2017-01-01
Lignocellulosic biomass is an abundant and inexpensive resource for biofuel production. Alongside its biotechnological conversion, pretreatment is essential to enable efficient enzymatic hydrolysis by making cellulose susceptible to cellulases. Wet oxidation of biomass, such as acetone/water oxidation, that employs hot acetone, water, and oxygen, has been found to be an attractive pretreatment method for removing lignin while producing less degradation products. The remaining enriched cellulose fraction has the potential to be utilized under high gravity enzymatic saccharification and fermentation processes for the cost-competing production of bioethanol. Beech wood residual biomass was pretreated following an acetone/water oxidation process aiming at the production of high concentration of cellulosic ethanol. The effect of pressure, reaction time, temperature, and acetone-to-water ratio on the final composition of the pretreated samples was studied for the efficient utilization of the lignocellulosic feedstock. The optimal conditions were acetone/water ratio 1:1, 40 atm initial pressure of 40 vol% O 2 gas, and 64 atm at reaction temperature of 175 °C for 2 h incubation. The pretreated beech wood underwent an optimization step studying the effect of enzyme loading and solids content on the enzymatic liquefaction/saccharification prior to fermentation. In a custom designed free-fall mixer at 50 °C for either 6 or 12 h of prehydrolysis using an enzyme loading of 9 mg/g dry matter at 20 wt% initial solids content, high ethanol concentration of 75.9 g/L was obtained. The optimization of the pretreatment process allowed the efficient utilization of beech wood residual biomass for the production of high concentrations of cellulosic ethanol, while obtaining lignin that can be upgraded towards high-added-value chemicals. The threshold of 4 wt% ethanol concentration that is required for the sustainable bioethanol production was surpassed almost twofold, underpinning the efficient conversion of biomass to ethanol and bio-based chemicals on behalf of the biorefinery concept.
SVM classifier on chip for melanoma detection.
Afifi, Shereen; GholamHosseini, Hamid; Sinha, Roopak
2017-07-01
Support Vector Machine (SVM) is a common classifier used for efficient classification with high accuracy. SVM shows high accuracy for classifying melanoma (skin cancer) clinical images within computer-aided diagnosis systems used by skin cancer specialists to detect melanoma early and save lives. We aim to develop a medical low-cost handheld device that runs a real-time embedded SVM-based diagnosis system for use in primary care for early detection of melanoma. In this paper, an optimized SVM classifier is implemented onto a recent FPGA platform using the latest design methodology to be embedded into the proposed device for realizing online efficient melanoma detection on a single system on chip/device. The hardware implementation results demonstrate a high classification accuracy of 97.9% and a significant acceleration factor of 26 from equivalent software implementation on an embedded processor, with 34% of resources utilization and 2 watts for power consumption. Consequently, the implemented system meets crucial embedded systems constraints of high performance and low cost, resources utilization and power consumption, while achieving high classification accuracy.
Zhao, Xinqing; Xiong, Liang; Zhang, Mingming; Bai, Fengwu
2016-09-01
Production of fuel ethanol from lignocellulosic feedstocks such as agricultural and forestry residues is receiving increasing attention due to the unsustainable supply of fossil fuels. Three key challenges include high cellulase production cost, toxicity of the cellulosic hydrolysate to microbial strains, and poor ability of fermenting microorganisms to utilize certain fermentable sugars in the hydrolysate. In this article, studies on searching of natural microbial strains for production of unique cellulase for biorefinery of agricultural and forestry wastes, as well as development of strains for improved cellulase production were reviewed. In addition, progress in the construction of yeast strains with improved stress tolerance and the capability to fully utilize xylose and glucose in the cellulosic hydrolysate was also summarized. With the superior microbial strains for high titer cellulase production and efficient utilization of all fermentable sugars in the hydrolysate, economic biofuels production from agricultural residues and forestry wastes can be realized. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Matahari, Rho Natta; Putra, Nandy; Ariantara, Bambang; Amin, Muhammad; Prawiro, Erwin
2017-02-01
High number of preterm births is one of the issues in improving health standard. The effort to help premature babies is hampered by high cost of NICU care in hospital. In addition, uneven distribution of electricity to remote area made it hard to operate the incubator. Utilization of phase change material beeswax to non-electricity incubator as heating element becomes alternative option to save premature babies. The objective of this experiment is to investigate the most efficient mass of beeswax according to Indonesian National Standard to earn over time and ideal temperature of incubator. Experiment was performed using prototype incubator, which utilizes natural convection phenomenon in the heating process of incubator. Utilization of fin is to accelerate heat distribution in the incubator. Result of experiment showed that the most efficient mass of PCM is 3 kg, which has 2.45 hours of running time for maintaining temperature of incubator in range of 32-36 °C.
Cai, Qiu-Yan; Zhang, Xi-Zhou; Li, Ting-Xuan; Chen, Guang-Deng
2014-11-01
High P-efficiency (IS-22-30, IS-22-25) and low P-efficiency (IS-07-07) wild barley cultivars were chosen to evaluate characteristics of phosphorus uptake and utilization, and properties of phosphorus fractions in rhizosphere and non-rhizosphere in a pot experiment with 0 (CK) and 30 mg P · kg(-1) supplied as only Pi (KH2PO4), only Po (phytate) or Pi + Po (KH2PO4+ phytate). The results showed that dry matter and phosphorus accumulation of wild barley in the different treatments was ranked as Pi > Pi + Po > Po > CK. In addition, dry matter yield and phosphorus uptake of wild barley with high P-efficiency exhibited significantly greater than that with low P-efficiency. The concentration of soil available phosphorus was significantly different after application of different phosphorus sources, which was presented as Pi > Pi + Po > Po. The concentration of soil available phosphorus in high P-efficiency wild barley was significantly higher than that of low P-efficiency in the rhizosphere soil. There was a deficit in rhizosphere available phosphorus of high P-efficiency wild barley, especially in Pi and Pi+Po treatments. The inorganic phosphorus fractions increased with the increasing Pi treatment, and the concentrations of inorganic phosphorus fractions in soil were sorted as follows: Ca10-P > O-P > Fe-P > Al-P > Ca2-P > Ca8-P. The contents of Ca2-P and Ca8-P for high P-efficiency wild barley showed deficits in rhizosphere soil under each phosphorus source treatment. In addition, enrichment of Al-P and Fe-P was observed in Pi treatment in rhizosphere soil. The concentrations of organic phosphorus fractions in soil were sorted as follows: moderate labile organic phosphorus > moderate resistant, resistant organic phosphorus > labile organic phosphorus. The labile and moderate labile organic phosphorus enriched in rhizosphere soil and the greatest enrichment appeared in Pi treatment. Furthermore, the concentrations of moderate resistant organic phosphorus and resistant organic phosphorus decreased in rhizosphere soil. The concentrations of labile and moderate labile organic phosphorus in rhizosphere soil of high P-efficiency wild barley were significantly higher than that of low P-efficiency wild barley in each phosphorus source treatment. However, moderate resistant organic phosphorus and resistant organic phosphorus concentrations had no significant difference between the two genotypes. Wild barley with high P-efficiency demonstrated a greater ability of mobilization and uptake Ca2-P, Ca8-P, Al-P and labile organic phosphorus than that with low P-efficiency under Pi deficiency.
Nisar, Bushra; Rubab, Syeda Laila; Raza, Abdul Rauf; Tariq, Sobia; Sultan, Ayesha; Tahir, Muhammad Nawaz
2018-04-11
Novel and highly sensitive indole-based imines have been synthesized. Their synthesis has been compared employing a variety of protocols. Ultimately, a convenient, economical and high yielding set of conditions employing green chemistry have been designed for their synthesis.
Expanding the utility of 4-cyano-L-phenylalanine as a vibrational reporter of protein environments.
Bazewicz, Christopher G; Lipkin, Jacob S; Smith, Emily E; Liskov, Melanie T; Brewer, Scott H
2012-09-06
The ability to genetically incorporate amino acids modified with spectroscopic reporters site-specifically into proteins with high efficiency and fidelity has greatly enhanced the ability to probe local protein structure and dynamics. Here, we have synthesized the unnatural amino acid (UAA), 4-cyano-L-phenylalanine (pCNPhe), containing the nitrile vibrational reporter and three isotopomers ((15)N, (13)C, (13)C(15)N) of this UAA to enhance the ability of pCNPhe to study local protein environments. Each pCNPhe isotopic variant was genetically incorporated in an efficient, site-specific manner into superfolder green fluorescent protein (sfGFP) in response to an amber codon with high fidelity utilizing an engineered, orthogonal aminoacyl-tRNA synthetase. The isotopomers of 4-cyano-L-phenylalanine permitted the nitrile symmetric stretch vibration of these UAAs to be unambiguously assigned utilizing the magnitude and direction of the isotopic shift of this vibration. The sensitivity of the nitrile symmetric stretching frequency of each isotopic variant to the local environment was measured by individually incorporating the probes into two distinct local environments of sfGFP. The UAAs were also utilized in concert to probe multiple local environments in sfGFP simultaneously to increase the utility of 4-cyano-L-phenylalanine.
High efficiency solution processed sintered CdTe nanocrystal solar cells: the role of interfaces.
Panthani, Matthew G; Kurley, J Matthew; Crisp, Ryan W; Dietz, Travis C; Ezzyat, Taha; Luther, Joseph M; Talapin, Dmitri V
2014-02-12
Solution processing of photovoltaic semiconducting layers offers the potential for drastic cost reduction through improved materials utilization and high device throughput. One compelling solution-based processing strategy utilizes semiconductor layers produced by sintering nanocrystals into large-grain semiconductors at relatively low temperatures. Using n-ZnO/p-CdTe as a model system, we fabricate sintered CdTe nanocrystal solar cells processed at 350 °C with power conversion efficiencies (PCE) as high as 12.3%. JSC of over 25 mA cm(-2) are achieved, which are comparable or higher than those achieved using traditional, close-space sublimated CdTe. We find that the VOC can be substantially increased by applying forward bias for short periods of time. Capacitance measurements as well as intensity- and temperature-dependent analysis indicate that the increased VOC is likely due to relaxation of an energetic barrier at the ITO/CdTe interface.
"Long life" DC brush motor for use on the Mars surveyor program
NASA Technical Reports Server (NTRS)
Braun, David; Noon, Don
1998-01-01
DC brush motors have several qualities which make them very attractive for space flight applications. Their mechanical commutation is simple and lightweight, requiring no external sensing and control in order to function properly. They are extremely efficient in converting electrical energy into mechanical energy. Efficiencies over 80% are not uncommon, resulting in high power throughput to weight ratios. However, the inherent unreliability and short life of sliding electrical contacts, especially in vacuum, have driven previous programs to utilize complex brushless DC or the less efficient stepper motors. The Mars Surveyor Program (MSP'98) and the Shuttle Radar Topography Mission (SRTM) have developed a reliable "long life" brush type DC motor for operation in low temperature, low pressure CO2 and N2, utilizing silver-graphite brushes. The original intent was to utilize this same motor for SRTM's space operation, but the results thus far have been unsatisfactory in vacuum. This paper describes the design, test, and results of this development.
An energy analysis of torrefaction for upgrading microalga residue as a solid fuel.
Chen, Wei-Hsin; Huang, Ming-Yueh; Chang, Jo-Shu; Chen, Chun-Yen; Lee, Wen-Jhy
2015-06-01
The torrefaction characteristics and energy utilization of microalga Chlamydomonas sp. JSC4 (C. sp. JSC4) residue under the combination of temperature and duration are studied by examining contour maps. The torrefaction temperature on the contour line of solid yield has a trend to linearly decrease with increasing duration. An index of relative energy efficiency (REE) is introduced to identify the performance of energy utilization for upgrading biomass. For a fixed energy yield, the optimal operation can be found to maximize the heating value of the biomass and minimize the solid yield. The energy utilization under the combination of a high temperature and a short duration is more efficient than that of a low temperature and a long duration. The maximum REE along the contour line of energy yield is always exhibited at the highest temperature (300°C) where the energy efficiency can be enlarged by a factor of at least 2.36. Copyright © 2015 Elsevier Ltd. All rights reserved.
Processes for producing low cost, high efficiency silicon solar cells
Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag
1996-01-01
Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.
Image detection and compression for memory efficient system analysis
NASA Astrophysics Data System (ADS)
Bayraktar, Mustafa
2015-02-01
The advances in digital signal processing have been progressing towards efficient use of memory and processing. Both of these factors can be utilized efficiently by using feasible techniques of image storage by computing the minimum information of image which will enhance computation in later processes. Scale Invariant Feature Transform (SIFT) can be utilized to estimate and retrieve of an image. In computer vision, SIFT can be implemented to recognize the image by comparing its key features from SIFT saved key point descriptors. The main advantage of SIFT is that it doesn't only remove the redundant information from an image but also reduces the key points by matching their orientation and adding them together in different windows of image [1]. Another key property of this approach is that it works on highly contrasted images more efficiently because it`s design is based on collecting key points from the contrast shades of image.
Evaluation of two typical distributed energy systems
NASA Astrophysics Data System (ADS)
Han, Miaomiao; Tan, Xiu
2018-03-01
According to the two-natural gas distributed energy system driven by gas engine driven and gas turbine, in this paper, the first and second laws of thermodynamics are used to measure the distributed energy system from the two parties of “quantity” and “quality”. The calculation results show that the internal combustion engine driven distributed energy station has a higher energy efficiency, but the energy efficiency is low; the gas turbine driven distributed energy station energy efficiency is high, but the primary energy utilization rate is relatively low. When configuring the system, we should determine the applicable natural gas distributed energy system technology plan and unit configuration plan according to the actual load factors of the project and the actual factors such as the location, background and environmental requirements of the project. “quality” measure, the utilization of waste heat energy efficiency index is proposed.
Fu, Changlin; Donovan, William P; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H
2014-01-01
Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17-30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50 °C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90-95%.
Fu, Changlin; Donovan, William P.; Shikapwashya-Hasser, Olga; Ye, Xudong; Cole, Robert H.
2014-01-01
Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17–30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50°C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90–95%. PMID:25551825
Ates, Hatice Ceren; Ozgur, Ebru; Kulah, Haluk
2018-03-23
Methods for isolation and quantification of circulating tumor cells (CTCs) are attracting more attention every day, as the data for their unprecedented clinical utility continue to grow. However, the challenge is that CTCs are extremely rare (as low as 1 in a billion of blood cells) and a highly sensitive and specific technology is required to isolate CTCs from blood cells. Methods utilizing microfluidic systems for immunoaffinity-based CTC capture are preferred, especially when purity is the prime requirement. However, antibody immobilization strategy significantly affects the efficiency of such systems. In this study, two covalent and two bioaffinity antibody immobilization methods were assessed with respect to their CTC capture efficiency and selectivity, using an anti-epithelial cell adhesion molecule (EpCAM) as the capture antibody. Surface functionalization was realized on plain SiO 2 surfaces, as well as in microfluidic channels. Surfaces functionalized with different antibody immobilization methods are physically and chemically characterized at each step of functionalization. MCF-7 breast cancer and CCRF-CEM acute lymphoblastic leukemia cell lines were used as EpCAM positive and negative cell models, respectively, to assess CTC capture efficiency and selectivity. Comparisons reveal that bioaffinity based antibody immobilization involving streptavidin attachment with glutaraldehyde linker gave the highest cell capture efficiency. On the other hand, a covalent antibody immobilization method involving direct antibody binding by N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC)-N-hydroxysuccinimide (NHS) reaction was found to be more time and cost efficient with a similar cell capture efficiency. All methods provided very high selectivity for CTCs with EpCAM expression. It was also demonstrated that antibody immobilization via EDC-NHS reaction in a microfluidic channel leads to high capture efficiency and selectivity.
2014-09-01
simulation time frame from 30 days to one year. This was enabled by porting the simulation to the Pleiades supercomputer at NASA Ames Research Center, a...including the motivation for changes to our past approach. We then present the software implementation (3) on the NASA Ames Pleiades supercomputer...significantly updated since last year’s paper [25]. The main incentive for that was the shift to a highly parallel approach in order to utilize the Pleiades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshalkin, V. E., E-mail: marshalkin@vniief.ru; Povyshev, V. M.
A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium–uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D{sub 2}O, H{sub 2}O) is proposed. The method is characterized by efficient breeding of the {sup 233}U isotope and safe reactor operation and is comparatively simple to implement.
Aligning Utility Incentives with Investment in Energy Efficiency
Learn more about the financial effects on a utility of its spending on energy efficiency programs, how those effects could constitute barriers to utility investment in energy efficiency, and how various policies can reduce these barriers.
Developing a scalable inert gas ion thruster
NASA Technical Reports Server (NTRS)
James, E.; Ramsey, W.; Steiner, G.
1982-01-01
Analytical studies to identify and then design a high performance scalable ion thruster operating with either argon or xenon for use in large space systems are presented. The magnetoelectrostatic containment concept is selected for its efficient ion generation capabilities. The iterative nature of the bounding magnetic fields allows the designer to scale both the diameter and length, so that the thruster can be adapted to spacecraft growth over time. Three different thruster assemblies (conical, hexagonal and hemispherical) are evaluated for a 12 cm diameter thruster and performance mapping of the various thruster configurations shows that conical discharge chambers produce the most efficient discharge operation, achieving argon efficiencies of 50-80% mass utilization at 240-310 eV/ion and xenon efficiencies of 60-97% at 240-280 eV/ion. Preliminary testing of the large 30 cm thruster, using argon propellant, indicates a 35% improvement over the 12 cm thruster in mass utilization efficiency. Since initial performance is found to be better than projected, a larger 50 cm thruster is already in the development stage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yukun; Solid-State Lighting Engineering Research Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049; Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ
Size-tunable bimetallic bowtie nanoantennas have been utilized to suppress the efficiency roll-off characteristics in organic light-emitting diodes (OLEDs) using both the numerical and experimental approaches. The resonant range can be widened by the strong dual-atomic couplings in bimetallic bowtie nanoantennas. Compared with the green OLED with conventional bowtie nanoantennas at a high current density of 800 mA/cm{sup 2}, the measured efficiency roll-off ratio of the OLED with size-modulated bowtie nanoantennas is decreased from 53.2% to 41.8%, and the measured current efficiency is enhanced by 29.9%. When the size-modulated bowtie nanoantennas are utilized in blue phosphorescent OLEDs, the experimental roll-off ratio ismore » suppressed from 43.6% to 25.9% at 250 mA/cm{sup 2}, and the measured current efficiency is also enhanced significantly. It is proposed that the efficiency roll-off suppression is mainly related to the enhanced localized surface plasmon effect, which leads to a shorter radiative lifetime.« less
Bayat Tork, Mahya; Khalilzadeh, Rasoul; Kouchakzadeh, Hasan
2017-11-01
Harvesting involves nearly thirty percent of total production cost of microalgae that needs to be done efficiently. Utilizing inexpensive and highly available biopolymer-based flocculants can be a solution for reducing the harvest costs. Herein, flocculation process of Chlorella vulgaris microalgae using cationic starch nanoparticles (CSNPs) was evaluated and optimized through the response surface methodology (RSM). pH, microalgae and CSNPs concentrations were considered as the main independent variables. Under the optimum conditions of microalgae concentration 0.75gdry weight/L, CSNPs concentration 7.1mgdry weight/L and pH 11.8, the maximum flocculation efficiency (90%) achieved. Twenty percent increase in flocculation efficiency observed with the use of CSNPs instead of the non-particulate starch which can be due to the more electrostatic interactions between the cationic nanoparticles and the microalgae. Therefore, the synthesized CSNPs can be employed as a convenient and economical flocculants for efficient harvest of Chlorella vulgaris microalgae at large scale. Copyright © 2017 Elsevier Ltd. All rights reserved.
Palmer, Guido; Gross, Simon; Fuerbach, Alexander; Lancaster, David G; Withford, Michael J
2013-07-15
We report the first Yb:ZBLAN and Yb:IOG10 waveguide lasers fabricated by the fs-laser direct-writing technique. Pulses from a Titanium-Sapphire laser oscillator with 5.1 MHz repetition rate were utilized to generate negative refractive index modifications in both glasses. Multiple modifications were aligned in a depressed cladding geometry to create a waveguide. For Yb:ZBLAN we demonstrate high laser slope efficiency of 84% with a maximum output power of 170 mW. By using Yb:IOG10 a laser performance of 25% slope efficiency and 72 mW output power was achieved and we measured a remarkably high refractive index change exceeding Δn = 2.3 × 10(-2).
NASA Astrophysics Data System (ADS)
Benner, Ronald; Peele, Emily R.; Hodson, Robert E.
1986-11-01
Dissolved organic matter was leached from [ 14C]labeled leaves of the red mangrove, Rhizophora mangle, and used in studies to determine the rates and efficiencies of microbial utilization of the water-soluble components of mangrove leaves in the Fresh Creek estuary, Bahamas. Rates of microbial utilization (assimilation plus mineralization) of mangrove leachate ranged from 0·022 to 4·675 μg ml -1 h -1 depending on the concentration of leachate and the size or diversity of microbial populations. Microflora associated with decaying mangrove leaves utilized mangrove leachate at rates up to 18-fold higher than rates of leachate utilization by planktonic microflora. Chemical analyses indicated that tannins and other potentially inhibitory phenolic compounds made up a major fraction (18%) of the dissolved organic matter in mangrove leachate. Mangrove leachate did not appear to be inhibitory to the microbial uptake of leachate or the microbial degradation of the lignocellulosic component of mangrove leaves except at high concentrations (mg ml -1). The availability of molecular oxygen also was an important parameter affecting rates of leachate utilization; rates of microbial utilization of leachate were up to 8-fold higher under aerobic rather than anaerobic conditions. The overall efficiency of conversion of mangrove leachate into microbial biomass was high and ranged from 64% to 94%. As much as 42% of the added leachate was utilized during 2 to 12 h incubations, indicating that a major fraction of the leachable material from mangrove leaves is incorporated into microbial biomass, and thus available to animals in the estuarine food web.
Utilization of high-frequency Rayleigh waves in near-surface geophysics
Xia, J.; Miller, R.D.; Park, C.B.; Ivanov, J.; Tian, G.; Chen, C.
2004-01-01
Shear-wave velocities can be derived from inverting the dispersive phase velocity of the surface. The multichannel analysis of surface waves (MASW) is one technique for inverting high-frequency Rayleigh waves. The process includes acquisition of high-frequency broad-band Rayleigh waves, efficient and accurate algorithms designed to extract Rayleigh-wave dispersion curves from Rayleigh waves, and stable and efficient inversion algorithms to obtain near-surface S-wave velocity profiles. MASW estimates S-wave velocity from multichannel vertical compoent data and consists of data acquisition, dispersion-curve picking, and inversion.
Sub-25-nm laboratory x-ray microscopy using a compound Fresnel zone plate.
von Hofsten, Olov; Bertilson, Michael; Reinspach, Julia; Holmberg, Anders; Hertz, Hans M; Vogt, Ulrich
2009-09-01
Improving the resolution in x-ray microscopes is of high priority to enable future applications in nanoscience. However, high-resolution zone-plate optics often have low efficiency, which makes implementation in laboratory microscopes difficult. We present a laboratory x-ray microscope based on a compound zone plate. The compound zone plate utilizes multiple diffraction orders to achieve high resolution while maintaining reasonable efficiency. We analyze the illumination conditions necessary for this type of optics in order to suppress stray light and demonstrate microscopic imaging resolving 25 nm features.
Leaf transpiration plays a role in phosphorus acquisition among a large set of chickpea genotypes.
Pang, Jiayin; Zhao, Hongxia; Bansal, Ruchi; Bohuon, Emilien; Lambers, Hans; Ryan, Megan H; Siddique, Kadambot H M
2018-01-09
Low availability of inorganic phosphorus (P) is considered a major constraint for crop productivity worldwide. A unique set of 266 chickpea (Cicer arietinum L.) genotypes, originating from 29 countries and with diverse genetic background, were used to study P-use efficiency. Plants were grown in pots containing sterilized river sand supplied with P at a rate of 10 μg P g -1 soil as FePO 4 , a poorly soluble form of P. The results showed large genotypic variation in plant growth, shoot P content, physiological P-use efficiency, and P-utilization efficiency in response to low P supply. Further investigation of a subset of 100 chickpea genotypes with contrasting growth performance showed significant differences in photosynthetic rate and photosynthetic P-use efficiency. A positive correlation was found between leaf P concentration and transpiration rate of the young fully expanded leaves. For the first time, our study has suggested a role of leaf transpiration in P acquisition, consistent with transpiration-driven mass flow in chickpea grown in low-P sandy soils. The identification of 6 genotypes with high plant growth, P-acquisition, and P-utilization efficiency suggests that the chickpea reference set can be used in breeding programmes to improve both P-acquisition and P-utilization efficiency under low-P conditions. © 2018 John Wiley & Sons Ltd.
Enabling High Efficiency Nanoplasmonics with Novel Nanoantenna Architectures
Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev
2015-01-01
Surface plasmon polaritons (SPPs) are propagating excitations that arise from coupling of light with collective electron oscillations. Characterized by high field intensity and nanometric dimensions, SPPs fashion rapid expansion of interest from fundamental and applicative perspectives. However, high metallic losses at optical frequencies still make nanoplasmonics impractical when high absolute efficiency is paramount, with major challenge is efficient plasmon generation in deep nanoscale. Here we introduce the Plantenna, the first reported nanodevice with the potential of addressing these limitations utilizing novel plasmonic architecture. The Plantenna has simple 2D structure, ultracompact dimensions and is fabricated on Silicon chip for future CMOS integration. We design the Plantenna to feed channel (20 nm × 20 nm) nanoplasmonic waveguides, achieving 52% coupling efficiency with Plantenna dimensions of λ3/17,000. We theoretically and experimentally show that the Plantenna enormously outperforms dipole couplers, achieving 28 dB higher efficiency with broad polarization diversity and huge local field enhancement. Our findings confirm the Plantenna as enabling device for high efficiency plasmonic technologies such as quantum nanoplasmonics, molecular strong coupling and plasmon nanolasers. PMID:26620270
Beach, Raymond J.
1997-01-01
Wing pumping a Tm.sup.3+ doped, end pumped solid state laser generates 2 .mu.m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm.sup.3+ absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm.sup.3+ because high Tm.sup.3+ concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation.
Beach, R.J.
1997-11-18
Wing pumping a Tm{sup 3+} doped, end pumped solid state laser generates 2 {micro}m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm{sup 3+} absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm{sup 3+} because high Tm{sup 3+} concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation. 7 figs.
Electric utility of the year for 1984: Potomac Electric Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-11-01
High performance, efficiency improvements, a modest construction program, a clear balance sheet, and an effort to expend power plant life were among the qualities that earned Potomac Electric Power (PEPCO) the title of 1984 Utility of the Year. Other key elements in the utility's selection were its strategy for purchasing power, a load management plan, diversified investments into subsidiary businesses, community concern that considers the aesthetics of transmission facilities, and its interest in personnel development, especially among minorities. 3 figures.
Associated petroleum gas utilization in Tomsk Oblast: energy efficiency and tax advantages
NASA Astrophysics Data System (ADS)
Vazim, A.; Romanyuk, V.; Ahmadeev, K.; Matveenko, I.
2015-11-01
This article deals with oil production companies activities in increasing the utilization volume of associated petroleum gas (APG) in Tomsk Oblast. Cost-effectiveness analysis of associated petroleum gas utilization was carried out using the example of gas engine power station AGP-350 implementation at Yuzhno-Cheremshanskoye field, Tomsk Oblast. Authors calculated the effectiveness taking into account the tax advantages of 2012. The implementation of this facility shows high profitability, the payback period being less than 2 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The report is an overview of electric energy efficiency programs. It takes a concise look at what states are doing to encourage energy efficiency and how it impacts electric utilities. Energy efficiency programs began to be offered by utilities as a response to the energy crises of the 1970s. These regulatory-driven programs peaked in the early-1990s and then tapered off as deregulation took hold. Today, rising electricity prices, environmental concerns, and national security issues have renewed interest in increasing energy efficiency as an alternative to additional supply. In response, new methods for administering, managing, and delivering energy efficiency programs aremore » being implemented. Topics covered in the report include: Analysis of the benefits of energy efficiency and key methods for achieving energy efficiency; evaluation of the business drivers spurring increased energy efficiency; Discussion of the major barriers to expanding energy efficiency programs; evaluation of the economic impacts of energy efficiency; discussion of the history of electric utility energy efficiency efforts; analysis of the impact of energy efficiency on utility profits and methods for protecting profitability; Discussion of non-utility management of energy efficiency programs; evaluation of major methods to spur energy efficiency - systems benefit charges, resource planning, and resource standards; and, analysis of the alternatives for encouraging customer participation in energy efficiency programs.« less
Processes for producing low cost, high efficiency silicon solar cells
Rohatgi, Ajeet; Doshi, Parag; Tate, John Keith; Mejia, Jose; Chen, Zhizhang
1998-06-16
Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.
Gemenet, Dorcus C.; Leiser, Willmar L.; Beggi, Francesca; Herrmann, Ludger H.; Vadez, Vincent; Rattunde, Henry F. W.; Weltzien, Eva; Hash, Charles T.; Buerkert, Andreas; Haussmann, Bettina I. G.
2016-01-01
West Africa (WA) is among the most food insecure regions. Rapid human population growth and stagnating crop yields greatly contribute to this fact. Poor soil fertility, especially low plant available phosphorus (P) is constraining food production in the region. P-fertilizer use in WA is among the lowest in the world due to inaccessibility and high prices, often unaffordable to resource-poor subsistence farmers. This article provides an overview of soil P-deficiency in WA and opportunities to overcome it by exploiting sorghum and pearl millet genetic diversity. The topic is examined from the perspectives of plant breeding, soil science, plant physiology, plant nutrition, and agronomy, thereby referring to recent results obtained in a joint interdisciplinary research project, and reported literature. Specific objectives are to summarize: (1) The global problem of P scarcity and how it will affect WA farmers; (2) Soil P dynamics in WA soils; (3) Plant responses to P deficiency; (4) Opportunities to breed for improved crop adaptation to P-limited conditions; (5) Challenges and trade-offs for improving sorghum and pearl millet adaptation to low-P conditions in WA; and (6) Systems approaches to address soil P-deficiency in WA. Sorghum and pearl millet in WA exhibit highly significant genetic variation for P-uptake efficiency, P-utilization efficiency, and grain yield under P-limited conditions indicating the possibility of breeding P-efficient varieties. Direct selection under P-limited conditions was more efficient than indirect selection under high-P conditions. Combining P-uptake and P-utilization efficiency is recommendable for WA to avoid further soil mining. Genomic regions responsible for P-uptake, P-utilization efficiency, and grain yield under low-P have been identified in WA sorghum and pearl millet, and marker-assisted selection could be possible once these genomic regions are validated. Developing P-efficient genotypes may not, however, be a sustainable solution in itself in the long-term without replenishing the P removed from the system in harvested produce. We therefore propose the use of integrated soil fertility management and systems-oriented management such as enhanced crop-tree-livestock integration in combination with P-use-efficiency-improved varieties. Recycling P from animal bones, human excreta and urine are also possible approaches toward a partially closed and efficient P cycle in WA. PMID:27721815
Gemenet, Dorcus C; Leiser, Willmar L; Beggi, Francesca; Herrmann, Ludger H; Vadez, Vincent; Rattunde, Henry F W; Weltzien, Eva; Hash, Charles T; Buerkert, Andreas; Haussmann, Bettina I G
2016-01-01
West Africa (WA) is among the most food insecure regions. Rapid human population growth and stagnating crop yields greatly contribute to this fact. Poor soil fertility, especially low plant available phosphorus (P) is constraining food production in the region. P-fertilizer use in WA is among the lowest in the world due to inaccessibility and high prices, often unaffordable to resource-poor subsistence farmers. This article provides an overview of soil P-deficiency in WA and opportunities to overcome it by exploiting sorghum and pearl millet genetic diversity. The topic is examined from the perspectives of plant breeding, soil science, plant physiology, plant nutrition, and agronomy, thereby referring to recent results obtained in a joint interdisciplinary research project, and reported literature. Specific objectives are to summarize: (1) The global problem of P scarcity and how it will affect WA farmers; (2) Soil P dynamics in WA soils; (3) Plant responses to P deficiency; (4) Opportunities to breed for improved crop adaptation to P-limited conditions; (5) Challenges and trade-offs for improving sorghum and pearl millet adaptation to low-P conditions in WA; and (6) Systems approaches to address soil P-deficiency in WA. Sorghum and pearl millet in WA exhibit highly significant genetic variation for P-uptake efficiency, P-utilization efficiency, and grain yield under P-limited conditions indicating the possibility of breeding P-efficient varieties. Direct selection under P-limited conditions was more efficient than indirect selection under high-P conditions. Combining P-uptake and P-utilization efficiency is recommendable for WA to avoid further soil mining. Genomic regions responsible for P-uptake, P-utilization efficiency, and grain yield under low-P have been identified in WA sorghum and pearl millet, and marker-assisted selection could be possible once these genomic regions are validated. Developing P-efficient genotypes may not, however, be a sustainable solution in itself in the long-term without replenishing the P removed from the system in harvested produce. We therefore propose the use of integrated soil fertility management and systems-oriented management such as enhanced crop-tree-livestock integration in combination with P-use-efficiency-improved varieties. Recycling P from animal bones, human excreta and urine are also possible approaches toward a partially closed and efficient P cycle in WA.
Highly improved voltage efficiency of seawater battery by use of chloride ion capturing electrode
NASA Astrophysics Data System (ADS)
Kim, Kyoungho; Hwang, Soo Min; Park, Jeong-Sun; Han, Jinhyup; Kim, Junsoo; Kim, Youngsik
2016-05-01
Cost-effective and eco-friendly battery system with high energy density is highly desirable. Herein, we report a seawater battery with a high voltage efficiency, in which a chloride ion-capturing electrode (CICE) consisting of Ag foil is utilized as the cathode. The use of Ag as the cathode leads to a sharp decrease in the voltage gaps between charge and discharge curves, based on reversible redox reaction of Ag/AgCl (at ∼2.9 V vs. Na+/Na) in a seawater catholyte during cycling. The Ag/AgCl reaction proves to be highly reversible during battery cycling. The battery employing the Ag electrode shows excellent cycling performance with a high Coulombic efficiency (98.6-98.7%) and a highly improved voltage efficiency (90.3% compared to 73% for carbonaceous cathode) during 20 cycles (total 500 h). These findings demonstrate that seawater batteries using a CICE could be used as next-generation batteries for large-scale stationary energy storage plants.
Du, Yu-Mei; Tian, Jiang; Liao, Hong; Bai, Chang-Jun; Yan, Xiao-Long; Liu, Guo-Dao
2009-06-01
Stylosanthes spp. (stylo) is one of the most important pasture legumes used in a wide range of agricultural systems on acid soils, where aluminium (Al) toxicity and phosphorus (P) deficiency are two major limiting factors for plant growth. However, physiological mechanisms of stylo adaptation to acid soils are not understood. Twelve stylo genotypes were surveyed under field conditions, followed by sand and nutrient solution culture experiments to investigate possible physiological mechanisms of stylo adaptation to low-P acid soils. Stylo genotypes varied substantially in growth and P uptake in low P conditions in the field. Three genotypes contrasting in P efficiency were selected for experiments in nutrient solution and sand culture to examine their Al tolerance and ability to utilize different P sources, including Ca-P, K-P, Al-P, Fe-P and phytate-P. Among the three tested genotypes, the P-efficient genotype 'TPRC2001-1' had higher Al tolerance than the P-inefficient genotype 'Fine-stem' as indicated by relative tap root length and haematoxylin staining. The three genotypes differed in their ability to utilize different P sources. The P-efficient genotype, 'TPRC2001-1', had superior ability to utilize phytate-P. The findings suggest that possible physiological mechanisms of stylo adaptation to low-P acid soils might involve superior ability of plant roots to tolerate Al toxicity and to utilize organic P and Al-P.
NASA Astrophysics Data System (ADS)
Iskin, Ibrahim
Energy efficiency stands out with its potential to address a number of challenges that today's electric utilities face, including increasing and changing electricity demand, shrinking operating capacity, and decreasing system reliability and flexibility. Being the least cost and least risky alternative, the share of energy efficiency programs in utilities' energy portfolios has been on the rise since the 1980s, and their increasing importance is expected to continue in the future. Despite holding great promise, the ability to determine and invest in only the most promising program alternatives plays a key role in the successful use of energy efficiency as a utility-wide resource. This issue becomes even more significant considering the availability of a vast number of potential energy efficiency programs, the rapidly changing business environment, and the existence of multiple stakeholders. This dissertation introduces hierarchical decision modeling as the framework for energy efficiency program planning in electric utilities. The model focuses on the assessment of emerging energy efficiency programs and proposes to bridge the gap between technology screening and cost/benefit evaluation practices. This approach is expected to identify emerging technology alternatives which have the highest potential to pass cost/benefit ratio testing procedures and contribute to the effectiveness of decision practices in energy efficiency program planning. The model also incorporates rank order analysis and sensitivity analysis for testing the robustness of results from different stakeholder perspectives and future uncertainties in an attempt to enable more informed decision-making practices. The model was applied to the case of 13 high priority emerging energy efficiency program alternatives identified in the Pacific Northwest, U.S.A. The results of this study reveal that energy savings potential is the most important program management consideration in selecting emerging energy efficiency programs. Market dissemination potential and program development and implementation potential are the second and third most important, whereas ancillary benefits potential is the least important program management consideration. The results imply that program value considerations, comprised of energy savings potential and ancillary benefits potential; and program feasibility considerations, comprised of program development and implementation potential and market dissemination potential, have almost equal impacts on assessment of emerging energy efficiency programs. Considering the overwhelming number of value-focused studies and the few feasibility-focused studies in the literature, this finding clearly shows that feasibility-focused studies are greatly understudied. The hierarchical decision model developed in this dissertation is generalizable. Thus, other utilities or power systems can adopt the research steps employed in this study as guidelines and conduct similar assessment studies on emerging energy efficiency programs of their interest.
Samadi; Liebert, F
2006-11-01
In addition to dose-response studies, modeling of N utilization, depending on intake of the first limiting amino acid in the diet, is one of the tools for assessing amino acid requirements in growing animals. Based on a verified nonlinear N-utilization model and following the principles of the diet dilution technique, N-balance experiments were conducted to estimate the Thr requirement of fast-growing chickens (genotype Cobb), depending on age, sex, CP deposition. and efficiency of dietary Thr utilization. Different predictions were made for the feed intake to conclude the optimal Thr concentration in the feed. The results are based on N-balance experiments with a total of 144 male and 144 female growing chickens within 4 age periods (I: 10 to 25 d; II: 30 to 45 d; III: 50 to 65 d; IV: 70 to 85 d), using diets with graded protein supply (6.6, 13, 19.6, 25.1, 31.8, and 37.6% CP in DM) from high-protein soybean meal with a constant amino acid ratio and Thr as the first limiting amino acid (3.87 g of Thr/100 g of CP; dietary Lys:Thr = 1:0.54). The observed optimal Thr concentration (% of feed) was influenced by age, sex, level of CP deposition, dietary efficiency of Thr utilization, and predicted feed intake. For male chickens, assuming an average CP deposition (60% of the potential) and average efficiency of Thr utilization, 0.78% (10 to 25 d), 0.73% (30 to 45 d), 0.65% (50 to 65 d), and 0.55% (70 to 85 d) total dietary Thr were observed as optimal total Thr concentration in the diet (corresponding to 60, 135, 160, and 180 g of daily feed intake, respectively). Data are discussed in context with the main factors of influence like age, sex, level of daily CP deposition, efficiency of dietary Thr utilization, and predicted feed intake.
Kim, Joo Hyun; Fu, Kun; Choi, Junghyun; Kil, Kichun; Kim, Jeonghyun; Han, Xiaogang; Hu, Liangbing; Paik, Ungyu
2015-01-01
Lithium-sulfur batteries show great potential to compete with lithium-ion batteries due to the fact that sulfur can deliver a high theoretical capacity of 1672 mAh/g and a high theoretical energy density of 2500 Wh/kg. But it has several problems to be solved in order to achieve high sulfur utilization with high Coulombic efficiency and long cycle life of Li-S batteries. These problems are mainly caused by the dissoluble polysulfide species, which are a series of complex reduced sulfur products, associating with shuttle effect between electrodes as well as side reactions on lithium metal anode. To alleviate these challenges, we developed a sulfur-carbon nanotube (S/SWNT) composite coated with polyaniline (PANI) polymer as polysulfide block to achieve high sulfur utilization, high Coulombic efficiency, and long cycle life. The PANI coated S/SWNT composite showed a superior specific capacity of 1011 mAh/g over 100 cycles and a good rate retention, demonstrating the synergic contribution of porous carbon and conducting polymer protection to address challenges underlying sulfur cathode. PMID:25752298
Lignin-blocking treatment of biomass and uses thereof
Yang, Bin [Hanover, NH; Wyman, Charles E [Norwich, VT
2009-10-20
Disclosed is a method for converting cellulose in a lignocellulosic biomass. The method provides for a lignin-blocking polypeptide and/or protein treatment of high lignin solids. The treatment enhances cellulase availability in cellulose conversion. Cellulase efficiencies are improved by the protein or polypeptide treatment. The treatment may be used in combination with steam explosion and acid prehydrolysis techniques. Hydrolysis yields from lignin containing biomass are enhanced 5-20%, and enzyme utilization is increased from 10% to 50%. Thus, a more efficient and economical method of processing lignin containing biomass materials utilizes a polypeptide/protein treatment step that effectively blocks lignin binding of cellulase.
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.; Weisshaar, Andreas; Li, Jian; Beheim, Glenn
1995-01-01
To determine the feasibility of coupling the output of a single-mode optical fiber into a single-mode rib waveguide in a temperature varying environment, a theoretical calculation of the coupling efficiency between the two was investigated. Due to the complex geometry of the rib guide, there is no analytical solution to the wave equation for the guided modes, thus, approximation and/or numerical techniques must be utilized to determine the field patterns of the guide. In this study, three solution methods were used for both the fiber and guide fields; the effective-index method (EIM), Marcatili's approximation, and a Fourier method. These methods were utilized independently to calculate the electric field profile of each component at two temperatures, 20 C and 300 C, representing a nominal and high temperature. Using the electric field profile calculated from each method, the theoretical coupling efficiency between an elliptical-core optical fiber and a rib waveguide was calculated using the overlap integral and the results were compared. It was determined that a high coupling efficiency can be achieved when the two components are aligned. The coupling efficiency was more sensitive to alignment offsets in the y direction than the x, due to the elliptical modal field profile of both components. Changes in the coupling efficiency over temperature were found to be minimal.
Zhang, Zi-Hui; Huang Chen, Sung-Wen; Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Bi, Wengang; Kuo, Hao-Chung
2018-04-24
This work reports a nearly efficiency-droop-free AlGaN-based deep ultraviolet light-emitting diode (DUV LED) emitting in the peak wavelength of 270 nm. The DUV LED utilizes a specifically designed superlattice p-type electron blocking layer (p-EBL). The superlattice p-EBL enables a high hole concentration in the p-EBL which correspondingly increases the hole injection efficiency into the multiple quantum wells (MQWs). The enhanced hole concentration within the MQW region can more efficiently recombine with electrons in the way of favoring the radiative recombination, leading to a reduced electron leakage current level. As a result, the external quantum efficiency for the proposed DUV LED structure is increased by 100% and the nearly efficiency-droop-free DUV LED structure is obtained experimentally.
NASA Astrophysics Data System (ADS)
Zhang, Zi-Hui; Huang Chen, Sung-Wen; Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Bi, Wengang; Kuo, Hao-Chung
2018-04-01
This work reports a nearly efficiency-droop-free AlGaN-based deep ultraviolet light-emitting diode (DUV LED) emitting in the peak wavelength of 270 nm. The DUV LED utilizes a specifically designed superlattice p-type electron blocking layer (p-EBL). The superlattice p-EBL enables a high hole concentration in the p-EBL which correspondingly increases the hole injection efficiency into the multiple quantum wells (MQWs). The enhanced hole concentration within the MQW region can more efficiently recombine with electrons in the way of favoring the radiative recombination, leading to a reduced electron leakage current level. As a result, the external quantum efficiency for the proposed DUV LED structure is increased by 100% and the nearly efficiency-droop-free DUV LED structure is obtained experimentally.
Network bandwidth utilization forecast model on high bandwidth networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Wuchert; Sim, Alex
With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology,more » our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.« less
Network Bandwidth Utilization Forecast Model on High Bandwidth Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Wucherl; Sim, Alex
With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology,more » our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.« less
NASA Astrophysics Data System (ADS)
Matsushita, Daisuke; Okuma, Kusuo; Watanabe, Satoshi; Furukawa, Akinori
A ducted Darrieus-type hydro turbine has been proposed for extra-low head hydropower utilization of total head less than 2m, where development is almost not done in the commercial base. Though the efficiency of Darrieus-type turbine, which is cross flow type, is not so high as conventional type, the Darrieus-type has a cost-advantage due to the simple structure. By installing a narrow intake at upstream of the runner, the efficiency becomes higher than normal intake that a width of which is the same as one of runner section. In the case of normal intake, the casing clearance between the runner pitch circle and the side-wall at the runner section becomes the influential factor which deteriorates the efficiency. On the other hand, in the case of narrow intake, it is possible to keep efficiency high, based on the fact that the distorting flow to the clearance is prevented. In the present paper, the effects of narrow intake and draft tube on turbine performance are experimentally examined and the design guideline of simplified structure for ducted Darrieus-type turbine with narrow intake is proposed.
High efficiency endocrine operation protocol: From design to implementation.
Mascarella, Marco A; Lahrichi, Nadia; Cloutier, Fabienne; Kleiman, Simcha; Payne, Richard J; Rosenberg, Lawrence
2016-10-01
We developed a high efficiency endocrine operative protocol based on a mathematical programming approach, process reengineering, and value-stream mapping to increase the number of operations completed per day without increasing operating room time at a tertiary-care, academic center. Using this protocol, a case-control study of 72 patients undergoing endocrine operation during high efficiency days were age, sex, and procedure-matched to 72 patients undergoing operation during standard days. The demographic profile, operative times, and perioperative complications were noted. The average number of cases per 8-hour workday in the high efficiency and standard operating rooms were 7 and 5, respectively. Mean procedure times in both groups were similar. The turnaround time (mean ± standard deviation) in the high efficiency group was 8.5 (±2.7) minutes as compared with 15.4 (±4.9) minutes in the standard group (P < .001). Transient postoperative hypocalcemia was 6.9% (5/72) and 8.3% (6/72) for the high efficiency and standard groups, respectively (P = .99). In this study, patients undergoing high efficiency endocrine operation had similar procedure times and perioperative complications compared with the standard group. The proposed high efficiency protocol seems to better utilize operative time and decrease the backlog of patients waiting for endocrine operation in a country with a universal national health care program. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Letendre, Steven Emery
The U.S. electric utility sector in its current configuration is unsustainable. The majority of electricity in the United States is produced using finite fossil fuels. In addition, significant potential exists to improve the nation's efficient use of energy. A sustainable electric utility sector will be characterized by increased use of renewable energy sources and high levels of end-use efficiency. This dissertation analyzes two alternative policy approaches designed to move the U.S. electric utility sector toward sustainability. One approach is labeled incremental which involves maintaining the centralized structure of the electric utility sector but facilitating the introduction of renewable energy and efficiency into the electrical system through the pricing mechanism. A second policy approach was described in which structural changes are encouraged based on the emerging distributed utility (DU) concept. A structural policy orientation attempts to capture the unique localized benefits that distributed renewable resources and energy efficiency offer to electric utility companies and their customers. A market penetration analysis of PV in centralized energy supply and distributed peak-shaving applications is conducted for a case-study electric utility company. Sensitivity analysis was performed based on incremental and structural policy orientations. The analysis provides compelling evidence which suggests that policies designed to bring about structural change in the electric utility sector are needed to move the industry toward sustainability. Specifically, the analysis demonstrates that PV technology, a key renewable energy option likely to play an important role in a renewable energy future, will begin to penetrate the electrical system in distributed peak-shaving applications long before the technology is introduced as a centralized energy supply option. Most policies to date, which I term incremental, attempt to encourage energy efficiency and renewables through the pricing system. Based on past policy experience, it is unlikely that such an approach would allow PV to compete in Delaware as an energy supply option in the next ten to twenty years. Alternatively, a market-based, or green pricing, approach will not create significant market opportunities for PV as a centralized energy supply option. However, structural policies designed to encourage the explicit recognition of the localized benefits of distributed resources could result in PV being introduced into the electrical system early in the next century.
Sun, Xiankai; Yariv, Amnon
2008-06-09
We have developed a theory that unifies the analysis of the modal properties of surface-emitting chirped circular grating lasers. This theory is based on solving the resonance conditions which involve two types of reflectivities of chirped circular gratings. This approach is shown to be in agreement with previous derivations which use the characteristic equations. Utilizing this unified analysis, we obtain the modal properties of circular DFB, disk-, and ring- Bragg resonator lasers. We also compare the threshold gain, single mode range, quality factor, emission efficiency, and modal area of these types of circular grating lasers. It is demonstrated that, under similar conditions, disk Bragg resonator lasers have the highest quality factor, the highest emission efficiency, and the smallest modal area, indicating their suitability in low-threshold, high-efficiency, ultracompact laser design, while ring Bragg resonator lasers have a large single mode range, high emission efficiency, and large modal area, indicating their suitability for high-efficiency, large-area, high-power applications.
Kruse, Lyle W.
1985-01-01
A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.
Kruse, L.W.
1982-03-23
A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.
Neutron-Encoded Protein Quantification by Peptide Carbamylation
NASA Astrophysics Data System (ADS)
Ulbrich, Arne; Merrill, Anna E.; Hebert, Alexander S.; Westphall, Michael S.; Keller, Mark P.; Attie, Alan D.; Coon, Joshua J.
2014-01-01
We describe a chemical tag for duplex proteome quantification using neutron encoding (NeuCode). The method utilizes the straightforward, efficient, and inexpensive carbamylation reaction. We demonstrate the utility of NeuCode carbamylation by accurately measuring quantitative ratios from tagged yeast lysates mixed in known ratios and by applying this method to quantify differential protein expression in mice fed a either control or high-fat diet.
An Incremental High-Utility Mining Algorithm with Transaction Insertion
Gan, Wensheng; Zhang, Binbin
2015-01-01
Association-rule mining is commonly used to discover useful and meaningful patterns from a very large database. It only considers the occurrence frequencies of items to reveal the relationships among itemsets. Traditional association-rule mining is, however, not suitable in real-world applications since the purchased items from a customer may have various factors, such as profit or quantity. High-utility mining was designed to solve the limitations of association-rule mining by considering both the quantity and profit measures. Most algorithms of high-utility mining are designed to handle the static database. Fewer researches handle the dynamic high-utility mining with transaction insertion, thus requiring the computations of database rescan and combination explosion of pattern-growth mechanism. In this paper, an efficient incremental algorithm with transaction insertion is designed to reduce computations without candidate generation based on the utility-list structures. The enumeration tree and the relationships between 2-itemsets are also adopted in the proposed algorithm to speed up the computations. Several experiments are conducted to show the performance of the proposed algorithm in terms of runtime, memory consumption, and number of generated patterns. PMID:25811038
Activities of the Institute of Chemical Processing of Coal at Zabrze
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreszer, K.
1995-12-31
The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products;more » production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.« less
High-Resolution and -Efficiency Gamma-Ray Detection for the FRIB Decay Station
NASA Astrophysics Data System (ADS)
Grover, Hannah; Leach, Kyle; Natzke, Connor; FRIB Decay Station Collaboration Collaboration
2017-09-01
As we push our knowledge of nuclear structure to the frontier of the unknown with FRIB, a new high-efficiency, -resolution, and -sensitivity photon-detection device is critical. The FRIB Decay Station Collaboration is working to create a new detector array that meets the needs of the exploratory nature of FRIB by minimizing cost and maximizing efficiency. GEANT4 simulations are being utilized to combine detectors in various configurations to test their feasibility. I will discuss these simulations and how they compare to existing simulations of past-generation decay-spectroscopy equipment. This work has been funded by the DOE Office of Science, Office of Nuclear Physics.
Zhao, Wenchao; Ye, Long; Zhang, Shaoqing; Fan, Bin; Sun, Mingliang; Hou, Jianhui
2014-01-01
Interfacial buffer layers often attribute the improved device performance in organic optoelectronic device. Herein, a water-soluble hydrochloric acid doped polyanilines (HAPAN) were utilized as p-type electrode buffer layer in highly efficient polymer solar cells (PSC) based on PBDTTT-EFT and several representative polymers. The PBDTTT-EFT-based conventional PSC featuring ultrathin HAPAN (1.3 nm) delivered high PCE approximately 9%, which is one of the highest values among conventional PSC devices. Moreover, ultrathin HAPAN also exhibited wide applicability in a variety of efficient photovoltaic polymers including PBDTTT-C-T, PTB7, PBDTBDD, PBTTDPP-T, PDPP3T and P3HT. The excellent performances were originated from the high transparency, small film roughness and suitable work function. PMID:25300365
Invited article: Broadband highly-efficient dielectric metadevices for polarization control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruk, Sergey; Hopkins, Ben; Kravchenko, Ivan I.
Metadevices based on dielectric nanostructured surfaces with both electric and magnetic Mie-type resonances have resulted in the best efficiency to date for functional flat optics with only one disadvantage: a narrow operational bandwidth. Here we experimentally demonstrate broadband transparent all-dielectric metasurfaces for highly efficient polarization manipulation. We utilize the generalized Huygens principle, with a superposition of the scattering contributions from several electric and magnetic multipolar modes of the constituent meta-atoms, to achieve destructive interference in reflection over a large spectral bandwidth. Furthermore, by employing this novel concept, we demonstrate reflectionless (~90% transmission) half-wave plates, quarter-wave plates, and vector beam q-platesmore » that can operate across multiple telecom bands with ~99% polarization conversion efficiency.« less
Invited article: Broadband highly-efficient dielectric metadevices for polarization control
Kruk, Sergey; Hopkins, Ben; Kravchenko, Ivan I.; ...
2016-06-06
Metadevices based on dielectric nanostructured surfaces with both electric and magnetic Mie-type resonances have resulted in the best efficiency to date for functional flat optics with only one disadvantage: a narrow operational bandwidth. Here we experimentally demonstrate broadband transparent all-dielectric metasurfaces for highly efficient polarization manipulation. We utilize the generalized Huygens principle, with a superposition of the scattering contributions from several electric and magnetic multipolar modes of the constituent meta-atoms, to achieve destructive interference in reflection over a large spectral bandwidth. Furthermore, by employing this novel concept, we demonstrate reflectionless (~90% transmission) half-wave plates, quarter-wave plates, and vector beam q-platesmore » that can operate across multiple telecom bands with ~99% polarization conversion efficiency.« less
Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Stonehart, P.; Baris, J.; Hochmuth, J.; Pagliaro, P.
1981-01-01
Two cooperative phenomena are required the development of highly efficient porous electrocatalysts: (1) is an increase in the electrocatalytic activity of the catalyst particle; and (2) is the availability of that electrocatalyst particle for the electromechanical reaction. The two processes interact with each other so that improvements in the electrochemical activity must be coupled with improvements in the availability of the electrocatalyst for reaction. Cost effective and highly reactive electrocatalysts were developed. The utilization of the electrocatalyst particles in the porous electrode structures was analyzed. It is shown that a large percentage of the electrocatalyst in anode structures is not utilized. This low utilization translates directly into a noble metal cost penalty for the fuel cell.
Energy efficient fluorescent ballasts. Phase I, final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens Luminoptics Corporation
1978-06-21
The development of a high-frequency electronic (Stevens) ballast for fluorescent lamps is described. It is claimed that use of this ballast could reduce use energy consumption by 1.2 to 2.5 percent. The Stevens ballast has a basic efficiency of 29 percent when used with conventional lamps. With the more efficient lamps, the efficiency increases drastically. The conventional ballast and lamp has an efficiacy of approximately 60 to 63 lumens per watt (LPW). With the Stevens ballast the efficiacy raises to between 75 and 80 lumens per watt. When the Stevens ballast is utilized with the newer high efficiency lamps themore » efficiacy increases to 90 to 95 lumens per watt or a full 51 percent improvement over conventional coil and core ballasts and 25 percent over the best high efficiency premium coil and core ballasts. In addition to its energy savings capabilities, this high frequency fluorescent lamp ballast has the advantages that it is a true retrofit device that is directly interchangeable with the conventional coil core ballast, and it is dimmable over a wide and continuous range. (LCLC)« less
Wang, Xiao-yu; Yang, Xiao-guang; Sun, Shuang; Xie, Wen-juan
2015-10-01
Based on the daily data of 65 meteorological stations from 1961 to 2010 and the crop phenology data in the potential cultivation zones of thermophilic and chimonophilous crops in Northeast China, the crop potential yields were calculated through step-by-step correction method. The spatio-temporal distribution of the crop potential yields at different levels was analyzed. And then we quantified the limitations of temperature and precipitation on the crop potential yields and compared the differences in the climatic resource utilization efficiency. The results showed that the thermal potential yields of six crops (including maize, rice, spring wheat, sorghum, millet and soybean) during the period 1961-2010 deceased from west to east. The climatic potential yields of the five crops (spring wheat not included) were higher in the south than in the north. The potential yield loss rate due to temperature limitations of the six crops presented a spatial distribution pattern and was higher in the east than in the west. Among the six main crops, the yield potential loss rate due to temperature limitation of the soybean was the highest (51%), and those of the other crops fluctuated within the range of 33%-41%. The potential yield loss rate due to water limitation had an obvious regional difference, and was high in Songnen Plain and Changbai Mountains. The potential yield loss rate of spring wheat was the highest (50%), and those of the other four rainfed crops fluctuated within the range of 8%-10%. The solar energy utilization efficiency of the six main crops ranged from 0.9% to 2.7%, in the order of maize> sorghum>rice>millet>spring wheat>soybean. The precipitation utilization efficiency of the maize, sorghum, spring wheat, millet and soybean under rainfed conditions ranged from 8 to 35 kg . hm-2 . mm-1, in the order of maize>sorghum>spring wheat>millet>soybean. In those areas with lower efficiency of solar energy utilization and precipitation utilization, such as Changbai Mountains and the south of Lesser Khingan Mountains, measures could be taken to increase the efficiency of resource utilization such as rational close-planting, selection of droughtresistant varieties, proper and timely fertilization, farming for soil water storage, optimization of crop layout and so on.
[Invert transformer design for high frequency X-ray machine based on PWM controller SG 3525].
Yu, Xue-fei; Li, Zhe
2005-07-01
This paper introduces the principle of invert transformer of high frequency X-ray machine, and analyzes its main constitution. Meanwhile, a scheme based on SG3525 for closed loop voltage regulation is given. The experimental result testifies its efficiency and utility.
Low-Capital Systems for Thinning Pine Plantations
John Wilhoit; Qingyue Ling; Robert Rummer
1999-01-01
Highly mechanized systems utilizing rubber-tired skidders, feller-bunchers, and knuckleboom loaders are the predominant type of timber harvesting operation in the southern United States. These systems, which handle the wood in tree-length form, are highly productive and very efficient, especially for large tracts of timber. Thinnings constitute an increasing proportion...
Tenderization of beef loins using a high efficiency sparker
USDA-ARS?s Scientific Manuscript database
The objective of this study was to determine the effectiveness of tenderizing beef strip loins using high-pressure shockwaves generated from a sparker source. A total of 117 steaks from 16 beef strip loins were utilized with each treated steak having an adjacent steak as a non-treated control. Ste...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbose, Galen; Goldman, Charles; Hoffman, Ian
2012-09-11
We develop projections of future spending on, and savings from, energy efficiency programs funded by electric and gas utility customers in the United States, under three scenarios through 2025. Our analysis, which updates a previous LBNL study, relies on detailed bottom-up modeling of current state energy efficiency policies, regulatory decisions, and demand-side management and utility resource plans. The three scenarios are intended to represent a range of potential outcomes under the current policy environment (i.e., without considering possible major new policy developments). By 2025, spending on electric and gas efficiency programs (excluding load management programs) is projected to double frommore » 2010 levels to $9.5 billion in the medium case, compared to $15.6 billion in the high case and $6.5 billion in the low case. Compliance with statewide legislative or regulatory savings or spending targets is the primary driver for the increase in electric program spending through 2025, though a significant share of the increase is also driven by utility DSM planning activity and integrated resource planning. Our analysis suggests that electric efficiency program spending may approach a more even geographic distribution over time in terms of absolute dollars spent, with the Northeastern and Western states declining from over 70% of total U.S. spending in 2010 to slightly more than 50% in 2025, with the South and Midwest splitting the remainder roughly evenly. Under our medium case scenario, annual incremental savings from customer-funded electric energy efficiency programs increase from 18.4 TWh in 2010 in the U.S. (which is about 0.5% of electric utility retail sales) to 28.8 TWh in 2025 (0.8% of retail sales). These savings would offset the majority of load growth in the Energy Information Administration’s most recent reference case forecast, given specific assumptions about the extent to which future energy efficiency program savings are captured in that forecast. However, the pathway that customer-funded efficiency programs ultimately take will depend on a series of key challenges and uncertainties associated both with the broader market and policy context and with the implementation and regulatory oversight of the energy efficiency programs themselves.« less
Systems Simulation of NASA Shooting Star Experiment Using Matlab/Simulink
NASA Technical Reports Server (NTRS)
Reagan, Shawn
1997-01-01
The Shooting Star Experiment (SSE) is an experiment that incorporates advance propulsion technology. This project is being managed by the Marshall Space Flight Center, Huntsville, Alabama. Whenever spacecraft are launched from Low Earth Orbit (LEO), (typically 150 nautical miles) they are powered by a upper propulsive stage utilizing either a solid or liquid propellant engine. A typically mission for a spacecraft utilizing an upper stage would be a transfer from LEO to a Geostationary Orbit (GEO) or an interplanetary mission. These upper stages are heavy and bulky because they must carry propellants to provide sufficient energy to perform the mission. The SSE utilizes the energy of the Sun by focusing this energy by means of a Frensel lens into an engine where hydrogen (or nitrogen) gas is injected. The focusing of the solar energy heats the engine to very high temperatures. When the gas is injected into the hot engine, the gas is expelled at very high velocities. This process is extremely efficient. Because of the efficiency of the SSE type engine, more payload can be carried for a typical mission since the propulsive element is much smaller.
NASA Astrophysics Data System (ADS)
Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo
2013-11-01
This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.
Communicate or pay the price of silence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derry, F.E.
The electric utility industry's efforts to communicate with its customers through advertising, while highly criticized by consumer interest and other groups, is an important link in providing information that is in the public interest and which the industry has the right and obligation to provide. Advertising represents an efficient and economical way to share information and increase public understanding of the factors affecting utility reliability and cost. Surveys of utility customers show that they want an accounting of what the utility does with its money and consider advertising an appropriate vehicle. By pinpointing cost-related issues, advertising also helps to marketmore » programs that will reduce utility costs, such as off-peak energy use.« less
Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel; Wang, Z. J.
2004-01-01
A new, high-order, conservative, and efficient method for conservation laws on unstructured grids is developed. The concept of discontinuous and high-order local representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) and the Spectral Volume (SV) methods, but while these methods are based on the integrated forms of the equations, the new method is based on the differential form to attain a simpler formulation and higher efficiency. A discussion on the Discontinuous Spectral Difference (SD) Method, locations of the unknowns and flux points and numerical results are also presented.
Innovative solar thermochemical water splitting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.
2008-02-01
Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximitymore » and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.« less
NASA Astrophysics Data System (ADS)
Zhang, Wenzhi; Jin, Jiangjiang; Huang, Zhi; Zhuang, Shaoqing; Wang, Lei
2016-07-01
Thermally activated delayed fluorescence (TADF) mechanism is a significant method that enables the harvesting of both triplet and singlet excitons for emission. However, up to now most efforts have been devoted to dealing with the relation between singlet-triplet splitting (ΔEST) and fluorescence efficiency, while the significance of spin-orbit coupling (SOC) is usually ignored. In this contribution, a new method is developed to realize high-efficiency TADF-based devices through simple device-structure optimizations. By inserting an ultrathin external heavy-atom (EHA) perturber layer in a desired manner, it provides useful means of accelerating the T1 → S1 reverse intersystem crossing (RISC) in TADF molecules without affecting the corresponding S1 → T1 process heavily. Furthermore, this strategy also promotes the utilization of host triplets through Förster mechanism during host → guest energy transfer (ET) processes, which helps to get rid of the solely dependence upon Dexter mechanism. Based on this strategy, we have successfully raised the external quantum efficiency (EQE) in 4CzPN-based devices by nearly 38% in comparison to control devices. These findings provide keen insights into the role of EHA played in TADF-based devices, offering valuable guidelines for utilizing certain TADF dyes which possess high radiative transition rate but relatively inefficient RISC.
Bioleaching of multiple heavy metals from contaminated sediment by mesophile consortium.
Gan, Min; Zhou, Shuang; Li, Mingming; Zhu, Jianyu; Liu, Xinxing; Chai, Liyuan
2015-04-01
A defined mesophile consortium including Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirilum ferriphilum was applied in bioleaching sediments contaminated with multiple heavy metals. Flask experiments showed that sulfur favored the acidification in the early stage while pyrite led to a great acidification potential in the later stage. An equal sulfur/pyrite ratio got the best acidification effect. Substrate utilization started with sulfur in the early stage, and then the pH decline and the community shift give rise to the utilization of pyrite. Solubilization efficiency of Zn, Cu, Mn, and Cd reached 96.1, 93.3, 92.13, and 87.65%, respectively. Bioleaching efficiency of other elements (As, Hg, Pb) was not more than 30%. Heavy metal solubilization was highly negatively correlated with pH variation. Logistic models were well fitted with the solubilization efficiency, which can be used to predict the bioleaching process. The dominant species in the early stage of bioleaching were A. ferrooxidans and A. thiooxidans, and the abundance of L. ferriphilum increased together with pyrite utilization and pH decline.
NASA Astrophysics Data System (ADS)
Yu, Dezhao; Qiu, Huadong; Yuan, Xiang; Li, Yuan; Shao, Changzheng; Lin, You; Ding, Yi
2017-01-01
Among the renewable energies, wind energy has gained the rapidest development in China. Moreover wind power generation has been penetrated into power system in a large scale. However, the high level wind curtailment also indicates a low efficiency of wind energy utilization over the last decade in China. One of the primary constraints on the utilization of wind energy is the lack of an electricity market, in which renewable energies can compete equally with traditional fossil fuel generation. Thus the new round electric power industry reform is essential in China. The reform involves implementing new pricing mechanism, introducing retail-side competition, promoting the consumption of renewable energy. The new round reform can be a promising solution for promoting the development and consumption of wind energy generation in China. Based on proposed reform policies of electric power industry, this paper suggests a roadmap for retail electricity market reform of China, which consists of three stages. Barriers to the efficient utilization of wind energy are also analysed. Finally, this paper introduces several efficient measures for mitigating wind curtailment in each stage of reform.
Pirbhulal, Sandeep; Zhang, Heye; Mukhopadhyay, Subhas Chandra; Li, Chunyue; Wang, Yumei; Li, Guanglin; Wu, Wanqing; Zhang, Yuan-Ting
2015-01-01
Body Sensor Network (BSN) is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG), Photoplethysmography (PPG), Electrocardiogram (ECG), etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV) for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA), Data Encryption Standard (DES) and Rivest Shamir Adleman (RSA). Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption. PMID:26131666
Pirbhulal, Sandeep; Zhang, Heye; Mukhopadhyay, Subhas Chandra; Li, Chunyue; Wang, Yumei; Li, Guanglin; Wu, Wanqing; Zhang, Yuan-Ting
2015-06-26
Body Sensor Network (BSN) is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG), Photoplethysmography (PPG), Electrocardiogram (ECG), etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV) for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA), Data Encryption Standard (DES) and Rivest Shamir Adleman (RSA). Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption.
Polychiral semiconducting carbon nanotube-fullerene solar cells.
Gong, Maogang; Shastry, Tejas A; Xie, Yu; Bernardi, Marco; Jasion, Daniel; Luck, Kyle A; Marks, Tobin J; Grossman, Jeffrey C; Ren, Shenqiang; Hersam, Mark C
2014-09-10
Single-walled carbon nanotubes (SWCNTs) have highly desirable attributes for solution-processable thin-film photovoltaics (TFPVs), such as broadband absorption, high carrier mobility, and environmental stability. However, previous TFPVs incorporating photoactive SWCNTs have utilized architectures that have limited current, voltage, and ultimately power conversion efficiency (PCE). Here, we report a solar cell geometry that maximizes photocurrent using polychiral SWCNTs while retaining high photovoltage, leading to record-high efficiency SWCNT-fullerene solar cells with average NREL certified and champion PCEs of 2.5% and 3.1%, respectively. Moreover, these cells show significant absorption in the near-infrared portion of the solar spectrum that is currently inaccessible by many leading TFPV technologies.
Cheruvallath, Zacharia S; Kumar, R Krishna; Rentel, Claus; Cole, Douglas L; Ravikumar, Vasulinga T
2003-04-01
Diethyldithiodicarbonate (DDD), a cheap and easily prepared compound, is found to be a rapid and efficient sulfurizing reagent in solid phase synthesis of phosphorothioate oligodeoxyribonucleotides via the phosphoramidite approach. Product yield and quality based on IP-LC-MS compares well with high quality oligonucleotides synthesized using phenylacetyl disulfide (PADS) which is being used for manufacture of our antisense drugs.
2017-10-01
phosphorus inputs in a variety of agricultural and urban settings. However, maximizing the efficiency and benefits of wetlands for phosphorus reduction...39 Appendix B: Citations Related To P In Agricultural Landscapes...priority areas exhibiting high P export rates associated with agricultural and other land use practices (Figure 2). The GLRI Action Plan recommended
[Economic efficiency of computer monitoring of health].
Il'icheva, N P; Stazhadze, L L
2001-01-01
Presents the method of computer monitoring of health, based on utilization of modern information technologies in public health. The method helps organize preventive activities of an outpatient clinic at a high level and essentially decrease the time and money loss. Efficiency of such preventive measures, increased number of computer and Internet users suggests that such methods are promising and further studies in this field are needed.
Lee, Seung Hee; Singh, Dhruv Pratap; Sung, Ji Ho; Jo, Moon-Ho; Kwon, Ki Chang; Kim, Soo Young; Jang, Ho Won; Kim, Jong Kyu
2016-01-22
A highly efficient circularly-polarized-light detector with excellent wavelength selectivity is demonstrated with an elegant and simple microelectronics-compatible way. The circularly-polarized-light detector based on a proper combination of the geometry-controlled TiO2-SnO2 hetero-chiral thin film as an effective chiroptical filter and the Si active layer shows excellent chiroptical response with external quantum efficiency as high as 30% and high helicity selectivity of ~15.8% in an intended wavelength range. Furthermore, we demonstrated the ability of manipulating both bandwidth and responsivity of the detector simultaneously in whole visible wavelength range by a precise control over the geometry and materials constituting hetero-chiral thin film. The high efficiency, wavelength selectivity and compatibility with conventional microelectronics processes enabled by the proposed device can result in remarkable developments in highly integrated photonic platforms utilizing chiroptical responses.
Lee, Seung Hee; Singh, Dhruv Pratap; Sung, Ji Ho; Jo, Moon-Ho; Kwon, Ki Chang; Kim, Soo Young; Jang, Ho Won; Kim, Jong Kyu
2016-01-01
A highly efficient circularly-polarized-light detector with excellent wavelength selectivity is demonstrated with an elegant and simple microelectronics-compatible way. The circularly-polarized-light detector based on a proper combination of the geometry-controlled TiO2-SnO2 hetero-chiral thin film as an effective chiroptical filter and the Si active layer shows excellent chiroptical response with external quantum efficiency as high as 30% and high helicity selectivity of ~15.8% in an intended wavelength range. Furthermore, we demonstrated the ability of manipulating both bandwidth and responsivity of the detector simultaneously in whole visible wavelength range by a precise control over the geometry and materials constituting hetero-chiral thin film. The high efficiency, wavelength selectivity and compatibility with conventional microelectronics processes enabled by the proposed device can result in remarkable developments in highly integrated photonic platforms utilizing chiroptical responses. PMID:26795601
NASA Astrophysics Data System (ADS)
Lee, Seung Hee; Singh, Dhruv Pratap; Sung, Ji Ho; Jo, Moon-Ho; Kwon, Ki Chang; Kim, Soo Young; Jang, Ho Won; Kim, Jong Kyu
2016-01-01
A highly efficient circularly-polarized-light detector with excellent wavelength selectivity is demonstrated with an elegant and simple microelectronics-compatible way. The circularly-polarized-light detector based on a proper combination of the geometry-controlled TiO2-SnO2 hetero-chiral thin film as an effective chiroptical filter and the Si active layer shows excellent chiroptical response with external quantum efficiency as high as 30% and high helicity selectivity of ~15.8% in an intended wavelength range. Furthermore, we demonstrated the ability of manipulating both bandwidth and responsivity of the detector simultaneously in whole visible wavelength range by a precise control over the geometry and materials constituting hetero-chiral thin film. The high efficiency, wavelength selectivity and compatibility with conventional microelectronics processes enabled by the proposed device can result in remarkable developments in highly integrated photonic platforms utilizing chiroptical responses.
Straub, Anthony P; Elimelech, Menachem
2017-11-07
Low-grade heat energy from sources below 100 °C is available in massive quantities around the world, but cannot be converted to electricity effectively using existing technologies due to variability in the heat output and the small temperature difference between the source and environment. The recently developed thermo-osmotic energy conversion (TOEC) process has the potential to harvest energy from low-grade heat sources by using a temperature difference to create a pressurized liquid flux across a membrane, which can be converted to mechanical work via a turbine. In this study, we perform the first analysis of energy efficiency and the expected performance of the TOEC technology, focusing on systems utilizing hydrophobic porous vapor-gap membranes and water as a working fluid. We begin by developing a framework to analyze realistic mass and heat transport in the process, probing the impact of various membrane parameters and system operating conditions. Our analysis reveals that an optimized system can achieve heat-to-electricity energy conversion efficiencies up to 4.1% (34% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and an operating pressure of 5 MPa (50 bar). Lower energy efficiencies, however, will occur in systems operating with high power densities (>5 W/m 2 ) and with finite-sized heat exchangers. We identify that the most important membrane properties for achieving high performance are an asymmetric pore structure, high pressure resistance, a high porosity, and a thickness of 30 to 100 μm. We also quantify the benefits in performance from utilizing deaerated water streams, strong hydrodynamic mixing in the membrane module, and high heat exchanger efficiencies. Overall, our study demonstrates the promise of full-scale TOEC systems to extract energy from low-grade heat and identifies key factors for performance optimization moving forward.
NASA Astrophysics Data System (ADS)
Shaat, Musbah; Bader, Faouzi
2010-12-01
Cognitive Radio (CR) systems have been proposed to increase the spectrum utilization by opportunistically access the unused spectrum. Multicarrier communication systems are promising candidates for CR systems. Due to its high spectral efficiency, filter bank multicarrier (FBMC) can be considered as an alternative to conventional orthogonal frequency division multiplexing (OFDM) for transmission over the CR networks. This paper addresses the problem of resource allocation in multicarrier-based CR networks. The objective is to maximize the downlink capacity of the network under both total power and interference introduced to the primary users (PUs) constraints. The optimal solution has high computational complexity which makes it unsuitable for practical applications and hence a low complexity suboptimal solution is proposed. The proposed algorithm utilizes the spectrum holes in PUs bands as well as active PU bands. The performance of the proposed algorithm is investigated for OFDM and FBMC based CR systems. Simulation results illustrate that the proposed resource allocation algorithm with low computational complexity achieves near optimal performance and proves the efficiency of using FBMC in CR context.
Superenhancers: novel opportunities for nanowire optoelectronics.
Khudiyev, Tural; Bayindir, Mehmet
2014-12-16
Nanowires play a crucial role in the development of new generation optoelectronic devices ranging from photovoltaics to photodetectors, as these designs capitalize on the low material usage, utilize leaky-mode optical resonances and possess high conversion efficiencies associated with nanowire geometry. However, their current schemes lack sufficient absorption capacity demanded for their practical applicability, and more efficient materials cannot find widespread usage in these designs due to their rarity and cost. Here we suggest a novel and versatile nanoconcentrator scheme utilizing unique optical features of non-resonant Mie (NRM) scattering regime associated with low-index structures. The scattering regime is highly compatible with resonant Mie absorption effect taking place in nanowire absorbers. This technique in its optimized forms can provide up to 1500% total absorption enhancement, 400-fold material save and is suitable for large-area applications with significant area preservation compared to thin-film of same materials. Proposed superenhancer concept with its exceptional features such as broadband absorption enhancement, polarization immunity and material-independent manner paves the way for development of efficient nanowire photosensors or solar thermophotovoltaic devices and presents novel design opportunities for self-powered nanosystems.
NASA Astrophysics Data System (ADS)
Valasek, Lukas; Glasa, Jan
2017-12-01
Current fire simulation systems are capable to utilize advantages of high-performance computer (HPC) platforms available and to model fires efficiently in parallel. In this paper, efficiency of a corridor fire simulation on a HPC computer cluster is discussed. The parallel MPI version of Fire Dynamics Simulator is used for testing efficiency of selected strategies of allocation of computational resources of the cluster using a greater number of computational cores. Simulation results indicate that if the number of cores used is not equal to a multiple of the total number of cluster node cores there are allocation strategies which provide more efficient calculations.
NASA Astrophysics Data System (ADS)
Guo, Jianping; Zhao, Junfang; Xu, Yanhong; Chu, Zheng; Mu, Jia; Zhao, Qian
Quantitatively evaluating the effects of adjusting cropping systems on the utilization efficiency of climatic resources under climate change is an important task for assessing food security in China. To understand these effects, we used daily climate variables obtained from the regional climate model RegCM3 from 1981 to 2100 under the A1B scenario and crop observations from 53 agro-meteorological experimental stations from 1981 to 2010 in Northeast China. Three one-grade zones of cropping systems were divided by heat, water, topography and crop-type, including the semi-arid areas of the northeast and northwest (III), the one crop area of warm-cool plants in semi-humid plain or hilly regions of the northeast (IV), and the two crop area in irrigated farmland in the Huanghuaihai Plain (VI). An agro-ecological zone model was used to calculate climatic potential productivities. The effects of adjusting cropping systems on climate resource utilization in Northeast China under the A1B scenario were assessed. The results indicated that from 1981 to 2100 in the III, IV and VI areas, the planting boundaries of different cropping systems in Northeast China obviously shifted toward the north and the east based on comprehensively considering the heat and precipitation resources. However, due to high temperature stress, the climatic potential productivity of spring maize was reduced in the future. Therefore, adjusting the cropping system is an effective way to improve the climatic potential productivity and climate resource utilization. Replacing the one crop in one year model (spring maize) by the two crops in one year model (winter wheat and summer maize) significantly increased the total climatic potential productivity and average utilization efficiencies. During the periods of 2011-2040, 2041-2070 and 2071-2100, the average total climatic potential productivities of winter wheat and summer maize increased by 9.36%, 11.88% and 12.13% compared to that of spring maize, respectively. Additionally, compared with spring maize, the average utilization efficiencies of thermal resources of winter wheat and summer maize dramatically increased by 9.2%, 12.1% and 12.0%, respectively. The increases in the average utilization efficiencies of precipitation resources of winter wheat and summer maize were 1.78 kg hm-2 mm-1, 2.07 kg hm-2 mm-1 and 1.92 kg hm-2 mm-1 during 2011-2040, 2041-2070 and 2071-2100, respectively. Our findings highlight that adjusting cropping systems can dominantly contribute to utilization efficiency increases of agricultural climatic resources in Northeast China in the future.
Computational efficiency for the surface renewal method
NASA Astrophysics Data System (ADS)
Kelley, Jason; Higgins, Chad
2018-04-01
Measuring surface fluxes using the surface renewal (SR) method requires programmatic algorithms for tabulation, algebraic calculation, and data quality control. A number of different methods have been published describing automated calibration of SR parameters. Because the SR method utilizes high-frequency (10 Hz+) measurements, some steps in the flux calculation are computationally expensive, especially when automating SR to perform many iterations of these calculations. Several new algorithms were written that perform the required calculations more efficiently and rapidly, and that tested for sensitivity to length of flux averaging period, ability to measure over a large range of lag timescales, and overall computational efficiency. These algorithms utilize signal processing techniques and algebraic simplifications that demonstrate simple modifications that dramatically improve computational efficiency. The results here complement efforts by other authors to standardize a robust and accurate computational SR method. Increased speed of computation time grants flexibility to implementing the SR method, opening new avenues for SR to be used in research, for applied monitoring, and in novel field deployments.
Distance-Based and Low Energy Adaptive Clustering Protocol for Wireless Sensor Networks
Gani, Abdullah; Anisi, Mohammad Hossein; Ab Hamid, Siti Hafizah; Akhunzada, Adnan; Khan, Muhammad Khurram
2016-01-01
A wireless sensor network (WSN) comprises small sensor nodes with limited energy capabilities. The power constraints of WSNs necessitate efficient energy utilization to extend the overall network lifetime of these networks. We propose a distance-based and low-energy adaptive clustering (DISCPLN) protocol to streamline the green issue of efficient energy utilization in WSNs. We also enhance our proposed protocol into the multi-hop-DISCPLN protocol to increase the lifetime of the network in terms of high throughput with minimum delay time and packet loss. We also propose the mobile-DISCPLN protocol to maintain the stability of the network. The modelling and comparison of these protocols with their corresponding benchmarks exhibit promising results. PMID:27658194
Efficiency dilution: long-term exergy conversion trends in Japan.
Williams, Eric; Warr, Benjamin; Ayres, Robert U
2008-07-01
This analysis characterizes century-scale trends in exergy efficiency in Japan. Exergy efficiency captures the degree to which energy inputs (such as coal) are converted into useful work (such as electricity or power to move a vehicle). This approach enables the estimation of net efficiencies which aggregate different technologies. Sectors specifically analyzed are electricity generation, transport, steel production, and residential space heating. One result is that the aggregate exergy efficiency of the Japanese economy declined slightly over the last half of the 20th century, reaching a high of around 38% in the late 1970s and falling to around 33% by 1998. The explanation for this is that while individual technologies improved dramatically over the century, less exergy-efficient ones were progressively adopted, yielding a net stabilization or decline. In the electricity sector, for instance, adoption of hydropower was followed by fossil-fired plants and then by nuclear power, each technology being successively less efficient from an exergy perspective. The underlying dynamic of this trend is analogous to declining ore grades in the mining sector. Increasing demand for exergy services requires expended utilization of resources from which it is more difficult to extract utility (e.g., falling water versus coal). We term this phenomenon efficiency dilution.
Zhao, Huaqiao; Gao, Huotao; Cao, Ting; Li, Boya
2018-01-22
In this work, the collection of solar energy by a broad-band nanospiral antenna is investigated in order to solve the low efficiency of the solar rectenna based on conventional nanoantennas. The antenna impedance, radiation, polarization and effective area are all considered in the efficiency calculation using the finite integral technique. The wavelength range investigated is 300-3000 nm, which corresponds to more than 98% of the solar radiation energy. It's found that the nanospiral has stronger field enhancement in the gap than a nanodipole counterpart. And a maximum harvesting efficiency about 80% is possible in principle for the nanospiral coupled to a rectifier resistance of 200 Ω, while about 10% for the nanodipole under the same conditions. Moreover, the nanospiral could be coupled to a rectifier diode of high resistance more easily than the nanodipole. These results indicate that the efficient full-spectrum utilization, reception and conversion of solar energy can be achieved by the nanospiral antenna, which is expected to promote the solar rectenna to be a promising technology in the clean, renewable energy application.
NASA Astrophysics Data System (ADS)
Mensi, Walid; Tiwari, Aviral Kumar; Yoon, Seong-Min
2017-04-01
This paper estimates the weak-form efficiency of Islamic stock markets using 10 sectoral stock indices (basic materials, consumer services, consumer goods, energy, financials, health care, industrials, technology, telecommunication, and utilities). The results based on the multifractal detrended fluctuation analysis (MF-DFA) approach show time-varying efficiency for the sectoral stock markets. Moreover, we find that they tend to show high efficiency in the long term but moderate efficiency in the short term, and that these markets become less efficient after the onset of the global financial crisis. These results have several significant implications in terms of asset allocation for investors dealing with Islamic markets.
A pulse-compression-ring circuit for high-efficiency electric propulsion.
Owens, Thomas L
2008-03-01
A highly efficient, highly reliable pulsed-power system has been developed for use in high power, repetitively pulsed inductive plasma thrusters. The pulsed inductive thruster ejects plasma propellant at a high velocity using a Lorentz force developed through inductive coupling to the plasma. Having greatly increased propellant-utilization efficiency compared to chemical rockets, this type of electric propulsion system may one day propel spacecraft on long-duration deep-space missions. High system reliability and electrical efficiency are extremely important for these extended missions. In the prototype pulsed-power system described here, exceptional reliability is achieved using a pulse-compression circuit driven by both active solid-state switching and passive magnetic switching. High efficiency is achieved using a novel ring architecture that recovers unused energy in a pulse-compression system with minimal circuit loss after each impulse. As an added benefit, voltage reversal is eliminated in the ring topology, resulting in long lifetimes for energy-storage capacitors. System tests were performed using an adjustable inductive load at a voltage level of 3.3 kV, a peak current of 20 kA, and a current switching rate of 15 kA/micros.
NASA Astrophysics Data System (ADS)
Graham, Thomas; Wheeler, Raymond
2016-06-01
The objective of this study was to evaluate root restriction as a tool to increase volume utilization efficiency in spaceflight crop production systems. Bell pepper plants (Capsicum annuum cv. California Wonder) were grown under restricted rooting volume conditions in controlled environment chambers. The rooting volume was restricted to 500 ml and 60 ml in a preliminary trial, and 1500 ml (large), 500 ml (medium), and 250 ml (small) for a full fruiting trial. To reduce the possible confounding effects of water and nutrient restrictions, care was taken to ensure an even and consistent soil moisture throughout the study, with plants being watered/fertilized several times daily with a low concentration soluble fertilizer solution. Root restriction resulted in a general reduction in biomass production, height, leaf area, and transpiration rate; however, the fruit production was not significantly reduced in the root restricted plants under the employed environmental and horticultural conditions. There was a 21% reduction in total height and a 23% reduction in overall crown diameter between the large and small pot size in the fruiting study. Data from the fruiting trial were used to estimate potential volume utilization efficiency improvements for edible biomass in a fixed production volume. For fixed lighting and rooting hardware situations, the majority of improvement from root restriction was in the reduction of canopy area per plant, while height reductions could also improve volume utilization efficiency in high stacked or vertical agricultural systems.
Graham, Thomas; Wheeler, Raymond
2016-06-01
The objective of this study was to evaluate root restriction as a tool to increase volume utilization efficiency in spaceflight crop production systems. Bell pepper plants (Capsicum annuum cv. California Wonder) were grown under restricted rooting volume conditions in controlled environment chambers. The rooting volume was restricted to 500ml and 60ml in a preliminary trial, and 1500ml (large), 500ml (medium), and 250ml (small) for a full fruiting trial. To reduce the possible confounding effects of water and nutrient restrictions, care was taken to ensure an even and consistent soil moisture throughout the study, with plants being watered/fertilized several times daily with a low concentration soluble fertilizer solution. Root restriction resulted in a general reduction in biomass production, height, leaf area, and transpiration rate; however, the fruit production was not significantly reduced in the root restricted plants under the employed environmental and horticultural conditions. There was a 21% reduction in total height and a 23% reduction in overall crown diameter between the large and small pot size in the fruiting study. Data from the fruiting trial were used to estimate potential volume utilization efficiency improvements for edible biomass in a fixed production volume. For fixed lighting and rooting hardware situations, the majority of improvement from root restriction was in the reduction of canopy area per plant, while height reductions could also improve volume utilization efficiency in high stacked or vertical agricultural systems. Copyright © 2016 The Committee on Space Research (COSPAR). All rights reserved.
Processes for producing low cost, high efficiency silicon solar cells
Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.
1998-06-16
Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.
Achieving Regional Energy Efficiency Potential in the Northeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Angelo, Laura
With this grant, NEEP sought to accelerate the adoption of energy efficiency in the Northeast and Mid-Atlantic region through regional partnership projects that bring together leadership and staff from state and local government, utilities, industry, environmental and consumer groups, and other related interests to make efficiency visible and understood, reduce energy use in buildings, speed the adoption of high efficiency products, and advance knowledge and best practices. At the time of this grant, the NEEP region included the states of Maine, New Hampshire, Vermont, Massachusetts, New York, Connecticut, Rhode Island, Washington DC, Pennsylvania, Delaware, New Jersey, and Maryland.
Application of fuel cells with heat recovery for integrated utility systems
NASA Technical Reports Server (NTRS)
Shields, V.; King, J. M., Jr.
1975-01-01
This paper presents the results of a study of fuel cell powerplants with heat recovery for use in an integrated utility system. Such a design provides for a low pollution, noise-free, highly efficient integrated utility. Use of the waste heat from the fuel cell powerplant in an integrated utility system for the village center complex of a new community results in a reduction in resource consumption of 42 percent compared to conventional methods. In addition, the system has the potential of operating on fuels produced from waste materials (pyrolysis and digester gases); this would provide further reduction in energy consumption.
Jung, Moo-Young; Park, Bu-Soo; Lee, Jinwon; Oh, Min-Kyu
2013-07-01
Sugarcane molasses is considered to be a good carbon source for biorefinery due to its high sugar content and low price. Sucrose occupies more than half of the sugar in the molasses. Enterobacter aerogenes is a good host strain for 2,3-butanediol production, but its utilization of sucrose is not very efficient. To improve sucrose utilization in E. aerogenes, a sucrose regulator (ScrR) was disrupted from the genomic DNA. The deletion mutation increased the sucrose consumption rate significantly when sucrose or sugarcane molasses was used as a carbon source. The 2,3-butanediol production from sugarcane molasses by the mutant was enhanced by 60% in batch fermentation compared to that by the wild type strain. In fed-batch fermentation, 98.69 g/L of 2,3-butanediol production was achieved at 36 h. Copyright © 2013 Elsevier Ltd. All rights reserved.
Horizontal-axis clothes washer market poised for expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, K.L.
1994-12-31
The availability of energy- and water-efficient horizontal-axis washing machines in the North American market is growing, as US and European manufacturers position for an expected long-term market shift toward horizontal-axis (H-axis) technology. Four of the five major producers of washing machines in the US are developing or considering new H-axis models. New entrants, including US-based Staber Industries and several European manufacturers, are also expected to compete in this market. The intensified interest in H-axis technology is partly driven by speculation that new US energy efficiency standards, to be proposed in 1996 and implemented in 1999, will effectively mandate H-axis machines.more » H-axis washers typically use one-third to two-thirds less energy, water, and detergent than vertical-axis machines. Some models also reduce the energy needed to dry the laundry, since their higher spin speeds extract more water than is typical with vertical-axis designs. H-axis washing machines are the focus of two broadly-based efforts to support coordinated research and incentive programs by electric, gas, and water utilities: The High-Efficiency Laundry Metering/Marketing Analysis (THELMA), and the Consortium for Energy Efficiency (CEE) High-Efficiency Clothes Washer Initiative. These efforts may help to pave the way for new types of marketing partnerships among utilities and other parties that could help to speed adoption of H-axis washers.« less
Peng, Jun; Liu, Donghao; Shi, Tian; Tian, Huairu; Hui, Xuanhong; He, Hua
2017-07-01
Although stir bar sportive extraction was thought to be a highly efficiency and simple pretreatment approach, its wide application was limited by low selectivity, short service life, and relatively high cost. In order to improve the performance of the stir bar, molecular imprinted polymers and magnetic carbon nanotubes were combined in the present study. In addition, two monomers were utilized to intensify the selectivity of molecularly imprinted polymers. Fourier transform infrared spectroscopy, scanning electron microscopy, and selectivity experiments showed that the molecularly imprinted polymeric stir bar was successfully prepared. Then micro-extraction based on the obtained stir bar was coupled with HPLC for determination of trace cefaclor and cefalexin in environmental water. This approach had the advantages of stir bar sportive extraction, high selectivity of molecular imprinted polymers, and high sorption efficiency of carbon nanotubes. To utilize this pretreatment approach, pH, extraction time, stirring speed, elution solvent, and elution time were optimized. The LOD and LOQ of cefaclor were found to be 3.5 ng · mL -1 and 12.0 ng · mL -1 , respectively; the LOD and LOQ of cefalexin were found to be 3.0 ng · mL -1 and 10.0 ng · mL -1 , respectively. The recoveries of cefaclor and cefalexin were 86.5 ~ 98.6%. The within-run precision and between-run precision were acceptable (relative standard deviation <7%). Even when utilized in more than 14 cycles, the performance of the stir bar did not decrease dramatically. This demonstrated that the molecularly imprinted polymeric stir bar based micro-extraction was a convenient, efficient, low-cost, and a specific method for enrichment of cefaclor and cefalexin in environmental samples.
Skarphedinsson, Gudmundur; Villabø, Marianne A; Lauth, Bertrand
2015-01-01
The Multidimensional Anxiety Scale for Children (MASC) is a widely used self-report questionnaire for the assessment of anxiety symptoms in children and adolescents with well documented predictive validity of the total score and subscales in internalizing and mixed clinical samples. However, no data exist on the screening efficiency in an inpatient sample of adolescents. To examine the psychometric properties and screening efficiency of the MASC in a high comorbid inpatient sample. The current study used receiver operating characteristic (ROC) analyses to investigate the predictive value of the MASC total and subscale scores for the Schedule for Affective Disorders and Schizophrenia for School-age children-Present and Lifetime version (K-SADS-PL), DSM-IV diagnoses of generalized anxiety disorder (GAD), separation anxiety disorder (SAD) and social phobia (SoP) in a highly comorbid inpatient sample of adolescents (11-18 years). The MASC total score predicted any anxiety disorder (AD) and GAD moderately well. Physical symptoms predicted GAD moderately well. Social anxiety and separation anxiety/panic did not predict SoP or SAD, respectively. Physical symptoms and harm avoidance also predicted the presence of major depressive disorder. The findings support the utility of the MASC total score to predict the presence of any AD and GAD. However, the utility of the social anxiety and separation anxiety/panic subscales showed limited utility to predict the presence of SAD and SoP, respectively. The MASC has probably a more limited function in screening for AD among a highly comorbid inpatient sample of severely affected adolescents. Our results should be interpreted in the light of a small, mixed sample of inpatient adolescents.
Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach
Zimmer, Jennifer S.D.; Monroe, Matthew E.; Qian, Wei-Jun; Smith, Richard D.
2007-01-01
Proteomics has recently demonstrated utility in understanding cellular processes on the molecular level as a component of systems biology approaches and for identifying potential biomarkers of various disease states. The large amount of data generated by utilizing high efficiency (e.g., chromatographic) separations coupled to high mass accuracy mass spectrometry for high-throughput proteomics analyses presents challenges related to data processing, analysis, and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics approaches and the accompanying data processing tools that have been developed to display and interpret the large volumes of data being produced. PMID:16429408
Tai, Mitchell; Ly, Amanda; Leung, Inne; Nayar, Gautam
2015-01-01
The burgeoning pipeline for new biologic drugs has increased the need for high-throughput process characterization to efficiently use process development resources. Breakthroughs in highly automated and parallelized upstream process development have led to technologies such as the 250-mL automated mini bioreactor (ambr250™) system. Furthermore, developments in modern design of experiments (DoE) have promoted the use of definitive screening design (DSD) as an efficient method to combine factor screening and characterization. Here we utilize the 24-bioreactor ambr250™ system with 10-factor DSD to demonstrate a systematic experimental workflow to efficiently characterize an Escherichia coli (E. coli) fermentation process for recombinant protein production. The generated process model is further validated by laboratory-scale experiments and shows how the strategy is useful for quality by design (QbD) approaches to control strategies for late-stage characterization. © 2015 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Sanz Lobón, Germán; Yepez, Alfonso; Garcia, Luane Ferreira; Morais, Ruiter Lima; Vaz, Boniek Gontijo; Carvalho, Veronica Vale; de Oliveira, Gisele Augusto Rodrigues; Luque, Rafael; Gil, Eric De Souza
2017-02-01
Microcystin-leucine arginine (MC-LR) is the most abundant and toxic secondary metabolite produced by freshwater cyanobacteria. This toxin has a high potential hazard health due to potential interactions with liver, kidney and the nervous system. The aim of this work was the design of a simple and environmentally friendly electrochemical system based on highly efficient nanostructured electrodes for the removal of MC-LR in tap water. Titania nanoparticles were deposited on carbon (graphite) under a simple and efficient microwave assisted approach for the design of the electrode, further utilized in the electrochemical remediation assays. Parameters including the applied voltage, time of removal and pH (natural tap water or alkaline condition) were investigated in the process, with results pointing to a high removal efficiency for MC-LR (60% in tap water and 90% in alkaline media experiments, under optimized conditions).
Sanz Lobón, Germán; Yepez, Alfonso; Garcia, Luane Ferreira; Morais, Ruiter Lima; Vaz, Boniek Gontijo; Carvalho, Veronica Vale; de Oliveira, Gisele Augusto Rodrigues; Luque, Rafael; Gil, Eric de Souza
2017-01-01
Microcystin-leucine arginine (MC-LR) is the most abundant and toxic secondary metabolite produced by freshwater cyanobacteria. This toxin has a high potential hazard health due to potential interactions with liver, kidney and the nervous system. The aim of this work was the design of a simple and environmentally friendly electrochemical system based on highly efficient nanostructured electrodes for the removal of MC-LR in tap water. Titania nanoparticles were deposited on carbon (graphite) under a simple and efficient microwave assisted approach for the design of the electrode, further utilized in the electrochemical remediation assays. Parameters including the applied voltage, time of removal and pH (natural tap water or alkaline condition) were investigated in the process, with results pointing to a high removal efficiency for MC-LR (60% in tap water and 90% in alkaline media experiments, under optimized conditions). PMID:28145477
New singlet oxygen generator for chemical oxygen-iodine lasers
NASA Astrophysics Data System (ADS)
Yoshida, S.; Saito, H.; Fujioka, T.; Yamakoshi, H.; Uchiyama, T.
1986-11-01
Experiments have been carried out to investigate a new method for generating O2(1Delta) with long-time operation of an efficient chemical oxygen-iodine laser system in mind. An impinging-jet nozzle was utilized to atomize a H2O2-KOH solution so that the alkaline H2O2/Cl2 reaction might occur in droplet-gas phase with high excitation efficiency. Experimental results indicate that the present generator can yield as high as 80 percent of O2(1Delta) with reasonable O2 flow rate.
Low cost high efficiency GaAs monolithic RF module for SARSAT distress beacons
NASA Technical Reports Server (NTRS)
Petersen, W. C.; Siu, D. P.; Cook, H. F.
1991-01-01
Low cost high performance (5 Watts output) 406 MHz beacons are urgently needed to realize the maximum utilization of the Search and Rescue Satellite-Aided Tracking (SARSAT) system spearheaded in the U.S. by NASA. Although current technology can produce beacons meeting the output power requirement, power consumption is high due to the low efficiency of available transmitters. Field performance is currently unsatisfactory due to the lack of safe and reliable high density batteries capable of operation at -40 C. Low cost production is also a crucial but elusive requirement for the ultimate wide scale utilization of this system. Microwave Monolithics Incorporated (MMInc.) has proposed to make both the technical and cost goals for the SARSAT beacon attainable by developing a monolithic GaAs chip set for the RF module. This chip set consists of a high efficiency power amplifier and a bi-phase modulator. In addition to implementing the RF module in Monolithic Microwave Integrated Circuit (MMIC) form to minimize ultimate production costs, the power amplifier has a power-added efficiency nearly twice that attained with current commercial technology. A distress beacon built using this RF module chip set will be significantly smaller in size and lighter in weight due to a smaller battery requirement, since the 406 MHz signal source and the digital controller have far lower power consumption compared to the 5 watt power amplifier. All the program tasks have been successfully completed. The GaAs MMIC RF module chip set has been designed to be compatible with the present 406 MHz signal source and digital controller. A complete high performance low cost SARSAT beacon can be realized with only additional minor iteration and systems integration.
ERIC Educational Resources Information Center
Hernández, Yasmin; Pérez-Ramírez, Miguel; Zatarain-Cabada, Ramon; Barrón-Estrada, Lucia; Alor-Hernández, Giner
2016-01-01
Electrical tests involve high risk; therefore utility companies require highly qualified electricians and efficient training. Recently, training for electrical tests has been supported by virtual reality systems; nonetheless, these training systems are not yet adaptive. We propose a b-learning model to support adaptive and distance training. The…
;Utilization of Tabula Rasa to stabilize bulk lifetimes in n-Cz silicon for high-performance solar cell /SiOx/pc-Si passivated contacts to n-type Si solar cells." Presented at the 40th IEEE Photovoltaic , and P. Stradins. "Heterojunction rear passivated contact for high efficiency n-Cz Si solar cells
Aircraft and avionic related research required to develop an effective high-speed runway exit system
NASA Technical Reports Server (NTRS)
Schoen, M. L.; Hosford, J. E.; Graham, J. M., Jr.; Preston, O. W.; Frankel, R. S.; Erickson, J. B.
1979-01-01
Research was conducted to increase airport capacity by studying the feasibility of the longitudinal separation between aircraft sequences on final approach. The multidisciplinary factors which include the utility of high speed exits for efficient runway operations were described along with recommendations and highlights of these studies.
Zhang, Panpan; Li, Jing; Lv, Lingxiao; Zhao, Yang; Qu, Liangti
2017-05-23
Efficient utilization of solar energy for clean water is an attractive, renewable, and environment friendly way to solve the long-standing water crisis. For this task, we prepared the long-range vertically aligned graphene sheets membrane (VA-GSM) as the highly efficient solar thermal converter for generation of clean water. The VA-GSM was prepared by the antifreeze-assisted freezing technique we developed, which possessed the run-through channels facilitating the water transport, high light absorption capacity for excellent photothermal transduction, and the extraordinary stability in rigorous conditions. As a result, VA-GSM has achieved average water evaporation rates of 1.62 and 6.25 kg m -2 h -1 under 1 and 4 sun illumination with a superb solar thermal conversion efficiency of up to 86.5% and 94.2%, respectively, better than that of most carbon materials reported previously, which can efficiently produce the clean water from seawater, common wastewater, and even concentrated acid and/or alkali solutions.
Kwon, Jeong; Kim, Sung June; Park, Jong Hyoek
2015-06-28
We fabricated a perovskite solar cell with enhanced device efficiency based on the tailored inner space of the TiO2 electrode by utilizing a very short chemical etching process. It was found that the mesoporous TiO2 photoanode treated with a HF solution exhibited remarkably enhanced power conversion efficiencies under simulated AM 1.5G one sun illumination. The controlled inner space and morphology of the etched TiO2 electrode provide an optimized space for perovskite sensitizers and infiltration of a hole transport layer without sacrificing its original electron transport ability, which resulted in higher JSC, FF and VOC values. This simple platform provides new opportunities for tailoring the microstructure of the TiO2 electrode and has great potential in various optoelectronic devices utilizing metal oxide nanostructures.
A novel iron-lead redox flow battery for large-scale energy storage
NASA Astrophysics Data System (ADS)
Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Ren, Y. X.
2017-04-01
The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies for the massive utilization of intermittent renewables especially wind and solar energy. This work presents a novel redox flow battery that utilizes inexpensive and abundant Fe(II)/Fe(III) and Pb/Pb(II) redox couples as redox materials. Experimental results show that both the Fe(II)/Fe(III) and Pb/Pb(II) redox couples have fast electrochemical kinetics in methanesulfonic acid, and that the coulombic efficiency and energy efficiency of the battery are, respectively, as high as 96.2% and 86.2% at 40 mA cm-2. Furthermore, the battery exhibits stable performance in terms of efficiencies and discharge capacities during the cycle test. The inexpensive redox materials, fast electrochemical kinetics and stable cycle performance make the present battery a promising candidate for large-scale energy storage applications.
From Ambiguities to Insights: Query-based Comparisons of High-Dimensional Data
NASA Astrophysics Data System (ADS)
Kowalski, Jeanne; Talbot, Conover; Tsai, Hua L.; Prasad, Nijaguna; Umbricht, Christopher; Zeiger, Martha A.
2007-11-01
Genomic technologies will revolutionize drag discovery and development; that much is universally agreed upon. The high dimension of data from such technologies has challenged available data analytic methods; that much is apparent. To date, large-scale data repositories have not been utilized in ways that permit their wealth of information to be efficiently processed for knowledge, presumably due in large part to inadequate analytical tools to address numerous comparisons of high-dimensional data. In candidate gene discovery, expression comparisons are often made between two features (e.g., cancerous versus normal), such that the enumeration of outcomes is manageable. With multiple features, the setting becomes more complex, in terms of comparing expression levels of tens of thousands transcripts across hundreds of features. In this case, the number of outcomes, while enumerable, become rapidly large and unmanageable, and scientific inquiries become more abstract, such as "which one of these (compounds, stimuli, etc.) is not like the others?" We develop analytical tools that promote more extensive, efficient, and rigorous utilization of the public data resources generated by the massive support of genomic studies. Our work innovates by enabling access to such metadata with logically formulated scientific inquires that define, compare and integrate query-comparison pair relations for analysis. We demonstrate our computational tool's potential to address an outstanding biomedical informatics issue of identifying reliable molecular markers in thyroid cancer. Our proposed query-based comparison (QBC) facilitates access to and efficient utilization of metadata through logically formed inquires expressed as query-based comparisons by organizing and comparing results from biotechnologies to address applications in biomedicine.
NASA Astrophysics Data System (ADS)
Chen, Jian; Xu, Xiaochan; Li, Tao; Pandiselvi, Kannusamy; Wang, Jingyu
2016-11-01
Efficient metal-free visible photocatalysts with high stability are highly desired for sufficient utilization of solar energy. In this work, the popular carbon nitride (CN) photocatalyst is rationally modified by acid exfoliation of molecular grafted CN, achieving improved visible-light utilization and charge carriers mobility. Moreover, the modification process tuned the surface electrical property of CN, which enabled it to be readily coupled with the oppositely charged graphene oxide during the following photo-assisted electrostatic assembly. Detailed characterizations indicate the formation of well-contacted 2D/2D heterostructure with strong interfacial interaction between the modified CN nanosheets (CNX-NSs) and reduced graphene oxide (RGO). The optimized hybrid (with a RGO ratio of 20%) exhibits the best photocatalytic performance toward MB degradation, which is almost 12.5 and 7.0 times of CN under full spectrum and visible-light irradiation, respectively. In addition, the hybrid exhibits high stability after five successive cycles with no obvious change in efficiency. Unlike pure CNX-NSs, the dye decomposition mostly depends on the H2O2 generation by a two-electron process due to the electron reservoir property of RGO. Thus the enhancement in photocatalytic activity could be ascribed to the improved light utilization and increased charge transfer ability across the interface of CNX-NSs/RGO heterostructure.
NASA Astrophysics Data System (ADS)
Li, Y. H.; Shinohara, T.; Satoh, T.; Tachibana, K.
2016-06-01
High-definition and highly accurate road maps are necessary for the realization of automated driving, and road signs are among the most important element in the road map. Therefore, a technique is necessary which can acquire information about all kinds of road signs automatically and efficiently. Due to the continuous technical advancement of Mobile Mapping System (MMS), it has become possible to acquire large number of images and 3d point cloud efficiently with highly precise position information. In this paper, we present an automatic road sign detection and recognition approach utilizing both images and 3D point cloud acquired by MMS. The proposed approach consists of three stages: 1) detection of road signs from images based on their color and shape features using object based image analysis method, 2) filtering out of over detected candidates utilizing size and position information estimated from 3D point cloud, region of candidates and camera information, and 3) road sign recognition using template matching method after shape normalization. The effectiveness of proposed approach was evaluated by testing dataset, acquired from more than 180 km of different types of roads in Japan. The results show a very high success in detection and recognition of road signs, even under the challenging conditions such as discoloration, deformation and in spite of partial occlusions.
Nair, Soumya V; Witek, Małgorzata A; Jackson, Joshua M; Lindell, Maria A M; Hunsucker, Sally A; Sapp, Travis; Perry, Caroline E; Hupert, Mateusz L; Bae-Jump, Victoria; Gehrig, Paola A; Wysham, Weiya Z; Armistead, Paul M; Voorhees, Peter; Soper, Steven A
2015-02-21
We report a novel strategy to enzymatically release affinity-selected cells, such as circulating tumor cells (CTCs), from surfaces with high efficiency (∼90%) while maintaining cell viability (>85%). The strategy utilizes single-stranded DNAs that link a capture antibody to the surfaces of a CTC selection device. The DNA linkers contain a uracil residue that can be cleaved.
Numerical modeling and experimental testing of a solar grill
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olwi, I.; Khalifa, A.
1993-02-01
The sun provides a free, nonpolluting and everlasting source of energy. Considerable research has been carried out to utilize solar energy for purposes such as water heating, high temperature ovens, and conversion to electrical energy. One of the interesting forms for utilizing solar energy is cooking. The main disadvantage of solar energy systems has been the low efficiency attained in most of its practical applications. It is expected, however, that due to continuing decreases in the availability of other energy sources such as oil and coal, along with the safety problems associated with nuclear energy, man's need for utilization ofmore » solar energy will increase, thus leading him to find the ways and means to develop adequate and efficient solar-powered systems. In camps, where tents are used to accommodate people, cooking is done via conventional gas stoves. This usually takes place in extremely crowded areas which become highly fireprone. Solar oven cookers seem to be a viable alternative considering both economy and safety. Among the various forms of solar cookers, the oven-type solar cooker is known to be the best in terms of efficiency. One of the most practical and efficient forms of solar oven cookers is the outdoor portable solar grill (Bar-B-Q), developed by Khalifa et al. The solar grill is a light and portable unit that utilizes solar energy to grill meat. One of the best types of grilling with this cooker is the well-known Shish Kebab or Bar-B-Q. A detailed description for the design of the solar grill is provided as follows. This paper is aimed at providing experimental results and formulating a numerical model for the solar grill. Results of the two approaches are then compared to verify the validity of the numerical simulation. An experimental and theoretical investigation was conducted on the solar grill in order to study the factors that affect its design and performance.« less
A facile and eco-friendly synthesis of diarylthiazoles and diarylimidazoles in water
A simple, efficient and high yielding greener protocol for the synthesis of substituted thiazoles and imidazoles is described that utilizes the reaction of readily available α-tosyloxy ketones with variety of thioamides/amidines in water
NASA Technical Reports Server (NTRS)
Raible, Daniel E.; Dinca, Dragos; Nayfeh, Taysir H.
2012-01-01
An effective form of wireless power transmission (WPT) has been developed to enable extended mission durations, increased coverage and added capabilities for both space and terrestrial applications that may benefit from optically delivered electrical energy. The high intensity laser power beaming (HILPB) system enables long range optical 'refueling" of electric platforms such as micro unmanned aerial vehicles (MUAV), airships, robotic exploration missions and spacecraft platforms. To further advance the HILPB technology, the focus of this investigation is to determine the optimal laser wavelength to be used with the HILPB receiver, which utilizes vertical multi-junction (VMJ) photovoltaic cells. Frequency optimization of the laser system is necessary in order to maximize the conversion efficiency at continuous high intensities, and thus increase the delivered power density of the HILPB system. Initial spectral characterizations of the device performed at the NASA Glenn Research Center (GRC) indicate the approximate range of peak optical-to-electrical conversion efficiencies, but these data sets represent transient conditions under lower levels of illumination. Extending these results to high levels of steady state illumination, with attention given to the compatibility of available commercial off-the-shelf semiconductor laser sources and atmospheric transmission constraints is the primary focus of this paper. Experimental hardware results utilizing high power continuous wave (CW) semiconductor lasers at four different operational frequencies near the indicated band gap of the photovoltaic VMJ cells are presented and discussed. In addition, the highest receiver power density achieved to date is demonstrated using a single photovoltaic VMJ cell, which provided an exceptionally high electrical output of 13.6 W/sq cm at an optical-to-electrical conversion efficiency of 24 percent. These results are very promising and scalable, as a potential 1.0 sq m HILPB receiver of similar construction would be able to generate 136 kW of electrical power under similar conditions.
Novel Design of Type I High Power Mid-IR Diode Lasers for Spectral Region 3 - 4.2 Microns
2014-09-25
multifold improvement of the device characteristics. Cascade pumping was achieved utilizing efficient interband tunneling through "leaky" window in band...Initially cascade pumping scheme was applied to laser heterostructures utilizing gain sections based on either intersubband [1] or type-II interband ...active regions, metamorphic virtual substrate and cascade pumping scheme. Cascade pumping of type-I quantum well gain section opened the whole new
Unrean, Pornkamol; Srienc, Friedrich
2010-01-01
We have developed highly efficient ethanologenic E. coli strains that selectively consume pentoses and/or hexoses. Mixed cultures of these strains can be used to selectively adjust the sugar utilization kinetics in ethanol fermentations. Based on the kinetics of sugar utilization, we have designed and implemented an immobilized cell system for the optimized continuous conversion of sugars into ethanol. The results confirm that immobilized mixed cultures support a simultaneous conversion of hexoses and pentoses into ethanol at high yield and at a faster rate than immobilized homogenous cells. Continuous ethanol production has been maintained for several weeks at high productivity with near complete sugar utilization. The control of sugar utilization using immobilized mixed cultures can be adapted to any composition of hexoses and pentoses by adjusting the strain distribution of immobilized cells. The approach, therefore, holds promise for ethanol fermentation from lignocellulosic hydrolysates where the feedstock varies in sugar composition. PMID:20699108
Gupta, Nidhi; Gupta, Atul K; Gaur, Vikram S; Kumar, Anil
2012-01-01
Nitrogen responsiveness of three-finger millet genotypes (differing in their seed coat colour) PRM-1 (brown), PRM-701 (golden), and PRM-801 (white) grown under different nitrogen doses was determined by analyzing the growth, yield parameters and activities of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase; GOGAT, and glutamate dehydrogenase (GDH) at different developmental stages. High nitrogen use efficiency and nitrogen utilization efficiency were observed in PRM-1 genotype, whereas high nitrogen uptake efficiency was observed in PRM-801 genotype. At grain filling nitrogen uptake efficiency in PRM-1 negatively correlated with NR, GS, GOGAT activities whereas it was positively correlated in PRM-701 and PRM-801, however, GDH showed a negative correlation. Growth and yield parameters indicated that PRM-1 responds well at high nitrogen conditions while PRM-701 and PRM-801 respond well at normal and low nitrogen conditions respectively. The study indicates that PRM-1 is high nitrogen responsive and has high nitrogen use efficiency, whereas golden PRM-701 and white PRM-801 are low nitrogen responsive genotypes and have low nitrogen use efficiency. However, the crude grain protein content was higher in PRM-801 genotype followed by PRM-701 and PRM-1, indicating negative correlation of nitrogen use efficiency with source to sink relationship in terms of seed protein content.
Molecular approaches to third generation photovoltaics: photochemical up-conversion
NASA Astrophysics Data System (ADS)
Cheng, Yuen Yap; Fückel, Burkhard; Roberts, Derrick A.; Khoury, Tony; Clady, Rapha"l. G. C. R.; Tayebjee, Murad J. Y.; Piper, Roland; Ekins-Daukes, N. J.; Crossley, Maxwell J.; Schmidt, Timothy W.
2010-08-01
We have investigated a photochemical up-conversion system comprising a molecular mixture of a palladium porphyrin to harvest light, and a polycyclic aromatic hydrocarbon to emit light. The energy of harvested photons is stored as molecular triplet states which then annihilate to bring about up-converted fluorescence. The limiting efficiency of such triplet-triplet annihilation up-conversion has been believed to be 11% for some time. However, by rigorously investigating the kinetics of delayed fluorescence following pulsed excitation, we demonstrate instantaneous annihilation efficiencies exceeding 40%, and limiting efficiencies for the current system of ~60%. We attribute the high efficiencies obtained to the electronic structure of the emitting molecule, which exhibits an exceptionally high T2 molecular state. We utilize the kinetic data obtained to model an up-converting layer irradiated with broadband sunlight, finding that ~3% efficiencies can be obtained with the current system, with this improving dramatically upon optimization of various parameters.
Cassa-Barbosa, L A; Procópio, R E L; Matos, I T S R; Filho, S A
2015-09-28
Few yeasts have shown the potential to efficiently utilize hemicellulosic hydrolyzate as the carbon source. In this study, microorganisms isolated from the Manaus region in Amazonas, Brazil, were characterized based on their utilization of the pentoses, xylose, and arabinose. The yeasts that showed a potential to assimilate these sugars were selected for the better utilization of lignocellulosic biomass. Two hundred and thirty seven colonies of unicellular microorganisms grown on hemicellulosic hydrolyzate, xylose, arabinose, and yeast nitrogen base selective medium were analyzed. Of these, 231 colonies were subjected to sugar assimilation tests. One hundred and twenty five of these were shown to utilize hydrolyzed hemicellulose, xylose, or arabinose as the carbon source for growth. The colonies that showed the best growth (N = 57) were selected, and their internal transcribed spacer-5.8S rDNA was sequenced. The sequenced strains formed four distinct groups in the phylogenetic tree, and showed a high percentage of similarity with Meyerozyma caribbica, Meyerozyma guilliermondii, Trichosporon mycotoxinivorans, Trichosporon loubieri, Pichia kudriavzevii, Candida lignohabitans, and Candida ethanolica. The discovery of these xylose-fermenting yeasts could attract widespread interest, as these can be used in the cost-effective production of liquid fuel from lignocellulosic materials.
Nutrigenetic screening strains of the mulberry silkworm, Bombyx mori, for nutritional efficiency.
Ramesha, Chinnaswamy; Lakshmi, Hothur; Kumari, Savarapu Sugnana; Anuradha, Chevva M; Kumar, Chitta Suresh
2012-01-01
The activity of sericulture is declining due the reduction of mulberry production area in sericulture practicing countries lead to adverse effects on silkworm rearing and cocoon production. Screening for nutrigenetic traits in silkworm, Bombyx mori L. (Lepidoptera: Bombycidae) is an essential prerequisite for better understanding and development of nutritionally efficient breeds/hybrids, which show less food consumption with higher efficiency conversion. The aim of this study was to identify nutritionally efficient polyvoltine silkworm strains using the germplasm breeds RMW(2), RMW(3), RMW(4), RMG(3), RMG(1), RMG(4), RMG(5), RMG(6) and APM(1) as the control. The 1(st) day of 5(th) stage silkworm larvae of polyvoltine strains were subjected to standard gravimetric analysis until spinning for three consecutive generations covering 3 different seasons on 19 nutrigenetic traits. Highly significant (p ≤ 0.001) differences were found among all nutrigenetic traits of polyvoltine silkworm strains in the experimental groups. The nutritionally efficient polvoltine silkworm strains were resulted by utilizing nutrition consumption index and efficiency of conversion of ingesta/cocoon traits as the index. Higher nutritional efficiency conversions were found in the polyvoltine silkworm strains on efficiency of conversion of ingesta to cocoon and shell than control. Comparatively smaller consumption index, respiration, metabolic rate with superior relative growth rate, and quantum of food ingesta and digesta requisite per gram of cocoon and shell were found; the lowest amount was in new polyvoltine strains compared to the control. Furthermore, based on the overall nutrigenetic traits utilized as index or 'biomarkers', three polyvoltine silkworm strains (RMG(4), RMW(2), and RMW(3)) were identified as having the potential for nutrition efficiency conversion. The data from the present study advances our knowledge for the development of nutritionally efficient silkworm breeds/hybrids and their effective commercial utilization in the sericulture industry.
Nutrigenetic screening strains of the mulberry silkworm, Bombyx mori, for nutritional efficiency.
Chinnaswamy, Ramesha; Lakshmi, Hothur; Kumari, Savarapu S; Anuradha, Chebba M; Kumar, Chitta S
2012-01-01
The activity of sericulture is declining due the reduction of mulberry production area in sericulture practicing countries lead to adverse effects on silkworm rearing and cocoon production. Screening for nutrigenetic traits in silkworm, Bombyx mori L. (Lepidoptera: Bombycidae) is an essential prerequisite for better understanding and development of nutritionally efficient breeds/hybrids, which show less food consumption with higher efficiency conversion. The aim of this study was to identify nutritionally efficient polyvoltine silkworm strains using the germplasm breeds RMW(2), RMW(3), RMW(4), RMG(3), RMG(1), RMG(4), RMG(5), RMG(6) and APM(1) as the control. The 1(st) day of 5(th) stage silkworm larvae of polyvoltine strains were subjected to standard gravimetric analysis until spinning for three consecutive generations covering three different seasons on 19 nutrigenetic traits. Highly significant (p ≤ 0.001) differences were found among all nutrigenetic traits of polyvoltine silkworm strains in the experimental groups. The nutritionally efficient polvoltine silkworm strains were resulted by utilizing nutrition consumption index and efficiency of conversion of ingesta/cocoon traits as the index. Higher nutritional efficiency conversions were found in the polyvoltine silkworm strains on efficiency of conversion of ingesta to cocoon and shell than control. Comparatively smaller consumption index, respiration, metabolic rate with superior relative growth rate, and quantum of food ingesta and digesta requisite per gram of cocoon and shell were shown; the lowest amount was in new polyvoltine strains compared to the control. Furthermore, based on the overall nutrigenetic traits utilized as index or 'biomarkers', three polyvoltine silkworm strains (RMG(4), RMW(2), and RMW(3)) were identified as having the potential for nutrition efficiency conversion. The data from the present study advances our knowledge for the development of nutritionally efficient silkworm breeds/hybrids and their effective commercial utilization in the sericulture industry.
Nutrigenetic Screening Strains of the Mulberry Silkworm, Bombyx mori, for Nutritional Efficiency
Chinnaswamy, Ramesha; Lakshmi, Hothur; Kumari, Savarapu S.; Anuradha, Chebba M.; Kumar, Chitta S.
2012-01-01
The activity of sericulture is declining due the reduction of mulberry production area in sericulture practicing countries lead to adverse effects on silkworm rearing and cocoon production. Screening for nutrigenetic traits in silkworm, Bombyx mori L. (Lepidoptera: Bombycidae) is an essential prerequisite for better understanding and development of nutritionally efficient breeds/hybrids, which show less food consumption with higher efficiency conversion. The aim of this study was to identify nutritionally efficient polyvoltine silkworm strains using the germplasm breeds RMW2, RMW3, RMW4, RMG3, RMG1, RMG4, RMG5, RMG6 and APM1 as the control. The 1st day of 5th stage silkworm larvae of polyvoltine strains were subjected to standard gravimetric analysis until spinning for three consecutive generations covering three different seasons on 19 nutrigenetic traits. Highly significant (p ≤ 0.001) differences were found among all nutrigenetic traits of polyvoltine silkworm strains in the experimental groups. The nutritionally efficient polvoltine silkworm strains were resulted by utilizing nutrition consumption index and efficiency of conversion of ingesta/cocoon traits as the index. Higher nutritional efficiency conversions were found in the polyvoltine silkworm strains on efficiency of conversion of ingesta to cocoon and shell than control. Comparatively smaller consumption index, respiration, metabolic rate with superior relative growth rate, and quantum of food ingesta and digesta requisite per gram of cocoon and shell were shown; the lowest amount was in new polyvoltine strains compared to the control. Furthermore, based on the overall nutrigenetic traits utilized as index or ‘biomarkers’, three polyvoltine silkworm strains (RMG4, RMW2, and RMW3) were identified as having the potential for nutrition efficiency conversion. The data from the present study advances our knowledge for the development of nutritionally efficient silkworm breeds/hybrids and their effective commercial utilization in the sericulture industry. PMID:22938037
Nutrigenetic Screening Strains of the Mulberry Silkworm, Bombyx mori, for Nutritional Efficiency
Ramesha, Chinnaswamy; Lakshmi, Hothur; Kumari, Savarapu Sugnana; Anuradha, Chevva M.; Kumar, Chitta Suresh
2012-01-01
The activity of sericulture is declining due the reduction of mulberry production area in sericulture practicing countries lead to adverse effects on silkworm rearing and cocoon production. Screening for nutrigenetic traits in silkworm, Bombyx mori L. (Lepidoptera: Bombycidae) is an essential prerequisite for better understanding and development of nutritionally efficient breeds/hybrids, which show less food consumption with higher efficiency conversion. The aim of this study was to identify nutritionally efficient polyvoltine silkworm strains using the germplasm breeds RMW2, RMW3, RMW4, RMG3, RMG1, RMG4, RMG5, RMG6 and APM1 as the control. The 1st day of 5th stage silkworm larvae of polyvoltine strains were subjected to standard gravimetric analysis until spinning for three consecutive generations covering 3 different seasons on 19 nutrigenetic traits. Highly significant (p ≤ 0.001) differences were found among all nutrigenetic traits of polyvoltine silkworm strains in the experimental groups. The nutritionally efficient polvoltine silkworm strains were resulted by utilizing nutrition consumption index and efficiency of conversion of ingesta/cocoon traits as the index. Higher nutritional efficiency conversions were found in the polyvoltine silkworm strains on efficiency of conversion of ingesta to cocoon and shell than control. Comparatively smaller consumption index, respiration, metabolic rate with superior relative growth rate, and quantum of food ingesta and digesta requisite per gram of cocoon and shell were found; the lowest amount was in new polyvoltine strains compared to the control. Furthermore, based on the overall nutrigenetic traits utilized as index or ‘biomarkers’, three polyvoltine silkworm strains (RMG4, RMW2, and RMW3) were identified as having the potential for nutrition efficiency conversion. The data from the present study advances our knowledge for the development of nutritionally efficient silkworm breeds/hybrids and their effective commercial utilization in the sericulture industry. PMID:22934597
Yuan, Dandan; Tian, Lei; Li, Zhida; Jiang, Hong; Yan, Chao; Dong, Jing; Wu, Hongjun; Wang, Baohui
2018-02-15
Herein, we report the solar thermal electrochemical process (STEP) aniline oxidation in wastewater for totally solving the two key obstacles of the huge energy consumption and passivation film in the electrochemical treatment. The process, fully driven by solar energy without input of any other energies, sustainably serves as an efficient thermoelectrochemical oxidation of aniline by the control of the thermochemical and electrochemical coordination. The thermocoupled electrochemical oxidation of aniline achieved a fast rate and high efficiency for the full minimization of aniline to CO 2 with the stability of the electrode and without formation of polyaniline (PAN) passivation film. A clear mechanism of aniline oxidation indicated a switching of the reactive pathway by the STEP process. Due to the coupling of solar thermochemistry and electrochemistry, the electrochemical current remained stable, significantly improving the oxidation efficiency and mineralization rate by apparently decreasing the electrolytic potential when applied with high temperature. The oxidation rate of aniline and chemical oxygen demand (COD) removal rate could be lifted up to 2.03 and 2.47 times magnification compared to conventional electrolysis, respectively. We demonstrate that solar-driven STEP processes are capable of completely mineralizing aniline with high utilization of solar energy. STEP aniline oxidation can be utilized as a green, sustainable water treatment.
NASA Astrophysics Data System (ADS)
Wendel, Christopher H.; Kazempoor, Pejman; Braun, Robert J.
2016-01-01
Reversible solid oxide cell (ReSOC) systems are being increasingly considered for electrical energy storage, although much work remains before they can be realized, including cell materials development and system design optimization. These systems store electricity by generating a synthetic fuel in electrolysis mode and subsequently recover electricity by electrochemically oxidizing the stored fuel in fuel cell mode. System thermal management is improved by promoting methane synthesis internal to the ReSOC stack. Within this strategy, the cell-stack operating conditions are highly impactful on system performance and optimizing these parameters to suit both operating modes is critical to achieving high roundtrip efficiency. Preliminary analysis shows the thermoneutral voltage to be a useful parameter for analyzing ReSOC systems and the focus of this study is to quantitatively examine how it is affected by ReSOC operating conditions. The results reveal that the thermoneutral voltage is generally reduced by increased pressure, and reductions in temperature, fuel utilization, and hydrogen-to-carbon ratio. Based on the thermodynamic analysis, many different combinations of these operating conditions are expected to promote efficient energy storage. Pressurized systems can achieve high efficiency at higher temperature and fuel utilization, while non-pressurized systems may require lower stack temperature and suffer from reduced energy density.
Nanoengineered CIGS thin films for low cost photovoltaics
NASA Astrophysics Data System (ADS)
Eldada, Louay; Taylor, Matthew; Sang, Baosheng; McWilliams, Scott; Oswald, Robert; Stanbery, Billy J.
2008-08-01
Low cost manufacturing of Cu(In,Ga)Se2 (CIGS) films for high efficiency photovoltaic devices by the innovative Field-Assisted Simultaneous Synthesis and Transfer (FASST®) process is reported. The FASST® process is a two-stage reactive transfer printing method relying on chemical reaction between two separate precursor films to form CIGS, one deposited on the substrate and the other on a printing plate in the first stage. In the second stage these precursors are brought into intimate contact and rapidly reacted under pressure in the presence of an applied electrostatic field. The method utilizes physical mechanisms characteristic of anodic wafer bonding and rapid thermal annealing, effectively creating a sealed micro-reactor that ensures high material utilization efficiency, direct control of reaction pressure, and low thermal budget. The use of two independent ink-based or PVD-based nanoengineered precursor thin films provides the benefits of independent composition and flexible deposition technique optimization, and eliminates pre-reaction prior to the second stage FASST® synthesis of CIGS. High quality CIGS with large grains on the order of several microns are formed in just several minutes based on compositional and structural analysis by XRF, SIMS, SEM and XRD. Cell efficiencies of 12.2% have been achieved using this method.
Are prenatal care resources distributed efficiently across high-risk and low-risk mothers?
Mukhopadhyay, Sankar; Wendel, Jeanne
2008-09-01
The Institute for Clinical Systems Improvement recommends reducing the number of prenatal care visits recommended for low-risk women, citing evidence from a randomized clinical trial indicating that the reduction would not adversely impact infant health. We investigate the implicit hypothesis that prenatal care resources are not distributed efficiently across high-risk and low-risk women. Using clinic-reported prenatal care and an inclusive measure of infant health, we report evidence indicating inefficient resource utilization: prenatal care only boosts infant health when mothers have specific pre-existing diagnoses, but women with high potential to benefit from care do not obtain more care than other women.
Algorithm-Based Fault Tolerance Integrated with Replication
NASA Technical Reports Server (NTRS)
Some, Raphael; Rennels, David
2008-01-01
In a proposed approach to programming and utilization of commercial off-the-shelf computing equipment, a combination of algorithm-based fault tolerance (ABFT) and replication would be utilized to obtain high degrees of fault tolerance without incurring excessive costs. The basic idea of the proposed approach is to integrate ABFT with replication such that the algorithmic portions of computations would be protected by ABFT, and the logical portions by replication. ABFT is an extremely efficient, inexpensive, high-coverage technique for detecting and mitigating faults in computer systems used for algorithmic computations, but does not protect against errors in logical operations surrounding algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnabel, Manuel; Klein, Talysa R.; Jain, Nikhil
Solar cells made from bulk crystalline silicon (c-Si) dominate the market, but laboratory efficiencies have stagnated because the current record efficiency of 26.3% is already very close to the theoretical limit of 29.4% for a single-junction c-Si cell. In order to substantially boost the efficiency of Si solar cells we have been developing stacked III-V/Si tandem cells, recently attaining efficiencies above 32% in four-terminal configuration. In this contribution, we use state-of-the-art III-V cells coupled with equivalent circuit simulations to compare four-terminal (4T) to three- and two-terminal (3T, 2T) operation. Equivalent circuit simulations are used to show that tandem cells canmore » be operated just as efficiently using three terminals as with four terminals. However, care must be taken not to overestimate 3T efficiency, as the two circuits used to extract current interact, and a method is described to accurately determine this efficiency. Experimentally, a 4T GaInP/Si tandem cell utilizing an interdigitated back contact cell is shown, exhibiting a 4T efficiency of 31.5% and a 2T efficiency of 28.1%. In 3T configuration, it is used to verify the finding from simulation that 3T efficiency is overestimated when interactions between the two circuits are neglected. Considering these, a 3T efficiency approaching the 4T efficiency is found, showing that 3T operation is efficient, and an outlook on fully integrated high-efficiency 3T and 2T tandem cells is given.« less
Song, Li; Hu, Yongsheng; Liu, Zheqin; Lv, Ying; Guo, Xiaoyang; Liu, Xingyuan
2017-01-25
The utilization of triplet excitons plays a key role in obtaining high emission efficiency for organic electroluminescent devices. However, to date, only phosphorescent materials have been implemented to harvest the triplet excitons in the organic light-emitting field effect transistors (OLEFETs). In this work, we report the first incorporation of exciplex thermally activated delayed fluorescence (TADF) emitters in heterostructured OLEFETs to harvest the triplet excitons. By developing a new kind of exciplex TADF emitter constituted by m-MTDATA (4,4',4″-tris(N-3-methylphenyl-N-phenylamino)triphenylamine) as the donor and OXD-7 (1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene) as the acceptor, an exciton utilization efficiency of 74.3% for the devices was achieved. It is found that the injection barrier between hole transport layer and emission layer as well as the ratio between donor and acceptor would influence the external quantum efficiency (EQE) significantly. Devices with a maximum EQE of 3.76% which is far exceeding the reported results for devices with conventional fluorescent emitters were successfully demonstrated. Moreover, the EQE at high brightness even outperformed the result for organic light-emitting diode based on the same emitter. Our results demonstrate that the exciplex TADF emitters can be promising candidates to develop OLEFETs with high performance.
Fine grained event processing on HPCs with the ATLAS Yoda system
NASA Astrophysics Data System (ADS)
Calafiura, Paolo; De, Kaushik; Guan, Wen; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Panitkin, Sergey; Tsulaia, Vakhtang; Van Gemmeren, Peter; Wenaus, Torre
2015-12-01
High performance computing facilities present unique challenges and opportunities for HEP event processing. The massive scale of many HPC systems means that fractionally small utilization can yield large returns in processing throughput. Parallel applications which can dynamically and efficiently fill any scheduling opportunities the resource presents benefit both the facility (maximal utilization) and the (compute-limited) science. The ATLAS Yoda system provides this capability to HEP-like event processing applications by implementing event-level processing in an MPI-based master-client model that integrates seamlessly with the more broadly scoped ATLAS Event Service. Fine grained, event level work assignments are intelligently dispatched to parallel workers to sustain full utilization on all cores, with outputs streamed off to destination object stores in near real time with similarly fine granularity, such that processing can proceed until termination with full utilization. The system offers the efficiency and scheduling flexibility of preemption without requiring the application actually support or employ check-pointing. We will present the new Yoda system, its motivations, architecture, implementation, and applications in ATLAS data processing at several US HPC centers.
Zhang, Tong; Ni, Jiupai; Xie, Deti
2015-11-01
Rural nonpoint source (NPS) pollution caused by agricultural wastes has become increasingly serious in the Three Gorges Reservoir Area (TGRA), significantly affecting the reservoir water quality. The grim situation of rural NPS pollution in the TGRA indicated that agrochemicals (chemical fertilizer and pesticide) were currently the highest contributor of rural NPS pollution (50.38%). The harmless disposal rates of livestock excrement, crop straws, rural domestic refuse, and sewage also cause severe water pollution. More importantly, the backward agricultural economy and the poor environmental awareness of farmers in the hinterland of the TGRA contribute to high levels of rural NPS pollution. Over the past decade, researchers and the local people have carried out various successful studies and practices to realize the effective control of rural NPS pollution by efficiently utilizing agricultural wastes in the TGRA, including agricultural waste biogas-oriented utilization, crop straw gasification, decentralized land treatment of livestock excrement technology, and crop straw modification. These technologies have greatly increased the renewable resource utilization of agricultural wastes and improved water quality and ecological environment in the TGRA.
Constructing the electricity-carbohydrate-hydrogen cycle for a sustainability revolution.
Zhang, Y-H Percival; Huang, Wei-Dong
2012-06-01
In this opinion, we suggest the electricity-carbohydrate-hydrogen (ECHo) cycle which bridges primary energies and secondary energies. Carbohydrates are sources of food, feed, liquid biofuels, and renewable materials and are a high-density hydrogen carrier and electricity storage compounds (e.g. >3000 Wh/kg). One element of this ECHo cycle can be converted to another reversibly and efficiently depending on resource availability, needs and costs. This cycle not only supplements current and future primary energy utilization systems for facilitating electricity and hydrogen storage and enhancing secondary energy conversion efficiencies, but also addresses such sustainability challenges as transportation fuel production, CO(2) utilization, fresh water conservation, and maintenance of a small closed ecosystem in emergency situations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fast depth decision for HEVC inter prediction based on spatial and temporal correlation
NASA Astrophysics Data System (ADS)
Chen, Gaoxing; Liu, Zhenyu; Ikenaga, Takeshi
2016-07-01
High efficiency video coding (HEVC) is a video compression standard that outperforms the predecessor H.264/AVC by doubling the compression efficiency. To enhance the compression accuracy, the partition sizes ranging is from 4x4 to 64x64 in HEVC. However, the manifold partition sizes dramatically increase the encoding complexity. This paper proposes a fast depth decision based on spatial and temporal correlation. Spatial correlation utilize the code tree unit (CTU) Splitting information and temporal correlation utilize the motion vector predictor represented CTU in inter prediction to determine the maximum depth in each CTU. Experimental results show that the proposed method saves about 29.1% of the original processing time with 0.9% of BD-bitrate increase on average.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guss, Adam M.; Rother, Michael; Zhang, Jun Kai
A highly efficient method for chromosomal integration of cloned DNA into Methanosarcina spp. was developed utilizing the site-specific recombination system from the Streptomyces phage φC31. Host strains expressing the φC31 integrase gene and carrying an appropriate recombination site can be transformed with non-replicating plasmids carrying the complementary recombination site at efficiencies similar to those obtained with self-replicating vectors. We have also constructed a series of hybrid promoters that combine the highly expressed M. barkeri P mcrB promoter with binding sites for the tetracycline-responsive, bacterial TetR protein. These promoters are tightly regulated by the presence or absence of tetracycline in strainsmore » that express the tetR gene. The hybrid promoters can be used in genetic experiments to test gene essentiality by placing a gene of interest under their control. Thus, growth of strains with tetR -regulated essential genes becomes tetracycline-dependent. A series of plasmid vectors that utilize the site-specific recombination system for construction of reporter gene fusions and for tetracycline regulated expression of cloned genes are reported. These vectors were used to test the efficiency of translation at a variety of start codons. Fusions using an ATG start site were the most active, whereas those using GTG and TTG were approximately one half or one fourth as active, respectively. The CTG fusion was 95% less active than the ATG fusion.« less
Guss, Adam M.; Rother, Michael; Zhang, Jun Kai; ...
2008-01-01
A highly efficient method for chromosomal integration of cloned DNA into Methanosarcina spp. was developed utilizing the site-specific recombination system from the Streptomyces phage φC31. Host strains expressing the φC31 integrase gene and carrying an appropriate recombination site can be transformed with non-replicating plasmids carrying the complementary recombination site at efficiencies similar to those obtained with self-replicating vectors. We have also constructed a series of hybrid promoters that combine the highly expressed M. barkeri P mcrB promoter with binding sites for the tetracycline-responsive, bacterial TetR protein. These promoters are tightly regulated by the presence or absence of tetracycline in strainsmore » that express the tetR gene. The hybrid promoters can be used in genetic experiments to test gene essentiality by placing a gene of interest under their control. Thus, growth of strains with tetR -regulated essential genes becomes tetracycline-dependent. A series of plasmid vectors that utilize the site-specific recombination system for construction of reporter gene fusions and for tetracycline regulated expression of cloned genes are reported. These vectors were used to test the efficiency of translation at a variety of start codons. Fusions using an ATG start site were the most active, whereas those using GTG and TTG were approximately one half or one fourth as active, respectively. The CTG fusion was 95% less active than the ATG fusion.« less
Fiber-based Coherent Lidar for Target Ranging, Velocimetry, and Atmospheric Wind Sensing
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Pierrottet, Diego
2006-01-01
By employing a combination of optical heterodyne and linear frequency modulation techniques and utilizing state-of-the-art fiber optic technologies, highly efficient, compact and reliable lidar suitable for operation in a space environment is being developed.
Utilizing GIS to evaluate base schedules in paratransit operations
DOT National Transportation Integrated Search
1999-02-02
With ready access to street file names and inexpensive GIS software, paratransit systems can take advantage of GIS technology to evaluate base schedules on a regular basis in order to maintain system efficiency at consistently high levels. This proje...
Sen, Subhabrata; Potti, Venkata R; Surakanti, Ramu; Murthy, Y L N; Pallepogu, Raghavaiah
2011-01-21
A highly efficient enantioselective S(N)Ar reaction of chiral acyl bicyclic lactam with substituted-2,4-dinitrobenzenes was developed, affording products containing quarternary stereogenic centers. They are further utilized towards an enantioselective synthesis of spirooxoindoles.
Safe, High-Performance, Sustainable Precast School Design
ERIC Educational Resources Information Center
Finsen, Peter I.
2011-01-01
School design utilizing integrated architectural and structural precast and prestressed concrete components has gained greater acceptance recently for numerous reasons, including increasingly sophisticated owners and improved learning environments based on material benefits such as: sustainability, energy efficiency, indoor air quality, storm…
Versatile de novo enzyme activity in capsid proteins from an engineered M13 bacteriophage library.
Casey, John P; Barbero, Roberto J; Heldman, Nimrod; Belcher, Angela M
2014-11-26
Biocatalysis has grown rapidly in recent decades as a solution to the evolving demands of industrial chemical processes. Mounting environmental pressures and shifting supply chains underscore the need for novel chemical activities, while rapid biotechnological progress has greatly increased the utility of enzymatic methods. Enzymes, though capable of high catalytic efficiency and remarkable reaction selectivity, still suffer from relative instability, high costs of scaling, and functional inflexibility. Herein, we developed a biochemical platform for engineering de novo semisynthetic enzymes, functionally modular and widely stable, based on the M13 bacteriophage. The hydrolytic bacteriophage described in this paper catalyzes a range of carboxylic esters, is active from 25 to 80 °C, and demonstrates greater efficiency in DMSO than in water. The platform complements biocatalysts with characteristics of heterogeneous catalysis, yielding high-surface area, thermostable biochemical structures readily adaptable to reactions in myriad solvents. As the viral structure ensures semisynthetic enzymes remain linked to the genetic sequences responsible for catalysis, future work will tailor the biocatalysts to high-demand synthetic processes by evolving new activities, utilizing high-throughput screening technology and harnessing M13's multifunctionality.
Laser-assisted solar cell metallization processing
NASA Technical Reports Server (NTRS)
Dutta, S.
1984-01-01
Laser-assisted processing techniques utilized to produce the fine line, thin metal grid structures that are required to fabricate high efficiency solar cells are examined. Two basic techniques for metal deposition are investigated; (1) photochemical decomposition of liquid or gas phase organometallic compounds utilizing either a focused, CW ultraviolet laser (System 1) or a mask and ultraviolet flood illumination, such as that provided by a repetitively pulsed, defocused excimer laser (System 2), for pattern definition, and (2) thermal deposition of metals from organometallic solutions or vapors utilizing a focused, CW laser beam as a local heat source to draw the metallization pattern.
USDA-ARS?s Scientific Manuscript database
Stripe rust is one of major diseases in wheat production worldwide. The best economic and efficient method is to utilize resistant varieties. Alturas has high-temperature adult-plant resistance. In order to determine stripe rust resistance characteristics, resistance gene combination and molecular m...
Personal Theory of Brief Counseling in a High School Setting
ERIC Educational Resources Information Center
Santana, Monique M.; Rowland, Karen D.
2016-01-01
Because school counselors are limited in the time they have to accomplish all the tasks for which they are accountable, they must find ways to provide direct individual services to students effectively and efficiently. For this reason, high school counselors should have a brief theory of counseling and subsequent techniques to utilize in a school…
Case study: dairies utilizing ultra-high stocking density grazing in Pennsylvania and New York
USDA-ARS?s Scientific Manuscript database
Ultra-high stocking density (UHSD) grazing has gained interest in the forage industry. Proponents of UHSD emphasize increased forage use efficiency and soil improvement by grazing mature forage with stocking densities up to 560,425 kg ha**-1 of beef cattle on small paddocks with rest periods of up t...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satchwell, Andrew; Cappers, Peter; Goldman, Charles
2011-03-22
Energy efficiency resource standards (EERS) are a prominent strategy to potentially achieve rapid and aggressive energy savings goals in the U.S. As of December 2010, twenty-six U.S. states had some form of an EERS with savings goals applicable to energy efficiency (EE) programs paid for by utility customers. The European Union has initiated a similar type of savings goal, the Energy End-use Efficiency and Energy Services Directive, where it is being implemented in some countries through direct partnership with regulated electric utilities. U.S. utilities face significant financial disincentives under traditional regulation which affects the interest of shareholders and managers inmore » aggressively pursuing cost-effective energy efficiency. Regulators are considering some combination of mandated goals ('sticks') and alternative utility business model components ('carrots' such as performance incentives) to align the utility's business and financial interests with state and federal energy efficiency public policy goals. European countries that have directed their utilities to administer EE programs have generally relied on non-binding mandates and targets; in the U.S., most state regulators have increasingly viewed 'carrots' as a necessary condition for successful achievement of energy efficiency goals and targets. In this paper, we analyze the financial impacts of an EERS on a large electric utility in the State of Arizona using a pro-forma utility financial model, including impacts on utility earnings, customer bills and rates. We demonstrate how a viable business model can be designed to improve the business case while retaining sizable ratepayer benefits. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other countries looking to significantly increase savings targets that can be achieved from their own utility-administered EE programs.« less
Contextualizing ethics: ventilators, H1N1 and marginalized populations.
Silva, Diego S; Nie, Jason X; Rossiter, Kate; Sahni, Sachin; Upshur, Ross E G
2010-01-01
If the H1N1 pandemic worsens, there may not be enough ventilated beds to care for all persons with respiratory failure. To date, researchers who explicitly discuss the ethics of intensive care unit admission and the allocation of ventilators during an influenza pandemic have based criteria predominantly on the principles of utility and efficiency, that is, promoting actions that maximize the greatest good for the greatest number of people. However, haphazardly applying utility and efficiency potentially disadvantages marginalized populations who might be at increased risk of severe reactions to H1N1. In Canada, Aboriginals represent 3% of Canadians, yet 11% of H1N1 cases requiring hospitalization involve Aboriginal persons. Aboriginal persons suffer from high rates of obesity due to socio-economic inequalities. Obesity is also a risk factor for severe H1N1 reactions. Yet, since obesity is found to increase the duration of stay in ventilated beds and a long stay is not considered an optimal use of ventilators, applying the principles of utility and efficiency may magnify existing social inequalities. Although promoting utility and efficiency is important, other ethical principles, such as equity and need, require thoughtful consideration and implementation. Furthermore, since public resources are being used to address a public health hazard, the viewpoints of the public, and specifically stakeholders who will be disproportionately affected, should inform decision-makers. Finally, giving attention to the needs and rights of marginalized populations means that ventilators should not be allocated based on criteria that exacerbate the social injustices faced by these groups of people.
Winkler, Jon; Munk, Jeffrey; Woods, Jason
2018-04-01
Increasing insulation levels and improved windows are reducing sensible cooling loads in high-efficiency homes. This trend raises concerns that the resulting shift in the balance of sensible and latent cooling loads may result in higher indoor humidity, occupant discomfort, and stunted adoption of high-efficiency homes. This study utilizes established moisture-buffering and air-conditioner latent degradation models in conjunction with an approach to stochastically model internal gains. Building loads and indoor humidity levels are compared for simulations of typical new construction homes and high-efficiency homes in 10 US cities. The sensitivity of indoor humidity to changes in cooling set point, air-conditioner capacity,more » and blower control parameters are evaluated. The results show that high-efficiency homes in humid climates have cooling loads with a higher fraction of latent loads than the typical new construction home, resulting in higher indoor humidity. Reducing the cooling set point is the easiest method to reduce indoor humidity, but it is not energy efficient, and overcooling may lead to occupant discomfort. Eliminating the blower operation at the end of cooling cycles and reducing the cooling airflow rate also reduce indoor humidity and with a smaller impact on energy use and comfort.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Jon; Munk, Jeffrey; Woods, Jason
Increasing insulation levels and improved windows are reducing sensible cooling loads in high-efficiency homes. This trend raises concerns that the resulting shift in the balance of sensible and latent cooling loads may result in higher indoor humidity, occupant discomfort, and stunted adoption of high-efficiency homes. This study utilizes established moisture-buffering and air-conditioner latent degradation models in conjunction with an approach to stochastically model internal gains. Building loads and indoor humidity levels are compared for simulations of typical new construction homes and high-efficiency homes in 10 US cities. The sensitivity of indoor humidity to changes in cooling set point, air-conditioner capacity,more » and blower control parameters are evaluated. The results show that high-efficiency homes in humid climates have cooling loads with a higher fraction of latent loads than the typical new construction home, resulting in higher indoor humidity. Reducing the cooling set point is the easiest method to reduce indoor humidity, but it is not energy efficient, and overcooling may lead to occupant discomfort. Eliminating the blower operation at the end of cooling cycles and reducing the cooling airflow rate also reduce indoor humidity and with a smaller impact on energy use and comfort.« less
Water oxidation by a nickel-glycine catalyst.
Wang, Dong; Ghirlanda, Giovanna; Allen, James P
2014-07-23
The utilization of solar energy requires an efficient means for its storage as chemical energy. In bioinspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are needed to avoid excessive driving potentials. In this paper, we demonstrate the utility of a novel complex utilizing earth-abundant Ni in combination with glycine as an efficient catalyst with a modest overpotential of 0.475 ± 0.005 V at a current density of 1 mA/cm(2) at pH 11. Catalysis requires the presence of the amine moiety with the glycine most likely coordinating the Ni in a 4:1 molar ratio. The production of molecular oxygen at a high potential is verified by measurement of the change in oxygen concentration, yielding a Faradaic efficiency of 60 ± 5%. The catalytic species is most likely a heterogeneous Ni-hydroxide formed by electrochemical oxidation. This Ni species can achieve a current density of 4 mA/cm(2) that persists for at least 10 h. Based upon the observed pH dependence of the current amplitude and oxidation/reduction peaks, the catalytic mechanism is an electron-proton coupled process.
Design and implementation of online automatic judging system
NASA Astrophysics Data System (ADS)
Liang, Haohui; Chen, Chaojie; Zhong, Xiuyu; Chen, Yuefeng
2017-06-01
For lower efficiency and poorer reliability in programming training and competition by currently artificial judgment, design an Online Automatic Judging (referred to as OAJ) System. The OAJ system including the sandbox judging side and Web side, realizes functions of automatically compiling and running the tested codes, and generating evaluation scores and corresponding reports. To prevent malicious codes from damaging system, the OAJ system utilizes sandbox, ensuring the safety of the system. The OAJ system uses thread pools to achieve parallel test, and adopt database optimization mechanism, such as horizontal split table, to improve the system performance and resources utilization rate. The test results show that the system has high performance, high reliability, high stability and excellent extensibility.
Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage.
Fu, Yongping; Cai, Xin; Wu, Hongwei; Lv, Zhibin; Hou, Shaocong; Peng, Ming; Yu, Xiao; Zou, Dechun
2012-11-08
A novel type of flexible fiber/wearable supercapacitor that is composed of two fiber electrodes - a helical spacer wire and an electrolyte - is demonstrated. In the carbon-based fiber supercapacitor (FSC), which has high capacitance performance, commercial pen ink is directly utilized as the electrochemical material. FSCs have potential benefits in the pursuit of low-cost, large-scale, and efficient flexible/wearable energy storage systems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laser-assisted solar cell metallization processing
NASA Technical Reports Server (NTRS)
Dutta, S.
1984-01-01
Laser assisted processing techniques utilized to produce the fine line, thin metal grid structures that are required to fabricate high efficiency solar cells are investigated. The tasks comprising these investigations are summarized. Metal deposition experiments are carried out utilizing laser assisted pyrolysis of a variety of metal bearing polymer films and metalloorganic inks spun onto silicon substrates. Laser decomposition of spun on silver neodecanoate ink yields very promising results. Solar cell comb metallization patterns are written using this technique.
High-Efficiency Solar Thermal Vacuum Demonstration Completed for Refractive Secondary Concentrator
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2001-01-01
Common to many of the space applications that utilize solar thermal energy--such as electric power conversion, thermal propulsion, and furnaces--is a need for highly efficient, solar concentration systems. An effort is underway at the NASA Glenn Research Center to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (>2000 K). The innovative refractive secondary concentrator offers significant advantages over all other types of secondary concentrators. The refractive secondary offers the highest throughput efficiency, provides for flux tailoring, requires no active cooling, relaxes the pointing and tracking requirements of the primary concentrator, and enables very high system concentration ratios. This technology has broad applicability to any system that requires the conversion of solar energy to heat. Glenn initiated the development of the refractive secondary concentrator in support of Shooting Star, a solar thermal propulsion flight experiment, and continued the development in support of Space Solar Power.
[Mechanism and technology of recovery flue gas desulphurization with magnesium oxide].
Cui, Ke; Chai, Ming; Xu, Kang-fu; Ma, Yong-liang
2006-05-01
Taking magnesium oxide slurry as absorption solution, the simulation of bubbling absorption process of mixed SO2 gases was observed in laboratory. Experiment results show that with a high efficiency and stable situation, acidification of absorbing solution was caused by HSO3-; the acidification trend was in accordance with the pattern of hydrolyzing of SO2, pH changes slowly at high pH value with SO3(2-) and rapidly at low value with HSO3-. The experiments also show the insensitive effect of liquid temperature on the high desulphurization efficiency. With relatively high dissolution rate and oxidizability of MgSO3 as well as the high solubility of MgSO4, the desulphurization efficiency utilization of MgO. Industrial experiment of FGD of coal-fired boiler showed that by recycling absorbing liquid could be raised to the concentration of MgSO4 to the saturation concentration at the operation temperature (40-50 degrees C) without any adverse effects on FGD efficiency. Refinement and enrichment of active substance could promote the desulphurization process, thus showed the availability of technical and economy feasibility of recovery technology.
Duan, Jin-ao; Su, Shu-lan; Guo, Sheng; Jiang, Shu; Liu, Pei; Yan, Hui; Qian, Da-wei; Zhu, Hua-xu; Tang, Yu-ping; Wu, Qi-nan
2015-09-01
The objects of research on the resources chemistry of Chinese medicinal materials (RCCMM) are promotion of efficient production, rational utilization and improving quality of CMM and natural products. The development of TCM cause depends on the efficient utilization and sustainable development of CMM, hinges on the technologies and methods for using and discovering medicinal biological resources, stand or fall on the extension of industy chains, detailed utilizaion of resource chemical components by multi-way, multi-level. All of these may help to the recycling utilization and sound development of RCMM. In this article, five respects were discussed to the RCCMM researches and resources recycling utilization ways and goals and tasks. First, based on the principle of resource scarcity, discovering or replacing CMM resources, protecting the rare or endangered species or resources. Second, based on the multifunctionality of CMM, realizing the value-added and value compensation, and promoting the utilization efficiency through systermatic and detailed exploitation and utilization. Third, based on the resource conservation and environment-friendly, reducing raw material consumption, lowering cost, promoting recycling utilization and elevating utilization efficiency. Fourth, based on the stratege of turning harm into good, using the invasive alien biological resources by multi-ways and enriching the medicial resources. Fifth, based on the method of structure modification of chemical components, exploring and enhancing the utility value of resouces chemical substances. These data should provide references and attention for improving the utilization efficiency, promoting the development of recycling economy, and changing the mode of economic growth of agriculture and industry of CMM fundamentally.
Mobile satellite communications technology - A summary of NASA activities
NASA Technical Reports Server (NTRS)
Dutzi, E. J.; Knouse, G. H.
1986-01-01
Studies in recent years indicate that future high-capacity mobile satellite systems are viable only if certain high-risk enabling technologies are developed. Accordingly, NASA has structured an advanced technology development program aimed at efficient utilization of orbit, spectrum, and power. Over the last two years, studies have concentrated on developing concepts and identifying cost drivers and other issues associated with the major technical areas of emphasis: vehicle antennas, speech compression, bandwidth-efficient digital modems, network architecture, mobile satellite channel characterization, and selected space segment technology. The program is now entering the next phase - breadboarding, development, and field experimentation.
Flexible All-Digital Receiver for Bandwidth Efficient Modulations
NASA Technical Reports Server (NTRS)
Gray, Andrew; Srinivasan, Meera; Simon, Marvin; Yan, Tsun-Yee
2000-01-01
An all-digital high data rate parallel receiver architecture developed jointly by Goddard Space Flight Center and the Jet Propulsion Laboratory is presented. This receiver utilizes only a small number of high speed components along with a majority of lower speed components operating in a parallel frequency domain structure implementable in CMOS, and can currently process up to 600 Mbps with standard QPSK modulation. Performance results for this receiver for bandwidth efficient QPSK modulation schemes such as square-root raised cosine pulse shaped QPSK and Feher's patented QPSK are presented, demonstrating the flexibility of the receiver architecture.
Solar powered blackbody-pumped lasers
NASA Astrophysics Data System (ADS)
Christiansen, Walter H.; Sirota, J. M.
1991-02-01
A concept for a solar-powered laser is presented which utilizes an intermediate blackbody cavity to provide a uniform optical pumping environment for the lasant, typically CO or CO2 or possibly a solid state laser medium. High power cw blackbody- pumped lasers with efficiencies on the order of 20 percent or more are feasible. The physical basis of this idea is reviewed. Small scale experiments using a high temperature oven as the optical pump have been carried out with gas laser mixtures. Detailed calculations showing a potential efficiency of 35 percent for blackbody pumped Nd:YAG system are discussed.
High efficiency epitaxial GaAs/GaAs and GaAs/Ge solar cell technology using OM/CVD
NASA Technical Reports Server (NTRS)
Wang, K. L.; Yeh, Y. C. M.; Stirn, R. J.; Swerdling, S.
1980-01-01
A technology for fabricating high efficiency, thin film GaAs solar cells on substrates appropriate for space and/or terrestrial applications was developed. The approach adopted utilizes organometallic chemical vapor deposition (OM-CVD) to form a GaAs layer epitaxially on a suitably prepared Ge epi-interlayer deposited on a substrate, especially a light weight silicon substrate which can lead to a 300 watt per kilogram array technology for space. The proposed cell structure is described. The GaAs epilayer growth on single crystal GaAs and Ge wafer substrates were investigated.
High-performance light-emitting diodes based on carbene-metal-amides
NASA Astrophysics Data System (ADS)
Di, Dawei; Romanov, Alexander S.; Yang, Le; Richter, Johannes M.; Rivett, Jasmine P. H.; Jones, Saul; Thomas, Tudor H.; Abdi Jalebi, Mojtaba; Friend, Richard H.; Linnolahti, Mikko; Bochmann, Manfred; Credgington, Dan
2017-04-01
Organic light-emitting diodes (OLEDs) promise highly efficient lighting and display technologies. We introduce a new class of linear donor-bridge-acceptor light-emitting molecules, which enable solution-processed OLEDs with near-100% internal quantum efficiency at high brightness. Key to this performance is their rapid and efficient utilization of triplet states. Using time-resolved spectroscopy, we establish that luminescence via triplets occurs within 350 nanoseconds at ambient temperature, after reverse intersystem crossing to singlets. We find that molecular geometries exist at which the singlet-triplet energy gap (exchange energy) is close to zero, so that rapid interconversion is possible. Calculations indicate that exchange energy is tuned by relative rotation of the donor and acceptor moieties about the bridge. Unlike other systems with low exchange energy, substantial oscillator strength is sustained at the singlet-triplet degeneracy point.
NASA Astrophysics Data System (ADS)
Various papers on photovoltaics are presented. The general topics considered include: amorphous materials and cells; amorphous silicon-based solar cells and modules; amorphous silicon-based materials and processes; amorphous materials characterization; amorphous silicon; high-efficiency single crystal solar cells; multijunction and heterojunction cells; high-efficiency III-V cells; modeling and characterization of high-efficiency cells; LIPS flight experience; space mission requirements and technology; advanced space solar cell technology; space environmental effects and modeling; space solar cell and array technology; terrestrial systems and array technology; terrestrial utility and stand-alone applications and testing; terrestrial concentrator and storage technology; terrestrial stand-alone systems applications; terrestrial systems test and evaluation; terrestrial flatplate and concentrator technology; use of polycrystalline materials; polycrystalline II-VI compound solar cells; analysis of and fabrication procedures for compound solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Tao; Zhu, Xiaoguang; Tu, Guoli, E-mail: tgl@hust.edu.cn
Efficient inverted polymer solar cells (PSCs) were constructed by utilizing a conjugated polyelectrolyte PF{sub EO}SO{sub 3}Na and zinc oxide to modify the indium tin oxide (ITO) electrode. The ITO electrode modified by PF{sub EO}SO{sub 3}Na and zinc oxide possesses high transparency, increased electron mobility, smoothened surface, and lower work function. PTB7:PC{sub 71}BM inverted PSCs containing the modified ITO electrode achieved a high power conversion efficiency (PCE) of 8.49%, exceeding that of the control device containing a ZnO modified ITO electrode (7.48%). Especially, PCE-10:PC{sub 71}BM inverted polymer solar cells achieved a high PCE up to 9.4%. These results demonstrate a usefulmore » approach to improve the performance of inverted polymer solar cells.« less
NASA Astrophysics Data System (ADS)
Steigerwald, R. L.; Ferraro, A.; Turnbull, F. G.
1983-04-01
Power conditioning systems that interface with photovoltaic arrays are presently investigated for the cases of 5-30 kW residential systems interfacing with a 240-V single-phase utility connection, and 30-200 kW intermediate systems interfacing with a 480-V three-phase utility connection. Both systems require an isolation transformer between the array and the utility interface. A tradeoff study is conducted for numerous transistor and thyristor circuits and configurations, with weighting criteria that include full- and part-load efficiency, size, weight, reliability, ease of control, injected harmonics, reactive power requirements, and parts cost. On the basis of study results, a 10-kW high frequency transistor inverter feeding a high frequency isolation transformer with a sinusoidally shaped current wave was selected.
USDA-ARS?s Scientific Manuscript database
Objectively determining interior egg quality in a fast, efficient manner is difficult. Candling is most often utilized as a quick method for non-destructive assessment of egg quality, but is highly subjective. As you have experienced this week when candling, it is almost impossible for multiple pe...
NASA Technical Reports Server (NTRS)
Oliver, W. R.
1980-01-01
The development of an advanced technology high lift system for an energy efficient transport incorporating a high aspect ratio supercritical wing is described. This development is based on the results of trade studies to select the high lift system, analysis techniques utilized to design the high lift system, and results of a wind tunnel test program. The program included the first experimental low speed, high Reynolds number wind tunnel test for this class of aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, aileron, spoilers, and Mach and Reynolds numbers. Results are discussed and compared with the experimental data and the various aerodynamic characteristics are estimated.
Monitoring agricultural processing electrical energy use and efficiency
USDA-ARS?s Scientific Manuscript database
Energy costs have become proportionately larger as cotton post-harvest processing facilities have utilized other inputs more efficiently. A discrepancy in energy consumption per unit processed between facilities suggests that energy could be utilized more efficiently. Cotton gin facilities were in...
Zhang, Miao; Li, Rong; Cao, Liangliang; Shi, Juanjuan; Liu, Hongjun; Huang, Yan; Shen, Qirong
2014-01-01
Large amounts of refloated algal sludge from Taihu Lake result in secondary environmental pollution due to annual refloatation. This study investigated the possibility to produce bio-organic fertilizer (BIO) using algal sludge as a solid-state fermentation (SSF) medium. Results showed that addition of algal sludge contributed to efficient SFF by a plant growth-promoting rhizobacteria (PGPR) strain SQR9 and improved the nutrient contents in the novel BIO. The optimum water content and initial inoculation size were 45% and 5%, respectively. After 6 days of SSF, the biomass of strain SQR9 was increased to a cell density of more than 5 × 10(7) CFU g(-1). Microcystins were rapidly degraded, and a high germination index value was observed. Plant growth experiments showed that the produced BIO efficiently promoted plant growth. Additional testing showed that the novel SSF process was also suitable for other PGPR strains. This study provides a novel way of high-value utilization of algal sludge from Taihu Lake by producing low-cost but high-quality BIOs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Improving Plant Nitrogen Use Efficiency through Alteration of Amino Acid Transport Processes1[OPEN
Perchlik, Molly
2017-01-01
Improving the efficiency of nitrogen (N) uptake and utilization in plants could potentially increase crop yields while reducing N fertilization and, subsequently, environmental pollution. Within most plants, N is transported primarily as amino acids. In this study, pea (Pisum sativum) plants overexpressing AMINO ACID PERMEASE1 (AAP1) were used to determine if and how genetic manipulation of amino acid transport from source to sink affects plant N use efficiency. The modified plants were grown under low, moderate, or high N fertilization regimes. The results showed that, independent of the N nutrition, the engineered plants allocate more N via the vasculature to the shoot and seeds and produce more biomass and higher seed yields than wild-type plants. Dependent on the amount of N supplied, the AAP1-overexpressing plants displayed improved N uptake or utilization efficiency, or a combination of the two. They also showed significantly increased N use efficiency in N-deficient as well as in N-rich soils and, impressively, required half the amount of N to produce as many fruits and seeds as control plants. Together, these data support that engineering N allocation from source to sink presents an effective strategy to produce crop plants with improved productivity as well as N use efficiency in a range of N environments. PMID:28733388
Tsai, Mitchell H; Huynh, Tinh T; Breidenstein, Max W; O'Donnell, Stephen E; Ehrenfeld, Jesse M; Urman, Richard D
2017-07-01
There has been little in the development or application of operating room (OR) management metrics to non-operating room anesthesia (NORA) sites. This is in contrast to the well-developed management framework for the OR management. We hypothesized that by adopting the concept of physician efficiency, we could determine the applicability of this clinical productivity benchmark for physicians providing services for NORA cases at a tertiary care center. We conducted a retrospective data analysis of NORA sites at an academic, rural hospital, including both adult and pediatric patients. Using the time stamps from WiseOR® (Palo Alto, CA), we calculated site utilization and physician efficiency for each day. We defined scheduling efficiency (SE) as the number of staffed anesthesiologists divided by the number of staffed sites and stratified the data into three categories (SE < 1, SE = 1, and SE >1). The mean physician efficiency was 0.293 (95% CI, [0.281, 0.305]), and the mean site utilization was 0.328 (95% CI, [0.314, 0.343]). When days were stratified by scheduling efficiency (SE < 1, =1, or >1), we found differences between physician efficiency and site utilization. On days where scheduling efficiency was less than 1, that is, there are more sites than physicians, mean physician efficiency (95% CI, [0.326, 0.402]) was higher than mean site utilization (95% CI, [0.250, 0.296]). We demonstrate that scheduling efficiency vis-à-vis physician efficiency as an OR management metric diverge when anesthesiologists travel between NORA sites. When the opportunity to scale operational efficiencies is limited, increasing scheduling efficiency by incorporating different NORA sites into a "block" allocation on any given day may be the only suitable tactical alternative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Ian M.; Goldman, Charles A.; Murphy, Sean
The average cost to utilities to save a kilowatt-hour (kWh) in the United States is 2.5 cents, according to the most comprehensive assessment to date of the cost performance of energy efficiency programs funded by electricity customers. These costs are similar to those documented earlier. Cost-effective efficiency programs help ensure electricity system reliability at the most affordable cost as part of utility planning and implementation activities for resource adequacy. Building on prior studies, Berkeley Lab analyzed the cost performance of 8,790 electricity efficiency programs between 2009 and 2015 for 116 investor-owned utilities and other program administrators in 41 states. Themore » Berkeley Lab database includes programs representing about three-quarters of total spending on electricity efficiency programs in the United States.« less
Tanahashi, Masahiko; Ikeda, Hiroshi; Kubota, Kôhei
2018-05-03
Wood degradation by insects plays important roles for the forest matter cycling. Since wood is deficient in nitrogen compared to the insect body, wood-feeding insects need to assimilate the nitrogen selectively and discard an excess carbon. Such a stoichiometric imbalance between food and body will cause high metabolic cost; therefore, wood-feeding insects may somehow alleviate the stoichiometric imbalance. Here, we investigated the carbon and nitrogen budgets of the larvae of stag beetle, Dorcus rectus, which feed on decaying wood. Assimilation efficiency of ingested wood was 22%, and those values based on the carbon and nitrogen were 27 and 45%, respectively, suggesting the selective digestion of nitrogen in wood. Element-based gross growth efficiency was much higher for nitrogen (45%) than for carbon (3%). As a result, the larvae released 24% of the ingested carbon as volatile, whereas almost no gaseous exchange was observed for nitrogen. Moreover, solubility-based elementary analysis revealed that the larvae mainly utilized alkaline-soluble-water-insoluble fraction of wood, which is rich in nitrogen. Actually, the midgut of the larvae was highly alkaline (pH 10.3). Stag beetle larvae are known to exhibit coprophagy, and here we also confirmed that alkaline-soluble-water-insoluble nitrogen increased again from fresh feces to old feces in the field. Stable isotope analysis suggested the utilization of aerial nitrogen by larvae; however, its actual contribution is still disputable. Those results suggest that D. rectus larvae selectively utilize alkaline-soluble nitrogenous substrates by using their highly alkaline midgut, and perhaps associate with microbes that enhance the nitrogen recycling in feces.
NASA Astrophysics Data System (ADS)
Tanahashi, Masahiko; Ikeda, Hiroshi; Kubota, Kôhei
2018-06-01
Wood degradation by insects plays important roles for the forest matter cycling. Since wood is deficient in nitrogen compared to the insect body, wood-feeding insects need to assimilate the nitrogen selectively and discard an excess carbon. Such a stoichiometric imbalance between food and body will cause high metabolic cost; therefore, wood-feeding insects may somehow alleviate the stoichiometric imbalance. Here, we investigated the carbon and nitrogen budgets of the larvae of stag beetle, Dorcus rectus, which feed on decaying wood. Assimilation efficiency of ingested wood was 22%, and those values based on the carbon and nitrogen were 27 and 45%, respectively, suggesting the selective digestion of nitrogen in wood. Element-based gross growth efficiency was much higher for nitrogen (45%) than for carbon (3%). As a result, the larvae released 24% of the ingested carbon as volatile, whereas almost no gaseous exchange was observed for nitrogen. Moreover, solubility-based elementary analysis revealed that the larvae mainly utilized alkaline-soluble-water-insoluble fraction of wood, which is rich in nitrogen. Actually, the midgut of the larvae was highly alkaline (pH 10.3). Stag beetle larvae are known to exhibit coprophagy, and here we also confirmed that alkaline-soluble-water-insoluble nitrogen increased again from fresh feces to old feces in the field. Stable isotope analysis suggested the utilization of aerial nitrogen by larvae; however, its actual contribution is still disputable. Those results suggest that D. rectus larvae selectively utilize alkaline-soluble nitrogenous substrates by using their highly alkaline midgut, and perhaps associate with microbes that enhance the nitrogen recycling in feces.
Biomolecular surface construction by PDE transform
Zheng, Qiong; Yang, Siyang; Wei, Guo-Wei
2011-01-01
This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high order PDEs. As a consequence, the time integration of high order PDEs can be done efficiently with the fast Fourier transform. The present approach is validated with a variety of test examples in two and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and the MSMS approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surface, i.e., surface area, surface enclosed volume, solvation free energy and surface electrostatic potential. A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform based surface method, we solve the Poisson-Nernst-Planck (PNP) equations with a PDE transform surface of a protein. Second order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform based surface generation method, we apply it to the construction of an excessively large biomolecule, a virus surface capsid. Virus surface morphologies of different resolutions are attained by adjusting the propagation time. Therefore, the present PDE transform provides a multiresolution analysis in the surface visualization. Extensive numerical experiment and comparison with an established surface model indicate that the present PDE transform is a robust, stable and efficient approach for biomolecular surface generation in Cartesian meshes. PMID:22582140
Design, Modeling, Fabrication & Characterization of Industrial Si Solar Cells
NASA Astrophysics Data System (ADS)
Chowdhury, Ahrar Ahmed
Photovoltaic is a viable solution towards meeting the energy demand in an ecofriendly environment. To ensure the mass access in photovoltaic electricity, cost effective approach needs to be adapted. This thesis aims towards substrate independent fabrication process in order to achieve high efficiency cost effective industrial Silicon (Si) solar cells. Most cost-effective structures, such as, Al-BSF (Aluminum Back Surface Field), FSF (Front Surface Field) and bifacial cells are investigated in detail to exploit the efficiency potentials. First off, we introduced two-dimensional simulation model to design and modeling of most commonly used Si solar cells in today's PV arena. Best modelled results of high efficiency Al-BSF, FSF and bifacial cells are 20.50%, 22% and 21.68% respectively. Special attentions are given on the metallization design on all the structures in order to reduce the Ag cost. Furthermore, detail design and modeling were performed on FSF and bifacial cells. The FSF cells has potentials to gain 0.42%abs efficiency by combining the emitter design and front surface passivation. The prospects of bifacial cells can be revealed with the optimization of gridline widths and gridline numbers. Since, bifacial cells have metallization on both sides, a double fold cost saving is possible via innovative metallization design. Following modeling an effort is undertaken to reach the modelled result in fabrication the process. We proposed substrate independent fabrication process aiming towards establishing simultaneous processing sequences for both monofacial and bifacial cells. Subsequently, for the contact formation cost effective screen-printed technology is utilized throughout this thesis. The best Al-BSF cell attained efficiency ˜19.40%. Detail characterization was carried out to find a roadmap of achieving >20.50% efficiency Al-BSF cell. Since, n-type cell is free from Light Induced degradation (LID), recently there is a growing interest on FSF cell. Our best fabricated result of FSF cell achieved ˜18.40% efficiency. Characterizations on such cells provide that, cell performance can be further improved by utilizing high lifetime base wafer. We showed a step by step improvement on the device parameters to achieve ˜22% efficiency FSF cell. Finally, bifacial cells were fabricated with 13.32% front and 9.65% rear efficiency. The efficiency limitation is due to the quality of base wafer. Detail resistance breakdown was conducted on these cells to analyze parasitic resistance losses. It was found that base and gridline resistances dominated the FF loss. However, very low contact resistance of 20 mO-cm 2 at front side and 2 mO-cm2 at the rear side was observed by utilizing same Ag paste for front and rear contact formation. This might provide a pathway towards the search of an optimized Ag paste to attain high efficiency screen-printed bifacial cell. Detail investigations needs to be carried out to unveil the property of this Ag paste. In future work, more focus will be given on the metallization design to incorporate further reduction in Ag cost. Al2O3 passivation layer will be incorporated as a means to attain ˜23% screen-printed bifacial cell.
NASA Astrophysics Data System (ADS)
Milanovic, Veljko; Kasturi, Abhishek; Hachtel, Volker
2015-02-01
A high brightness Head-Up Display (HUD) module was demonstrated with a fast, dual-axis MEMS mirror that displays vector images and text, utilizing its ~8kHz bandwidth on both axes. Two methodologies were evaluated: in one, the mirror steers a laser at wide angles of <48° on transparent multi-color fluorescent emissive film and displays content directly on the windshield, and in the other the mirror displays content on reflective multi-color emissive phosphor plates reflected off the windshield to create a virtual image for the driver. The display module is compact, consisting of a single laser diode, off-the-shelf lenses and a MEMS mirror in combination with a MEMS controller to enable precise movement of the mirror's X- and Y-axis. The MEMS controller offers both USB and wireless streaming capability and we utilize a library of functions on a host computer for creating content and controlling the mirror. Integration with smart phone applications is demonstrated, utilizing the mobile device both for content generation based on various messages or data, and for content streaming to the MEMS controller via Bluetooth interface. The display unit is highly resistant to vibrations and shock, and requires only ~1.5W to operate, even with content readable in sunlit outdoor conditions. The low power requirement is in part due to a vector graphics approach, allowing the efficient use of laser power, and also due to the use of a single, relatively high efficiency laser and simple optics.
A High-Performing Direct Carbon Fuel Cell with a 3D Architectured Anode Operated Below 600 °C.
Wu, Wei; Zhang, Yunya; Ding, Dong; He, Ting
2018-01-01
Direct carbon fuel cells (DCFCs) are highly efficient power generators fueled by abundant and cheap solid carbons. However, the limited triple-phase boundaries (TPBs) in the fuel electrode, due to the lack of direct contact among carbon, electrode, and electrolyte, inhibit the performance and result in poor fuel utilization. To address the challenges of low carbon oxidation activity and low carbon utilization, a highly efficient, 3D solid-state architected anode is developed to enhance the performance of DCFCs below 600 °C. The cell with the 3D textile anode framework, Gd:CeO 2 -Li/Na 2 CO 3 composite electrolyte, and Sm 0.5 Sr 0.5 CoO 3 cathode demonstrates excellent performance with maximum power densities of 143, 196, and 325 mW cm -2 at 500, 550, and 600 °C, respectively. At 500 °C, the cells can be operated steadily with a rated power density of ≈0.13 W cm -2 at a constant current density of 0.15 A cm -2 with a carbon utilization over 85.5%. These results, for the first time, demonstrate the feasibility of directly electrochemical oxidation of solid carbon at 500-600 °C, representing a promising strategy in developing high-performing fuel cells and other electrochemical systems via the integration of 3D architected electrodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bacterial exopolymer utilization by a harpacticoid copepod: A methodology and results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decho, A.W.; Moriarty, D.J.W.
1990-07-01
Exopolymer mucus secretions of bacteria and diatoms are potential foods for benthic animals. These secretions are coincidently ingested by animals during consumption of microbial cells and sediments. The utilization of microbial secretions was investigated with exopolymer derived from a marine bacterium (pseudomonas sp.) from seagrass beds and a harpacticoid copepod Laophonte sp. from the same habitat. A new technique was developed to examine ingestion, absorption, and absorption efficiencies of these bacterial secretions by consumers. Exopolymer mucus (from the bacterium in stationary phase) was labeled with {sup 14}C, collected, purified, and bound onto bacterium-sized beads. The exopolymer slime coating mimicked themore » coatings associated with many marine bacteria. Results from feeding experiments where the coated beads were mixed with sediment demonstrated that the mucus-exopolymer secretions of bacteria were ingested and utilized by Laophonte sp. Absorption efficiencies, determined directly, were > 80% in the presence of other food resources, indicating that exopolymer is potentially a highly labile C resource for this animal.« less
Principle and Performance of Gas Self-inducing Reactors and Applications to Biotechnology.
Ye, Qin; Li, Zhimin; Wu, Hui
2016-01-01
Gas-liquid contacting is an important unit operation in chemical and biochemical processes, but the gas utilization efficiency is low in conventional gas-liquid contactors especially for sparingly soluble gases. The gas self-inducing impeller is able to recycle gas in the headspace of a reactor to the liquid without utilization of additional equipment such as a gas compressor, and thus, the gas utilization efficiency is significantly enhanced. Gas induction is caused by the low pressure or deep vortex at a sufficiently high impeller speed, and the speed at which gas induction starts is termed the critical speed. The critical impeller speed, gas-induction flow rate, power consumption, and gas-liquid mass transfer are determined by the impeller design and operation conditions. When the reactor is operated in a dead-end mode, all the introduced gas can be completely used, and this feature is especially favorable to flammable and/or toxic gases. In this article, the principles, designs, characteristics of self-inducing reactors, and applications to biotechnology are described.
Kinetic efficiency of polar monolithic capillary columns in high-pressure gas chromatography.
Kurganov, A A; Korolev, A A; Shiryaeva, V E; Popova, T P; Kanateva, A Yu
2013-11-08
Poppe plots were used for analysis of kinetic efficiency of monolithic sorbents synthesized in quartz capillaries for utilization in high-pressure gas chromatography. Values of theoretical plate time and maximum number of theoretical plates occurred to depend significantly on synthetic parameters such as relative amount of monomer in the initial polymerization mixture, temperature and polymerization time. Poppe plots let one to find synthesis conditions suitable either for high-speed separations or for maximal efficiency. It is shown that construction of kinetic Poppe curves using potential Van Deemter data demands compressibility of mobile phase to be taken into consideration in the case of gas chromatography. Model mixture of light hydrocarbons C1 to C4 was then used for investigation of influence of carrier gas nature on kinetic efficiency of polymeric monolithic columns. Minimal values of theoretical plate times were found for CO2 and N2O carrier gases. Copyright © 2013 Elsevier B.V. All rights reserved.
Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics
NASA Astrophysics Data System (ADS)
Tsai, Meng-Che; Lee, Tsung-Xian
2017-02-01
Due to the worldwide portable devices and illumination technology trends, researches interest in laser diodes applications are booming in recent years. One of the popular and potential LDs applications is near-eye display used in VR/AR. An ideal near-eye display needs to provide high resolution, wide FOV imagery with compact magnifying optics, and long battery life for prolonged use. However, previous studies still cannot reach high light utilization efficiency in illumination and imaging optical systems which should be raised as possible to increase wear comfort. To meet these needs, a waveguide illumination system of near-eye display is presented in this paper. We focused on proposing a high efficiency RGB LDs light engine which could reduce power consumption and increase flexibility of mechanism design by using freeform TIR reflectors instead of beam splitters. By these structures, the total system efficiency of near-eye display is successfully increased, and the improved results in efficiency and fabrication tolerance of near-eye displays are shown in this paper.
NASA Astrophysics Data System (ADS)
Zang, Yue; Gao, Xiumin; Xin, Qing; Lin, Jun; Zhao, Jufeng
2017-06-01
A highly efficient donor polymer, PTB7-Th, combined with acceptor fullerene PC71BM was introduced as the subcell in the series-connected tandem devices to achieve high-performance polymer tandem solar cells. Design of the device architecture was investigated using modeling and simulation methods to identify the optimal structure and to predict performance of the tandem cells. To address the challenge of current matching between the constituent subcells, the effect of active layer thickness, different device structure, and use of ultrathin Ag film were analyzed. It was found that the distribution of optical intensity in the tandem structure can be optimized through the optical spacer effect of interfacial layers and micro-cavity effect derived from the embedded ultrathin Ag film. Our results indicate that the efficient light utilization with appropriate subcells can allow achievement of power conversion efficiency of 12%, which can be 25% higher than that of a single cell of PTB7-Th.
Holtman, Kevin M; Offeman, Richard D; Franqui-Villanueva, Diana; Bayati, Andre K; Orts, William J
2015-03-11
Almond hulls contain considerable proportions (37% by dry weight) of water-soluble, fermentable sugars (sucrose, glucose, and fructose), which can be extracted for industrial purposes. The maximum optimal solids loading was determined to be 20% for sugar extraction, and the addition of 0.5% (w/v) pectinase aided in maintaining a sufficient free water volume for sugar recovery. A laboratory countercurrent extraction experiment utilizing a 1 h steep followed by three extraction (wash) stages produced a high-concentration (131 g/L fermentable sugar) syrup. Overall, sugar recovery efficiency was 88%. The inner stage washing efficiencies were compatible with solution equilibrium calculations, indicating that efficiency was high. The concentrated sugar syrup was fermented to ethanol at high efficiency (86% conversion), and ethanol concentrations in the broth were 7.4% (v/v). Thin stillage contained 233 g SCOD/L, which was converted to biomethane at an efficiency of 90% with a biomethane potential of 297 mL/g SCODdestroyed. Overall, results suggested that a minima of 49 gal (185 L) ethanol and 75 m(3) methane/t hulls (dry whole hull basis) are achievable.
Application of selected advanced technologies to high performance, single-engine, business airplanes
NASA Technical Reports Server (NTRS)
Domack, C. S.; Martin, G. L.
1984-01-01
Improvements in performance and fuel efficiency are evaluated for five new configurations of a six place, single turboprop, business airplane derived from a conventional, aluminum construction baseline aircraft. Results show the greatest performance gains for enhancements in natural laminar flow. A conceptual diesel engine provides greater fuel efficiency but reduced performance. Less significant effects are produced by the utilization of composite materials construction or by reconfiguration from tractor to pusher propeller installation.
Gong, Weili; Dai, Lin; Zhang, Huaiqiang; Zhang, Lili; Wang, Lushan
2018-01-01
Xylan constituted with β-1,4-D-xylose linked backbone and diverse substituted side-chains is the most abundant hemicellulose component of biomass, which can be completely and rapidly degraded into fermentable sugars by Aspergillus niger . This is of great value for obtaining renewable biofuels and biochemicals. To clarify the underlying mechanisms associated with highly efficient xylan degradation, assimilation, and metabolism by A. niger , we utilized functional proteomics to analyze the secreted proteins, sugar transporters, and intracellular proteins of A. niger An76 grown on xylan-based substrates. Results demonstrated that the complete xylanolytic enzyme system required for xylan degradation and composed of diverse isozymes was secreted in a sequential order. Xylan-backbone-degrading enzymes were preferentially induced by xylose or other soluble sugars, which efficiently produced large amounts of xylooligosaccharides (XOS) and xylose; however, XOS was more efficient than xylose in triggering the expression of the key transcription activator XlnR, resulting in higher xylanase activity and shortening xylanase-production time. Moreover, the substituted XOS was responsible for improving the abundance of side-chain-degrading enzymes, specific transporters, and key reductases and dehydrogenases in the pentose catabolic pathway. Our findings indicated that industries might be able to improve the species and concentrations of xylan-degrading enzymes and shorten fermentation time by adding abundant intermediate products of natural xylan (XOS) to cultures of filamentous fungi.
A Highly Efficient Xylan-Utilization System in Aspergillus niger An76: A Functional-Proteomics Study
Gong, Weili; Dai, Lin; Zhang, Huaiqiang; Zhang, Lili; Wang, Lushan
2018-01-01
Xylan constituted with β-1,4-D-xylose linked backbone and diverse substituted side-chains is the most abundant hemicellulose component of biomass, which can be completely and rapidly degraded into fermentable sugars by Aspergillus niger. This is of great value for obtaining renewable biofuels and biochemicals. To clarify the underlying mechanisms associated with highly efficient xylan degradation, assimilation, and metabolism by A. niger, we utilized functional proteomics to analyze the secreted proteins, sugar transporters, and intracellular proteins of A. niger An76 grown on xylan-based substrates. Results demonstrated that the complete xylanolytic enzyme system required for xylan degradation and composed of diverse isozymes was secreted in a sequential order. Xylan-backbone-degrading enzymes were preferentially induced by xylose or other soluble sugars, which efficiently produced large amounts of xylooligosaccharides (XOS) and xylose; however, XOS was more efficient than xylose in triggering the expression of the key transcription activator XlnR, resulting in higher xylanase activity and shortening xylanase-production time. Moreover, the substituted XOS was responsible for improving the abundance of side-chain-degrading enzymes, specific transporters, and key reductases and dehydrogenases in the pentose catabolic pathway. Our findings indicated that industries might be able to improve the species and concentrations of xylan-degrading enzymes and shorten fermentation time by adding abundant intermediate products of natural xylan (XOS) to cultures of filamentous fungi. PMID:29623069
Straka, Levi; Rittmann, Bruce E
2018-02-01
The viability of large-scale microalgae cultivation depends on providing optimal growth conditions, for which a key operational parameter is culture density. Using Synechocystis sp. PCC 6803, we conducted a series of fixed-density, steady-state experiments and one batch-growth experiment to investigate the role of culture density on biomass production and light utilization efficiency. In all cases, the fixed-density, steady-state experiments and batch-growth experiment showed good agreement. The highest biomass production rates (260 mg L -1 d -1 ) and efficiency for converting light energy to biomass (0.80 μg (μmol photons) -1 ) occurred together at a culture density near 760 mg L -1 , which approximately corresponded to the lowest culture density where almost all incident light was absorbed. The ratio of OD 680 /OD 735 increased with culture density up to the point of maximum productivity, where it plateaued (at a value of 2.4) for higher culture densities. This change in OD 680 /OD 735 indicates a photoacclimation effect that depended on culture density. Very high culture densities led to a sharp decline in efficiency of biomass production per photons absorbed, likely due to a combination of increased decay relative to growth, metabolic changes due to cell-cell interactions, and photodamage due to mixing between regions with high light intensity and zero light intensity. © 2017 Wiley Periodicals, Inc.
Multi-Ferroic Polymer Nanoparticle Composites for Next Generation Metamaterials
2014-07-28
particle size of magnetite nanoparticles. The PI will continue to develop composites that could be utilized for developing high- bandwidth radio frequency...to improve the efficiency and decrease the size of the device. High performance stretchable magneto-dielectric materials can be accomplished using...nanoparticles oxidize at dimensions smaller than the critical size for superparamagnetic to ferromagnetic transition, which is essential for minimal
Stirling engine with air working fluid
Corey, John A.
1985-01-01
A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.
Undersea Laser Communication with Narrow Beams
2015-09-29
Abstract Laser sources enable highly efficient optical communications links due to their ability to be focused into very directive beam profiles...Recent atmospheric and space optical links have demonstrated robust laser communications links at high rate with techniques that are applicable to the...undersea environment. These techniques contrast to the broad-angle beams utilized in most reported demonstrations of undersea optical communications
Performance Evaluation of FAST TCP Traffic-Flows in Multihomed MANETs
NASA Astrophysics Data System (ADS)
Mudassir, Mumajjed Ul; Akram, Adeel
In Mobile Ad hoc Networks (MANETs) an efficient communication protocol is required at the transport layer. Mobile nodes moving around will have temporary and rather short-lived connectivity with each other and the Internet, thus requiring efficient utilization of network resources. Moreover the problems arising due to high mobility, collision and congestion must also be considered. Multihoming allows higher reliability and enhancement of network throughput. FAST TCP is a new promising transport layer protocol developed for high-speed high-latency networks. In this paper, we have analyzed the performance of FAST TCP traffic flows in multihomed MANETs and compared it with standard TCP (TCP Reno) traffic flows in non-multihomed MANETs.
Thermoelectric energy conversion with solid electrolytes
NASA Astrophysics Data System (ADS)
Cole, T.
1983-09-01
The alkali metal thermoelectric converter (AMTEC) is a device for the direct conversion of heat to electrical energy. The sodium ion conductor beta-double prime-alumina is used to form a high-temperature regenerative concentration cell for elemental sodium. An AMTEC of mature design should have an efficiency of 20 to 40 percent, a power density of 0.5 kilowatt per kilogram or more, no moving parts, low maintenance requirements, high durability, and efficiency independent of size. It should be usable with high-temperature combustion, nuclear, or solar heat sources. Experiments have demonstrated the feasibility of the AMTEC and confirmed the theoretical analysis of the device. A wide range of applications from aerospace power to utility power plants appears possible.
Thermoelectric energy conversion with solid electrolytes.
Cole, T
1983-09-02
The alkali metal thermoelectric converter (AMTEC) is a device for the direct conversion of heat to electrical energy. The sodium ion conductor beta"- alumina is used to form a high-temperature regenerative concentration cell for elemental sodium. An AMTEC of mature design should have an efficiency of 20 to 40 percent, a power density of 0.5 kilowatt per kilogram or more, no moving parts, low maintenance requirements, high durability, and efficiency independent of size. It should be usable with high-temperature combustion, nuclear, or solar heat sources. Experiments have demonstrated the feasibility of the AMTEC and confirmed the theoretical analysis of the device. A wide range of applications from aerospace power to utility power plants appears possible.
ERIC Educational Resources Information Center
Gaddy, Carol T., Ed.; Wells, Kathy, Ed.
This collection of reprints offers practical solutions, not readily available elsewhere, to everyday energy problems, such as high utility bills, insulating windows, getting more gas mileage, or buying a more efficient washer or refrigerator. The Arkansas Energy Office provides a weekly column of energy news and conservation tips to newspapers,…
The Downy Mildews: so many genomes, so little time
USDA-ARS?s Scientific Manuscript database
Downy mildews (DMs) are obligate biotrophic oomycete pathogens that cause diseases on a wide range of plant species. Individual species exhibit a high degree of host specialization. We have utilized next generation sequencing to efficiently generate de novo genome assemblies of multiple geographica...
Highly efficient solar vapour generation via hierarchically nanostructured gels.
Zhao, Fei; Zhou, Xingyi; Shi, Ye; Qian, Xin; Alexander, Megan; Zhao, Xinpeng; Mendez, Samantha; Yang, Ronggui; Qu, Liangti; Yu, Guihua
2018-04-02
Solar vapour generation is an efficient way of harvesting solar energy for the purification of polluted or saline water. However, water evaporation suffers from either inefficient utilization of solar energy or relies on complex and expensive light-concentration accessories. Here, we demonstrate a hierarchically nanostructured gel (HNG) based on polyvinyl alcohol (PVA) and polypyrrole (PPy) that serves as an independent solar vapour generator. The converted energy can be utilized in situ to power the vaporization of water contained in the molecular meshes of the PVA network, where water evaporation is facilitated by the skeleton of the hydrogel. A floating HNG sample evaporated water with a record high rate of 3.2 kg m -2 h -1 via 94% solar energy from 1 sun irradiation, and 18-23 litres of water per square metre of HNG was delivered daily when purifying brine water. These values were achievable due to the reduced latent heat of water evaporation in the molecular mesh under natural sunlight.
Kang, Jin Soo; Choi, Hyelim; Kim, Jin; Park, Hyeji; Kim, Jae-Yup; Choi, Jung-Woo; Yu, Seung-Ho; Lee, Kyung Jae; Kang, Yun Sik; Park, Sun Ha; Cho, Yong-Hun; Yum, Jun-Ho; Dunand, David C; Choe, Heeman; Sung, Yung-Eun
2017-09-01
Mesoscopic solar cells based on nanostructured oxide semiconductors are considered as a promising candidates to replace conventional photovoltaics employing costly materials. However, their overall performances are below the sufficient level required for practical usages. Herein, this study proposes an anodized Ti foam (ATF) with multidimensional and hierarchical architecture as a highly efficient photoelectrode for the generation of a large photocurrent. ATF photoelectrodes prepared by electrochemical anodization of freeze-cast Ti foams have three favorable characteristics: (i) large surface area for enhanced light harvesting, (ii) 1D semiconductor structure for facilitated charge collection, and (iii) 3D highly conductive metallic current collector that enables exclusion of transparent conducting oxide substrate. Based on these advantages, when ATF is utilized in dye-sensitized solar cells, short-circuit photocurrent density up to 22.0 mA cm -2 is achieved in the conventional N719 dye-I 3 - /I - redox electrolyte system even with an intrinsically inferior quasi-solid electrolyte. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Highly efficient solar vapour generation via hierarchically nanostructured gels
NASA Astrophysics Data System (ADS)
Zhao, Fei; Zhou, Xingyi; Shi, Ye; Qian, Xin; Alexander, Megan; Zhao, Xinpeng; Mendez, Samantha; Yang, Ronggui; Qu, Liangti; Yu, Guihua
2018-06-01
Solar vapour generation is an efficient way of harvesting solar energy for the purification of polluted or saline water. However, water evaporation suffers from either inefficient utilization of solar energy or relies on complex and expensive light-concentration accessories. Here, we demonstrate a hierarchically nanostructured gel (HNG) based on polyvinyl alcohol (PVA) and polypyrrole (PPy) that serves as an independent solar vapour generator. The converted energy can be utilized in situ to power the vaporization of water contained in the molecular meshes of the PVA network, where water evaporation is facilitated by the skeleton of the hydrogel. A floating HNG sample evaporated water with a record high rate of 3.2 kg m-2 h-1 via 94% solar energy from 1 sun irradiation, and 18-23 litres of water per square metre of HNG was delivered daily when purifying brine water. These values were achievable due to the reduced latent heat of water evaporation in the molecular mesh under natural sunlight.
Meng, Xianguang; Wang, Tao; Liu, Lequan; Ouyang, Shuxin; Li, Peng; Hu, Huilin; Kako, Tetsuya; Iwai, Hideo; Tanaka, Akihiro; Ye, Jinhua
2014-10-20
The photothermal conversion of CO2 provides a straightforward and effective method for the highly efficient production of solar fuels with high solar-light utilization efficiency. This is due to several crucial features of the Group VIII nanocatalysts, including effective energy utilization over the whole range of the solar spectrum, excellent photothermal performance, and unique activation abilities. Photothermal CO2 reaction rates (mol h(-1) g(-1)) that are several orders of magnitude larger than those obtained with photocatalytic methods (μmol h(-1) g(-1)) were thus achieved. It is proposed that the overall water-based CO2 conversion process can be achieved by combining light-driven H2 production from water and photothermal CO2 conversion with H2. More generally, this work suggests that traditional catalysts that are characterized by intense photoabsorption will find new applications in photo-induced green-chemistry processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigation of a para-ortho hydrogen reactor for application to spacecraft sensor cooling
NASA Technical Reports Server (NTRS)
Nast, T. C.
1983-01-01
The utilization of solid hydrogen in space for sensor and instrument cooling is a very efficient technique for long term cooling or for cooling at high heat rates. The solid hydrogen can provide temperatures as low as 7 to 8 K to instruments. Vapor cooling is utilized to reduce parasitic heat inputs to the 7 to 8 K stage and is effective in providing intermediate cooling for instrument components operating at higher temperatures. The use of solid hydrogen in place of helium may lead to weight reductions as large as a factor of ten and an attendent reduction in system volume. The results of an investigation of a catalytic reactor for use with a solid hydrogen cooling system is presented. Trade studies were performed on several configurations of reactor to meet the requirements of high reactor efficiency with low pressure drop. Results for the selected reactor design are presented for both liquid hydrogen systems operating at near atmospheric pressure and the solid hydrogen cooler operating as low as 1 torr.
An Analysis of Organizational Performance Based on Hospital Specialization Level and Strategy Type
Kim, Han-Sung; Kim, Young-Hoon; Woo, Jung-Sik; Hyun, Sook-Jung
2015-01-01
Introduction Hospitals are studying the focused factory concept and attempting to increase their power in a competitive industry by becoming more specialized. Methodology This study uses the information theory index (ITI) and the Herfindahl-Hirschman index (HHI) to analyze the extent of specialization by Korean hospitals that receive national health insurance reimbursements. Hierarchical regression analysis is used to assess the impact of hospital specialization on the following four aspects of operational performance: productivity, profitability, efficiency and quality of care. Study Results The results show that a focused strategy (high HHI) improves the income and adjusted number of patients per specialist through the efficient utilization of human resources. However, a diversified strategy (high ITI) improves the hospital utilization ratio, income per bed and adjusted number of patients per bed (controlling for material resources such as beds). In addition, as the concentration index increases, case-mix mortality rates and referral rates decrease, indicating that specialization has a positive relationship with quality of care. PMID:26218570
An Analysis of Organizational Performance Based on Hospital Specialization Level and Strategy Type.
Kim, Han-Sung; Kim, Young-Hoon; Woo, Jung-Sik; Hyun, Sook-Jung
2015-01-01
Hospitals are studying the focused factory concept and attempting to increase their power in a competitive industry by becoming more specialized. This study uses the information theory index (ITI) and the Herfindahl-Hirschman index (HHI) to analyze the extent of specialization by Korean hospitals that receive national health insurance reimbursements. Hierarchical regression analysis is used to assess the impact of hospital specialization on the following four aspects of operational performance: productivity, profitability, efficiency and quality of care. The results show that a focused strategy (high HHI) improves the income and adjusted number of patients per specialist through the efficient utilization of human resources. However, a diversified strategy (high ITI) improves the hospital utilization ratio, income per bed and adjusted number of patients per bed (controlling for material resources such as beds). In addition, as the concentration index increases, case-mix mortality rates and referral rates decrease, indicating that specialization has a positive relationship with quality of care.
Ko, Ja Kyong; Um, Youngsoon; Lee, Sun-Mi
2016-12-01
The efficient fermentation of lignocellulosic hydrolysates in the presence of inhibitors is highly desirable for bioethanol production. Among the inhibitors, acetic acid released during the pretreatment of lignocellulose negatively affects the fermentation performance of biofuel producing organisms. In this study, we evaluated the inhibitory effects of acetic acid on glucose and xylose fermentation by a high performance engineered strain of xylose utilizing Saccharomyces cerevisiae, SXA-R2P-E, harboring a xylose isomerase based pathway. The presence of acetic acid severely decreased the xylose fermentation performance of this strain. However, the acetic acid stress was alleviated by metal ion supplementation resulting in a 52% increased ethanol production rate under 2g/L of acetic acid stress. This study shows the inhibitory effect of acetic acid on an engineered isomerase-based xylose utilizing strain and suggests a simple but effective method to improve the co-fermentation performance under acetic acid stress for efficient bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi
2014-04-01
A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Highly efficient blue and warm white organic light-emitting diodes with a simplified structure
NASA Astrophysics Data System (ADS)
Li, Xiang-Long; Ouyang, Xinhua; Chen, Dongcheng; Cai, Xinyi; Liu, Ming; Ge, Ziyi; Cao, Yong; Su, Shi-Jian
2016-03-01
Two blue fluorescent emitters were utilized to construct simplified organic light-emitting diodes (OLEDs) and the remarkable difference in device performance was carefully illustrated. A maximum current efficiency of 4.84 cd A-1 (corresponding to a quantum efficiency of 4.29%) with a Commission Internationale de l’Eclairage (CIE) coordinate of (0.144, 0.127) was achieved by using N,N-diphenyl-4″-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1, 1‧:4‧, 1″-terphenyl]-4-amine (BBPI) as a non-doped emission layer of the simplified blue OLEDs without carrier-transport layers. In addition, simplified fluorescent/phosphorescent (F/P) hybrid warm white OLEDs without carrier-transport layers were fabricated by utilizing BBPI as (1) the blue emitter and (2) the host of a complementary yellow phosphorescent emitter (PO-01). A maximum current efficiency of 36.8 cd A-1 and a maximum power efficiency of 38.6 lm W-1 were achieved as a result of efficient energy transfer from the host to the guest and good triplet exciton confinement on the phosphorescent molecules. The blue and white OLEDs are among the most efficient simplified fluorescent blue and F/P hybrid white devices, and their performance is even comparable to that of most previously reported complicated multi-layer devices with carrier-transport layers.
Rapid Assembly of DNA via Ligase Cycling Reaction (LCR).
Chandran, Sunil
2017-01-01
The assembly of multiple DNA parts into a larger DNA construct is a requirement in most synthetic biology laboratories. Here we describe a method for the efficient, high-throughput, assembly of DNA utilizing the ligase chain reaction (LCR). The LCR method utilizes non-overlapping DNA parts that are ligated together with the guidance of bridging oligos. Using this method, we have successfully assembled up to 20 DNA parts in a single reaction or DNA constructs up to 26 kb in size.
Lanier, Marion; Cole, Derek C; Istratiy, Yelena; Klein, Michael G; Schwartz, Phillip A; Tjhen, Richard; Jennings, Andy; Hixon, Mark S
2017-06-22
Serine hydrolases are susceptible to potent reversible inhibition by boronic acids. Large collections of chemically diverse boronic acid fragments are commercially available because of their utility in coupling chemistry. We repurposed the approximately 650 boronic acid reagents in our collection as a directed fragment library targeting serine hydrolases and related enzymes. Highly efficient hits (LE > 0.6) often result. The utility of the approach is illustrated with the results against autotaxin, a phospholipase implicated in cardiovascular disease.
Laser ablative synthesis of carbon nanotubes
Smith, Michael W.; Jordan, Kevin; Park, Cheol
2010-03-02
An improved method for the production of single walled carbon nanotubes that utilizes an RF-induction heated side-pumped synthesis chamber for the production of such. Such a method, while capable of producing large volumes of carbon nanotubes, concurrently permits the use of a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization. The method of the present invention utilizes a free electron laser operating at high average and peak fluence to illuminate a rotating and translating graphite/catalyst target to obtain high yields of SWNTs without the use of a vacuum chamber.
Zhou, Yangen; Zhang, Shun; Ding, Yu; Zhang, Leyuan; Zhang, Changkun; Zhang, Xiaohong; Zhao, Yu; Yu, Guihua
2018-06-14
Simultaneous solar energy conversion and storage is receiving increasing interest for better utilization of the abundant yet intermittently available sunlight. Photoelectrodes driving nonspontaneous reversible redox reactions in solar-powered redox cells (SPRCs), which can deliver energy via the corresponding reverse reactions, present a cost-effective and promising approach for direct solar energy harvesting and storage. However, the lack of photoelectrodes having both high conversion efficiency and high durability becomes a bottleneck that hampers practical applications of SPRCs. Here, it is shown that a WO 3 -decorated BiVO 4 photoanode, without the need of extra electrocatalysts, can enable a single-photocatalyst-driven SPRC with a solar-to-output energy conversion efficiency as high as 1.25%. This SPRC presents stable performance over 20 solar energy storage/delivery cycles. The high efficiency and stability are attributed to the rapid redox reactions, the well-matched energy level, and the efficient light harvesting and charge separation of the prepared BiVO 4 . This demonstrated device system represents a potential alternative toward the development of low-cost, durable, and easy-to-implement solar energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression
2015-01-01
A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation. PMID:26601120
Copper-catalyzed selective hydroamination reactions of alkynes
Shi, Shi-Liang; Buchwald, Stephen L.
2014-01-01
The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a longstanding goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective, and step-efficient synthesis of amines is still needed. In this work we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines, and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio-, and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine, and tolterodine. PMID:25515888
Copper-catalysed selective hydroamination reactions of alkynes
NASA Astrophysics Data System (ADS)
Shi, Shi-Liang; Buchwald, Stephen L.
2015-01-01
The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a long-standing goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective and step-efficient synthesis of amines is still needed. Here, we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio- and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine and tolterodine.
Area utilization efficiency of a sloping heliostat system for solar concentration.
Wei, L Y
1983-02-15
Area utilization efficiency (AUE) is formulated for a sloping heliostat system facing any direction. The effects of slope shading, incidence factor, sun shading, and tower blocking by the mirrors are all taken into account. Our results show that annually averaged AUEs calculated for heliostat systems (1) increase with tower height at low slope angles but less rapidly at high slopes, (2) increase monotonically with slope angle and saturate at large slopes for systems facing due south, (3) reach a maximum at a certain slope for systems facing other directions than due south, and (4) drop sharply at slopes greater than a certain value for systems facing due east or west due to slope shading effect. The results are useful for solar energy collection on nonflat terrains.
Efficient hiding of confidential high-utility itemsets with minimal side effects
NASA Astrophysics Data System (ADS)
Lin, Jerry Chun-Wei; Hong, Tzung-Pei; Fournier-Viger, Philippe; Liu, Qiankun; Wong, Jia-Wei; Zhan, Justin
2017-11-01
Privacy preserving data mining (PPDM) is an emerging research problem that has become critical in the last decades. PPDM consists of hiding sensitive information to ensure that it cannot be discovered by data mining algorithms. Several PPDM algorithms have been developed. Most of them are designed for hiding sensitive frequent itemsets or association rules. Hiding sensitive information in a database can have several side effects such as hiding other non-sensitive information and introducing redundant information. Finding the set of itemsets or transactions to be sanitised that minimises side effects is an NP-hard problem. In this paper, a genetic algorithm (GA) using transaction deletion is designed to hide sensitive high-utility itemsets for PPUM. A flexible fitness function with three adjustable weights is used to evaluate the goodness of each chromosome for hiding sensitive high-utility itemsets. To speed up the evolution process, the pre-large concept is adopted in the designed algorithm. It reduces the number of database scans required for verifying the goodness of an evaluated chromosome. Substantial experiments are conducted to compare the performance of the designed GA approach (with/without the pre-large concept), with a GA-based approach relying on transaction insertion and a non-evolutionary algorithm, in terms of execution time, side effects, database integrity and utility integrity. Results demonstrate that the proposed algorithm hides sensitive high-utility itemsets with fewer side effects than previous studies, while preserving high database and utility integrity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, P.R.; Van Dyke, J.W.; McConnell, B.W.
It is estimated that electric utilities use about 40 million distribution transformers in supplying electricity to customers in the United States. Although utility distribution transformers collectively have a high average efficiency, they account for approximately 61 billion kWh of the 229 billion kWh of energy lost annually in the delivery of electricity. Distribution transformers are being replaced over time by new, more efficient, lower-loss units during routine utility maintenance of power distribution systems. Maintenance is typically not performed on units in service. However, units removed from service with appreciable remaining life are often refurbished and returned to stock. Distribution transformersmore » may be removed from service for many reasons, including failure, over- or underloading, or line upgrades such as voltage changes or rerouting. When distribution transformers are removed from service, a decision must be made whether to dispose of the transformer and purchase a lower-loss replacement or to refurbish the transformer and return it to stock for future use. This report contains findings and recommendations on replacing utility distribution transformers during routine maintenance, which is required by section 124(c) of the Energy Policy Act of 1992. The objectives of the study are to evaluate the practicability, cost-effectiveness, and potential energy savings of replacing or upgrading existing transformers during routine utility maintenance and to develop recommendations on was to achieve the potential energy savings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Ruiguo; Mishra, Kuber; Li, Xiaolin
Rechargeable batteries based upon sodium (Na+) cations are at the core of many new battery chemistries beyond Li-ion batteries. Rather than using carbon or alloy-based anodes, the direct utilization of solid sodium metal as an anode would be highly advantageous, but its use has been highly problematic due to its high reactivity. In this work, however, it is demonstrated that, by tailoring the electrolyte formulation, solid Na metal can be electrochemically plated/stripped at ambient temperature with high efficiency (> 99%) on both copper and inexpensive aluminum current collectors thereby enabling a shift in focus to new battery chemical couples basedmore » upon Na metal operating at ambient temperature. These highly concentrated electrolytes has enabled stable cycling of Na metal batteries based on a Na metal anode and Na3V2(PO4)3 cathode at high rates with very high efficiency.« less
NASA Astrophysics Data System (ADS)
Benítez, P.; Mohedano, R.; Buljan, M.; Miñano, J. C.; Sun, Y.; Falicoff, W.; Vilaplana, J.; Chaves, J.; Biot, G.; López, J.
2011-12-01
A novel HCPV nonimaging concentrator concept with high concentration (>500×) is presented. It uses the combination of a commercial concentration GaInP/GaInAs/Ge 3J cell and a concentration Back-Point-Contact (BPC) concentration silicon cell for efficient spectral utilization, and external confinement techniques for recovering the 3J cell's reflection. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free-form RXI-type concentrator with a band-pass filter embedded it, both POE and SOE performing Köhler integration to produce light homogenization. The band-pass filter sends the IR photons in the 900-1200 nm band to the silicon cell. Computer simulations predict that four-terminal terminal designs could achieve ˜46% added cell efficiencies using commercial 39% 3J and 26% Si cells. A first proof-of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ˜100× and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J with peak efficiency of 36.9%.
Development of a high efficiency thin silicon solar cell
NASA Technical Reports Server (NTRS)
Storti, G.; Culik, J.; Wrigley, C.
1980-01-01
Significant improvements in open-circuit voltage and conversion efficiency, even on relatively high bulk resistivity silicon, were achieved by using a screen-printed aluminum paste back surface field. A 4 sq cm 50 micron m thick cell was fabricated from textured 10 omega-cm silicon which had an open-circuit voltage of 595 mV and AMO conversion efficiency at 25 C of 14.3%. The best 4 sq cm 50 micron thick cell (2 omega-cm silicon) produced had an open-circuit voltage of 607 mV and an AMO conversion efficiency of 15%. Processing modifications are described which resulted in better front contact integrity and reduced breakage. These modifications were utilized in the thin cell pilot line to fabricate 4 sq cm cells with an average AMO conversion efficiency at 25 C of better than 12.5% and with lot yields as great as 51% of starts; a production rate of 10,000 cells per month was demonstrated. A pilot line was operated which produced large area (25 cm) ultra-thin cells with an average AMO conversion efficiency at 25 deg of better than 11.5% and a lot yield as high as 17%.
High-energy redox-flow batteries with hybrid metal foam electrodes.
Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook; Kim, Ki Jae; Oh, Duk-Jin; Kim, Young-Jun
2014-07-09
A nonaqueous redox-flow battery employing [Co(bpy)3](+/2+) and [Fe(bpy)3](2+/3+) redox couples is proposed for use in large-scale energy-storage applications. We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. Our approach intoduces a more efficient conversion of chemical energy into electrical energy and enhances long-term cell durability. The cell exhibits an outstanding cyclic performance of more than 300 cycles without any significant loss of energy efficiency. Considering the increasing demands for efficient energy storage, our achievement provides insight into a possible development pathway for nonaqueous redox-flow batteries with high energy densities.
Advanced coal gasifier-fuel cell power plant systems design
NASA Technical Reports Server (NTRS)
Heller, M. E.
1983-01-01
Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.
Wang, San-Lang; Wu, Pei-Chen; Liang, Tzu-Wen
2009-05-26
We have developed a culture system for efficient production of chitosanase by Bacillus sp. TKU004. TKU004 was cultivated by using squid pen powder as the sole carbon/nitrogen source. The effects of autoclave treatments of the medium on the production of chitosanase were investigated. Autoclave treatment of squid pen powder for 45 min remarkably promoted enzyme productivity. When the culture medium containing an initial squid pen powder concentration of 3% was autoclaved for 45 min, the chitosanase activity was optimal and reached 0.14-0.16 U/mL. In addition, extracellular surfactant-stable chitosanase was purified from the TKU004 culture supernatant. The antioxidant activity of TKU004 culture supernatant was determined through the scavenging ability of DPPH, with 70% per mL. With this method, we have shown that marine wastes can be utilized efficiently through prolonged autoclave treatments to generate a high value-added product, and have revealed its hidden potential in the production of functional foods.
Atsuta, Yoshiko
2016-01-01
Collection and analysis of information on diseases and post-transplant courses of allogeneic hematopoietic stem cell transplant recipients have played important roles in improving therapeutic outcomes in hematopoietic stem cell transplantation. Efficient, high-quality data collection systems are essential. The introduction of the Second-Generation Transplant Registry Unified Management Program (TRUMP2) is intended to improve data quality and more efficient data management. The TRUMP2 system will also expand possible uses of data, as it is capable of building a more complex relational database. The construction of an accessible data utilization system for adequate data utilization by researchers would promote greater research activity. Study approval and management processes and authorship guidelines also need to be organized within this context. Quality control of processes for data manipulation and analysis will also affect study outcomes. Shared scripts have been introduced to define variables according to standard definitions for quality control and improving efficiency of registry studies using TRUMP data.
Tang, Wenming; Liu, Guixiong; Li, Yuzhong; Tan, Daji
2017-01-01
High data transmission efficiency is a key requirement for an ultrasonic phased array with multi-group ultrasonic sensors. Here, a novel FIFOs scheduling algorithm was proposed and the data transmission efficiency with hardware technology was improved. This algorithm includes FIFOs as caches for the ultrasonic scanning data obtained from the sensors with the output data in a bandwidth-sharing way, on the basis of which an optimal length ratio of all the FIFOs is achieved, allowing the reading operations to be switched among all the FIFOs without time slot waiting. Therefore, this algorithm enhances the utilization ratio of the reading bandwidth resources so as to obtain higher efficiency than the traditional scheduling algorithms. The reliability and validity of the algorithm are substantiated after its implementation in the field programmable gate array (FPGA) technology, and the bandwidth utilization ratio and the real-time performance of the ultrasonic phased array are enhanced. PMID:29035345
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junhua Jiang; Ted Aulich
An electrolytic renewable nitrogen fertilizer process that utilizes wind-generated electricity, N{sub 2} extracted from air, and syngas produced via the gasification of biomass to produce nitrogen fertilizer ammonia was developed at the University of North Dakota Energy & Environmental Research Center. This novel process provides an important way to directly utilize biosyngas generated mainly via the biomass gasification in place of the high-purity hydrogen which is required for Haber Bosch-based production of the fertilizer for the production of the widely used nitrogen fertilizers. Our preliminary economic projection shows that the economic competitiveness of the electrochemical nitrogen fertilizer process strongly dependsmore » upon the cost of hydrogen gas and the cost of electricity. It is therefore expected the cost of nitrogen fertilizer production could be considerably decreased owing to the direct use of cost-effective 'hydrogen-equivalent' biosyngas compared to the high-purity hydrogen. The technical feasibility of the electrolytic process has been proven via studying ammonia production using humidified carbon monoxide as the hydrogen-equivalent vs. the high-purity hydrogen. Process optimization efforts have been focused on the development of catalysts for ammonia formation, electrolytic membrane systems, and membrane-electrode assemblies. The status of the electrochemical ammonia process is characterized by a current efficiency of 43% using humidified carbon monoxide as a feedstock to the anode chamber and a current efficiency of 56% using high-purity hydrogen as the anode gas feedstock. Further optimization of the electrolytic process for higher current efficiency and decreased energy consumption is ongoing at the EERC.« less
Analysis of China department water consumption efficiency
NASA Astrophysics Data System (ADS)
Li, Wei; Wang, Xi-Feng; Liu, Jia-Hong
2018-03-01
The water comparable non-competitive input-out model of China in 2002, 2007 and 2012 is established to calculate the department water consumption efficiency. The water direct and complete consumption coefficients of 38 departments are analysed. Agriculture and Electricity and steam supply have the highest water consumption coefficients and utilize water resource mainly by the direct way. Manufacture of food products and tobacco products, Manufacture of textiles, Manufacture of wearing apparel and leather products and Information service activities have high water complete consumption coefficients and affect water consumption mainly by the indirect way. Water complete consumption efficiency measures the efficiency from the view of final product, which reflected the department water use driving force more precisely.
Design Report Final - CUB Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armijo, Kenneth Miguel; Monda, Mark J.; Brunson, Gregory Paul
CUB (Critical Utility Base), Fig. 1.0, are individual portable energy and utility units utilizing renewable energy technologies integrated with high efficient conventional components to provide electricity, battery storage, heat, potable water, waste water treatment, cooling, liquid fuels, to name some of the primary utilities. Typically, these units were designed to provide power / utilities to any remote location or facility like forward operating bases, disaster relief centers, and Native American communities or to energize African villages. Although some CUB models have already been designed to date, the main unit, the CUB-E (electricity), lacks a critical component included in its design.more » It is the integral portion that automates solar electric panel racking deployment and retraction. This racking system will enable the CUB-E to rapidly deploy its utility within minutes, a feature not available in any form currently on the market.« less
Selection of axial hydraulic turbines for low-head microhydropower plants
NASA Astrophysics Data System (ADS)
Šoukal, J.; Pochylý, F.; Varchola, M.; Parygin, A. G.; Volkov, A. V.; Khovanov, G. P.; Naumov, A. V.
2015-12-01
The creation of highly efficient hydroturbines for low-head microhydropower plants is considered. The use of uncontrolled (propeller) hydroturbines is a promising means of minimizing costs and the time for their recoupment. As an example, experimental results from Brno University of Technology are presented. The model axial hydraulic turbine produced by Czech specialists performs well. The rotor diameter of this turbine is 194 mm. In the design of the working rotor, ANSYS Fluent software is employed. Means of improving the efficiency of microhydropower plants by optimal selection of the turbine parameters in the early stages of design are outlined. The energy efficiency of the hydroturbine designed for use in a microhydropower plant may be assessed on the basis of the coefficient of energy utilization, which is a function of the total losses in all the pipeline elements and losses in the channel including the hydroturbine rotor. The limit on the coefficient of energy utilization in the pressure pipeline is the hydraulic analog of the Betz-Joukowsky limit, which is widely used in the design of wind generators. The proposed approach is experimentally verified at Moscow Power Engineering Institute. A model axial hydraulic turbine with four different rotors is designed for the research. The diameter of all four rotors is the same: 80 mm. The pipeline takes the form of a siphon. Working rotor R2, designed with parameter optimization, is characterized by the highest coefficient of energy utilization of the pressure pipeline and maximum efficiency. That confirms that the proposed approach is a promising means of maximizing the overall energy efficiency of the microhydropower plant.
Heat Transfer Phenomena in Concentrating Solar Power Systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armijo, Kenneth Miguel; Shinde, Subhash L.
Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxidemore » (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .« less
Li, Jian; Xu, Changcheng; Zhang, Yan; Tang, Xiaohua; Qi, Wei; Wang, Qiong
2018-02-01
Pressure-driven and lower flux of superwetting ultrafiltration membranes in various emulsions separation are long-standing issues and major barriers for their large-scale utilization. Even though currently reported membranes have achieved great success in emulsions separeation, they still suffer from low flux and complex fabrication process resulting from their smaller nanoscale pore size. Herein, utilizition of coconut shell as a novel biomaterial for developing into a layer through the simple smashing, cleaning and stacking procedures, which not only could avoid the complexity of film making process, but also could realize efficient gravity-directed separation of both immiscible oil/water mixtures and water-in-oil emulsions with high flux. Specifically, the layer acted as "water-removing" type filtrate material with excellent underwater superoleophobicity, exhibiting high efficiency for various immiscible oil/water mixtures separation and larger oil intrusion pressure. More importantly, the layer could also serve as adsorbent material with underoil superhydrophilicity, achieving gravity-directed kinds of water-in-oil emulsions separation with high separation efficiency (above 99.99%) and higher flux (above 1620L/m 2 h), even when their pore sizes are larger than that of emulsified droplets. We deeply believe that this study would open up a new strategy for both immiscible oil/water mixtures and water-in-oil emulsions separation. Copyright © 2017 Elsevier Inc. All rights reserved.
Lévesque, Renee; Marcelli, Daniele; Cardinal, Héloïse; Caron, Marie-Line; Grooteman, Muriel P C; Bots, Michiel L; Blankestijn, Peter J; Nubé, Menso J; Grassmann, Aileen; Canaud, Bernard; Gandjour, Afschin
2015-12-01
The aim of this study was to assess the cost effectiveness of high-efficiency on-line hemodiafiltration (OL-HDF) compared with low-flux hemodialysis (LF-HD) for patients with end-stage renal disease (ESRD) based on the Canadian (Centre Hospitalier de l'Université de Montréal) arm of a parallel-group randomized controlled trial (RCT), the CONvective TRAnsport STudy. An economic evaluation was conducted for the period of the RCT (74 months). In addition, a Markov state transition model was constructed to simulate costs and health benefits over lifetime. The primary outcome was costs per quality-adjusted life-year (QALY) gained. The analysis had the perspective of the Quebec public healthcare system. A total of 130 patients were randomly allocated to OL-HDF (n = 67) and LF-HD (n = 63). The cost-utility ratio of OL-HDF versus LF-HD was Can$53,270 per QALY gained over lifetime. This ratio was fairly robust in the sensitivity analysis. The cost-utility ratio was lower than that of LF-HD compared with no treatment (immediate death), which was Can$93,008 per QALY gained. High-efficiency OL-HDF can be considered a cost-effective treatment for ESRD in a Canadian setting. Further research is needed to assess cost effectiveness in other settings and healthcare systems.
A frequency and sensitivity tunable microresonator array for high-speed quantum processor readout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whittaker, J. D., E-mail: jwhittaker@dwavesys.com; Swenson, L. J.; Volkmann, M. H.
Superconducting microresonators have been successfully utilized as detection elements for a wide variety of applications. With multiplexing factors exceeding 1000 detectors per transmission line, they are the most scalable low-temperature detector technology demonstrated to date. For high-throughput applications, fewer detectors can be coupled to a single wire but utilize a larger per-detector bandwidth. For all existing designs, fluctuations in fabrication tolerances result in a non-uniform shift in resonance frequency and sensitivity, which ultimately limits the efficiency of bandwidth utilization. Here, we present the design, implementation, and initial characterization of a superconducting microresonator readout integrating two tunable inductances per detector. Wemore » demonstrate that these tuning elements provide independent control of both the detector frequency and sensitivity, allowing us to maximize the transmission line bandwidth utilization. Finally, we discuss the integration of these detectors in a multilayer fabrication stack for high-speed readout of the D-Wave quantum processor, highlighting the use of control and routing circuitry composed of single-flux-quantum loops to minimize the number of control wires at the lowest temperature stage.« less
Ethanol production from renewable resources.
Gong, C S; Cao, N J; Du, J; Tsao, G T
1999-01-01
Vast amounts of renewable biomass are available for conversion to liquid fuel, ethanol. In order to convert biomass to ethanol, the efficient utilization of both cellulose-derived and hemicellulose-derived carbohydrates is essential. Six-carbon sugars are readily utilized for this purpose. Pentoses, on the other hand, are more difficult to convert. Several metabolic factors limit the efficient utilization of pentoses (xylose and arabinose). Recent developments in the improvement of microbial cultures provide the versatility of conversion of both hexoses and pentoses to ethanol more efficiently. In addition, novel bioprocess technologies offer a promising prospective for the efficient conversion of biomass and recovery of ethanol.
Hafid, Halimatun Saadiah; Nor 'Aini, Abdul Rahman; Mokhtar, Mohd Noriznan; Talib, Ahmad Tarmezee; Baharuddin, Azhari Samsu; Umi Kalsom, Md Shah
2017-09-01
In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H 2 SO 4 ) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production. Copyright © 2017. Published by Elsevier Ltd.
USDA-ARS?s Scientific Manuscript database
One refined and 2 crude glycerol samples were utilized to produce poly(3-hydroxybutyrate) (PHB) by Pseudomonas oleovorans NRRL B-14682. Fermentation conditions were determined to efficiently utilize glycerol while maintaining PHB yields. A batch culture protocol including 1% glycerol and an aerati...
Capella, Cristina; Beltejar, Michael-John; Brown, Caitlin; Fong, Vincent; Daddacha, Waaqo; Kim, Baek
2012-01-01
Mutations that reduce the efficiency of deoxynucleoside (dN) triphosphate (dNTP) substrate utilization by the HIV-1 DNA polymerase prevent viral replication in resting cells, which contain low dNTP concentrations, but not in rapidly dividing cells such as cancer cells, which contain high levels of dNTPs. We therefore tested whether mutations in regions of the adenovirus type 5 (Ad5) DNA polymerase that interact with the dNTP substrate or DNA template could alter virus replication. The majority of the mutations created, including conservative substitutions, were incompatible with virus replication. Five replication-competent mutants were recovered from 293 cells, but four of these mutants failed to replicate in A549 lung carcinoma cells and Wi38 normal lung cells. Purified polymerase proteins from these viruses exhibited only a 2- to 4-fold reduction in their dNTP utilization efficiency but nonetheless could not be rescued, even when intracellular dNTP concentrations were artificially raised by the addition of exogenous dNs to virus-infected A549 cells. The fifth mutation (I664V) reduced biochemical dNTP utilization by the viral polymerase by 2.5-fold. The corresponding virus replicated to wild-type levels in three different cancer cell lines but was significantly impaired in all normal cell lines in which it was tested. Efficient replication and virus-mediated cell killing were rescued by the addition of exogenous dNs to normal lung fibroblasts (MRC5 cells), confirming the dNTP-dependent nature of the polymerase defect. Collectively, these data provide proof-of-concept support for the notion that conditionally replicating, tumor-selective adenovirus vectors can be created by modifying the efficiency with which the viral DNA polymerase utilizes dNTP substrates. PMID:22811532
Highly efficient all-nitride phosphor-converted white light emitting diode
NASA Astrophysics Data System (ADS)
Mueller-Mach, Regina; Mueller, Gerd; Krames, Michael R.; Höppe, Henning A.; Stadler, Florian; Schnick, Wolfgang; Juestel, Thomas; Schmidt, Peter
2005-07-01
The development and demonstration of a highly efficient warm-white all-nitride phosphor-converted light emitting diode (pc-LED) is presented utilizing a GaN based quantum well blue LED and two novel nitrogen containing luminescent materials, both of which are doped with Eu2+. For color conversion of the primary blue the nitridosilicates M2Si5N8 (orange-red) and MSi2O2N2 (yellow-green), with M = alkaline earth, were employed, thus achieving a high luminous efficiency (25 lumen/W at 1 W input), excellent color quality (correlated color temperature CCT = 3200 K, general color rendering index Ra > 90) and the highest proven color stability of any pc-LED obtained so far. Thus, these novel all-nitride LEDs are superior to both incandescent and fluorescent lamps and may therefore become the next generation of general lighting sources.
Incident light adjustable solar cell by periodic nanolens architecture
Yun, Ju-Hyung; Lee, Eunsongyi; Park, Hyeong-Ho; Kim, Dong-Wook; Anderson, Wayne A.; Kim, Joondong; Litchinitser, Natalia M.; Zeng, Jinwei; Yi, Junsin; Kumar, M. Melvin David; Sun, Jingbo
2014-01-01
Could nanostructures act as lenses to focus incident light for efficient utilization of photovoltaics? Is it possible, in order to avoid serious recombination loss, to realize periodic nanostructures in solar cells without direct etching in a light absorbing semiconductor? Here we propose and demonstrate a promising architecture to shape nanolenses on a planar semiconductor. Optically transparent and electrically conductive nanolenses simultaneously provide the optical benefit of modulating the incident light and the electrical advantage of supporting carrier transportation. A transparent indium-tin-oxide (ITO) nanolens was designed to focus the incident light-spectrum in focal lengths overlapping to a strong electric field region for high carrier collection efficiency. The ITO nanolens effectively broadens near-zero reflection and provides high tolerance to the incident light angles. We present a record high light-conversion efficiency of 16.0% for a periodic nanostructured Si solar cell. PMID:25371099
Assessing the technical efficiency of health posts in rural Guatemala: a data envelopment analysis.
Hernández, Alison R; San Sebastián, Miguel
2014-01-01
Strengthening health service delivery to the rural poor is an important means of redressing inequities. Meso-level managers can help enhance efficiency in the utilization of existing resources through the application of practical tools to analyze routinely collected data reflecting inputs and outputs. This study aimed to assess the efficiency and change in productivity of health posts over two years in a rural department of Guatemala. Data envelopment analysis was used to measure health posts' technical efficiency and productivity change for 2008 and 2009. Input/output data were collected from the regional health office of Alta Verapaz for 34 health posts from the 19 districts comprising the health region. Technical efficiency varied widely across health posts, with mean scores of 0.78 (SD=0.24) and 0.75 (SD=0.21) in 2008 and 2009, respectively. Overall, productivity increased by 4%, though 47% of health posts experienced a decline in productivity. Results were combined on a bivariate plot to identify health posts at the high and low extremes of efficiency, which should be followed up to determine how and why their production processes are operating differently. Assessing efficiency using the data that are available at the meso-level can serve as a first step in strengthening performance. Further work is required to support managers in the routine application of efficiency analysis and putting the results to use in guiding efforts to improve service delivery and increase utilization.
Assessing the technical efficiency of health posts in rural Guatemala: a data envelopment analysis
Hernández, Alison R.; Sebastián, Miguel San
2014-01-01
Introduction Strengthening health service delivery to the rural poor is an important means of redressing inequities. Meso-level managers can help enhance efficiency in the utilization of existing resources through the application of practical tools to analyze routinely collected data reflecting inputs and outputs. This study aimed to assess the efficiency and change in productivity of health posts over two years in a rural department of Guatemala. Methods Data envelopment analysis was used to measure health posts’ technical efficiency and productivity change for 2008 and 2009. Input/output data were collected from the regional health office of Alta Verapaz for 34 health posts from the 19 districts comprising the health region. Results Technical efficiency varied widely across health posts, with mean scores of 0.78 (SD=0.24) and 0.75 (SD=0.21) in 2008 and 2009, respectively. Overall, productivity increased by 4%, though 47% of health posts experienced a decline in productivity. Results were combined on a bivariate plot to identify health posts at the high and low extremes of efficiency, which should be followed up to determine how and why their production processes are operating differently. Conclusions Assessing efficiency using the data that are available at the meso-level can serve as a first step in strengthening performance. Further work is required to support managers in the routine application of efficiency analysis and putting the results to use in guiding efforts to improve service delivery and increase utilization. PMID:24461356
Yoo, Yang-Seok; Na, Jong-Ho; Son, Sung Jin; Cho, Yong-Hoon
2016-10-19
A critical issue in GaN-based high power light-emitting diodes (LEDs) is how to suppress the efficiency droop problem occurred at high current injection while improving overall quantum efficiency, especially in conventional c-plane InGaN/GaN quantum well (QW), without using complicated bandgap engineering or unconventional materials and structures. Although increasing thickness of each QW may decrease carrier density in QWs, formation of additional strain and defects as well as increased built-in field effect due to enlarged QW thickness are unavoidable. Here, we propose a facile and effective method for not only reducing efficiency droop but also improving quantum efficiency by utilizing c-plane InGaN/GaN QWs having thinner barriers and increased QW number while keeping the same single well thickness and total active layer thickness. As the barrier thickness decreases and the QW number increases, both internal electric field and carrier density within QWs are simultaneously reduced without degradation of material quality. Furthermore, we found overall improved efficiency and reduced efficiency droop, which was attributed to the decrease of the built-in field and to less influence by non-radiative recombination processes at high carrier density. This simple and effective approach can be extended further for high power ultraviolet, green, and red LEDs.
NASA Astrophysics Data System (ADS)
Yoo, Yang-Seok; Na, Jong-Ho; Son, Sung Jin; Cho, Yong-Hoon
2016-10-01
A critical issue in GaN-based high power light-emitting diodes (LEDs) is how to suppress the efficiency droop problem occurred at high current injection while improving overall quantum efficiency, especially in conventional c-plane InGaN/GaN quantum well (QW), without using complicated bandgap engineering or unconventional materials and structures. Although increasing thickness of each QW may decrease carrier density in QWs, formation of additional strain and defects as well as increased built-in field effect due to enlarged QW thickness are unavoidable. Here, we propose a facile and effective method for not only reducing efficiency droop but also improving quantum efficiency by utilizing c-plane InGaN/GaN QWs having thinner barriers and increased QW number while keeping the same single well thickness and total active layer thickness. As the barrier thickness decreases and the QW number increases, both internal electric field and carrier density within QWs are simultaneously reduced without degradation of material quality. Furthermore, we found overall improved efficiency and reduced efficiency droop, which was attributed to the decrease of the built-in field and to less influence by non-radiative recombination processes at high carrier density. This simple and effective approach can be extended further for high power ultraviolet, green, and red LEDs.
Development of Inexpensive, Efficient and Non-Toxic Thermoelectric Materials
NASA Astrophysics Data System (ADS)
Gali, Anand Pratik
In the wake of the impending climate change challenges, it is highly necessary to reevaluate our energy utilization technologies and ensure their efficient operation. Fossil fuel powered power-plants account for the majority of the energy production in the United States. With an average efficiency not exceeding 40%, these fossil fuel power plants dissipate exorbitant amounts of wasted heat. One of the ways of making such energy conversion processes more efficient is by incorporating technologies that can harvest this scavenge heat. One of the ways of achieving this is by the use of thermoelectric (TE) materials, which utilize the Seebeck effect to convert thermal gradient into potential difference. Therefore, our research project focusses on development of TE materials, which are inexpensive, efficient, and non-toxic. Fe0.50V0.25Al0.25 is a narrow band-gap semiconductor, ideal for TE applications. Unlike the current market leader Bi0.4Te0.6, Fe0.50V0.25 Al0.25 contains earth abundant and non-toxic constituents making it viable for commercial production. Nevertheless, the TE efficiency, ZT, of Fe0.50V0.25Al0.25 is limited by its high thermal conductivity. Therefore, the goal of the current research is two-fold. Firstly, to design and fabricate apparatus for performing TE characterization on bulk materials. For this purpose, two sets of apparatus were designed and fabricated for measuring high temperature Seebeck coefficient and electrical resistivity. Secondly, to study the influence of doping on TE properties of Fe0.50V0.25Al0.25 alloy. In order to achieve this, vanadium in Fe0.50V0.25Al0.25 was substituted with dopants like Ti, Cr, Zr, W, Nb, Ta. This led to a 20 times improvement in ZT, from the baseline Fe0.50V0.25Al0.25, by effectively reducing the thermal conductivity and increasing the Seebeck coefficient.
NASA Astrophysics Data System (ADS)
Fan, Haifeng
2011-12-01
The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low switching loss and conduction loss are must-haves for high efficiency, while bidirectional power flow capability is a must for power management requirement. To address the demand, the phase-shift dual-halfbridge (DHB) is proposed as the constituent module of ISOP configuration for MV application. The proposed ISOP DHB converter employs zero-voltage-switching (ZVS) technique combined with LV MOSFETs to achieve low switching and conduction losses under high frequency operation, and therefore high efficiency and high power density, and bidirectional power flow as well. Secondly, a large load range of high efficiency is desired rather than only a specific load point due to the continuous operation and large load variation range of utility application, which is of high importance because of the rising energy cost. This work proposes a novel DHB converter with an adaptive commutation inductor. By utilizing an adaptive inductor as the main energy transfer element, the output power can be controlled by not only the phase shift but also the commutation inductance, which allows the circulating energy to be optimized for different load conditions to maintain ZVS under light load conditions and minimize additional conduction losses under heavy load conditions as well. As a result, the efficiency at both light and heavy load can be significantly improved compared with the conventional DHB converter, and therefore extended high-efficiency range can be achieved. In addition, current stress of switch devices can be reduced. The theoretical analysis is presented and validated by the experimental results on a 50 kHz, 1 kW dc-dc converter module. Thirdly, input-voltage sharing and output-current sharing are critical to assure the advantages of the ISOP modular configuration. To solve this issue, an identically distributed control scheme is proposed in this work. The proposed control scheme, using only one distributed voltage loop to realize both input-voltage and output-current sharing, provides plug-and-play capability, possible high-level fault tolerance, and easy implementation. Another unique advantage of the proposed ISOP DHB converter is the power rating can be easily extended further by directly connecting multiple ISOP DHB converters in input-parallel-outparallel (IPOP) while no additional control is needed. The proposed control scheme is elaborated using the large-signal average model. Further, the stability of the control schemes is analyzed in terms of the constituent modules' topology as well as the configuration, and then an important fact that the stability of control scheme depends on not only the configuration but also the constituent module topology is first revealed in this work. Finally, the simulation and experimental results of an ISOP DHB converter consisting of three modules are presented to verify the proposed control scheme and the high frequency high efficiency operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoniadis, H.
Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink highmore » efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.« less
SSME component assembly and life management expert system
NASA Technical Reports Server (NTRS)
Ali, M.; Dietz, W. E.; Ferber, H. J.
1989-01-01
The space shuttle utilizes several rocket engine systems, all of which must function with a high degree of reliability for successful mission completion. The space shuttle main engine (SSME) is by far the most complex of the rocket engine systems and is designed to be reusable. The reusability of spacecraft systems introduces many problems related to testing, reliability, and logistics. Components must be assembled from parts inventories in a manner which will most effectively utilize the available parts. Assembly must be scheduled to efficiently utilize available assembly benches while still maintaining flight schedules. Assembled components must be assigned to as many contiguous flights as possible, to minimize component changes. Each component must undergo a rigorous testing program prior to flight. In addition, testing and assembly of flight engines and components must be done in conjunction with the assembly and testing of developmental engines and components. The development, testing, manufacture, and flight assignments of the engine fleet involves the satisfaction of many logistical and operational requirements, subject to many constraints. The purpose of the SSME Component Assembly and Life Management Expert System (CALMES) is to assist the engine assembly and scheduling process, and to insure that these activities utilize available resources as efficiently as possible.
Rahman, Md Mostafizur; Fattah, Shaikh Anowarul
2017-01-01
In view of recent increase of brain computer interface (BCI) based applications, the importance of efficient classification of various mental tasks has increased prodigiously nowadays. In order to obtain effective classification, efficient feature extraction scheme is necessary, for which, in the proposed method, the interchannel relationship among electroencephalogram (EEG) data is utilized. It is expected that the correlation obtained from different combination of channels will be different for different mental tasks, which can be exploited to extract distinctive feature. The empirical mode decomposition (EMD) technique is employed on a test EEG signal obtained from a channel, which provides a number of intrinsic mode functions (IMFs), and correlation coefficient is extracted from interchannel IMF data. Simultaneously, different statistical features are also obtained from each IMF. Finally, the feature matrix is formed utilizing interchannel correlation features and intrachannel statistical features of the selected IMFs of EEG signal. Different kernels of the support vector machine (SVM) classifier are used to carry out the classification task. An EEG dataset containing ten different combinations of five different mental tasks is utilized to demonstrate the classification performance and a very high level of accuracy is achieved by the proposed scheme compared to existing methods.
Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Vassallo, Corinne; Tadge, Megan
2015-01-01
The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.
Kim, Z-Hun; Park, Hanwool; Hong, Seong-Joo; Lim, Sang-Min; Lee, Choul-Gyun
2016-05-01
Culturing microalgae in the ocean has potentials that may reduce the production cost and provide an option for an economic biofuel production from microalgae. The ocean holds great potentials for mass microalgal cultivation with its high specific heat, mixing energy from waves, and large cultivable area. Suitable photobioreactors (PBRs) that are capable of integrating marine energy into the culture systems need to be developed for the successful ocean cultivation. In this study, prototype floating PBRs were designed and constructed using transparent low-density polyethylene film for microalgal culture in the ocean. To improve the mixing efficiency, various types of internal partitions were introduced within PBRs. Three different types of internal partitions were evaluated for their effects on the mixing efficiency in terms of mass transfer (k(L)a) and mixing time in the PBRs. The partition type with the best mixing efficiency was selected, and the number of partitions was varied from one to three for investigation of its effect on mixing efficiency. When the number of partitions is increased, mass transfer increased in proportion to the number of partitions. However, mixing time was not directly related to the number of partitions. When a green microalga, Tetraselmis sp. was cultivated using PBRs with the selected partition under semi-continuous mode in the ocean, biomass and fatty acid productivities in the PBRs were increased by up to 50 % and 44% at high initial cell density, respectively, compared to non-partitioned ones. The results of internally partitioned PBRs demonstrated potentials for culturing microalgae by efficiently utilizing ocean wave energy into culture mixing in the ocean.
Nonfullerene Tandem Organic Solar Cells with High Open-Circuit Voltage of 1.97 V.
Liu, Wenqing; Li, Shuixing; Huang, Jiang; Yang, Shida; Chen, Jiehuan; Zuo, Lijian; Shi, Minmin; Zhan, Xiaowei; Li, Chang-Zhi; Chen, Hongzheng
2016-11-01
Small-molecule nonfullerene-based tandem organic solar cells (OSCs) are fabricated for the first time by utilizing P3HT:SF(DPPB) 4 and PTB7-Th:IEIC bulk heterojunctions as the front and back subcells, respectively. A power conversion efficiency of 8.48% is achieved with an ultrahigh open-circuit voltage of 1.97 V, which is the highest voltage value reported to date among efficient tandem OSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Durable silver thin film coating for diffraction gratings
Wolfe, Jesse D [Discovery Bay, CA; Britten, Jerald A [Oakley, CA; Komashko, Aleksey M [San Diego, CA
2006-05-30
A durable silver film thin film coated non-planar optical element has been developed to replace Gold as a material for fabricating such devices. Such a coating and resultant optical element has an increased efficiency and is resistant to tarnishing, can be easily stripped and re-deposited without modifying underlying grating structure, improves the throughput and power loading of short pulse compressor designs for ultra-fast laser systems, and can be utilized in variety of optical and spectrophotometric systems, particularly high-end spectrometers that require maximized efficiency.
Traffic off-balancing algorithm for energy efficient networks
NASA Astrophysics Data System (ADS)
Kim, Junhyuk; Lee, Chankyun; Rhee, June-Koo Kevin
2011-12-01
Physical layer of high-end network system uses multiple interface arrays. Under the load-balancing perspective, light load can be distributed to multiple interfaces. However, it can cause energy inefficiency in terms of the number of poor utilization interfaces. To tackle this energy inefficiency, traffic off-balancing algorithm for traffic adaptive interface sleep/awake is investigated. As a reference model, 40G/100G Ethernet is investigated. We report that suggested algorithm can achieve energy efficiency while satisfying traffic transmission requirement.
Payload Configurations for Efficient Image Acquisition - Indian Perspective
NASA Astrophysics Data System (ADS)
Samudraiah, D. R. M.; Saxena, M.; Paul, S.; Narayanababu, P.; Kuriakose, S.; Kiran Kumar, A. S.
2014-11-01
The world is increasingly depending on remotely sensed data. The data is regularly used for monitoring the earth resources and also for solving problems of the world like disasters, climate degradation, etc. Remotely sensed data has changed our perspective of understanding of other planets. With innovative approaches in data utilization, the demands of remote sensing data are ever increasing. More and more research and developments are taken up for data utilization. The satellite resources are scarce and each launch costs heavily. Each launch is also associated with large effort for developing the hardware prior to launch. It is also associated with large number of software elements and mathematical algorithms post-launch. The proliferation of low-earth and geostationary satellites has led to increased scarcity in the available orbital slots for the newer satellites. Indian Space Research Organization has always tried to maximize the utility of satellites. Multiple sensors are flown on each satellite. In each of the satellites, sensors are designed to cater to various spectral bands/frequencies, spatial and temporal resolutions. Bhaskara-1, the first experimental satellite started with 2 bands in electro-optical spectrum and 3 bands in microwave spectrum. The recent Resourcesat-2 incorporates very efficient image acquisition approach with multi-resolution (3 types of spatial resolution) multi-band (4 spectral bands) electro-optical sensors (LISS-4, LISS-3* and AWiFS). The system has been designed to provide data globally with various data reception stations and onboard data storage capabilities. Oceansat-2 satellite has unique sensor combination with 8 band electro-optical high sensitive ocean colour monitor (catering to ocean and land) along with Ku band scatterometer to acquire information on ocean winds. INSAT- 3D launched recently provides high resolution 6 band image data in visible, short-wave, mid-wave and long-wave infrared spectrum. It also has 19 band sounder for providing vertical profile of water vapour, temperature, etc. The same system has data relay transponders for acquiring data from weather stations. The payload configurations have gone through significant changes over the years to increase data rate per kilogram of payload. Future Indian remote sensing systems are planned with very high efficient ways of image acquisition. This paper analyses the strides taken by ISRO (Indian Space research Organisation) in achieving high efficiency in remote sensing image data acquisition. Parameters related to efficiency of image data acquisition are defined and a methodology is worked out to compute the same. Some of the Indian payloads are analysed with respect to some of the system/ subsystem parameters that decide the configuration of payload. Based on the analysis, possible configuration approaches that can provide high efficiency are identified. A case study is carried out with improved configuration and the results of efficiency improvements are reported. This methodology may be used for assessing other electro-optical payloads or missions and can be extended to other types of payloads and missions.
High Performance Power Amplifiers Utilizing Novel Balun Design Techniques
NASA Astrophysics Data System (ADS)
Stameroff, Alexander Nicholas
In this PhD. research, a new power amplifier architecture is introduced. This work develops the push-pull architecture into a multifunctional matching network and combiner to create a high power, high efficiency, linear power amplifier (PA) that operates over a wide bandwidth. The traditional push-pull architecture uses an input balun to split a single ended signal into a differential signal, amplify it, and recombine it. This new technique realizes this architecture as a planar, hybrid, PA in X band. The first contribution of this work is the development of planar Marchand baluns that operate over a wide bandwidth. An analysis technique is developed and broadside coupled, Marchand baluns in an inhomogeneous medium are employed. These baluns operate over a bandwidth from 5 to 26 GHz with amplitude and phase imbalances less than 0.5 dB and 5 °, respectively. The even and odd mode behavior of the Marchand balun is utilized to provide harmonic matching for the PA. The balun inherently presents an open circuit to common mode signals at its center frequency. This is utilized to match the second harmonic to an open circuit condition. A band-stop filter is used as a harmonic trap to match the third harmonic to a short circuit. This achieves inverse class F matching for high efficiency operation. This network simultaneously acts as a combiner and matching network for high power and efficiency. A prototype PA was fabricated to prove this concept and achieves a saturated output power, Psat, greater than 33 dBm and a power added efficiency, PAE, greater than 62% over the bandwidth from 9.7 to 10.3 GHz. This technique was refined to operate over a wide bandwidth. The harmonic trap was removed and the out-of-band behavior of the balun was used to provide the short circuit matching at the third harmonic. A prototype PA was fabricated that achieved a 1 dB compressed power, P1dB, and PAE greater than 40 dBm and 55% respectively over the band from 8 to 12 GHz. Finally, the technique was extended to combine power from four transistors by the development of a 4-to-1 balun. A prototype PA was fabricated to prove this concept and achieves a P1dB and PAE greater than 43 dBm and 55% over the band from 8 to 12 GHz.
Steib, Philip; Breit, Bernhard
2018-04-19
Herein, we report on the first enantioselective and atom-efficient catalytic one-step dimerization method to selectively transform ω-allenyl carboxylic acids into C 2 -symmetric 14- to 28-membered bismacrolactones (macrodiolides). This convenient asymmetric access serves as an attractive route towards multiple naturally occuring homodimeric macrocyclic scaffolds and demonstrates excellent efficiency to construct the complex, symmetric core structures. By utilizing a rhodium catalyst with a modified chiral cyclopentylidene-diop ligand, the desired diolides were obtained in good to high yields, high diastereoselectivity, and excellent enantioselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Frett, Brendan; McConnell, Nick; Smith, Catherine C.; Wang, Yuanxiang; Shah, Neil P.; Li, Hong-yu
2015-01-01
The FLT3 kinase represents an attractive target to effectively treat AML. Unfortunately, no FLT3 targeted therapeutic is currently approved. In line with our continued interests in treating kinase related disease for anti-FLT3 mutant activity, we utilized pioneering synthetic methodology in combination with computer aided drug discovery and identified low molecular weight, highly ligand efficient, FLT3 kinase inhibitors. Compounds were analyzed for biochemical inhibition, their ability to selectively inhibit cell proliferation, for FLT3 mutant activity, and preliminary aqueous solubility. Validated hits were discovered that can serve as starting platforms for lead candidates. PMID:25765758
Technological aspects of lift-slab method in high-rise-building construction.
NASA Astrophysics Data System (ADS)
Gaidukov, Pavel V.; Pugach, Evgeny M.
2018-03-01
The utilization efficiency of slab lifting technology for high-rise-building construction is regarded in the present article. The main problem of the article is organizing technology abilities indication, which proves the method application possibility. There is the comparing of lifting technologies and sequential concrete-frame extension, as follows: the first one: the parameters are defined, and the second one: the organizational model is executed. This model defines borders of the usage methods, as well. There is the mathematic model creating, which describes boundary conditions of the present technologies usage. This model allows to predict construction efficiency for different stored-number buildings.
Catalytic cartridge SO.sub.3 decomposer
Galloway, Terry R.
1982-01-01
A catalytic cartridge internally heated is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube being internally heated. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and being internally heated. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.
Andrianov, Alexey; Szabo, Aron; Sergeev, Alexander; Kim, Arkady; Chvykov, Vladimir; Kalashnikov, Mikhail
2016-11-14
We developed an improved approach to calculate the Fourier transform of signals with arbitrary large quadratic phase which can be efficiently implemented in numerical simulations utilizing Fast Fourier transform. The proposed algorithm significantly reduces the computational cost of Fourier transform of a highly chirped and stretched pulse by splitting it into two separate transforms of almost transform limited pulses, thereby reducing the required grid size roughly by a factor of the pulse stretching. The application of our improved Fourier transform algorithm in the split-step method for numerical modeling of CPA and OPCPA shows excellent agreement with standard algorithms.
NASA Astrophysics Data System (ADS)
Brunerová, A.; Roubík, H.; Herák, D.
2017-09-01
Several aquatic plant species were identified as aquatic pollution of Lake Toba, North Sumatra (Indonesia); specifically, water hyacinth Eichhornia crassipes and aquatic weeds Hydrilla verticillata and Myriophyllum spicatum due to their high biomass yield which causes impenetrable mats at the bottom and surface of the lake. That complicates other vegetation growth and utilization of water areas for fishing or recreation. In attempt to clean the lake and prevent plants expansion, great amount of plants populations are removed from water but subsequent efficient utilization of such aquatic biomass is not ensured. Present research investigated energy potential of aquatic biomass originated from mentioned aquatic plants from Lake Toba and its possible utilization for energy production by direct combustion. Performed chemical analysis contained from determination of moisture, ash and volatile matter contents and calorific values. Evaluation of results proved highest suitability and energy potential of Eichhornia crassipes with gross calorific value (GCV) 16.31 MJ·kg-1, followed by Hydrilla verticillata with GCV 15.24 MJ·kg-1. Samples of Myriophyllum spicatum exhibited unsatisfactory results due to its low GCV (11.27 MJ·kg-1) in combination with high ash content (36.99%) which indicates complications during combustion, thus, low energy production efficiency and overall unsuitability for combustion purposes.
Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun
2017-03-01
Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.
NASA Astrophysics Data System (ADS)
Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun
2017-03-01
Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-02-24
The Woods is a sustainable community built by Habitat for Humanity in 2013. This community comprises 30 homes that are high-performance and energy-efficient. With support from Tacoma Public Utilities and the Bonneville Power Administration, the BA-PIRC team is researching the energy performance of these homes and the ductless heat pumps they employ.
Generation of tunable high-repetition rate middle infrared transform-limited picosecond pulses
NASA Astrophysics Data System (ADS)
Yakovlev, Vladislav V.; Ballmann, Charles W.; Petrov, Georgi I.
2018-03-01
Tunable middle infrared generation is now affordable through optical parametric generation and amplification in a number of infrared nonlinear crystals. However, maintaining narrow bandwidth, while achieving high conversion efficiency, remains a challenge. In this report, we propose and experimentally demonstrate a relatively simple setup, which utilizes a single-wavelength diode laser as a seed laser for an optical parametric amplifier.
Feasibility of solar-pumped dye lasers
NASA Technical Reports Server (NTRS)
Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.
1987-01-01
Dye laser gains were measured at various pump-beam irradiances on a dye cell in order to evaluate the feasibility of solar pumping. Rhodamine 6G dye was considered as a candidate for the solar-pumped laser because of its high utilization of the solar spectrum and high quantum efficiency. Measurements show that a solar concentration of 20,000 is required to reach the threshold of the dye.
The Shifting Landscape of Ratepayer-Funded Energy Efficiency in the U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbose, Galen L; Goldman, Charles; Schlegel, Jeff
Over the last two decades, utility ratepayer funding for energy efficiency programs - and the associated energy savings - has seen both booms and busts. Currently, about 35 states implement ratepayer-funded energy efficiency programs, with a total U.S. budget of $3.1 billion in 2008, approximately 80% of which is concentrated in just ten states (CEE 2008).2 However, a proliferation of new state-level policies enacted over the past several years suggests that the next decade may see a dramatic and sustained increase in overall funding levels, and a fundamental re-drawing of the energy efficiency map. These new state energy efficiency policiesmore » reflect a variety of concerns, including the increasing cost and siting challenges of building new generation and transmission, fuel cost and supply risks, and the potential cost of future carbon regulations. Within the past three years, for example, eleven states have adopted energy efficiency portfolio (or resource) standards (EEPS or EERS) that establish specific long-term savings targets that utilities are obligated to meet, and at least three other states are currently considering the same. A growing number of states have recently established laws requiring utilities to acquire all available cost-effective energy efficiency. Regulators in several Western states have also recently revised integrated resource planning (IRP) and demand-side management (DSM) planning rules to require more robust analysis of the resource potential and benefits of energy efficiency, which has resulted in increased savings targets for their energy efficiency portfolios (Hopper et al. 2008). Finally, regulators and utilities in many states are beginning to look more closely at regulatory incentive mechanisms to better align utility financial interests with improvements in customer energy efficiency. We examined energy efficiency policies on the books or in the pipeline in all 50 states, along with recent IRPs and DSM plans, and developed low, medium and high projections of future energy efficiency spending and savings. Depending on how aggressively and effectively states implement these policies, we estimate that spending on ratepayer-funded energy efficiency could increase from $3.1 billion in 2008 to more than $12 billion (nominal dollars) per year by 2020 in our high case, a growth rate in spending of about 12% per year. Annual electricity savings nationally could triple from an estimated 0.3% of retail electricity sales in 2008 to 0.9% of retail electricity sales in 2020. In the low and medium scenarios, ratepayer funding for electric and gas energy efficiency in the U.S. would increase to $5.4 and $7.5 billion, respectively, by 2020. What are the implications of such a scale-up of ratepayer-funded energy efficiency activity for national energy policy, such as a national EEPS or future carbon regulations? Can a ramp-up of this scale be achieved, and what practical constraints might slow these efforts? This paper addresses these questions by first providing an overview of recent trends in state policies pertaining to ratepayer-funded energy efficiency programs in the U.S. The paper then presents our set of projections of future spending and savings from such programs, highlighting key themes. Projected energy savings are compared to what might be required under a future national EEPS (or broader clean energy standard that includes energy efficiency), in order to gauge the potential incremental impact of such policies. In addition, the carbon emission reductions associated with our projection of energy savings from ratepayer-funded programs is compared to the total emission reductions that might be required under the American Clean Energy and Security Act of 2009 (aka, the Waxman-Markey bill), which was passed by the U.S. House of Representatives in June 2009 and would establish a cap on total greenhouse gas emission for many sectors of the U.S. economy. Last, the paper discusses some of the major obstacles and challenges that states and program administrators may face over the coming decade, as they seek to dramatically ramp-up ratepayer-funded energy efficiency program activity, as projected.« less
Bioengineering a non-genotoxic vector for genetic modification of mesenchymal stem cells.
Chen, Xuguang; Nomani, Alireza; Patel, Niket; Nouri, Faranak S; Hatefi, Arash
2018-01-01
Vectors used for stem cell transfection must be non-genotoxic, in addition to possessing high efficiency, because they could potentially transform normal stem cells into cancer-initiating cells. The objective of this research was to bioengineer an efficient vector that can be used for genetic modification of stem cells without any negative somatic or genetic impact. Two types of multifunctional vectors, namely targeted and non-targeted were genetically engineered and purified from E. coli. The targeted vectors were designed to enter stem cells via overexpressed receptors. The non-targeted vectors were equipped with MPG and Pep1 cell penetrating peptides. A series of commercial synthetic non-viral vectors and an adenoviral vector were used as controls. All vectors were evaluated for their efficiency and impact on metabolic activity, cell membrane integrity, chromosomal aberrations (micronuclei formation), gene dysregulation, and differentiation ability of stem cells. The results of this study showed that the bioengineered vector utilizing VEGFR-1 receptors for cellular entry could transfect mesenchymal stem cells with high efficiency without inducing genotoxicity, negative impact on gene function, or ability to differentiate. Overall, the vectors that utilized receptors as ports for cellular entry (viral and non-viral) showed considerably better somato- and genosafety profiles in comparison to those that entered through electrostatic interaction with cellular membrane. The genetically engineered vector in this study demonstrated that it can be safely and efficiently used to genetically modify stem cells with potential applications in tissue engineering and cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yuan, Biao; Guan, Shanyue; Sun, Xingming; Li, Xiaoming; Zeng, Haibo; Xie, Zheng; Chen, Ping; Zhou, Shuyun
2018-05-09
Carbon dots (CDs) have potentials to be utilized in optoelectronic devices, bioimaging, and photocatalysis. The majority of the current CDs with high quantum yield to date were limited in the blue light emission region. Herein, on the basis of surface electron-state engineering, we report a kind of CDs with reversible switching ability between green and red photoluminescence with a quantum yield (QY) of both up to 80%. Highly efficient green and red solid-state luminescence is realized by doping CDs into a highly transparent matrix of methyltriethoxysilane and 3-triethoxysilylpropylamine to form CDs/gel glasses composites with QYs of 80 and 78%. The CDs/gel glasses show better transmittance in visible light bands and excellent thermal stability. A blue-pumped CDs/gel glasses phosphor-based trichromatic white light-emitting diode (WLED) is realized, whose color rendering index is 92.9. The WLED gets the highest luminous efficiency of 71.75 lm W -1 in CDs-based trichromatic WLEDs. This work opens a door for developing highly efficient green- and red-emissive switching CDs which were used as phosphors for WLEDs and have the tendency for applications in other fields, such as sensing, bioimaging, and photocatalysis.
Building Energy Asset Score for Utilities and Energy Efficiency Program Administrators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Building Technologies Office
2015-01-01
The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for utilities and energy efficiency program administrators.
Alternative toxicity assessment methods to characterize the hazards of chemical substances have been proposed to reduce animal testing and screen thousands of chemicals in an efficient manner. Resources to accomplish these goals include utilizing large in vitro chemical screening...
Semiconductor laser technology for remote sensing experiments
NASA Technical Reports Server (NTRS)
Katz, Joseph
1988-01-01
Semiconductor injection lasers are required for implementing virtually all spaceborne remote sensing systems. Their main advantages are high reliability and efficiency, and their main roles are envisioned in pumping and injection locking of solid state lasers. In some shorter range applications they may even be utilized directly as the sources.
The large number of diverse chemicals in production or in the environment has motivated medium to high throughput in vitro or small animal approaches to efficiently profile chemical-biological interactions and to utilize this information to assess risks of chemical exposures on h...
South Coast Air Quality Management District Truck Testing | Transportation
movement of cargo containers, also known as drayage, creates substantial air pollution in the vicinity of and U.S. Hybrid Corporation, transport cargo containers between the port complex and local rail yards and distribution centers. Utilizing advanced batteries and high-efficiency components, the electric
ERIC Educational Resources Information Center
Birr, David
2000-01-01
Energy performance contracting allows schools to pay for needed new energy equipment and modernization improvements with savings from reduced utility and maintenance costs. Improved energy efficiency reduces demand for burning fossil fuels, which reduces air pollution, leading to improved learning environments and budgets (through improved average…
Tunable, rare earth-doped solid state lasers
Emmett, John L.; Jacobs, Ralph R.; Krupke, William F.; Weber, Marvin J.
1980-01-01
Laser apparatus comprising combinations of an excimer pump laser and a rare earth-doped solid matrix, utilizing the 5d-4f radiative transition in a rare earth ion to produce visible and ultra-violet laser radiation with high overall efficiency in selected cases and relatively long radiative lifetimes.
The need for efficient methods of screening chemicals for the potential to cause developmental neurotoxicity is paramount. We previously described optimization of an HCA assay for proliferation and apoptosis in ReNcell CX cells (ReN), identifying appropriate controls. Utility of ...
There is a need for more efficient and cost-effective methods for identifying, characterizing and prioritizing chemicals which may result in developmental neurotoxicity. One approach is to utilize in vitro test systems which recapitulate the critical processes of nervous system d...
Connecting Performance Analysis and Visualization to Advance Extreme Scale Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bremer, Peer-Timo; Mohr, Bernd; Schulz, Martin
2015-07-29
The characterization, modeling, analysis, and tuning of software performance has been a central topic in High Performance Computing (HPC) since its early beginnings. The overall goal is to make HPC software run faster on particular hardware, either through better scheduling, on-node resource utilization, or more efficient distributed communication.
Preparation and the influencing factors of timozolomide liposomes.
Kong, Bin; Sun, Yong; Li, Yongjian; Hu, Dejian
2009-01-01
To prepare timozolomide liposomes for administration through nasal mucous membrane, we studied the factors of the preparation of the liposomes. The timozolomide liposomes were prepared by the ammonium sulphate gradient method; electroscopy and laser particle analyzer were utilized to determine the conformation, size and distribution of timozolomide liposomes; high performance liquid chromatography (HPLC) was applied to determine the entrapping efficiency of timozolomide liposomes; then we studied the influences of the concentration of ammonium sulphate solution, temperature, and the drug-to-lipid ratio on the entrapping efficiency. The average size of timozolomide liposomes was 185 nm; the entrapping efficiency was 90.3%. The entrapping efficiency was enhanced with the increasing of the concentration of ammonium sulphate solution and the rising of temperature, and decreased with the increasing of the drug-to-lipid ratio. The timozolomide liposomes with high entrapping efficiency, small and even particle sizes could be prepared by the simple and convenient ammonium sulphate gradient method. The primary influencing factors on the entrapping efficiency of timozolomide liposomes were the concentration of ammonium sulphate solution, the temperature, and the drug-to-lipid ratio.
Engineering crop nutrient efficiency for sustainable agriculture.
Chen, Liyu; Liao, Hong
2017-10-01
Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency. © 2017 Institute of Botany, Chinese Academy of Sciences.
A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation.
Lee, Hyung-Min; Park, Hangue; Ghovanloo, Maysam
2013-09-01
A power-efficient wireless stimulating system for a head-mounted deep brain stimulator (DBS) is presented. A new adaptive rectifier generates a variable DC supply voltage from a constant AC power carrier utilizing phase control feedback, while achieving high AC-DC power conversion efficiency (PCE) through active synchronous switching. A current-controlled stimulator adopts closed-loop supply control to automatically adjust the stimulation compliance voltage by detecting stimulation site potentials through a voltage readout channel, and improve the stimulation efficiency. The stimulator also utilizes closed-loop active charge balancing to maintain the residual charge at each site within a safe limit, while receiving the stimulation parameters wirelessly from the amplitude-shift-keyed power carrier. A 4-ch wireless stimulating system prototype was fabricated in a 0.5-μm 3M2P standard CMOS process, occupying 2.25 mm². With 5 V peak AC input at 2 MHz, the adaptive rectifier provides an adjustable DC output between 2.5 V and 4.6 V at 2.8 mA loading, resulting in measured PCE of 72 ~ 87%. The adaptive supply control increases the stimulation efficiency up to 30% higher than a fixed supply voltage to 58 ~ 68%. The prototype wireless stimulating system was verified in vitro .
A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation
Lee, Hyung-Min; Park, Hangue; Ghovanloo, Maysam
2014-01-01
A power-efficient wireless stimulating system for a head-mounted deep brain stimulator (DBS) is presented. A new adaptive rectifier generates a variable DC supply voltage from a constant AC power carrier utilizing phase control feedback, while achieving high AC-DC power conversion efficiency (PCE) through active synchronous switching. A current-controlled stimulator adopts closed-loop supply control to automatically adjust the stimulation compliance voltage by detecting stimulation site potentials through a voltage readout channel, and improve the stimulation efficiency. The stimulator also utilizes closed-loop active charge balancing to maintain the residual charge at each site within a safe limit, while receiving the stimulation parameters wirelessly from the amplitude-shift-keyed power carrier. A 4-ch wireless stimulating system prototype was fabricated in a 0.5-μm 3M2P standard CMOS process, occupying 2.25 mm². With 5 V peak AC input at 2 MHz, the adaptive rectifier provides an adjustable DC output between 2.5 V and 4.6 V at 2.8 mA loading, resulting in measured PCE of 72 ~ 87%. The adaptive supply control increases the stimulation efficiency up to 30% higher than a fixed supply voltage to 58 ~ 68%. The prototype wireless stimulating system was verified in vitro. PMID:24678126
[Characterization of a thermophilic Geobacillus strain DM-2 degrading hydrocarbons].
Liu, Qing-kun; Wang, Jun; Li, Guo-qiang; Ma, Ting; Liang, Feng-lai; Liu, Ru-lin
2008-12-01
A thermophilic Geobacillus strain DM-2 from a deep-subsurface oil reservoir was investigated on its capability of degrading crude oil under various conditions as well as its characters on degrading hydrocarbons in optimal conditions. The results showed that Geobacillus strain DM-2 was able to degrade crude oil under anoxic wide-range conditions with pH ranging from 4.0 to 10.0, high temperature in the range of 45-70 degrees C and saline concentration ranging from 0.2% to 3.0%. Furthermore, the optimal temperature and pH value for utilizing hydrocarbons by the strain were 60 degrees C and 7.0, respectively. Under such optimal conditions, the strain utilized liquid paraffine emulsified by itself as its carbon source for growth; further analysis by gas chromatography (GC) and infrared absorption spectroscopy demonstrated that it was able to degrade n-alkanes (C14-C30), branched-chain alkanes and aromatic hydrocarbons in crude oil and could also utilize long-chain n-alkanes from C16 to C36, among of which the degradation efficiency of C28 was the highest, up to 88.95%. One metabolite of the strain oxidizing alkanes is fatty acid.While utilizing C16 as carbon source for 5 d, only one fatty acid-acetic acid was detected by HPLC and MS as the product, with the amount of 0.312 g/L, which indicated that it degraded n-alkanes with pathway of inferior terminal oxidation,and then followed by a beta-oxidation pathway. Due to its characters of efficient emulsification, high-performance degradation of hydrocarbons and fatty-acid production under high temperature and anoxic condition, the strain DM-2 may be potentially applied to oil-waste treatment and microbial enhanced heavy oil recovery in extreme conditions.
NASA Astrophysics Data System (ADS)
Wang, Yang; Zhou, Lin; Zheng, Qinghui; Lu, Hong; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia
2017-05-01
Spectrally selective absorbers (SSA) with high selectivity of absorption and sharp cut-off between high absorptivity and low emissivity are critical for efficient solar energy conversion. Here, we report the semiconductor nanowire enabled SSA with not only high absorption selectivity but also temperature dependent sharp absorption cut-off. By taking advantage of the temperature dependent bandgap of semiconductors, we systematically demonstrate that the absorption cut-off profile of the semiconductor-nanowire-based SSA can be flexibly tuned, which is quite different from most of the other SSA reported so far. As an example, silicon nanowire based selective absorbers are fabricated, with the measured absorption efficiency above (below) bandgap ˜97% (15%) combined with an extremely sharp absorption cut-off (transition region ˜200 nm), the sharpest SSA demonstrated so far. The demonstrated semiconductor-nanowire-based SSA can enable a high solar thermal efficiency of ≳86% under a wide range of operating conditions, which would be competitive candidates for the concentrated solar energy utilizations.
Kim, Z-Hun; Park, Hanwool; Lee, Ho-Sang; Lee, Choul-Gyun
2016-07-28
A split-column photobioreactor (SC-PBR), consisting of two bubble columns with different sizes, was developed to enhance the photon utilization efficiency in an astaxanthin production process from Haematococcus lacustris. Among the two columns, only the smaller column of SC-PBR was illuminated. Astaxanthin productivities and photon efficiencies of the SC-PBRs were compared with a standard bubble-column PBR (BC-PBR). Astaxanthin productivity of SC-PBR was improved by 28%, and the photon utilization efficiencies were 28-366% higher than the original BC-PBR. The results clearly show that the effective light regime of SC-PBR could enhance the production of astaxanthin.
Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine
NASA Astrophysics Data System (ADS)
Ma, Zheshu; Chen, Hua; Zhang, Yong
2017-09-01
The increase of ship's energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, Charles A.; Stuart, Elizabeth; Hoffman, Ian
2011-02-25
Since the spring of 2009, billions of federal dollars have been allocated to state and local governments as grants for energy efficiency and renewable energy projects and programs. The scale of this American Reinvestment and Recovery Act (ARRA) funding, focused on 'shovel-ready' projects to create and retain jobs, is unprecedented. Thousands of newly funded players - cities, counties, states, and tribes - and thousands of programs and projects are entering the existing landscape of energy efficiency programs for the first time or expanding their reach. The nation's experience base with energy efficiency is growing enormously, fed by federal dollars andmore » driven by broader objectives than saving energy alone. State and local officials made countless choices in developing portfolios of ARRA-funded energy efficiency programs and deciding how their programs would relate to existing efficiency programs funded by utility customers. Those choices are worth examining as bellwethers of a future world where there may be multiple program administrators and funding sources in many states. What are the opportunities and challenges of this new environment? What short- and long-term impacts will this large, infusion of funds have on utility customer-funded programs; for example, on infrastructure for delivering energy efficiency services or on customer willingness to invest in energy efficiency? To what extent has the attribution of energy savings been a critical issue, especially where administrators of utility customer-funded energy efficiency programs have performance or shareholder incentives? Do the new ARRA-funded energy efficiency programs provide insights on roles or activities that are particularly well-suited to state and local program administrators vs. administrators or implementers of utility customer-funded programs? The answers could have important implications for the future of U.S. energy efficiency. This report focuses on a selected set of ARRA-funded energy efficiency programs administered by state energy offices: the State Energy Program (SEP) formula grants, the portion of Energy Efficiency and Conservation Block Grant (EECBG) formula funds administered directly by states, and the State Energy Efficient Appliance Rebate Program (SEEARP). Since these ARRA programs devote significant monies to energy efficiency and serve similar markets as utility customer-funded programs, there are frequent interactions between programs. We exclude the DOE low-income weatherization program and EECBG funding awarded directly to the over 2,200 cities, counties and tribes from our study to keep its scope manageable. We summarize the energy efficiency program design and funding choices made by the 50 state energy offices, 5 territories and the District of Columbia. We then focus on the specific choices made in 12 case study states. These states were selected based on the level of utility customer program funding, diversity of program administrator models, and geographic diversity. Based on interviews with more than 80 energy efficiency actors in those 12 states, we draw observations about states strategies for use of Recovery Act funds. We examine interactions between ARRA programs and utility customer-funded energy efficiency programs in terms of program planning, program design and implementation, policy issues, and potential long-term impacts. We consider how the existing regulatory policy framework and energy efficiency programs in these 12 states may have impacted development of these selected ARRA programs. Finally, we summarize key trends and highlight issues that evaluators of these ARRA programs may want to examine in more depth in their process and impact evaluations.« less
Genetic resources offer efficient tools for rice functional genomics research.
Lo, Shuen-Fang; Fan, Ming-Jen; Hsing, Yue-Ie; Chen, Liang-Jwu; Chen, Shu; Wen, Ien-Chie; Liu, Yi-Lun; Chen, Ku-Ting; Jiang, Mirng-Jier; Lin, Ming-Kuang; Rao, Meng-Yen; Yu, Lin-Chih; Ho, Tuan-Hua David; Yu, Su-May
2016-05-01
Rice is an important crop and major model plant for monocot functional genomics studies. With the establishment of various genetic resources for rice genomics, the next challenge is to systematically assign functions to predicted genes in the rice genome. Compared with the robustness of genome sequencing and bioinformatics techniques, progress in understanding the function of rice genes has lagged, hampering the utilization of rice genes for cereal crop improvement. The use of transfer DNA (T-DNA) insertional mutagenesis offers the advantage of uniform distribution throughout the rice genome, but preferentially in gene-rich regions, resulting in direct gene knockout or activation of genes within 20-30 kb up- and downstream of the T-DNA insertion site and high gene tagging efficiency. Here, we summarize the recent progress in functional genomics using the T-DNA-tagged rice mutant population. We also discuss important features of T-DNA activation- and knockout-tagging and promoter-trapping of the rice genome in relation to mutant and candidate gene characterizations and how to more efficiently utilize rice mutant populations and datasets for high-throughput functional genomics and phenomics studies by forward and reverse genetics approaches. These studies may facilitate the translation of rice functional genomics research to improvements of rice and other cereal crops. © 2015 John Wiley & Sons Ltd.
Aerodynamic Heat-Power Engine Operating on a Closed Cycle
NASA Technical Reports Server (NTRS)
Ackeret, J.; Keller, D. C.
1942-01-01
Hot-air engines with dynamic compressors and turbines offer new prospects of success through utilization of units of high efficiencies and through the employment of modern materials of great strength at high temperature. Particular consideration is given to an aerodynamic prime mover operating on a closed circuit and heated externally. Increase of the pressure level of the circulating air permits a great increase of limit load of the unit. This also affords a possibility of regulation for which the internal efficiency of the unit changes but slightly. The effect of pressure and temperature losses is investigated. A general discussion is given of the experimental installation operating at the Escher Wyss plant in Zurich for a considerable time at high temperatures.
Thermoelectric energy conversion with solid electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, T.
1983-09-02
The alkali metal thermoelectric converter (AMTEC) is a device for the direct conversion of heat to electrical energy. The sodium ion conductor beta''-alumina is used to form a high-temperature regenerative concentration cell for elemental sodium. An AMTEC of mature design should have an efficiency of 20 to 40%, a power density of 0.5 kilowatt per kilogram or more, no moving parts, low maintenance requirements, high durability, and efficiency independent of size. It should be usable with high-temperature combustion, nuclear, or solar heat sources. Experiments have demonstrated the feasibility of the AMTEC and confirmed the theoretical analysis of the device. Amore » wide range of applications from aerospace power to utility power plants appears possible.« less
High Efficiency InP Solar Cells from Low Toxicity Tertiarybutylphosphine
NASA Technical Reports Server (NTRS)
Hoffman, Richard W., Jr.; Fatemi, Navid S.; Wilt, David M.; Jenkins, Phillip P.; Brinker, David J.; Scheiman, David A.
1994-01-01
Large scale manufacture of phosphide based semiconductor devices by organo-metallic vapor phase epitaxy (OMVPE) typically requires the use of highly toxic phosphine. Advancements in phosphine substitutes have identified tertiarybutylphosphine (TBP) as an excellent precursor for OMVPE of InP. High quality undoped and doped InP films were grown using TBP and trimethylindium. Impurity doped InP films were achieved utilizing diethylzinc and silane for p and n type respectively. 16 percent efficient solar cells under air mass zero, one sun intensity were demonstrated with Voc of 871 mV and fill factor of 82.6 percent. It was shown that TBP could replace phosphine, without adversely affecting device quality, in OMVPE deposition of InP thus significantly reducing toxic gas exposure risk.
Nuclear thermionic converter. [tungsten-thorium oxide rods
NASA Technical Reports Server (NTRS)
Phillips, W. M.; Mondt, J. F. (Inventor)
1977-01-01
Efficient nuclear reactor thermionic converter units are described which can be constructed at low cost and assembled in a reactor which requires a minimum of fuel. Each converter unit utilizes an emitter rod with a fluted exterior, several fuel passages located in the bulges that are formed in the rod between the flutes, and a collector receiving passage formed through the center of the rod. An array of rods is closely packed in an interfitting arrangement, with the bulges of the rods received in the recesses formed between the bulges of other rods, thereby closely packing the nuclear fuel. The rods are constructed of a mixture of tungsten and thorium oxide to provide high power output, high efficiency, high strength, and good machinability.
Fujishiro, Kaori; Heaney, Catherine A
2017-02-01
Skill utilization, defined as having the opportunity to do one's best at work, has been examined as a contributor to productivity, organizational efficiency, job satisfaction, and mental health. Drawing from self-determination theory, we postulate that high levels of skill utilization are positively associated with physical health and that some of the effect is mediated by health behavior. Using the 2014 Gallup Daily Tracking Survey data (n = 87,316), a nationally representative sample of working adults in the United States, we examine the associations between perceived skill utilization and five health outcomes (self-rated health, hypertension, high cholesterol, cancer, asthma) with healthy behavior (regular exercising, fruits and vegetable consumption) as a mediator of the associations. The regression results showed that a one-point increase in skill utilization (on a three-point scale) was associated with 20% lower odds of reporting poor or fair health, 3% and 8% lower odds of reporting hypertension and high cholesterol, but had no significant association with cancer or asthma. Health behavior mediated 10% of the association between skill utilization and self-rated health, 46% for hypertension, and 18% for high cholesterol. The findings suggest that providing employees the opportunities to use their skills well at work improves health in general, and the effect is partly through enhancing the likelihood of engaging in healthy behaviors. Implications for organizational practice as well as future research directions are discussed. Published by Elsevier Ltd.
Energy Efficient Cluster Based Scheduling Scheme for Wireless Sensor Networks
Srie Vidhya Janani, E.; Ganesh Kumar, P.
2015-01-01
The energy utilization of sensor nodes in large scale wireless sensor network points out the crucial need for scalable and energy efficient clustering protocols. Since sensor nodes usually operate on batteries, the maximum utility of network is greatly dependent on ideal usage of energy leftover in these sensor nodes. In this paper, we propose an Energy Efficient Cluster Based Scheduling Scheme for wireless sensor networks that balances the sensor network lifetime and energy efficiency. In the first phase of our proposed scheme, cluster topology is discovered and cluster head is chosen based on remaining energy level. The cluster head monitors the network energy threshold value to identify the energy drain rate of all its cluster members. In the second phase, scheduling algorithm is presented to allocate time slots to cluster member data packets. Here congestion occurrence is totally avoided. In the third phase, energy consumption model is proposed to maintain maximum residual energy level across the network. Moreover, we also propose a new packet format which is given to all cluster member nodes. The simulation results prove that the proposed scheme greatly contributes to maximum network lifetime, high energy, reduced overhead, and maximum delivery ratio. PMID:26495417
Anonymizing 1:M microdata with high utility
Gong, Qiyuan; Luo, Junzhou; Yang, Ming; Ni, Weiwei; Li, Xiao-Bai
2016-01-01
Preserving privacy and utility during data publishing and data mining is essential for individuals, data providers and researchers. However, studies in this area typically assume that one individual has only one record in a dataset, which is unrealistic in many applications. Having multiple records for an individual leads to new privacy leakages. We call such a dataset a 1:M dataset. In this paper, we propose a novel privacy model called (k, l)-diversity that addresses disclosure risks in 1:M data publishing. Based on this model, we develop an efficient algorithm named 1:M-Generalization to preserve privacy and data utility, and compare it with alternative approaches. Extensive experiments on real-world data show that our approach outperforms the state-of-the-art technique, in terms of data utility and computational cost. PMID:28603388
The AC photovoltaic module is here!
NASA Astrophysics Data System (ADS)
Strong, Steven J.; Wohlgemuth, John H.; Wills, Robert H.
1997-02-01
This paper describes the design, development, and performance results of a large-area photovoltaic module whose electrical output is ac power suitable for direct connection to the utility grid. The large-area ac PV module features a dedicated, integrally mounted, high-efficiency dc-to-ac power inverter with a nominal output of 250 watts (STC) at 120 Vac, 60 H, that is fully compatible with utility power. The module's output is connected directly to the building's conventional ac distribution system without need for any dc wiring, string combiners, dc ground-fault protection or additional power-conditioning equipment. With its advantages, the ac photovoltaic module promises to become a universal building block for use in all utility-interactive PV systems. This paper discusses AC Module design aspects and utility interface issues (including islanding).
Zhao, Haiqian; Dong, Ming; Wang, Zhonghua; Wang, Huaiyuan; Qi, Hanbing
2018-06-20
Low H 2 O 2 utilization efficiency is the main problem when Fenton system was used to oxidize NO in flue gas. To understand the behavior of the free radicals during NO oxidation process in Fenton system is crucial to solving this problem. The oxidation capacity of ·OH and HO 2 · on NO in Fenton system was compared and the useless consumption path of ·OH and HO 2 · that caused the low utilization efficiency of H 2 O 2 were studied. A method to enhance the oxidation ability and H 2 O 2 utilization efficiency by adding reducing additives in Fenton system was proposed. The results showed that both of ·OH and HO 2 · were active substances that oxidize NO. However, the oxidation ability of ·OH radicals was stronger. The vast majority of ·OH and HO 2 · was consumed by rapid reaction ·OH+HO 2 ·→H 2 O+O 2 , which was the primary reason for the low utilization efficiency of H 2 O 2 in Fenton system. Hydroxylamine hydrochloride and ascorbic acid could accelerate the conversion of Fe 3+ to Fe 2+ , thereby increase the generation rate of ·OH and decrease the generation rate of HO 2 ·. As a result, the oxidation ability and H 2 O 2 utilization efficiency were enhanced.
KSI's Cross Insulated Core Transformer Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhmeyer, Uwe
2009-08-04
Cross Insulated Core Transformer (CCT) technology improves on Insulated Core Transformer (ICT) implementations. ICT systems are widely used in very high voltage, high power, power supply systems. In an ICT transformer ferrite core sections are insulated from their neighboring ferrite cores. Flux leakage is present at each of these insulated gaps. The flux loss is raised to the power of stages in the ICT design causing output voltage efficiency to taper off with increasing stages. KSI's CCT technology utilizes a patented technique to compensate the flux loss at each stage of an ICT system. Design equations to calculate the fluxmore » compensation capacitor value are presented. CCT provides corona free operation of the HV stack. KSI's CCT based High Voltage power supply systems offer high efficiency operation, high frequency switching, low stored energy and smaller size over comparable ICT systems.« less
Identifying and managing inappropriate hospital utilization: a policy synthesis.
Payne, S M
1987-01-01
Utilization review, the assessment of the appropriateness and efficiency of hospital care through review of the medical record, and utilization management, deliberate action by payers or hospital administrators to influence providers of hospital services to increase the efficiency and effectiveness with which services are provided, are valuable but relatively unfamiliar strategies for containing hospital costs. The purpose of this synthesis is to increase awareness of the scope of and potential for these approaches among health services managers and administrators, third-party payers, policy analysts, and health services researchers. The synthesis will assist the reader to trace the conceptual context and the historical development of utilization review from unstructured methods using individual physicians' professional judgment to structured methods using explicit criteria; to establish the context of utilization review and clarify its uses; to understand the concepts and tools used in assessing the efficiency of hospital use; and to select, design, and evaluate utilization review and utilization management programs. The extent of inappropriate (medical unnecessary) hospital utilization and the factors associated with it are described. Implications for managers, providers, and third-party payers in targeting utilization review and in designing and evaluating utilization management programs are discussed. PMID:3121538
Preparation of rAAV9 to Overexpress or Knockdown Genes in Mouse Hearts
Ding, Jian; Lin, Zhi-Qiang; Jiang, Jian-Ming; Seidman, Christine E.; Seidman, Jonathan G.; Pu, William T.; Wang, Da-Zhi
2016-01-01
Controlling the expression or activity of specific genes through the myocardial delivery of genetic materials in murine models permits the investigation of gene functions. Their therapeutic potential in the heart can also be determined. There are limited approaches for in vivo molecular intervention in the mouse heart. Recombinant adeno-associated virus (rAAV)-based genome engineering has been utilized as an essential tool for in vivo cardiac gene manipulation. The specific advantages of this technology include high efficiency, high specificity, low genomic integration rate, minimalimmunogenicity, and minimal pathogenicity. Here, a detailed procedure to construct, package, and purify the rAAV9 vectors is described. Subcutaneous injection of rAAV9 into neonatal pups results in robust expression or efficient knockdown of the gene(s) of interest in the mouse heart, but not in the liver and other tissues. Using the cardiac-specific TnnT2 promoter, high expression of GFP gene in the heart was obtained. Additionally, target mRNA was inhibited in the heart when a rAAV9-U6-shRNA was utilized. Working knowledge of rAAV9 technology may be useful for cardiovascular investigations. PMID:28060283
Preparation of rAAV9 to Overexpress or Knockdown Genes in Mouse Hearts.
Ding, Jian; Lin, Zhi-Qiang; Jiang, Jian-Ming; Seidman, Christine E; Seidman, Jonathan G; Pu, William T; Wang, Da-Zhi
2016-12-17
Controlling the expression or activity of specific genes through the myocardial delivery of genetic materials in murine models permits the investigation of gene functions. Their therapeutic potential in the heart can also be determined. There are limited approaches for in vivo molecular intervention in the mouse heart. Recombinant adeno-associated virus (rAAV)-based genome engineering has been utilized as an essential tool for in vivo cardiac gene manipulation. The specific advantages of this technology include high efficiency, high specificity, low genomic integration rate, minimal immunogenicity, and minimal pathogenicity. Here, a detailed procedure to construct, package, and purify the rAAV9 vectors is described. Subcutaneous injection of rAAV9 into neonatal pups results in robust expression or efficient knockdown of the gene(s) of interest in the mouse heart, but not in the liver and other tissues. Using the cardiac-specific TnnT2 promoter, high expression of GFP gene in the heart was obtained. Additionally, target mRNA was inhibited in the heart when a rAAV9-U6-shRNA was utilized. Working knowledge of rAAV9 technology may be useful for cardiovascular investigations.
Methods for enhancing the efficiency of creating a borehole using high power laser systems
Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.
2014-06-24
Methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena to enhance the formation of Boreholes. Methods for the laser operations to reduce the critical path for forming a borehole in the earth. These methods can deliver high power laser energy down a deep borehole, while maintaining the high power to perform operations in such boreholes deep within the earth.
Gunther, Nereus W; Sites, Joseph; Sommers, Christopher
2015-09-01
Marinades containing polyphosphates have been previously implicated in the enhanced survival of Campylobacter spp. in poultry product exudates. The enhanced Campylobacter survival has been attributed primarily to the ability of some polyphosphates to change the pH of the exudate to one more amenable to Campylobacter. In this study a ground poultry product contaminated with a 6 strain Campylobacter jejuni cocktail was utilized to determine if the efficiency of high-hydrostatic-pressure treatments was negatively impacted by the presence of commonly utilized polyphosphates. Two polyphosphates, hexametaphosphate and sodium tripolyphosphate, used at 2 concentrations, 0.25 and 0.5%, failed to demonstrate any significant negative effects on the efficiency of inactivation of C. jejuni by high-pressure treatment. However, storage at 4°C of the ground poultry samples containing C. jejuni after high-pressure treatment appeared to provide a synergistic effect on Campylobacter inactivation. High-pressure treatment in conjunction with 7 d of storage at 4°C resulted in a mean reduction in C. jejuni survival that was larger than the sum of the individual reductions caused by high pressure or 4°C storage when applied separately. Published by Oxford University Press on behalf of Poultry Science Association 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Liu, Ting; Yu, Yang-Yang; Chen, Tao; Chen, Wei Ning
2017-03-01
In this study, a synthetic microbial consortium containing exoelectrogen Shewanella oneidensis MR-1 and riboflavin-producing strain, Bacillus subtilis RH33, was rationally designed and successfully constructed, enabling a stable, multiple cycles of microbial fuel cells (MFCs) operation for more than 500 h. The maximum power density of MFCs with this synthetic microbial consortium was 277.4 mW/m 2 , which was 4.9 times of that with MR-1 (56.9 mW/m 2 ) and 40.2 times of RH33 (6.9 mW/m 2 ), separately. At the same time, the Coulombic efficiency of the synthetic microbial consortium (5.6%) was higher than MR-1 (4.1%) and RH33 (2.3%). Regardless the high concentration of riboflavin produced by RH33, the power density of RH33 was rather low. The low bioelectricity generation can be ascribed to the low efficiency of RH33 in utilizing riboflavin for extracellular electron transfer (EET). In the synthetic microbial consortium of MR-1 and RH33, it was found that both mediated and direct electron transfer efficiencies were enhanced. By exchanging the anolyte of MR-1 and RH33, it was confirmed that the improved MFC performance with the synthetic microbial consortium was because MR-1 could efficiently utilize the high concentration of riboflavin produced by RH33. Biotechnol. Bioeng. 2017;114: 526-532. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Exploring the role of peptides in polymer-based gene delivery.
Sun, Yanping; Yang, Zhen; Wang, Chunxi; Yang, Tianzhi; Cai, Cuifang; Zhao, Xiaoyun; Yang, Li; Ding, Pingtian
2017-09-15
Polymers are widely studied as non-viral gene vectors because of their strong DNA binding ability, capacity to carry large payload, flexibility of chemical modifications, low immunogenicity, and facile processes for manufacturing. However, high cytotoxicity and low transfection efficiency substantially restrict their application in clinical trials. Incorporating functional peptides is a promising approach to address these issues. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we systematically summarize the role of peptides in polymer-based gene delivery, and elaborate how to rationally design polymer-peptide based gene delivery vectors. Polymers are widely studied as non-viral gene vectors, but suffer from high cytotoxicity and low transfection efficiency. Incorporating short, bioactive peptides into polymer-based gene delivery systems can address this issue. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we highlight the peptides' roles in polymer-based gene delivery, and elaborate how to utilize various functional peptides to enhance the transfection efficiency of polymers. The optimized peptide-polymer vectors should be able to alter their structures and functions according to biological microenvironments and utilize inherent intracellular pathways of cells, and consequently overcome the barriers during gene delivery to enhance transfection efficiency. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Haichao; Jiang, Jianjun; Zhang, Li; Xia, Dandan; Zhao, Yuandong; Guo, Danqing; Qi, Tong; Wan, Houzhao
2014-05-01
Self-standing NiCo2S4 nanotube arrays have been in situ grown on Ni foam by the anion-exchange reaction and directly used as the electrode for supercapacitors. The NiCo2S4 nanotube in the arrays effectively reduces the inactive material and increases the electroactive surface area because of the ultrathin wall, which is quite competent to achieve high utilization efficiency at high electroactive materials mass loading. The NiCo2S4 nanotube arrays hybrid electrode exhibits an ultrahigh specific capacitance of 14.39 F cm-2 at 5 mA cm-2 with excellent rate performance (67.7% retention for current increases 30 times) and cycling stability (92% retention after 5000 cycles) at a high mass loading of 6 mg cm-2. High areal capacitance (4.68 F cm-2 at 10 mA cm-2), high energy density (31.5 Wh kg-1 at 156.6 W kg-1) and high power density (2348.5 W kg-1 at 16.6 Wh kg-1) can be achieved by assembling asymmetric supercapacitor with reduced graphene oxide at a total active material mass loading as high as 49.5 mg. This work demonstrates that NiCo2S4 nanotube arrays structure is a superior electroactive material for high-performance supercapacitors even at a mass loading of potential application-specific scale.
Lim, Hyun Gyu; Lim, Jae Hyung; Jung, Gyoo Yeol
2015-01-01
Refactoring microorganisms for efficient production of advanced biofuel such as n-butanol from a mixture of sugars in the cheap feedstock is a prerequisite to achieve economic feasibility in biorefinery. However, production of biofuel from inedible and cheap feedstock is highly challenging due to the slower utilization of biomass-driven sugars, arising from complex assimilation pathway, difficulties in amplification of biosynthetic pathways for heterologous metabolite, and redox imbalance caused by consuming intracellular reducing power to produce quite reduced biofuel. Even with these problems, the microorganisms should show robust production of biofuel to obtain industrial feasibility. Thus, refactoring microorganisms for efficient conversion is highly desirable in biofuel production. In this study, we engineered robust Escherichia coli to accomplish high production of n-butanol from galactose-glucose mixtures via the design of modular pathway, an efficient and systematic way, to reconstruct the entire metabolic pathway with many target genes. Three modular pathways designed using the predictable genetic elements were assembled for efficient galactose utilization, n-butanol production, and redox re-balancing to robustly produce n-butanol from a sugar mixture of galactose and glucose. Specifically, the engineered strain showed dramatically increased n-butanol production (3.3-fold increased to 6.2 g/L after 48-h fermentation) compared to the parental strain (1.9 g/L) in galactose-supplemented medium. Moreover, fermentation with mixtures of galactose and glucose at various ratios from 2:1 to 1:2 confirmed that our engineered strain was able to robustly produce n-butanol regardless of sugar composition with simultaneous utilization of galactose and glucose. Collectively, modular pathway engineering of metabolic network can be an effective approach in strain development for optimal biofuel production with cost-effective fermentable sugars. To the best of our knowledge, this study demonstrated the first and highest n-butanol production from galactose in E. coli. Moreover, robust production of n-butanol with sugar mixtures with variable composition would facilitate the economic feasibility of the microbial process using a mixture of sugars from cheap biomass in the near future.
Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung
2016-01-01
Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach. PMID:27170543
Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung
2016-05-12
Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.
NASA Astrophysics Data System (ADS)
Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung
2016-05-01
Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.
Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan
2016-08-14
Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ∼1 kW m(-2). The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.
Xiang, Mei-Hao; Liu, Jin-Wen; Li, Na; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui
2016-02-28
Graphitic C3N4 (g-C3N4) nanosheets provide an attractive option for bioprobes and bioimaging applications. Utilizing highly fluorescent and water-dispersible ultrathin g-C3N4 nanosheets, a highly sensitive, selective and label-free biosensor has been developed for ALP detection for the first time. The developed approach utilizes a natural substrate of ALP in biological systems and thus affords very high catalytic efficiency. This novel biosensor is demonstrated to enable quantitative analysis of ALP in a wide range from 0.1 to 1000 U L(-1) with a low detection limit of 0.08 U L(-1), which is among the most sensitive assays for ALP. It is expected that the developed method may provide a low-cost, convenient, rapid and highly sensitive platform for ALP-based clinical diagnostics and biomedical applications.
NASA Astrophysics Data System (ADS)
Nakajima, Kazuo; Ono, Satoshi; Kaneko, Yuzuru; Murai, Ryota; Shirasawa, Katsuhiko; Fukuda, Tetsuo; Takato, Hidetaka; Jensen, Mallory A.; Youssef, Amanda; Looney, Erin E.; Buonassisi, Tonio; Martel, Benoit; Dubois, Sèbastien; Jouini, Anis
2017-06-01
The noncontact crucible (NOC) method was proposed for obtaining Si single bulk crystals with a large diameter and volume using a cast furnace and solar cells with high conversion efficiency and yield. This method has several novel characteristics that originate from its key feature that ingots can be grown inside a Si melt without contact with a crucible wall. Si ingots for solar cells were grown by utilizing the merits resulting from these characteristics. Single ingots with high quality were grown by the NOC method after furnace cleaning, and the minority carrier lifetime was measured to investigate reduction of the number of impurities. A p-type ingot with a convex growth interface in the growth direction was also grown after furnace cleaning. For p-type solar cells prepared using wafers cut from the ingot, the highest and average conversion efficiencies were 19.14% and 19.0%, respectively, which were obtained using the same solar cell structure and process as those employed to obtain a conversion efficiency of 19.1% for a p-type Czochralski (CZ) wafer. Using the cast furnace, solar cells with a conversion efficiency and yield as high as those of CZ solar cells were obtained by the NOC method.
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1990-01-01
Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.
The High-efficiency LED Driver for Visible Light Communication Applications.
Gong, Cihun-Siyong Alex; Lee, Yu-Chen; Lai, Jyun-Liang; Yu, Chueh-Hao; Huang, Li Ren; Yang, Chia-Yen
2016-08-08
This paper presents a LED driver for VLC. The main purpose is to solve the low data rate problem used to be in switching type LED driver. The GaN power device is proposed to replace the traditional silicon power device of switching LED driver for the purpose of increasing switching frequency of converter, thereby increasing the bandwidth of data transmission. To achieve high efficiency, the diode-connected GaN power transistor is utilized to replace the traditional ultrafast recovery diode used to be in switching type LED driver. This work has been experimentally evaluated on 350-mA output current. The results demonstrate that it supports the data of PWM dimming level encoded in the PPM scheme for VLC application. The experimental results also show that system's efficiency of 80.8% can be achieved at 1-Mb/s data rate.
Unipolar Barrier Dual-Band Infrared Detectors
NASA Technical Reports Server (NTRS)
Ting, David Z. (Inventor); Soibel, Alexander (Inventor); Khoshakhlagh, Arezou (Inventor); Gunapala, Sarath (Inventor)
2017-01-01
Dual-band barrier infrared detectors having structures configured to reduce spectral crosstalk between spectral bands and/or enhance quantum efficiency, and methods of their manufacture are provided. In particular, dual-band device structures are provided for constructing high-performance barrier infrared detectors having reduced crosstalk and/or enhance quantum efficiency using novel multi-segmented absorber regions. The novel absorber regions may comprise both p-type and n-type absorber sections. Utilizing such multi-segmented absorbers it is possible to construct any suitable barrier infrared detector having reduced crosstalk, including npBPN, nBPN, pBPN, npBN, npBP, pBN and nBP structures. The pBPN and pBN detector structures have high quantum efficiency and suppresses dark current, but has a smaller etch depth than conventional detectors and does not require a thick bottom contact layer.
Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chunwei, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001; Tian, Xiubo, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com
2016-08-15
The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process wasmore » simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.« less
Improvements in the efficiency of turboexpanders in cryogenic applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agahi, R.R.; Lin, M.C.; Ershaghi, B.
1996-12-31
Process designers have utilized turboexpanders in cryogenic processes because of their higher thermal efficiencies when compared with conventional refrigeration cycles. Process design and equipment performance have improved substantially through the utilization of modern technologies. Turboexpander manufacturers have also adopted Computational Fluid Dynamic Software, Computer Numerical Control Technology and Holography Techniques to further improve an already impressive turboexpander efficiency performance. In this paper, the authors explain the design process of the turboexpander utilizing modern technology. Two cases of turboexpanders processing helium (4.35{degrees}K) and hydrogen (56{degrees}K) will be presented.
Ding, Liang-Xin; Wang, An-Liang; Ou, Yan-Nan; Li, Qi; Guo, Rui; Zhao, Wen-Xia; Tong, Ye-Xiang; Li, Gao-Ren
2013-01-01
Hierarchical alloy nanosheet dendrites (ANSDs) are highly favorable for superior catalytic performance and efficient utilization of catalyst because of the special characteristics of alloys, nanosheets, and dendritic nanostructures. In this paper, we demonstrate for the first time a facile and efficient electrodeposition approach for the controllable synthesis of Pd-Sn ANSDs with high surface area. These synthesized Pd-Sn ANSDs exhibit high electrocatalytic activity and superior long-term cycle stability toward ethanol oxidation in alkaline media. The enhanced electrocataytic activity of Pd-Sn ANSDs may be attributed to Pd-Sn alloys, nanosheet dendrite induced promotional effect, large number of active sites on dendrite surface, large surface area, and good electrical contact with the base electrode. Because of the simple implement and high flexibility, the proposed approach can be considered as a general and powerful strategy to synthesize the alloy electrocatalysts with high surface areas and open dendritic nanostructures.
Investigation of applications for high-power, self-critical fissioning uranium plasma reactors
NASA Technical Reports Server (NTRS)
Rodgers, R. J.; Latham, T. S.; Krascella, N. L.
1976-01-01
Analytical studies were conducted to investigate potentially attractive applications for gaseous nuclear cavity reactors fueled by uranium hexafluoride and its decomposition products at temperatures of 2000 to 6000 K and total pressures of a few hundred atmospheres. Approximate operating conditions and performance levels for a class of nuclear reactors in which fission energy removal is accomplished principally by radiant heat transfer from the high temperature gaseous nuclear fuel to surrounding absorbing media were determined. The results show the radiant energy deposited in the absorbing media may be efficiently utilized in energy conversion system applications which include (1) a primary energy source for high thrust, high specific impulse space propulsion, (2) an energy source for highly efficient generation of electricity, and (3) a source of high intensity photon flux for heating working fluid gases for hydrogen production or MHD power extraction.
Ding, Liang-Xin; Wang, An-Liang; Ou, Yan-Nan; Li, Qi; Guo, Rui; Zhao, Wen-Xia; Tong, Ye-Xiang; Li, Gao-Ren
2013-01-01
Hierarchical alloy nanosheet dendrites (ANSDs) are highly favorable for superior catalytic performance and efficient utilization of catalyst because of the special characteristics of alloys, nanosheets, and dendritic nanostructures. In this paper, we demonstrate for the first time a facile and efficient electrodeposition approach for the controllable synthesis of Pd-Sn ANSDs with high surface area. These synthesized Pd-Sn ANSDs exhibit high electrocatalytic activity and superior long-term cycle stability toward ethanol oxidation in alkaline media. The enhanced electrocataytic activity of Pd-Sn ANSDs may be attributed to Pd-Sn alloys, nanosheet dendrite induced promotional effect, large number of active sites on dendrite surface, large surface area, and good electrical contact with the base electrode. Because of the simple implement and high flexibility, the proposed approach can be considered as a general and powerful strategy to synthesize the alloy electrocatalysts with high surface areas and open dendritic nanostructures. PMID:23383368
Pennycook, Timothy J.; Lupini, Andrew R.; Yang, Hao; ...
2014-10-15
In this paper, we demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phasemore » contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. In conclusion, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe.« less
NASA Astrophysics Data System (ADS)
Chu, Hsu-hsin; Wang, Jyhpyng
2018-05-01
Nonlinear optics in the extreme-ultraviolet (EUV) has been limited by lack of transparent media and small conversion efficiency. To overcome this problem we explore the advantage of using multiply charged ion plasmas as the interacting media between EUV and intense near-infrared (NIR) pulses. Such media are transparent to EUV and can withstand intense NIR driving pulses without damage. We calculate the third-order nonlinear polarizabilities of Ar2 + and Ar3 + ions for EUV and NIR four-wave mixing by using the well-proven Cowan code and find that the EUV-to-EUV conversion efficiency as high as 26% can be expected for practical experimental configurations using multi-terawatt NIR lasers. Such a high efficiency is possible because the driving pulse intensity can be scaled up to several orders of magnitude higher than in conventional nonlinear media, and the group-velocity and phase mismatch are insignificant at the experimental plasma densities. This effective scheme of wave mixing can be utilized for ultrafast EUV waveform measurement and control as well as wavelength conversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Yuan, Chengwei; Li, Yangmei
2015-12-15
An integrative high power microwave device is proposed, which consists of a high-efficiency L-band Magnetically Insulated Transmission Line Oscillator (MILO) and a discal TEM–TE{sub 11} mode converter. The MILO with a shrunken load composed of a step-like cathode and a ladder-like beam collector can generate a 1.58 GHz, 5.7 GW microwave with the efficiency of 20.8% at the diode voltage of 560 kV in simulation. The discal converter utilizes a pair of sectorial two-double radial waveguides and a pair of sectorial cross section waveguides to adjust the phase-difference and realizes the mode conversion in a length of less than halfmore » wavelength at 1.58 GHz. In the preliminary experiment, the proposed device generates over 2 GW, 1.575 GHz microwave with the pulse duration of over 50 ns in a 420 kV diode voltage; the corresponding efficiency is 14.9%; the radiation pattern is the ideal TE{sub 11} mode.« less
NASA Astrophysics Data System (ADS)
Zhu, Yanwei; Yi, Fajun; Meng, Songhe; Zhuo, Lijun; Pan, Weizhen
2017-11-01
Improving the surface heat load measurement technique for vehicles in aerodynamic heating environments is imperative, regarding aspects of both the apparatus design and identification efficiency. A simple novel apparatus is designed for heat load identification, taking into account the lessons learned from several aerodynamic heating measurement devices. An inverse finite difference scheme (invFDM) for the apparatus is studied to identify its surface heat flux from the interior temperature measurements with high efficiency. A weighted piecewise regression filter is also proposed for temperature measurement prefiltering. Preliminary verification of the invFDM scheme and the filter is accomplished via numerical simulation experiments. Three specific pieces of apparatus have been concretely designed and fabricated using different sensing materials. The aerodynamic heating process is simulated by an inductively coupled plasma wind tunnel facility. The identification of surface temperature and heat flux from the temperature measurements is performed by invFDM. The results validate the high efficiency, reliability and feasibility of heat load measurements with different heat flux levels utilizing the designed apparatus and proposed method.
Highly efficient molybdenum-based catalysts for enantioselective alkene metathesis
Malcolmson, Steven J.; Meek, Simon J.; Sattely, Elizabeth S.; Schrock, Richard R.; Hoveyda, Amir H.
2009-01-01
Discovery of efficient catalysts is one of the most compelling objectives of modern chemistry. Chiral catalysts are in particularly high demand, as they facilitate synthesis of enantiomerically enriched small molecules that are critical to developments in medicine, biology and materials science1. Especially noteworthy are catalysts that promote—with otherwise inaccessible efficiency and selectivity levels—reactions demonstrated to be of great utility in chemical synthesis. Here we report a class of chiral catalysts that initiate alkene metathesis1 with very high efficiency and enantioselectivity. Such attributes arise from structural fluxionality of the chiral catalysts and the central role that enhanced electronic factors have in the catalytic cycle. The new catalysts have a stereogenic metal centre and carry only monodentate ligands; the molybdenum-based complexes are prepared stereoselectively by a ligand exchange process involving an enantiomerically pure aryloxide, a class of ligands scarcely used in enantioselective catalysis2,3. We demonstrate the application of the new catalysts in an enantioselective synthesis of the Aspidosperma alkaloid, quebrachamine, through an alkene metathesis reaction that cannot be promoted by any of the previously reported chiral catalysts. PMID:19011612
2013-01-01
The high-strength wastewater is now well known as a threat to the natural water since it is highly possible to arouse water eutrophication or algal blooms. The effects of various light emitting diode wavelengths and intensities on the microalgae biological wastewater treatment system was studied in this research. The various nutrient removals and economic efficiencies represented similar variation trends, and these variations under both high C and N loading treatments were similar too. The order for microalgae C. vulgaris reproduction in terms of dry weight and nutrient removal efficiency both were red > white > yellow > blue, under high carbon and nitrogen loading treatments, indicating that the red light was the optimum light wavelength. Furthermore, considering the optimal light intensity in terms of nutrient removal efficiency was 2500 and 2000 μmol/m2•s, while in terms of economic efficiency was 1000, 1500 and 2000 μmol/m2•s. Therefore, the optimum light intensity was found to be 2000 μmol/m2•s. In addition, the optimal experimental illumination time was determined as 120 h. The Chlorella vulgaris microalgae biological wastewater treatment system utilized in this research was able to purify the high-strength carbon and nitrogen wastewater effectively under optimum light wavelength and intensity. PMID:24499586
Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).
Wong, Chung-Ki; Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Luo, Qingfei; Bodurka, Jerzy
2016-04-01
Head motions during functional magnetic resonance imaging (fMRI) impair fMRI data quality and introduce systematic artifacts that can affect interpretation of fMRI results. Electroencephalography (EEG) recordings performed simultaneously with fMRI provide high-temporal-resolution information about ongoing brain activity as well as head movements. Recently, an EEG-assisted retrospective motion correction (E-REMCOR) method was introduced. E-REMCOR utilizes EEG motion artifacts to correct the effects of head movements in simultaneously acquired fMRI data on a slice-by-slice basis. While E-REMCOR is an efficient motion correction approach, it involves an independent component analysis (ICA) of the EEG data and identification of motion-related ICs. Here we report an automated implementation of E-REMCOR, referred to as aE-REMCOR, which we developed to facilitate the application of E-REMCOR in large-scale EEG-fMRI studies. The aE-REMCOR algorithm, implemented in MATLAB, enables an automated preprocessing of the EEG data, an ICA decomposition, and, importantly, an automatic identification of motion-related ICs. aE-REMCOR has been used to perform retrospective motion correction for 305 fMRI datasets from 16 subjects, who participated in EEG-fMRI experiments conducted on a 3T MRI scanner. Performance of aE-REMCOR has been evaluated based on improvement in temporal signal-to-noise ratio (TSNR) of the fMRI data, as well as correction efficiency defined in terms of spike reduction in fMRI motion parameters. The results show that aE-REMCOR is capable of substantially reducing head motion artifacts in fMRI data. In particular, when there are significant rapid head movements during the scan, a large TSNR improvement and high correction efficiency can be achieved. Depending on a subject's motion, an average TSNR improvement over the brain upon the application of aE-REMCOR can be as high as 27%, with top ten percent of the TSNR improvement values exceeding 55%. The average correction efficiency over the 305 fMRI scans is 18% and the largest achieved efficiency is 71%. The utility of aE-REMCOR on the resting state fMRI connectivity of the default mode network is also examined. The motion-induced position-dependent error in the DMN connectivity analysis is shown to be reduced when aE-REMCOR is utilized. These results demonstrate that aE-REMCOR can be conveniently and efficiently used to improve fMRI motion correction in large clinical EEG-fMRI studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Chapman, C E; Hill, T M; Elder, D R; Erickson, P S
2017-01-01
Studies have shown that calves fed milk replacers (MR) with crude protein (CP) concentrations greater than 20%, as typically found in conventional MR, have higher dry matter intakes (DMI) and greater average daily gains (ADG) but consume less starter, which can lead to stress during weaning and reduced rumen development. The greater amount of CP being fed to preweaned calves may alter their nitrogen (N) balance, and excess N may be excreted in the urine. The objective of this study was to determine N utilization in preweaned calves fed diets varying in the amount of CP and MR fed. This study used 24 newborn dairy heifer calves blocked by birth and randomly assigned to 1 of 3 treatments: (1) 446g dry matter (DM) of a conventional MR (CON; 20% CP, 20% fat), (2) 669g DM of a moderately high protein MR (moderate; MOD; 26% CP, 18% fat), or (3) 892g DM of a moderately high protein MR (aggressive; AGG; 26% CP, 18% fat). All calves had ad libitum access to starter and water. Both MR and starter were medicated with decoquinate. During weaning (d 43-49), the morning MR feeding ceased. On d 50, all MR feedings ended; however, starter and water intakes were continuously recorded until d 56. At 5wk of age, urine was collected using urinary catheters for 3d and chromium oxide was administered by bolus at 2g/d for 7d to estimate N efficiency. Calves fed MOD and AGG had similar starter intakes, feed efficiencies, and ADG, with the combined treatments having reduced starter intakes (258 vs. 537g/d), greater ADG (674 vs. 422g/d), and improved feed efficiency (0.57 vs. 0.45 gain:feed) compared with CON calves preweaning. However, DMI and water intake were similar across all treatments. Results from the N utilization phase showed that MOD and AGG treatments had similar but lower N efficiency compared with CON calves (45.5 vs. 52.7%). This could be due to MOD- and AGG-fed calves having greater urine volume and thereby, greater combined urine N output compared with CON calves (17.6 vs. 12.1 g/d). In summary, feeding >0.66kg (DM) from a 26% CP MR increased ADG and improved feed efficiency during the preweaning period but reduced starter intake and lowered N efficiency. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Takahashi, Tatsuyoshi; Hamada, Takao; Watabe, Takeyoshi; Yamada, Yui; Mitsumori, Satomi
2016-09-01
This study investigates an organic light-emitting diode (OLED) utilizing energy transfer from an excited complex (exciplex) comprising donor and acceptor molecules to a phosphorescent dopant. An exciplex has a very small energy gap between the lowest singlet and triplet excited states (S1 and T1). Thus, both S1 and T1 energies of the exciplex can be directly transferred to the T1 of the phosphorescent dopant by adjusting the emission energy of the exciplex to the absorption-edge energy of the dopant. Such an exciplex‒triplet energy transfer (ExTET) achieves high efficiency at low drive voltage because the electrical excitation energy of the exciplex approximates the T1 energy of the dopant. Furthermore, the efficiency of the reverse intersystem crossing (RISC) of the exciplex does not affect the external quantum efficiency (EQE) of the ExTET OLED. The RISC of the exciplex is inhibited when the T1 energy of either donor or acceptor molecules is close to or lower than that of the exciplex itself. Even in this case, however, the ExTET OLED maintains its high efficiency because the T1 energy of each component of the exciplex or the T1 energy of the exciplex itself can be transferred to the dopant. We also varied the emission colors of ExTET OLEDs from sky-blue to red by introducing various phosphorescent dopants. These devices achieved high EQEs (≍30%), low drive voltages (≍3 V), and extremely long lifetimes (e.g., 1 million hours for the orange OLED) at a luminance of 1,000 cd/m2.
High-efficient Unmanned Aircraft System Operations for Ecosystem Assessment
NASA Astrophysics Data System (ADS)
Xu, H.; Zhang, H.
2016-02-01
Diverse national and international agencies support the idea that incorporating Unmanned Aircraft Systems (UAS) into ecosystem assessment will improve the operations efficiency and accuracy. In this paper, a UAS will be designed to monitor the Gulf of Mexico's coastal area ecosystems intelligently and routinely. UAS onboard sensors will capture information that can be utilized to detect and geo-locate areas affected by invasive grasses. Moreover, practical ecosystem will be better assessed by analyzing the collected information. Compared with human-based/satellite-based surveillance, the proposed strategy is more efficient and accurate, and eliminates limitations and risks associated with human factors. State of the art UAS onboard sensors (e.g. high-resolution electro optical camera, night vision camera, thermal sensor etc.) will be used for monitoring coastal ecosystems. Once detected the potential risk in ecosystem, the onboard GPS data will be used to geo-locate and to store the exact coordinates of the affected area. Moreover, the UAS sensors will be used to observe and to record the daily evolution of coastal ecosystems. Further, benefitting from the data collected by the UAS, an intelligent big data processing scheme will be created to assess the ecosystem evolution effectively. Meanwhile, a cost-efficient intelligent autonomous navigation strategy will be implemented into the UAS, in order to guarantee that the UAS can fly over designated areas, and collect significant data in a safe and effective way. Furthermore, the proposed UAS-based ecosystem surveillance and assessment methodologies can be utilized for natural resources conservation. Flying UAS with multiple state of the art sensors will monitor and report the actual state of high importance natural resources frequently. Using the collected data, the ecosystem conservation strategy can be performed effectively and intelligently.
No Cost – Low Cost Compressed Air System Optimization in Industry
NASA Astrophysics Data System (ADS)
Dharma, A.; Budiarsa, N.; Watiniasih, N.; Antara, N. G.
2018-04-01
Energy conservation is a systematic, integrated of effort, in order to preserve energy sources and improve energy utilization efficiency. Utilization of energy in efficient manner without reducing the energy usage it must. Energy conservation efforts are applied at all stages of utilization, from utilization of energy resources to final, using efficient technology, and cultivating an energy-efficient lifestyle. The most common way is to promote energy efficiency in the industry on end use and overcome barriers to achieve such efficiency by using system energy optimization programs. The facts show that energy saving efforts in the process usually only focus on replacing tools and not an overall system improvement effort. In this research, a framework of sustainable energy reduction work in companies that have or have not implemented energy management system (EnMS) will be conducted a systematic technical approach in evaluating accurately a compressed-air system and potential optimization through observation, measurement and verification environmental conditions and processes, then processing the physical quantities of systems such as air flow, pressure and electrical power energy at any given time measured using comparative analysis methods in this industry, to provide the potential savings of energy saving is greater than the component approach, with no cost to the lowest cost (no cost - low cost). The process of evaluating energy utilization and energy saving opportunities will provide recommendations for increasing efficiency in the industry and reducing CO2 emissions and improving environmental quality.
Exploring efficacy of residential energy efficiency programs in Florida
NASA Astrophysics Data System (ADS)
Taylor, Nicholas Wade
Electric utilities, government agencies, and private interests in the U.S. have committed and continue to invest substantial resources in the pursuit of energy efficiency and conservation through demand-side management (DSM) programs. Program investments, and the demand for impact evaluations that accompany them, are projected to grow in coming years due to increased pressure from state-level energy regulation, costs and challenges of building additional production capacity, fuel costs and potential carbon or renewable energy regulation. This dissertation provides detailed analyses of ex-post energy savings from energy efficiency programs in three key sectors of residential buildings: new, single-family, detached homes; retrofits to existing single-family, detached homes; and retrofits to existing multifamily housing units. Each of the energy efficiency programs analyzed resulted in statistically significant energy savings at the full program group level, yet savings for individual participants and participant subgroups were highly variable. Even though savings estimates were statistically greater than zero, those energy savings did not always meet expectations. Results also show that high variability in energy savings among participant groups or subgroups can negatively impact overall program performance and can undermine marketing efforts for future participation. Design, implementation, and continued support of conservation programs based solely on deemed or projected savings is inherently counter to the pursuit of meaningful energy conservation and reductions in greenhouse gas emissions. To fully understand and optimize program impacts, consistent and robust measurement and verification protocols must be instituted in the design phase and maintained over time. Furthermore, marketing for program participation must target those who have the greatest opportunity for savings. In most utility territories it is not possible to gain access to the type of large scale datasets that would facilitate robust program analysis. Along with measuring and optimizing energy conservation programs, utilities should provide public access to historical consumption data. Open access to data, program optimization, consistent measurement and verification and transparency in reported savings are essential to reducing energy use and its associated environmental impacts.
A Proposal for the use of the Consortium Method in the Design-build system
NASA Astrophysics Data System (ADS)
Miyatake, Ichiro; Kudo, Masataka; Kawamata, Hiroyuki; Fueta, Toshiharu
In view of the necessity for efficient implementation of public works projects, it is expected to utilize advanced technical skills of private firms, for the purpose of reducing project costs, improving performance and functions of construction objects, and reducing work periods, etc. The design-build system is a method to order design and construction as a single contract, including design of structural forms and main specifications of the construction object. This is a system in which high techniques of private firms can be utilized, as a means to ensure qualities of design and construction, rational design, and efficiency of the project. The objective of this study is to examine the use of a method to form a consortium of civil engineering consultants and construction companies, as it is an issue related to the implementation of the design-build method. Furthermore, by studying various forms of consortiums to be introduced in future, it proposes procedural items required to utilize this method, during the bid and after signing a contract, such as the estimate submission from the civil engineering consultants etc.
Urban water infrastructure asset management - a structured approach in four water utilities.
Cardoso, M A; Silva, M Santos; Coelho, S T; Almeida, M C; Covas, D I C
2012-01-01
Water services are a strategic sector of large social and economic relevance. It is therefore essential that they are managed rationally and efficiently. Advanced water supply and wastewater infrastructure asset management (IAM) is key in achieving adequate levels of service in the future, particularly with regard to reliable and high quality drinking water supply, prevention of urban flooding, efficient use of natural resources and prevention of pollution. This paper presents a methodology for supporting the development of urban water IAM, developed during the AWARE-P project as well as an appraisal of its implementation in four water utilities. Both water supply and wastewater systems were considered. Due to the different contexts and features of the utilities, the main concerns vary from case to case; some problems essentially are related to performance, others to risk. Cost is a common deciding factor. The paper describes the procedure applied, focusing on the diversity of drivers, constraints, benefits and outcomes. It also points out the main challenges and the results obtained through the implementation of a structured procedure for supporting urban water IAM.
Ren, Zheng; Guo, Yanbing; Gao, Pu-Xian
2015-03-20
Monolithic catalysts, also known as structured catalysts, represent an important catalyst configuration widely used in automotive, chemical, and energy industries. However, several issues associated with washcoat based monolithic catalyst preparation are ever present, such as compromised materials utilization efficiency due to a less-than-ideal wash coating process, difficulty in precise and optimum microstructure control and lack of structure-property correlation. Here, in this mini-review, we introduce the concept of nano-array catalyst, a new type of monolithic catalyst featuring high catalyst utilization efficiency, good thermal/mechanical robustness, and catalytic performance tunability. A comprehensive overview is presented with detailed discussion of the strategies for nano-arraymore » catalyst preparation and rational catalytic activity adjustment enabled by the well-defined nano-array geometry. Specifically their scalable fabrication processes are reviewed in conjunction with discussion of their various catalytic oxidation reaction performances at low temperature. Finally, we hope this review will serve as a timely and useful research guide for rational design and utilization of the new type of monolithic catalysts.« less
Fabrication Infrastructure to Enable Efficient Exploration and Utilization of Space
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Fikes, John C.; McLemore, Carole A.; Manning, Curtis W.; Good, Jim
2007-01-01
Unlike past one-at-a-time mission approaches, system-of-systems infrastructures will be needed to enable ambitious scenarios for sustainable future space exploration and utilization. Fabrication infrastructure will be needed to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, vehicle components and crew systems. The fabrication infrastructure will need the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR Element supports the entire life cycle of Exploration by: reducing downtime due to failed components; decreasing risk to crew by recovering quickly from degraded operation of equipment; improving system functionality with advanced geometry capabilities; and enhancing mission safety by reducing assembly part counts of original designs where possible. This paper addresses the fabrication infrastructures that support efficient, affordable, reliable infrastructures for both space exploration systems and logistics; these infrastructures allow sustained, affordable and highly effective operations on the Moon, Mars and beyond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Yanqun; Wang, Ruirui; Yang, Ye
2016-08-03
The water oxidation half-reaction is considered to be a bottleneck for achieving highly efficient solar-driven water splitting due to its multiproton-coupled four-electron process and sluggish kinetics. Herein, a triadic photoanode consisting of dual-sized CdTe quantum dots (QDs), Co-based layered double hydroxide (LDH) nanosheets, and BiVO4 particles, that is, QD@LDH@BiVO4, was designed. Two sets of consecutive Type-II band alignments were constructed to improve photogenerated electron-hole separation in the triadic structure. The efficient charge separation resulted in a 2-fold enhancement of the photocurrent of the QD@LDH@BiVO4 photoanode. A significantly enhanced oxidation efficiency reaching above 90% in the low bias region (i.e., Emore » < 0.8 V vs RHE) could be critical in determining the overall performance of a complete photoelectrochemical cell. The faradaic efficiency for water oxidation was almost 90%. The conduction band energy of QDs is -1.0 V more negative than that of LDH, favorable for the electron injection to LDH and enabling a more efficient hole separation. The enhanced photon-to-current conversion efficiency and improved water oxidation efficiency of the triadic structure may result from the non-negligible contribution of hot electrons or holes generated in QDs. Such a band-matching and multidimensional triadic architecture could be a promising strategy for achieving high-efficiency photoanodes by sufficiently utilizing and maximizing the functionalities of QDs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, P.R.; Van Dyke, J.W; McConnell, B.W.
It is estimated that electric utilities use about 40 million distribution transformers in supplying electricity to customers in the United States. Although utility distribution transformers collectively have a high average efficiency, they account for approximately 61 billion kWh of the 229 billion kWh of energy lost annually in the delivery of electricity. Distribution transformers are being replaced over time by new, more efficient, lower-loss units during routine utility maintenance of power distribution systems. Maintenance is typically not performed on units in service. However, units removed from service with appreciable remaining life are often refurbished and returned to stock. Distribution transformersmore » may be removed from service for many reasons, including failure, over- or underloading, or line upgrades such as voltage changes or rerouting. When distribution transformers are removed from service, a decision must be made whether to dispose of the transformer and purchase a lower-loss replacement or to refurbish the transformer and return it to stock for future use. This report contains findings and recommendations on replacing utility distribution transformers during routine maintenance, which is required by section 124 of the Energy Policy Act of 1992. The objectives of the study are to evaluate the practicability, cost-effectiveness, and potential energy savings of replacing or upgrading existing transformers during routine utility maintenance and to develop recommendations on ways to achieve the potential energy savings. Using survey data obtained from utilities and analyses of the economics of refurbishment versus replacement of distribution transformers that are removed from service, it is found that on average utilities are implementing reasonable decisions on refurbishment versus replacement.« less
NASA Astrophysics Data System (ADS)
May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David; Dimroth, Frank; Hannappel, Thomas
2015-09-01
Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators.
May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David; Dimroth, Frank; Hannappel, Thomas
2015-01-01
Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators. PMID:26369620
Forward-biased nanophotonic detector for ultralow-energy dissipation receiver
NASA Astrophysics Data System (ADS)
Nozaki, Kengo; Matsuo, Shinji; Fujii, Takuro; Takeda, Koji; Shinya, Akihiko; Kuramochi, Eiichi; Notomi, Masaya
2018-04-01
Generally, reverse-biased photodetectors (PDs) are used for high-speed optical receivers. The forward voltage region is only utilized in solar-cells, and this photovoltaic operation would not be concurrently obtained with high efficiency and high speed operation. Here we report that photonic-crystal waveguide PDs enable forward-biased high-speed operation at 40 Gbit/s with keeping high responsivity (0.88 A/W). Within our knowledge, this is the first demonstration of the forward-biased PDs with high responsivity. This achievement is attributed to the ultracompactness of our PD and the strong light confinement within the absorber and depleted regions, thereby enabling efficient photo-carrier generation and fast extraction. This result indicates that it is possible to construct a high-speed and ultracompact photo-receiver without an electrical amplifier nor an external bias circuit. Since there is no electrical energy required, our estimation shows that the consumption energy is just the optical energy of the injected signal pulse which is about 1 fJ/bit. Hence, it will lead to an ultimately efficient and highly integrable optical-to-electrical converter in a chip, which will be a key ingredient for dense nanophotonic communication and processors.
Zhang, Dongdong; Song, Xiaozeng; Cai, Minghan; Duan, Lian
2018-02-01
Organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence-sensitized fluorescence (TSF) offer the possibility of attaining an ultimate high efficiency with low roll-off utilizing noble-metal free, easy-to-synthesize, pure organic fluorescent emitters. However, the performances of TSF-OLEDs are still unsatisfactory. Here, TSF-OLEDs with breakthrough efficiencies even at high brightnesses by suppressing the competitive deactivation processes, including direct charge recombination on conventional fluorescent dopants (CFDs) and Dexter energy transfer from the host to the CFDs, are demonstrated. On the one hand, electronically inert terminal-substituents are introduced to protect the electronically active core of the CFDs; on the other hand, delicate device structures are designed to provide multiple energy-funneling paths. As a result, unprecedentedly high maximum external quantum efficiency/power efficiency of 24%/71.4 lm W -1 in a green TSF-OLED are demonstrated, which remain at 22.6%/52.3 lm W -1 even at a high luminance of 5000 cd m -2 . The work unlocks the potential of TSF-OLEDs, paving the way toward practical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV
Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.
2015-01-01
Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922
16 CFR Appendix G8 to Part 305 - Boilers (Electric)
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Boilers (Electric) G8 Appendix G8 to Part... LABELING RULEâ) Appendix G8 to Part 305—Boilers (Electric) Type Range of annual fuel utilization efficiencies (AFUEs) Low High Electric Boilers 100 100 [78 FR 8377, Feb. 6, 2013] ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
... (MW) ground-mounted solar photovoltaic generating facility in Noble County, Ohio. Turning Point Solar... installation of high- efficiency monocrystalline photovoltaic panels mounted on fixed solar racking equipment... DEPARTMENT OF AGRICULTURE Rural Utilities Service Turning Point Solar LLC; Notice of Intent To...
Brief Experimental Analysis of Written Letter Formation: Single-Case Demonstration
ERIC Educational Resources Information Center
Burns, Matthew K.; Ganuza, Zoila M.; London, Rachel M.
2009-01-01
Many students experience difficulty in acquiring basic writing skills and educators need to efficiently address those deficits by implementing an intervention with a high likelihood for success. The current article demonstrates the utility of using a brief experimental analysis (BEA) to identify a letter-formation intervention for a second-grade…
Utilization and cost for animal logging operations
Suraj P. Shrestha; Bobby L. Lanford
2001-01-01
Forest harvesting with animals is a labor-intensive operation. Due to the development of efficient machines and high volume demands from the forest products industry, mechanization of logging developed very fast, leaving behind the traditional horse and mule logging. It is expensive to use machines on smaller woodlots, which require frequent moves if mechanically...
High-biomass C4 grasses-Filling the yield gap.
Mullet, John E
2017-08-01
A significant increase in agricultural productivity will be required by 2050 to meet the needs of an expanding and rapidly developing world population, without allocating more land and water resources to agriculture, and despite slowing rates of grain yield improvement. This review examines the proposition that high-biomass C 4 grasses could help fill the yield gap. High-biomass C 4 grasses exhibit high yield due to C 4 photosynthesis, long growth duration, and efficient capture and utilization of light, water, and nutrients. These C 4 grasses exhibit high levels of drought tolerance during their long vegetative growth phase ideal for crops grown in water-limited regions of agricultural production. The stems of some high-biomass C 4 grasses can accumulate high levels of non-structural carbohydrates that could be engineered to enhance biomass yield and utility as feedstocks for animals and biofuels production. The regulatory pathway that delays flowering of high-biomass C 4 grasses in long days has been elucidated enabling production and deployment of hybrids. Crop and landscape-scale modeling predict that utilization of high-biomass C 4 grass crops on land and in regions where water resources limit grain crop yield could increase agricultural productivity. Copyright © 2017 Elsevier B.V. All rights reserved.
Parametric study on mixing process in an in-plane spiral micromixer utilizing chaotic advection.
Vatankhah, Parham; Shamloo, Amir
2018-08-31
Recent advances in the field of microfabrication have made the application of high-throughput microfluidics feasible. Mixing which is an essential part of any miniaturized standalone system remains the key challenge. This paper proposes a geometrically simple micromixer for efficient mixing for high-throughput microfluidic devices. The proposed micromixer utilizes a curved microchannel (spiral microchannel) to induce chaotic advection and enhance the mixing process. It is shown that the spiral microchannel is more efficient in comparison to a straight microchannel, mixing wise. The pressure drop in the spiral microchannel is only slightly higher than that in the straight microchannel. It is found that the mixing process in the spiral microchannel enhances with increasing the inlet velocity, unlike what happens in the straight microchannel. It is also realized that the initial radius of the spiral microchannel plays a prominent role in enhancing the mixing process. Studying different cross sections, it is gathered that the square cross section yields a higher mixing quality. Copyright © 2018 Elsevier B.V. All rights reserved.
Contribution of Nanostructures in High Performance Solar Cells
NASA Astrophysics Data System (ADS)
Aly, Abouelmaaty M.; Ebrahim, Essamudin A.; Sweelem, Emad
2017-11-01
Nanotechnology has great contributions in various fields, especially in solar energy conversion through solar cells (SCs). Nanostructured SCs can provide high performance with lower fabrication costs. The transition from fossil fuel energy to renewable sustainable energy represents a major technological challenge for the world. In the last years, the industry of SCs has grown rapidly due to strong attention in renewable energy in order to handle the problem of global climate change that is now believed to occur due to use of the fossil fuels. Cost is an influential factor in the eventual success of any solar technology, since inexpensive SCs are needed to produce electricity, especially for rural areas and for third world countries. Therefore, new developments in nanotechnology may open the door for the production of inexpensive and more efficient SCs by reducing the manufacturing costs of SCs. Utilizing nanotechnology in cheaper SCs will help maintain the environment. This article covers a review of the progress that has been made to-date to enhance efficiencies of various nanostructures used in SCs, including utilizations of all the wavelengths present in of the solar spectrum.
Optimize Operating Conditions on Fine Particle Grinding Process with Vertically Stirred Media Mill
NASA Astrophysics Data System (ADS)
Yang, Yang; Rowson, Neil; Ingram, Andy
2016-11-01
Stirred media mill recently is commonly utilized among mining process due to its high stressing intensity and efficiency. However, the relationship between size reduction and flow pattern within the mixing pot is still not fully understand. Thus, this work investigates fine particle grinding process within vertically stirred media mills by altering stirrer geometry, tip speed and solids loading. Positron Emitting Particle Tracking (PEPT) technology is utilized to plot routine of particles velocity map. By tacking trajectory of a single particle movement within the mixing vessel, the overall flow pattern is possible to be plotted. Ground calcium carbonate, a main product of Imerys, is chosen as feeding material (feed size D80 30um) mixed with water to form high viscous suspension. To obtain fine size product (normally D80 approximately 2um), large amount of energy is drawn by grinding mill to break particles through impact, shear attrition or compression or a combination of them. The results indicate higher energy efficient is obtained with more dilute suspension. The optimized stirrer proves more energy-saving performance by altering the slurry circulate. Imerys Minerals Limited.
Efficient Biomass Fuel Cell Powered by Sugar with Photo- and Thermal-Catalysis by Solar Irradiation.
Liu, Wei; Gong, Yutao; Wu, Weibing; Yang, Weisheng; Liu, Congmin; Deng, Yulin; Chao, Zi-Sheng
2018-06-19
The utilization of biomass sugars has received great interesting recently. Herein, we present a highly efficient hybrid solar biomass fuel cell that utilizes thermal- and photocatalysis of solar irradiation and converts biomass sugars into electricity with high power output. The fuel cell uses polyoxometalates (POMs) as photocatalyst to decompose sugars and capture their electrons. The reduced POMs have strong visible and near-infrared light adsorption, which can significantly increase the temperature of the reaction system and largely promotes the thermal oxidation of sugars by the POM. In addition, the reduced POM functions as charge carrier that can release electrons at the anode in the fuel cell to generate electricity. The electron-transfer rates from glucose to POM under thermal and light-irradiation conditions were investigated in detail. The power outputs of this solar biomass fuel cell are investigated by using different types of sugars as fuels, with the highest power density reaching 45 mW cm -2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Zhen-Zhen; He, Liang-Nian; Zhao, Ya-Nan; Yu, Bing
2013-02-05
A binary system consisting of polyethylene glycol (PEG, proton donor)/PEG-functionalized base with suitable basicity was developed for efficient gas desulfurization (GDS) and can be regarded as an alternative approach to circumvent the energy penalty problem in the GDS process. High capacity for SO(2) capture up to 4.88 mol of SO(2)/mol of base was achieved even under low partial pressure of SO(2). Furthermore, SO(2) desorption runs smoothly under mild conditions (N(2), 25 °C) and no significant drop in SO(2) absorption was observed after five-successive absorption-desorption cycles. On the other hand, the absorbed SO(2) by PEG(150)MeIm/PEG(150), being considered as the activated form of SO(2), can be directly transformed into value-added chemicals under mild conditions, thus eliminating the energy penalty for SO(2) desorption and simultaneously realizing recycle of the absorbents. Thus, this SO(2) capture and utilization (SCU) process offers an alternative way for GDS and potentially enables the SO(2) conversion from flue gas to useful chemicals as a value-added process.
Ko, Ja Kyong; Um, Youngsoon; Woo, Han Min; Kim, Kyoung Heon; Lee, Sun-Mi
2016-06-01
The efficient co-fermentation of glucose and xylose is necessary for the economically feasible bioethanol production from lignocellulosic biomass. Even with xylose utilizing Saccharomyces cerevisiae, the efficiency of the lignocellulosic ethanol production remains suboptimal mainly due to the low conversion yield of xylose to ethanol. In this study, we evaluated the co-fermentation performances of SXA-R2P-E, a recently engineered isomerase-based xylose utilizing strain, in mixed sugars and in lignocellulosic hydrolysates. In a high-sugar fermentation with 70g/L of glucose and 40g/L of xylose, SXA-R2P-E produced 50g/L of ethanol with an yield of 0.43gethanol/gsugars at 72h. From dilute acid-pretreated hydrolysates of rice straw and hardwood (oak), the strain produced 18-21g/L of ethanol with among the highest yield of 0.43-0.46gethanol/gsugars ever reported. This study shows a highly promising potential of a xylose isomerase-expressing strain as an industrially relevant ethanol producer from lignocellulosic hydrolysates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.
1998-01-01
The present invention provides a relatively compact self-powered, tunable waste conversion system and apparatus which has the advantage of highly robust operation which provides complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The system provides the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or by an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment of the invention, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced or without further use of the gases generated by the conversion process. The apparatus may be employed as a self-powered or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production.
A Sector Capacity Assessment Method Based on Airspace Utilization Efficiency
NASA Astrophysics Data System (ADS)
Zhang, Jianping; Zhang, Ping; Li, Zhen; Zou, Xiang
2018-02-01
Sector capacity is one of the core factors affecting the safety and the efficiency of the air traffic system. Most of previous sector capacity assessment methods only considered the air traffic controller’s (ATCO’s) workload. These methods are not only limited which only concern about the safety, but also not accurate enough. In this paper, we employ the integrated quantitative index system proposed in one of our previous literatures. We use the principal component analysis (PCA) to find out the principal indicators among the indicators so as to calculate the airspace utilization efficiency. In addition, we use a series of fitting functions to test and define the correlation between the dense of air traffic flow and the airspace utilization efficiency. The sector capacity is then decided as the value of the dense of air traffic flow corresponding to the maximum airspace utilization efficiency. We also use the same series of fitting functions to test the correlation between the dese of air traffic flow and the ATCOs’ workload. We examine our method with a large amount of empirical operating data of Chengdu Controlling Center and obtain a reliable sector capacity value. Experiment results also show superiority of our method against those only consider the ATCO’s workload in terms of better correlation between the airspace utilization efficiency and the dense of air traffic flow.
Biomolecular surface construction by PDE transform.
Zheng, Qiong; Yang, Siyang; Wei, Guo-Wei
2012-03-01
This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high-order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high-order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high-order PDEs. As a consequence, the time integration of high-order PDEs can be done efficiently with the fast Fourier transform. The present approach is validated with a variety of test examples in two-dimensional and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and a standard approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surface, that is, surface area, surface-enclosed volume, solvation free energy, and surface electrostatic potential. A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform-based surface method, we solve the Poisson-Nernst-Planck equations with a PDE transform surface of a protein. Second-order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform-based surface generation method, we apply it to the construction of an excessively large biomolecule, a virus surface capsid. Virus surface morphologies of different resolutions are attained by adjusting the propagation time. Therefore, the present PDE transform provides a multiresolution analysis in the surface visualization. Extensive numerical experiment and comparison with an established surface model indicate that the present PDE transform is a robust, stable, and efficient approach for biomolecular surface generation in Cartesian meshes. Copyright © 2012 John Wiley & Sons, Ltd.
High efficiency laser spectrum conditioner
Greiner, Norman R.
1980-01-01
A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.
Frett, Brendan; McConnell, Nick; Smith, Catherine C; Wang, Yuanxiang; Shah, Neil P; Li, Hong-yu
2015-04-13
The FLT3 kinase represents an attractive target to effectively treat AML. Unfortunately, no FLT3 targeted therapeutic is currently approved. In line with our continued interests in treating kinase related disease for anti-FLT3 mutant activity, we utilized pioneering synthetic methodology in combination with computer aided drug discovery and identified low molecular weight, highly ligand efficient, FLT3 kinase inhibitors. Compounds were analyzed for biochemical inhibition, their ability to selectively inhibit cell proliferation, for FLT3 mutant activity, and preliminary aqueous solubility. Validated hits were discovered that can serve as starting platforms for lead candidates. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Simulation analysis of a novel high efficiency silicon solar cell
NASA Technical Reports Server (NTRS)
Mokashi, Anant R.; Daud, T.; Kachare, A. H.
1985-01-01
It is recognized that crystalline silicon photovoltaic module efficiency of 15 percent or more is required for cost-effective photovoltaic energy utilization. This level of module efficiency requires large-area encapsulated production cell efficiencies in the range of 18 to 20 percent. Though the theoretical maximum of silicon solar cell efficiency for an idealized case is estimated to be around 30 percent, practical performance of cells to-date are considerably below this limit. This is understood to be largely a consequence of minority carrier losses in the bulk as well as at all surfaces including those under the metal contacts. In this paper a novel device design with special features to reduce bulk and surface recombination losses is evaluated using numerical analysis technique. Details of the numerical model, cell design, and analysis results are presented.
Effect of provider volume on resource utilization for surgical procedures of the knee.
Jain, Nitin; Pietrobon, Ricardo; Guller, Ulrich; Shankar, Anoop; Ahluwalia, Ajit S; Higgins, Laurence D
2005-05-01
Operating-room time and patient disposition on discharge are important determinants of healthcare resource utilization and cost. We examined the relation between these determinants and hospital/surgeon volume for anterior cruciate ligament (ACL) reconstruction and meniscectomy procedures. Patients undergoing ACL reconstruction (18,390 cases) and meniscectomy (123,012 cases) were extracted from the State Ambulatory Surgery Databases for the years 1997-2000. Surgeon and hospital volume were divided into low-, intermediate-, and high-volume categories. Multivariate logistic regression models were used to estimate the adjusted association between surgeon and hospital volume and patient discharge status and operating-room time. Patients undergoing ACL reconstruction or meniscectomy performed by low-volume surgeons were significantly more likely to be non-routinely discharged as compared to high-volume surgeons (adjusted odds ratio 3.5, 95% confidence interval 1.7-7.2 for ACL reconstruction; adjusted odds ratio 2.0, 95% confidence interval 1.6-2.3 for meniscectomy). The mean operating-room time for performing ACL reconstruction or meniscectomy was significantly higher in low- and intermediate-volume surgeons and hospitals as compared to high-volume surgeons and hospitals (p < or = 0.001). High-volume providers utilize healthcare resources more efficiently. Our findings may help surgeons and hospitals in optimizing resource utilization and cost for routinely-performed ambulatory surgery procedures.
NASA Astrophysics Data System (ADS)
Ionkin, I. L.; Ragutkin, A. V.; Luning, B.; Zaichenko, M. N.
2016-06-01
For enhancement of the natural gas utilization efficiency in boilers, condensation heat utilizers of low-potential heat, which are constructed based on a contact heat exchanger, can be applied. A schematic of the contact heat exchanger with a humidifier for preheating and humidifying of air supplied in the boiler for combustion is given. Additional low-potential heat in this scheme is utilized for heating of the return delivery water supplied from a heating system. Preheating and humidifying of air supplied for combustion make it possible to use the condensation utilizer for heating of a heat-transfer agent to temperature exceeding the dewpoint temperature of water vapors contained in combustion products. The decision to mount the condensation heat utilizer on the boiler was taken based on the preliminary estimation of the additionally obtained heat. The operation efficiency of the condensation heat utilizer is determined by its structure and operation conditions of the boiler and the heating system. The software was developed for the thermal design of the condensation heat utilizer equipped by the humidifier. Computation investigations of its operation are carried out as a function of various operation parameters of the boiler and the heating system (temperature of the return delivery water and smoke fumes, air excess, air temperature at the inlet and outlet of the condensation heat utilizer, heating and humidifying of air in the humidifier, and portion of the circulating water). The heat recuperation efficiency is estimated for various operation conditions of the boiler and the condensation heat utilizer. Recommendations on the most effective application of the condensation heat utilizer are developed.
Bao, Mu-tai; Wang, Li-na; Sun, Pei-yan; Cao, Li-xin; Zou, Jie; Li, Yi-ming
2012-06-01
Ochrobactrum sp. N1, Brevibacillus parabrevis N2, B. parabrevis N3 and B. parabrevis N4 were selected when preparing a mixed bacterial consortium based on the efficiency of crude oil utilization. A crude oil degradation rate of the N-series microbial consortium reached upwards of 79% at a temperature of 25 °C in a 3.0% NaCl solution in the shake flask trial. In the mesocosm experiment, a specially designed device was used to simulate the marine environment. The internal tank size was 1.5 m (L)×0.8 m (W)×0.7 m (H). The microbial growth conditions, nutrient utilization and environmental factors were thoroughly investigated. Over 51.1% of the crude oil was effectively removed from the simulated water body. The escalation process (from flask trials to the mesocosm experiment), which sought to represent removal under conditions more similar to the field, proved the high efficiency of using N-series bacteria in crude oil degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ultra clean burner for an AMTEC system suitable for hybrid electric vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mital, R.; Sievers, R.K.; Hunt, T.K.
1997-12-31
High power Alkali Metal Thermal to Electric Converter (AMTEC) systems have the potential to make the hybrid electric vehicle (HEV) program a success by meeting the challenging standards put forth by the EPA for the automobile industry. The premise of the whole concept of using AMTEC cells, as discussed by Hunt et al. (1995), for power generation in HEV`s is based on the utilization of a high efficiency external combustion system. The key requirement being a burner which will produce extremely low quantities of carbon monoxide and oxides of nitrogen, emit minimal amounts of hydrocarbon, will have high radiative andmore » convective efficiencies and at least a 4:1 turndown ratio. This work presents one such burner which has the potential to meet all of these demands and more. After investigation of a number of burners, including, metal fiber, ported metal, ceramic fiber and ported ceramic, it is believed that cellular ceramic burners will be the best candidates for integration with AMTEC cells for a high power system suitable for hybrid electric vehicles. A detailed study which includes the operating range, radiation efficiency, total heat transfer efficiency, spectral intensity, exit gas temperature and pollutant emission indices measurement has been carried out on circular and square shaped burners. Total heat transfer efficiencies as high as 65--70% have been measured using a water calorimeter. With efficient recuperation, a burner/recuperator efficiency of 80% at peak power and 90% at peak efficiency operating points are conceivable with this burner. Establishment of combustion within the porous matrix leads to low peak temperatures and hence lower NO{sub x}. The emission indices of CO and HC are also quite low. The stability range measurements show a 6:1 turndown ratio at an equivalence ratio of 0.9.« less
Engineered porous silicon counter electrodes for high efficiency dye-sensitized solar cells.
Erwin, William R; Oakes, Landon; Chatterjee, Shahana; Zarick, Holly F; Pint, Cary L; Bardhan, Rizia
2014-06-25
In this work, we demonstrate for the first time, the use of porous silicon (P-Si) as counter electrodes in dye-sensitized solar cells (DSSCs) with efficiencies (5.38%) comparable to that achieved with platinum counter electrodes (5.80%). To activate the P-Si for triiodide reduction, few layer carbon passivation is utilized to enable electrochemical stability of the silicon surface. Our results suggest porous silicon as a promising sustainable and manufacturable alternative to rare metals for electrochemical solar cells, following appropriate surface modification.
High-efficiency V-band GaAs IMPATT diodes
NASA Technical Reports Server (NTRS)
Ma, Y. E.; Benko, E.; Trinh, T.; Erickson, L. P.; Mattord, T. J.
1984-01-01
Double-drift GaAs IMPATT diodes were designed for V-band frequency operations and fabricated using molecular-beam epitaxy. The diodes were fabricated in two configurations: (1) circular mesa diodes with silver-plated (integrated) heat sinks: (2) pill-type diodes bonded to diamond heat sinks. Both configurations utilized a miniature quartz-ring package. Output power greater than 1 W CW was achieved at V-band frequencies from diodes on diamond heat sinks. The best conversion efficiency was 13.3 percent at 55.5 GHz with 1 W output power.
Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks
Wen, Chih-Yu; Chen, Ying-Chih
2009-01-01
This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks. PMID:22412343
Dynamic hierarchical sleep scheduling for wireless ad-hoc sensor networks.
Wen, Chih-Yu; Chen, Ying-Chih
2009-01-01
This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks.
Gene delivery for cancer therapy.
Zhang, Teng
2014-01-01
Gene therapy has potential in the treatment of human cancers. However, its clinical implication has only achieved little success due to the lack of an efficient gene delivery system. A major hurdle in the current available approaches is in the ability to transduce target tissues at very high efficiencies that ultimately lead to therapeutic levels of transgene expression. This review outlines the characteristics and utilities of several available gene delivery systems, including their advantages and drawbacks in the context of cancer treatment. A perspective of existing challenges and future directions is also included.
NASA Astrophysics Data System (ADS)
Vongsaysy, Uyxing; Bassani, Dario M.; Servant, Laurent; Pavageau, Bertrand; Wantz, Guillaume; Aziz, Hany
2014-01-01
Polymeric bulk heterojunction (BHJ) organic solar cells represent one of the most promising technologies for renewable energy with a low fabrication cost. Control over BHJ morphology is one of the key factors in obtaining high-efficiency devices. This review focuses on formulation strategies for optimizing the BHJ morphology. We address how solvent choice and the introduction of processing additives affect the morphology. We also review a number of recent studies concerning prediction methods that utilize the Hansen solubility parameters to develop efficient solvent systems.
Highly efficient solar-pumped Nd:YAG laser.
Liang, Dawei; Almeida, Joana
2011-12-19
The recent progress in solar-pumped laser with Fresnel lens and Cr:Nd:YAG ceramic medium has revitalized solar laser researches, revealing a promising future for renewable reduction of magnesium from magnesium oxide. Here we show a big advance in solar laser collection efficiency by utilizing an economical Fresnel lens and a most widely used Nd:YAG single-crystal rod. The incoming solar radiation from the sun is focused by a 0.9 m diameter Fresnel lens. A dielectric totally internally reflecting secondary concentrator is employed to couple the concentrated solar radiation from the focal zone to a 4 mm diameter Nd:YAG rod within a conical pumping cavity. 12.3 W cw laser power is produced, corresponding to 19.3 W/m(2) collection efficiency, which is 2.9 times larger than the previous results with Nd:YAG single-crystal medium. Record-high slope efficiency of 3.9% is also registered. Laser beam quality is considerably improved by pumping a 3 mm diameter Nd:YAG rod.
Zang, Guiyan; Tejasvi, Sharma; Ratner, Albert; Lora, Electo Silva
2018-05-01
The Biomass Integrated Gasification Combined Cycle (BIGCC) power system is believed to potentially be a highly efficient way to utilize biomass to generate power. However, there is no comparative study of BIGCC systems that examines all the latest improvements for gasification agents, gas turbine combustion methods, and CO 2 Capture and Storage options. This study examines the impact of recent advancements on BIGCC performance through exergy analysis using Aspen Plus. Results show that the exergy efficiency of these systems is ranged from 22.3% to 37.1%. Furthermore, exergy analysis indicates that the gas turbine with external combustion has relatively high exergy efficiency, and Selexol CO 2 removal method has low exergy destruction. Moreover, the sensitivity analysis shows that the system exergy efficiency is more sensitive to the initial temperature and pressure ratio of the gas turbine, whereas has a relatively weak dependence on the initial temperature and initial pressure of the steam turbine. Copyright © 2018 Elsevier Ltd. All rights reserved.
Geologic utility of small-scale airphotos
NASA Technical Reports Server (NTRS)
Clark, M. M.
1969-01-01
The geologic value of small scale airphotos is emphasized by describing the application of high altitude oblique and 1:120,000 to 1:145,000 scale vertical airphotos to several geologic problems in California. These examples show that small-scale airphotos can be of use to geologists in the following ways: (1) high altitude, high oblique airphotos show vast areas in one view; and (2) vertical airphotos offer the most efficient method of discovering the major topographic features and structural and lithologic characteristics of terrain.
Triple-effect absorption refrigeration system with double-condenser coupling
DeVault, R.C.; Biermann, W.J.
1993-04-27
A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.
Triple-effect absorption refrigeration system with double-condenser coupling
DeVault, Robert C.; Biermann, Wendell J.
1993-01-01
A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.
A simple and sensitive high-throughput GFP screening in woody and herbaceous plants.
Hily, Jean-Michel; Liu, Zongrang
2009-03-01
Green fluorescent protein (GFP) has been used widely as a powerful bioluminescent reporter, but its visualization by existing methods in tissues or whole plants and its utilization for high-throughput screening remains challenging in many species. Here, we report a fluorescence image analyzer-based method for GFP detection and its utility for high-throughput screening of transformed plants. Of three detection methods tested, the Typhoon fluorescence scanner was able to detect GFP fluorescence in all Arabidopsis thaliana tissues and apple leaves, while regular fluorescence microscopy detected it only in Arabidopsis flowers and siliques but barely in the leaves of either Arabidopsis or apple. The hand-held UV illumination method failed in all tissues of both species. Additionally, the Typhoon imager was able to detect GFP fluorescence in both green and non-green tissues of Arabidopsis seedlings as well as in imbibed seeds, qualifying it as a high-throughput screening tool, which was further demonstrated by screening the seedlings of primary transformed T(0) seeds. Of the 30,000 germinating Arabidopsis seedlings screened, at least 69 GFP-positive lines were identified, accounting for an approximately 0.23% transformation efficiency. About 14,000 seedlings grown in 16 Petri plates could be screened within an hour, making the screening process significantly more efficient and robust than any other existing high-throughput screening method for transgenic plants.
Zhang, Yifan; Gao, Xunzhang; Peng, Xuan; Ye, Jiaqi; Li, Xiang
2018-05-16
The High Resolution Range Profile (HRRP) recognition has attracted great concern in the field of Radar Automatic Target Recognition (RATR). However, traditional HRRP recognition methods failed to model high dimensional sequential data efficiently and have a poor anti-noise ability. To deal with these problems, a novel stochastic neural network model named Attention-based Recurrent Temporal Restricted Boltzmann Machine (ARTRBM) is proposed in this paper. RTRBM is utilized to extract discriminative features and the attention mechanism is adopted to select major features. RTRBM is efficient to model high dimensional HRRP sequences because it can extract the information of temporal and spatial correlation between adjacent HRRPs. The attention mechanism is used in sequential data recognition tasks including machine translation and relation classification, which makes the model pay more attention to the major features of recognition. Therefore, the combination of RTRBM and the attention mechanism makes our model effective for extracting more internal related features and choose the important parts of the extracted features. Additionally, the model performs well with the noise corrupted HRRP data. Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset show that our proposed model outperforms other traditional methods, which indicates that ARTRBM extracts, selects, and utilizes the correlation information between adjacent HRRPs effectively and is suitable for high dimensional data or noise corrupted data.
Bergander, Tryggve; Nilsson-Välimaa, Kristina; Oberg, Katarina; Lacki, Karol M
2008-01-01
Steadily increasing demand for more efficient and more affordable biomolecule-based therapies put a significant burden on biopharma companies to reduce the cost of R&D activities associated with introduction of a new drug to the market. Reducing the time required to develop a purification process would be one option to address the high cost issue. The reduction in time can be accomplished if more efficient methods/tools are available for process development work, including high-throughput techniques. This paper addresses the transitions from traditional column-based process development to a modern high-throughput approach utilizing microtiter filter plates filled with a well-defined volume of chromatography resin. The approach is based on implementing the well-known batch uptake principle into microtiter plate geometry. Two variants of the proposed approach, allowing for either qualitative or quantitative estimation of dynamic binding capacity as a function of residence time, are described. Examples of quantitative estimation of dynamic binding capacities of human polyclonal IgG on MabSelect SuRe and of qualitative estimation of dynamic binding capacity of amyloglucosidase on a prototype of Capto DEAE weak ion exchanger are given. The proposed high-throughput method for determination of dynamic binding capacity significantly reduces time and sample consumption as compared to a traditional method utilizing packed chromatography columns without sacrificing the accuracy of data obtained.
Advanced purification of petroleum refinery wastewater by catalytic vacuum distillation.
Yan, Long; Ma, Hongzhu; Wang, Bo; Mao, Wei; Chen, Yashao
2010-06-15
In our work, a new process, catalytic vacuum distillation (CVD) was utilized for purification of petroleum refinery wastewater that was characteristic of high chemical oxygen demand (COD) and salinity. Moreover, various common promoters, like FeCl(3), kaolin, H(2)SO(4) and NaOH were investigated to improve the purification efficiency of CVD. Here, the purification efficiency was estimated by COD testing, electrolytic conductivity, UV-vis spectrum, gas chromatography-mass spectrometry (GC-MS) and pH value. The results showed that NaOH promoted CVD displayed higher efficiency in purification of refinery wastewater than other systems, where the pellucid effluents with low salinity and high COD removal efficiency (99%) were obtained after treatment, and the corresponding pH values of effluents varied from 7 to 9. Furthermore, environment estimation was also tested and the results showed that the effluent had no influence on plant growth. Thus, based on satisfied removal efficiency of COD and salinity achieved simultaneously, NaOH promoted CVD process is an effective approach to purify petroleum refinery wastewater. Copyright 2010 Elsevier B.V. All rights reserved.
FY2015 Annual Report for Alternative Fuels DISI Engine Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjöberg, Carl-Magnus G.
2016-01-01
Climate change and the need to secure energy supplies are two reasons for a growing interest in engine efficiency and alternative fuels. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Our emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, we focus on techniques that can overcome these challenges. Specifically, fuel stratification is used to ensure ignition and completeness ofmore » combustion but has soot- and NOx- emissions challenges. For ultralean well-mixed operation, turbulent deflagration can be combined with controlled end-gas auto-ignition to render mixed-mode combustion that facilitates high combustion efficiency. However, the response of both combustion and exhaust emissions to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the engine combustion-control strategies must be adapted to the fuel being utilized.« less
Wasike, Chrilukovian B; Magothe, Thomas M; Kahi, Alexander K; Peters, Kurt J
2011-01-01
Animal recording in Kenya is characterised by erratic producer participation and high drop-out rates from the national recording scheme. This study evaluates factors influencing efficiency of beef and dairy cattle recording system. Factors influencing efficiency of animal identification and registration, pedigree and performance recording, and genetic evaluation and information utilisation were generated using qualitative and participatory methods. Pairwise comparison of factors was done by strengths, weaknesses, opportunities and threats-analytical hierarchical process analysis and priority scores to determine their relative importance to the system calculated using Eigenvalue method. For identification and registration, and evaluation and information utilisation, external factors had high priority scores. For pedigree and performance recording, threats and weaknesses had the highest priority scores. Strengths factors could not sustain the required efficiency of the system. Weaknesses of the system predisposed it to threats. Available opportunities could be explored as interventions to restore efficiency in the system. Defensive strategies such as reorienting the system to offer utility benefits to recording, forming symbiotic and binding collaboration between recording organisations and NARS, and development of institutions to support recording were feasible.
Zhang, Dongdong; Zhao, Chongguang; Zhang, Yunge; Song, Xiaozeng; Wei, Pengcheng; Cai, Minghan; Duan, Lian
2017-02-08
Numerous efforts have been devoted to boost the efficiency of thermally activated delayed fluorescence (TADF) devices; however, strategies to suppress the device efficiency roll-off are still in urgent need. Here, a general and effective approach to suppress the efficiency roll-off of TADF devices is proposed, that is, utilizing TADF materials as the hosts for TADF emitters. Bearing small singlet-triplet splitting (ΔE ST ) with donor and acceptor units, TADF materials as the hosts possess the potential to achieve matched frontier energy levels with the adjacent transporting layers, facilitating balanced charge injection as well as bipolar charge transport mobilities beneficial to the balanced charges transportation. Furthermore, an enhanced Förster energy transfer from the host to the dopant can be anticipated, helpful to reduce the exciton concentration. Based on the principles, a new TADF material based on indeno[2,1-b]carbazole/1,3,5-triazin derivation is synthesized and used as the universal host for the full-color TADF devices. Remarkable low efficiency roll-off was achieved with above 90% of the maximum external quantum efficiencies (EQE max 's) maintained even at a brightness of 2000 cd/m 2 , along with EQE max 's of 23.2, 21.0, and 19.2% for orange, green, and sky-blue TADF devices, respectively. Through computational simulation, we identified the suppressed exciton annihilation rates compared with devices adopting conventional hosts. The state-of-the-art low efficiency roll-off of those TADF devices manifests the great potential of such host design strategy, paving an efficient strategy toward their practical application.
Fluorescent pyrimidine ribonucleotide: synthesis, enzymatic incorporation and utilization
Srivatsan, Seergazhi G.
2008-01-01
Fluorescent nucleobase analogs that respond to changes in their microenvironment are valuable for studying RNA structure, dynamics and recognition. The most commonly used fluorescent ribonucleoside is 2-aminopurine, a highly responsive purine analog. Responsive isosteric fluorescent pyrimidine analogs are, however, rare. Appending 5-membered aromatic heterocycles at the 5-position on a pyrimidine core has recently been found to provide a family of responsive fluorescent nucleoside analogs with emission in the visible range. To explore the potential utility of this chromophore for studying RNA–ligand interactions, an efficient incorporation method is necessary. Here we describe the synthesis of the furan-containing ribonucleoside and its triphosphate, as well as their basic photophysical characteristics. We demonstrate that T7 RNA polymerase accepts this fluorescent ribonucleoside triphosphate as a substrate in in vitro transcription reactions and very efficiently incorporates it into RNA oligonucleotides, generating fluorescent constructs. Furthermore, we utilize this triphosphate for the enzymatic preparation of a fluorescent bacterial A-site, an RNA construct of potential therapeutic utility. We show that the binding of this RNA target to aminoglycoside antibiotics, its cognate ligands, can be effectively monitored by fluorescence spectroscopy. These observations are significant since isosteric emissive U derivatives are scarce and the trivial synthesis and effective enzymatic incorporation of the furan-containing U triphosphate make it accessible to the biophysical community. PMID:17256858
Integration options for high energy efficiency and improved economics in a wood-to-ethanol process.
Sassner, Per; Zacchi, Guido
2008-04-15
There is currently a steady increase in the use of wood-based fuels for heat and power production in Sweden. A major proportion of these fuels could serve as feedstock for ethanol production. In this study various options for the utilization of the solid residue formed during ethanol production from spruce, such as the production of pellets, electricity and heat for district heating, were compared in terms of overall energy efficiency and production cost. The effects of changes in the process performance, such as variations in the ethanol yield and/or the energy demand, were also studied. The process was based on SO2-catalysed steam pretreatment, which was followed by simultaneous saccharification and fermentation. A model including all the major process steps was implemented in the commercial flow-sheeting program Aspen Plus, the model input was based on data recently obtained on lab scale or in a process development unit. For the five base case scenarios presented in the paper the overall energy efficiency ranged from 53 to 92%, based on the lower heating values, and a minimum ethanol selling price from 3.87 to 4.73 Swedish kronor per litre (0.41-0.50 EUR/L); however, ethanol production was performed in essentially the same way in each base case scenario. (Highly realistic) improvements in the ethanol yield and reductions in the energy demand resulted in significantly lower production costs for all scenarios. Although ethanol was shown to be the main product, i.e. yielding the major part of the income, the co-product revenue had a considerable effect on the process economics and the importance of good utilization of the entire feedstock was clearly shown. With the assumed prices of the co-products, utilization of the excess solid residue for heat and power production was highly economically favourable. The study also showed that improvements in the ethanol yield and reductions in the energy demand resulted in significant production cost reductions almost independently of each other.
Cao, Hong-Xing; Zhang, Zheng-Bin; Xu, Ping; Chu, Li-Ye; Shao, Hong-Bo; Lu, Zhao-Hua; Liu, Jun-Hong
2007-05-15
Water deficiency and lower fertilizer utilization efficiency are major constraints of productivity and yield stability. Improvements of crop water use efficiency (WUE) and nutrient use efficiency (NUE) is becoming an important objective in crop breeding. With the introduction of new physiological and biological approaches, we can better understand the mutual genetics mechanism of high use efficiency of water and nutrient. Much work has been done in past decades mainly including the interactions between different fertilizers and water influences on root characteristics and crop growth. Fertilizer quantity and form were regulated in order to improve crop WUE. The crop WUE and NUE shared the same increment tendency during evolution process; some genes associated with WUE and NUE have been precisely located and marked on the same chromosomes, some genes related to WUE and NUE have been cloned and transferred into wheat and rice and other plants, they can enhance water and nutrient use efficiency. The proteins transporting nutrient and water were identified such as some water channel proteins. The advance on the mechanism of higher water and nutrient use efficiency in crop was reviewed in this article, and it could provide some useful information for further research on WUE and NUE in crop.
Kysat-2 electrical power system design and analysis
NASA Astrophysics Data System (ADS)
Molton, Brandon L.
In 2012, Kentucky Space, LLC was offered the opportunity to design KYSat-2, a CubeSat mission which utilizes an experimental stellar-tracking camera system to test its effectiveness of determining the spacecraft's attitude while on orbit. Kentucky Space contracted Morehead State University to design the electrical power system (EPS) which will handle all power generation and power management and distribution to each of the KYSat-2 subsystems, including the flight computer, communications systems, and the experimental payload itself. This decision came as a result of the success of Morehead State's previous CubeSat mission, CXBN, which utilized a custom built power system and successfully launched in 2011. For the KYSat-2 EPS to be successful, it was important to design a system which was efficient enough to handle the power limitations of the space environment and robust enough to handle the challenges of powering a spacecraft on orbit. The system must be developed with a positive power budget, generating and storing more power than will be stored by KYSat-2 over mission lifetime. To accomplish this goal, the use of deployable solar panels has been utilized to double the usable surface area of the satellite for power generation, effectively doubling the usable power of the satellite system on orbit. The KYSat-2 EPS includes of set of gold plated deployable solar panels utilizing solar cells with a 26% efficiency. Power generated by this system is fed into a shunt regulator circuit which regulates the voltage generated to be stored in a 3-cell series battery pack. Stored powered is maintained using a balancing circuit which increases the efficiency and lifetime of the cells on-orbit. Power distribution includes raw battery voltage, four high-power outputs (two 5V and two 3.3 V) and a low-noise, low power 3.3V output for use with noise sensitive devices, such as microcontrollers. The solar panel deployment system utilizes the nichrome wire which draws current directly from the battery pack which a solid state relay receives logic-high signal. This nichrome wire, while under current, cuts a nylon wire which holds the solar panels in a stowed state prior to deployment on orbit. All logic control, current/voltage measurement, and commanding/communications is handled through the use of a Texas Instruments MSP430 microcontroller over UART serial communications. Results of the completed EPS demonstrated high-power output efficiencies approaching 90% under the highest anticipated loads while on orbit. They showed maximum noise levels of approximately +/- 41.30 mV at 83.10 MHz under maximum load. The low-noise 3.3V outputs displayed very little noise, however, this came at the cost of efficiency showing only 26% efficiency at the outputs when under maximum load. The EPS has been successfully integrated with other KYSat-2 subsystems including the spacecraft flight computer, in which the flight computer was able to communicate with the EPS and carry out its functions while functioning solely off the power distributed by the power system. Finally, testing on the solar panels show that a positive voltage margin was achieved when under light and the deployment system was able to cut the nylon wire completely under control by the EPS.
Oriented modulation for watermarking in direct binary search halftone images.
Guo, Jing-Ming; Su, Chang-Cheng; Liu, Yun-Fu; Lee, Hua; Lee, Jiann-Der
2012-09-01
In this paper, a halftoning-based watermarking method is presented. This method enables high pixel-depth watermark embedding, while maintaining high image quality. This technique is capable of embedding watermarks with pixel depths up to 3 bits without causing prominent degradation to the image quality. To achieve high image quality, the parallel oriented high-efficient direct binary search (DBS) halftoning is selected to be integrated with the proposed orientation modulation (OM) method. The OM method utilizes different halftone texture orientations to carry different watermark data. In the decoder, the least-mean-square-trained filters are applied for feature extraction from watermarked images in the frequency domain, and the naïve Bayes classifier is used to analyze the extracted features and ultimately to decode the watermark data. Experimental results show that the DBS-based OM encoding method maintains a high degree of image quality and realizes the processing efficiency and robustness to be adapted in printing applications.
Structural optimisation of cage induction motors using finite element analysis
NASA Astrophysics Data System (ADS)
Palko, S.
The current trend in motor design is to have highly efficient, low noise, low cost, and modular motors with a high power factor. High torque motors are useful in applications like servo motors, lifts, cranes, and rolling mills. This report contains a detailed review of different optimization methods applicable in various design problems. Special attention is given to the performance of different methods, when they are used with finite element analysis (FEA) as an objective function, and accuracy problems arising from the numerical simulations. Also an effective method for designing high starting torque and high efficiency motors is presented. The method described in this work utilizes FEA combined with algorithms for the optimization of the slot geometry. The optimization algorithm modifies the position of the nodal points in the element mesh. The number of independent variables ranges from 14 to 140 in this work.
The ringer - An efficient, high repetition rate circuit for electromagnetic launchers
NASA Astrophysics Data System (ADS)
Giorgi, D.; Helava, H.; Lindner, K.; Long, J.; Zucker, O.
1989-01-01
The Meatgrinder is an efficient, current-multiplying circuit which can be used to optimize the energy transfer to various electromagnetic gun configurations. The authors present a simple variant of the Meatgrinder circuit which permits a first-order current profiling into the gun and recovery of the inductive energy in the barrel at a high repetition rate. The circuit is basically a one-stage Meatgrinder which utilizes the ringing of the energy storage capacitor (less than 40 percent reversal) to perform the opening switch function and a solid-state diode as the crowbar switch between the two mutually coupled inductors. With resonant charging, this results in a completely passive, high-repetiton-rate electromagnetic-gun power supply. Since most of the barrel energy is recovered, a railgun with negligible muzzle flash can be realized.
Technology Assessment for Large Vertical-Lift Transport Tiltrotors
NASA Technical Reports Server (NTRS)
Germanowski, Peter J.; Stille, Brandon L.; Strauss, Michael P.
2010-01-01
The technical community has identified rotor efficiency as a critical enabling technology for large vertical-lift transport (LVLT) rotorcraft. The size and performance of LVLT aircraft will be far beyond current aircraft capabilities, enabling a transformational change in cargo transport effectiveness. Two candidate approaches for achieving high efficiency were considered for LVLT applications: a variable-diameter tiltrotor (VDTR) and a variable-speed tiltrotor (VSTR); the former utilizes variable-rotor geometry and the latter utilizes variable-rotor speed. Conceptual aircraft designs were synthesized for the VDTR and VSTR and compared to a conventional tiltrotor (CTR). The aircraft were optimized to a common objective function and bounded by a set of physical- and requirements-driven constraints. The resulting aircraft were compared for weight, size, performance, handling qualities, and other attributes. These comparisons established a measure of the relative merits of the variable-diameter and -speed rotor systems as enabling technologies for LVLT capability.
NASA Technical Reports Server (NTRS)
Ramakumar, R.; Bahrami, K.
1981-01-01
This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.
NASA Technical Reports Server (NTRS)
Higgins, Mark A.; Plant, David P.; Ries, Douglas M.; Kirk, James A.; Anand, Davinder K.
1992-01-01
The purpose of a magnetically suspended flywheel energy storage system for electric utility load leveling is to provide a means to store energy during times when energy is inexpensive to produce and then return it to the customer during times of peak power demand when generated energy is most expensive. The design of a 20 kWh flywheel energy storage system for electric utility load leveling applications involves the successful integration of a number of advanced technologies so as to minimize the size and cost of the system without affecting its efficiency and reliability. The flywheel energy storage system uses a carbon epoxy flywheel, two specially designed low loss magnetic bearings, a high efficiency motor generator, and a 60 cycle AC power converter all integrated through a microprocessor controller. The basic design is discussed of each of the components that is used in the energy storage design.
NASA Technical Reports Server (NTRS)
Chen, C. J.; Bhanji, A. M.; Russell, G. R.
1978-01-01
A copper laser utilizing copper bromide as a lasant and neon as the buffer gas has been operated at an average laser power of between 16 and 19.5 W for a period of 68 h. Lasing was attained at a pulsing rate of 16.7 kHz in a quartz discharge tube 2.5-cm in diameter with an electrode separation of 200 cm. The laser energy/pulse and peak power/pulse corresponding to an average power of 19.5 W are 1.2 mJ and 30 kW, respectively. The ratio of laser power at 510.6 and 578.2 nm varied from 3.9 to 1.1 corresponding to a total average laser power of 4 and 18 W, respectively. The highest wall plug and capacitor efficiency measured during 68 h of operation were 0.7 and 1.1%, respectively.
Study on government's optimal incentive intensity of intellectual property rights
NASA Astrophysics Data System (ADS)
Yang, Chengbin; Sun, Shengxiang; Wei, Hua
2018-05-01
The integration of military and civilian technology in the development stage of weapon equipment is an inherent requirement for the development of the deep integration of the military and the civilian. In order to avoid repeated development of existing technology and improve the efficiency of weaponry development, the government should take effective measures to encourage development institutions to actively adopt existing intellectual property technology in the process of equipment development. According to the theory of utility function and the characteristics of practical problems, the utility function of government and weapon equipment development units is constructed, and the optimization model of incentive strength for national defense intellectual property is established. According to the numerical simulation, the conclusion is, to improve the development efficiency, and at the same time, to encourage innovation, thre government need to make a trade-off in incentive policy making, to achieve a high level in intellectual property rights' innovation and application.
Israel, Yonatan; Tenne, Ron; Oron, Dan; Silberberg, Yaron
2017-01-01
Despite advances in low-light-level detection, single-photon methods such as photon correlation have rarely been used in the context of imaging. The few demonstrations, for example of subdiffraction-limited imaging utilizing quantum statistics of photons, have remained in the realm of proof-of-principle demonstrations. This is primarily due to a combination of low values of fill factors, quantum efficiencies, frame rates and signal-to-noise characteristic of most available single-photon sensitive imaging detectors. Here we describe an imaging device based on a fibre bundle coupled to single-photon avalanche detectors that combines a large fill factor, a high quantum efficiency, a low noise and scalable architecture. Our device enables localization-based super-resolution microscopy in a non-sparse non-stationary scene, utilizing information on the number of active emitters, as gathered from non-classical photon statistics. PMID:28287167
NASA Astrophysics Data System (ADS)
Mariana, M.; Mahidin, M.; Mulana, F.; Aman, F.
2018-05-01
The people of Aceh are well known as coffee drinkers. Therefore, a lot of coffee shops have been established in Aceh in the past decade. The growing of coffee shops resulting to large amounts of coffee waste produced in Aceh Province that will become solid waste if not wisely utilized. The high carbon content in coffee underlined as background of this research to be utilized those used coffee grounds as bio-sorbent. The preparation of activated carbon from coffee grounds by using carbonization method that was initially activated with HCl was expected to increase the absorption capacity. The prepared activated carbon with high reactivity was applied to adsorb nitrite, nitrate and ammonia in wastewater outlet of PT. PIM wastewater pond. Morphological structure of coffee waste was analyzed by using Scanning Electron Microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The result showed that the adsorption capacity of iodine was equal to 856.578 mg/g. From the characterization results, it was concluded that the activated carbon from coffee waste complied to the permitted quality standards in accordance with the quality requirements of activated carbon SNI No. 06-3730-1995. Observed from the adsorption efficiency, the bio-sorbent showed a tendency of adsorbing more ammonia than nitrite and nitrate of PT. PIM wastewater with ammonia absorption efficiency of 56%.