Monitoring method and apparatus using high-frequency carrier
Haynes, Howard D.
1996-01-01
A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.
Monitoring method and apparatus using high-frequency carrier
Haynes, H.D.
1996-04-30
A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.
High electric field conduction in low-alkali boroaluminosilicate glass
NASA Astrophysics Data System (ADS)
Dash, Priyanka; Yuan, Mengxue; Gao, Jun; Furman, Eugene; Lanagan, Michael T.
2018-02-01
Electrical conduction in silica-based glasses under a low electric field is dominated by high mobility ions such as sodium, and there is a transition from ionic transport to electronic transport as the electric field exceeds 108 V/m at low temperatures. Electrical conduction under a high electric field was investigated in thin low-alkali boroaluminosilicate glass samples, showing nonlinear conduction with the current density scaling approximately with E1/2, where E is the electric field. In addition, thermally stimulated depolarization current (TSDC) characterization was carried out on room-temperature electrically poled glass samples, and an anomalous discharging current flowing in the same direction as the charging current was observed. High electric field conduction and TSDC results led to the conclusion that Poole-Frenkel based electronic transport occurs in the mobile-cation-depleted region adjacent to the anode, and accounts for the observed anomalous current.
High temperature superconducting fault current limiter
Hull, J.R.
1997-02-04
A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.
High temperature superconducting fault current limiter
Hull, John R.
1997-01-01
A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).
Motor monitoring method and apparatus using high frequency current components
Casada, D.A.
1996-05-21
A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.
Motor monitoring method and apparatus using high frequency current components
Casada, Donald A.
1996-01-01
A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.
NASA Technical Reports Server (NTRS)
Clauer, C. R.; Banks, P. M.
1986-01-01
The electrical coupling between the solar wind, magnetosphere, and ionosphere is studied. The coupling is analyzed using observations of high-latitude ion convection measured by the Sondre Stromfjord radar in Greenland and a computer simulation. The computer simulation calculates the ionospheric electric potential distribution for a given configuration of field-aligned currents and conductivity distribution. The technique for measuring F-region in velocities at high time resolution over a large range of latitudes is described. Variations in the currents on ionospheric plasma convection are examined using a model of field-aligned currents linking the solar wind with the dayside, high-latitude ionosphere. The data reveal that high-latitude ionospheric convection patterns, electric fields, and field-aligned currents are dependent on IMF orientation; it is observed that the electric field, which drives the F-region plasma curve, responds within about 14 minutes to IMF variations in the magnetopause. Comparisons of the simulated plasma convection with the ion velocity measurements reveal good correlation between the data.
A complete electrical shock hazard classification system and its application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, Lloyd; Cartelli, Laura; Graham, Nicole
Current electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. As a result, this leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. We find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50/60 Hz power. This paper proposes a method of classifying allmore » of the electrical shock hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Lastly, the new comprehensive electrical shock hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards.« less
A complete electrical shock hazard classification system and its application
Gordon, Lloyd; Cartelli, Laura; Graham, Nicole
2018-02-08
Current electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. As a result, this leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. We find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50/60 Hz power. This paper proposes a method of classifying allmore » of the electrical shock hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Lastly, the new comprehensive electrical shock hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards.« less
Dim, Em; Amanari, Oc; Nottidge, Te; Inyang, Uc; Nwashindi, A
2013-07-01
The human body conducts electricity very well. Direct contact with electric current can be lethal. The passage of electric current through the body is capable of producing a wide spectrum of injuries, including serious damage to the heart, brain, skin and muscles. Naked high-voltage electric cables negligently abandoned in residential, commercial and industrial areas are a recipe for disaster. This is a case report of a 5-year girl child who had bilateral lower limb gangrene following electrical burns injury. She presented with a fourday history of electrical burns injuries of both lower limbs including both gluteal regions, associated with a three-day history of fever, with full thickness burns and sepsis, ultimately leading to bilateral above knee guillotine amputations. High-voltage electric current, bilateral lower limb gangrene, bilateral above knee amputation.
Magnetospheric electric fields and currents
NASA Technical Reports Server (NTRS)
Mauk, B. H.; Zanetti, L. J.
1987-01-01
The progress made in the years 1983-1986 in understanding the character and operation of magnetospheric electric fields and electric currents is discussed, with emphasis placed on the connection with the interior regions. Special attention is given to determinations of global electric-field configurations, measurements of the response of magnetospheric particle populations to the electric-field configurations, and observations of the magnetospheric currents at high altitude and during northward IMF. Global simulations of current distributions are discussed, and the sources of global electric fields and currents are examined. The topics discussed in the area of impulsive and small-scale phenomena include substorm current systems, impulsive electric fields and associated currents, and field-aligned electrodynamics. A key finding of these studies is that the electric fields and currents are interrelated and cannot be viewed as separate entities.
Generation of high-density biskyrmions by electric current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Licong; Zhang, Ying; He, Min
Much interest has been focused on the manipulation of magnetic skyrmions, including the generation, annihilation, and motion behaviors, for potential applications in spintronics. We experimentally demonstrate that a high-density Bloch-type biskyrmion lattice in MnNiGa can be generated by applying electric current. It is revealed that the density of biskyrmions can be remarkably increased by increasing the electric current, in contrast to the scattered biskyrmions induced by a magnetic field alone. Furthermore, the transition from the ferromagnetic state to the stripe domain structure can be terminated by the electric current, leading to the biskyrmions dominated residual domain pattern. These biskyrmions inmore » such residual domain structure are extremely stable at zero magnetic and electric fields and can further evolve into the high-density biskyrmion lattice over a temperature range from 100 to 330 K. Finally, our experimental findings open up a new pathway for the generation of skyrmion lattice by electric current manipulation.« less
Generation of high-density biskyrmions by electric current
Peng, Licong; Zhang, Ying; He, Min; ...
2017-06-16
Much interest has been focused on the manipulation of magnetic skyrmions, including the generation, annihilation, and motion behaviors, for potential applications in spintronics. We experimentally demonstrate that a high-density Bloch-type biskyrmion lattice in MnNiGa can be generated by applying electric current. It is revealed that the density of biskyrmions can be remarkably increased by increasing the electric current, in contrast to the scattered biskyrmions induced by a magnetic field alone. Furthermore, the transition from the ferromagnetic state to the stripe domain structure can be terminated by the electric current, leading to the biskyrmions dominated residual domain pattern. These biskyrmions inmore » such residual domain structure are extremely stable at zero magnetic and electric fields and can further evolve into the high-density biskyrmion lattice over a temperature range from 100 to 330 K. Finally, our experimental findings open up a new pathway for the generation of skyrmion lattice by electric current manipulation.« less
Disruption of crystalline structure of Sn3.5Ag induced by electric current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Han-Chie; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw; Wu, Albert T.
2016-03-21
This study presented the disruption of the Sn and Ag{sub 3}Sn lattice structures of Sn3.5Ag solder induced by electric current at 5–7 × 10{sup 3} A/cm{sup 2} with a high resolution transmission electron microscope investigation and electron diffraction analysis. The electric current stressing induced a high degree of strain on the alloy, as estimated from the X-ray diffraction (XRD) peak shift of the current stressed specimen. The XRD peak intensity of the Sn matrix and the Ag{sub 3}Sn intermetallic compound diminished to nearly undetectable after 2 h of current stressing. The electric current stressing gave rise to a high dislocation density ofmore » up to 10{sup 17}/m{sup 2}. The grain morphology of the Sn matrix became invisible after prolonged current stressing as a result of the coalescence of dislocations.« less
Distributed measurement of high electric current by means of polarimetric optical fiber sensor.
Palmieri, Luca; Sarchi, Davide; Galtarossa, Andrea
2015-05-04
A novel distributed optical fiber sensor for spatially resolved monitoring of high direct electric current is proposed and analyzed. The sensor exploits Faraday rotation and is based on the polarization analysis of the Rayleigh backscattered light. Preliminary laboratory tests, performed on a section of electric cable for currents up to 2.5 kA, have confirmed the viability of the method.
Nalladega, V; Sathish, S; Jata, K V; Blodgett, M P
2008-07-01
We present a high resolution electrical conductivity imaging technique based on the principles of eddy current and atomic force microscopy (AFM). An electromagnetic coil is used to generate eddy currents in an electrically conducting material. The eddy currents generated in the conducting sample are detected and measured with a magnetic tip attached to a flexible cantilever of an AFM. The eddy current generation and its interaction with the magnetic tip cantilever are theoretically modeled using monopole approximation. The model is used to estimate the eddy current force between the magnetic tip and the electrically conducting sample. The theoretical model is also used to choose a magnetic tip-cantilever system with appropriate magnetic field and spring constant to facilitate the design of a high resolution electrical conductivity imaging system. The force between the tip and the sample due to eddy currents is measured as a function of the separation distance and compared to the model in a single crystal copper. Images of electrical conductivity variations in a polycrystalline dual phase titanium alloy (Ti-6Al-4V) sample are obtained by scanning the magnetic tip-cantilever held at a standoff distance from the sample surface. The contrast in the image is explained based on the electrical conductivity and eddy current force between the magnetic tip and the sample. The spatial resolution of the eddy current imaging system is determined by imaging carbon nanofibers in a polymer matrix. The advantages, limitations, and applications of the technique are discussed.
Kameda, Takashi; Ohkuma, Kazuo; Ishii, Nozomu; Sano, Natsuki; Ogura, Hideo; Terada, Kazuto
2012-01-01
Magnetic fields can represent a health problem, especially low frequency electromagnetic fields sometimes induced by electric current in metallic objects worn or used in or on the body (as opposed to high frequency electromagnetic fields that produce heat). Electric toothbrushes are widely used because of their convenience, but the electric motors that power them may produce electromagnetic waves. In this study, we showed that electric toothbrushes generate low frequency (1-2000 Hz) magnetic fields and induce electric current in dental appliances (e. g. orthodontic and prosthetic appliances and dental implants). Current induced by electric toothbrushes might be dependent on the quantity and types of metals used, and the shape of the appliances. Furthermore, these induced currents in dental appliances could impact upon human oral health, producing pain and discomfort.
Process for the electrodeposition of low stress nickel-manganese alloys
Kelly, James John; Goods, Steven Howard; Yang, Nancy Yuan-Chi; Cadden, Charles Henry
2005-06-07
A process for electrodepositing a low stress nickel-manganese multilayer alloy on an electrically conductive substrate is provided. The process includes the steps of immersing the substrate in an electrodeposition solution containing a nickel salt and a manganese salt and repeatedly passing an electric current through an immersed surface of the substrate. The electric current is alternately pulsed for predetermined durations between a first electrical current that is effective to electrodeposit nickel and a second electrical current that is effective to electrodeposit nickel and manganese. A multilayered alloy having adjacent layers of nickel and a nickel-manganese alloy on the immersed surface of the substrate is thereby produced. The resulting multilayered alloy exhibits low internal stress, high strength and ductility, and high strength retention upon exposure to heat.
Modeling of the coupled magnetospheric and neutral wind dynamos
NASA Technical Reports Server (NTRS)
Thayer, Jeff P.
1993-01-01
The solar wind interaction with the earth's magnetosphere generates electric fields and currents that flow from the magnetosphere to the ionosphere at high latitudes. Consequently, the neutral atmosphere is subject to the dissipation and conversion of this electrical energy to thermal and mechanical energy through Joule heating and Lorentz forcing. As a result of the mechanical energy stored within the neutral wind (caused in part by Lorentz--and pressure gradient--forces set up by the magnetospheric flux of electrical energy), electric currents and fields can be generated in the ionosphere through the neutral wind dynamo mechanism. At high latitudes this source of electrical energy has been largely ignored in past studies, owing to the assumed dominance of the solar wind/magnetospheric dynamo as an electrical energy source to the ionosphere. However, other researchers have demonstrated that the available electrical energy provided by the neutral wind is significant at high latitudes, particularly in the midnight sector of the polar cap and in the region of the magnetospheric convection reversal. As a result, the conclusions of a number of broad ranging high-latitude investigations may be modified if the neutral-wind contribution to high-latitude electrodynamics is properly accounted for. These include the following: studies assessing solar wind-magnetospheric coupling by comparing the cross polar cap potential with solar wind parameters; research based on the alignment of particle precipitation with convection or field aligned current boundaries; and synoptic investigations attributing seasonal variations in the observed electric field and current patterns to external sources. These research topics have been initiated by satellite and ground-based observations and have been attributed to magnetospheric causes. However, the contribution of the neutral wind to the high-latitude electric field and current systems and their seasonal and local time dependence has yet to be quantitatively evaluated. In this program, we are evaluating the coupled magnetospheric and neutral wind dynamos at high latitudes under various conditions. In addition to examining the impact of seasonal variations, we are investigating the consequences of the separate dynamos having pure current-source or voltage-source behaviors.
UCP2- and non-UCP2-mediated electric current in eukaryotic cells exhibits different properties.
Wang, Ruihua; MoYung, K C; Zhang, M H; Poon, Karen
2015-12-01
Using live eukaryotic cells, including cancer cells, MCF-7 and HCT-116, normal hepatocytes and red blood cells in anode and potassium ferricyanide in cathode of MFC could generate bio-based electric current. Electrons and protons generated from the metabolic reaction in both cytosol and mitochondria contributing to the leaking would mediate the generation of electric current. Both resveratrol (RVT) and 2,4-dinitrophenol (DNP) used to induce proton leak in mitochondria were found to promote electric current production in all cells except red blood cells without mitochondria. Proton leak might be important for electric current production by bringing the charge balance in cells to enhance the further electron leak. The induced electric current by RVT can be blocked by Genipin, an inhibitor of UCP2-mediated proton leak, while that induced by DNP cannot. RVT could reduce reactive oxygen species (ROS) level in cells better than that of DNP. In addition, RVT increased mitochondrial membrane potential (MMP), while DNP decreased it. Results highly suggested the existence of at least two types of electric current that showed different properties. They included UCP2-mediated and non-UCP2-mediated electric current. UCP2-mediated electric current exhibited higher reactive oxygen species (ROS) reduction effect per unit electric current production than that of non-UCP2-mediated electric current. Higher UCP2-mediated electric current observed in cancer cells might contribute to the mechanism of drug resistence. Correlation could not be established between electric current production with either ROS and MMP without distinguishing the types of electric current.
High voltage design structure for high temperature superconducting device
Tekletsadik, Kasegn D [Rexford, NY
2008-05-20
In accordance with the present invention, modular corona shields are employed in a HTS device to reduce the electric field surrounding the HTS device. In a exemplary embodiment a fault current limiter module in the insulation region of a cryogenic cooling system has at least one fault current limiter set which employs a first corona shield disposed along the top portion of the fault current limiter set and is electrically coupled to the fault current limiter set. A second corona shield is disposed along the bottom portion of the fault current limiter set and is electrically coupled to the fault current limiter set. An insulation barrier is disposed within the insulation region along at least one side of the fault current limiter set. The first corona shield and the second corona shield act together to reduce the electric field surrounding the fault limiter set when voltage is applied to the fault limiter set.
A beam current density monitor for intense electron beams
NASA Astrophysics Data System (ADS)
Fiorito, R. B.; Raleigh, M.; Seltzer, S. M.
1983-12-01
The authors describe a new type of electric probe for mapping the radial current density profile of high-energy, high current electron beams. The idea of developing an electrically sensitive probe for these conditions was originally suggested to one of the authors during a year's visit to the Lawrence Livermore National Laboratory. The resulting probe is intended for use on the Experimental Test Accelerator (ETA) and the Advanced Test Accelerator at that laboratory. This report discusses in detail: the mechanical design, the electrical response, and temperature effects, as they pertain to the electric probe, and describe the first experimental results obtained using this probe on ETA.
Non-volatile, solid state bistable electrical switch
NASA Technical Reports Server (NTRS)
Williams, Roger M. (Inventor)
1994-01-01
A bistable switching element is made of a material whose electrical resistance reversibly decreases in response to intercalation by positive ions. Flow of positive ions between the bistable switching element and a positive ion source is controlled by means of an electrical potential applied across a thermal switching element. The material of the thermal switching element generates heat in response to electrical current flow therethrough, which in turn causes the material to undergo a thermal phase transition from a high electrical resistance state to a low electrical resistance state as the temperature increases above a predetermined value. Application of the electrical potential in one direction renders the thermal switching element conductive to pass electron current out of the ion source. This causes positive ions to flow from the source into the bistable switching element and intercalate the same to produce a non-volatile, low resistance logic state. Application of the electrical potential in the opposite direction causes reverse current flow which de-intercalates the bistable logic switching element and produces a high resistance logic state.
Optimize out-of-core thermionic energy conversion for nuclear electric propulsion
NASA Technical Reports Server (NTRS)
Morris, J. F.
1978-01-01
Thermionic energy conversion (TEC) potentialities for nuclear electric propulsion (NEP) are examined. Considering current designs, their limitations, and risks raises critical questions about the use of TEC for NEP. Apparently a reactor cooled by hotter-than-1675 K heat pipes has good potentialities. TEC with higher temperatures and greater power densities than the currently proposed 1650 K, 5-to-6 W/sq cm version offers substantial gains. Other approaches to high-temperature electric isolation appear also promising. A high-power-density, high-temperature TEC for NEP appears, therefore, attainable. It is recommended to optimize out-of-core thermionic energy conversion for nuclear electric propulsion. Although current TEC designs for NEP seem unnecessary compared with Brayton versions, large gains are apparently possible with increased temperatures and greater power densities.
Conductor of high electrical current at high temperature in oxygen and liquid metal environment
Powell, IV, Adam Clayton; Pati, Soobhankar; Derezinski, Stephen Joseph; Lau, Garrett; Pal, Uday B.; Guan, Xiaofei; Gopalan, Srikanth
2016-01-12
In one aspect, the present invention is directed to apparatuses for and methods of conducting electrical current in an oxygen and liquid metal environment. In another aspect, the invention relates to methods for production of metals from their oxides comprising providing a cathode in electrical contact with a molten electrolyte, providing a liquid metal anode separated from the cathode and the molten electrolyte by a solid oxygen ion conducting membrane, providing a current collector at the anode, and establishing a potential between the cathode and the anode.
Praeg, W.F.
1984-03-30
This invention pertains to arrangements for performing electrical tests on contact material samples, and in particular for testing contact material test samples in an evacuated environment under high current loads. Frequently, it is desirable in developing high-current separable contact material, to have at least a preliminary analysis of selected candidate conductor materials. Testing of material samples will hopefully identify materials unsuitable for high current electrical contact without requiring incorporation of the materials into a completed and oftentimes complex structure.
Nano-Magnets and Additive Manufacturing for Electric Motors
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
2014-01-01
High power density is required for application of electric motors in hybrid electric propulsion. Potential path to achieve high power density in electric motors include advanced materials, lightweight thermal management, lightweight structural concepts, high power density power electronics, and advanced manufacturing. This presentation will focus on two key technologies for achieving high power density, advanced magnets and additive manufacturing. The maximum energy product in current magnets is reaching their theoretical limits as a result of material and process improvements. Future improvements in the maximum energy product for magnets can be achieved through development of nanocomposite magnets combining the hard magnetic phase and soft magnetic phase at the nanoscale level. The presentation will provide an overview of the current state of development for nanocomposite magnets and the future path for doubling the maximum energy product. The other part of the presentation will focus on the role of additive manufacturing in fabrication of high power density electric motors. The presentation will highlight the potential opportunities for applying additive manufacturing to fabricate electric motors.
NASA Astrophysics Data System (ADS)
Oka, Mohachiro; Enokizono, Masato; Mori, Yuji; Yamazaki, Kazumasa
2018-04-01
Recently, the application areas for electric motors have been expanding. For instance, electric motors are used in new technologies such as rovers, drones, cars, and robots. The motor used in such machinery should be small, high-powered, highly-efficient, and high-speed. In such motors, loss at high-speed rotation must be especially minimal. Eddy-current loss in the stator core is known to increase greatly during loss at high-speed rotation of the motor. To produce an efficient high-speed motor, we are developing a stator core for a motor using an ultrathin electrical steel sheet with only a small amount of eddy-current loss. Furthermore, the magnetic property evaluation for efficient, high-speed motor stator cores that use conventional commercial frequency is insufficient. Thus, we made a new high-speed magnetic property evaluation system to evaluate the magnetic properties of the efficient high-speed motor stator core. This system was composed of high-speed A/D converters, D/A converters, and a high-speed power amplifier. In experiments, the ultrathin electrical steel sheet dramatically suppressed iron loss and, in particular, eddy-current loss. In addition, a new high-speed magnetic property evaluation system accurately evaluated the magnetic properties of the efficient high-speed motor stator core.
NASA Technical Reports Server (NTRS)
Sugiura, M.; Iyemori, T.; Hoffman, R. A.; Maynard, N. C.; Burch, J. L.; Winningham, J. D.
1984-01-01
The relationships between field-aligned currents, electric fields, and particle fluxes are determined using observations from the polar orbiting low-altitude satellite Dynamics Explorer-2. It is shown that the north-south electric field and the east-west magnetic field components are usually highly correlated in the field-aligned current regions. This proportionality observationally proves that the field-aligned current equals the divergence of the height-integrated ionospheric Pedersen current in the meridional plane to a high degree of approximation. As a general rule, in the evening sector the upward field-aligned currents flow in the boundary plasma sheet region and the downward currents flow in the central plasma sheet region. The current densities determined independently from the plasma and magnetic field measurements are compared. Although the current densities deduced from the two methods are in general agreement, the degree and extent of the agreement vary in individual cases.
NASA Technical Reports Server (NTRS)
Sugiura, M.; Iyemori, T.; Hoffman, R. A.; Maynard, N. C.; Burch, J. L.; Winningham, J. D.
1983-01-01
The relationships between field-aligned currents, electric fields, and particle fluxes are determined using observations from the polar orbiting low-altitude satellite Dynamics Explorer-2. It is shown that the north-south electric field and the east-west magnetic field components are usually highly correlated in the field-aligned current regions. This proportionality observationally proves that the field-aligned current equals the divergence of the height-integrated ionospheric Pedersen current in the meridional plane to a high degree of approximation. As a general rule, in the evening sector the upward field-aligned currents flow in the boundary plasma sheet region and the downward currents flow in the central plasma sheet region. The current densities determined independently from the plasma and magnetic field measurements are compared. Although the current densities deduced from the two methods are in general agreement, the degree and extent of the agreement vary in individual cases.
She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di
2017-08-29
A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.
High-frequency matrix converter with square wave input
Carr, Joseph Alexander; Balda, Juan Carlos
2015-03-31
A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.
Solar-terrestrial coupling through atmospheric electricity
NASA Technical Reports Server (NTRS)
Roble, R. G.; Hays, P. B.
1979-01-01
There are a number of measurements of electrical variations that suggest a solar-terrestrial influence on the global atmospheric electrical circuit. The measurements show variations associated with solar flares, solar magnetic sector boundary crossings, geomagnetic activity, aurorae, differences between ground current and potential gradients at high and low latitudes, and solar cycle variations. The evidence for each variation is examined. Both the experimental evidence and the calculations made with a global model of atmospheric electricity indicate that there is solar-terrestrial coupling through atmospheric electricity which operates by altering the global electric current and field distribution. A global redistribution of currents and fields can be caused by large-scale changes in electrical conductivity, by alteration of the columnar resistance between thunderstorm cloud tops and the ionosphere, or by both. If the columnar resistance is altered above thunderstorms, more current will flow in the global circuit, changing the ionospheric potential and basic circuit variables such as current density and electric fields. The observed variations of currents and fields during solar-induced disturbances are generally less than 50% of mean values near the earth's surface.
Electric emissions from electrical appliances.
Leitgeb, N; Cech, R; Schröttner, J
2008-01-01
Electric emissions from electric appliances are frequently considered negligible, and standards consider electric appliances to comply without testing. By investigating 122 household devices of 63 different categories, it could be shown that emitted electric field levels do not justify general disregard. Electric reference values can be exceeded up to 11-fold. By numerical dosimetry with homogeneous human models, induced intracorporal electric current densities were determined and factors calculated to elevate reference levels to accounting for reduced induction efficiency of inhomogeneous fields. These factors were found not high enough to allow generally concluding on compliance with basic restrictions without testing. Electric appliances usually simultaneously emit both electric and magnetic fields exposing almost the same body region. Since the sum of induced current densities is limited, one field component reduces the available margin for the other. Therefore, superposition of electric current densities induced by either field would merit consideration.
Electrical Characterization Laboratory | Energy Systems Integration
the ability of electrical equipment to withstand high-voltage surges and high-current faults. A capability. High-Voltage Characterization The high-voltage characterization hub offers a Class 1, Div 2 lab
Ionization and current growth in N/sub 2/ at very high electric field to gas density ratios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gylys, V.T.; Jelenkovic, B.M.; Phelps, A.V.
1989-05-01
Measurements and analyses have been made of electron impact ionization and of current growth in pulsed, low-current, prebreakdown discharges in parallel-plane geometry in N/sub 2/ at very high electric field to gas density ratios E/n and low products of the gas density n and electrode separation d. The E/n range and nd ranges were 1
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.
2017-01-01
The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.
A rocket borne instrument to measure electric fields inside electrified clouds
NASA Technical Reports Server (NTRS)
Ruhnke, L. H.
1971-01-01
The development of a rocket borne instrument to measure electric fields in thunderstorms is described. Corona currents from a sharp needle atop a small rocket are used to sense the electric field. A high ohm resistor in series with the corona needle linearizes the relationship between corona current and electric field. The corona current feeds a relaxation oscillator, whose pulses trigger a transmitter which operates in the 395 to 410 MHz meteorological band. The instrument senses fields between 5 kV/m and 100 kV/m.
NASA Astrophysics Data System (ADS)
Kikuchi, Takashi; Hashimoto, Kumiko K.
2016-12-01
The solar wind energy is transmitted to low latitude ionosphere in a current circuit from a dynamo in the magnetosphere to the equatorial ionosphere via the polar ionosphere. During the substorm growth phase and storm main phase, the dawn-to-dusk convection electric field is intensified by the southward interplanetary magnetic field (IMF), driving the ionospheric DP2 currents composed of two-cell Hall current vortices in high latitudes and Pedersen currents amplified at the dayside equator (EEJ). The EEJ-Region-1 field-aligned current (R1 FAC) circuit is completed via the Pedersen currents in midlatitude. On the other hand, the shielding electric field and the Region-2 FACs develop in the inner magnetosphere, tending to cancel the convection electric field at the mid-equatorial latitudes. The shielding often causes overshielding when the convection electric field reduces substantially and the EEJ is overcome by the counter electrojet (CEJ), leading to that even the quasi-periodic DP2 fluctuations are contributed by the overshielding as being composed of the EEJ and CEJ. The overshielding develop significantly during substorms and storms, leading to that the mid and low latitude ionosphere is under strong influence of the overshielding as well as the convection electric fields. The electric fields on the day- and night sides are in opposite direction to each other, but the electric fields in the evening are anomalously enhanced in the same direction as in the day. The evening anomaly is a unique feature of the electric potential distribution in the global ionosphere. DP2-type electric field and currents develop during the transient/short-term geomagnetic disturbances like the geomagnetic sudden commencements (SC), which appear simultaneously at high latitude and equator within the temporal resolution of 10 s. Using the SC, we can confirm that the electric potential and currents are transmitted near-instantaneously to low latitude ionosphere on both day- and night sides, which is explained by means of the light speed propagation of the TM0 mode waves in the Earth-ionosphere waveguide.
NASA Astrophysics Data System (ADS)
Pei, Zingway; Tsai, Hsing-Wang; Lai, Hsin-Cheng
2016-02-01
The organic material based thin film transistors (TFTs) are attractive for flexible optoelectronics applications due to the ability of lager area fabrication by solution and low temperature process on plastic substrate. Recently, the research of organic TFT focus on low operation voltage and high output current to achieve a low power organic logic circuit for optoelectronic device,such as e-paper or OLED displayer. To obtain low voltage and high output current, high gate capacitance and high channel mobility are key factors. The well-arranged polymer chain by a high temperature postannealing, leading enhancement conductivity of polymer film was a general method. However, the thermal annealing applying heat for all device on the substrate and may not applicable to plastic substrate. Therefore, in this work, the low operation voltage and high output current of polymer TFTs was demonstrated by locally electrical bias annealing. The poly(styrene-comethyl methacrylate) (PS-r-PMMA) with ultra-thin thickness is used as gate dielectric that the thickness is controlled by thermal treatment after spin coated on organic electrode. In electrical bias-annealing process, the PS-r- PMMA is acted a heating layer. After electrical bias-annealing, the polymer TFTs obtain high channel mobility at low voltage that lead high output current by a locally annealing of P3HT film. In the future, the locally electrical biasannealing method could be applied on plastic substrate for flexible optoelectronic application.
Space-charge-limited currents for cathodes with electric field enhanced geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu
This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that themore » space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.« less
High Voltage Hybrid Electric Propulsion - Multilayered Functional Insulation System (MFIS) NASA-GRC
NASA Technical Reports Server (NTRS)
Lizcano, M.
2017-01-01
High power transmission cables pose a key challenge in future Hybrid Electric Propulsion Aircraft. The challenge arises in developing safe transmission lines that can withstand the unique environment found in aircraft while providing megawatts of power. High voltage AC, variable frequency cables do not currently exist and present particular electrical insulation challenges since electrical arcing and high heating are more prevalent at higher voltages and frequencies. Identifying and developing materials that maintain their dielectric properties at high voltage and frequencies is crucial.
Electrical and Biological Effects of Transmission Lines: A Review.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jack M.
1989-06-01
This review describes the electrical properties of a-c and d-c transmission lines and the resulting effects on plants, animals, and people. Methods used by BPA to mitigate undesirable effects are also discussed. Although much of the information in this review pertains to high-voltage transmission lines, information on distribution lines and electrical appliances is included. The electrical properties discussed are electric and magnetic fields and corona: first for alternating-current (a-c) lines, then for direct current (d-c).
High-Current Rotating Contactor
NASA Technical Reports Server (NTRS)
Hagan, David W.; Wolff, Edwin D.
1996-01-01
Rotating electrical contactor capable of carrying 1,000 amperes of current built for use in rotating large workpiece in electroplating bath. Electrical contact made by use of 24 automotive starter motor brushes adapted to match inside diameter of shell electrode.
Serša, Igor; Kranjc, Matej; Miklavčič, Damijan
2015-01-01
Electroporation is gaining its importance in everyday clinical practice of cancer treatment. For its success it is extremely important that coverage of the target tissue, i.e. treated tumor, with electric field is within the specified range. Therefore, an efficient tool for the electric field monitoring in the tumor during delivery of electroporation pulses is needed. The electric field can be reconstructed by the magnetic resonance electric impedance tomography method from current density distribution data. In this study, the use of current density imaging with MRI for monitoring current density distribution during delivery of irreversible electroporation pulses was demonstrated. Using a modified single-shot RARE sequence, where four 3000 V and 100 μs long pulses were included at the start, current distribution between a pair of electrodes inserted in a liver tissue sample was imaged. Two repetitions of the sequence with phases of refocusing radiofrequency pulses 90° apart were needed to acquire one current density image. For each sample in total 45 current density images were acquired to follow a standard protocol for irreversible electroporation where 90 electric pulses are delivered at 1 Hz. Acquired current density images showed that the current density in the middle of the sample increased from first to last electric pulses by 60%, i.e. from 8 kA/m2 to 13 kA/m2 and that direction of the current path did not change with repeated electric pulses significantly. The presented single-shot RARE-based current density imaging sequence was used successfully to image current distribution during delivery of short high-voltage electric pulses. The method has a potential to enable monitoring of tumor coverage by electric field during irreversible electroporation tissue ablation.
Serial and parallel power equipment with high-temperature superconducting elements
NASA Technical Reports Server (NTRS)
Bencze, Laszlo; Goebl, Nandor; Palotas, Bela; Vajda, Istvan
1995-01-01
One of the prospective, practical applications of high-temperature superconductors is the fault-current limitation in electrical energy networks. The development and testing of experimental HTSC serial current limiters have been reported in the literature. A Hungarian electric power company has proposed the development of a parallel equipment for arc suppressing both in the industrial and customers' networks. On the basis of the company's proposal the authors have outlined the scheme of a compound circuit that can be applied both for current limitation and arc suppressing. In this paper the design principles and methods of the shunt equipment are presented. These principles involve the electrical, mechanical and cryogenic aspects with the special view on the electrical and mechanical connection between the HTSC material and the current lead. Preliminary experiments and tests have been carried out to demonstrate the validity of the design principles developed. The results of the experiments and of the technological investigations are presented.
59. View of high voltage (4160 volts alternating current) electric ...
59. View of high voltage (4160 volts alternating current) electric load center and motor control center at mezzanine level in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
Electric field induced spin-polarized current
Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng
2006-05-02
A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.
Compact, Lightweight Electromagnetic Pump for Liquid Metal
NASA Technical Reports Server (NTRS)
Godfroy, Thomas; Palzin, Kurt
2010-01-01
A proposed direct-current electromagnetic pump for circulating a molten alkali metal alloy would be smaller and lighter and would demand less input power, relative to currently available pumps of this type. (Molten alkali metals are used as heat-transfer fluids in high-temperature stages of some nuclear reactors.) The principle of operation of this or any such pump involves exploitation of the electrical conductivity of the molten metal: An electric current is made to pass through the liquid metal along an axis perpendicular to the longitudinal axis of the flow channel, and a magnetic field perpendicular to both the longitudinal axis and the electric current is superimposed on the flowchannel region containing the electric current. The interaction between the electric current and the magnetic field produces the pumping force along the longitudinal axis. The advantages of the proposed pump over other such pumps would accrue from design features that address overlapping thermal and magnetic issues.
Formation of Organized Protein Thin Films with External Electric Field.
Ferreira, Cecília Fabiana da G; Camargo, Paulo C; Benelli, Elaine M
2015-10-01
The effect of an external electric field on the formation of protein GlnB-Hs films and on its buffer solution on siliconized glass slides has been analyzed by current versus electric field curves and atomic force microscopy (AFM). The Herbaspirillum seropedicae GlnB protein (GlnB-Hs) is a globular, soluble homotrimer (36 kDa) with its 3-D structure previously determined. Concentrations of 10 nM native denatured GlnB-Hs protein were deposited on siliconized glass slides under ambient conditions. Immediately after solution deposition a maximum electric field of 30 kV/m was applied with rates of 3 V/s. The measured currents were surface currents and were analyzed as transport current. Electric current started to flow only after a minimum electric field (critical value) for the systems analyzed. The AFM images showed films with a high degree of directional organization only when the proteins were present in the solution. These results showed that the applied electric field favored directional organization of the protein GlnB-Hs films and may contribute to understand the formation of protein films under applied electric fields.
NASA Technical Reports Server (NTRS)
Clauer, C. Robert; Friis-Christensen, Eigil
1988-01-01
On July 23, 1983 the IMF turned strongly northward, becoming about 22 nT for several hours. Using a combined data set of ionospheric convection measurements made by the Sondre Stromfjord incoherent scatter radar and convection inferred from Greenland magnetometer measurements, the onset of the reconfiguration of the high-latitude ionospheric currents is found to occur about 3 min after the northward IMF encounters the magnetopause. The large-scale reconfiguration of currents, however, appears to evolve over a period of about 22 min. These observations and the results of numerical simulations indicate that the dayside polar-cap electric field observed during strong northward IMF is produced by a direct electrical current coupling with the solar wind.
ERIC Educational Resources Information Center
Yadiannur, Mitra; Supahar
2017-01-01
This research aims to determine the feasibility and effectivity of mobile learning based Worked Example in Electric Circuits (WEIEC) application in improving the high school students' electric circuits interpretation ability on Direct Current Circuits materials. The research method used was a combination of Four-D Models and ADDIE model. The…
High bandwidth magnetically isolated signal transmission circuit
NASA Technical Reports Server (NTRS)
Repp, John Donald (Inventor)
2005-01-01
Many current electronic systems incorporate expensive or sensitive electrical components. Because electrical energy is often generated or transmitted at high voltages, the power supplies to these electronic systems must be carefully designed. Power supply design must ensure that the electrical system being supplied with power is not exposed to excessive voltages or currents. In order to isolate power supplies from electrical equipment, many methods have been employed. These methods typically involve control systems or signal transfer methods. However, these methods are not always suitable because of their drawbacks. The present invention relates to transmitting information across an interface. More specifically, the present invention provides an apparatus for transmitting both AC and DC information across a high bandwidth magnetic interface with low distortion.
NASA Astrophysics Data System (ADS)
Kikuchi, T.; Hashimoto, K. K.; Ebihara, Y.; Tanaka, T.; Tomizawa, I.; Nagatsuma, T.
2016-12-01
The solar wind energy is transmitted to the low latitude ionosphere in a current circuit from a dynamo in the magnetosphere to the equatorial ionosphere via the polar ionosphere. During the substorm growth phase and storm main phase, the dawn-to-dusk convection electric field is intensified by the southward interplanetary magnetic field (IMF), driving the ionospheric DP2 currents composed of two-cell Hall current vortices in high latitudes and Pedersen currents amplified at the dayside equator (EEJ). The EEJ-Region-1 field-aligned current (R1 FAC) circuit is completed via the Pedersen currents in midlatitude. On the other hand, the shielding electric field and the Region-2 FACs develop in the inner magnetosphere, tending to cancel the convection electric field at the mid-equatorial latitudes. The shielding often causes overshielding when the convection electric field reduces substantially and the EEJ is overcome by the counter-electrojet (CEJ), leading to that even the quasi-periodic DP2 fluctuations are contributed by the overshielding. The overshielding develop significantly during substorms and storms, leading to that the mid and low latitude ionosphere is under strong influence of the overshielding as well as the convection electric fields. The electric fields on the day- and night-sides are in opposite direction to each other, but the electric fields in the evening are anomalously enhanced in the same direction as in the day. The evening anomaly is a unique feature of the electric potential distribution in the global ionosphere. DP2-type electric field and currents also develop during the transient/short-term geomagnetic disturbances like the geomagnetic sudden commencements (SC) and ULF pulsations, which appear simultaneously at high latitude and equator within the temporal resolution of 10 sec. Using the SC, we can confirm that the electric potential and currents are transmitted near-instantaneously to low latitude ionosphere on both the day- and night-sides, which is explained by means of the light speed propagation of the TM0 mode waves in the Earth-ionosphere waveguide.
Effects of direct current electric-field using ITO plate on breast cancer cell migration.
Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Seo, Hyok Jin; Koo, Min-Ah; You, Kyung Eun; Kim, Dohyun; Park, Jong-Chul
2014-01-01
Cell migration is an essential activity of the cells in various biological phenomena. The evidence that electrotaxis plays important roles in many physiological phenomena is accumulating. In electrotaxis, cells move with a directional tendency toward the anode or cathode under direct-current electric fields. Indium tin oxide, commonly referred to as ITO has high luminous transmittance, high infrared reflectance, good electrical conductivity, excellent substrate adherence, hardness and chemical inertness and hence, have been widely and intensively studied for many years. Because of these properties of ITO films, the electrotaxis using ITO plate was evaluated. Under the 0 V/cm condition, MDA-MB-231 migrated randomly in all directions. When 1 V/cm of dc EF was applied, cells moved toward anode. The y forward migration index was -0.046 ± 0.357 under the 0 V/cm and was 0.273 ± 0.231 under direct-current electric field of 1 V/cm. However, the migration speed of breast cancer cell was not affected by direct-current electric field using ITO plate. In this study, we designed a new electrotaxis system using an ITO coated glass and observed the migration of MDA-MB-231 on direct current electric-field of the ITO glass.
21 CFR 884.4150 - Bipolar endoscopic coagulator-cutter and accessories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... high frequency electrical current through tissue between two electrical contacts of a probe. This generic type of device may include the following accessories: an electrical generator, probes, and...
21 CFR 884.4150 - Bipolar endoscopic coagulator-cutter and accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... high frequency electrical current through tissue between two electrical contacts of a probe. This generic type of device may include the following accessories: an electrical generator, probes, and...
21 CFR 884.4150 - Bipolar endoscopic coagulator-cutter and accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... high frequency electrical current through tissue between two electrical contacts of a probe. This generic type of device may include the following accessories: an electrical generator, probes, and...
21 CFR 884.4150 - Bipolar endoscopic coagulator-cutter and accessories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... high frequency electrical current through tissue between two electrical contacts of a probe. This generic type of device may include the following accessories: an electrical generator, probes, and...
Electrical Evaluation of RCA MWS5001D Random Access Memory, Volume 5, Appendix D
NASA Technical Reports Server (NTRS)
Klute, A.
1979-01-01
The electrical characterization and qualification test results are presented for the RCA MWS 5001D random access memory. The tests included functional tests, AC and DC parametric tests, AC parametric worst-case pattern selection test, determination of worst-case transition for setup and hold times, and a series of schmoo plots. Average input high current, worst case input high current, output low current, and data setup time are some of the results presented.
NASA Technical Reports Server (NTRS)
Johnson, Dexter; Brown, Gerald V.
2005-01-01
Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.
Reverse current in solar flares
NASA Technical Reports Server (NTRS)
Knight, J. W.; Sturrock, P. A.
1977-01-01
We examine the proposal that impulsive X-ray bursts are produced by high-energy electrons streaming from the corona to the chromosphere. It is known that the currents associated with these streams are so high that either the streams do not exist or their current is neutralized by a reverse current. Analysis of a simple model in which the reverse current is stable indicates that the primary electron stream leads to the development of an electric field in the ambient corona which (a) decelerates the primary beam and (b) produces a neutralizing reverse current. It appears that, in some circumstances, this electric field could prevent the primary beam from reaching the chromosphere. In any case, the electric field acts as an energy exchange mechanism, extracting kinetic energy from the primary beam and using it to heat the ambient plasma. This heating is typically so rapid that it must be expected to have important dynamical consequences.
Analysis of Electric Vehicle DC High Current Conversion Technology
NASA Astrophysics Data System (ADS)
Yang, Jing; Bai, Jing-fen; Lin, Fan-tao; Lu, Da
2017-05-01
Based on the background of electric vehicles, it is elaborated the necessity about electric energy accurate metering of electric vehicle power batteries, and it is analyzed about the charging and discharging characteristics of power batteries. It is needed a DC large current converter to realize accurate calibration of power batteries electric energy metering. Several kinds of measuring methods are analyzed based on shunts and magnetic induction principle in detail. It is put forward power batteries charge and discharge calibration system principle, and it is simulated and analyzed ripple waves containing rate and harmonic waves containing rate of power batteries AC side and DC side. It is put forward suitable DC large current measurement methods of power batteries by comparing different measurement principles and it is looked forward the DC large current measurement techniques.
Improved Thermal-Switch Disks Protect Batteries
NASA Technical Reports Server (NTRS)
Darcy, Eric; Bragg, Bobby
1990-01-01
Improved thermal-switch disks help protect electrical batteries against high currents like those due to short circuits or high demands for power in circuits supplied by batteries. Protects batteries against excessive temperatures. Centered by insulating fiberglass washer. Contains conductive polymer that undergoes abrupt increase in electrical resistance when excessive current raises its temperature above specific point. After cooling, polymer reverts to low resistance. Disks reusable.
Low pressure spark gap triggered by an ion diode
Prono, Daniel S.
1985-01-01
Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.
Low-pressure spark gap triggered by an ion diode
Prono, D.S.
1982-08-31
Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.
Reverse Current in Solar Flares
NASA Technical Reports Server (NTRS)
Knight, J. W.; Sturrock, P. A.
1976-01-01
The theory that impulsive X ray bursts are produced by high energy electrons streaming from the corona to the chromosphere is investigated. Currents associated with these streams are so high that either the streams do not exist or their current is neutralized by a reverse current. Analysis of a simple model indicates that the primary electron stream leads to the development of an electric field in the ambient corona which decelerates the primary beam and produces a neutralizing reverse current. It appears that, in some circumstances, this electric field could prevent the primary beam from reaching the chromosphere. In any case, the electric field acts as an energy exchange mechanism, extracting kinetic energy from the primary beam and using it to heat the ambient plasma. This heating is typically so rapid that it must be expected to have important dynamical consequences.
Effects of electrode settings on chlorine generation efficiency of electrolyzing seawater.
Hsu, Guoo-Shyng Wang; Hsia, Chih-Wei; Hsu, Shun-Yao
2015-12-01
Electrolyzed water has significant disinfection effects, can comply with food safety regulations, and is environmental friendly. We investigated the effects of immersion depth of electrodes, stirring, electrode size, and electrode gap on the properties and chlorine generation efficiency of electrolyzing seawater and its storage stability. Results indicated that temperature and oxidation-reduction potential (ORP) of the seawater increased gradually, whereas electrical conductivity decreased steadily in electrolysis. During the electrolysis process, pH values and electric currents also decreased slightly within small ranges. Additional stirring or immersing the electrodes deep under the seawater significantly increased current density without affecting its electric efficiency and current efficiency. Decreasing electrode size or increasing electrode gap decreased chlorine production and electric current of the process without affecting its electric efficiency and current efficiency. Less than 35% of chlorine in the electrolyzed seawater was lost in a 3-week storage period. The decrement trend leveled off after the 1 st week of storage. The electrolyzing system is a convenient and economical method for producing high-chlorine seawater, which will have high potential applications in agriculture, aquaculture, or food processing. Copyright © 2015. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Ishii, M.; Sugiura, M.; Iyemori, T.; Slavin, J. A.
1992-01-01
The satellite-observed high correlations between magnetic and electric field perturbations in the high-latitude field-aligned current regions are investigated by examining the dependence of the relationship between Delta-B and E on spatial scale, using the electric and magnetic field data obtained by DE 2 in the polar regions. The results are compared with the Pedersen conductivity inferred from the international reference ionosphere model and the Alfven wave velocity calculated from the in situ ion density and magnetic field measurements.
High voltage and high current density vertical GaN power diodes
Fischer, A. J.; Dickerson, J. R.; Armstrong, A. M.; ...
2016-01-01
We report on the realization of a GaN high voltage vertical p-n diode operating at > 3.9 kV breakdown with a specific on-resistance < 0.9 mΩ.cm 2. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density > 1.4 kA/cm 2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. Furthermore this suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.
Lee, Won Hee; Lisanby, Sarah H; Laine, Andrew F; Peterchev, Angel V
2013-01-01
This study examines the characteristics of the electric field induced in the brain by electroconvulsive therapy (ECT) with individualized current amplitude. The electric field induced by bilateral (BL), bifrontal (BF), right unilateral (RUL), and frontomedial (FM) ECT electrode configurations was computed in anatomically realistic finite element models of four nonhuman primates (NHPs). We generated maps of the electric field strength relative to an empirical neural activation threshold, and determined the stimulation strength and focality at fixed current amplitude and at individualized current amplitudes corresponding to seizure threshold (ST) measured in the anesthetized NHPs. The results show less variation in brain volume stimulated above threshold with individualized current amplitudes (16-36%) compared to fixed current amplitude (30-62%). Further, the stimulated brain volume at amplitude-titrated ST is substantially lower than that for ECT with conventional fixed current amplitudes. Thus individualizing the ECT stimulus current could compensate for individual anatomical variability and result in more focal and uniform electric field exposure across different subjects compared to the standard clinical practice of using high, fixed current for all patients.
NASA Technical Reports Server (NTRS)
Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.
2017-01-01
The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.
Rajfur, Joanna; Pasternok, Małgorzata; Rajfur, Katarzyna; Walewicz, Karolina; Fras, Beata; Bolach, Bartosz; Dymarek, Robert; Rosinczuk, Joanna; Halski, Tomasz; Taradaj, Jakub
2017-01-07
BACKGROUND In the currently available research publications on electrical therapy of low back pain, generally no control groups or detailed randomization were used, and such studies were often conducted with relatively small groups of patients, based solely on subjective questionnaires and pain assessment scales (lacking measurement methods to objectify the therapeutic progress). The available literature also lacks a comprehensive and large-scale clinical study. The purpose of this study was to assess the effects of treating low back pain using selected electrotherapy methods. The study assesses the influence of individual electrotherapeutic treatments on reduction of pain, improvement of the range of movement in lower section of the spine, and improvement of motor functions and mobility. MATERIAL AND METHODS The 127 patients qualified for the therapy (ultimately, 123 patients completed the study) and assigned to 6 comparison groups: A - conventional TENS, B - acupuncture-like TENS, C - high-voltage electrical stimulation, D - interferential current stimulation, E - diadynamic current, and F - control group. RESULTS The research showed that using electrical stimulation with interferential current penetrating deeper into the tissues results in a significant and more efficient elimination of pain, and an improvement of functional ability of patients suffering from low back pain on the basis of an analysis of both subjective and objective parameters. The TENS currents and high voltage were helpful, but not as effective. The use of diadynamic currents appears to be useless. CONCLUSIONS Selected electrical therapies (interferential current, TENS, and high voltage) appear to be effective in treating chronic low back pain.
Rajfur, Joanna; Pasternok, Małgorzata; Rajfur, Katarzyna; Walewicz, Karolina; Fras, Beata; Bolach, Bartosz; Dymarek, Robert; Rosinczuk, Joanna; Halski, Tomasz; Taradaj, Jakub
2017-01-01
Background In the currently available research publications on electrical therapy of low back pain, generally no control groups or detailed randomization were used, and such studies were often conducted with relatively small groups of patients, based solely on subjective questionnaires and pain assessment scales (lacking measurement methods to objectify the therapeutic progress). The available literature also lacks a comprehensive and large-scale clinical study. The purpose of this study was to assess the effects of treating low back pain using selected electrotherapy methods. The study assesses the influence of individual electrotherapeutic treatments on reduction of pain, improvement of the range of movement in lower section of the spine, and improvement of motor functions and mobility. Material/Methods The 127 patients qualified for the therapy (ultimately, 123 patients completed the study) and assigned to 6 comparison groups: A – conventional TENS, B – acupuncture-like TENS, C – high-voltage electrical stimulation, D – interferential current stimulation, E – diadynamic current, and F – control group. Results The research showed that using electrical stimulation with interferential current penetrating deeper into the tissues results in a significant and more efficient elimination of pain, and an improvement of functional ability of patients suffering from low back pain on the basis of an analysis of both subjective and objective parameters. The TENS currents and high voltage were helpful, but not as effective. The use of diadynamic currents appears to be useless. Conclusions Selected electrical therapies (interferential current, TENS, and high voltage) appear to be effective in treating chronic low back pain. PMID:28062862
Kameda, Takashi; Ohkuma, Kazuo; Oda, Hirotake; Sano, Natsuki; Batbayar, Nomintsetseg; Terashima, Yukari; Sato, Soh; Terada, Kazuto
2013-01-01
Electric toothbrushes are widely used, and their electric motors have been reported to produce low-frequency electromagnetic fields that induced electric currents in metallic objects worn by the users. In this study, we showed that electric toothbrushes generated low-frequency magnetic fields (MFs) and induced electric currents in orthodontic appliances in artificial saliva (AS), which accelerated corrosion in stainless steel (SUS) appliances, but not in titanium (Ti) appliances; the corrosion was evaluated by using an inductively coupled plasma-optical emission spectrometer and a three-dimensional laser confocal microscope. The pH of AS used for appliance immersion did not change during or after MF exposure. These results suggested that MF-induced currents from electric toothbrushes could erode SUS appliances, but not Ti appliances, because of their high corrosion potentials. Further studies are required to clarify the mechanisms of metallic corrosion by induced currents in dental fields, which may trigger metal allergies in patients.
Synthesis of zirconium oxynitride in air under DC electric fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morisaki, Nobuhiro; Tokunaga, Tomoharu; Sasaki, Katsuhiro
We synthesized zirconium oxynitride from yttria-stabilized zirconia (YSZ) in air by applying DC electric fields that produced a controlled electric current in the specimen. When YSZ was heated under an applied DC electric field, the electric current of the specimen steeply increased at a critical temperature, called a flash event, during flash sintering. By keeping the electric current of the specimen constant during the flash event and then holding the specimen at the critical temperature, YSZ was transformed into zirconium oxynitride under the optimal conditions of 50 V/cm, 500 mA, and 1000 °C. We confirmed that zirconium oxynitride formed using high-resolution transmission electronmore » microscopy, electron energy-loss spectroscopy, and energy-dispersive spectrometry. To convert oxides to nitrides, reducing conditions are necessary to form excess oxygen vacancies. Our technique produced the strong reducing conditions necessary to form nitrides from the oxides by delivering a controlled electric current to the specimen.« less
NASA Astrophysics Data System (ADS)
Haller, Julian; Wilkens, Volker
2012-11-01
For power levels up to 200 W and sonication times up to 60 s, the electrical power, the voltage and the electrical impedance (more exactly: the ratio of RMS voltage and RMS current) have been measured for a piezocomposite high intensity therapeutic ultrasound (HITU) transducer with integrated matching network, two piezoceramic HITU transducers with external matching networks and for a passive dummy 50 Ω load. The electrical power and the voltage were measured during high power application with an inline power meter and an RMS voltage meter, respectively, and the complex electrical impedance was indirectly measured with a current probe, a 100:1 voltage probe and a digital scope. The results clearly show that the input RMS voltage and the input RMS power change unequally during the application. Hence, the indication of only the electrical input power or only the voltage as the input parameter may not be sufficient for reliable characterizations of ultrasound transducers for high power applications in some cases.
NASA Astrophysics Data System (ADS)
Averbukh, M. A.; Prasol, D. A.
2018-03-01
The article elucidates the influence of high-power nonlinear consumers on electric energy losses in a mining high-voltage power line. The object of the study was a fragment of a power supply system of a mining enterprise with hoists. The investigation has assessed the electric energy losses conditioned by nonsinusoidal currents and voltages of the power line over a single hoist operation cycle. Also, the total electric energy losses in a high-voltage power line of a mining enterprise was calculated. The energy losses due to nonsinusoidal currents and voltages over single operation cycle of the cage hoist amount to 36.358 kWh. The presence of such losses increases total technological power and energy losses in the mining high-voltage power line by approximately 5-15%. The total energy losses in the components of the mining enterprise high-voltage power line caused by nonsinusoidal voltage are significant and lead to additional expenses of the company.
Students conception and perception of simple electrical circuit
NASA Astrophysics Data System (ADS)
Setyani, ND; Suparmi; Sarwanto; Handhika, J.
2017-11-01
This research aims to describe the profile of the students’ conception and perception on the simple electrical circuit. The results of this research suppose to be used as a reference by teachers to use learning models or strategies to improve understanding the physics concept. The research method used is descriptive qualitative. Research subjects are the students of physics education program, Universitas Sebelas Maret, Surakarta, Indonesia (49 students). The results showed that students have alternative conceptions. Their conceptions are (1) a high-voltage wire has an electric current and can cause electric shock, (2) the potential difference and the value of resistance used in a circuit is influenced by electric current, (3) the value of resistance of a lamp is proportional to the filament thickness, (4) the amount of electric current that coming out from the positive pole battery is the same for all type of circuit, in series or parallel (battery is constant current sources), (5) the current at any resistor in the series circuit is influenced by the resistor used, (6) the resistor consume the current through it. This incorrect conception can cause misconceptions.
Estimates of olivine-basaltic melt electrical conductivity using a digital rock physics approach
NASA Astrophysics Data System (ADS)
Miller, Kevin J.; Montési, Laurent G. J.; Zhu, Wen-lu
2015-12-01
Estimates of melt content beneath fast-spreading mid-ocean ridges inferred from magnetotelluric tomography (MT) vary between 0.01 and 0.10. Much of this variation may stem from a lack of understanding of how the grain-scale melt geometry influences the bulk electrical conductivity of a partially molten rock, especially at low melt fraction. We compute bulk electrical conductivity of olivine-basalt aggregates over 0.02 to 0.20 melt fraction by simulating electric current in experimentally obtained partially molten geometries. Olivine-basalt aggregates were synthesized by hot-pressing San Carlos olivine and high-alumina basalt in a solid-medium piston-cylinder apparatus. Run conditions for experimental charges were 1.5 GPa and 1350 °C. Upon completion, charges were quenched and cored. Samples were imaged using synchrotron X-ray micro-computed tomography (μ-CT). The resulting high-resolution, 3-dimensional (3-D) image of the melt distribution constitutes a digital rock sample, on which numerical simulations were conducted to estimate material properties. To compute bulk electrical conductivity, we simulated a direct current measurement by solving the current continuity equation, assuming electrical conductivities for olivine and melt. An application of Ohm's Law yields the bulk electrical conductivity of the partially molten region. The bulk electrical conductivity values for nominally dry materials follow a power-law relationship σbulk = Cσmeltϕm with fit parameters m = 1.3 ± 0.3 and C = 0.66 ± 0.06. Laminar fluid flow simulations were conducted on the same partially molten geometries to obtain permeability, and the respective pathways for electrical current and fluid flow over the same melt geometry were compared. Our results indicate that the pathways for flow fluid are different from those for electric current. Electrical tortuosity is lower than fluid flow tortuosity. The simulation results are compared to existing experimental data, and the potential influence of volatiles and melt films on electrical conductivity of partially molten rocks is discussed.
Fuse Selection for the Two-Stage Explosive Type Switches
NASA Astrophysics Data System (ADS)
Muravlev, I. O.; Surkov, M. A.; Tarasov, E. V.; Uvarov, N. F.
2017-04-01
In the two-level explosive switch destruction of a delay happens in the form of electric explosion. Criteria of similarity of electric explosion in transformer oil are defined. The challenge of protecting the power electrical equipment from short circuit currents is still urgent, especially with the growth of unit capacity. Is required to reduce the tripping time as much as possible, and limit the amplitude of the fault current, that is very important for saving of working capacity of life-support systems. This is particularly important when operating in remote stand-alone power supply systems with a high share of renewable energy, working through the inverter transducers, as well as inverter-type diesel generators. The explosive breakers copes well with these requirements. High-speed flow of transformer oil and high pressure provides formation rate of a contact gap of 20 - 100 m/s. In these conditions there is as a rapid increase in voltage on the discontinuity, and recovery of electric strength (Ures) after current interruption.
Electrical method and apparatus for impelling the extruded ejection of high-velocity material jets
Weingart, Richard C.
1989-01-01
A method and apparatus (10, 40) for producing high-velocity material jets provided. An electric current pulse generator (14, 42) is attached to an end of a coaxial two-conductor transmission line (16, 44) having an outer cylindrical conductor (18), an inner cylindrical conductor (20), and a solid plastic or ceramic insulator (21) therebetween. A coxial, thin-walled metal structure (22, 30) is conductively joined to the two conductors (18, 20) of the transmission line (16, 44). An electrical current pulse applies magnetic pressure to and possibly explosively vaporizes metal structure (22), thereby collapsing it and impelling the extruded ejection of a high-velocity material jet therefrom. The jet is comprised of the metal of the structure (22), together with the material that comprises any covering layers (32, 34) disposed on the structure. An electric current pulse generator of the explosively driven magnetic flux compression type or variety (42) may be advantageously used in the practice of this invention.
NASA Technical Reports Server (NTRS)
Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.; Liu, X. P.
1987-01-01
Techniques to identify sources of electric current systems and their channels of flow in solar active regions are explored. Measured photospheric vector magnetic fields together with high-resolution white-light and H-alpha filtergrams provide the data base to derive the current systems in the photosphere and chromosphere. As an example, the techniques are then applied to infer current systems in AR 2372 in early April 1980.
Velasco-Alvarez, Nancy; Gutiérrez-Rojas, Mariano; González, Ignacio
2017-12-01
The effects of electric current on membranes associated with metabolism modifications in Aspergillus brasiliensis (niger) ATCC 9642 were studied. A 450-mL electrochemical cell with titanium ruthenium-oxide coated electrodes and packed with 15g of perlite, as inert support, was inoculated with A. brasiliensis spores and incubated in a solid inert-substrate culture (12 d; 30°C). Then, 4.5days after starting the culture, a current of 0.42mAcm -2 was applied for 24h. The application of low-intensity electric current increased the molecular oxygen consumption rate in the mitochondrial respiratory chain, resulting in high concentrations of reactive oxygen species, promoting high lipoperoxidation levels, according to measured malondialdehyde, and consequent alterations in membrane permeability explained the high n-hexadecane (HXD) degradation rates observed here (4.7-fold higher than cultures without current). Finally, cell differentiation and spore production were strongly stimulated. The study contributes to the understanding of the effect of current on the cell membrane and its association with HXD metabolism. Copyright © 2017. Published by Elsevier B.V.
Method for manufacturing high quality carbon nanotubes
NASA Technical Reports Server (NTRS)
Benavides, Jeanette M. (Inventor)
2006-01-01
A non-catalytic process for the production of carbon nanotubes includes supplying an electric current to a carbon anode and a carbon cathode which have been securely positioned in the open atmosphere with a gap between them. The electric current creates an electric arc between the carbon anode and the carbon cathode, which causes carbon to be vaporized from the carbon anode and a carbonaceous residue to be deposited on the carbon cathode. Inert gas is pumped into the gap to flush out oxygen, thereby preventing interference with the vaporization of carbon from the anode and preventing oxidation of the carbonaceous residue being deposited on the cathode. The anode and cathode are cooled while electric current is being supplied thereto. When the supply of electric current is terminated, the carbonaceous residue is removed from the cathode and is purified to yield carbon nanotubes.
Su, Hong-Lin; Chiang, Chien-Yi; Lu, Zong-Han; Cheng, Fu-Chou; Chen, Chun-Jung; Sheu, Meei-Ling; Sheehan, Jason; Pan, Hung-Chuan
2018-06-25
High-frequency transcutaneous neuromuscular electrical nerve stimulation (TENS) is currently used for the administration of electrical current in denervated muscle to alleviate muscle atrophy and enhance motor function; however, the time window (i.e. either immediate or delayed) for achieving benefit is still undetermined. In this study, we conducted an intervention of sciatic nerve crush injury using high-frequency TENS at different time points to assess the effect of motor and sensory functional recovery. Animals with left sciatic nerve crush injury received TENS treatment starting immediately after injury or 1 week later at a high frequency(100 Hz) or at a low frequency (2 Hz) as a control. In SFI gait analysis, either immediate or late admission of high-frequency electrical stimulation exerted significant improvement compared to either immediate or late administration of low-frequency electrical stimulation. In an assessment of allodynia, immediate high frequency electrical stimulation caused a significantly decreased pain threshold compared to late high-frequency or low-frequency stimulation at immediate or late time points. Immunohistochemistry staining and western blot analysis of S-100 and NF-200 demonstrated that both immediate and late high frequency electrical stimulation showed a similar effect; however the effect was superior to that achieved with low frequency stimulation. Immediate high frequency electrical stimulation resulted in significant expression of TNF-α and synaptophysin in the dorsal root ganglion, somatosensory cortex, and hippocampus compared to late electrical stimulation, and this trend paralleled the observed effect on somatosensory evoked potential. The CatWalk gait analysis also showed that immediate electrical stimulation led to a significantly high regularity index. In primary dorsal root ganglion cells culture, high-frequency electrical stimulation also exerted a significant increase in expression of TNF-α, synaptophysin, and NGF in accordance with the in vivo results. Immediate or late transcutaneous high-frequency electrical stimulation exhibited the potential to stimulate the motor nerve regeneration. However, immediate electrical stimulation had a predilection to develop neuropathic pain. A delay in TENS initiation appears to be a reasonable approach for nerve repair and provides the appropriate time profile for its clinical application.
NASA Technical Reports Server (NTRS)
Wolf, R. A.; Kamide, Y.
1983-01-01
Advanced techniques considered by Kamide et al. (1981) seem to have the potential for providing observation-based high time resolution pictures of the global ionospheric current and electric field patterns for interesting events. However, a reliance on the proposed magnetogram-inversion schemes for the deduction of global ionospheric current and electric field patterns requires proof that reliable results are obtained. 'Theoretical' tests of the accuracy of the magnetogram inversion schemes have, therefore, been considered. The present investigation is concerned with a test, involving the developed KRM algorithm and the Rice Convection Model (RCM). The test was successful in the sense that there was overall agreement between electric fields and currents calculated by the RCM and KRM schemes.
Ultra-High Intensity Magnetic Field Generation in Dense Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisch, Nathaniel J.
2014-01-08
The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereas the efficient generation of electric current in low-energy-density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-energy-density plasma the ideas for steady-state current drive developed for low-energy-density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-energy-density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new formsmore » of current drive in regimes appropriate for new fusion concepts.« less
High tension electrical injury from a telephone receiver.
Thomas, P C; Kumar, P
2001-08-01
A high tension (13000 V) electrical injury to a young man from telephone receiver is described. The current entered the telephone circuit due to contact with a high tension live wire running close to the telephone wire 2 km away from the site of incidence.
Conduction of Electrical Current to and Through the Human Body: A Review
Fish, Raymond M.; Geddes, Leslie A.
2009-01-01
Objective: The objective of this article is to explain ways in which electric current is conducted to and through the human body and how this influences the nature of injuries. Methods: This multidisciplinary topic is explained by first reviewing electrical and pathophysiological principles. There are discussions of how electric current is conducted through the body via air, water, earth, and man-made conductive materials. There are also discussions of skin resistance (impedance), internal body resistance, current path through the body, the let-go phenomenon, skin breakdown, electrical stimulation of skeletal muscles and nerves, cardiac dysrhythmias and arrest, and electric shock drowning. After the review of basic principles, a number of clinically relevant examples of accident mechanisms and their medical effects are discussed. Topics related to high-voltage burns include ground faults, ground potential gradient, step and touch potentials, arcs, and lightning. Results: The practicing physician will have a better understanding of electrical mechanisms of injury and their expected clinical effects. Conclusions: There are a variety of types of electrical contact, each with important characteristics. Understanding how electric current reaches and travels through the body can help the clinician understand how and why specific accidents occur and what medical and surgical problems may be expected. PMID:19907637
Pulse-Width-Modulating Driver for Brushless dc Motor
NASA Technical Reports Server (NTRS)
Salomon, Phil M.
1991-01-01
High-current pulse-width-modulating driver for brushless dc motor features optical coupling of timing signals from low-current control circuitry to high-current motor-driving circuitry. Provides high electrical isolation of motor-power supply, helping to prevent fast, high-current motor-driving pulses from being coupled through power supplies into control circuitry, where they interfere with low-current control signals.
Visualization of Electrical Field of Electrode Using Voltage-Controlled Fluorescence Release
Jia, Wenyan; Wu, Jiamin; Gao, Di; Wang, Hao; Sun, Mingui
2016-01-01
In this study we propose an approach to directly visualize electrical current distribution at the electrode-electrolyte interface of a biopotential electrode. High-speed fluorescent microscopic images are acquired when an electric potential is applied across the interface to trigger the release of fluorescent material from the surface of the electrode. These images are analyzed computationally to obtain the distribution of the electric field from the fluorescent intensity of each pixel. Our approach allows direct observation of microscopic electrical current distribution around the electrode. Experiments are conducted to validate the feasibility of the fluorescent imaging method. PMID:27253615
Kroll, Mark W; Panescu, Dorin; Hinz, Andrew F; Lakkireddy, Dhanunjaya
2010-01-01
It has been long recognized that there are 2 methods for inducing VF (ventricular fibrillation) with electrical currents‥ These are: (1) delivering a high-charge shock into the cardiac T-wave, and (2) delivering lower level currents for 1-5 seconds. Present electrical safety standards are based on this understanding. We present new data showing a 3(rd) mechanism of inducing VF which involves the steps of delivering sufficient current to cause high-rate cardiac capture, causing cardiac output collapse, leading to ischemia, for sufficiently long duration, which then lowers the VFT (VF threshold) to the level of the current, which finally results in VF. This requires about 40% of the normal VF-induction current but requires a duration of minutes instead of seconds for the VF to be induced. Anesthetized and ventilated swine (n=6) had current delivered from a probe tip 10 mm from the epicardium sufficient to cause hypotensive capture but not directly induce VF within 5 s. After a median time of 90 s, VF was induced. This 3(rd) mechanism of VF induction should be studied further and considered for electrical safety standards and is relevant to long-duration TASER Electronic Control Device applications.
Ultrastrong Graphene-Copper Core-Shell Wires for High-Performance Electrical Cables.
Kim, Sang Jin; Shin, Dong Heon; Choi, Yong Seok; Rho, Hokyun; Park, Min; Moon, Byung Joon; Kim, Youngsoo; Lee, Seuoung-Ki; Lee, Dong Su; Kim, Tae-Wook; Lee, Sang Hyun; Kim, Keun Soo; Hong, Byung Hee; Bae, Sukang
2018-03-27
Recent development in mobile electronic devices and electric vehicles requires electrical wires with reduced weight as well as enhanced stability. In addition, since electric energy is mostly generated from power plants located far from its consuming places, mechanically stronger and higher electric power transmission cables are strongly demanded. However, there has been no alternative materials that can practically replace copper materials. Here, we report a method to prepare ultrastrong graphene fibers (GFs)-Cu core-shell wires with significantly enhanced electrical and mechanical properties. The core GFs are synthesized by chemical vapor deposition, followed by electroplating of Cu shells, where the large surface area of GFs in contact with Cu maximizes the mechanical toughness of the core-shell wires. At the same time, the unique electrical and thermal characteristics of graphene allow a ∼10 times higher current density limit, providing more efficient and reliable delivery of electrical energies through the GFs-Cu wires. We believe that our results would be useful to overcome the current limit in electrical wires and cables for lightweight, energy-saving, and high-power applications.
Fast chirality reversal of the magnetic vortex by electric current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, W. L., E-mail: wlimnd@gmail.com; Liu, R. H.; Urazhdin, S., E-mail: sergei.urazhdin@emory.edu
2014-12-01
The possibility of high-density information encoding in magnetic materials by topologically stable inhomogeneous magnetization configurations such as domain walls, skyrmions, and vortices has motivated intense research into mechanisms enabling their control and detection. While the uniform magnetization states can be efficiently controlled by electric current using magnetic multilayer structures, this approach has proven much more difficult to implement for inhomogeneous states. Here, we report direct observation of fast reversal of magnetic vortex by electric current in a simple planar structure based on a bilayer of spin Hall material Pt with a single microscopic ferromagnetic disk contacted by asymmetric electrodes. Themore » reversal is enabled by a combination of the chiral Oersted field and spin current generated by the nonuniform current distribution in Pt. Our results provide a route for the efficient control of inhomogeneous magnetization configurations by electric current.« less
16 CFR 1204.4 - Electric shock protection tests.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Electric shock protection tests. 1204.4... Electric shock protection tests. (a) Safety precautions. For tests involving high voltage, the following... Effectiveness Test or the Antenna-Mast System Test if no electrical breakdown occurs and if no current reading...
16 CFR 1204.4 - Electric shock protection tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Electric shock protection tests. 1204.4... Electric shock protection tests. (a) Safety precautions. For tests involving high voltage, the following... Effectiveness Test or the Antenna-Mast System Test if no electrical breakdown occurs and if no current reading...
16 CFR 1204.4 - Electric shock protection tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Electric shock protection tests. 1204.4... Electric shock protection tests. (a) Safety precautions. For tests involving high voltage, the following... Effectiveness Test or the Antenna-Mast System Test if no electrical breakdown occurs and if no current reading...
NASA Astrophysics Data System (ADS)
Lee, Dae-Dong; Kang, Hyun-Il; Shim, Jae-Myung
2015-09-01
Electric brake systems are used in high-speed trains to brake trains by converting the kinetic energy of a railway vehicle to electric energy. The electric brake system consists of a regenerative braking system and a dynamic braking system. When the electric energy generated during the dynamic braking process is changed to heat through the braking resistor, the braking resistor can overheat; thus, failures can occur to the motor block. In this paper, a braking resistor for a high-speed train was used to perform thermal analyses and tests, and the results were analyzed. The analyzed data were used to estimate the dependence of the brake currents and the temperature rises on speed changes up to 300 km/h, at which a test could not be performed.
Field-aligned currents and large-scale magnetospheric electric fields
NASA Technical Reports Server (NTRS)
Dangelo, N.
1979-01-01
The existence of field-aligned currents (FAC) at northern and southern high latitudes was confirmed by a number of observations, most clearly by experiments on the TRIAD and ISIS 2 satellites. The high-latitude FAC system is used to relate what is presently known about the large-scale pattern of high-latitude ionospheric electric fields and their relation to solar wind parameters. Recently a simplified model was presented for polar cap electric fields. The model is of considerable help in visualizing the large-scale features of FAC systems. A summary of the FAC observations is given. The simplified model is used to visualize how the FAC systems are driven by their generators.
Estimation of electric fields and current from ground-based magnetometer data
NASA Technical Reports Server (NTRS)
Kamide, Y.; Richmond, A. D.
1984-01-01
Recent advances in numerical algorithms for estimating ionospheric electric fields and currents from groundbased magnetometer data are reviewed and evaluated. Tests of the adequacy of one such algorithm in reproducing large-scale patterns of electrodynamic parameters in the high-latitude ionosphere have yielded generally positive results, at least for some simple cases. Some encouraging advances in producing realistic conductivity models, which are a critical input, are pointed out. When the algorithms are applied to extensive data sets, such as the ones from meridian chain magnetometer networks during the IMS, together with refined conductivity models, unique information on instantaneous electric field and current patterns can be obtained. Examples of electric potentials, ionospheric currents, field-aligned currents, and Joule heating distributions derived from ground magnetic data are presented. Possible directions for future improvements are also pointed out.
The evolutionary development of high specific impulse electric thruster technology
NASA Technical Reports Server (NTRS)
Sovey, James S.; Hamley, John A.; Patterson, Michael J.; Rawlin, Vincent K.; Myers, Roger M.
1992-01-01
Electric propulsion flight and technology demonstrations conducted in the USA, Europe, Japan, China, and USSR are reviewed with reference to the major flight qualified electric propulsion systems. These include resistojets, ion thrusters, ablative pulsed plasma thrusters, stationary plasma thrusters, pulsed magnetoplasmic thrusters, and arcjets. Evolutionary mission applications are presented for high specific impulse electric thruster systems. The current status of arcjet, ion, and magnetoplasmadynamic thrusters and their associated power processor technologies are summarized.
Field-aligned currents and large scale magnetospheric electric fields
NASA Technical Reports Server (NTRS)
Dangelo, N.
1980-01-01
D'Angelo's model of polar cap electric fields (1977) was used to visualize how high-latitude field-aligned currents are driven by the solar wind generator. The region 1 and region 2 currents of Iijima and Potemra (1976) and the cusp field-aligned currents of Wilhjelm et al. (1978) and McDiarmid et al. (1978) are apparently driven by different generators, although in both cases the solar wind is their ultimate source.
NASA Astrophysics Data System (ADS)
Hart, Robert James
2011-12-01
The use of composite materials in aerospace, electronics, and wind industries has become increasingly common, and these composite components are required to carry mechanical, electrical, and thermal loads simultaneously. A unique property of carbon fiber composites is that when an electric current is applied to the specimen, the mechanical strength of the specimen increases. Previous studies have shown that the higher the electric current, the greater the increase in impact strength. However, as current passes through the composite, heat is generated through Joule heating. This Joule heating can cause degradation of the composite and thus a loss in strength. In order to minimize the negative effects of heating, it is desired to apply a very high current for a very short duration of time. This thesis investigated the material responses of carbon fiber composite plates subjected to electrical current pulse loads of up to 1700 Amps. For 32 ply unidirectional IM7/977-3 specimens, the peak impact load and absorbed energy increased slightly with the addition of a current pulse at the time of an impact event. In 16 ply cross-ply IM7/977-2 specimens, the addition of the current pulse caused detrimental effects due to electrical arcing at the interface between the composite and electrodes. Further refinement of the experimental setup should minimize the risk of electrical arcing and should better elucidate the effects of a current pulse on the impact strength of the specimens.
NASA Astrophysics Data System (ADS)
Shibkov, A. A.; Denisov, A. A.; Zheltov, M. A.; Zolotov, A. E.; Gasanov, M. F.; Ivolgin, V. I.
2015-06-01
The effect of direct electric current on the serrated deformation of the aluminum-magnesium alloy 5056 has been studied using the acoustic emission method and high-speed video filming of propagating deformation bands. The phenomenon of the electric current-induced suppression of low-frequency acoustic emission signals has been revealed in the range of 1 Hz-2 kHz, which is connected with the development of Portevin-Le Chatelier deformation bands. The characteristic times of damping and growth of plastic instabilities and acoustic signals caused by them after current turn-on and turn-off, respectively, have been estimated.
Field-aligned current sources in the high-latitude ionosphere
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1979-01-01
The paper determines the electric potential in a plane which is fed current from a pair of field-aligned current sheets. The ionospheric conductivity is modelled as a constant with an enhanced conductivity annular ring. It is shown that field-aligned current distributions are arbitrary functions of azimuth angle (MLT) and thus allow for asymmetric potential configurations over the pole cap. In addition, ionospheric surface currents are computed by means of stream functions. Finally, the discussion relates these methods to the electrical characteristics of the magnetosphere.
Second-Generation High-Temperature Superconductor Wires for the Electric Power Grid
NASA Astrophysics Data System (ADS)
Malozemoff, A. P.
2012-08-01
Superconductors offer major advantages for the electric power grid, including high current and power capacity, high efficiency arising from the lossless current flow, and a unique current-limiting functionality arising from a superconductor-to-resistive transition. These advantages can be brought to bear on equipment such as underground power cables, fault current limiters, rotating machinery, transformers, and energy storage. The first round of significant commercial-scale superconductor power-equipment demonstrations, carried out during the past decade, relied on a first-generation high-temperature superconductor (HTS) wire. However, during the past few years, with the recent commercial availability of high-performance second-generation HTS wires, power-equipment demonstrations have increasingly been carried out with these new wires, which bring important advantages. The foundation is being laid for commercial expansion of this important technology into the power grid.
[Extensive injuries due to high-tension electrical current].
Tomásek, D; Königová, R; Snupárek, Z
1989-03-01
The authors submit a case of severe injury with high tension electric current. They emphasize the necessity of prevention of this injury which occurs most frequently when transformer stations are not adequately safeguarded, in case of inadequate protection when approaching trolley wires on the railway track, and when safety principles are not respected during work on the railway. The authors draw attention to the importance of immediate resuscitation and multidisciplinary comprehensive care.
NASA Technical Reports Server (NTRS)
Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.
2016-01-01
The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid-electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid-electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of AC and DC for power transmission. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power generation, transmission, and distribution systems, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of dual-fed induction machines, which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the project along with the system architecture, development status and preliminary results.
Design of Ultra-High-Power-Density Machine Optimized for Future Aircraft
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.
2004-01-01
The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.
16 CFR § 1204.4 - Electric shock protection tests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Electric shock protection tests. § 1204.4... Electric shock protection tests. (a) Safety precautions. For tests involving high voltage, the following... Effectiveness Test or the Antenna-Mast System Test if no electrical breakdown occurs and if no current reading...
Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian
2016-01-01
We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices. PMID:27502844
NASA Astrophysics Data System (ADS)
Boughariou, F.; Chouikhi, S.; Kallel, A.; Belgaroui, E.
2015-12-01
In this paper, we present a new theoretical and numerical formulation for the electrical and thermal breakdown phenomena, induced by charge packet dynamics, in low-density polyethylene (LDPE) insulating film under dc high applied field. The theoretical physical formulation is composed by the equations of bipolar charge transport as well as by the thermo-electric coupled equation associated for the first time in modeling to the bipolar transport problem. This coupled equation is resolved by the finite-element numerical model. For the first time, all bipolar transport results are obtained under non-uniform temperature distributions in the sample bulk. The principal original results show the occurring of very sudden abrupt increase in local temperature associated to a very sharp increase in external and conduction current densities appearing during the steady state. The coupling between these electrical and thermal instabilities reflects physically the local coupling between electrical conduction and thermal joule effect. The results of non-uniform temperature distributions induced by non-uniform electrical conduction current are also presented for several times. According to our formulation, the strong injection current is the principal factor of the electrical and thermal breakdown of polymer insulating material. This result is shown in this work. Our formulation is also validated experimentally.
NASA Astrophysics Data System (ADS)
Kanti Bera, Tushar
2018-03-01
Biological tissues are developed with biological cells which exhibit complex electrical impedance called electrical bioimpedance. Under an alternating electrical excitation the bioimpedance varies with the tissue anatomy, composition and the signal frequency. The current penetration and conduction paths vary with frequency of the applied signal. Bioimpedance spectroscopy is used to study the frequency response of the electrical impedance of biological materials noninvasively. In bioimpedance spectroscopy, a low amplitude electrical signal is injected to the tissue sample or body parts to characterization the sample in terms of its bioimpedance. The electrical current conduction phenomena, which is highly influenced by the tissue impedance and the signal frequency, is an important phenomena which should be studied to understand the bioimpedance techniques like bioelectrical impedance analysis (BIA), EIS, or else. In this paper the origin of bioelectrical impedance and current conduction phenomena has been reviewed to present a brief summary of bioelectrical impedance and the frequency dependent current conduction through biological tissues. Simulation studies are conducted with alternation current injection through a two dimensional model of biological tissues containing finite number of biological cells suspended in extracellular fluid. The paper demonstrates the simulation of alternating current conduction through biological tissues conducted by COMSOL Multiphysics. Simulation studies also show the frequency response of the tissue impedance for different tissue compositions.
NASA Astrophysics Data System (ADS)
Cartwright-Taylor, A. L.; Sammonds, P. R.; Vallianatos, F.
2016-12-01
We recorded spontaneous electric current flow in non-piezoelectric Carrara marble samples during triaxial deformation. Mechanical data, ultrasonic velocities and acoustic emissions were acquired simultaneously with electric current to constrain the relationship between electric current flow, differential stress and damage. Under strain-controlled loading, spontaneous electric current signals (nA) were generated and sustained under all conditions tested. In dry samples, a detectable electric current arises only during dilatancy and is correlated with the damage induced by microcracking. Signal variations with confining pressure correspond to microcrack suppression, while variations with strain rate are associated with time-dependent differences in deformation mechanism across the brittle to semi-brittle transition. In the brittle regime, the signal exhibits a precursory change as damage localises and the stress drop accelerates towards failure. This change is particularly distinct at dynamic strain rates. Similar changes are seen in the semi-brittle regime although the signal is more oscillatory in nature. Current flow in dry samples is proportional to stress within 90% of peak stress. In fluid-saturated samples proportionality holds from 40% peak stress, with a significant increase in the rate of current production from 90% peak stress associated with fluid flow during dilatancy. This direct relationship demonstrates that electric current could be used as a proxy for stress, indicating when the rock is reaching the limit of its strength. The experimental power law relationship between electric current and strain rate, which mirrors the power-law creep equation, supports this observation. High-frequency fluctuations of electric current are not normally distributed - they exhibit `heavy-tails'. We model these distributions with q-Gaussian statistics and evolution of the q-parameter during deformation reveals a two-stage precursory anomaly prior to sample failure, consistent with the acoustic emissions b-value and stress intensity evolution as modelled from fracture mechanics. Our findings support the idea that electric currents in the crust can be generated purely from solid state fracture processes and that these currents may reflect the stress state within the damaged rock.
Electric current distribution of a multiwall carbon nanotube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li-Ying; Chang, Chia-Seng, E-mail: jasonc@phys.sinica.edu.tw; Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
2016-07-15
The electric current distribution in a multiwall carbon nanotube (MWCNT) was studied by in situ measuring the electric potential along an individual MWCNT in the ultra-high vacuum transmission electron microscope (TEM). The current induced voltage drop along each section of a side-bonded MWCNT was measured by a potentiometric probe in TEM. We have quantitatively derived that the current on the outermost shell depends on the applied current and the shell diameter. More proportion of the total electronic carriers hop into the inner shells when the applied current is increased. The larger a MWCNT’s diameter is, the easier the electronic carriersmore » can hop into the inner shells. We observed that, for an 8 nm MWCNT with 10 μA current applied, 99% of the total current was distributed on the outer two shells.« less
Trade Electricity. Motors & Controls--Level 3. Standardized Curriculum.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Office of Occupational and Career Education.
This curriculum guide consists of seven modules on motors and controls, one of the three divisions of the standardized trade electricity curriculum in high schools in New York City. The seven modules cover the following subjects: energy conservation wiring, direct current (DC) motor repair and rewinding, DC motor controls, alternating current (AC)…
NASA Astrophysics Data System (ADS)
Toporkov, D. M.; Vialcev, G. B.
2017-10-01
The implementation of parallel branches is a commonly used manufacturing method of the realizing of fractional slot concentrated windings in electrical machines. If the rotor eccentricity is enabled in a machine with parallel branches, the equalizing currents can arise. The simulation approach of the equalizing currents in parallel branches of an electrical machine winding based on magnetic field calculation by using Finite Elements Method is discussed in the paper. The high accuracy of the model is provided by the dynamic improvement of the inductances in the differential equation system describing a machine. The pre-computed table flux linkage functions are used for that. The functions are the dependences of the flux linkage of parallel branches on the branches currents and rotor position angle. The functions permit to calculate self-inductances and mutual inductances by partial derivative. The calculated results obtained for the electric machine specimen are presented. The results received show that the adverse combination of design solutions and the rotor eccentricity leads to a high value of the equalizing currents and windings heating. Additional torque ripples also arise. The additional ripples harmonic content is not similar to the cogging torque or ripples caused by the rotor eccentricity.
High saturation solar light beam induced current scanning of solar cells.
Vorster, F J; van Dyk, E E
2007-01-01
The response of the electrical parameters of photovoltaic cells under concentrated solar irradiance has been the subject of many studies performed in recent times. The high saturation conditions typically found in solar cells that are subjected to highly concentrated solar radiation may cause electrically active cell features to behave differently than under monochromatic laser illumination, normally used in light beam induced current (LBIC) investigations. A high concentration solar LBIC (S-LBIC) measurement system has been developed to perform localized cell characterization. The responses of silicon solar cells that were measured qualitatively include externally biased induced cell current at specific cell voltages, I(V), open circuit voltage, V(oc), and the average rate of change of the cell bias with the induced current, DeltaV/DeltaI(V), close to the zero bias region. These images show the relative scale of the parameters of a cell up to the penetration depth of the solar beam and can be obtained with relative ease, qualifying important electrical response features of the solar cell. The S-LBIC maps were also compared with maps that were similarly obtained using a high intensity He-Ne laser beam probe. This article reports on the techniques employed and initial results obtained.
Design and development of a ferroelectric micro photo detector for the bionic eye
NASA Astrophysics Data System (ADS)
Song, Yang
Driven by no effective therapy for Retinitis Pigmentosa and Age Related Macular Degeneration, artificial vision through the development of an artificial retina that can be implanted into the human eye, is being addressed by the Bionic Eye. This dissertation focuses on the study of a photoferroelectric micro photo detector as an implantable retinal prosthesis for vision restoration in patients with above disorders. This implant uses an electrical signal to trigger the appropriate ocular cells of the vision system without resorting to wiring or electrode implantation. The research work includes fabrication of photoferroelectric thin film micro detectors, characterization of these photoferroelectric micro devices as photovoltaic cells, and Finite Element Method (FEM) modeling of the photoferroelectrics and their device-neuron interface. A ferroelectric micro detector exhibiting the photovoltaic effect (PVE) directly adds electrical potential to the neuron membrane outer wall at the focal adhesion regions. The electrical potential then generates a retinal cell membrane potential deflection through a newly developed Direct-Electric-Field-Coupling (DEFC) model. This model is quite different from the traditional electric current model because instead of current directly working on the cell membrane, the PVE current is used to generate a localized high electric potential in the focal adhesion region by working together with the anisotropic high internal impedance of ferroelectric thin films. General electrodes and silicon photodetectors do not have such anisotropy and high impedance, and thus they cannot generate DEFC. This mechanism investigation is very valuable, because it clearly shows that our artificial retina works in a way that is totally different from the traditional current stimulation methods.
NASA Astrophysics Data System (ADS)
Berthon, Beatrice; Dansette, Pierre-Marc; Tanter, Mickaël; Pernot, Mathieu; Provost, Jean
2017-07-01
Direct imaging of the electrical activation of the heart is crucial to better understand and diagnose diseases linked to arrhythmias. This work presents an ultrafast acoustoelectric imaging (UAI) system for direct and non-invasive ultrafast mapping of propagating current densities using the acoustoelectric effect. Acoustoelectric imaging is based on the acoustoelectric effect, the modulation of the medium’s electrical impedance by a propagating ultrasonic wave. UAI triggers this effect with plane wave emissions to image current densities. An ultrasound research platform was fitted with electrodes connected to high common-mode rejection ratio amplifiers and sampled by up to 128 independent channels. The sequences developed allow for both real-time display of acoustoelectric maps and long ultrafast acquisition with fast off-line processing. The system was evaluated by injecting controlled currents into a saline pool via copper wire electrodes. Sensitivity to low current and low acoustic pressure were measured independently. Contrast and spatial resolution were measured for varying numbers of plane waves and compared to line per line acoustoelectric imaging with focused beams at equivalent peak pressure. Temporal resolution was assessed by measuring time-varying current densities associated with sinusoidal currents. Complex intensity distributions were also imaged in 3D. Electrical current densities were detected for injected currents as low as 0.56 mA. UAI outperformed conventional focused acoustoelectric imaging in terms of contrast and spatial resolution when using 3 and 13 plane waves or more, respectively. Neighboring sinusoidal currents with opposed phases were accurately imaged and separated. Time-varying currents were mapped and their frequency accurately measured for imaging frame rates up to 500 Hz. Finally, a 3D image of a complex intensity distribution was obtained. The results demonstrated the high sensitivity of the UAI system proposed. The plane wave based approach provides a highly flexible trade-off between frame rate, resolution and contrast. In conclusion, the UAI system shows promise for non-invasive, direct and accurate real-time imaging of electrical activation in vivo.
Students' understanding of direct current resistive electrical circuits
NASA Astrophysics Data System (ADS)
Engelhardt, Paula Vetter; Beichner, Robert J.
2004-01-01
Both high school and university students' reasoning regarding direct current resistive electric circuits often differ from the accepted explanations. At present, there are no standard diagnostic tests on electric circuits. Two versions of a diagnostic instrument were developed, each consisting of 29 questions. The information provided by this test can provide instructors with a way of evaluating the progress and conceptual difficulties of their students. The analysis indicates that students, especially females, tend to hold multiple misconceptions, even after instruction. During interviews, the idea that the battery is a constant source of current was used most often in answering the questions. Students tended to focus on the current in solving problems and to confuse terms, often assigning the properties of current to voltage and/or resistance.
NASA Astrophysics Data System (ADS)
Li, Xu; Xu, Yuan; He, Bin
2006-03-01
An experimental feasibility study was conducted on magnetoacoustic tomography with magnetic induction (MAT-MI). It is demonstrated that the two-dimensional MAT-MI system can detect and image the boundaries between regions of different electrical conductivities with high spatial resolution. Utilizing a magnetic stimulation coil, MAT-MI evokes magnetically induced eddy current in an object which is placed in a static magnetic field. Because of the existence of Lorenz forces, the eddy current in turn causes acoustic vibrations, which are measured around the object in order to reconstruct the electrical impedance distribution of the object. The present experimental results from the saline and gel phantoms are promising and suggest the merits of MAT-MI in imaging electrical impedance of biological tissue with high spatial resolution.
Optical Remote Sensing of Electric Fields Above Thunderstorms
NASA Astrophysics Data System (ADS)
Burns, B. M.; Carlson, B. E.; Lauben, D.; Cohen, M.; Smith, D.; Inan, U. S.
2010-12-01
Measurement of thunderstorm electric fields typically require balloon-borne measurements in the region of interest. Such measurements are cumbersome and provide limited information at a single point. Remote sensing of electric fields by Kerr-effect induced optical polarization changes of background skylight circumvents many of these difficulties and can in principle provide a high-speed movie of electric field behavior. Above-thundercloud 100 kV/m quasi-static electric fields are predicted to produce polarization changes at above the part in one million level that should be detectable at a ground instrument featuring 1 cm2sr geometric factor and 1 kHz bandwidth (though more sensitivity is nonetheless desired). Currently available optical and electronic components may meet these requirements. We review the principles of this measurement and discuss the current status of a field-ready prototype instrument currently in construction.
Interplanetary magnetic field effects on high latitude ionospheric convection
NASA Technical Reports Server (NTRS)
Heelis, R. A.
1985-01-01
Relations between the electric field and the electric current in the ionosphere can be established on the basis of a system of mathematical and physical equations provided by the equations of current continuity and Ohm's law. For this reason, much of the synthesis of electric field and plasma velocity data in the F-region is made with the aid of similar data sets derived from field-aligned current and horizontal current measurements. During the past decade, the development of a self-consistent picture of the distribution and behavior of these measurements has proceeded almost in parallel. The present paper is concerned with the picture as it applies to the electric field and plasma drift velocity and its dependence on the interplanetary magnetic field. Attention is given to the southward interplanetary magnetic field and the northward interplanetary magnetic field.
NASA Technical Reports Server (NTRS)
Smirnov, B. I.; Orlova, T. S.; Kaufmann, H.-J.
1995-01-01
Effect of an electrostatic field in the electrode-insulator-superconductor system on the current-voltage characteristics of high-T(sub c) ceramics with various composition and different preparation technology has been studied at 77 K. Ceramics of Y-Ba-Cu-O (123) and Bi-Pb-Sr-Ca-Cu-O (2223) systems and also ones doped by Ag have been used. Electric field strength has been up to 140 MV/m. It has been shown that there are reversible changes in the critical current I(sub c) and in the conductivity in electric field at the currents somewhat more than I(sub c) at T is less than T(sub c), while at T is greater than T(sub c) the noticeable electric field effect has not been found. These effects are qualitatively similar in both ceramic systems. High negative and positive gate voltages result in an increase of the conductivity. The electric field effect is modified by magnetic field H. The field effect decreases with increasing magnetic field and disappears at H is greater than 30 Oe. In Y-Ba-Cu-O/Ag (10 wt. percent) ceramics the field effect is practically absent. It may be supposed that in the ceramics the field-induced effect is consistent with weak links at grain boundaries.
Thermal management for high-capacity large format Li-ion batteries
Wang, Hsin; Kepler, Keith Douglas; Pannala, Sreekanth; Allu, Srikanth
2017-05-30
A lithium ion battery includes a cathode in electrical and thermal connection with a cathode current collector. The cathode current collector has an electrode tab. A separator is provided. An anode is in electrical and thermal connection with an anode current collector. The anode current collector has an electrode tab. At least one of the cathode current collector and the anode current collector comprises a thermal tab for heat transfer with the at least one current collector. The thermal tab is separated from the electrode tab. A method of operating a battery is also disclosed.
Underwater electric field detection system based on weakly electric fish
NASA Astrophysics Data System (ADS)
Xue, Wei; Wang, Tianyu; Wang, Qi
2018-04-01
Weakly electric fish sense their surroundings in complete darkness by their active electric field detection system. However, due to the insufficient detection capacity of the electric field, the detection distance is not enough, and the detection accuracy is not high. In this paper, a method of underwater detection based on rotating current field theory is proposed to improve the performance of underwater electric field detection system. First of all, we built underwater detection system based on the theory of the spin current field mathematical model with the help of the results of previous researchers. Then we completed the principle prototype and finished the metal objects in the water environment detection experiments, laid the foundation for the further experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, J.E.; Frazier, M.J.
1979-09-01
The effects of 60-Hz electric and magnetic fields of exta-high voltage (EHV) transmission lines on the performance of implanted cardiac pacemakers were studied by: (1) in vitro bench tests of a total of thirteen cardiac pacemakers; (2) in vivo tests of six implanted cardiac pacemakers in baboons; and (3) non-hazardous skin measurement tests on four humans. Analytical methods were developed to predict the thresholds of body current and electric fields capable of affecting normal pacemaker operation in humans. The field strengths calculated to alter implanted pacemaker performance were compared with the range of maximum electric and magnetic field strengths amore » human would normally encounter under transmission lines of various voltages. Results indicate that the electric field or body current necessary to alter the normal operation of pacemakers is highly dependent on the type of pacemaker and the location of the implanted electrodes. However, cardiologists have not so far detected harmful effects of pacemaker reversion to the asynchronous mode in current types of pacemakers and with present methods of implantation. Such interferences can be eliminated by using advanced pacemakers less sensitive to 60-Hz voltages or by using implantation lead arrangements less sensitive to body current.« less
High current density cathode for electrorefining in molten electrolyte
Li, Shelly X.
2010-06-29
A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.
NASA Astrophysics Data System (ADS)
Jiang, Dongdong; Du, Jinmei; Gu, Yan; Feng, Yujun
2012-05-01
By assuming a relaxation process for depolarization associated with the ferroelectric (FE) to antiferroelectric (AFE) phase transition in Pb0.99Nb0.02(Zr0.95Ti0.05)0.98O3 ferroelectric ceramics under shock wave compression, we build a new model for the depoling current, which is different from both the traditional constant current source (CCS) model and the phase transition kinetics (PTK) model. The characteristic relaxation time and new-equilibrated polarization are dependent on both the shock pressure and electric field. After incorporating a Maxwell s equation, the relaxation model developed applies to all the depoling currents under short-circuit condition and high-impedance condition. Influences of shock pressure, load resistance, dielectric property, and electrical conductivity on the depoling current are also discussed. The relaxation model gives a good description about the suppressing effect of the self-generated electric field on the FE-to-AFE phase transition at low shock pressures, which cannot be described by the traditional models. After incorporating a time- and electric-field-dependent repolarization, this model predicts that the high-impedance current eventually becomes higher than the short-circuit current, which is consistent with the experimental results in the literature. Finally, we make the comparison between our relaxation model and the traditional CCS model and PTK model.
The development of the time dependence of the nuclear EMP electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eng, C
The nuclear electromagnetic pulse (EMP) electric field calculated with the legacy code CHAP is compared with the field given by an integral solution of Maxwell's equations, also known as the Jefimenko equation, to aid our current understanding on the factors that affect the time dependence of the EMP. For a fair comparison the CHAP current density is used as a source in the Jefimenko equation. At first, the comparison is simplified by neglecting the conduction current and replacing the standard atmosphere with a constant density air slab. The simplicity of the resultant current density aids in determining the factors thatmore » affect the rise, peak and tail of the EMP electric field versus time. The three dimensional nature of the radiating source, i.e. sources off the line-of-sight, and the time dependence of the derivative of the current density with respect to time are found to play significant roles in shaping the EMP electric field time dependence. These results are found to hold even when the conduction current and the standard atmosphere are properly accounted for. Comparison of the CHAP electric field with the Jefimenko electric field offers a direct validation of the high-frequency/outgoing wave approximation.« less
Haddad, Peter A; Mah, Thien-Fah; Mussivand, Tofy
2016-08-01
Biofilms are communities of bacteria that can cause infections which are resistant to the immune system and antimicrobial treatments, posing a significant threat for patients with implantable and indwelling medical devices. The purpose of our research was to determine if utilizing specific parameters for electric currents in conjunction with antibiotics could effectively treat a highly resistant biofilm. Our study evaluated the impact of 16 μg/mL of vancomycin with or without 22 or 333 μA of direct electric current (DC) generated by stainless steel electrodes against 24-, 48-, and 72-h-old Staphylococcus epidermidis biofilms formed on titanium coupons. An increase in effectiveness of vancomycin was observed with the combination of 333 μA of electric current against 48-h-old biofilms (P value = 0.01) as well as in combination with 22 μA of electric current against 72-h-old biofilms (P value = 0.04); 333 μA of electric current showed the most significant impact on the effectiveness of vancomycin against S. epidermidis biofilms demonstrating a bioelectric effect previously not observed against this strain of bacteria. © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Baranov, M. I.; Rudakov, S. V.
2018-03-01
The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.
NASA Astrophysics Data System (ADS)
Baranov, M. I.; Rudakov, S. V.
2018-05-01
The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.
High Performance Polymer Memory and Its Formation
2007-04-26
the retention time of the device was performed to estimate the barrier height of the charge trap . The activation energy was approximated to be about...characteristics and presented a model to explain the mechanism of electrical switching in the device. By exploiting an electric-field induced charge transfer...electrical current in the high conductivity state would be due to some temperature-independent charge tunneling processes. The IV curves could be
Laser-assisted guiding of electric discharges around objects
Clerici, Matteo; Hu, Yi; Lassonde, Philippe; Milián, Carles; Couairon, Arnaud; Christodoulides, Demetrios N.; Chen, Zhigang; Razzari, Luca; Vidal, François; Légaré, François; Faccio, Daniele; Morandotti, Roberto
2015-01-01
Electric breakdown in air occurs for electric fields exceeding 34 kV/cm and results in a large current surge that propagates along unpredictable trajectories. Guiding such currents across specific paths in a controllable manner could allow protection against lightning strikes and high-voltage capacitor discharges. Such capabilities can be used for delivering charge to specific targets, for electronic jamming, or for applications associated with electric welding and machining. We show that judiciously shaped laser radiation can be effectively used to manipulate the discharge along a complex path and to produce electric discharges that unfold along a predefined trajectory. Remarkably, such laser-induced arcing can even circumvent an object that completely occludes the line of sight. PMID:26601188
Stress-induced electric current fluctuations in rocks: a superstatistical model
NASA Astrophysics Data System (ADS)
Cartwright-Taylor, Alexis; Vallianatos, Filippos; Sammonds, Peter
2017-04-01
We recorded spontaneous electric current flow in non-piezoelectric Carrara marble samples during triaxial deformation. Mechanical data, ultrasonic velocities and acoustic emissions were acquired simultaneously with electric current to constrain the relationship between electric current flow, differential stress and damage. Under strain-controlled loading, spontaneous electric current signals (nA) were generated and sustained under all conditions tested. In dry samples, a detectable electric current arises only during dilatancy and the overall signal is correlated with the damage induced by microcracking. Our results show that fracture plays a key role in the generation of electric currents in deforming rocks (Cartwright-Taylor et al., in prep). We also analysed the high-frequency fluctuations of these electric current signals and found that they are not normally distributed - they exhibit power-law tails (Cartwright-Taylor et al., 2014). We modelled these distributions with q-Gaussian statistics, derived by maximising the Tsallis entropy. This definition of entropy is particularly applicable to systems which are strongly correlated and far from equilibrium. Good agreement, at all experimental conditions, between the distributions of electric current fluctuations and the q-Gaussian function with q-values far from one, illustrates the highly correlated, fractal nature of the electric source network within the samples and provides further evidence that the source of the electric signals is the developing fractal network of cracks. It has been shown (Beck, 2001) that q-Gaussian distributions can arise from the superposition of local relaxations in the presence of a slowly varying driving force, thus providing a dynamic reason for the appearance of Tsallis statistics in systems with a fluctuating energy dissipation rate. So, the probability distribution for a dynamic variable, u under some external slow forcing, β, can be obtained as a superposition of temporary local equilibrium processes whose variance fluctuates over time. The appearance of q-Gaussian statistics are caused by the fluctuating β parameter, which effectively models the fluctuating energy dissipation rate in the system. This concept is known as superstatistics and is physically relevant for modelling driven non-equilibrium systems where the environmental conditions fluctuate on a large scale. The idea is that the environmental variable, such as temperature or pressure, changes so slowly that a rapidly fluctuating variable within that environment has time to relax back to equilibrium between each change in the environment. The application of superstatistical techniques to our experimental electric current fluctuations show that they can indeed be described, to good approximation, by the superposition of local Gaussian processes with fluctuating variance. We conclude, then, that the measured electric current fluctuates in response to intermittent energy dissipation and is driven to varying temporary local equilibria during deformation by the variations in stress intensity. The advantage of this technique is that, once the model has been established to be a good description of the system in question, the average β parameter (a measure of the average energy dissipation rate) for the system can be obtained simply from the macroscopic q-Gaussian distribution parameters.
21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.
Code of Federal Regulations, 2013 CFR
2013-04-01
... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...
21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.
Code of Federal Regulations, 2012 CFR
2012-04-01
... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...
21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.
Code of Federal Regulations, 2011 CFR
2011-04-01
... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...
21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.
Code of Federal Regulations, 2014 CFR
2014-04-01
... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...
Evaluation of wet tantalum capacitors after exposure to extended periods of ripple current, volume 1
NASA Technical Reports Server (NTRS)
Watson, G. W.; Lasharr, J. C.; Shumaker, M. J.
1974-01-01
The application of tantalum capacitors in the Viking Lander includes both dc voltage and ripple current electrical stress, high temperature during nonoperating times (sterilization), and high vibration and shock loads. The capacitors must survive these severe environments without any degradation if reliable performance is to be achieved. A test program was established to evaluate both wet-slug tantalum and wet-foil capacitors under conditions accurately duplicating actual Viking applications. Test results of the electrical performance characteristics during extended periods of ripple current, the characteristics of the internal silver migration as a function for extended periods of ripple current, and the existence of any memory characteristics are presented.
Evaluation of wet tantalum capacitors after exposure to extended periods of ripple current, volume 2
NASA Technical Reports Server (NTRS)
Ward, C. M.
1975-01-01
The application of tantalum capacitors in the Viking Lander includes dc voltage and ripple current electrical stress, high temperature during nonoperating times (sterilization), and high vibration and shock loads. The capacitors must survive these severe environments without any degradation if reliable performance is to be achieved. A test program was established to evaluate both wet-slug tantalum and wet-foil capacitors under conditions accurately duplicating actual Viking applications. Test results of the electrical performance characteristics during extended periods of ripple current, the characteristics of the internal silver migration as a function of extended periods of ripple current, and the existence of any memory characteristics are presented.
Dynamic generation of supercritical water fluid in a strong electrical discharge in a liquid
NASA Astrophysics Data System (ADS)
Antonov, V.; Kalinin, N.; Kovalenko, A.
2016-11-01
A new impetus for the development of electro physics is associated with using different types of electrical discharges in biology and medicine. These applications are based on their energetic and non-toxic factors affecting the medium on a cellular level. For the study of such processes, a mathematical model of a high-current low-temperature Z-discharge in a liquid, forming by the electrical explosion of a thin-walled metal shell, connected to a pulsed high-voltage generator, has been developed. High efficiency energy conversion, introduced into the plasma discharge to the energy of fluid motion, provides various bio chemical applications of such physical processes. The investigation is conducted through numerical solution of one-dimensional single-temperature non-stationary equations of radiation magneto hydrodynamics, one way describing the evolution of hydrodynamic, thermal and electrical characteristics of the medium throughout the area under consideration. The electrical approximation based on the assumption that the electric field in the discharge has a uniform distribution. The results are presented as a function of the electric current and the plasma channel length of time, as well as the temperature and pressure distributions at different time points along the radius of the cylindrical region in which the explosion occurs.
Analytical study of the performance of a geomembrane leak detection system.
Lugli, Francesco; Mahler, Claudio Fernando
2016-05-01
The electrical detection of leaks in geomembranes is a method that allows identifying leakage of contaminants in lined facilities (e.g. sanitary landfills, pollutant ponds, etc.). The procedure in the field involves placing electrodes above and below the geomembrane, to generate an electrical current, which in turn engenders an electric potential distribution in the protective layer (generally a clayey soil). The electric potential will be greater in areas with higher current density, i.e. near leaks. In this study, we combined models from the literature to carry out a parametric analysis to identify the variables that most influence the amplitude of the electrical signals produced by leaks. The basic hypothesis is that the electrical conduction phenomena in a liner system could be depicted by a direct current circuit. After determining the value of the current at the leak, we calculated the electric potential distribution according to the model of Darilek and Laine. This enabled analysing the sensitivity of the parameters, which can be useful in the design of landfills and facilitate the location of leaks. This study showed that geomembranes with low electrical resistance (owing to low thickness, low resistivity, or extensive area) can hinder the leak detection process. In contrast, low thickness and high resistivity of the protection layer magnify the leak signal. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Nedic, Stanko; Tea Chun, Young; Hong, Woong-Ki; Chu, Daping; Welland, Mark
2014-01-01
A high performance ferroelectric non-volatile memory device based on a top-gate ZnO nanowire (NW) transistor fabricated on a glass substrate is demonstrated. The ZnO NW channel was spin-coated with a poly (vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) layer acting as a top-gate dielectric without buffer layer. Electrical conductance modulation and memory hysteresis are achieved by a gate electric field induced reversible electrical polarization switching of the P(VDF-TrFE) thin film. Furthermore, the fabricated device exhibits a memory window of ˜16.5 V, a high drain current on/off ratio of ˜105, a gate leakage current below ˜300 pA, and excellent retention characteristics for over 104 s.
Simulation of Space Charge Dynamic in Polyethylene Under DC Continuous Electrical Stress
NASA Astrophysics Data System (ADS)
Boukhari, Hamed; Rogti, Fatiha
2016-10-01
The space charge dynamic plays a very important role in the aging and breakdown of polymeric insulation materials under high voltage. This is due to the intensification of the local electric field and the attendant chemical-mechanical effects in the vicinity around the trapped charge. In this paper, we have investigated the space charge dynamic in low-density polyethylene under high direct-current voltage, which is evaluated by experimental conditions. The evaluation is on the basis of simulation using a bipolar charge transport model consisting of charge injection, transports, trapping, detrapping, and recombination phenomena. The theoretical formulation of the physical problem is based on the Poisson, the continuity, and the transport equations. Numerical results provide temporal and local distributions of the electric field, the space charge density for the different kinds of charges (net charge density, mobile and trapped of electron density, mobile hole density), conduction and displacement current densities, and the external current. The result shows the appearance of the negative packet-like space charge with a large amount of the bulk under the dc electric field of 100 kV/mm, and the induced distortion of the electric field is largely near to the anode, about 39% higher than the initial electric field applied.
Electric currents and coronal heating in NOAA active region 6952
NASA Technical Reports Server (NTRS)
Metcalf, T. R.; Canfield, R. C.; Hudson, H. S.; Mickey, D. L.; Wulser, J. -P.; Martens, P. C. H.; Tsuneta, S.
1994-01-01
We examine the spatial and temporal relationship between coronal structures observed with the soft X-ray telescope (SXT) on board the Yohkoh spacecraft and the vertical electric current density derived from photospheric vector magnetograms obtained using the Stokes Polarimeter at the Mees Solar Observatory. We focus on a single active region: AR 6952 which we observed on 7 days during 1991 December. For 11 independent maps of the vertical electric current density co-aligned with non-flaring X-ray images, we search for a morphological relationship between sites of high vertical current density in the photosphere and enhanced X-ray emission in the overlying corona. We find no compelling spatial or temporal correlation between the sites of vertical current and the bright X-ray structures in this active region.
NASA Technical Reports Server (NTRS)
Roble, R. G.; Hays, P. B.
1979-01-01
The paper presents a model of global atmospheric electricity used to examine the effect of upper atmospheric generators on the global electrical circuit. The model represents thunderstorms as dipole current generators randomly distributed in areas of known thunderstorm frequency; the electrical conductivity in the model increases with altitude, and electrical effects are coupled with a passive magnetosphere along geomagnetic field lines. The large horizontal-scale potential differences at ionospheric heights map downward into the lower atmosphere where the perturbations in the ground electric field are superimposed on the diurnal variation. Finally, changes in the upper atmospheric conductivity due to solar flares, polar cap absorptions, and Forbush decreases are shown to alter the downward mapping of the high-latitude potential pattern and the global distribution of fields and currents.
High current capacity electrical connector
Bettis, Edward S.; Watts, Harry L.
1976-01-13
An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a "sandwiched" configuration in which a conductor plate contacts the busses along major surfaces thereof clamped between two stainless steel backing plates. The conductor plate is provided with a plurality of contact buttons affixed therein in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors.
Diagnostic for two-mode variable valve activation device
Fedewa, Andrew M
2014-01-07
A method is provided for diagnosing a multi-mode valve train device which selectively provides high lift and low lift to a combustion valve of an internal combustion engine having a camshaft phaser actuated by an electric motor. The method includes applying a variable electric current to the electric motor to achieve a desired camshaft phaser operational mode and commanding the multi-mode valve train device to a desired valve train device operational mode selected from a high lift mode and a low lift mode. The method also includes monitoring the variable electric current and calculating a first characteristic of the parameter. The method also includes comparing the calculated first characteristic against a predetermined value of the first characteristic measured when the multi-mode valve train device is known to be in the desired valve train device operational mode.
On the structures and mapping of auroral electrostatic potentials
NASA Technical Reports Server (NTRS)
Chiu, Y. T.; Newman, A. L.; Cornwall, J. M.
1981-01-01
The mapping of magnetospheric and ionospheric electric fields in a kinetic model of magnetospheric-ionospheric electrodynamic coupling proposed for the aurora is examined. One feature is the generalization of the kinetic current-potential relationship to the return current region (identified as a region where the parallel drop from magnetosphere to ionosphere is positive); such a return current always exists unless the ionosphere is electrically charged to grossly unphysical values. A coherent phenomenological picture of both the low energy return current and the high energy precipitation of an inverted-V is given. The mapping between magnetospheric and ionospheric electric fields is phrased in terms of a Green's function which acts as a filter, emphasizing magnetospheric latitudinal spatial scales of order (when mapped to the ionosphere) 50 to 150 km. This same length, when multiplied by electric fields just above the ionosphere, sets the scale for potential drops between the ionosphere and equatorial magnetosphere.
Luo, Jie; Cai, Limei; Qi, Shihua; Wu, Jian; Sophie Gu, Xiaowen
2018-03-01
Direct and alternating current electric fields with various voltages were used to improve the decontamination efficiency of chelator assisted phytoremediation for multi-metal polluted soil. The alleviation effect of electric field on leaching risk caused by chelator application during phytoremediation process was also evaluated. Biomass yield, pollutant uptake and metal leaching retardation under alternating current (AC) and direct current (DC) electric fields were compared. The biomass yield of Eucalyptus globulus under AC fields with various voltages (2, 4 and 10 V) were 3.91, 4.16 and 3.67kg, respectively, significantly higher than the chelator treatment without electric field (2.71kg). Besides growth stimulation, AC fields increased the metal concentrations of plant tissues especially in aerial parts manifested by the raised translocation factor of different metals. Direct current electric fields with low and moderate voltages increased the biomass production of the species to 3.45 and 3.12kg, respectively, while high voltage on the contrary suppressed the growth of the plants (2.66kg). Under DC fields, metal concentrations elevated obviously with increasing voltages and the metal translocation factors were similar under all voltages. Metal extraction per plant achieved the maximum value under moderate voltage due to the greatest biomass production. DC field with high voltage (10V) decreased the volume of leachate from the chelator treatment without electric field from 1224 to 56mL, while the leachate gathered from AC field treatments raised from 512 to 670mL. DC field can retard the downward movement of metals caused by chelator application more effectively relative to AC field due to the constant water flow and electroosmosis direction. Alternating current field had more promotive effect on chelator assisted phytoremediation efficiency than DC field illustrated by more metal accumulation in the species. However, with the consideration of leaching risk, DC field with moderate voltage was the optimal supplementary technique for phytoremediation. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dang Chien, Nguyen; Shih, Chun-Hsing; Hoa, Phu Chi; Minh, Nguyen Hong; Thi Thanh Hien, Duong; Nhung, Le Hong
2016-06-01
The two-band Kane model has been popularly used to calculate the band-to-band tunneling (BTBT) current in tunnel field-effect transistor (TFET) which is currently considered as a promising candidate for low power applications. This study theoretically clarifies the maximum electric field approximation (MEFA) of direct BTBT Kane model and evaluates its appropriateness for low bandgap semiconductors. By analysing the physical origin of each electric field term in the Kane model, it has been elucidated in the MEFA that the local electric field term must be remained while the nonlocal electric field terms are assigned by the maximum value of electric field at the tunnel junction. Mathematical investigations have showed that the MEFA is more appropriate for low bandgap semiconductors compared to high bandgap materials because of enhanced tunneling probability in low field regions. The appropriateness of the MEFA is very useful for practical uses in quickly estimating the direct BTBT current in low bandgap TFET devices.
Optimization of Phase Change Memory with Thin Metal Inserted Layer on Material Properties
NASA Astrophysics Data System (ADS)
Harnsoongnoen, Sanchai; Sa-Ngiamsak, Chiranut; Siritaratiwat, Apirat
This works reports, for the first time, the thorough study and optimisation of Phase Change Memory (PCM) structure with thin metal inserted chalcogenide via electrical resistivity (ρ) using finite element modeling. PCM is one of the best candidates for next generation non-volatile memory. It has received much attention recently due to its fast write speed, non-destructive readout, superb scalability, and great compatibility with current silicon-based mass fabrication. The setback of PCM is a high reset current typically higher than 1mA based on 180nm lithography. To reduce the reset current and to solve the over-programming failure, PCM with thin metal inserted chalcogenide (bottom chalcogenide/metal inserted/top chalcogenide) structure has been proposed. Nevertheless, reports on optimisation of the electrical resistivity using the finite element method for this new PCM structure have never been published. This work aims to minimize the reset current of this PCM structure by optimizing the level of the electrical resistivity of the PCM profile using the finite element approach. This work clearly shows that PCM characteristics are strongly affected by the electrical resistivity. The 2-D simulation results reveal clearly that the best thermal transfer of and self-joule-heating at the bottom chalcogenide layer can be achieved under conditions; ρ_bottom chalcogenide > ρ_metal inserted > ρ_top chalcogenide More specifically, the optimized electrical resistivity of PCMTMI is attained with ρ_top chalcogenide: ρ_metal inserted: ρ_bottom chalcogenide ratio of 1:6:16 when ρ_top chalcogenide is 10-3 Ωm. In conclusion, high energy efficiency can be obtained with the reset current as low as 0.3mA and with high speed operation of less than 30ns.
Scott, Timothy C.; Wham, Robert M.
1988-01-01
A method and system for solvent extraction where droplets are shattered by a high intensity electric field. These shattered droplets form a plurality of smaller droplets which have a greater combined surface area than the original droplet. Dispersion, coalescence and phase separation are accomplished in one vessel through the use of the single pulsing high intensity electric field. Electric field conditions are chosen so that simultaneous dispersion and coalescence are taking place in the emulsion formed in the electric field. The electric field creates a large amount of interfacial surface area for solvent extraction when the droplet is disintegrated and is capable of controlling droplet size and thus droplet stability. These operations take place in the presence of a counter current flow of the continuous phase.
Park, Yong-Jin; Cho, Ju-Young; Jeong, Min-Woo; Na, Sekwon; Joo, Young-Chang
2016-01-01
The novel discovery of a current-induced transition from insulator to metal in the crystalline phase of Ge2Sb2Te5 and GeSb4Te7 have been studied by means of a model using line-patterned samples. The resistivity of cubic phase Ge-Sb-Te compound was reduced by an electrical current (~1 MA/cm2), and the final resistivity was determined based on the stress current density, regardless of the initial resistivity and temperature, which indicates that the conductivity of Ge-Sb-Te compound can be modulated by an electrical current. The minimum resistivity of Ge-Sb-Te materials can be achieved at high kinetic rates by applying an electrical current, and the material properties change from insulating to metallic behavior without a phase transition. The current-induced metal transition is more effective in GeSb4Te7 than Ge2Sb2Te5, which depends on the intrinsic vacancy of materials. Electromigration, which is the migration of atoms induced by a momentum transfer from charge carriers, can easily promote the rearrangement of vacancies in the cubic phase of Ge-Sb-Te compound. This behavior differs significantly from thermal annealing, which accompanies a phase transition to the hexagonal phase. This result suggests a new pathway for modulating the electrical conductivity and material properties of chalcogenide materials by applying an electrical current. PMID:26902593
Kobayashi, T.; Itoh, K.; Ido, T.; Kamiya, K.; Itoh, S.-I.; Miura, Y.; Nagashima, Y.; Fujisawa, A.; Inagaki, S.; Ida, K.; Hoshino, K.
2016-01-01
Self-regulation between structure and turbulence, which is a fundamental process in the complex system, has been widely regarded as one of the central issues in modern physics. A typical example of that in magnetically confined plasmas is the Low confinement mode to High confinement mode (L-H) transition, which is intensely studied for more than thirty years since it provides a confinement improvement necessary for the realization of the fusion reactor. An essential issue in the L-H transition physics is the mechanism of the abrupt “radial” electric field generation in toroidal plasmas. To date, several models for the L-H transition have been proposed but the systematic experimental validation is still challenging. Here we report the systematic and quantitative model validations of the radial electric field excitation mechanism for the first time, using a data set of the turbulence and the radial electric field having a high spatiotemporal resolution. Examining time derivative of Poisson’s equation, the sum of the loss-cone loss current and the neoclassical bulk viscosity current is found to behave as the experimentally observed radial current that excites the radial electric field within a few factors of magnitude. PMID:27489128
Thermionic cogeneration burner design
NASA Astrophysics Data System (ADS)
Miskolczy, G.; Goodale, D.; Moffat, A. L.; Morgan, D. T.
Since thermionic converters receive heat at very high temperatures (approximately 1800 K) and reject heat at moderately high temperatures (approximately 800 K), they are useful for cogeneration applications involving high temperature processes. The electric power from thermionic converters is produced as a high amperage, low-voltage direct current. An ideal cogeneration application would be to utilize the reject heat at the collector temperature and the electricity without power conditioning. A cogeneration application in the edible oil industry fulfills both of these requirements since both direct heat and hydrogen gas are required in the hydrogenation of the oils. In this application, the low-voltage direct current would be used in a hydrogen electrolyzer.
Heidland, August; Fazeli, Gholamreza; Klassen, André; Sebekova, Katarina; Hennemann, Hans; Bahner, Udo; Di Iorio, Biagio
2013-01-01
Application of electricity for pain treatment dates back to thousands of years BC. The Ancient Egyptians and later the Greeks and Romans recognized that electrical fishes are capable of generating electric shocks for relief of pain. In the 18th and 19th centuries these natural producers of electricity were replaced by man-made electrical devices. This happened in following phases. The first was the application of static electrical currents (called Franklinism), which was produced by a friction generator. Christian Kratzenstein was the first to apply it medically, followed shortly by Benjamin Franklin. The second phase was Galvanism. This method applied a direct electrical current to the skin by chemical means, applied a direct and pulsed electrical current to the skin. In the third phase the electrical current was induced intermittently and in alternate directions (called Faradism). The fourth stage was the use of high frequency currents (called d'Arsonvalisation). The 19th century was the "golden age" of electrotherapy. It was used for countless dental, neurological, psychiatric and gynecological disturbances. However, at beginning of the 20th century electrotherapy fell from grace. It was dismissed as lacking a scientific basis and being used also by quacks and charlatans for unserious aims. Furthermore, the development of effective analgesic drugs decreased the interest in electricity. In the second half of the 20th century electrotherapy underwent a revival. Based on animal experiments and clinical investigations, its neurophysiological mechanisms were elucidated in more details. The pain relieving action of electricity was explained in particular by two main mechanisms: first, segmental inhibition of pain signals to the brain in the dorsal horn of the spinal cord and second, activation of the descending inhibitory pathway with enhanced release of endogenous opioids and other neurochemical compounds (serotonin, noradrenaline, gamma aminobutyric acid (GABA), acetylcholine and adenosine). The modern electrotherapy of neuromusculo- skeletal pain is based in particular on the following types: transcutaneous electrical nerve stimulation (TENS), percutaneous electrical nerve stimulation (PENS or electro-acupuncture) and spinal cord stimulation (SCS). In mild to moderate pain, TENS and PENS are effective methods, whereas SCS is very useful for therapy of refractory neuropathic or ischemic pain. In 2005, high tone external muscle stimulation (HTEMS) was introduced. In diabetic peripheral neuropathy, its analgesic action was more pronounced than TENS application. HTEMS appeared also to have value in the therapy of symptomatic peripheral neuropathy in end-stage renal disease (ESRD). Besides its pain-relieving effect, electrical stimulation is of major importance for prevention or treatment of muscle dysfunction and sarcopenia. In controlled clinical studies electrical myostimulation (EMS) has been shown to be effective against the sarcopenia of patients with chronic congestive heart disease, diabetes, chronic obstructive pulmonary disease and ESRD.
Optical gain in colloidal quantum dots achieved with direct-current electrical pumping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Jaehoon; Park, Young-Shin; Klimov, Victor Ivanovich
Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge—realization of lasing with electrical injection—remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here in this paper, we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, wemore » apply a special current-focusing device architecture, which allows us to produce high current densities (j) up to ~18 A cm -2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3-4 A cm -2 we achieve the population inversion of the band-edge states.« less
Optical gain in colloidal quantum dots achieved with direct-current electrical pumping
NASA Astrophysics Data System (ADS)
Lim, Jaehoon; Park, Young-Shin; Klimov, Victor I.
2018-01-01
Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge--realization of lasing with electrical injection--remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, we apply a special current-focusing device architecture, which allows us to produce high current densities (j) up to ~18 A cm-2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3-4 A cm-2 we achieve the population inversion of the band-edge states.
Optical gain in colloidal quantum dots achieved with direct-current electrical pumping
Lim, Jaehoon; Park, Young-Shin; Klimov, Victor Ivanovich
2017-11-20
Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge—realization of lasing with electrical injection—remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here in this paper, we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, wemore » apply a special current-focusing device architecture, which allows us to produce high current densities (j) up to ~18 A cm -2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3-4 A cm -2 we achieve the population inversion of the band-edge states.« less
Effect of electrical coupling on ionic current and synaptic potential measurements.
Rabbah, Pascale; Golowasch, Jorge; Nadim, Farzan
2005-07-01
Recent studies have found electrical coupling to be more ubiquitous than previously thought, and coupling through gap junctions is known to play a crucial role in neuronal function and network output. In particular, current spread through gap junctions may affect the activation of voltage-dependent conductances as well as chemical synaptic release. Using voltage-clamp recordings of two strongly electrically coupled neurons of the lobster stomatogastric ganglion and conductance-based models of these neurons, we identified effects of electrical coupling on the measurement of leak and voltage-gated outward currents, as well as synaptic potentials. Experimental measurements showed that both leak and voltage-gated outward currents are recruited by gap junctions from neurons coupled to the clamped cell. Nevertheless, in spite of the strong coupling between these neurons, the errors made in estimating voltage-gated conductance parameters were relatively minor (<10%). Thus in many cases isolation of coupled neurons may not be required if a small degree of measurement error of the voltage-gated currents or the synaptic potentials is acceptable. Modeling results show, however, that such errors may be as high as 20% if the gap-junction position is near the recording site or as high as 90% when measuring smaller voltage-gated ionic currents. Paradoxically, improved space clamp increases the errors arising from electrical coupling because voltage control across gap junctions is poor for even the highest realistic coupling conductances. Furthermore, the common procedure of leak subtraction can add an extra error to the conductance measurement, the sign of which depends on the maximal conductance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Yong; Yao, Manwen, E-mail: yaomw@tongji.edu.cn; Chen, Jianwen
The electrical characteristics of SrTiO{sub 3}/Al{sub 2}O{sub 3} (160 nm up/90 nm down) laminated film capacitors using the sol-gel process have been investigated. SrTiO{sub 3} is a promising and extensively studied high-K dielectric material, but its leakage current property is poor. SrTiO{sub 3}/Al{sub 2}O{sub 3} laminated films can effectively suppress the demerits of pure SrTiO{sub 3} films under low electric field, but the leakage current value reaches to 0.1 A/cm{sup 2} at higher electric field (>160 MV/m). In this study, a new approach was applied to reduce the leakage current and improve the dielectric strength of SrTiO{sub 3}/Al{sub 2}O{sub 3} laminated films. Compared tomore » laminated films with Au top electrodes, dielectric strength of laminated films with Al top electrodes improves from 205 MV/m to 322 MV/m, simultaneously the leakage current maintains the same order of magnitude (10{sup −4} A/cm{sup 2}) until the breakdown occurs. The above electrical characteristics are attributed to the anodic oxidation reaction in origin, which can repair the defects of laminated films at higher electric field. The anodic oxidation reactions have been confirmed by the corresponding XPS measurement and the cross sectional HRTEM analysis. This work provides a new approach to fabricate dielectrics with high dielectric strength and low leakage current.« less
Mao, Longfei; Verwoerd, Wynand S
2013-10-01
Synechocystis sp. PCC 6803 has been considered as a promising biocatalyst for electricity generation in recent microbial fuel cell research. However, the innate maximum current production potential and underlying metabolic pathways supporting the high current output are still unknown. This is mainly due to the fact that the high-current production cell phenotype results from the interaction among hundreds of reactions in the metabolism and it is impossible for reductionist methods to characterize the pathway selection in such a metabolic state. In this study, we employed computational metabolic techniques, flux balance analysis, and flux variability analysis, to exploit the maximum current outputs of Synechocystis sp. PCC 6803, in five electron transfer cases, namely, ferredoxin- and plastoquinol-dependent electron transfers under photoautotrophic cultivation, and NADH-dependent mediated electron transfer under photoautotrophic, heterotrophic, and mixotrophic conditions. In these five modes, the maximum current outputs were computed as 0.198, 0.7918, 0.198, 0.4652, and 0.4424 A gDW⁻¹, respectively. Comparison of the five operational modes suggests that plastoquinol-/c-type cytochrome-targeted electricity generation had an advantage of liberating the highest current output achievable for Synechocystis sp. PCC 6803. On the other hand, the analysis indicates that the currency metabolite, NADH-, dependent electricity generation can rely on a number of reactions from different pathways, and is thus more robust against environmental perturbations.
Tristant, Damien; Zubair, Ahmed; Puech, Pascal; Neumayer, Frédéric; Moyano, Sébastien; Headrick, Robert J; Tsentalovich, Dmitri E; Young, Colin C; Gerber, Iann C; Pasquali, Matteo; Kono, Junichiro; Leotin, Jean
2016-12-01
Highly aligned, packed, and doped carbon nanotube (CNT) fibers with electrical conductivities approaching that of copper have recently become available. These fibers are promising for high-power electrical applications that require light-weight, high current-carrying capacity cables. However, a microscopic understanding of how doping affects the electrical conductance of such CNT fibers in a quantitative manner has been lacking. Here, we performed Raman spectroscopy measurements combined with first-principles calculations to determine the position of the average Fermi energy and to obtain the temperature of chlorosulfonic-acid-doped double-wall CNT fibers under high current. Due to the unique way in which double-wall CNT Raman spectra depend on doping, it is possible to use Raman data to determine the doping level quantitatively. The correspondence between the Fermi level shift and the carbon charge transfer is derived from a tight-binding model and validated by several calculations. For the doped fiber, we were able to associate an average Fermi energy shift of ∼-0.7 eV with a conductance increase by a factor of ∼5. Furthermore, since current induces heating, local temperature determination is possible. Through the Stokes-to-anti-Stokes intensity ratio of the G-band peaks, we estimated a temperature rise at the fiber surface of ∼135 K at a current density of 2.27 × 10 8 A m -2 identical to that from the G-band shift, suggesting that thermalization between CNTs is well achieved.
Development of practical high temperature superconducting wire for electric power application
NASA Technical Reports Server (NTRS)
Hawsey, Robert A.; Sokolowski, Robert S.; Haldar, Pradeep; Motowidlo, Leszek R.
1995-01-01
The technology of high temperature superconductivity has gone from beyond mere scientific curiousity into the manufacturing environment. Single lengths of multifilamentary wire are now produced that are over 200 meters long and that carry over 13 amperes at 77 K. Short-sample critical current densities approach 5 x 104 A/sq cm at 77 K. Conductor requirements such as high critical current density in a magnetic field, strain-tolerant sheathing materials, and other engineering properties are addressed. A new process for fabricating round BSCCO-2212 wire has produced wires with critical current densities as high as 165,000 A/sq cm at 4.2 K and 53,000 A/sq cm at 40 K. This process eliminates the costly, multiple pressing and rolling steps that are commonly used to develop texture in the wires. New multifilamentary wires with strengthened sheathing materials have shown improved yield strengths up to a factor of five better than those made with pure silver. Many electric power devices require the wire to be formed into coils for production of strong magnetic fields. Requirements for coils and magnets for electric power applications are described.
A study of electrically active traps in AlGaN/GaN high electron mobility transistor
NASA Astrophysics Data System (ADS)
Yang, Jie; Cui, Sharon; Ma, T. P.; Hung, Ting-Hsiang; Nath, Digbijoy; Krishnamoorthy, Sriram; Rajan, Siddharth
2013-10-01
We have studied electron conduction mechanisms and the associated roles of the electrically active traps in the AlGaN layer of an AlGaN/GaN high electron mobility transistor structure. By fitting the temperature dependent I-V (Current-Voltage) curves to the Frenkel-Poole theory, we have identified two discrete trap energy levels. Multiple traces of I-V measurements and constant-current injection experiment all confirm that the main role of the traps in the AlGaN layer is to enhance the current flowing through the AlGaN barrier by trap-assisted electron conduction without causing electron trapping.
Cook, Brendan; Gazzano, Jerrome; Gunay, Zeynep; Hiller, Lucas; Mahajan, Sakshi; Taskan, Aynur; Vilogorac, Samra
2012-04-23
The electric grid in the United States has been suffering from underinvestment for years, and now faces pressing challenges from rising demand and deteriorating infrastructure. High congestion levels in transmission lines are greatly reducing the efficiency of electricity generation and distribution. In this paper, we assess the faults of the current electric grid and quantify the costs of maintaining the current system into the future. While the proposed "smart grid" contains many proposals to upgrade the ailing infrastructure of the electric grid, we argue that smart meter installation in each U.S. household will offer a significant reduction in peak demand on the current system. A smart meter is a device which monitors a household's electricity consumption in real-time, and has the ability to display real-time pricing in each household. We conclude that these devices will provide short-term and long-term benefits to utilities and consumers. The smart meter will enable utilities to closely monitor electricity consumption in real-time, while also allowing households to adjust electricity consumption in response to real-time price adjustments.
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Blakeslee, R. J.; Bateman, M. J.; Bailey, J. C.
2011-01-01
We have combined analyses of over 1000 high altitude aircraft observations of electrified clouds with diurnal lightning statistics from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to produce an estimate of the diurnal variation in the global electric circuit. Using basic assumptions about the mean storm currents as a function of flash rate and location, and the global electric circuit, our estimate of the current in the global electric circuit matches the Carnegie curve diurnal variation to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Mean contributions to the global electric circuit from land and ocean thunderstorms are 1.1 kA (land) and 0.7 kA (ocean). Contributions to the global electric circuit from ESCs are 0.22 kA for ocean storms and 0.04 kA for land storms. Using our analysis, the mean total conduction current for the global electric circuit is 2.0 kA.
High density associative memory
NASA Technical Reports Server (NTRS)
Moopenn, Alexander W. (Inventor); Thakoor, Anilkumar P. (Inventor); Daud, Taher (Inventor); Lambe, John J. (Inventor)
1989-01-01
A multi-layered, thin-film, digital memory having associative recall. There is a first memory matrix and a second memory matrix. Each memory matrix comprises, a first layer comprising a plurality of electrically separated row conductors; a second layer comprising a plurality of electrically separated column conductors intersecting but electrically separated from the row conductors; and, a plurality of resistance elements electrically connected between the row condutors and the column conductors at respective intersections of the row conductors and the column conductors, each resistance element comprising, in series, a first resistor of sufficiently high ohmage to conduct a sensible element current therethrough with virtually no heat-generating power consumption when a low voltage as employed in thin-film applications is applied thereacross and a second resistor of sufficiently high ohmage to conduct no sensible current therethrough when a low voltage as employed in thin-film applications is applied thereacross, the second resistor having the quality of breaking down to create a short therethrough upon the application of a breakdown level voltage across the first and second resistors.
21 CFR 884.4160 - Unipolar endoscopic coagulator-cutter and accessories.
Code of Federal Regulations, 2010 CFR
2010-04-01
... temperatures by directing a high frequency electrical current through the tissue between an energized probe and... generator, probes and electrical cables, and a patient grounding plate. This generic type of device does not...
21 CFR 884.4160 - Unipolar endoscopic coagulator-cutter and accessories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... temperatures by directing a high frequency electrical current through the tissue between an energized probe and... generator, probes and electrical cables, and a patient grounding plate. This generic type of device does not...
21 CFR 884.4160 - Unipolar endoscopic coagulator-cutter and accessories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... temperatures by directing a high frequency electrical current through the tissue between an energized probe and... generator, probes and electrical cables, and a patient grounding plate. This generic type of device does not...
21 CFR 884.4160 - Unipolar endoscopic coagulator-cutter and accessories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... temperatures by directing a high frequency electrical current through the tissue between an energized probe and... generator, probes and electrical cables, and a patient grounding plate. This generic type of device does not...
21 CFR 884.4160 - Unipolar endoscopic coagulator-cutter and accessories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... temperatures by directing a high frequency electrical current through the tissue between an energized probe and... generator, probes and electrical cables, and a patient grounding plate. This generic type of device does not...
NASA Astrophysics Data System (ADS)
Isaka, Katsuo
The biological effects of extremely low frequency electric fields on animals are reviewed with emphasis on studies of the nervous system, behavior, endocrinology, and blood chemistry. First, this paper provides a histrical overview of studies on the electric field effects initiated in Russia and the United States mainly regarding electric utility workers in high voltage substations and transmission lines. Then, the possible mechanisms of electric field effects are explained using the functions of surface electric fields and induced currents in biological objects. The real mechanisms have not yet been identified. The thresholds of electric field perception levels for rats, baboons, and humans are introduced and compared. The experimental results concerning the depression of melatonin secretion in rats exposed to electric fields are described.
Edwards, Dylan; Cortes, Mar; Datta, Abhishek; Minhas, Preet; Wassermann, Eric M.; Bikson, Marom
2015-01-01
Transcranial Direct Current Stimulation (tDCS) is a non-invasive, low-cost, well-tolerated technique producing lasting modulation of cortical excitability. Behavioral and therapeutic outcomes of tDCS are linked to the targeted brain regions, but there is little evidence that current reaches the brain as intended. We aimed to: (1) validate a computational model for estimating cortical electric fields in human transcranial stimulation, and (2) assess the magnitude and spread of cortical electric field with a novel High-Definition tDCS (HD-tDCS) scalp montage using a 4×1-Ring electrode configuration. In three healthy adults, Transcranial Electrical Stimulation (TES) over primary motor cortex (M1) was delivered using the 4×1 montage (4× cathode, surrounding a single central anode; montage radius ~3 cm) with sufficient intensity to elicit a discrete muscle twitch in the hand. The estimated current distribution in M1 was calculated using the individualized MRI-based model, and compared with the observed motor response across subjects. The response magnitude was quantified with stimulation over motor cortex as well as anterior and posterior to motor cortex. In each case the model data were consistent with the motor response across subjects. The estimated cortical electric fields with the 4×1 montage were compared (area, magnitude, direction) for TES and tDCS in each subject. We provide direct evidence in humans that TES with a 4×1-Ring configuration can activate motor cortex and that current does not substantially spread outside the stimulation area. Computational models predict that both TES and tDCS waveforms using the 4×1-Ring configuration generate electric fields in cortex with comparable gross current distribution, and preferentially directed normal (inward) currents. The agreement of modeling and experimental data for both current delivery and focality support the use of the HD-tDCS 4×1-Ring montage for cortically targeted neuromodulation. PMID:23370061
The Alkali Metal Thermal-To-Electric Converter for Solar System Exploration
NASA Technical Reports Server (NTRS)
Ryan, M.
1999-01-01
AMTEC, the Alkali Metal Thermal to Electric Converter, is a direct thermal to electric energy conversion device; it has been demostrated to perform at high power densities, with open circuit voltages in single electrochemical cells up to 1.6 V and current desities up to 2.0 A/cm(sup 2).
New route for hollow materials
NASA Astrophysics Data System (ADS)
Rivaldo-Gómez, C. M.; Ferreira, F. F.; Landi, G. T.; Souza, J. A.
2016-08-01
Hollow micro/nano structures form an important family of functional materials. We have used the thermal oxidation process combined with the passage of electric current during a structural phase transition to disclose a colossal mass diffusion transfer of Ti ions. This combination points to a new route for fabrication of hollow materials. A structural phase transition at high temperature prepares the stage by giving mobility to Ti ions and releasing vacancies to the system. The electric current then drives an inward delocalization of vacancies, condensing into voids, and finally turning into a big hollow. This strong physical phenomenon leading to a colossal mass transfer through ionic diffusion is suggested to be driven by a combination of phase transition and electrical current followed by chemical reaction. We show this phenomenon for Ti leading to TiO2 microtube formation, but we believe that it can be used to other metals undergoing structural phase transition at high temperatures.
NASA Astrophysics Data System (ADS)
Fomin, A. A.; Fomina, M. A.; Koshuro, V. A.; Rodionov, I. V.; Voiko, A. V.; Zakharevich, A. M.; Aman, A.; Oseev, A.; Hirsch, S.; Majcherek, S.
2016-09-01
We have studied the characteristics of the porous microstructure of tantalum coatings obtained by means of electric spark spraying on the surface of commercial grade titanium. It is established that, at an electric spark current within 0.8-2.2 A, a mechanically strong tantalum coating microstructure is formed with an average protrusion size of 5.1-5.4 µm and pore sizes from 3.5 to 9.2 µm. On the nanoscale, a structurally heterogeneous state of coatings has been achieved by subsequent thermal modification at 800-830°C with the aid of high-frequency currents. A metal oxide nanostructure with grain sizes from 40 to 120 nm is formed by short-time (~30 s) thermal modification. The coating hardness reaches 9.5-10.5 GPa at an elastic modulus of 400-550 GPa.
Semiconductor bridge (SCB) detonator
Bickes, Jr., Robert W.; Grubelich, Mark C.
1999-01-01
The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.
Fourier analysis of polar cap electric field and current distributions
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1984-01-01
A theoretical study of high-latitude electric fields and currents, using analytic Fourier analysis methods, is conducted. A two-dimensional planar model of the ionosphere with an enhanced conductivity auroral belt and field-aligned currents at the edges is employed. Two separate topics are treated. A field-aligned current element near the cusp region of the polar cap is included to investigate the modifications to the convection pattern by the east-west component of the interplanetary magnetic field. It is shown that a sizable one-cell structure is induced near the cusp which diverts equipotential contours to the dawnside or duskside, depending on the sign of the cusp current. This produces characteristic dawn-dusk asymmetries to the electric field that have been previously observed over the polar cap. The second topic is concerned with the electric field configuration obtained in the limit of perfect shielding, where the field is totally excluded equatorward of the auroral oval. When realistic field-aligned current distributions are used, the result is to produce severely distorted, crescent-shaped equipotential contours over the cap. Exact, analytic formulae applicable to this case are also provided.
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-11-16
A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1986-01-01
A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.
A Novel Arc Fault Detector for Early Detection of Electrical Fires
Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang
2016-01-01
Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618
NASA Technical Reports Server (NTRS)
Pisanko, Yu. V.
1995-01-01
The calculation of the solar rotation electro-dynamical effects in the near-the-Sun solar wind seems more convenient from the non-inertial corotating reference frame. This implies some modification of the 3-D MHD equations generally on the base of the General Theory of Relativity. The paper deals with the search of stationary (in corotating non-inertial reference frame) solutions of the modified 3-D MHD equations for the in near-the-Sun high latitude sub-alfvenic solar wind. The solution is obtained requiring electric fields and field-aligned electric currents in the high latitude near-the-Sun solar wind. Various scenario are explored self-consistently via a number of numerical experiments. The analogy with the high latitude Earth's magnetosphere is used for the interpretation of the results. Possible observational manifestations are discussed.
[Application of high frequency electric welding in adrenal surgery. Current state and prospects].
Kvacheniuk, A N; Suprun, I S; Negrienko, K V; Barenfel'd, A I; Datta, M R; Datta, L R; Nelep, A D
2012-07-01
In 14 patients underwent open adrenalectomy with high-frequency electric welding application (I group), in 8 - open adrenalectomy (II group). The two groups were compared: duration of surgery, blood loss, postoperative pain intensity, duration of postoperative hospitalization, the frequency of intra-and postoperative complications, histological changes in tissues. The advantages of open adrenalectomy with high-frequency electric welding application feel less duration of surgery and estimated blood loss, lack of necrosis in the surrounding tissues and foreign bodies in the wound, reducing the trauma of surgery, improving rehabilitation.
NASA Astrophysics Data System (ADS)
Huang, Tao; Zou, Yanhui; Lv, Jianhong; Yang, Jinchun; Tao, Li; Zhou, Jianfei
2017-09-01
Human body under high-voltage AC transmission lines will produce a certain induced voltage due to the electrostatic induction. When the human body contacts with some grounded objects, the charges transfer from the body to the ground and produce contact current which may cause transient electric shock. Using CDEGS and ATP/EMTP, the paper proposes a method for quantitatively calculating the transient electric shock characteristics. It calculates the human body voltage, discharge current and discharge energy under certain 500kV compact-type transmission lines and predicts the corresponding human feelings. The results show that the average root value of discharge current is less than 10mA when the human body is under the 500kV compact-type transmission lines and the human body is overall safe if the transmission lines satisfy the relevant design specifications. It concludes that the electric field strength above the ground should be limited to 4kV/m through the residential area for the purpose of reducing the electromagnetic impact.
NASA Technical Reports Server (NTRS)
Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.
1985-01-01
The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.
An Effective Electrical Resonance-Based Method to Detect Delamination in Thermal Barrier Coating
NASA Astrophysics Data System (ADS)
Kim, Jong Min; Park, Jae-Ha; Lee, Ho Girl; Kim, Hak-Joon; Song, Sung-Jin; Seok, Chang-Sung; Lee, Young-Ze
2017-12-01
This research proposes a simple yet highly sensitive method based on electrical resonance of an eddy-current probe to detect delamination of thermal barrier coating (TBC). This method can directly measure the mechanical characteristics of TBC compared to conventional ultrasonic testing and infrared thermography methods. The electrical resonance-based method can detect the delamination of TBC from the metallic bond coat by shifting the electrical impedance of eddy current testing (ECT) probe coupling with degraded TBC, and, due to this shift, the resonant frequencies near the peak impedance of ECT probe revealed high sensitivity to the delamination. In order to verify the performance of the proposed method, a simple experiment is performed with degraded TBC specimens by thermal cyclic exposure. Consequently, the delamination with growth of thermally grown oxide in a TBC system is experimentally identified. Additionally, the results are in good agreement with the results obtained from ultrasonic C-scanning.
An Effective Electrical Resonance-Based Method to Detect Delamination in Thermal Barrier Coating
NASA Astrophysics Data System (ADS)
Kim, Jong Min; Park, Jae-Ha; Lee, Ho Girl; Kim, Hak-Joon; Song, Sung-Jin; Seok, Chang-Sung; Lee, Young-Ze
2018-02-01
This research proposes a simple yet highly sensitive method based on electrical resonance of an eddy-current probe to detect delamination of thermal barrier coating (TBC). This method can directly measure the mechanical characteristics of TBC compared to conventional ultrasonic testing and infrared thermography methods. The electrical resonance-based method can detect the delamination of TBC from the metallic bond coat by shifting the electrical impedance of eddy current testing (ECT) probe coupling with degraded TBC, and, due to this shift, the resonant frequencies near the peak impedance of ECT probe revealed high sensitivity to the delamination. In order to verify the performance of the proposed method, a simple experiment is performed with degraded TBC specimens by thermal cyclic exposure. Consequently, the delamination with growth of thermally grown oxide in a TBC system is experimentally identified. Additionally, the results are in good agreement with the results obtained from ultrasonic C-scanning.
A novel high-performance high-frequency SOI MESFET by the damped electric field
NASA Astrophysics Data System (ADS)
Orouji, Ali A.; Khayatian, Ahmad; Keshavarzi, Parviz
2016-06-01
In this paper, we introduce a novel silicon-on-insulator (SOI) metal-semiconductor field-effect-transistor (MESFET) using the damped electric field (DEF). The proposed structure is geometrically symmetric and compatible with common SOI CMOS fabrication processes. It has two additional oxide regions under the side gates in order to improve DC and RF characteristics of the DEF structure due to changes in the electrical potential, the electrical field distributions, and rearrangement of the charge carriers. Improvement of device performance is investigated by two-dimensional and two-carrier simulation of fundamental parameters such as breakdown voltage (VBR), drain current (ID), output power density (Pmax), transconductance (gm), gate-drain and gate-source capacitances, cut-off frequency (fT), unilateral power gain (U), current gain (h21), maximum available gain (MAG), and minimum noise figure (Fmin). The results show that proposed structure operates with higher performances in comparison with the similar conventional SOI structure.
NASA Technical Reports Server (NTRS)
Lennartsson, W.
1977-01-01
A simple model of a static electric field with a component parallel to the magnetic field is proposed for calculating the electric field and current distributions at various altitudes when the horizontal distribution of the convection electric field is given at a certain altitude above the auroral ionosphere. The model is shown to be compatible with satellite observations of inverted-V electron precipitation structures and associated irregularities in the convection electric field.
Document for 270 Voltage Direct Current (270 V dc) System
NASA Astrophysics Data System (ADS)
1992-09-01
The paper presents the technical design and application information established by the SAE Aerospace Recommended Practice concerning the generation, distribution, control, and utilization of aircraft 270 V dc electrical power systems and support equipment. Also presented are references and definitions making it possible to compare various electrical systems and components. A diagram of the generic 270 V Direct Current High-Voltage Direct System is included.
Gay, Eddie C.; Martino, Fredric J.
1976-01-01
Particulate electrode reactants, for instance transition metal sulfides for the positive electrodes and lithium alloys for the negative electrodes, are vibratorily compacted into porous, electrically conductive structures. Structures of high porosity support sufficient reactant material to provide high cell capacity per unit weight while serving as an electrical current collector to improve the utilization of reactant materials. Pore sizes of the structure and particle sizes of the reactant material are selected to permit uniform vibratory loading of the substrate without settling of the reactant material during cycling.
Baker, W.R.; Hartwig, A.
1962-09-25
A compactly wound electrical coil is designed for carrying intense pulsed currents such as are characteristic of controlled thermonuclear reaction devices. A flat strip of conductor is tightly wound in a spiral with a matching flat strip of insulator. To provide for a high fluid coolant flow through the coil with minimum pumping pressure, a surface of the conductor is scored with parallel transverse grooves which form short longitudinal coolant pasaages when the conductor is wound in the spiral configuration. Owing to this construction, the coil is extremely resistant to thermal and magnetic shock from sudden high currents. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diprose, M.F.; Benson, F.A.; Willis, A.J.
High electric fields are reported to damage plants if currents greater than 10/sup -6/ A are induced to flow through leaves causing corona discharges from the tips. The nature of the damage and the effects on metabolic processes are discussed. The results from experiments on the growth of plants in which the density and charge of air ions have been varied are also reviewed. The effects of microwave radiation (mostly 2450 MHz) upon seeds, plants and other organisms in soil are discussed. These effects depend upon the power density of the radiation and the electrical properties of the targets. Althoughmore » microwaves can be effective in killing plants and also seeds that are buried several centimeters deep in soil, high power equipment is required and treatment times are long e.g. a 60 kW machine could take up to 92.6 hours per hectare. Other experiments reported show that microwave radiation can kill nematodes in the soil and that it is also very effective in killing fungi and bacteria. The potential of the various possible uses of microwave radiation in agriculture is also described. Electric currents have been caused to flow through plants by the applicaton of electrodes to the leaves. The effects range from nil, when 50-100 V and 1 or 2 ..mu..A are used, to very striking when voltages from 5 to 15 kV are applied causing currents of several amperes to flow and resulting in the rapid destruction of the target. Small electric currents passed through soil containing plants are reported to increase their growth. The effects of small current on the growth of individual leaves are reviewed. The use of high voltage tractor-borne equipment for weed control is also considered. 152 references, 9 tables.« less
Design of current source for multi-frequency simultaneous electrical impedance tomography
NASA Astrophysics Data System (ADS)
Han, Bing; Xu, Yanbin; Dong, Feng
2017-09-01
Multi-frequency electrical impedance tomography has been evolving from the frequency-sweep approach to the multi-frequency simultaneous measurement technique which can reduce measuring time and will be increasingly attractive for time-varying biological applications. The accuracy and stability of the current source are the key factors determining the quality of the image reconstruction. This article presents a field programmable gate array-based current source for a multi-frequency simultaneous electrical impedance tomography system. A novel current source circuit was realized by combining the classic current mirror based on the feedback amplifier AD844 with a differential topology. The optimal phase offsets of harmonic sinusoids were obtained through the crest factor analysis. The output characteristics of this current source were evaluated by simulation and actual measurement. The results include the following: (1) the output impedance was compared with one of the Howland pump circuit in simulation, showing comparable performance at low frequencies. However, the proposed current source makes lower demands for resistor tolerance but performs even better at high frequencies. (2) The output impedance in actual measurement below 200 kHz is above 1.3 MΩ and can reach 250 KΩ up to 1 MHz. (3) An experiment based on a biological RC model has been implemented. The mean error for the demodulated impedance amplitude and phase are 0.192% and 0.139°, respectively. Therefore, the proposed current source is wideband, biocompatible, and high precision, which demonstrates great potential to work as a sub-system in the multi-frequency electrical impedance tomography system.
NASA Astrophysics Data System (ADS)
Goh, Chin-Teng; Cruden, Andrew
2014-11-01
Capacitance and resistance are the fundamental electrical parameters used to evaluate the electrical characteristics of a supercapacitor, namely the dynamic voltage response, energy capacity, state of charge and health condition. In the British Standards EN62391 and EN62576, the constant capacitance method can be further improved with a differential capacitance that more accurately describes the dynamic voltage response of supercapacitors. This paper presents a novel bivariate quadratic based method to model the dynamic voltage response of supercapacitors under high current charge-discharge cycling, and to enable the derivation of the differential capacitance and energy capacity directly from terminal measurements, i.e. voltage and current, rather than from multiple pulsed-current or excitation signal tests across different bias levels. The estimation results the author achieves are in close agreement with experimental measurements, within a relative error of 0.2%, at various high current levels (25-200 A), more accurate than the constant capacitance method (4-7%). The archival value of this paper is the introduction of an improved quantification method for the electrical characteristics of supercapacitors, and the disclosure of the distinct properties of supercapacitors: the nonlinear capacitance-voltage characteristic, capacitance variation between charging and discharging, and distribution of energy capacity across the operating voltage window.
Savage, Mark E.; Simpson, Walter W.
1999-01-01
An electrical connector accommodates high current, is not labor intensive to assemble and disassemble, and allows a wide range of motion to accommodate mechanical variations and movement of connected components. The connector comprises several parts with joints therebetween, wherein each joint provides electrical connection between and allows relative motion of the joined parts. The combination of parts and joints maintains electrical connection between two electrical components even if the components are misaligned or move after connection.
Thermally-enhanced oil recovery method and apparatus
Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.
1987-01-01
A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.
Simulations of High Current NuMI Magnetic Horn Striplines at FNAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sipahi, Taylan; Biedron, Sandra; Hylen, James
2016-06-01
Both the NuMI (Neutrinos and the Main Injector) beam line, that has been providing intense neutrino beams for several Fermilab experiments (MINOS, MINERVA, NOVA), and the newly proposed LBNF (Long Baseline Neutrino Facility) beam line which plans to produce the highest power neutrino beam in the world for DUNE (the Deep Underground Neutrino Experiment) need pulsed magnetic horns to focus the mesons which decay to produce the neutrinos. The high-current horn and stripline design has been evolving as NuMI reconfigures for higher beam power and to meet the needs of the LBNF design. The CSU particle accelerator group has aidedmore » the neutrino physics experiments at Fermilab by producing EM simulations of magnetic horns and the required high-current striplines. In this paper, we present calculations, using the Poisson and ANSYS Maxwell 3D codes, of the EM interaction of the stripline plates of the NuMI horns at critical stress points. In addition, we give the electrical simulation results using the ANSYS Electric code. These results are being used to support the development of evolving horn stripline designs to handle increased electrical current and higher beam power for NuMI upgrades and for LBNF« less
Understanding the multiferroicity in TmMn2O5 by a magnetically induced ferrielectric model
Yang, L.; Li, X.; Liu, M. F.; Li, P. L.; Yan, Z. B.; Zeng, M.; Qin, M. H.; Gao, X. S.; Liu, J.-M.
2016-01-01
The magnetically induced electric polarization behaviors in multiferroic TmMn2O5 in response to varying temperature and magnetic field are carefully investigated by means of a series of characterizations including the high precision pyroelectric current technique. Here polycrystalline rather than single crystal samples are used for avoiding the strong electrically self-polarized effect in single crystals, and various parallel experiments on excluding the thermally excited current contributions are performed. The temperature-dependent electric polarization flop as a major character is identified for different measuring paths. The magneto-current measurements indicate that the electric polarization in the low temperature magnetic phase region has different origin from that in the high temperature magnetic phase. It is suggested that the electric polarization does have multiple components which align along different orientations, including the Mn3+-Mn4+-Mn3+ exchange striction induced polarization PMM, the Tm3+-Mn4+-Tm3+ exchange striction induced polarization PTM, and the low temperature polarization PLT probably associated with the Tm3+ commensurate phase. The observed electric polarization flop can be reasonably explained by the ferrielectric model proposed earlier for DyMn2O5, where PMM and PTM are the two antiparallel components both along the b-axis and PLT may align along the a-axis. Finally, several issues on the unusual temperature dependence of ferroelectric polarizations are discussed. PMID:27713482
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lingyan, E-mail: l.y.wang@mail.xjtu.edu.cn, E-mail: wren@mail.xjtu.edu.cn; Ren, Wei, E-mail: l.y.wang@mail.xjtu.edu.cn, E-mail: wren@mail.xjtu.edu.cn; Shi, Peng
Lead-free ferroelectric un-doped and doped K{sub 0.5}Na{sub 0.5}NbO{sub 3} (KNN) films with different amounts of manganese (Mn) were prepared by a chemical solution deposition method. The thicknesses of all films are about 1.6 μm. Their phase, microstructure, leakage current behavior, and electrical properties were investigated. With increasing the amounts of Mn, the crystallinity became worse. Fortunately, the electrical properties were improved due to the decreased leakage current density after Mn-doping. The study on leakage behaviors shows that the dominant conduction mechanism at low electric field in the un-doped KNN film is ohmic mode and that at high electric field is space-charge-limitedmore » and Pool-Frenkel emission. After Mn doping, the dominant conduction mechanism at high electric field of KNN films changed single space-charge-limited. However, the introduction of higher amount of Mn into the KNN film would lead to a changed conduction mechanism from space-charge-limited to ohmic mode. Consequently, there exists an optimal amount of Mn doping of 2.0 mol. %. The 2.0 mol. % Mn doped KNN film shows the lowest leakage current density and the best electrical properties. With the secondary ion mass spectroscopies and x-ray photoelectron spectroscopy analyses, the homogeneous distribution in the KNN films and entrance of Mn element in the lattice of KNN perovskite structure were also confirmed.« less
Cables and connectors for Large Space System Technology (LSST)
NASA Technical Reports Server (NTRS)
Dunbar, W. G.
1980-01-01
The effect of the environment and extravehicular activity/remote assembly operations on the cables and connectors for spacecraft with metallic and/or nonmetallic structures was examined. Cable and connector philosophy was outlined for the electrical systems and electronic compartments which contain high-voltage, high-power electrical and electronic equipment. The influence of plasma and particulates on the system is analyzed and the effect of static buildup on the spacecraft electrical system discussed. Conceptual cable and connector designs are assessed for capability to withstand high current and high voltage without danger of arcs and electromagnetic interference. The extravehicular activites required of the space station and/or supply spacecraft crew members to join and inspect the electrical system, using manual or remote assembly construction are also considered.
In situ synchrotron study of electromigration induced grain rotations in Sn solder joints
NASA Astrophysics Data System (ADS)
Shen, Hao; Zhu, Wenxin; Li, Yao; Tamura, Nobumichi; Chen, Kai
2016-04-01
Here we report an in situ study of the early stage of microstructure evolution induced by electromigration in a Pb-free β-Sn based solder joint by synchrotron polychromatic X-ray microdiffraction. With this technique, crystal orientation evolution is monitored at intragranular levels with high spatial and angular resolution. During the entire experiment, no crystal growth is detected, and rigid grain rotation is observed only in the two grains within the current crowding region, where high density and divergence of electric current occur. Theoretical calculation indicates that the trend of electrical resistance drop still holds under the present conditions in the grain with high electrical resistivity, while the other grain with low resistivity reorients to align its a-axis more parallel with the ones of its neighboring grains. A detailed study of dislocation densities and subgrain boundaries suggests that grain rotation in β-Sn, unlike grain rotation in high melting temperature metals which undergo displacive deformation, is accomplished via diffusional process mainly, due to the high homologous temperature.
Plasma source for spacecraft potential control
NASA Technical Reports Server (NTRS)
Olsen, R. C.
1983-01-01
A stable electrical ground which enables the particle spectrometers to measure the low energy particle populations was investigated and the current required to neutralize the spacecraft was measured. In addition, the plasma source for potential control (PSPO C) prevents high charging events which could affect the spacecraft electrical integrity. The plasma source must be able to emit a plasma current large enough to balance the sum of all other currents to the spacecraft. In ion thrusters, hollow cathodes provide several amperes of electron current to the discharge chamber. The PSPO C is capable of balancing the net negative currents found in eclipse charging events producing 10 to 100 microamps of electron current. The largest current required is the ion current necessary to balance the total photoelectric current.
Ultra-Low Heat-Leak, High-Temperature Superconducting Current Leads for Space Applications
NASA Technical Reports Server (NTRS)
Rey, Christopher M.
2013-01-01
NASA Goddard Space Flight Center has a need for current leads used in an adiabatic demagnetization refrigerator (ADR) for space applications. These leads must comply with stringent requirements such as a heat leak of approximately 100 W or less while conducting up to 10 A of electric current, from more than 90 K down to 10 K. Additionally, a length constraint of < 300 mm length and < 50 mm diameter is to be maintained. The need for these current leads was addressed by developing a superconducting hybrid lead. This hybrid lead comprises two different high-temperature superconducting (HTS) conductors bonded together at a thermally and electrically determined optimum point along the length of the current lead. By taking advantage of material properties of each conductor type, employing advanced fabrication techniques, and taking advantage of novel insulation materials, the company was able to develop and fabricate the lightweight, low heat-leak leads currently to NASA's specs.
Parameter estimation of extended free-burning electric arc within 1 kA
NASA Astrophysics Data System (ADS)
Sun, Qiuqin; Liu, Hao; Wang, Feng; Chen, She; Zhai, Yujia
2018-05-01
A long electric arc, as a common phenomenon in the power system, not only damages the electrical equipment but also threatens the safety of the system. In this work, a series of tests on a long electric arc in free air have been conducted. The arc voltage and current data were obtained, and the arc trajectories were captured using a high speed camera. The arc images were digitally processed by means of edge detection, and the length is formulated and achieved. Based on the experimental data, the characteristics of the long arc are discussed. It shows that the arc voltage waveform is close to the square wave with high-frequency components, whereas the current is almost sinusoidal. As the arc length elongates, the arc voltage and the resistance increase sharply. The arc takes a spiral shape with the effect of magnetic forces. The arc length will shorten briefly with the occurrence of the short-circuit phenomenon. Based on the classical Mayr model, the parameters of the long electric arc, including voltage gradient and time constant, with different lengths and current amplitudes are estimated using the linear least-square method. To reduce the computational error, segmentation interpolation is also employed. The results show that the voltage gradient of the long arc is mainly determined by the current amplitude but almost independent of the arc length. However, the time constant is jointly governed by these two variables. The voltage gradient of the arc with the current amplitude at 200-800 A is in the range of 3.9 V/cm-20 V/cm, and the voltage gradient decreases with the increase in current.
Modeling of the Coupled Magnetospheric and Neutral Wind Dynamos
NASA Technical Reports Server (NTRS)
Thayer, Jeffrey P.
1997-01-01
Over the past four years of funding, SRI, in collaboration with the University of Texas at Dallas, has been involved in assessing the influence of thermospheric neutral winds on the electric field and current systems at high latitudes. The initial direction of the project was to perform a set of numerical experiments concerning the contribution of the magnetospheric and neutral wind dynamo processes, under specific boundary conditions, to the polarization electric field and/or the field-aligned current distribution at high latitudes. To facilitate these numerical experiments we developed a numerical scheme that relied on using output from the NCAR Thermosphere-Ionosphere General Circulation Model (NCAR-TIGCM), expanding them in the form of spherical harmonics and solving the dynamo equations spectrally. Once initial calculations were completed, it was recognized that the neutral wind contribution could be significant but its actual contribution to the electric field or currents depended strongly on the generator properties of the magnetosphere. Solutions to this problem are not unique because of the unknown characteristics of the magnetospheric generator, therefore the focus was on two limiting cases. One limiting case was to consider the magnetosphere as a voltage generator delivering a fixed voltage to the high-latitude ionosphere and allowing for the neutral wind dynamo to contribute only to the current system. The second limiting case was to consider the magnetosphere as a current generator and allowing for the neutral wind dynamo to contribute only to the generation of polarization electric fields. This work was completed and presented at the l994 Fall AGU meeting. The direction of the project then shifted to applying the Poynting flux concept to the high-latitude ionosphere. This concept was more attractive as it evaluated the influence of neutral winds on the high-latitude electrodynamics without actually having to determine the generator characteristics of the magnetosphere. The influence of the neutral wind was then determined not by estimating how much electric potential or current density it provides, but by determining the contribution of the neutral wind to the net electromagnetic energy transferred between the ionosphere and magnetosphere. The estimate of the net electromagnetic energy transfer and the role of the neutral winds proves to be a more fundamental quantity in studies of magnetosphere- ionosphere coupling also showed that by using electric and magnetic field measurements from the HILAT satellite, the Poynting flux could be a measurable quantity from polar-orbiting, low- altitude spacecraft. Through collaboration with Dr. Heelis and others at UTD and their expertise of the electric field measurements on the DE-B satellite, an extensive analysis was planned to determine the Poynting flux from the DE-B measurements in combination with a modeling effort to help interpret the observations taking into account the coupled magnetosphere-ionosphere.
NASA Astrophysics Data System (ADS)
Yamazaki, Y.; Häusler, K.; Wild, J. A.
2016-07-01
As known from previous studies on the solar quiet (Sq) variation of the geomagnetic field, the strength and pattern of ionospheric dynamo currents change significantly from day to day. The present study investigates the relative importance of two sources that contribute to the day-to-day variability of the ionospheric currents at middle and low latitudes. One is high-latitude electric fields that are caused by magnetospheric convection, and the other is atmospheric waves from the lower atmosphere. Global ionospheric current systems, commonly known as Sq current systems, are simulated using the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere-electrodynamics general circulation model. Simulations are run for 1-30 April 2010 with a constant solar energy input but with various combinations of high-latitude forcing and lower atmospheric forcing. The model well reproduces geomagnetic perturbations on the ground, when both forcings are taken into account. The contribution of high-latitude forcing to the total Sq current intensity (Jtotal) is generally smaller than the contribution of wave forcing from below 30 km, except during active periods (Kp≥4), when Jtotal is enhanced due to the leakage of high-latitude electric fields to lower latitudes. It is found that the penetration electric field drives ionospheric currents at middle and low latitudes not only on the dayside but also on the nightside, which has an appreciable effect on the Dst index. It is also found that quiet time day-to-day variability in Jtotal is dominated by symmetric-mode migrating diurnal and semidiurnal tidal winds at 45-60° latitude at ˜110 km.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pervikov, A. V.
The work is focused on revealing the mechanism of structure and phase transformations in the metal wires under heating with a high-density current pulse (the electric explosion of wires, EEWs). It has been demonstrated on the example of brass and zinc wires that the transition of a current pulse with the density of j ≈ 3.3 × 10{sup 7} A/cm{sup 2} results in homogeneous heating of the crystalline structure of the metal/alloy. It has been determined that under heating with a pulse of high-density current pulse, the electric resistance of the liquid phases of zinc and brass decreases as the temperature increases. The results obtainedmore » allow for a conclusion that the presence of the particles of the condensed phase in the expanding products of EEW is the result of overheating instabilities in the liquid metal.« less
Highly miniaturized FEEP propulsion system (NanoFEEP) for attitude and orbit control of CubeSats
NASA Astrophysics Data System (ADS)
Bock, Daniel; Tajmar, Martin
2018-03-01
A highly miniaturized Field Emission Electric Propulsion (FEEP) system is currently under development at TU Dresden, called NanoFEEP [1]. The highly miniaturized thruster heads are very compact and have a volume of less than 3 cm3 and a weight of less than 6 g each. One thruster is able to generate continuous thrust of up to 8 μN with short term peaks of up to 22 μN. The very compact design and low power consumption (heating power demand between 50 and 150 mW) are achieved by using Gallium as metal propellant with its low melting point of approximately 30 °C. This makes it possible to implement an electric propulsion system consisting of four thruster heads, two neutralizers and the necessary electronics on a 1U CubeSat with its strong limitation in space, weight and available power. Even formation flying of 1U CubeSats using an electric propulsion system is possible with this system, which is shown by the example of a currently planned cooperation project between Wuerzburg University, Zentrum fuer Telematik and TU Dresden. It is planned to use the NanoFEEP electric propulsion system on the UWE (University Wuerzburg Experimental) 1U CubeSat platform [2] to demonstrate orbit and two axis attitude control with our electric propulsion system NanoFEEP. We present the latest performance characteristics of the NanoFEEP thrusters and the highly miniaturized electronics. Additionally, the concept and the current status of a novel cold neutralizer chip using Carbon Nano Tubes (CNTs) is presented.
Source-drain burnout mechanism of GaAs power MESFETS: Three terminal effects
NASA Astrophysics Data System (ADS)
Takamiya, Saburo; Sonoda, Takuji; Yamanouchi, Masahide; Fujioka, Takashi; Kohno, Masaki
1997-03-01
Theoretical expressions for thermal and electrical feedback effects are derived. These limit the power capability of a power FET and lead a device to catastrophic breakdown (source-drain burnout) when the loop gain of the former reaches unity. Field emission of thermally excited electrons at the Schottky gate plays the key role in thermal feedback, while holes being impact ionized by the drain current play a similar role in the electrical feedback. Thermal feedback is dominant in a high temperature and low drain voltage area. Electrical feedback is dominant in a high drain voltage and low temperature area. In the first area, a high junction temperature is the main factor causing the thermal runaway of the device. In the second area, the electrcal feedback increases the drain current and the temperature and gives a trigger to the thermal feedback so that it reaches unity more easily. Both effects become significant in proportion to transconductance and gate bias resistance, and cause simultaneous runaway of the gate and drain currents. The expressions of the loop gains clearly indicate the safe operating conditions for a power FET. C-band 4 W (1 chip) and 16 W (4 chip) GaAs MESFETs were used as the experimental samples. With these devices the simultaneous runaway of the gate and the drain currents, apparent dependence of the three teminal breakdown voltage on the gate bias resistance in the region dominated by electrical feedback, the rapid increase of the field emitted current at the critical temperature and clear coincidence between the measured and calculated three terminal gate currents both in the thermal feedback dominant region, etc. are demonstrated. The theory explains the experimental results well.
Harvesting dissipated energy with a mesoscopic ratchet
NASA Astrophysics Data System (ADS)
Roche, B.; Roulleau, P.; Jullien, T.; Jompol, Y.; Farrer, I.; Ritchie, D. A.; Glattli, D. C.
2015-04-01
The search for new efficient thermoelectric devices converting waste heat into electrical energy is of major importance. The physics of mesoscopic electronic transport offers the possibility to develop a new generation of nanoengines with high efficiency. Here we describe an all-electrical heat engine harvesting and converting dissipated power into an electrical current. Two capacitively coupled mesoscopic conductors realized in a two-dimensional conductor form the hot source and the cold converter of our device. In the former, controlled Joule heating generated by a voltage-biased quantum point contact results in thermal voltage fluctuations. By capacitive coupling the latter creates electric potential fluctuations in a cold chaotic cavity connected to external leads by two quantum point contacts. For unequal quantum point contact transmissions, a net electrical current is observed proportional to the heat produced.
Drung, D; Krause, C; Becker, U; Scherer, H; Ahlers, F J
2015-02-01
An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drung, D.; Krause, C.; Becker, U.
2015-02-15
An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA’s transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibratemore » both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.« less
NASA Astrophysics Data System (ADS)
Drung, D.; Krause, C.; Becker, U.; Scherer, H.; Ahlers, F. J.
2015-02-01
An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.
NASA Technical Reports Server (NTRS)
Kascak, Daniel J.
2004-01-01
With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it generates. By increasing the heat transfer out of the wire, the wires can carry a larger current and therefore produce more force. This was done by increasing the surface area of the wire to allow more coolant to flow over it. Litz wire was used because it can carry high frequency current. It also can be deformed into configurations that would increase the surface area. The best configuration was determined by heat transfer and force plots that were generated using Maxwell 2D. Future work will be done by testing and measuring the thrust force produced by the wires in a magnetic field.
Schwinger pair production by electric field coupled to inflaton
NASA Astrophysics Data System (ADS)
Geng, Jia-Jia; Li, Bao-Fei; Soda, Jiro; Wang, Anzhong; Wu, Qiang; Zhu, Tao
2018-02-01
We analytically investigate the Schwinger pair production in the de Sitter background by using the uniform asymptotic approximation method, and show that the equation of motion in general has two turning points, and the nature of these points could be single, double, real or complex, depending on the choice of the free parameters involved in the theory. Different natures of these points lead to different electric currents. In particular, when β ≡ m2/H2‑9/4 is positive, both turning points are complex, and the electric current due to the Schwinger process is highly suppressed, where m and H denote, respectively, the mass of the particle and the Hubble parameter. For the turning points to be real, it is necessary to have β < 0, and the more negative of β, the easier to produce particles. In addition, when β < 0, we also study the particle production when the electric field E is very weak. We find that the electric current in this case is proportional to E1/2 ‑ √|β|, which is strongly enhanced in the weak electric field limit when m < √2 H.
Ab initio-aided CALPHAD thermodynamic modeling of the Sn-Pb binary system under current stressing
Lin, Shih-kang; Yeh, Chao-kuei; Xie, Wei; Liu, Yu-chen; Yoshimura, Masahiro
2013-01-01
Soldering is an ancient process, having been developed 5000 years ago. It remains a crucial process with many modern applications. In electronic devices, electric currents pass through solder joints. A new physical phenomenon – the supersaturation of solders under high electric currents – has recently been observed. It involves (1) un-expected supersaturation of the solder matrix phase, and (2) the formation of unusual “ring-shaped” grains. However, the origin of these phenomena is not yet understood. Here we provide a plausible explanation of these phenomena based on the changes in the phase stability of Pb-Sn solders. Ab initio-aided CALPHAD modeling is utilized to translate the electric current-induced effect into the excess Gibbs free energies of the phases. Hence, the phase equilibrium can be shifted by current stressing. The Pb-Sn phase diagrams with and without current stressing clearly demonstrate the change in the phase stabilities of Pb-Sn solders under current stressing. PMID:24060995
Campbell, W.H.
1986-01-01
Electric currents in long pipelines can contribute to corrosion effects that limit the pipe's lifetime. One cause of such electric currents is the geomagnetic field variations that have sources in the Earth's upper atmosphere. Knowledge of the general behavior of the sources allows a prediction of the occurrence times, favorable locations for the pipeline effects, and long-term projections of corrosion contributions. The source spectral characteristics, the Earth's conductivity profile, and a corrosion-frequency dependence limit the period range of the natural field changes that affect the pipe. The corrosion contribution by induced currents from geomagnetic sources should be evaluated for pipelines that are located at high and at equatorial latitudes. At midlatitude locations, the times of these natural current maxima should be avoided for the necessary accurate monitoring of the pipe-to-soil potential. ?? 1986 D. Reidel Publishing Company.
2012-01-01
The electric grid in the United States has been suffering from underinvestment for years, and now faces pressing challenges from rising demand and deteriorating infrastructure. High congestion levels in transmission lines are greatly reducing the efficiency of electricity generation and distribution. In this paper, we assess the faults of the current electric grid and quantify the costs of maintaining the current system into the future. While the proposed “smart grid” contains many proposals to upgrade the ailing infrastructure of the electric grid, we argue that smart meter installation in each U.S. household will offer a significant reduction in peak demand on the current system. A smart meter is a device which monitors a household’s electricity consumption in real-time, and has the ability to display real-time pricing in each household. We conclude that these devices will provide short-term and long-term benefits to utilities and consumers. The smart meter will enable utilities to closely monitor electricity consumption in real-time, while also allowing households to adjust electricity consumption in response to real-time price adjustments. PMID:22540990
Electric field modulated ferromagnetism in ZnO films deposited at room temperature
NASA Astrophysics Data System (ADS)
Bu, Jianpei; Liu, Xinran; Hao, Yanming; Zhou, Guangjun; Cheng, Bin; Huang, Wei; Xie, Jihao; Zhang, Heng; Qin, Hongwei; Hu, Jifan
2018-04-01
The ZnO film deposited at room temperature, which is composed of the amorphous-phase background plus a few nanograins or nanoclusters (about 1-2 nm), exhibits room temperature ferromagnetism (FM). Such FM is found to be connected with oxygen vacancies. For the Ta/ZnO/Pt device based on the medium layer ZnO deposited at room temperature, the saturation magnetization not only is modulated between high and low resistive states by electric voltage with DC loop electric current but also increases/decreases through adjusting the magnitudes of positive/negative DC sweeping voltage. Meanwhile, the voltage-controlled conductance quantization is observed in Ta/ZnO/Pt, accompanying the voltage-controlled magnetization. However, the saturation magnetization of the Ta/ZnO/Pt device becomes smaller under positive electric voltage and returns in some extent under negative electric voltage, when the DC loop electric current is not applied.
Savage, M.E.; Simpson, W.W.
1999-07-27
An electrical connector accommodates high current, is not labor intensive to assemble and disassemble, and allows a wide range of motion to accommodate mechanical variations and movement of connected components. The connector comprises several parts with joints therebetween, wherein each joint provides electrical connection between and allows relative motion of the joined parts. The combination of parts and joints maintains electrical connection between two electrical components even if the components are misaligned or move after connection. 6 figs.
Magnetic reconnection launcher
Cowan, M.
1987-04-06
An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in the launcher with the passage of a projectiles. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils. The gap portion of the projectile permits substantially unrestricted distribution of the induced currents so that current densities are only high where the useful magnetic force is high. This allows designs which permit ohmic oblation from the rear surfaces of the gap portion of the projectile allowing much high velocities to be achieved. An electric power apparatus controls the electric power supplied to the opposing coils until the gap portion of the projectile substantially occupies the gap between the coils, at which time the coils are supplied with peak current quickly. 8 figs.
A review of Soviet plasma engine development
NASA Technical Reports Server (NTRS)
Barnett, John W.
1990-01-01
The Soviet Union has maintained a substantial and successful electric propulsion research and development effort since the 1950s; however, American researchers are generally unfamiliar with the Soviet accomplishments. Sources of information about Soviet electric propulsion research are noted. The development of plasma engines, a subset of the electric propulsion effort, is reviewed using numerous Soviet sources. The operational principles and status of several engines of the closed electron drift and high-current types are discussed. With recognition of the limited knowledge of the current Soviet program, the Soviet and American programs are compared, revealing some differences in program formulation and emphasis.
Design, production and first commissioning results of the electrical feedboxes of the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perin, A.; Atieh, S.; Benda, V.
2007-12-01
A total of 44 CERN designed cryogenic electrical feedboxes are needed to power the LHC superconducting magnets. The feedboxes include more than 1000 superconducting circuits fed by high temperature superconductor and conventional current leads ranging from 120 A to 13 kA. In addition to providing the electrical current to the superconducting circuits, they also ensure specific mechanical and cryogenic functions for the LHC. The paper focuses on the main design aspects and related production operations and gives an overview of specific technologies employed. Results of the commissioning of the feedboxes of the first LHC sectors are presented.
Semiconductor bridge (SCB) detonator
Bickes, R.W. Jr.; Grubelich, M.C.
1999-01-19
The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.
Blondin, J P; Nguyen, D H; Sbeghen, J; Goulet, D; Cardinal, C; Maruvada, P S; Plante, M; Bailey, W H
1996-01-01
The objective of this study was to assess the ability of humans to detect the presence of DC electric field and ion currents. An exposure chamber simulating conditions present in the vicinity of high-voltage DC (HVDC) lines was designed and built for this purpose. In these experiments, the facility was used to expose observers to DC electric fields up to 50 kV/m and ion current densities up to 120 nA/m2. Forty-eight volunteers (25 women and 23 men) between the ages of 18 and 57 years served as observers. Perception of DC fields was examined by using two psychophysical methods: an adaptive staircase procedure and a rating method derived from signal-detection theory. Subjects completed three different series of observations by using each of these methods; one was conducted without ion currents, and the other two involved various combinations of electric fields and ion currents. Overall, subjects were significantly more likely to detect DC fields as the intensity increased. Observers were able to detect the presence of DC fields alone, but only at high intensities; the average threshold was 45 kV/m. Except in the most sensitive individuals, ion current densities up to 60 nA/m2 did not significantly facilitate the detection of DC fields. However, higher ion current densities were associated with a substantial lowering of sensory thresholds in a large majority of observers. Data analysis also revealed large variations in perceptual thresholds among observers. Normative data indicating DC field and ion current intensities that can be detected by 50% of all observers are provided. In addition, for the most sensitive observers, several other detection proportions were derived from the distribution of individual detection capabilities. These data can form the basis for environmental guidelines relating to the design of HVDC lines.
Trap-assisted tunneling in Si-InAs nanowire heterojunction tunnel diodes.
Bessire, Cedric D; Björk, Mikael T; Schmid, Heinz; Schenk, Andreas; Reuter, Kathleen B; Riel, Heike
2011-10-12
We report on the electrical characterization of one-sided p(+)-si/n-InAs nanowire heterojunction tunnel diodes to provide insight into the tunnel process occurring in this highly lattice mismatched material system. The lattice mismatch gives rise to dislocations at the interface as confirmed by electron microscopy. Despite this, a negative differential resistance with peak-to-valley current ratios of up to 2.4 at room temperature and with large current densities is observed, attesting to the very abrupt and high-quality interface. The presence of dislocations and other defects that increase the excess current is evident in the first and second derivative of the I-V characteristics as distinct peaks arising from trap-and phonon-assisted tunneling via the corresponding defect levels. We observe this assisted tunneling mainly in the forward direction and at low reverse bias but not at higher reverse biases because the band-to-band generation rates are peaked in the InAs, which is also confirmed by modeling. This indicates that most of the peaks are due to dislocations and defects in the immediate vicinity of the interface. Finally, we also demonstrate that these devices are very sensitive to electrical stress, in particular at room temperature, because of the extremely high electrical fields obtained at the abrupt junction even at low bias. The electrical stress induces additional defect levels in the band gap, which reduce the peak-to-valley current ratios.
Electrical stimulation of anal sphincter or pudendal nerve improves anal sphincter pressure.
Damaser, Margot S; Salcedo, Levilester; Wang, Guangjian; Zaszczurynski, Paul; Cruz, Michelle A; Butler, Robert S; Jiang, Hai-Hong; Zutshi, Massarat
2012-12-01
Stimulation of the pudendal nerve or the anal sphincter could provide therapeutic options for fecal incontinence with little involvement of other organs. The goal of this project was to assess the effects of pudendal nerve and anal sphincter stimulation on bladder and anal pressures. Ten virgin female Sprague Dawley rats were randomly allocated to control (n = 2), perianal stimulation (n = 4), and pudendal nerve stimulation (n = 4) groups. A monopolar electrode was hooked to the pudendal nerve or placed on the anal sphincter. Aballoon catheter was inserted into the anus to measure anal pressure, and a catheter was inserted into the bladder via the urethra to measure bladder pressure. Bladder and anal pressures were measured with different electrical stimulation parameters and different timing of electrical stimulation relative to spontaneous anal sphincter contractions. Increasing stimulation current had the most dramatic effect on both anal and bladder pressures. An immediate increase in anal pressure was observed when stimulating either the anal sphincter or the pudendal nerve at stimulation values of 1 mA or 2 mA. No increase in anal pressure was observed for lower current values. Bladder pressure increased at high current during anal sphincter stimulation, but not as much as during pudendal nerve stimulation. Increased bladder pressure during anal sphincter stimulation was due to contraction of the abdominal muscles. Electrical stimulation caused an increase in anal pressures with bladder involvement only at high current. These initial results suggest that electrical stimulation can increase anal sphincter pressure, enhancing continence control.
Progress and issues for high-speed vertical cavity surface emitting lasers
NASA Astrophysics Data System (ADS)
Lear, Kevin L.; Al-Omari, Ahmad N.
2007-02-01
Extrinsic electrical, thermal, and optical issues rather than intrinsic factors currently constrain the maximum bandwidth of directly modulated vertical cavity surface emitting lasers (VCSELs). Intrinsic limits based on resonance frequency, damping, and K-factor analysis are summarized. Previous reports are used to compare parasitic circuit values and electrical 3dB bandwidths and thermal resistances. A correlation between multimode operation and junction heating with bandwidth saturation is presented. The extrinsic factors motivate modified bottom-emitting structures with no electrical pads, small mesas, copper plated heatsinks, and uniform current injection. Selected results on high speed quantum well and quantum dot VCSELs at 850 nm, 980 nm, and 1070 nm are reviewed including small-signal 3dB frequencies up to 21.5 GHz and bit rates up to 30 Gb/s.
Large transient fault current test of an electrical roll ring
NASA Technical Reports Server (NTRS)
Yenni, Edward J.; Birchenough, Arthur G.
1992-01-01
The space station uses precision rotary gimbals to provide for sun tracking of its photoelectric arrays. Electrical power, command signals and data are transferred across the gimbals by roll rings. Roll rings have been shown to be capable of highly efficient electrical transmission and long life, through tests conducted at the NASA Lewis Research Center and Honeywell's Satellite and Space Systems Division in Phoenix, AZ. Large potential fault currents inherent to the power system's DC distribution architecture, have brought about the need to evaluate the effects of large transient fault currents on roll rings. A test recently conducted at Lewis subjected a roll ring to a simulated worst case space station electrical fault. The system model used to obtain the fault profile is described, along with details of the reduced order circuit that was used to simulate the fault. Test results comparing roll ring performance before and after the fault are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, M. S.; Gusev, Yu. P., E-mail: GusevYP@mpei.ru; Monakov, Yu. V.
The insertion of current-limiting reactors into electrical equipment operating at a voltage of 110 and 220 kV produces a change in the parameters of the transient recovery voltages at the contacts of the circuit breakers for disconnecting short circuits, which could be the reason for the increase in the duration of the short circuit, damage to the electrical equipment and losses in the power system. The results of mathematical modeling of the transients, caused by tripping of the short circuit in a reactive electric power transmission line are presented, and data are given on the negative effect of a current-limitingmore » resistor on the rate of increase and peak value of the transient recovery voltages. Methods of ensuring the standard requirements imposed on the parameters of the transient recovery voltages when using current-limiting reactors in the high-voltage electrical equipment of power plants and substations are proposed and analyzed.« less
Effect of power shape on energy extraction from microbial fuel cell
NASA Astrophysics Data System (ADS)
Alaraj, Muhannad; Feng, Shuo; Roane, Timberley M.; Park, Jae-Do
2017-10-01
Microbial fuel cells (MFCs) generate renewable energy in the form of direct current (DC) power. Harvesting energy from MFCs started with passive components such as resistors and capacitors, then charge pumps were introduced with some more advantages. Power electronics converters were later preferred due to their higher efficiency and controllability; however, they introduce high frequency current ripple due to their high frequency switching. In this paper, the effect of shape of power extraction on MFC performance was investigated using three types of current shapes: continuous, square-wave, and triangular-wave. Simultaneously, chemical parameters, such as pH, dissolved oxygen, electrical conductivity, and redox potential, in the anode chamber were monitored to see how these parameters change with the shape of the electrical power extraction. Results showed that the shape of the extracted current did not have a substantial effect on the MFC life span, output power, and energy extraction, nor on the chemical parameters. The outcome of this study provided insight for the electrical impact by power electronics converters on some microbial and chemical aspects of an MFC system.
NASA Astrophysics Data System (ADS)
Zanoni, Enrico; Meneghesso, Gaudenzio; Menozzi, Roberto
2000-03-01
Hot electron in III-V FETs can be indirectly monitored by measuring the current coming out from the gate when the device is biased at high electric fields. This negative current is due to the collection of holes generated by impact ionization in the gate-to drain region. Electroluminescence represents a powerful tool in order to characterize not only hot electrons but also material properties. By using spatially resolved emission microscopy it is possible to show that the light due to cold electron/hole recombination is emitted between the gate and the source (low electric field region), while the contribution due to hot electrons is emitted between the gate and the drain (high electric field region). Deep-traps created in the device by hot carriers can be analysed by means of drain current deep level transient spectroscopy and by transconductance frequency dispersion. Cathodoluminescence, optical beam induced current, X-ray spectroscopy, electron energy loss spectroscopy in combination with a transmission electron microscopy are powerful tools in order to identify and localize surface modification following hot-electron stress tests.
High temperature superconductor current leads
Hull, John R.; Poeppel, Roger B.
1995-01-01
An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.
High temperature superconductor current leads
Hull, J.R.; Poeppel, R.B.
1995-06-20
An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.
NASA Astrophysics Data System (ADS)
Yasuoka, Takanori; Kato, Tomohiro; Kato, Katsumi; Okubo, Hitoshi
Electrode conditioning is very important technique for improvement of the insulation performance of vacuum circuit breakers (VCBs). This paper discusses the spark conditioning mechanism under non-uniform electric field focused on the pre-breakdown current. We quantitatively evaluated the spark conditioning effect by analyzing the pre-breakdown current based on Fowler-Nordheim equation. As a result, field enhancement factor β decreased with the increasing in breakdown voltage in the beginning of conditioning process, and finally β was saturated with the saturation of breakdown voltage. In addition, in case of non-uniform field, we found that β on high voltage rod electrode after conditioning varied according to the electric field strength on the rod electrode.
Aliyev, R M; Geiger, G
2012-03-01
In addition to the routine therapy, the patients with lateral epicondylitis included into experimental group were subjected to a 12-week cell-stimulation therapy with low-intensity frequency-modulated electric current. The control group received the same routine therapy and sham stimulation (the therapeutic apparatus was not energized). The efficiency of this microcurrent therapy was estimated by comparing medical indices before therapy and at the end of a 12-week therapeutic course using a 10-point pain severity numeric rating scale (NRS) and Roles-Maudsley pain score. The study revealed high therapeutic efficiency of cell-stimulation with low-intensity electric current resulting probably from up-regulation of intracellular transmitters, interleukins, and prostaglandins playing the key role in the regulation of inflammation.
Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan
2013-01-29
The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Jie; Shu Ting; Wang Hui
2012-07-15
The influence of fibrous velvet cathodes on the electrical stability of a planar high-power diode powered by a {approx}230 kV, {approx}110 ns pulse has been investigated. The current density was on the order of {approx}123 A/cm{sup 2}. A combination of time-resolved electrical and optical diagnostics has been employed to study the basic phenomenology of the temporal and spatial evolution of the diode plasmas. Additionally, an impedance model was used to extract information about this plasma from voltage and current profiles. The results from the two diagnostics were compared. By comparison with commercial polymer velvet cathode, the dense carbon fiber velvetmore » cathode showed superior long-term electrical stability as judged by the change in cathode turn-on field, ignition delays, diode impedance, and surface plasma characteristics during the voltage flattop, a promising result for applications where reliable operation at high power is required. Finally, it was shown that the interaction of the electron beam with the stainless steel anode did not lead to the formation of anode plasma. These results may be of interest to the high power microwave systems with cold cathodes.« less
Investigation of the residue in an electric rail gun employing a plasma armature
NASA Technical Reports Server (NTRS)
Bauer, D. P.; Barber, J. P.
1984-01-01
The performance of dc electric rail guns using plasma-armature-accelerated projectiles was studied. It was found that the initial rail launcher acceleration profile was consistent with the simulation, but that after the projectile had traveled approximately 25 to 30 cm along the gun, a considerable portion of the current in the projectile armature commutated into a secondary current path. Also noted were the lower than expected muzzle velocities. It was proposed that the secondary current path was a relatively high conductivity layer of residue on the launcher bore.
NASA Technical Reports Server (NTRS)
Canfield, Richard C.; De La Beaujardiere, J.-F.; Fan, Yuhong; Leka, K. D.; Mcclymont, A. N.; Metcalf, Thomas R.; Mickey, Donald L.; Wuelser, Jean-Pierre; Lites, Bruce W.
1993-01-01
Electric current systems in solar active regions and their spatial relationship to sites of electron precipitation and high-pressure in flares were studied with the purpose of providing observational evidence for or against the flare models commonly discussed in the literature. The paper describes the instrumentation, the data used, and the data analysis methods, as well as improvements made upon earlier studies. Several flare models are overviewed, and the predictions yielded by each model for the relationships of flares to the vertical current systems are discussed.
Electromagnetic induction pump for pumping liquid metals and other conductive liquids
Smither, R.K.
1993-05-11
An electromagnetic induction pump is described in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.
Electromagnetic induction pump for pumping liquid metals and other conductive liquids
Smither, Robert K.
1993-01-01
An electromagnetic induction pump in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.
NASA Astrophysics Data System (ADS)
Corne, Bram; Vervisch, Bram; Derammelaere, Stijn; Knockaert, Jos; Desmet, Jan
2018-07-01
Stator current analysis has the potential of becoming the most cost-effective condition monitoring technology regarding electric rotating machinery. Since both electrical and mechanical faults are detected by inexpensive and robust current-sensors, measuring current is advantageous on other techniques such as vibration, acoustic or temperature analysis. However, this technology is struggling to breach into the market of condition monitoring as the electrical interpretation of mechanical machine-problems is highly complicated. Recently, the authors built a test-rig which facilitates the emulation of several representative mechanical faults on an 11 kW induction machine with high accuracy and reproducibility. Operating this test-rig, the stator current of the induction machine under test can be analyzed while mechanical faults are emulated. Furthermore, while emulating, the fault-severity can be manipulated adaptively under controllable environmental conditions. This creates the opportunity of examining the relation between the magnitude of the well-known current fault components and the corresponding fault-severity. This paper presents the emulation of evolving bearing faults and their reflection in the Extended Park Vector Approach for the 11 kW induction machine under test. The results confirm the strong relation between the bearing faults and the stator current fault components in both identification and fault-severity. Conclusively, stator current analysis increases reliability in the application as a complete, robust, on-line condition monitoring technology.
Electricity and short wavelength radiation generator
George, E.V.
1985-08-26
Methods and associated apparati for use of collisions of high energy atoms and ions of He, Ne, or Ar with themselves or with high energy neutrons to produce short wavelength radiation (lambda approx. = 840-1300 A) that may be utilized to produce cathode-anode currents or photovoltaic currents.
NASA Technical Reports Server (NTRS)
Woolfson, M. G.
1966-01-01
Electrical pulse generator uses power transistors and silicon controlled rectifiers for producing a high current pulse having fast rise and fall times. At quiescent conditions, the standby power consumption of the circuit is equal to zero.
Eichelbaum, Sebastian; Dannhauer, Moritz; Hlawitschka, Mario; Brooks, Dana; Knösche, Thomas R.; Scheuermann, Gerik
2014-01-01
Electrical activity of neuronal populations is a crucial aspect of brain activity. This activity is not measured directly but recorded as electrical potential changes using head surface electrodes (electroencephalogram - EEG). Head surface electrodes can also be deployed to inject electrical currents in order to modulate brain activity (transcranial electric stimulation techniques) for therapeutic and neuroscientific purposes. In electroencephalography and noninvasive electric brain stimulation, electrical fields mediate between electrical signal sources and regions of interest (ROI). These fields can be very complicated in structure, and are influenced in a complex way by the conductivity profile of the human head. Visualization techniques play a central role to grasp the nature of those fields because such techniques allow for an effective conveyance of complex data and enable quick qualitative and quantitative assessments. The examination of volume conduction effects of particular head model parameterizations (e.g., skull thickness and layering), of brain anomalies (e.g., holes in the skull, tumors), location and extent of active brain areas (e.g., high concentrations of current densities) and around current injecting electrodes can be investigated using visualization. Here, we evaluate a number of widely used visualization techniques, based on either the potential distribution or on the current-flow. In particular, we focus on the extractability of quantitative and qualitative information from the obtained images, their effective integration of anatomical context information, and their interaction. We present illustrative examples from clinically and neuroscientifically relevant cases and discuss the pros and cons of the various visualization techniques. PMID:24821532
Flowing Plasma Interaction with an Electric Sail Tether Element
NASA Technical Reports Server (NTRS)
Schneider, Todd; Vaughn, Jason; Wright, Kenneth; Andersen, Allen; Stone, Nobie
2017-01-01
Electric sails are a relatively new concept for providing high speed propellant-less propulsion. Employing multiple tethers biased to high positive voltage levels (kV), electric sails are designed to gain momentum from the solar wind by repelling solar wind protons. To maximize the area of the sail that interacts with the solar wind, electric sails rely on the formation of a large plasma sheath around each small diameter tether. Motivated by interest in advancing the development of electric sails, a set of laboratory tests has been conducted to study the interaction of a drifting plasma with a sheath formed around a small diameter tether element biased at positive voltages. The laboratory test setup was created with Debye length scaling in mind to offer a path to extrapolate (via modeling) to full scale electric sail missions. Using an instrument known as a Differential Ion Flux Probe (DIFP) the interaction between a positively biased tether element and a drifting plasma has been measured for several scenarios. Clear evidence of the tether element sheath deflecting ions has been obtained. Maps of the flow angle downstream from the tether element have been made and they show the influence of the plasma sheath. Finally, electron current collection measurements have been made for a wide range of plasma conditions and tether element bias voltages. The electron collection data will have an impact on electric sail power requirements, as high voltage power supplies and electron guns will have to be sized to accommodate the electron currents collected by each tether.
Tanaka, Yo; Funano, Shun-ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko
2016-01-01
Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices. PMID:27241817
NASA Astrophysics Data System (ADS)
Tanaka, Yo; Funano, Shun-Ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko
2016-05-01
Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices.
Melduni, Rowlens M.; Cullen, Michael W.
2013-01-01
The role of left ventricular (LV) diastolic dysfunction in predicting atrial fibrillation (AF) recurrence after successful electrical cardioversion is largely unknown. Studies suggest that there may be a link between abnormal LV compliance and the initial development, and recurrence of AF after electrical cardioversion. Although direct-current cardioversion (DCCV) is a well-established and highly effective method to convert AF to sinus rhythm, it offers little else beyond immediate rate control because it does not address the underlying cause of AF. Preservation of sinus rhythm after successful cardioversion still remains a challenge for clinicians. Despite the use of antiarrhythmic drugs and serial cardioversions, the rate of AF recurrence remains high in the first year. Current evidence suggests that diastolic dysfunction, which is associated with atrial volume and pressure overload, may be a mechanism underlying the perpetuating cycle of AF recurrence following successful electrical cardioversion. Diastolic dysfunction is considered to be a defect in the ability of the myofibrils, which have shortened against a load in systole to eject blood into the high-pressure aorta, to rapidly or completely return to their resting length. Consequently, LV filling is impaired and the non-compliant left ventricle is unable to fill at low pressures. As a result, left atrial and pulmonary vein pressure rises, and electrical and structural remodeling of the atrial myocardium ensues, creating a vulnerable substrate for AF. In this article, we review the current evidence highlighting the association of LV diastolic dysfunction with AF recurrence after successful electrical cardioversion and provide an approach to the management of LV diastolic dysfunction to prevent AF recurrence. PMID:23525127
Electric rail gun projectile acceleration to high velocity
NASA Technical Reports Server (NTRS)
Bauer, D. P.; Mccormick, T. J.; Barber, J. P.
1982-01-01
Electric rail accelerators are being investigated for application in electric propulsion systems. Several electric propulsion applications require that the rail accelerator be capable of launching projectiles at velocities above 10 km/s. An experimental program was conducted to develop rail accelerator technology for high velocity projectile launch. Several 6 mm bore, 3 m long rail accelerators were fabricated. Projectiles with a mass of 0.2 g were accelerated by plasmas, carrying currents up to 150 kA. Experimental design and results are described. Results indicate that the accelerator performed as predicted for a fraction of the total projectile acceleration. The disparity between predicted and measured results are discussed.
Surface electric fields for North America during historical geomagnetic storms
Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.
2013-01-01
To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.
High rectifying behavior in Al/Si nanocrystal-embedded SiOxNy/p-Si heterojunctions
NASA Astrophysics Data System (ADS)
Jacques, E.; Pichon, L.; Debieu, O.; Gourbilleau, F.; Coulon, N.
2011-05-01
We examine the electrical properties of MIS devices made of Al/Si nanocrystal-SiOxNy/p-Si. The J-V characteristics of the devices present a high rectifying behavior. Temperature measurements show that the forward current is thermally activated following the thermal diffusion model of carriers. At low reverse bias, the current is governed by thermal emission amplified by the Poole-Frenkel effect of carriers from defects located at the silicon nanocrystals/SiOxNy interfaces, whereas tunnel conduction in silicon oxynitride matrix dominates at high reverse bias. The devices exhibit a rectification ratio >104 for the current measured at V = ± 1 V. Study reveals that thermal annealing in forming gas (H2/N2) improves the electrical properties of the devices due to the passivation of defects.
High voltage photovoltaic power converter
Haigh, Ronald E.; Wojtczuk, Steve; Jacobson, Gerard F.; Hagans, Karla G.
2001-01-01
An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.
NASA Technical Reports Server (NTRS)
De La Beaujardiere, J.-F.; Canfield, Richard C.; Leka, K. D.
1993-01-01
We investigate the spatial relationship between vertical electric currents and flare phenomena in NOAA Active Region 6233, which was observed 1990, August 28-31 at Mees Solar Observatory. The two flares studied are the 1N/M1.8 flare on August 28, 22:30 UT and the 1N/M1.6 flare on August 29, 20:35 UT. Using Stokes polarimetry we make magnetograms of the region and compute the vertical current density. Using H-alpha imaging spectroscopy we identify sites of intense nonthermal electron precipitation or of high coronal pressure. The precipitation in these flares is barely strong enough to be detectable. We find that both precipitation and high pressure tend to occur near vertical currents, but that neither phenomenon is cospatial with current maxima. In contrast with the conclusion of other authors, we argue that these observations do not support a current-interruption model for flares, unless the relevant currents are primarily horizontal. The magnetic morphology and temporal evolution of these flares suggest that an erupting filament model may be relevant, but this model does not explicitly predict the relationship between precipitation, high pressure, and vertical currents.
NASA Technical Reports Server (NTRS)
Buzulukova, N.; Fok, M.-C.; Pulkkinen, A.; Kuznetsova, M.; Moore, T. E.; Glocer, A.; Brandt, P. C.; Toth, G.; Rastaetter, L.
2010-01-01
We present simulation results from a one-way coupled global MHD model (Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme, BATS-R-US) and kinetic ring current models (Comprehensive Ring Current Model, CRCM, and Fok Ring Current, FokRC). The BATS-R-US provides the CRCM/FokRC with magnetic field information and plasma density/temperature at the polar CRCM/FokRC boundary. The CRCM uses an electric potential from the BATS-R-US ionospheric solver at the polar CRCM boundary in order to calculate the electric field pattern consistent with the CRCM pressure distribution. The FokRC electric field potential is taken from BATS-R-US ionospheric solver everywhere in the modeled region, and the effect of Region II currents is neglected. We show that for an idealized case with southward-northward-southward Bz IMF turning, CRCM-BATS-R-US reproduces well known features of inner magnetosphere electrodynamics: strong/weak convection under the southward/northward Bz; electric field shielding/overshielding/penetration effects; an injection during the substorm development; Subauroral Ion Drift or Polarization Jet (SAID/PJ) signature in the dusk sector. Furthermore, we find for the idealized case that SAID/PJ forms during the substorm growth phase, and that substorm injection has its own structure of field-aligned currents which resembles a substorm current wedge. For an actual event (12 August 2000 storm), we calculate ENA emissions and compare with Imager for Magnetopause-to-Aurora Global Exploration/High Energy Neutral Atom data. The CRCM-BATS-R-US reproduces both the global morphology of ring current and the fine structure of ring current injection. The FokRC-BATS-R-US shows the effect of a realistic description of Region II currents in ring current-MHD coupled models.
Effects of neutral gas release on current collection during the CHARGE-2 rocket experiment
NASA Technical Reports Server (NTRS)
Gilchrist, B. E.; Banks, P. M.; Neubert, T.; Williamson, P. R.; Myers, Neil B.; Raitt, W. John; Sasaki, S.
1990-01-01
Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged rocket payload in the ionosphere are reported. These observations were made during the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother/daughter payload system. The current collection enhancement was observed at the daughter payload located 100 to 400 m away from the mother which was firing an energetic electron beam. The authors interpret these results in terms of an electrical discharge forming in close proximity to the daughter during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. These results can also be compared with recent laboratory observations of hollow cathode plasma contactors operating in the ignited mode. Experimental observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated daughter payload in the nighttime ionosphere were made. These observations were derived from the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother-daughter payload system. The rocket flew from White Sands Missile Range (WSMR) in December, 1985. The rocket achieved an altitude of 261 km and carried a 1 keV electron beam emitting up to 48 mA of current (Myers, et al., 1989a). The mother payload, carried the electron beam source, while the daughter acted as a remote current collection and observation platform and reached a distance of 426 m away from the main payload. Gas emissions at the daughter were due to periodic thruster jet firings to maintain separation velocity between the two payloads.
NASA Astrophysics Data System (ADS)
Zhang, Yuyan; Sun, Shasha; Guo, Quanli; Yang, Degong; Sun, Dongtao
2016-11-01
In the high speed sliding electrical contact with large current, the temperature of contact area rises quickly under the coupling action of the friction heating, the Joule heating and electric arc heating. The rising temperature seriously affects the conductivity of the components and the yield strength of materials, as well affects the contact state and lead to damage, so as to shorten the service life of the contact elements. Therefore, there is vital significance to measure the temperature accurately and investigate the temperature effect on damage of rail surface. Aiming at the problem of components damage in high speed sliding electrical contact, the transient heat effect on the contact surface was explored and its influence and regularity on the sliding components damage was obtained. A kind of real-time temperature measurement method on rail surface of high speed sliding electrical contact is proposed. Under the condition of 2.5 kA current load, based on the principle of infrared radiation non-contact temperature sensor was used to measure the rail temperature. The dynamic distribution of temperature field was obtained through the simulation analysis, further, the connection between temperature changes and the rail surface damage morphology, the damage volume was analyzed and established. Finally, the method to reduce rail damage and improve the life of components by changing the temperature field was discussed.
Micro-cones on a liquid interface in high electric field: Ionization effects
NASA Astrophysics Data System (ADS)
Subbotin, Andrey V.; Semenov, Alexander N.
2018-02-01
We formulate and explore electrohydrodynamic equations for conductive liquids taking dissociation/recombination processes into account and discover a novel type of liquid cones which carry both surface and net bulk charge and can be formed on a liquid interface in an electric field. The bulk charge is generated by the corona discharge due to a high electric field at the cone apex. We establish correlation between the cone angle and physical parameters of the liquid on the one hand and the electric current passing through the cone on the other hand. It is shown that the current strongly increases when the cone angle tends to a critical value which is a function of the dielectric permittivity of the liquid. The cone stability with respect to axially symmetric perturbations is analyzed. It is shown that the cones with apex angles close to the critical angle are likely to be stable. The effect of the imposed flow on the cone apex stability is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob
This study provides a comprehensive lifecycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehiclesmore » (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob
This study provides a comprehensive life-cycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehiclesmore » (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.« less
NASA Glenn Research Center Program in High Power Density Motors for Aeropropulsion
NASA Technical Reports Server (NTRS)
Brown, Gerald V.; Kascak, Albert F.; Ebihara, Ben; Johnson, Dexter; Choi, Benjamin; Siebert, Mark; Buccieri, Carl
2005-01-01
Electric drive of transport-sized aircraft propulsors, with electric power generated by fuel cells or turbo-generators, will require electric motors with much higher power density than conventional room-temperature machines. Cryogenic cooling of the motor windings by the liquid hydrogen fuel offers a possible solution, enabling motors with higher power density than turbine engines. Some context on weights of various systems, which is required to assess the problem, is presented. This context includes a survey of turbine engine weights over a considerable size range, a correlation of gear box weights and some examples of conventional and advanced electric motor weights. The NASA Glenn Research Center program for high power density motors is outlined and some technical results to date are presented. These results include current densities of 5,000 A per square centimeter current density achieved in cryogenic coils, finite element predictions compared to measurements of torque production in a switched reluctance motor, and initial tests of a cryogenic switched reluctance motor.
Evaluation of the effects of electric fields on implanted cardiac pacemakers. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, A.J.; Carstensen, E.
1985-02-01
The effects of extra high voltage (EHV) transmission line electric fields on pacemaker function were evaluated in 11 patients with seven different implanted pacemaker models from four manufacturers. Alteration in pacemaker function was demonstrated in five unipolar units (three different models) from two manufacturers during exposure to electric fields ranging from 2 to 9 kV/m, with total body currents from 47 to 175 ..mu..A. These electric fields and body currents are representative of values that can be encountered by individuals standing beneath EHV transmission lines. Transient alterations in pacemaker function observed in this study included inappropriate triggered activity, inhibition ofmore » impulse generation, reduction in rate, and reversion from demand to asynchronous mode. Electromagnetic interference from high voltage transmission lines can induce alterations in pacemaker function in certain designs of these devices. However, pacemaker manufacturers can incorporate appropriate circuits in the pacemaker design to eliminate this problem. 8 references.« less
Electrical tuning and transduction in short hair cells of the chicken auditory papilla.
Tan, Xiaodong; Beurg, Maryline; Hackney, Carole; Mahendrasingam, Shanthini; Fettiplace, Robert
2013-04-01
The avian auditory papilla contains two classes of sensory receptor, tall hair cells (THCs) and short hair cells (SHCs), the latter analogous to mammalian outer hair cells with large efferent but sparse afferent innervation. Little is known about the tuning, transduction, or electrical properties of SHCs. To address this problem, we made patch-clamp recordings from hair cells in an isolated chicken basilar papilla preparation at 33°C. We found that SHCs are electrically tuned by a Ca(2+)-activated K(+) current, their resonant frequency varying along the papilla in tandem with that of the THCs, which also exhibit electrical tuning. The tonotopic map for THCs was similar to maps previously described from auditory nerve fiber measurements. SHCs also possess an A-type K(+) current, but electrical tuning was observed only at resting potentials positive to -45 mV, where the A current is inactivated. We predict that the resting potential in vivo is approximately -40 mV, depolarized by a standing inward current through mechanotransducer (MT) channels having a resting open probability of ∼0.26. The resting open probability stems from a low endolymphatic Ca(2+) concentration (0.24 mM) and a high intracellular mobile Ca(2+) buffer concentration, estimated from perforated-patch recordings as equivalent to 0.5 mM BAPTA. The high buffer concentration was confirmed by quantifying parvalbumin-3 and calbindin D-28K with calibrated postembedding immunogold labeling, demonstrating >1 mM calcium-binding sites. Both proteins displayed an apex-to-base gradient matching that in the MT current amplitude, which increased exponentially along the papilla. Stereociliary bundles also labeled heavily with antibodies against the Ca(2+) pump isoform PMCA2a.
Low-Heat-Leak Electrical Leads For Cryogenic Systems
NASA Technical Reports Server (NTRS)
Wise, Stephanie A.; Hooker, Matthew W.
1994-01-01
Electrical leads offering high electrical conductivity and low thermal conductivity developed for use in connecting electronic devices inside cryogenic systems to power supplies, signal-processing circuits, and other circuitry located in nearby warmer surroundings. Strip of superconductive leads on ceramic substrate, similar to ribbon cable, connects infrared detectors at temperature of liquid helium with warmer circuitry. Electrical leads bridging thermal gradient at boundary of cryogenic system designed both to minimize conduction of heat from surroundings through leads into system and to minimize resistive heating caused by electrical currents flowing in leads.
High current density Esaki tunnel diodes based on GaSb-InAsSb heterostructure nanowires.
Ganjipour, Bahram; Dey, Anil W; Borg, B Mattias; Ek, Martin; Pistol, Mats-Erik; Dick, Kimberly A; Wernersson, Lars-Erik; Thelander, Claes
2011-10-12
We present electrical characterization of broken gap GaSb-InAsSb nanowire heterojunctions. Esaki diode characteristics with maximum reverse current of 1750 kA/cm(2) at 0.50 V, maximum peak current of 67 kA/cm(2) at 0.11 V, and peak-to-valley ratio (PVR) of 2.1 are obtained at room temperature. The reverse current density is comparable to that of state-of-the-art tunnel diodes based on heavily doped p-n junctions. However, the GaSb-InAsSb diodes investigated in this work do not rely on heavy doping, which permits studies of transport mechanisms in simple transistor structures processed with high-κ gate dielectrics and top-gates. Such processing results in devices with improved PVR (3.5) and stability of the electrical properties.
Optically triggered high voltage switch network and method for switching a high voltage
El-Sharkawi, Mohamed A.; Andexler, George; Silberkleit, Lee I.
1993-01-19
An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).
Do Heat Pump Clothes Dryers Make Sense for the U.S. Market
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, Steve; Franco, Victor; Lekov, Alex
Heat pump clothes dryers (HPCDs) can be as much as 50percent more energy-efficient than conventional electric resistance clothes dryers, and therefore have the potential to save substantial amounts of electricity. While not currently available in the U.S., there are manufacturers in Europe and Japan that produce units for those markets. Drawing on analysis conducted for the U.S. Department of Energy's (DOE) current rulemaking on amended standards for clothes dryers, this paper evaluates the cost-effectiveness of HPCDs in American homes, as well as the national impact analysis for different market share scenarios. In order to get an accurate measurement of realmore » energy savings potential, the paper offers a new energy use calculation methodology that takes into account the most current data on clothes washer cycles, clothes dryer usage frequency, remaining moisture content, and load weight per cycle, which is very different from current test procedure values. Using the above methodology along with product cost estimates developed by DOE, the paper presents the results of a life-cycle cost analysis of the adoption of HPCDs in a representative sample of American homes. The results show that HPCDs have positive economic benefits only for households with high clothes dryer usage or for households with high electricity prices and moderately high utilization.« less
Magnetoacoustic Tomography with Magnetic Induction for Electrical Conductivity based Tissue imaging
NASA Astrophysics Data System (ADS)
Mariappan, Leo
Electrical conductivity imaging of biological tissue has attracted considerable interest in recent years owing to research indicating that electrical properties, especially electrical conductivity and permittivity, are indicators of underlying physiological and pathological conditions in biological tissue. Also, the knowledge of electrical conductivity of biological tissue is of interest to researchers conducting electromagnetic source imaging and in design of devices that apply electromagnetic energy to the body such as MRI. So, the need for a non-invasive, high resolution impedance imaging method is highly desired. To address this need we have studied the magnetoacoustic tomography with magnetic induction (MAT-MI) method. In MAT-MI, the object is placed in a static and a dynamic magnetic field giving rise to ultrasound waves. The dynamic field induces eddy currents in the object, and the static field leads to generation of acoustic vibrations from Lorentz force on the induced currents. The acoustic vibrations are at the same frequency as the dynamic magnetic field, which is chosen to match the ultrasound frequency range. These ultrasound signals can be measured by ultrasound probes and are used to reconstruct MAT-MI acoustic source images using possible ultrasound imaging approaches .The reconstructed high spatial resolution image is indicative of the object's electrical conductivity contrast. We have investigated ultrasound imaging methods to reliably reconstruct the MAT-MI image under the practical conditions of limited bandwidth and transducer geometry. The corresponding imaging algorithm, computer simulation and experiments are developed to test the feasibility of these different methods. Also, in experiments, we have developed a system with the strong static field of an MRI magnet and a strong pulsed magnetic field to evaluate MAT-MI in biological tissue imaging. It can be seen from these simulations and experiments that conductivity boundary images with millimeter resolution can be reliably reconstructed with MAT-MI. Further, to estimate the conductivity distribution throughout the object, we reconstruct a vector source image corresponding to the induced eddy currents. As the current source is uniformly present throughout the object, we are able to reliably estimate the internal conductivity distribution for a more complete imaging. From the computer simulations and experiments it can be seen that MAT-MI method has the potential to be a clinically applicable, high resolution, non-invasive method for electrical conductivity imaging.
In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)
NASA Astrophysics Data System (ADS)
Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2017-01-01
New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.
Enhancing Food Processing by Pulsed and High Voltage Electric Fields: Principles and Applications.
Wang, Qijun; Li, Yifei; Sun, Da-Wen; Zhu, Zhiwei
2018-02-02
Improvements in living standards result in a growing demand for food with high quality attributes including freshness, nutrition and safety. However, current industrial processing methods rely on traditional thermal and chemical methods, such as sterilization and solvent extraction, which could induce negative effects on food quality and safety. The electric fields (EFs) involving pulsed electric fields (PEFs) and high voltage electric fields (HVEFs) have been studied and developed for assisting and enhancing various food processes. In this review, the principles and applications of pulsed and high voltage electric fields are described in details for a range of food processes, including microbial inactivation, component extraction, and winemaking, thawing and drying, freezing and enzymatic inactivation. Moreover, the advantages and limitations of electric field related technologies are discussed to foresee future developments in the food industry. This review demonstrates that electric field technology has a great potential to enhance food processing by supplementing or replacing the conventional methods employed in different food manufacturing processes. Successful industrial applications of electric field treatments have been achieved in some areas such as microbial inactivation and extraction. However, investigations of HVEFs are still in an early stage and translating the technology into industrial applications need further research efforts.
Brain hemorrhage after electrical burn injury: Case report and probable mechanism.
Axayacalt, Gutierrez Aceves Guillermo; Alejandro, Ceja Espinosa; Marcos, Rios Alanis; Inocencio, Ruiz Flores Milton; Alfredo, Herrera Gonzalez Jose
2016-01-01
High-voltage electric injury may induce lesion in different organs. In addition to the local tissue damage, electrical injuries may lead to neurological deficits, musculoskeletal damage, and cardiovascular injury. Severe vascular damage may occur making the blood vessels involved prone to thrombosis and spontaneous rupture. Here, we present the case of a 39-year-old male who suffered an electrical burn with high tension wire causing intracranial bleeding. He presented with an electrical burn in the parietal area (entry zone) and the left forearm (exit zone). The head tomography scan revealed an intraparenchimatous bleeding in the left parietal area. In this case, the electric way was the scalp, cranial bone, blood vessels and brain, upper limb muscle, and skin. The damage was different according to the dielectric property in each tissue. The injury was in the scalp, cerebral blood vessel, skeletal muscle, and upper limb skin. The main damage was in brain's blood vessels because of the dielectric and geometric features that lead to bleeding, high temperature, and gas delivering. This is a report of a patient with an electric brain injury that can be useful to elucidate the behavior of the high voltage electrical current flow into the nervous system.
Inductive High Power Transfer Technologies for Electric Vehicles
NASA Astrophysics Data System (ADS)
Madzharov, Nikolay D.; Tonchev, Anton T.
2014-03-01
Problems associated with "how to charge the battery pack of the electric vehicle" become more important every passing day. Most logical solution currently is the non-contact method of charge, possessing a number of advantages over standard contact methods for charging. This article focuses on methods for Inductive high power contact-less transfer of energy at relatively small distances, their advantages and disadvantages. Described is a developed Inductive Power Transfer (IPT) system for fast charging of electric vehicles with nominal power of 30 kW over 7 to 9 cm air gap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Qinli; Li, Yufan; Chien, Chia-ling
Provided is an electric-current-controllable magnetic unit, including: a substrate, an electric-current channel disposed on the substrate, the electric-current channel including a composite heavy-metal multilayer comprising at least one heavy-metal; a capping layer disposed over the electric-current channel; and at least one ferromagnetic layer disposed between the electric-current channel and the capping layer.
Cathode for a hall-heroult type electrolytic cell for producing aluminum
Brown, Craig W.
2004-04-13
A method of producing aluminum from alumina in an electrolytic cell including using a cathode comprised of a base material having low electrical conductivity and wettable with molten aluminum to form a reaction layer having a high electrical conductivity on said base layer and a cathode bar extending from said reaction layer through said base material to conduct electrical current from said reaction layer.
High-throughput electrical characterization for robust overlay lithography control
NASA Astrophysics Data System (ADS)
Devender, Devender; Shen, Xumin; Duggan, Mark; Singh, Sunil; Rullan, Jonathan; Choo, Jae; Mehta, Sohan; Tang, Teck Jung; Reidy, Sean; Holt, Jonathan; Kim, Hyung Woo; Fox, Robert; Sohn, D. K.
2017-03-01
Realizing sensitive, high throughput and robust overlay measurement is a challenge in current 14nm and advanced upcoming nodes with transition to 300mm and upcoming 450mm semiconductor manufacturing, where slight deviation in overlay has significant impact on reliability and yield1). Exponentially increasing number of critical masks in multi-patterning lithoetch, litho-etch (LELE) and subsequent LELELE semiconductor processes require even tighter overlay specification2). Here, we discuss limitations of current image- and diffraction- based overlay measurement techniques to meet these stringent processing requirements due to sensitivity, throughput and low contrast3). We demonstrate a new electrical measurement based technique where resistance is measured for a macro with intentional misalignment between two layers. Overlay is quantified by a parabolic fitting model to resistance where minima and inflection points are extracted to characterize overlay control and process window, respectively. Analyses using transmission electron microscopy show good correlation between actual overlay performance and overlay obtained from fitting. Additionally, excellent correlation of overlay from electrical measurements to existing image- and diffraction- based techniques is found. We also discuss challenges of integrating electrical measurement based approach in semiconductor manufacturing from Back End of Line (BEOL) perspective. Our findings open up a new pathway for accessing simultaneous overlay as well as process window and margins from a robust, high throughput and electrical measurement approach.
Electrolyte-free Amperometric Immunosensor using a Dendritic Nanotip†
Kim, Jong-Hoon; Hiraiwa, Morgan; Lee, Hyun-Boo; Lee, Kyong-Hoon; Cangelosi, Gerard A.; Chung, Jae-Hyun
2013-01-01
Electric detection using a nanocomponent may lead to platforms for rapid and simple biosensing. Sensors composed of nanotips or nanodots have been described for highly sensitive amperometry enabled by confined geometry. However, both fabrication and use of nanostructured sensors remain challenging. This paper describes a dendritic nanotip used as an amperometric biosensor for highly sensitive detection of target bacteria. A dendritic nanotip is structured by Si nanowires coated with single-walled carbon nanotubes (SWCNTs) for generation of a high electric field. For reliable measurement using the dendritic structure, Si nanowires were uniformly fabricated by ultraviolet (UV) lithography and etching. The dendritic structure effectively increased the electric current density near the terminal end of the nanotip according to numerical computation. The electrical characteristics of a dendritic nanotip with additional protein layers was studied by cyclic voltammetry and I–V measurement in deionized (DI) water. When the target bacteria dielectrophoretically captured onto a nanotip were bound with fluorescence antibodies, the electric current through DI water decreased. Measurement results were consistent with fluorescence- and electron microscopy. The sensitivity of the amperometry was 10 cfu/sample volume (103 cfu/mL), which was equivalent to the more laborious fluorescence measurement method. The simple configuration of a dendritic nanotip can potentially offer an electrolyte-free detection platform for sensitive and rapid biosensors. PMID:23585927
Electrolyte-free Amperometric Immunosensor using a Dendritic Nanotip.
Kim, Jong-Hoon; Hiraiwa, Morgan; Lee, Hyun-Boo; Lee, Kyong-Hoon; Cangelosi, Gerard A; Chung, Jae-Hyun
2013-01-01
Electric detection using a nanocomponent may lead to platforms for rapid and simple biosensing. Sensors composed of nanotips or nanodots have been described for highly sensitive amperometry enabled by confined geometry. However, both fabrication and use of nanostructured sensors remain challenging. This paper describes a dendritic nanotip used as an amperometric biosensor for highly sensitive detection of target bacteria. A dendritic nanotip is structured by Si nanowires coated with single-walled carbon nanotubes (SWCNTs) for generation of a high electric field. For reliable measurement using the dendritic structure, Si nanowires were uniformly fabricated by ultraviolet (UV) lithography and etching. The dendritic structure effectively increased the electric current density near the terminal end of the nanotip according to numerical computation. The electrical characteristics of a dendritic nanotip with additional protein layers was studied by cyclic voltammetry and I-V measurement in deionized (DI) water. When the target bacteria dielectrophoretically captured onto a nanotip were bound with fluorescence antibodies, the electric current through DI water decreased. Measurement results were consistent with fluorescence- and electron microscopy. The sensitivity of the amperometry was 10 cfu/sample volume (10 3 cfu/mL), which was equivalent to the more laborious fluorescence measurement method. The simple configuration of a dendritic nanotip can potentially offer an electrolyte-free detection platform for sensitive and rapid biosensors.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2017-12-01
Parallel electrostatic electric fields provide a powerful mechanism to accelerate auroral particles to high energy in the auroral acceleration region (AAR), creating both quasi-static and Alfvenic discrete aurorae. The total field-aligned current can be written as J||total=J||+J||D, where the displacement current is denoted as J||D=(1/4π)(∂E||/∂t), which describes the E||-generation (Song and Lysak, 2006). The generation of the total field-aligned current is related to spatial gradients of the parallel vorticity caused by the axial torque acting on field-aligned flux tubes in M-I coupling system. It should be noticed that parallel electric fields are not produced by the field-aligned current. In fact, the E||-generation is caused by Alfvenic interaction in the M-I coupling system, and is favored by a low plasma density and the enhanced localized azimuthal magnetic flux. We suggest that the nonlinear interaction of incident and reflected Alfven wave packets in the AAR can create reactive stress concentration, and therefore can generate the parallel electrostatic electric fields together with a seed low density cavity. The generated electric fields will quickly deepen the seed low density cavity, which can effectively create even stronger electrostatic electric fields. The electrostatic electric fields nested in a low density cavity and surrounded by enhanced azimuthal magnetic flux constitute Alfvenic electromagnetic plasma structures, such as Alfvenic Double Layers (DLs). The Poynting flux carried by Alfven waves can continuously supply energy from the generator region to the auroral acceleration region, supporting and sustaining Alfvenic DLs with long-lasting electrostatic electric fields which accelerate auroral particles to high energy. The generation of parallel electric fields and the formation of auroral arcs can redistribute perpendicular mechanical and magnetic stresses in auroral flux tubes, decoupling the magnetosphere from ionosphere drag locally. This may enhance the magnetotail earthward shear flows and rapidly buildup stronger parallel electric fields in the auroral acceleration region, leading to a sudden and violent tail energy release, if there is accumulated free magnetic energy in the tail.
Piezoelectric transformer and modular connections for high power and high voltage power supplies
NASA Technical Reports Server (NTRS)
Vazquez Carazo, Alfredo (Inventor)
2006-01-01
A modular design for combining piezoelectric transformers is provided for high voltage and high power conversion applications. The input portions of individual piezoelectric transformers are driven for a single power supply. This created the vibration and the conversion of electrical to electrical energy from the input to the output of the transformers. The output portions of the single piezoelectric transformers are combining in series and/or parallel to provide multiple outputs having different rating of voltage and current.
Current superimposition variable flux reluctance motor with 8 salient poles
NASA Astrophysics Data System (ADS)
Takahara, Kazuaki; Hirata, Katsuhiro; Niguchi, Noboru; Kohara, Akira
2017-12-01
We propose a current superimposition variable flux reluctance motor for a traction motor of electric vehicles and hybrid electric vehicles, which consists of 10 salient poles in the rotor and 12 slots in the stator. However, iron losses of this motor in high rotation speed ranges is large because the number of salient poles is large. In this paper, we propose a current superimposition variable flux reluctance motor that consists of 8 salient poles and 12 slots. The characteristics of the 10-pole-12-slot and 8-pole-12-slot current superimposition variable flux reluctance motors are compared using finite element analysis under vector control.
The High Energy Lightning Simulator (HELS) Test Facility for Testing Explosive Items
1996-08-01
Center, Redstone Arsenal, AL Thomas E. Roy and David W. Bagwell AMTEC Corporation, Huntsville, AL ABSTRACT Details of the High Energy Lightning...simulated lightning testing of inerted missiles and inerted explosive items containing electrically initiated explosive trains is to determine the...penetrate the safety cages, which are electrically conductive and grounded, without loss of current. This transmission system consists of six large
Optimize out-of-core thermionic energy conversion for nuclear electric propulsion
NASA Technical Reports Server (NTRS)
Morris, J. F.
1977-01-01
Current designs for out of core thermionic energy conversion (TEC) to power nuclear electric propulsion (NEP) were evaluated. Approaches to improve out of core TEC are emphasized and probabilities for success are indicated. TEC gains are available with higher emitter temperatures and greater power densities. Good potentialities for accommodating external high temperature, high power density TEC with heat pipe cooled reactors exist.
In situ synchrotron study of electromigration induced grain rotations in Sn solder joints
Shen, Hao; Zhu, Wenxin; Li, Yao; ...
2016-04-18
In this paper we report an in situ study of the early stage of microstructure evolution induced by electromigration in a Pb-free β-Sn based solder joint by synchrotron polychromatic X-ray microdiffraction. With this technique, crystal orientation evolution is monitored at intragranular levels with high spatial and angular resolution. During the entire experiment, no crystal growth is detected, and rigid grain rotation is observed only in the two grains within the current crowding region, where high density and divergence of electric current occur. Theoretical calculation indicates that the trend of electrical resistance drop still holds under the present conditions in themore » grain with high electrical resistivity, while the other grain with low resistivity reorients to align its a-axis more parallel with the ones of its neighboring grains. A detailed study of dislocation densities and subgrain boundaries suggests that grain rotation in β-Sn, unlike grain rotation in high melting temperature metals which undergo displacive deformation, is accomplished via diffusional process mainly, due to the high homologous temperature.« less
Auroral zone electric fields from DE 1 and 2 at magnetic conjunctions
NASA Technical Reports Server (NTRS)
Weimer, D. R.; Goertz, C. K.; Gurnett, D. A.; Maynard, N. C.; Burch, J. L.
1985-01-01
Nearly simultaneous measurements of auroral zone electric fields are obtained by the Dynamics Explorer spacecraft at altitudes below 900 km and above 4,500 km during magnetic conjunctions. The measured electric fields are usually perpendicular to the magnetic field lines. The north-south meridional electric fields are projected to a common altitude by a mapping function which accounts for the convergence of the magnetic field lines. When plotted as a function of invariant latitude, graphs of the projected electric fields measured by both DE-1 and DE-2 show that the large-scale electric field is the same at both altitudes, as expected. Superimposed on the large-scale fields, however, are small-scale features with wavelengths less than 100 km which are larger in magnitude at the higher altitude. Fourier transforms of the electric fields show that the magnitudes depend on wavelength. Outside of the auroral zone the electric field spectrums are nearly identical. But within the auroral zone the high and low altitude electric fields have a ratio which increases with the reciprocal of the wavelength. The small-scale electric field variations are associated with field-aligned currents. These currents are measured with both a plasma instrument and magnetometer on DE-1.
Effects of microstructural defects on the performance of base-metal multilayer ceramic capacitors
NASA Astrophysics Data System (ADS)
Samantaray, Malay M.
Multilayer ceramic capacitors (MLCCs), owing to their processing conditions, can exhibit microstructure defects such as electrode porosity and roughness. The effect of such extrinsic defects on the electrical performance of these devices needs to be understood in order to achieve successful miniaturization into the submicron dielectric layer thickness regime. Specifically, the presence of non-planar and discontinuous electrodes can lead to local field enhancements while the relative morphologies of two adjacent electrodes determine variations in the local dielectric thickness. To study the effects of electrode morphologies, an analytical approach is taken to calculate the electric field enhancement and leakage current with respect to an ideal parallel-plate capacitor. Idealized electrode defects are used to simulate the electric field distribution. It is shown that the electrode roughness causes both the electric field and the leakage current to increase with respect to that of the ideal flat parallel-plate capacitor. Moreover, finite element methods are used to predict electric field enhancements by as high as 100% within capacitor structures containing rough interfaces and porosity. To understand the influence of microstructural defects on field distributions and leakage current, the real three-dimensional microstructure of local regions in MLCCs are reconstructed using a serial-sectioning technique in the focused ion beam. These microstructures are then converted into a finite element model in order to simulate the perturbations in electric field due to the presence of electrode defects. The electric field is three times the average value, and this leads to increase in current density of these devices. It is also shown that increasing sintering rates of MLCCs leads to improved electrode morphology with smoother more continuous electrodes, which in turn leads to a decrease in electric field enhancement and calculated leakage current density. To simulate scaling effects, the dielectric layer thickness is reduced from 2.0mum to 0.5mum in the three-dimensional microstructure keeping the same electrode morphology. It is seen that the effect of microstructure defects is more pronounced as one approaches thinner layers, leading to higher local electric field concentrations and a concomitant drop in insulation resistance. It is also seen that the electric field values are as high as 3.8 times the average field in termination regions due the disintegrated structure of the electrodes. In order to assess the effect of microstructure on MLCC performance, two sets of multilayer capacitors subjected to two vastly different sintering rates of 150ºC/hr and 3000ºC/hr are compared for their electrical properties. Capacitors with higher electrode continuity exhibit proportionally higher capacitance, provided the grain size distributions are similar. From the leakage current measurements, it is found that the Schottky barrier at the electrode-dielectric interface controls the conduction mechanism. This barrier height is calculated to be 1.06 eV for slow-fired MLCCs and was 1.15 for fast-fired MLCCs. This shows that high concentration of electrode defects cause field perturbations and subsequent drop in the net Schottky barrier height. These results are further supported by frequency-dependent impedance measurements. With temperature dependence behavior of current-voltage trends we note that below temperatures of 135°C, the conduction is controlled by interfacial effects, whereas at higher temperatures it is consistent with bulk-controlled space charge limited current for the samples that are highly reoxidized. The final part of this work studies the various aspects of the initial stages of degradation of MLCCs. MLCCs subjected to unipolar and bipolar degradation are studied for changes in microstructure and electrical properties. With bipolar degradation studies new insights into degradation are gained. First, the ionic accumulation with oxygen vacancies at cathodes is only partially reversible. This has implications on the controlling interface with electronic conduction. Also, it is shown that oxygen vacancy accumulation near the cathodes leads to a drop in insulation resistance. The capacitance also increases with progressive steps of degradation due to the effective thinning of dielectric layer. The reduction in interfacial resistance is also confirmed by impedance analysis. Finally, it is observed that on degradation, the dominant leakage current mechanism changes from being controlled by cathodic injection of electrons to being controlled by their anodic extraction. (Abstract shortened by UMI.)
9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle, and goats with the use of electric current and the handling in connection therewith, in compliance... with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION...
9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle, and goats with the use of electric current and the handling in connection therewith, in compliance... with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domengie, F., E-mail: florian.domengie@st.com; Morin, P.; Bauza, D.
We propose a model for dark current induced by metallic contamination in a CMOS image sensor. Based on Shockley-Read-Hall kinetics, the expression of dark current proposed accounts for the electric field enhanced emission factor due to the Poole-Frenkel barrier lowering and phonon-assisted tunneling mechanisms. To that aim, we considered the distribution of the electric field magnitude and metal atoms in the depth of the pixel. Poisson statistics were used to estimate the random distribution of metal atoms in each pixel for a given contamination dose. Then, we performed a Monte-Carlo-based simulation for each pixel to set the number of metalmore » atoms the pixel contained and the enhancement factor each atom underwent, and obtained a histogram of the number of pixels versus dark current for the full sensor. Excellent agreement with the dark current histogram measured on an ion-implanted gold-contaminated imager has been achieved, in particular, for the description of the distribution tails due to the pixel regions in which the contaminant atoms undergo a large electric field. The agreement remains very good when increasing the temperature by 15 °C. We demonstrated that the amplification of the dark current generated for the typical electric fields encountered in the CMOS image sensors, which depends on the nature of the metal contaminant, may become very large at high electric field. The electron and hole emissions and the resulting enhancement factor are described as a function of the trap characteristics, electric field, and temperature.« less
Can Direct Current Electrotherapy Be Used for Patients With Orthopedic Implants?
Thaler, Evangeline; Korte, Holger
2017-01-01
Introduction: Although electrotherapy appears to have particularly interesting applications in the field of postoperative orthopedic rehabilitation, relatively little scientifically based research has been conducted in the area of electrotherapy with regard to safety involving patients with orthopedic implants. Method: Three electrotherapy forms were tested, such as high-volt stimulation (HVS), transcutaneous electric nerve stimulation (TENS), and galvanic current (GAL), using a model system containing a metal implant plate to evaluate whether heating in excess of 3°C would occur. Results: All changes in temperature for HVS, GAL, and TENS therapeutic electrical currents observed in our model system fall below the predefined 3°C. Conclusion: To the best of our knowledge, this is the first experimental based observation that prolonged exposure to a direct electrical current at therapeutic strength does not result in heating of metal titanium plates. PMID:28255511
Mao, Longfei; Verwoerd, Wynand S
2013-01-01
Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production.
Mao, Longfei; Verwoerd, Wynand S
2013-01-01
Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production. PMID:23969939
Using Passive Two-Port Networks to Study the Forced Vibrations of Piezoceramic Transducers
NASA Astrophysics Data System (ADS)
Karlash, V. L.
2017-09-01
A generalization and subsequent development of experimental techniques, including methods of studying the phase-frequency relations between the measured components of admittance and instantaneous power are considered. The conditions of electric loading where electric currents, voltages, or instantaneous powers of constant amplitude in the piezoresonators are specified are numerically modeled. It is particularly established that the advanced Mason circuit with additional switch allows acquiring much more data on the forced vibrations of piezoceramic transducers than the classical circuit. The measured (at an arbitrary frequency) voltage drop across the piezoelement, its pull-up resistor, and at the input of the measuring circuit allow determining, with high accuracy, the current, conductivity, impedance, instantaneous power, and phase shifts when the amplitudes of electric current and voltage are given.
NASA Astrophysics Data System (ADS)
Morozov, V. N.
2018-01-01
The problem of the penetration of nonstationary ionospheric electric fields into the lower atmospheric layers is considered based on the model of the global electric circuit in the Earth's atmosphere. For the equation of the electric field potential, a solution that takes into account exponential variation in the electrical conductivity with height has been obtained. Analysis of the solution made it possible to reveal three cases of the dependence of the solution on height. The first case (the case of high frequencies) corresponds to the Coulomb approximation, when the electrical conductivity of the atmosphere can be neglected. In the case of low frequencies (when the frequency of changes in the ionosphere potential is less than the quantity reciprocal to the time of electric relaxation of the atmosphere), a quasi-stationary regime, in which the variation in the electric potential of the atmosphere is determined by the electric conduction currents, occurs. In the third case, due to the increase in the electrical conductivity of the atmosphere, two spherical regions appear: with the Coulomb approximation in the lower region and conduction currents in the upper one. For these three cases, formulas for estimating the electric field strength near the Earth's surface have been obtained.
Haider, S; Hrbek, A; Xu, Y
2008-06-01
Primarily this report outlines our investigation on utilizing magneto-acousto-electrical-tomography (MAET) to image the lead field current density in volume conductors. A lead field current density distribution is obtained when a current/voltage source is applied to a sample via a pair of electrodes. This is the first time a high-spatial-resolution image of current density is presented using MAET. We also compare an experimental image of current density in a sample with its corresponding numerical simulation. To image the lead field current density, rather than applying a current/voltage source directly to the sample, we place the sample in a static magnetic field and focus an ultrasonic pulse on the sample to simulate a point-like current dipole source at the focal point. Then by using electrodes we measure the voltage/current signal which, based on the reciprocity theorem, is proportional to a component of the lead field current density. In the theory section, we derive the equation relating the measured voltage to the lead field current density and the displacement velocity caused by ultrasound. The experimental data include the MAET signal and an image of the lead field current density for a thin sample. In addition, we discuss the potential improvements for MAET especially to overcome the limitation created by the observation that no signal was detected from the interior of a region having a uniform conductivity. As an auxiliary we offer a mathematical formula whereby the lead field current density may be utilized to reconstruct the distribution of the electrical impedance in a piecewise smooth object.
Aggregation of Electric Current Consumption Features to Extract Maintenance KPIs
NASA Astrophysics Data System (ADS)
Simon, Victor; Johansson, Carl-Anders; Galar, Diego
2017-09-01
All electric powered machines offer the possibility of extracting information and calculating Key Performance Indicators (KPIs) from the electric current signal. Depending on the time window, sampling frequency and type of analysis, different indicators from the micro to macro level can be calculated for such aspects as maintenance, production, energy consumption etc. On the micro-level, the indicators are generally used for condition monitoring and diagnostics and are normally based on a short time window and a high sampling frequency. The macro indicators are normally based on a longer time window with a slower sampling frequency and are used as indicators for overall performance, cost or consumption. The indicators can be calculated directly from the current signal but can also be based on a combination of information from the current signal and operational data like rpm, position etc. One or several of those indicators can be used for prediction and prognostics of a machine's future behavior. This paper uses this technique to calculate indicators for maintenance and energy optimization in electric powered machines and fleets of machines, especially machine tools.
NASA Astrophysics Data System (ADS)
Datta, Abhishek; Zhou, Xiang; Su, Yuzhou; Parra, Lucas C.; Bikson, Marom
2013-06-01
Objective. During transcranial electrical stimulation, current passage across the scalp generates voltage across the scalp surface. The goal was to characterize these scalp voltages for the purpose of validating subject-specific finite element method (FEM) models of current flow. Approach. Using a recording electrode array, we mapped skin voltages resulting from low-intensity transcranial electrical stimulation. These voltage recordings were used to compare the predictions obtained from the high-resolution model based on the subject undergoing transcranial stimulation. Main results. Each of the four stimulation electrode configurations tested resulted in a distinct distribution of scalp voltages; these spatial maps were linear with applied current amplitude (0.1 to 1 mA) over low frequencies (1 to 10 Hz). The FEM model accurately predicted the distinct voltage distributions and correlated the induced scalp voltages with current flow through cortex. Significance. Our results provide the first direct model validation for these subject-specific modeling approaches. In addition, the monitoring of scalp voltages may be used to verify electrode placement to increase transcranial electrical stimulation safety and reproducibility.
Olevsky, Eugene A.; Aleksandrova, Elena V.; Ilyina, Alexandra M.; Dudina, Dina V.; Novoselov, Alexander N.; Pelve, Kirill Y.; Grigoryev, Eugene G.
2013-01-01
This paper reviews research articles published in the former USSR and post-soviet countries on the consolidation of powder materials using electric current that passes through the powder sample and/or a conductive die-punch set-up. Having been published in Russian, many of the reviewed papers are not included in the mainstream electronic databases of the scientific articles and thus are not known to the scientific community. The present review is aimed at filling this information gap. In the paper, the electric current-assisted sintering techniques based on high- and low-voltage approaches are presented. The main results of the theoretical modeling of the processes of electromagnetic field-assisted consolidation of powder materials are discussed. Sintering experiments and related equipment are described and the major experimental results are analyzed. Sintering conditions required to achieve the desired properties of the sintered materials are provided for selected material systems. Tooling materials used in the electric current-assisted consolidation set-ups are also described. PMID:28788337
A pulse-compression-ring circuit for high-efficiency electric propulsion.
Owens, Thomas L
2008-03-01
A highly efficient, highly reliable pulsed-power system has been developed for use in high power, repetitively pulsed inductive plasma thrusters. The pulsed inductive thruster ejects plasma propellant at a high velocity using a Lorentz force developed through inductive coupling to the plasma. Having greatly increased propellant-utilization efficiency compared to chemical rockets, this type of electric propulsion system may one day propel spacecraft on long-duration deep-space missions. High system reliability and electrical efficiency are extremely important for these extended missions. In the prototype pulsed-power system described here, exceptional reliability is achieved using a pulse-compression circuit driven by both active solid-state switching and passive magnetic switching. High efficiency is achieved using a novel ring architecture that recovers unused energy in a pulse-compression system with minimal circuit loss after each impulse. As an added benefit, voltage reversal is eliminated in the ring topology, resulting in long lifetimes for energy-storage capacitors. System tests were performed using an adjustable inductive load at a voltage level of 3.3 kV, a peak current of 20 kA, and a current switching rate of 15 kA/micros.
Optimization of return electrodes in neurostimulating arrays
NASA Astrophysics Data System (ADS)
Flores, Thomas; Goetz, Georges; Lei, Xin; Palanker, Daniel
2016-06-01
Objective. High resolution visual prostheses require dense stimulating arrays with localized inputs of individual electrodes. We study the electric field produced by multielectrode arrays in electrolyte to determine an optimal configuration of return electrodes and activation sequence. Approach. To determine the boundary conditions for computation of the electric field in electrolyte, we assessed current dynamics using an equivalent circuit of a multielectrode array with interleaved return electrodes. The electric field modeled with two different boundary conditions derived from the equivalent circuit was then compared to measurements of electric potential in electrolyte. To assess the effect of return electrode configuration on retinal stimulation, we transformed the computed electric fields into retinal response using a model of neural network-mediated stimulation. Main results. Electric currents at the capacitive electrode-electrolyte interface redistribute over time, so that boundary conditions transition from equipotential surfaces at the beginning of the pulse to uniform current density in steady state. Experimental measurements confirmed that, in steady state, the boundary condition corresponds to a uniform current density on electrode surfaces. Arrays with local return electrodes exhibit improved field confinement and can elicit stronger network-mediated retinal response compared to those with a common remote return. Connecting local return electrodes enhances the field penetration depth and allows reducing the return electrode area. Sequential activation of the pixels in large monopolar arrays reduces electrical cross-talk and improves the contrast in pattern stimulation. Significance. Accurate modeling of multielectrode arrays helps optimize the electrode configuration to maximize the spatial resolution, contrast and dynamic range of retinal prostheses.
Miceli, Joseph F; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I; Krajmalnik-Brown, Rosa
2014-10-01
Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (∼ 11A/m(2)) and Coulombic efficiency (∼ 70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ∼ 80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed microbial cultures containing complementing biochemical pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.
Electric-Field-Induced Degradation of Methylammonium Lead Iodide Perovskite Solar Cells.
Bae, Soohyun; Kim, Seongtak; Lee, Sang-Won; Cho, Kyung Jin; Park, Sungeun; Lee, Seunghun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan
2016-08-18
Perovskite solar cells have great potential for high efficiency generation but are subject to the impact of external environmental conditions such as humidity, UV and sun light, temperature, and electric fields. The long-term stability of perovskite solar cells is an important issue for their commercialization. Various studies on the stability of perovskite solar cells are currently being performed; however, the stability related to electric fields is rarely discussed. Here the electrical stability of perovskite solar cells is studied. Ion migration is confirmed using the temperature-dependent dark current decay. Changes in the power conversion efficiency according to the amount of the external bias are measured in the dark, and a significant drop is observed only at an applied voltage greater than 0.8 V. We demonstrate that perovskite solar cells are stable under an electric field up to the operating voltage.
Electricity from methane by reversing methanogenesis
McAnulty, Michael J.; G. Poosarla, Venkata; Kim, Kyoung-Yeol; Jasso-Chávez, Ricardo; Logan, Bruce E.; Wood, Thomas K.
2017-01-01
Given our vast methane reserves and the difficulty in transporting methane without substantial leaks, the conversion of methane directly into electricity would be beneficial. Microbial fuel cells harness electrical power from a wide variety of substrates through biological means; however, the greenhouse gas methane has not been used with much success previously as a substrate in microbial fuel cells to generate electrical current. Here we construct a synthetic consortium consisting of: (i) an engineered archaeal strain to produce methyl-coenzyme M reductase from unculturable anaerobic methanotrophs for capturing methane and secreting acetate; (ii) micro-organisms from methane-acclimated sludge (including Paracoccus denitrificans) to facilitate electron transfer by providing electron shuttles (confirmed by replacing the sludge with humic acids), and (iii) Geobacter sulfurreducens to produce electrons from acetate, to create a microbial fuel cell that converts methane directly into significant electrical current. Notably, this methane microbial fuel cell operates at high Coulombic efficiency. PMID:28513579
Electricity from methane by reversing methanogenesis
NASA Astrophysics Data System (ADS)
McAnulty, Michael J.; G. Poosarla, Venkata; Kim, Kyoung-Yeol; Jasso-Chávez, Ricardo; Logan, Bruce E.; Wood, Thomas K.
2017-05-01
Given our vast methane reserves and the difficulty in transporting methane without substantial leaks, the conversion of methane directly into electricity would be beneficial. Microbial fuel cells harness electrical power from a wide variety of substrates through biological means; however, the greenhouse gas methane has not been used with much success previously as a substrate in microbial fuel cells to generate electrical current. Here we construct a synthetic consortium consisting of: (i) an engineered archaeal strain to produce methyl-coenzyme M reductase from unculturable anaerobic methanotrophs for capturing methane and secreting acetate; (ii) micro-organisms from methane-acclimated sludge (including Paracoccus denitrificans) to facilitate electron transfer by providing electron shuttles (confirmed by replacing the sludge with humic acids), and (iii) Geobacter sulfurreducens to produce electrons from acetate, to create a microbial fuel cell that converts methane directly into significant electrical current. Notably, this methane microbial fuel cell operates at high Coulombic efficiency.
An analysis of electrical conductivity model in saturated porous media
NASA Astrophysics Data System (ADS)
Cai, J.; Wei, W.; Qin, X.; Hu, X.
2017-12-01
Electrical conductivity of saturated porous media has numerous applications in many fields. In recent years, the number of theoretical methods to model electrical conductivity of complex porous media has dramatically increased. Nevertheless, the process of modeling the spatial conductivity distributed function continues to present challenges when these models used in reservoirs, particularly in porous media with strongly heterogeneous pore-space distributions. Many experiments show a more complex distribution of electrical conductivity data than the predictions derived from the experiential model. Studies have observed anomalously-high electrical conductivity of some low-porosity (tight) formations compared to more- porous reservoir rocks, which indicates current flow in porous media is complex and difficult to predict. Moreover, the change of electrical conductivity depends not only on the pore volume fraction but also on several geometric properties of the more extensive pore network, including pore interconnection and tortuosity. In our understanding of electrical conductivity models in porous media, we study the applicability of several well-known methods/theories to electrical characteristics of porous rocks as a function of pore volume, tortuosity and interconnection, to estimate electrical conductivity based on the micro-geometrical properties of rocks. We analyze the state of the art of scientific knowledge and practice for modeling porous structural systems, with the purpose of identifying current limitations and defining a blueprint for future modeling advances. We compare conceptual descriptions of electrical current flow processes in pore space considering several distinct modeling approaches. Approaches to obtaining more reasonable electrical conductivity models are discussed. Experiments suggest more complex relationships between electrical conductivity and porosity than experiential models, particularly in low-porosity formations. However, the available theoretical models combined with simulations do provide insight to how microscale physics affects macroscale electrical conductivity in porous media.
High field gradient particle accelerator
Nation, John A.; Greenwald, Shlomo
1989-01-01
A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.
Electrochemical cell having cylindrical electrode elements
Nelson, Paul A.; Shimotake, Hiroshi
1982-01-01
A secondary, high temperature electrochemical cell especially adapted for lithium alloy negative electrodes, transition metal chalcogenide positive electrodes and alkali metal halide or alkaline earth metal halide electrolyte is disclosed. The cell is held within an elongated cylindrical container in which one of the active materials is filled around the outside surfaces of a plurality of perforate tubular current collectors along the length of the container. Each of the current collector tubes contain a concentric tubular layer of electrically insulative ceramic as an interelectrode separator. The active material of opposite polarity in elongated pin shape is positioned longitudinally within the separator layer. A second electrically conductive tube with perforate walls can be swagged or otherwise bonded to the outer surface of the pin as a current collector and the electrically insulative ceramic layer can be coated or otherwise layered onto the outer surface of this second current collector. Alternatively, the central pin electrode can include an axial core as a current collector.
Current flow instability and nonlinear structures in dissipative two-fluid plasmas
NASA Astrophysics Data System (ADS)
Koshkarov, O.; Smolyakov, A. I.; Romadanov, I. V.; Chapurin, O.; Umansky, M. V.; Raitses, Y.; Kaganovich, I. D.
2018-01-01
The current flow in two-fluid plasma is inherently unstable if plasma components (e.g., electrons and ions) are in different collisionality regimes. A typical example is a partially magnetized E ×B plasma discharge supported by the energy released from the dissipation of the current in the direction of the applied electric field (perpendicular to the magnetic field). Ions are not magnetized so they respond to the fluctuations of the electric field ballistically on the inertial time scale. In contrast, the electron current in the direction of the applied electric field is dissipatively supported either by classical collisions or anomalous processes. The instability occurs due to a positive feedback between the electron and ion current coupled by the quasi-neutrality condition. The theory of this instability is further developed taking into account the electron inertia, finite Larmor radius and nonlinear effects. It is shown that this instability results in highly nonlinear quasi-coherent structures resembling breathing mode oscillations in Hall thrusters.
NASA Astrophysics Data System (ADS)
Jiang, Dongdong; Du, Jinmei; Gu, Yan; Feng, Yujun
2012-03-01
The shock wave induced depoling current of Pb0.99[(Zr0.90Sn0.10)0.96Ti0.04]0.98Nb0.02O3 ceramics was investigated with a system composed of a resistive load and an unpoled ceramic. Disparity in the depoling current was explained by considering the drawing charge effect of unpoled ceramic. The drawing effect for poled ceramics was analysed by developing a model incorporating a time- and electric-field-dependent repolarization. This model predicts that the high-impedance current eventually becomes higher than the short-circuit current, which is consistent with the experimental results in the literature. This work indicates that both the repolarization of uncompressed ceramics caused by the self-generated electric field and depolarization of compressed ceramics caused by the shock wave govern the output current.
An electric vehicle propulsion system's impact on battery performance: An overview
NASA Technical Reports Server (NTRS)
Bozek, J. M.; Smithrick, J. J.; Cataldo, R. C.; Ewashinka, J. G.
1980-01-01
The performance of two types of batteries, lead-acid and nickel-zinc, was measured as a function of the charging and discharging demands anticipated from electric vehicle propulsion systems. The benefits of rapid high current charging were mixed: although it allowed quick charges, the energy efficiency was reduced. For low power (overnight) charging the current wave shapes delivered by the charger to the battery tended to have no effect on the battery cycle life. The use of chopper speed controllers with series traction motors resulted in a significant reduction in the energy available from a battery whenever the motor operates at part load. The demand placed on a battery by an electric vehicle propulsion system containing electrical regenerative braking confirmed significant improvment in short term performance of the battery.
High temperature ion channels and pores
NASA Technical Reports Server (NTRS)
Cheley, Stephen (Inventor); Gu, Li Qun (Inventor); Bayley, Hagan (Inventor); Kang, Xiaofeng (Inventor)
2011-01-01
The present invention includes an apparatus, system and method for stochastic sensing of an analyte to a protein pore. The protein pore may be an engineer protein pore, such as an ion channel at temperatures above 55.degree. C. and even as high as near 100.degree. C. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable electrical current signal. Possible signals include change in electrical current. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may also be detected.
Passive fault current limiting device
Evans, Daniel J.; Cha, Yung S.
1999-01-01
A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment.
Passive fault current limiting device
Evans, D.J.; Cha, Y.S.
1999-04-06
A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment. 6 figs.
NASA Astrophysics Data System (ADS)
Kotaka, Toshikazu; Tabuchi, Yuichiro; Mukherjee, Partha P.
2015-04-01
Cost reduction is a key issue for commercialization of fuel cell electric vehicles (FCEV). High current density operation is a solution pathway. In order to realize high current density operation, it is necessary to reduce mass transport resistance in the gas diffusion media commonly consisted of gas diffusion layer (GDL) and micro porous layer (MPL). However, fundamental understanding of the underlying mass transport phenomena in the porous components is not only critical but also not fully understood yet due to the inherent microstructural complexity. In this study, a comprehensive analysis of electron and oxygen transport in the GDL and MPL is conducted experimentally and numerically with three-dimensional (3D) microstructural data to reveal the structure-transport relationship. The results reveal that the mass transport in the GDL is strongly dependent on the local microstructural variations, such as local pore/solid volume fractions and connectivity. However, especially in the case of the electrical conductivity of MPL, the contact resistance between carbon particles is the dominant factor. This suggests that reducing the contact resistance between carbon particles and/or the number of contact points along the transport pathway can improve the electrical conductivity of MPL.
Electrically-induced stresses and deflection in multiple plates
NASA Astrophysics Data System (ADS)
Hu, Jih-Perng; Tichler, P. R.
1992-04-01
Thermohydraulic tests are being planned at the High Flux Beam Reactor of Brookhaven National Laboratory, in which direct electrical heating of metal plates will simulate decay heating in parallel plate-type fuel elements. The required currents are high if plates are made of metal with a low electrical resistance, such as aluminum. These high currents will induce either attractive or repulsive forces between adjacent current-carrying plates. Such forces, if strong enough, will cause the plates to deflect and so change the geometry of the coolant channel between the plates. Since this is undesirable, an analysis was made to evaluate the magnitude of the deflection and related stresses. In contrast to earlier publications in which either a concentrated or a uniform load was assumed, in this paper an exact force distribution on the plate is analytically solved and then used for stress and deflection calculations, assuming each plate to be a simply supported beam. Results indicate that due to superposition of the induced forces between plates in a multiple-and-parallel plate array, the maximum deflection and bending stress occur at the midpoint of the outermost plate. The maximum shear stress, which is inversely proportional to plate thickness, occurs at both ends of the outermost plate.
Rasappa, Sozaraj; Borah, Dipu; Senthamaraikannan, Ramsankar; Faulkner, Colm C; Holmes, Justin D; Morris, Michael A
2014-07-01
The need for materials for high energy storage has led to very significant research in supercapacitor systems. These can exhibit electrical double layer phenomena and capacitances up to hundreds of F/g. Here, we demonstrate a new supercapacitor fabrication methodology based around the microphase separation of PS-b-PMMA which has been used to prepare copper nanoelectrodes of dimension -13 nm. These structures provide excellent capacitive performance with a maximum specific capacitance of -836 F/g for a current density of 8.06 A/g at a discharge current as high as 75 mA. The excellent performance is due to a high surface area: volume ratio. We suggest that this highly novel, easily fabricated structure might have a number of important applications.
Survival without sequelae after prolonged cardiopulmonary resuscitation after electric shock.
Motawea, Mohamad; Al-Kenany, Al-Sayed; Hosny, Mostafa; Aglan, Omar; Samy, Mohamad; Al-Abd, Mohamed
2016-03-01
"Electrical shock is the physiological reaction or injury caused by electric current passing through the human body. It occurs upon contact of a human body part with any source of electricity that causes a sufficient current through the skin, muscles, or hair causing undesirable effects ranging from simple burns to death." Ventricular fibrillation is believed to be the most common cause of death after electrical shock. "The ideal duration of cardiac resuscitation is unknown. Typically prolonged cardiopulmonary resuscitation is associated with poor neurologic outcomes and reduced long term survival. No consensus statement has been made and traditionally efforts are usually terminated after 15-30 minutes." The case under discussion seems worthy of the somewhat detailed description given. It is for a young man who survived after 65 minutes after electrical shock (ES) after prolonged high-quality cardiopulmonary resuscitation (CPR), multiple defibrillations, and artificial ventilation without any sequelae. Early start of adequate chest compressions and close adherence to advanced cardiac life support protocols played a vital role in successful CPR.
Return Stroke Current Reflections in Rocket-Triggered Lightning
NASA Astrophysics Data System (ADS)
Caicedo, J.; Uman, M. A.; Jordan, D.; Biagi, C. J.; Hare, B.
2015-12-01
In the six years from 2009 to 2014, there have been eight triggered flashes at the ICLRT, from a total of 125, in which a total of ten return stroke channel-base currents exhibited a dip 3.0 to 16.6 μs after the initial current peak. Close range electric field measurements show a related dip following the initial electric field peak, and electric field derivative measurements show an associated bipolar pulse, confirming that this phenomenon is not an instrumentation effect in the current measurement. For six of the eight flashes, high-speed video frames show what appears to be suspended sections of unexploded triggering wire at heights of about 150 to 300 m that are illuminated when the upward current wave reaches them. The suspended wire can act as an impedance discontinuity, perhaps as it explodes, and cause a downward reflection of some portion of the upward-propagating current wave. This reflected wave travels down the channel and causes the dip in the measured channel-base current when it reaches ground and reflects upward. The modified transmission line model with exponential decay (MTLE) is used to model the close electric field and electric field derivatives of the postulated initial and reflected current waves, starting with the measured channel base current, and the results are compared favorably with measurements made at distances ranging from 92 to 444 m. From the measured time between current impulse initiation and the time the current reflection reaches the channel base and the current dip initiates, along with the reflection height from the video records, we find the average return stroke current speed for each of the ten strokes to be from 0.28 to 1.9×108 ms-1, with an error of ±0.01×108 ms-1 due to a ±0.1 μs uncertainty in the measurement. This represents the first direct measurement of return stroke current speed, all previous return stroke speed measurements being derived from the luminosity of the process.
Physics Teachers' Perceptions of the Difficulty of Teaching Electricity
ERIC Educational Resources Information Center
Gunstone, Richard; Mulhall, Pamela; McKittrick, Brian
2009-01-01
As part of a project concerned with developing a better understanding of the detail of appropriate teaching of direct current (DC) electricity concepts, extensive individual interviews were conducted with a number of experienced senior high school physics teachers. These interviews explored teachers' perceptions of difficulties in student learning…
INNOVATIVE UNIVERSITY-SCHOOL PARTNERSHIPS FOR RENEWABLE ENERGY PROJECTS AND EDUCATION
A wind turbine will be erected near Soledad High School, offsetting a large fraction of the school’s energy load. This will in turn provide clean electricity for the school, at a comparable price to their current electricity, while also educating students about the benefits of...
Marken, Ken
2018-01-09
The Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) has been tasked to lead national efforts to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supplies. LANL has pioneered the development of coated conductors â high-temperature superconducting (HTS) tapes â which permit dramatically greater current densities than conventional copper cable, and enable new technologies to secure the national electric grid. Sustained world-class research from concept, demonstration, transfer, and ongoing industrial support has moved this idea from the laboratory to the commercial marketplace.
Current isolating epitaxial buffer layers for high voltage photodiode array
Morse, Jeffrey D.; Cooper, Gregory A.
2002-01-01
An array of photodiodes in series on a common semi-insulating substrate has a non-conductive buffer layer between the photodiodes and the semi-insulating substrate. The buffer layer reduces current injection leakage between the photodiodes of the array and allows optical energy to be converted to high voltage electrical energy.
Nie, Tianxiao; Tang, Jianshi; Kou, Xufeng; Gen, Yin; Lee, Shengwei; Zhu, Xiaodan; He, Qinglin; Chang, Li-Te; Murata, Koichi; Fan, Yabin; Wang, Kang L
2016-10-20
Voltage control of magnetism in ferromagnetic semiconductor has emerged as an appealing solution to significantly reduce the power dissipation and variability beyond current CMOS technology. However, it has been proven to be very challenging to achieve a candidate with high Curie temperature (T c ), controllable ferromagnetism and easy integration with current Si technology. Here we report the effective electric-field control of both ferromagnetism and magnetoresistance in unique Mn x Ge 1-x nanomeshes fabricated by nanosphere lithography, in which a T c above 400 K is demonstrated as a result of size/quantum confinement. Furthermore, by adjusting Mn doping concentration, extremely giant magnetoresistance is realized from ∼8,000% at 30 K to 75% at 300 K at 4 T, which arises from a geometrically enhanced magnetoresistance effect of the unique mesh structure. Our results may provide a paradigm for fundamentally understanding the high T c in ferromagnetic semiconductor nanostructure and realizing electric-field control of magnetoresistance for future spintronic applications.
Ambipolar light-emitting organic single-crystal transistors with a grating resonator
Maruyama, Kenichi; Sawabe, Kosuke; Sakanoue, Tomo; Li, Jinpeng; Takahashi, Wataru; Hotta, Shu; Iwasa, Yoshihiro; Takenobu, Taishi
2015-01-01
Electrically driven organic lasers are among the best lasing devices due to their rich variety of emission colors as well as other advantages, including printability, flexibility, and stretchability. However, electrically driven lasing in organic materials has not yet been demonstrated because of serious luminescent efficiency roll-off under high current density. Recently, we found that the organic ambipolar single-crystal transistor is an excellent candidate for lasing devices because it exhibits less efficient roll-off, high current density, and high luminescent efficiency. Although a single-mode resonator combined with light-emitting transistors (LETs) is necessary for electrically driven lasing devices, the fragility of organic crystals has strictly limited the fabrication of resonators, and LETs with optical cavities have never been fabricated until now. To achieve this goal, we improved the soft ultraviolet-nanoimprint lithography method and demonstrated electroluminescence from a single-crystal LET with a grating resonator, which is a crucial milestone for future organic lasers. PMID:25959455
Nie, Tianxiao; Tang, Jianshi; Kou, Xufeng; Gen, Yin; Lee, Shengwei; Zhu, Xiaodan; He, Qinglin; Chang, Li-Te; Murata, Koichi; Fan, Yabin; Wang, Kang L.
2016-01-01
Voltage control of magnetism in ferromagnetic semiconductor has emerged as an appealing solution to significantly reduce the power dissipation and variability beyond current CMOS technology. However, it has been proven to be very challenging to achieve a candidate with high Curie temperature (Tc), controllable ferromagnetism and easy integration with current Si technology. Here we report the effective electric-field control of both ferromagnetism and magnetoresistance in unique MnxGe1−x nanomeshes fabricated by nanosphere lithography, in which a Tc above 400 K is demonstrated as a result of size/quantum confinement. Furthermore, by adjusting Mn doping concentration, extremely giant magnetoresistance is realized from ∼8,000% at 30 K to 75% at 300 K at 4 T, which arises from a geometrically enhanced magnetoresistance effect of the unique mesh structure. Our results may provide a paradigm for fundamentally understanding the high Tc in ferromagnetic semiconductor nanostructure and realizing electric-field control of magnetoresistance for future spintronic applications. PMID:27762320
ERIC Educational Resources Information Center
Solomonidou, Christina; Kakana, Domna-Mika
2000-01-01
Examined 5- and 6-year-olds' ideas about the functioning of common electrical appliances and properties of electric current. Found that children represented current in a static way, thinking it was included in the appliance, and confounded electric current and water flow, believing external electricity was different from internal. They were…
Development of a compact bushing for NBI
NASA Astrophysics Data System (ADS)
de Esch, H. P. L.; Simonin, A.; Grand, C.; Lepetit, B.; Lemoine, D.; Márquez-Mijares, M.; Minea, T.; Caillault, L.; Seznec, B.; Jager, T.; Odic, E.; Kirkpatrick, M. J.; Teste, Ph.; Dessante, Ph.; Almaksour, K.
2017-08-01
Research into a novel type of compact bushing is being conducted through the HVIV (High Voltage holding In Vacuum) partnership between CEA-Cadarache1, GeePs-Centralesupélec4, LPGP3 and LCAR2. The bushing aims to concentrate the high electric field inside its interior, rather than in the vacuum tank. Hence the field emission current is also concentrated inside the bushing and it can be attempted to suppress this so-called dark current by conditioning the internal surfaces and by adding gas. LCAR have performed theoretical quantum mechanical studies of electron field emission and the role of adsorbates in changing the work function. LPGP studied the ionization of gas due to field emission current and the behavior of micro particles exposed to emissive electron current in the vacuum gap under high electric fields. Experiments at Geeps have clarified the role of surface conditioning in reducing the dark current. Geeps also found that adding low pressure nitrogen gas to the vacuum is much more effective than helium in reducing the field emission. An interesting observation is the growth of carbon structures after exposure of an electrode to the electric field. Finally, IRFM have performed experiments on a single stage test bushing that features a 36 cm high porcelain insulator and two cylindrical electrode surfaces in vacuum or low-pressure gas. Using 0.1 Pa N2 gas, the voltage holding exceeded 185 kV over a 40 mm "vacuum" gap without dark current. Above this voltage, exterior breakdowns occurred over the insulator, which was in air. The project will finish with the fabrication of a 2-stage compact bushing, capable to withstand 400 kV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneemann, Matthias; Carius, Reinhard; Rau, Uwe
2015-05-28
This paper studies the effective electrical size and carrier multiplication of breakdown sites in multi-crystalline silicon solar cells. The local series resistance limits the current of each breakdown site and is thereby linearizing the current-voltage characteristic. This fact allows the estimation of the effective electrical diameters to be as low as 100 nm. Using a laser beam induced current (LBIC) measurement with a high spatial resolution, we find carrier multiplication factors on the order of 30 (Zener-type breakdown) and 100 (avalanche breakdown) as new lower limits. Hence, we prove that also the so-called Zener-type breakdown is followed by avalanche multiplication. Wemore » explain that previous measurements of the carrier multiplication using thermography yield results higher than unity, only if the spatial defect density is high enough, and the illumination intensity is lower than what was used for the LBIC method. The individual series resistances of the breakdown sites limit the current through these breakdown sites. Therefore, the measured multiplication factors depend on the applied voltage as well as on the injected photocurrent. Both dependencies are successfully simulated using a series-resistance-limited diode model.« less
Electrical and hydrodynamic characterization of a high current pulsed arc
NASA Astrophysics Data System (ADS)
Sousa Martins, R.; Chemartin, L.; Zaepffel, C.; Lalande, Ph; Soufiani, A.
2016-05-01
High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine-Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs.
The effects of deep level traps on the electrical properties of semi-insulating CdZnTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zha, Gangqiang; Yang, Jian; Xu, Lingyan
2014-01-28
Deep level traps have considerable effects on the electrical properties and radiation detection performance of high resistivity CdZnTe. A deep-trap model for high resistivity CdZnTe was proposed in this paper. The high resistivity mechanism and the electrical properties were analyzed based on this model. High resistivity CdZnTe with high trap ionization energy E{sub t} can withstand high bias voltages. The leakage current is dependent on both the deep traps and the shallow impurities. The performance of a CdZnTe radiation detector will deteriorate at low temperatures, and the way in which sub-bandgap light excitation could improve the low temperature performance canmore » be explained using the deep trap model.« less
NASA Astrophysics Data System (ADS)
Zhang, Chong; Zha, Jun-Wei; Yan, Hong-Da; Li, Wei-Kang; Dang, Zhi-Min
2018-02-01
Polypropylene is one kind of eco-friendly insulating material, which has attracted more attention for use in high voltage direct current (HVDC) insulation due to the long-distance transmission, low loss, and recyclability. In this work, the morphology and thermal and electrical properties of the block polypropylene with various β-nucleating agent (β-NA) contents were investigated. The relative fraction of the β-crystal can reach 64.7% after adding 0.05 wt. % β-NA. The β-NA also greatly reduced the melting point and improved the crystallization temperature. The electrical property results showed that the alternating and direct current breakdown strength and conduction current were obviously improved. In addition, space charge accumulation was significantly suppressed by introducing the β-NA. This work provides an attractive strategy of design and fabrication of polypropylene for HVDC application.
Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression.
Zhang, Mingji; Or, Siu Wing
2018-02-14
A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65-12.55 mV/A in the frequency range of 10 Hz-170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0-20 A, and a high common-mode noise rejection rate of 17-28 dB from multisource noises.
Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression
2018-01-01
A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65–12.55 mV/A in the frequency range of 10 Hz–170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0–20 A, and a high common-mode noise rejection rate of 17–28 dB from multisource noises. PMID:29443920
NASA Astrophysics Data System (ADS)
Robinson, R. M.; Zanetti, L. J.; Anderson, B. J.; Korth, H.; Samara, M.; Michell, R.; Grubbs, G. A., II; Hampton, D. L.; Dropulic, A.
2016-12-01
A high latitude conductivity model based on field-aligned currents measured by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides the means for complete specification of electric fields and currents at high latitudes. Based on coordinated measurements made by AMPERE and the Poker Flat Incoherent Scatter Radar, the model determines the most likely value of the ionospheric conductance from the direction, magnitude, and magnetic local time of the field-aligned current. A conductance model driven by field-aligned currents ensures spatial and temporal consistency between the calculated electrodynamic parameters. To validate the results, the Pedersen and Hall conductances were used to calculate the energy flux associated with the energetic particle precipitation. When integrated over the entire hemisphere, the total energy flux compares well with the Hemispheric Power Index derived from the OVATION-PRIME model. The conductances were also combined with the field-aligned currents to calculate the self-consistent electric field, which was then used to compute horizontal currents and Joule heating. The magnetic perturbations derived from the currents replicate most of the variations observed in ground-based magnetograms. The model was used to study high latitude particle precipitation, currents, and Joule heating for 24 magnetic storms. In most cases, the total energy input from precipitating particles and Joule heating exhibits a sharply-peaked maximum at the times of local minima in Dst, suggesting a close coupling between the ring current and the high latitude currents driven by the Region 2 field-aligned currents. The rapid increase and decrease of the high latitude energy deposition suggests an explosive transfer of energy from the magnetosphere to the ionosphere just prior to storm recovery.
Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles
Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva
2011-01-01
The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented. PMID:22163697
Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.
Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva
2011-01-01
The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.
Extragalactic circuits, transmission lines, and CR particle acceleration
NASA Astrophysics Data System (ADS)
Kronberg, Philipp P.; Lovelace, Richard V. E.
2015-08-01
A non-negligible fraction of a Supermassive Black Hole's (SMBH) rest mass energy gets transported into extragalactic space by a remarkable process in jets which are incompletely understood. What are the physical processes which transport this energy? It is likely that the energy flows electromagnetically, rather than via a particle beam flux. The deduced electromagnetic fields may produce particles of energy as high as ˜ 1020 eV. The energetics of SMBH accretion disk models and the electromagnetic energy transfer imply that a SMBH should generate a 1018 - 1019 Ampères current close to the black hole and its accretion disk. We describe the so far best observation-based estimate of the magnitude of the current flow along the axis of the jet extending from the nucleus of the active galaxy in 3C303. The current is measured to be I ˜ 1018 Ampères at ˜ 40 kpc away from the AGN. This indicates that organised current flow remains intact over multi-kpc distances. The electric current I transports electromagnetic power into free space, P = I2Z, where Z ˜ 30 Ohms is related to the impedance of free space, and this points to the existence of cosmic electric circuit. The associated electric potential drop, V = IZ, is of the order of that required to generate Ultra High Energy Cosmic Rays (UHECR). We also explore further implications, including disruption/deflection of the power flow and also why such measurements, exemplified by those on 3C303, are currently very difficult to make and to unambiguously interpret. This naturally leads to the topic of how such measurements can be extended and improved in the future. We describe the analogy of electromagnetically dominated jets with transmission lines. High powered jets in vacuo can be understood by approximate analogy with a waveguide. The importance of inductance, impedance, and other laboratory electrical concepts are discussed in this context.
2015-01-01
Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs) that will be flexible, thread-like (diameters < 0.5 mm) and not only with controlled stimulation capabilities but also with sensing capabilities for artificial proprioception. We in vivo demonstrate that neuroprostheses composed of addressable microstimulators based on this electrical stimulation method are feasible and can perform controlled charge-balanced electrical stimulation of muscles. We developed miniature external circuit prototypes connected to two bipolar probes that were percutaneously implanted in agonist and antagonist muscles of the hindlimb of an anesthetized rabbit. The electronic implant architecture was able to decode commands that were amplitude modulated on the high frequency (1 MHz) auxiliary current bursts. The devices were capable of independently stimulating the target tissues, accomplishing controlled dorsiflexion and plantarflexion joint movements. In addition, we numerically show that the high frequency current bursts comply with safety standards both in terms of tissue heating and unwanted electro-stimulation. We demonstrate that addressable microstimulators powered by rectification of epidermically applied currents are feasible. PMID:26147771
Becerra-Fajardo, Laura; Ivorra, Antoni
2015-01-01
Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs) that will be flexible, thread-like (diameters < 0.5 mm) and not only with controlled stimulation capabilities but also with sensing capabilities for artificial proprioception. We in vivo demonstrate that neuroprostheses composed of addressable microstimulators based on this electrical stimulation method are feasible and can perform controlled charge-balanced electrical stimulation of muscles. We developed miniature external circuit prototypes connected to two bipolar probes that were percutaneously implanted in agonist and antagonist muscles of the hindlimb of an anesthetized rabbit. The electronic implant architecture was able to decode commands that were amplitude modulated on the high frequency (1 MHz) auxiliary current bursts. The devices were capable of independently stimulating the target tissues, accomplishing controlled dorsiflexion and plantarflexion joint movements. In addition, we numerically show that the high frequency current bursts comply with safety standards both in terms of tissue heating and unwanted electro-stimulation. We demonstrate that addressable microstimulators powered by rectification of epidermically applied currents are feasible.
NASA Technical Reports Server (NTRS)
Been, J. F.
1973-01-01
The effects of nuclear radiation on the reverse bias electrical characteristics of one hundred silicon power diodes were investigated. On a percentage basis, the changes in reverse currents were large but, due to very low initial values, this electrical characteristic was not the limiting factor in use of these diodes. These changes were interpreted in terms of decreasing minority carrier lifetimes as related to generation-recombination currents. The magnitudes of reverse voltage breakdown were unaffected by irradiation.
Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites.
Kaimoyo, Evans; Farag, Mohamed A; Sumner, Lloyd W; Wasmann, Catherine; Cuello, Joel L; VanEtten, Hans
2008-01-01
Many secondary metabolites that are normally undetectable or in low amounts in healthy plant tissue are synthesized in high amounts in response to microbial infection. Various abiotic and biotic agents have been shown to mimic microorganisms and act as elicitors of the synthesis of these plant compounds. In the present study, sub-lethal levels of electric current are shown to elicit the biosynthesis of secondary metabolites in transgenic and non-transgenic plant tissue. The production of the phytoalexin (+)-pisatin by pea was used as the main model system. Non-transgenic pea hairy roots treated with 30-100 mA of electric current produced 13 times higher amounts of (+)-pisatin than did the non-elicited controls. Electrically elicited transgenic pea hairy root cultures blocked at various enzymatic steps in the (+)-pisatin biosynthetic pathway also accumulated intermediates preceding the blocked enzymatic step. Secondary metabolites not usually produced by pea accumulated in some of the transgenic root cultures after electric elicitation due to the diversion of the intermediates into new pathways. The amount of pisatin in the medium bathing the roots of electro-elicited roots of hydroponically cultivated pea plants was 10 times higher 24 h after elicitation than in the medium surrounding the roots of non-elicited control plants, showing not only that the electric current elicited (+)-pisatin biosynthesis but also that the (+)-pisatin was released from the roots. Seedlings, intact roots or cell suspension cultures of fenugreek (Trigonella foenum-graecum), barrel medic, (Medicago truncatula), Arabidopsis thaliana, red clover (Trifolium pratense) and chickpea (Cicer arietinum) also produced increased levels of secondary metabolites in response to electro-elicitation. On the basis of our results, electric current would appear to be a general elicitor of plant secondary metabolites and to have potential for application in both basic and commercial research.
NASA Astrophysics Data System (ADS)
Treufeld, Imre; Song, Michelle; Zhu, Lei; Baer, Eric; Snyder, Joe; Langhe, Deepak
2015-03-01
Multilayer films (MLFs) with high energy density and high temperature capability (>120 °C) have been developed at Case Western Reserve University. Such films offer a potential solution for electric car DC-link capacitors, where high ripple currents and high temperature tolerance are required. The current state-of-the-art capacitors used in electric cars for converting DC to AC use biaxially oriented polypropylene (BOPP), which can only operate at temperatures up to 85 °C requiring an external cooling system. The polycarbonate (PC)/poly(vinylidene fluoride) (PVDF) MLFs have a higher permittivity compared to that of BOPP (2.3), leading to higher energy density. They have good mechanical stability and reasonably low dielectric losses at 120 °C. Nonetheless, our preliminary dielectric measurements show that the MLFs exhibit appreciable dielectric losses (20%) at 120 °C, which would, despite all the other advantages, make them not suitable for practical applications. Our preliminary data showed that dielectric losses of the MLFs at 120 °C up to 400 MV/m and 1000 Hz originate mostly from impurity ionic conduction. This work is supported by the NSF PFI/BIC Program (IIP-1237708).
NASA Astrophysics Data System (ADS)
Kim, Moon-Jo; Jeong, Hye-Jin; Park, Ju-Won; Hong, Sung-Tae; Han, Heung Nam
2018-01-01
An empirical expression describing the electroplastic deformation behavior is suggested based on the Johnson-Cook (JC) model by adding several functions to consider both thermal and athermal electric current effects. Tensile deformation behaviors are carried out for an AZ31 magnesium alloy and an Al-Mg-Si alloy under pulsed electric current at various current densities with a fixed duration of electric current. To describe the flow curves under electric current, a modified JC model is proposed to take the electric current effect into account. Phenomenological descriptions of the adopted parameters in the equation are made. The modified JC model suggested in the present study is capable of describing the tensile deformation behaviors under pulsed electric current reasonably well.
Block-Module Electric Machines of Alternating Current
NASA Astrophysics Data System (ADS)
Zabora, I.
2018-03-01
The paper deals with electric machines having active zone based on uniform elements. It presents data on disk-type asynchronous electric motors with short-circuited rotors, where active elements are made by integrated technique that forms modular elements. Photolithography, spraying, stamping of windings, pressing of core and combined methods are utilized as the basic technological approaches of production. The constructions and features of operation for new electric machine - compatible electric machines-transformers are considered. Induction motors are intended for operation in hermetic plants with extreme conditions surrounding gas, steam-to-gas and liquid environment at a high temperature (to several hundred of degrees).
Printing of highly conductive solution by alternating current electrohydrodynamic direct-write
NASA Astrophysics Data System (ADS)
Jiang, Jiaxin; Zheng, Gaofeng; Wang, Xiang; Zheng, Jianyi; Liu, Juan; Liu, Yifang; Li, Wenwang; Guo, Shumin
2018-03-01
Electrohydrodynamic Direct-Write (EDW) is a novel technology for the printing of micro/nano structures. In this paper, Alternating Current (AC) electrical field was introduced to improve the ejection stability of jet with highly conductive solution. By alternating the electrical field, the polarity of free charges on the surface of jet was changed and the average density of charge, as well as the repulsive force, was reduced to stabilize the jet. When the frequency of AC electrical field increased, the EDW process became more stable and the shape of deposited droplets became more regular. The diameter of printed droplets decreased and the deposition frequency increased with the increase of voltage frequency. The phenomenon of corona discharge was overcome effectively as well. To further evaluate the performance of AC EDW for highly conductive solution, more NaCl was added to the solution and the conductivity was increased to 2810μs/cm. With such high conductivity, the problem of serious corona discharge could still be prevented by AC EDW, and the diameter of printed droplets decreased significantly. This work provides an effective way to accelerate industrial applications of EDW.
Signal Cloaking by Electric Fish
STODDARD, PHILIP K.; MARKHAM, MICHAEL R.
2010-01-01
Electric fish produce weak electric fields to image their world in darkness and to communicate with potential mates and rivals. Eavesdropping by electroreceptive predators exerts selective pressure on electric fish to shift their signals into less-detectable high-frequency spectral ranges. Hypopomid electric fish evolved a signal-cloaking strategy that reduces their detectability by predators in the lab (and thus presumably their risk of predation in the field). These fish produce broad-frequency electric fields close to the body, but the heterogeneous local fields merge over space to cancel the low-frequency spectrum at a distance. Mature males dynamically regulate this cloaking mechanism to enhance or suppress low-frequency energy. The mechanism underlying electric-field cloaking involves electrogenic cells that produce two independent action potentials. In a unique twist, these cells orient sodium and potassium currents in the same direction, potentially boosting their capabilities for current generation. Exploration of such evolutionary inventions could aid the design of biogenerators to power implantable medical devices, an ambition that would benefit from the complete genome sequence of a gymnotiform fish. PMID:20209064
Heterogeneous current collector in lithium-ion battery for thermal-runaway mitigation
NASA Astrophysics Data System (ADS)
Wang, Meng; Le, Anh V.; Shi, Yang; Noelle, Daniel J.; Qiao, Yu
2017-02-01
Current collector accounts for more than 90% of the electric conductivity and ˜90% of the mechanical strength of the electrode in lithium-ion battery (LIB). Usually, current collectors are smooth metallic thin films. In the current study, we show that if the current collector is heterogeneous, the heat generation becomes negligible when the LIB cell is subjected to mechanical abuse. The phenomenon is attributed to the guided strain concentration, which promotes the separation of the forward and the return paths of internal short circuit. As the internal impedance drastically increases, the stored electric energy cannot be dissipated as thermal energy. The modification of current collector does not affect the cycling performance of the LIB cell. This finding enables advanced thermal-runaway mitigation techniques for high-energy, large-scale energy storage systems.
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute
2008-01-01
Coaxial electric heaters have been conceived for use in highly sensitive instruments in which there are requirements for compact heaters but stray magnetic fields associated with heater electric currents would adversely affect operation. Such instruments include atomic clocks and magnetometers that utilize heated atomic-sample cells, wherein stray magnetic fields at picotesla levels could introduce systematic errors into instrument readings. A coaxial electric heater is essentially an axisymmetric coaxial cable, the outer conductor of which is deliberately made highly electrically resistive so that it can serve as a heating element. As in the cases of other axisymmetric coaxial cables, the equal magnitude electric currents flowing in opposite directions along the inner and outer conductors give rise to zero net magnetic field outside the outer conductor. Hence, a coaxial electric heater can be placed near an atomic-sample cell or other sensitive device. A coaxial electric heater can be fabricated from an insulated copper wire, the copper core of which serves as the inner conductor. For example, in one approach, the insulated wire is dipped in a colloidal graphite emulsion, then the emulsion-coated wire is dried to form a thin, uniform, highly electrically resistive film that serves as the outer conductor. Then the film is coated with a protective layer of high-temperature epoxy except at the end to be electrically connected to the power supply. Next, the insulation is stripped from the wire at that end. Finally, electrical leads from the heater power supply are attached to the exposed portions of the wire and the resistive film. The resistance of the graphite film can be tailored via its thickness. Alternatively, the film can be made from an electrically conductive paint, other than a colloidal graphite emulsion, chosen to impart the desired resistance. Yet another alternative is to tailor the resistance of a graphite film by exploiting the fact that its resistance can be changed permanently within about 10 percent by heating it to a temperature above 300 C. A coaxial heater, with electrical leads attached, that has been bent into an almost full circle for edge heating of a circular window is shown. (In the specific application, there is a requirement for a heated cell window, through which an optical beam enters the cell.)
Electrical Properties of MWCNT/HDPE Composite-Based MSM Structure Under Neutron Irradiation
NASA Astrophysics Data System (ADS)
Kasani, H.; Khodabakhsh, R.; Taghi Ahmadi, M.; Rezaei Ochbelagh, D.; Ismail, Razali
2017-04-01
Because of their low cost, low energy consumption, high performance, and exceptional electrical properties, nanocomposites containing carbon nanotubes are suitable for use in many applications such as sensing systems. In this research work, a metal-semiconductor-metal (MSM) structure based on a multiwall carbon nanotube/high-density polyethylene (MWCNT/HDPE) nanocomposite is introduced as a neutron sensor. Scanning electron microscopy, Fourier-transform infrared, and infrared spectroscopy techniques were used to characterize the morphology and structure of the fabricated device. Current-voltage ( I- V) characteristic modeling showed that the device can be assumed to be a reversed-biased Schottky diode, if the voltage is high enough. To estimate the depletion layer length of the Schottky contact, impedance spectroscopy was employed. Therefore, the real and imaginary parts of the impedance of the MSM system were used to obtain electrical parameters such as the carrier mobility and dielectric constant. Experimental observations of the MSM structure under irradiation from an americium-beryllium (Am-Be) neutron source showed that the current level in the device decreased significantly. Subsequently, current pulses appeared in situ I- V and current-time ( I- t) curve measurements when increasing voltage was applied to the MSM system. The experimentally determined depletion region length as well as the space-charge-limited current mechanism for carrier transport were compared with the range for protons calculated using Monte Carlo n-particle extended (MCNPX) code, yielding the maximum energy of recoiled protons detectable by the device.
Electrical safety for high voltage arrays
NASA Technical Reports Server (NTRS)
Marshall, N. A.
1983-01-01
A number of key electrical safety requirements for the high voltage arrays of central station photovoltaic power systems are explored. The suitability of representative industrial DC power switchgear for control and fault protection was evaluated. Included were AC/DC circuit breakers, electromechanical contactors and relays, load interruptors, cold disconnect devices, sectionalizing switches, and high voltage DC fuses. As appropriate, steady state and transient characteristics were analyzed. Failure modes impacting upon operation and maintenance safety were also identified, as were the voltage withstand and current interruption levels.
PV source based high voltage gain current fed converter
NASA Astrophysics Data System (ADS)
Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.
2017-11-01
This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.
Prakash, Amit; Maikap, Siddheswar; Banerjee, Writam; Jana, Debanjan; Lai, Chao-Sung
2013-09-06
Improved switching characteristics were obtained from high-κ oxides AlOx, GdOx, HfOx, and TaOx in IrOx/high-κx/W structures because of a layer that formed at the IrOx/high-κx interface under external positive bias. The surface roughness and morphology of the bottom electrode in these devices were observed by atomic force microscopy. Device size was investigated using high-resolution transmission electron microscopy. More than 100 repeatable consecutive switching cycles were observed for positive-formatted memory devices compared with that of the negative-formatted devices (only five unstable cycles) because it contained an electrically formed interfacial layer that controlled 'SET/RESET' current overshoot. This phenomenon was independent of the switching material in the device. The electrically formed oxygen-rich interfacial layer at the IrOx/high-κx interface improved switching in both via-hole and cross-point structures. The switching mechanism was attributed to filamentary conduction and oxygen ion migration. Using the positive-formatted design approach, cross-point memory in an IrOx/AlOx/W structure was fabricated. This cross-point memory exhibited forming-free, uniform switching for >1,000 consecutive dc cycles with a small voltage/current operation of ±2 V/200 μA and high yield of >95% switchable with a large resistance ratio of >100. These properties make this cross-point memory particularly promising for high-density applications. Furthermore, this memory device also showed multilevel capability with a switching current as low as 10 μA and a RESET current of 137 μA, good pulse read endurance of each level (>105 cycles), and data retention of >104 s at a low current compliance of 50 μA at 85°C. Our improvement of the switching characteristics of this resistive memory device will aid in the design of memory stacks for practical applications.
High Voltage Discharge Profile on Soil Breakdown Using Impulse Discharge
NASA Astrophysics Data System (ADS)
Fajingbesi, F. E.; Midi, N. S.; Elsheikh, E. M. A.; Yusoff, S. H.
2017-06-01
Grounding terminals are mandatory in electrical appliance design as they provide safety route during overvoltage faults. The soil (earth) been the universal ground is assumed to be at zero electric potential. However, due to properties like moisture, pH and available nutrients; the electric potential may fluctuate between positive and negative values that could be harmful for internally connected circuits on the grounding terminal. Fluctuations in soil properties may also lead to current crowding effect similar to those seen at the emitters of semiconductor transistors. In this work, soil samples are subjected to high impulse voltage discharge and the breakdown characteristics was profiled. The results from profiling discharge characteristics of soil in this work will contribute to the optimization of grounding protection system design in terms of electrode placement. This would also contribute to avoiding grounding electrode current crowding, ground potential rise fault and electromagnetic coupling faults.
NASA Astrophysics Data System (ADS)
De Sanctis, Adolfo; Mehew, Jake D.; Alkhalifa, Saad; Tate, Callum P.; White, Ashley; Woodgate, Adam R.; Craciun, Monica F.; Russo, Saverio
2018-02-01
Two-dimensional materials offer a novel platform for the development of future quantum technologies. However, the electrical characterisation of topological insulating states, non-local resistance, and bandgap tuning in atomically thin materials can be strongly affected by spurious signals arising from the measuring electronics. Common-mode voltages, dielectric leakage in the coaxial cables, and the limited input impedance of alternate-current amplifiers can mask the true nature of such high-impedance states. Here, we present an optical isolator circuit which grants access to such states by electrically decoupling the current-injection from the voltage-sensing circuitry. We benchmark our apparatus against two state-of-the-art measurements: the non-local resistance of a graphene Hall bar and the transfer characteristic of a WS2 field-effect transistor. Our system allows the quick characterisation of novel insulating states in two-dimensional materials with potential applications in future quantum technologies.
Thermal investigation of an electrical high-current arc with porous gas-cooled anode
NASA Technical Reports Server (NTRS)
Eckert, E. R. G.; Schoeck, P. A.; Winter, E. R. F.
1984-01-01
The following guantities were measured on a high-intensity electric arc with tungsten cathode and transpiration-cooled graphite anode burning in argon: electric current and voltage, cooling gas flow rate (argon), surface temperature of the anode and of the anode holder, and temperature profile in three cross-sections of the arc are column. The last mentioned values were obtained from spectroscopic photographs. From the measured quantities, the following values were calculated: the heat flux into the anode surface, the heat loss of the anode by radiation and conduction, and the heat which was regeneratively transported by the cooling gas back into the arc space. Heat balances for the anode were also obtained. The anode losses (which are approximately 80% of the total arc power for free burning arcs) were reduced by transpiration cooling to 20%. The physical processes of the energy transfer from the arc to the anode are discussed qualitatively.
Highly flexible electronics from scalable vertical thin film transistors.
Liu, Yuan; Zhou, Hailong; Cheng, Rui; Yu, Woojong; Huang, Yu; Duan, Xiangfeng
2014-03-12
Flexible thin-film transistors (TFTs) are of central importance for diverse electronic and particularly macroelectronic applications. The current TFTs using organic or inorganic thin film semiconductors are usually limited by either poor electrical performance or insufficient mechanical flexibility. Here, we report a new design of highly flexible vertical TFTs (VTFTs) with superior electrical performance and mechanical robustness. By using the graphene as a work-function tunable contact for amorphous indium gallium zinc oxide (IGZO) thin film, the vertical current flow across the graphene-IGZO junction can be effectively modulated by an external gate potential to enable VTFTs with a highest on-off ratio exceeding 10(5). The unique vertical transistor architecture can readily enable ultrashort channel devices with very high delivering current and exceptional mechanical flexibility. With large area graphene and IGZO thin film available, our strategy is intrinsically scalable for large scale integration of VTFT arrays and logic circuits, opening up a new pathway to highly flexible macroelectronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ťapajna, M., E-mail: milan.tapajna@savba.sk; Kuzmík, J.; Hilt, O.
2015-11-09
Gate diode conduction mechanisms were analyzed in normally-off p-GaN/AlGaN/GaN high-electron mobility transistors grown on Si wafers before and after forward bias stresses. Electrical characterization of the gate diodes indicates forward current to be limited by channel electrons injected through the AlGaN/p-GaN triangular barrier promoted by traps. On the other hand, reverse current was found to be consistent with carrier generation-recombination processes in the AlGaN layer. Soft breakdown observed after ∼10{sup 5 }s during forward bias stress at gate voltage of 7 V was attributed to formation of conductive channel in p-GaN/AlGaN gate stack via trap generation and percolation mechanism, likely due tomore » coexistence of high electric field and high forward current density. Possible enhancement of localized conductive channels originating from spatial inhomogeneities is proposed to be responsible for the degradation.« less
The interplanetary electric field, cleft currents and plasma convection in the polar caps
NASA Technical Reports Server (NTRS)
Banks, P. M.; Clauer, C. R.; Araki, T.; St. Maurice, J. P.; Foster, J. C.
1984-01-01
The relationship between the pattern of plasma convection in the polar cleft and the dynamics of the interplanetary electric field (IEF) is examined theoretically. It is shown that owing to the geometrical properties of the magnetosphere, the East-West component of the IEF will drive field-aligned currents which connect to the ionosphere at points lying on either side of noon, while currents associated with the North-South component of the IEF will connect the two polar caps as sheet currents, also centered at 12 MLT. In order to describe the consequences of the Interplanetary Magnetic Field (IMF) effects upon high-latitude electric fields and convection patterns, a series of numerical simulations was carried out. The simulations were based on a solution to the steady-state equation of current continuity in a height-integrated ionospheric current. The simulations demonstrate that a simple hydrodynamical model can account for the narrow 'throats' of strong dayside antisunward convection observed during periods of southward interplanetary IMF drift, as well as the sunward convection observed during periods of strongly northward IMF drift.
Advanced Electric Distribution, Switching, and Conversion Technology for Power Control
NASA Technical Reports Server (NTRS)
Soltis, James V.
1998-01-01
The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.
Research of Influence of Noise Pollution on the Value of the Threshold Current Tangible
NASA Astrophysics Data System (ADS)
Khanzhina, Olga; Sidorov, Alexander; Zykina, Ekaterina
2017-12-01
Stable safety while working on electrical installations can be achieved by following the rules of the electrical safety. Today maximum permissible levels of touch voltage and electric current flow through any part of a person’s body are established by Russian Federation GOST system 12.1.038-82. Unfortunately, recommended by International Electrotechnical Commission (IEC) maximum allowable amount of electric current and voltage level do not take into account interaction between said electric current and other physical factors; noise, in particular. The influence of sound frequency and its pressure level on body resistance has been proven earlier in thesis by V.V. Katz. Studies of the noise effects on the value of the threshold current tangible have been renewed in laboratories of Life Safety Department in South Ural State University. To obtain reliable results, testing facility that includes anechoic chamber, sources of simulated voltages and noise and a set of recording instruments was designed and built. As a rule, noise influence on electrotechnical personnel varies depending on noise level or/and the duration of its impact. According to modern theories, indirect noise influence on various organs and systems through central nervous system has to be considered. Differential evaluation of noise pollution and its correlation with emerged effects can be obtained with the usage of the dose approach. First of all, there were conducted studies, in which frequency of the applied voltage (f) was to 50 Hz. Voltages and currents that caused sensations before and during 97 dB noise affections were measured. Obtained dependence led to questioning previous researches results of the necessity of reducing the amperage of tripping protection devices. At the same time electrical resistance changes of human body were being studied. According to those researches, no functional dependence between fluctuations in the magnitude of the resistance of human body to electric current flow and constant noise affection were found. Taking into account that contradiction, additional studies of primary electrical safety criteria for cases when exposed to high frequency noise pollution were conducted.
NASA Astrophysics Data System (ADS)
Synek, Petr; Zemánek, Miroslav; Kudrle, Vít; Hoder, Tomáš
2018-04-01
Electrical current measurements in corona or barrier microdischarges are a challenge as they require both high temporal resolution and a large dynamic range of the current probe used. In this article, we apply a simple self-assembled current probe and compare it to commercial ones. An analysis in the time and frequency domain is carried out. Moreover, an improved methodology is presented, enabling both temporal resolution in sub-nanosecond times and current sensitivity in the order of tens of micro-amperes. Combining this methodology with a high-tech oscilloscope and self-developed software, a unique statistical analysis of currents in volume barrier discharge driven in atmospheric-pressure air is made for over 80 consecutive periods of a 15 kHz applied voltage. We reveal the presence of repetitive sub-critical current pulses and conclude that these can be identified with the discharging of surface charge microdomains. Moreover, extremely low, long-lasting microsecond currents were detected which are caused by ion flow, and are analysed in detail. The statistical behaviour presented gives deeper insight into the discharge physics of these usually undetectable current signals.
NASA Astrophysics Data System (ADS)
Helseth, L. E.; Guo, X. D.
2016-04-01
Water contact electric harvesting has a great potential as a new energy technology for powering small-scale electronics, but a better understanding of the dynamics governing the conversion from mechanical to electrical energy on the polymer surfaces is needed. Important questions are how current correlates with droplet kinetic energy and what happens to the charge dynamics when a large number of droplets are incident on the polymer simultaneously. Here we address these questions by studying the current that is generated in an external electrical circuit when water droplets impinge on hydrophobic fluorinated ethylene propylene film containing a grating electrode on the back side. Droplets moving down an inclined polymer plane exhibit a characteristic periodic current time trace, and it is found that the peak current scales with sine of the inclination angle. For single droplets in free fall impinging onto the polymer, it is found that the initial peak current scales with the height of the free fall. The transition from individual droplets to a nearly continuous stream was investigated using the spectral density of the current signal. In both regimes, the high frequency content of the spectral density scales as f -2. For low frequencies, the low frequency content at low volume rates was noisy but nearly constant, whereas for high volume rates an increase with frequency is observed. It is demonstrated that the output signal from the system exposed to water droplets from a garden hose can be rectified and harvested by a 33 μF capacitor, where the stored energy increases at a rate of about 20 μJ in 100 s.
Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chunwei, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001; Tian, Xiubo, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com
2016-08-15
The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process wasmore » simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.« less
Carbon neutral electricity production by Synechocystis sp. PCC6803 in a microbial fuel cell.
Madiraju, Kartik S; Lyew, Darwin; Kok, Robert; Raghavan, Vijaya
2012-04-01
The aim of this work was to illustrate the use of photosynthetic microbes in a microbial fuel cell to produce electricity without the requirement of an external carbon source. This research here describes the use of a cyanobacterium Synechocystis PCC6803, to produce electricity without any net CO(2) production in a two-chambered MFC. Conditions for optimum electricity production were determined through standardizing operating parameters. A maximum power density of 6.7mWm(-3)(anode chamber volume) was achieved under high intensity lighting (10,000lux). Light intensity and wavelength directly affected electricity production, indicating the pivotal role played by photosynthesis. The maximum removal of CO(2) was 625mmolm(-3) over 20h under high intensity light. The results presented here will contribute to the understanding of how cyanobacteria can be exploited for the direct conversion of CO(2) to electric current. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ground/bonding for Large Space System Technology (LSST). [of metallic and nonmetallic structures
NASA Technical Reports Server (NTRS)
Dunbar, W. G.
1980-01-01
The influence of the environment and extravehicular activity remote assembly operations on the grounding and bonding of metallic and nonmetallic structures is discussed. Grounding and bonding philosophy is outlined for the electrical systems and electronic compartments which contain high voltage, high power electrical and electronic equipment. The influence of plasma and particulate on the system was analyzed and the effects of static buildup on the spacecraft electrical system discussed. Conceptual grounding bonding designs are assessed for capability to withstand high current arcs to ground from a high voltage conductor and electromagnetic interference. Also shown were the extravehicular activities required of the space station and or supply spacecraft crew members to join and inspect the ground system using manual on remote assembly construction.
Ground/bonding for Large Space System Technology (LSST)
NASA Astrophysics Data System (ADS)
Dunbar, W. G.
1980-04-01
The influence of the environment and extravehicular activity remote assembly operations on the grounding and bonding of metallic and nonmetallic structures is discussed. Grounding and bonding philosophy is outlined for the electrical systems and electronic compartments which contain high voltage, high power electrical and electronic equipment. The influence of plasma and particulate on the system was analyzed and the effects of static buildup on the spacecraft electrical system discussed. Conceptual grounding bonding designs are assessed for capability to withstand high current arcs to ground from a high voltage conductor and electromagnetic interference. Also shown were the extravehicular activities required of the space station and or supply spacecraft crew members to join and inspect the ground system using manual on remote assembly construction.
Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes.
Liu, Juqing; Yin, Zongyou; Cao, Xiehong; Zhao, Fei; Lin, Anping; Xie, Linghai; Fan, Quli; Boey, Freddy; Zhang, Hua; Huang, Wei
2010-07-27
A unique device structure with a configuration of reduced graphene oxide (rGO) /P3HT:PCBM/Al has been designed for the polymer nonvolatile memory device. The current-voltage (I-V) characteristics of the fabricated device showed the electrical bistability with a write-once-read-many-times (WORM) memory effect. The memory device exhibits a high ON/OFF ratio (10(4)-10(5)) and low switching threshold voltage (0.5-1.2 V), which are dependent on the sheet resistance of rGO electrode. Our experimental results confirm that the carrier transport mechanisms in the OFF and ON states are dominated by the thermionic emission current and ohmic current, respectively. The polarization of PCBM domains and the localized internal electrical field formed among the adjacent domains are proposed to explain the electrical transition of the memory device.
NASA Astrophysics Data System (ADS)
Haisch, B. M.; Bruner, M. E.; Hagyard, M. J.; Bonnet, R. M.
1986-01-01
This paper presents an extensive set of coordinated observations of a solar active region, taking into account spectroheliograms obtained with the aid of the Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP) instrument, SMM soft X-ray polychromator (XRP) raster maps, and high spatial resolution ultraviolet images of the sun in Lyman-alpha and in the 1600 A continuum. These data span together the upper solar atmosphere from the temperature minimum to the corona. The data are compared to maps of the inferred photospheric electric current derived from the Marshall Space Flight Center (MSFC) vector magnetograph observations. Some empirical correlation is found between regions of inferred electric current density and the brightest features in the ultraviolet continuum and to a lesser extent those seen in Lyman-alpha within an active region.
King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson
1998-01-01
A battery load leveling arrangement for an electrically powered system in which battery loading is subject to intermittent high current loading utilizes a passive energy storage device and a diode connected in series with the storage device to conduct current from the storage device to the load when current demand forces a drop in battery voltage. A current limiting circuit is connected in parallel with the diode for recharging the passive energy storage device. The current limiting circuit functions to limit the average magnitude of recharge current supplied to the storage device. Various forms of current limiting circuits are disclosed, including a PTC resistor coupled in parallel with a fixed resistor. The current limit circuit may also include an SCR for switching regenerative braking current to the device when the system is connected to power an electric motor.
Graphene-coated coupling coil for AC resistance reduction
Miller, John M
2014-03-04
At least one graphene layer is formed to laterally surround a tube so that the basal plane of each graphene layer is tangential to the local surface of the tube on which the graphene layer is formed. An electrically conductive path is provided around the tube for providing high conductivity electrical path provided by the basal plane of each graphene layer. The high conductivity path can be employed for high frequency applications such as coupling coils for wireless power transmission to overcome skin depth effects and proximity effects prevalent in high frequency alternating current paths.
Electrical efficiency and droop in MQW LEDs
NASA Astrophysics Data System (ADS)
Malyutenko, V. K.
2014-02-01
It is believed that low power conversion efficiency in commercial MQW LEDs occurs as a result of efficiency droop, current-induced dynamic degradation of the internal quantum efficiency, injection efficiency, and extraction efficiency. Broadly speaking, all these "quenching" mechanisms could be referred to as the optical losses. The vast advances of high-power InGaN and AlGaInP MQW LEDs have been achieved by addressing these losses. In contrast to these studies, in this paper we consider an alternative approach to make high-power LEDs more efficient. We identify current-induced electrical efficiency degradation (EED) as a strong limiting factor of power conversion efficiency. We found that EED is caused by current crowding followed by an increase in current-induced series resistance of a device. By decreasing the current spreading length, EED also causes the optical efficiency to degrade and stands for an important aspect of LED performance. This paper gives scientists the opportunity to look for different attributes of EED.
Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces.
Zhao, Siwei; Tseng, Peter; Grasman, Jonathan; Wang, Yu; Li, Wenyi; Napier, Bradley; Yavuz, Burcin; Chen, Ying; Howell, Laurel; Rincon, Javier; Omenetto, Fiorenzo G; Kaplan, David L
2018-06-01
The increased need for wearable and implantable medical devices has driven the demand for electronics that interface with living systems. Current bioelectronic systems have not fully resolved mismatches between engineered circuits and biological systems, including the resulting pain and damage to biological tissues. Here, salt/poly(ethylene glycol) (PEG) aqueous two-phase systems are utilized to generate programmable hydrogel ionic circuits. High-conductivity salt-solution patterns are stably encapsulated within PEG hydrogel matrices using salt/PEG phase separation, which route ionic current with high resolution and enable localized delivery of electrical stimulation. This strategy allows designer electronics that match biological systems, including transparency, stretchability, complete aqueous-based connective interface, distribution of ionic electrical signals between engineered and biological systems, and avoidance of tissue damage from electrical stimulation. The potential of such systems is demonstrated by generating light-emitting diode (LED)-based displays, skin-mounted electronics, and stimulators that deliver localized current to in vitro neuron cultures and muscles in vivo with reduced adverse effects. Such electronic platforms may form the basis of future biointegrated electronic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multifunctional smart composites with integrated carbon nanotube yarn and sheet
NASA Astrophysics Data System (ADS)
Chauhan, Devika; Hou, Guangfeng; Ng, Vianessa; Chaudhary, Sumeet; Paine, Michael; Moinuddin, Khwaja; Rabiee, Massoud; Cahay, Marc; Lalley, Nicholas; Shanov, Vesselin; Mast, David; Liu, Yijun; Yin, Zhangzhang; Song, Yi; Schulz, Mark
2017-04-01
Multifunctional smart composites (MSCs) are materials that combine the good electrical and thermal conductivity, high tensile and shear strength, good impact toughness, and high stiffness properties of metals; the light weight and corrosion resistance properties of composites; and the sensing or actuation properties of smart materials. The basic concept for MSCs was first conceived by Daniel Inman and others about 25 years ago. Current laminated carbon and glass fiber polymeric composite materials have high tensile strength and are light in weight, but they still lack good electrical and thermal conductivity, and they are sensitive to delamination. Carbon nanotube yarn and sheets are lightweight, electrically and thermally conductive materials that can be integrated into laminated composite materials to form MSCs. This paper describes the manufacturing of high quality carbon nanotube yarn and sheet used to form MSCs, and integrating the nanotube yarn and sheet into composites at low volume fractions. Various up and coming technical applications of MSCs are discussed including composite toughening for impact and delamination resistance; structural health monitoring; and structural power conduction. The global carbon nanotube overall market size is estimated to grow from 2 Billion in 2015 to 5 Billion by 2020 at a CAGR of 20%. Nanotube yarn and sheet products are predicted to be used in aircraft, wind machines, automobiles, electric machines, textiles, acoustic attenuators, light absorption, electrical wire, sporting equipment, tires, athletic apparel, thermoelectric devices, biomedical devices, lightweight transformers, and electromagnets. In the future, due to the high maximum current density of nanotube conductors, nanotube electromagnetic devices may also become competitive with traditional smart materials in terms of power density.
Hot wire needle probe for thermal conductivity detection
Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban
2015-11-10
An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.
Selective Screening of High Temperature Superconductors by Resonant Eddy Current Analysis
1990-11-01
observable electronic parameters are both stable and well defined. Further, if the circuit possesses a resonance , then it has well characterized parameters and...Engineers Construction Engineering Research Laboratory - AD-A230 194 Selective Screening of High Temperature Superconductors by Resonant Eddy Current...electrical systems or electronic components from the effects of unwanted electromagnetic energy. With the discovery of High Transition Critical Temperature
Direct Electricity from Heat: A Solution to Assist Aircraft Power Demands
NASA Technical Reports Server (NTRS)
Goldsby, Jon C.
2010-01-01
A thermionic device produces an electrical current with the application of a thermal gradient whereby the temperature at one electrode provides enough thermal energy to eject electrons. The system is totally predicated on the thermal gradient and the work function of the electrode collector relative to the emitter electrode. Combined with a standard thermoelectric device high efficiencies may result, capable of providing electrical energy from the waste heat of gas turbine engines.
Long range alpha particle detector
MacArthur, Duncan W.; Wolf, Michael A.; McAtee, James L.; Unruh, Wesley P.; Cucchiara, Alfred L.; Huchton, Roger L.
1993-01-01
An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.
Long range alpha particle detector
MacArthur, D.W.; Wolf, M.A.; McAtee, J.L.; Unruh, W.P.; Cucchiara, A.L.; Huchton, R.L.
1993-02-02
An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.
High Current Ionic Diode Using Homogeneously Charged Asymmetric Nanochannel Network Membrane.
Choi, Eunpyo; Wang, Cong; Chang, Gyu Tae; Park, Jungyul
2016-04-13
A high current ionic diode is achieved using an asymmetric nanochannel network membrane (NCNM) constructed by soft lithography and in situ self-assembly of nanoparticles with uniform surface charge. The asymmetric NCNM exhibits high rectified currents without losing a rectification ratio because of its ionic selectivity gradient and differentiated electrical conductance. Asymmetric ionic transport is analyzed with diode-like I-V curves and visualized via fluorescent dyes, which is closely correlated with ionic selectivity and ion distribution according to variation of NCNM geometries.
Ionospheric convection driven by NBZ currents
NASA Technical Reports Server (NTRS)
Rasmussen, C. E.; Schunk, R. W.
1987-01-01
Computer simulations of Birkeland currents and electric fields in the polar ionosphere during periods of northward IMF were conducted. When the IMF z component is northward, an additional current system, called the NBZ current system, is present in the polar cap. These simulations show the effect of the addition of NBZ currents on ionospheric convection, particularly in the polar cap. When the total current in the NBZ system is roughly 25 to 50 percent of the net region 1 and 2 currents, convection in the central portion of the polar cap reverses direction and turns sunward. This creates a pattern of four-cell convection with two small cells located in the polar cap, rotating in an opposite direction from the larger cells. When the Birkeland currents are fixed (constant current source), the electric field is reduced in regions of relatively high conductivity, which affects the pattern of ionospheric convection. Day-night asymmetries in conductivity change convection in such a way that the two polar-cap cells are located within the large dusk cell. When ionospheric convection is fixed (constant voltage source), Birkeland currents are increased in regions of relatively high conductivity. Ionospheric currents, which flow horizontally to close the Birkeland currents, are changed appreciably by the NBZ current system. The principal effect is an increase in ionospheric current in the polar cap.
Temperature limited heater with a conduit substantially electrically isolated from the formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinegar, Harold J; Sandberg, Chester Ledlie
2009-07-14
A system for heating a hydrocarbon containing formation is described. A conduit may be located in an opening in the formation. The conduit includes ferromagnetic material. An electrical conductor is positioned inside the conduit, and is electrically coupled to the conduit at or near an end portion of the conduit so that the electrical conductor and the conduit are electrically coupled in series. Electrical current flows in the electrical conductor in a substantially opposite direction to electrical current flow in the conduit during application of electrical current to the system. The flow of electrons is substantially confined to the insidemore » of the conduit by the electromagnetic field generated from electrical current flow in the electrical conductor so that the outside surface of the conduit is at or near substantially zero potential at 25.degree. C. The conduit may generate heat and heat the formation during application of electrical current.« less
Measurement technology of RF interference current in high current system
NASA Astrophysics Data System (ADS)
Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei
2018-06-01
Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.
Overview on NASA's Advanced Electric Propulsion Concepts Activities
NASA Technical Reports Server (NTRS)
Frisbee, Robert H.
1999-01-01
Advanced electric propulsion research activities are currently underway that seek to addresses feasibility issues of a wide range of advanced concepts, and may result in the development of technologies that will enable exciting new missions within our solar system and beyond. Each research activity is described in terms of the present focus and potential future applications. Topics include micro-electric thrusters, electrodynamic tethers, high power plasma thrusters and related applications in materials processing, variable specific impulse plasma thrusters, pulsed inductive thrusters, computational techniques for thruster modeling, and advanced electric propulsion missions and systems studies.
Thermal-electrical properties and resistance stability of silver coated yarns
NASA Astrophysics Data System (ADS)
Li, Yafang; Liu, Hao; Li, Xiaojiu
2017-03-01
Thermal-electrical properties and resistance stability of silver yarns was researched to evaluate the performance be a heating element. Three samples of silver coated yarns with different linear density and electrical resistivity, which obtained by market. Silver coated yarns were placed at the high temperature condition for ageing. The electrical resistances of yarns were increased with the ageing process. The infrared photography instrument was used to measurement the temperature variation of silver coated yarns by applied different current on. The result shows that the temperature rise with the power increases.
2014-02-01
Applied Drain Voltage Ids Drain-to-Source current MPa Megapascals σxx x-Component of Stress INTRODUCTION Gallium nitride (GaN) based high electron...the thermodynamic model to obtain the current densities within a semiconductor device. In doing so, it is possible to determine the electric
9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Electrical; stunning or slaughtering with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle...
9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Electrical; stunning or slaughtering with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle...
9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Electrical; stunning or slaughtering with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves, cattle...
MARINE ELECTRICITY FROM HIGH ALTITUDE WIND WITH KITE (MEHAWK)
We currently have a functioning land-based prototype in field test. In this proposed project, we would like to build and finish a working prototype that can fit to a small boat. It will be launched from the boat and generate electricity that can at least light up a light bulb ...
Observation of a westward travelling surge from satellites at low, medium and high altitudes
NASA Technical Reports Server (NTRS)
Ungstrup, E.; Sharp, R. D.; Cattell, C. A.; Anderson, R. R.; Fitzenreiter, R. J.; Evans, D. S.; Baker, D. N.
1984-01-01
The motion of discontinuity; electric potential and current structure of the event; energy source and flow; wave-particle interactions; and particle acceleration are addressed using wave, electron, ion mass spectrometer, dc electric field, and magnetic field observation from the Isee-1, NOAA-6, and the 1976-059 geostationary satellite.
CHARGE-2 rocket observations of vehicle charging and charge neutralization
NASA Astrophysics Data System (ADS)
Banks, P. M.; Gilchrist, B. E.; Neubert, T.; Myers, N.; Raitt, W. J.; Williamson, P. R.; Fraser-Smith, A. C.; Sasaki, S.
Observations of electrical charging and other phenomena have been made in the ionosphere with the CHARGE-2 tethered rocket system. In this experiment, two electrically connected payloads with a variety of plasma instruments measured effects associated with operation of a 1 keV, 40 mA electron gun and a 450-volt dc power supply. During electron beam operations, it was found that both mother and daughter payloads reached high positive potentials as a consequence of the restricted electron current collecting area of the payloads. During neutral gas thruster firings, the payload potentials were dramatically reduced, indicating that electrical discharges could effectively ground each payload to plasma potential. Other thruster-related effects were also seen, including substantial reductions of return current-associated electrical noise at HF and VLF and large increases in 3914 A light in the plasma sheath.
Integration of HTS Cables in the Future Grid of the Netherlands
NASA Astrophysics Data System (ADS)
Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.
Due to increasing power demand, the electricity grid of the Netherlands is changing. The future transmission grid will obtain electrical power generated by decentralized renewable sources, together with large scale generation units located at the coastal region. In this way electrical power has to be distributed and transmitted over longer distances from generation to end user. Potential grid issues like: amount of distributed power, grid stability and electrical loss dissipation merit particular attention. High temperature superconductors (HTS) can play an important role in solving these grid problems. Advantages to integrate HTS components at transmission voltages are numerous: more transmittable power together with less emissions, intrinsic fault current limiting capability, lower ac loss, better control of power flow, reduced footprint, less magnetic field emissions, etc. The main obstacle at present is the relatively high price of HTS conductor. However as the price goes down, initial market penetration of several HTS components (e.g.: cables, fault current limiters) is expected by year 2015. In the full paper we present selected ways to integrate EHV AC HTS cables depending on a particular future grid scenario in the Netherlands.
The High Price of Noise Exposure
... Current Issue Past Issues Hearing Disorders The High Price of Noise Exposure Past Issues / Fall 2008 Table ... These tiny structures convert sound waves into electrical energy. Our auditory nerve sends this energy to the ...
High-Energy Two-Stage Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Markusic, Tom
2003-01-01
A high-energy (28 kJ per pulse) two-stage pulsed plasma thruster (MSFC PPT-1) has been constructed and tested. The motivation of this project is to develop a high power (approximately 500 kW), high specific impulse (approximately 10000 s), highly efficient (greater than 50%) thruster for use as primary propulsion in a high power nuclear electric propulsion system. PPT-1 was designed to overcome four negative characteristics which have detracted from the utility of pulsed plasma thrusters: poor electrical efficiency, poor propellant utilization efficiency, electrode erosion, and reliability issues associated with the use of high speed gas valves and high current switches. Traditional PPTs have been plagued with poor efficiency because they have not been operated in a plasma regime that fully exploits the potential benefits of pulsed plasma acceleration by electromagnetic forces. PPTs have generally been used to accelerate low-density plasmas with long current pulses. Operation of thrusters in this plasma regime allows for the development of certain undesirable particle-kinetic effects, such as Hall effect-induced current sheet canting. PPT-1 was designed to propel a highly collisional, dense plasma that has more fluid-like properties and, hence, is more effectively pushed by a magnetic field. The high-density plasma loading into the second stage of the accelerator is achieved through the use of a dense plasma injector (first stage). The injector produces a thermal plasma, derived from a molten lithium propellant feed system, which is subsequently accelerated by the second stage using mega-amp level currents, which eject the plasma at a speed on the order of 100 kilometers per second. Traditional PPTs also suffer from dynamic efficiency losses associated with snowplow loading of distributed neutral propellant. The twostage scheme used in PPT-I allows the propellant to be loaded in a manner which more closely approximates the optimal slug loading. Lithium propellant was chosen to test whether or not the reduced electrode erosion found in the Lithium Lorentz Force Accelerator (LiLFA) could also be realized in a pulsed plasma thruster. The use of the molten lithium dense plasma injector also eliminates the need for a gas valve and electrical switch; the injector design fulfills both roles, and uses no moving parts to provide, in principle, a highly reliable propellant feed and electrical switching system. Experimental results reported in this paper include: second-stage current traces, high-speed photographic and holographic imaging of the thruster exit plume, and internal mapping of the discharge chamber magnetic field from B-dot probe data. The magnetic field data is used to create a two-dimensional description of the evolution of the current sheet inside the thruster.
Novel laboratory methods for determining the fine scale electrical resistivity structure of core
NASA Astrophysics Data System (ADS)
Haslam, E. P.; Gunn, D. A.; Jackson, P. D.; Lovell, M. A.; Aydin, A.; Prance, R. J.; Watson, P.
2014-12-01
High-resolution electrical resistivity measurements are made on saturated rocks using novel laboratory instrumentation and multiple electrical voltage measurements involving in principle a four-point electrode measurement but with a single, moving electrode. Flat, rectangular core samples are scanned by varying the electrode position over a range of hundreds of millimetres with an accuracy of a tenth of a millimetre. Two approaches are tested involving a contact electrode and a non-contact electrode arrangement. The first galvanic method uses balanced cycle switching of a floating direct current (DC) source to minimise charge polarisation effects masking the resistivity distribution related to fine scale structure. These contacting electrode measurements are made with high common mode noise rejection via differential amplification with respect to a reference point within the current flow path. A computer based multifunction data acquisition system logs the current through the sample and voltages along equipotentials from which the resistivity measurements are derived. Multiple measurements are combined to create images of the surface resistivity structure, with variable spatial resolution controlled by the electrode spacing. Fine scale sedimentary features and open fractures in saturated rocks are interpreted from the measurements with reference to established relationships between electrical resistivity and porosity. Our results successfully characterise grainfall lamination and sandflow cross-stratification in a brine saturated, dune bedded core sample representative of a southern North Sea reservoir sandstone, studied using the system in constant current, variable voltage mode. In contrast, in a low porosity marble, identification of open fracture porosity against a background very low matrix porosity is achieved using the constant voltage, variable current mode. This new system is limited by the diameter of the electrode that for practical reasons can only be reduced to between 0.5 and 0.75 mm. Improvements to this resolution may be achieved by further reducing the electrode footprint to 0.1 mm × 0.1 mm using a novel high-impedance, non-contact potential probe. Initial results with this non-contact electric potential sensor indicate the possibility for generating images with grain-scale resolution.
Characterisation of an Exploding Foil Initiator (EFI) system
NASA Astrophysics Data System (ADS)
Davies, H. R.; Chapman, D. J.; Vine, T. A.; Proud, W. G.
2009-06-01
Exploding Foil Initiators (EFIs) provide a safe and reliable means of detonation of explosives. They are highly insensitive to mechanical shock and electrical interference, requiring a specific high current pulse for initiation. The use of only insensitive secondary explosives and not more sensitive primary explosives further improves safety. When a high current is passed through the metal bridge, a plasma is formed as the metal can not expand beyond the polymer film layer above. This causes the film to expand forming a bubble or shearing off to form a flyer. These flyers can then be used to initiate secondary explosives. Due to the very high speed at which these systems operate, high speed streak photography was used to characterise the behaviour of the polymer film flyers produced. This paper will report the preliminary findings on the mechanical, electrical and velocity changes seen in some proprietary systems.
Progress and challenges in electrically pumped GaN-based VCSELs
NASA Astrophysics Data System (ADS)
Haglund, A.; Hashemi, E.; Bengtsson, J.; Gustavsson, J.; Stattin, M.; Calciati, M.; Goano, M.
2016-04-01
ABSTRACT The Vertical-Cavity Surface-Emitting Laser (VCSEL) is an established optical source in short-distance optical communication links, computer mice and tailored infrared power heating systems. Its low power consumption, easy integration into two-dimensional arrays, and low-cost manufacturing also make this type of semiconductor laser suitable for application in areas such as high-resolution printing, medical applications, and general lighting. However, these applications require emission wavelengths in the blue-UV instead of the established infrared regime, which can be achieved by using GaN-based instead of GaAs-based materials. The development of GaN-based VCSELs is challenging, but during recent years several groups have managed to demonstrate electrically pumped GaN-based VCSELs with close to 1 mW of optical output power and threshold current densities between 3-16 kA/cm2. The performance is limited by challenges such as achieving high-reflectivity mirrors, vertical and lateral carrier confinement, efficient lateral current spreading, accurate cavity length control and lateral optical mode confinement. This paper summarizes different strategies to solve these issues in electrically pumped GaN-VCSELs together with state-of-the-art results. We will highlight our work on combined transverse current and optical mode confinement, where we show that many structures used for current confinement result in unintentionally optically anti-guided resonators. Such resonators can have a very high optical loss, which easily doubles the threshold gain for lasing. We will also present an alternative to the use of distributed Bragg reflectors as high-reflectivity mirrors, namely TiO2/air high contrast gratings (HCGs). Fabricated HCGs of this type show a high reflectivity (>95%) over a 25 nm wavelength span.
Rauh, R. David; Goldner, Ronald B.
1989-01-01
In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity.
Rauh, R.D.; Goldner, R.B.
1989-12-26
In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity are disclosed. 1 fig.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klepper, C Christopher; Martin, Elijah H; Isler, Ralph C
2014-01-01
An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (> 1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma,more » in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klepper, C. C., E-mail: kleppercc@ornl.gov; Isler, R. C.; Biewer, T. M.
2014-11-15
An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, inmore » front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.« less
Klepper, C C; Martin, E H; Isler, R C; Colas, L; Goniche, M; Hillairet, J; Panayotis, S; Pegourié, B; Jacquot, J; Lotte, Ph; Colledani, G; Biewer, T M; Caughman, J B; Ekedahl, A; Green, D L; Harris, J H; Hillis, D L; Shannon, S C; Litaudon, X
2014-11-01
An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.
High field gradient particle accelerator
Nation, J.A.; Greenwald, S.
1989-05-30
A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.
Translocation of single-stranded DNA through single-walled carbon nanotubes.
Liu, Haitao; He, Jin; Tang, Jinyao; Liu, Hao; Pang, Pei; Cao, Di; Krstic, Predrag; Joseph, Sony; Lindsay, Stuart; Nuckolls, Colin
2010-01-01
We report the fabrication of devices in which one single-walled carbon nanotube spans a barrier between two fluid reservoirs, enabling direct electrical measurement of ion transport through the tube. A fraction of the tubes pass anomalously high ionic currents. Electrophoretic transport of small single-stranded DNA oligomers through these tubes is marked by large transient increases in ion current and was confirmed by polymerase chain reaction analysis. Each current pulse contains about 10(7) charges, an enormous amplification of the translocated charge. Carbon nanotubes simplify the construction of nanopores, permit new types of electrical measurements, and may open avenues for control of DNA translocation.
NASA Astrophysics Data System (ADS)
Kosch, M. J.; Nielsen, E.
Two bistatic VHF radar systems, STARE and SABRE, have been employed to estimate ionospheric electric fields in the geomagnetic latitude range 61.1 - 69.3° (geographic latitude range 63.8 - 72.6°) over northern Scandinavia. 173 days of good backscatter from all four radars have been analysed during the period 1982 to 1986, from which the average ionospheric divergence electric field versus latitude and time is calculated. The average magnetic field-aligned currents are computed using an AE-dependent empirical model of the ionospheric conductance. Statistical Birkeland current estimates are presented for high and low values of the Kp and AE indices as well as positive and negative orientations of the IMF B z component. The results compare very favourably to other ground-based and satellite measurements.
NASA Astrophysics Data System (ADS)
Önel, Hakan
2008-08-01
The Sun is a star, which due to its proximity has a tremendous influence on Earth. Since its very first days mankind tried to "understand the Sun", and especially in the 20th century science has uncovered many of the Sun's secrets by using high resolution observations and describing the Sun by means of models. As an active star the Sun's activity, as expressed in its magnetic cycle, is closely related to the sunspot numbers. Flares play a special role, because they release large energies on very short time scales. They are correlated with enhanced electromagnetic emissions all over the spectrum. Furthermore, flares are sources of energetic particles. Hard X-ray observations (e.g., by NASA's RHESSI spacecraft) reveal that a large fraction of the energy released during a flare is transferred into the kinetic energy of electrons. However the mechanism that accelerates a large number of electrons to high energies (beyond 20 keV) within fractions of a second is not understood yet. The thesis at hand presents a model for the generation of energetic electrons during flares that explains the electron acceleration based on real parameters obtained by real ground and space based observations. According to this model photospheric plasma flows build up electric potentials in the active regions in the photosphere. Usually these electric potentials are associated with electric currents closed within the photosphere. However as a result of magnetic reconnection, a magnetic connection between the regions of different magnetic polarity on the photosphere can establish through the corona. Due to the significantly higher electric conductivity in the corona, the photospheric electric power supply can be closed via the corona. Subsequently a high electric current is formed, which leads to the generation of hard X-ray radiation in the dense chromosphere. The previously described idea is modelled and investigated by means of electric circuits. For this the microscopic plasma parameters, the magnetic field geometry and hard X-ray observations are used to obtain parameters for modelling macroscopic electric components, such as electric resistors, which are connected with each other. This model demonstrates that such a coronal electric current is correlated with large scale electric fields, which can accelerate the electrons quickly up to relativistic energies. The results of these calculations are encouraging. The electron fluxes predicted by the model are in agreement with the electron fluxes deduced from the measured photon fluxes. Additionally the model developed in this thesis proposes a new way to understand the observed double footpoint hard X-ray sources.
Blocking and guiding adult sea lamprey with pulsed direct current from vertical electrodes
Johnson, Nicholas S.; Thompson, Henry T.; Holbrook, Christopher M.; Tix, John A.
2014-01-01
Controlling the invasion front of aquatic nuisance species is of high importance to resource managers. We tested the hypothesis that adult sea lamprey (Petromyzon marinus), a destructive invasive species in the Laurentian Great Lakes, would exhibit behavioral avoidance to dual-frequency pulsed direct current generated by vertical electrodes and that the electric field would not injure or kill sea lamprey or non-target fish. Laboratory and in-stream experiments demonstrated that the electric field blocked sea lamprey migration and directed sea lamprey into traps. Rainbow trout (Oncorhynchus mykiss) and white sucker (Catostomus commersoni), species that migrate sympatrically with sea lamprey, avoided the electric field and had minimal injuries when subjected to it. Vertical electrodes are advantageous for fish guidance because (1) the electric field produced varies minimally with depth, (2) the electric field is not grounded, reducing power consumption to where portable and remote deployments powered by solar, wind, hydro, or a small generator are feasible, and (3) vertical electrodes can be quickly deployed without significant stream modification allowing rapid responses to new invasions. Similar dual-frequency pulsed direct current fields produced from vertical electrodes may be advantageous for blocking or trapping other invasive fish or for guiding valued fish around dams.
NASA Astrophysics Data System (ADS)
Konesev, S. G.; Khazieva, R. T.; Kirllov, R. V.; Konev, A. A.
2017-01-01
Some electrical consumers (the charge system of storage capacitor, powerful pulse generators, electrothermal systems, gas-discharge lamps, electric ovens, plasma torches) require constant power consumption, while their resistance changes in the limited range. Current stabilization systems (CSS) with inductive-capacitive transducers (ICT) provide constant power, when the load resistance changes over a wide range and increaseы the efficiency of high-power loads’ power supplies. ICT elements are selected according to the maximum load, which leads to exceeding a predetermined value of capacity. The paper suggests carrying load power by the ICT based on multifunction integrated electromagnetic components (MIEC) to reduce the predetermined capacity of ICT elements and CSS weights and dimensions. The authors developed and patented ICT based on MIEC that reduces the CSS weights and dimensions by reducing components number with the possibility of device’s electric energy transformation and resonance frequency changing. An ICT mathematical model was produced. The model determines the width of the load stabilization range. Electromagnetic processes study model was built with the MIEC integral parameters (full inductance of the electrical lead, total capacity, current of electrical lead). It shows independence of the load current from the load resistance for different ways of MIEC connection.
Defect-Enabled Electrical Current Leakage in Ultraviolet Light-Emitting Diodes
Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...
2015-04-13
The AlGaN materials system offers a tunable, ultra-wide bandgap that is exceptionally useful for high-power electronics and deep ultraviolet optoelectronics. Moseley et al. (pp. 723–726) investigate a structural defect known as an open-core threading dislocation or ''nanopipe'' that is particularly detrimental to devices that employ these materials. Furthermore, an AlGaN thin film was synthesized using metal-organic chemical-vapor deposition. Electrical current leakage is detected at a discrete point using a conductive atomic-force microscope (CAFM). However, no physical feature or abnormality at this location was visible by an optical microscope. The AlGaN thin film was then etched in hot phosphoric acid, andmore » the same location that was previously analyzed was revisited with the CAFM. The point that previously exhibited electrical current leakage had been decorated with a 1.1 μm wide hexagonal pit, which identified the site of electrical current leakage as a nanopipe and allows these defects to be easily observed by optical microscopy. Moreover, with this nanopipe identification and quantification strategy, the authors were able to correlate decreasing ultraviolet light-emitting diode optical output power with increasing nanopipe density.« less
Nonthermal electrons in the thick-target reverse-current model for hard X-ray bremsstrahlung
NASA Astrophysics Data System (ADS)
Litvinenko, Iu. E.; Somov, B. V.
1991-02-01
The behavior of the accelerated electrons escaping from a high-temperature source of primary energy in a solar flare is investigated. The direct current of fast electrons is supposed to be balanced by the reverse current of thermal electrons in the ambient colder plasma inside flare loops. The self-consistent kinetic problem is formulated, and the reverse-current electric field and the fast electron distribution function are found from its solution. The X-ray bremsstrahlung polarization is then calculated from the distribution function. The difference of results from those in the case of thermal runaway electrons (Diakonov and Somov, 1988) is discussed. The solutions with and without an account taken of the effect of a reverse-current electric field are also compared.
NASA Astrophysics Data System (ADS)
Zarafshani, Ali; Bach, Thomas; Chatwin, Chris; Xiang, Liangzhong; Zheng, Bin
2017-03-01
Electrical Impedance Spectroscopy (EIS) has emerged as a non-invasive imaging modality to detect and quantify functional or electrical properties related to the suspicious tumors in cancer screening, diagnosis and prognosis assessment. A constraint on EIS systems is that the current excitation system suffers from the effects of stray capacitance having a major impact on the hardware subsystem as the EIS is an ill-posed inverse problem which depends on the noise level in EIS measured data and regularization parameter in the reconstruction algorithm. There is high complexity in the design of stable current sources, with stray capacitance reducing the output impedance and bandwidth of the system. To confront this, we have designed an EIS current source which eliminates the effect of stray capacitance and other impacts of the capacitance via a variable inductance. In this paper, we present a combination of operational CCII based on a generalized impedance converter (OCCII-GIC) with a current source. The aim of this study is to use the EIS system as a biomedical imaging technique, which is effective in the early detection of breast cancer. This article begins with the theoretical description of the EIS structure, current source topologies and proposes a current conveyor in application of a Gyrator to eliminate the current source limitations and its development followed by simulation and experimental results. We demonstrated that the new design could achieve a high output impedance over a 3MHz frequency bandwidth when compared to other types of GIC circuits combined with an improved Howland topology.
Induced charging of shuttle orbiter by high electron-beam currents
NASA Technical Reports Server (NTRS)
Liemohn, H. B.
1977-01-01
Emission of high-current electron beams that was proposed for some Spacelab payloads required substantial return currents to the orbiter skin in order to neutralize the beam charge. Since the outer skin of the vehicle was covered with approximately 1200 sq m of thermal insulation which has the dielectric quality of air and an electrical conductivity that was estimated by NASA at 10 to the -9 power to 10 to the -10 power mhos/m, considerable transient charging and local potential differences were anticipated across the insulation. The theory for induced charging of spacecraft due to operation of electron guns was only developed for spherical metal vehicles and constant emission currents, which were not directly applicable to the orbiter situation. Field-aligned collection of electron return current from the ambient ionosphere at orbiter altitudes provides up to approximately 150 mA on the conducting surfaces and approximately 2.4 A on the dielectric thermal insulation. Local ionization of the neutral atmosphere by energetic electron bombardment or electrical breakdown may provide somewhat more return current.
A Wavelet-based Fast Discrimination of Transformer Magnetizing Inrush Current
NASA Astrophysics Data System (ADS)
Kitayama, Masashi
Recently customers who need electricity of higher quality have been installing co-generation facilities. They can avoid voltage sags and other distribution system related disturbances by supplying electricity to important load from their generators. For another example, FRIENDS, highly reliable distribution system using semiconductor switches or storage devices based on power electronics technology, is proposed. These examples illustrates that the request for high reliability in distribution system is increasing. In order to realize these systems, fast relaying algorithms are indispensable. The author proposes a new method of detecting magnetizing inrush current using discrete wavelet transform (DWT). DWT provides the function of detecting discontinuity of current waveform. Inrush current occurs when transformer core becomes saturated. The proposed method detects spikes of DWT components derived from the discontinuity of the current waveform at both the beginning and the end of inrush current. Wavelet thresholding, one of the wavelet-based statistical modeling, was applied to detect the DWT component spikes. The proposed method is verified using experimental data using single-phase transformer and the proposed method is proved to be effective.
Itoi, Hiroyuki; Nishihara, Hirotomo; Kogure, Taichi; Kyotani, Takashi
2011-02-09
Zeolite-templated carbon is a promising candidate as an electrode material for constructing an electric double layer capacitor with both high-power and high-energy densities, due to its three-dimensionally arrayed and mutually connected 1.2-nm nanopores. This carbon exhibits both very high gravimetric (140-190 F g(-1)) and volumetric (75-83 F cm(-3)) capacitances in an organic electrolyte solution. Moreover, such a high capacitance can be well retained even at a very high current up to 20 A g(-1). This extraordinary high performance is attributed to the unique pore structure.
Control of bootstrap current in the pedestal region of tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaing, K. C.; Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53796; Lai, A. L.
2013-12-15
The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by themore » electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.« less
NASA Astrophysics Data System (ADS)
Mehmood, Shahid; Shah, Masood; Pasha, Riffat Asim; Sultan, Amir
2017-10-01
The effect of electric discharge machining (EDM) on surface quality and consequently on the fatigue performance of Al 2024 T6 is investigated. Five levels of discharge current are analyzed, while all other electrical and nonelectrical parameters are kept constant. At each discharge current level, dog-bone specimens are machined by generating a peripheral notch at the center. The fatigue tests are performed on four-point rotating bending machine at room temperature. For comparison purposes, fatigue tests are also performed on the conventionally machined specimens. Linearized SN curves for 95% failure probability and with four different confidence levels (75, 90, 95 and 99%) are plotted for each discharge current level as well as for conventionally machined specimens. These plots show that the electric discharge machined (EDMed) specimens give inferior fatigue behavior as compared to conventionally machined specimen. Moreover, discharge current inversely affects the fatigue life, and this influence is highly pronounced at lower stresses. The EDMed surfaces are characterized by surface properties that could be responsible for change in fatigue life such as surface morphology, surface roughness, white layer thickness, microhardness and residual stresses. It is found that all these surface properties are affected by changing discharge current level. However, change in fatigue life by discharge current could not be associated independently to any single surface property.
Tsurugi, Takuo; Matsui, Shogo; Nakajima, Hiroshi; Nishii, Nobuhiro; Honda, Toshihiro; Kaneko, Yoshiaki
2015-06-01
An electrical short circuit is a rare complication in a high-voltage implantable cardioverter-defibrillator (ICD). However, the inability of an ICD to deliver appropriate shock therapy can be life-threatening. During the last 2 years, four cases of serious complications related to an electrical short circuit have been reported in Japan. A spark due to an electrical short circuit resulted in the failure of an ICD shock to terminate ventricular tachycardia and total damage to the ICD generator in three of four cases. Two of the four patients died from an electrical short circuit between the right ventricle and superior vena cava (SVC) leads. The others had audible sounds from the ICD generator site and were diagnosed with a lead-to-can abrasion, which was manifested by the arc mark on the surface of the can. It is still difficult to predict the occurrence of an electrical short circuit in current ICD systems. To reduce the probability of an electrical short circuit, we suggest the following: (i) avoid lead stress at ICD implantation, (ii) select a single-coil lead instead of a dual-coil lead, or (iii) use a unique algorithm which automatically disconnect can or SVC lead from shock deliver circuit when excessive current was detected. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Zhao, Jingyi; Wang, G.-X.; Dong, Yalin; Ye, Chang
2017-08-01
Many electrically assisted processes have been reported to induce changes in microstructure and metal plasticity. To understand the physics-based mechanisms behind these interesting phenomena, however, requires an understanding of the interaction between the electric current and heterogeneous microstructure. In this work, multiscale modeling of the electric current flow in a nanocrystalline material is reported. The cellular automata method was used to track the nanoscale grain boundaries in the matrix. Maxwell's electromagnetic equations were solved to obtain the electrical potential distribution at the macro scale. Kirchhoff's circuit equation was solved to obtain the electric current flow at the micro/nano scale. The electric current distribution at two representative locations was investigated. A significant electric current concentration was observed near the grain boundaries, particularly near the triple junctions. This higher localized electric current leads to localized resistive heating near the grain boundaries. The electric current distribution could be used to obtain critical information such as localized resistive heating rate and extra system free energy, which are critical for explaining many interesting phenomena, including microstructure evolution and plasticity enhancement in many electrically assisted processes.
CRIT II electric, magnetic, and density measurements within an ionizing neutral stream
NASA Technical Reports Server (NTRS)
Swenson, C. M.; Kelley, M. C.; Primdahl, F.; Baker, K. D.
1990-01-01
Measurements from rocket-borne sensors inside a high-velocity neutral barium beam show a-factor-of-six increase in plasma density in a moving ionizing front. This region was colocated with intense fluctuating electric fields at frequencies well under the lower hybrid frequency for a barium plasma. Large quasi-dc electric and magnetic field fluctuations were also detected with a large component of the current and the electric field parallel to B(0). An Alfven wave with a finite electric field component parallel to the geomagnetic field was observed to propagate along B(0), where it was detected by an instrumented subpayload.
NASA Technical Reports Server (NTRS)
Miller, W. N.; Gray, O. E.
1982-01-01
Hybrid switch allows high-power direct current to be turned on and off without arcing or erosion. Switch consists of bank of transistors in parallel with mechanical contacts. Transistor bank makes and breaks switched circuit; contacts carry current only during steady-state "on" condition. Designed for Space Shuttle orbiter, hybrid switch can be used also in high-power control circuits in aircraft, electric autos, industrial furnaces, and solar-cell arrays.
Analysis of magnetically immersed electron guns with non-adiabatic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikin, Alexander; Alessi, James G.; Beebe, Edward N.
Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams withmore » high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. In conclusion, the tests results of non-adiabatic electron gun with modified magnetic field are presented.« less
Analysis of magnetically immersed electron guns with non-adiabatic fields
Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; ...
2016-11-08
Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams withmore » high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. In conclusion, the tests results of non-adiabatic electron gun with modified magnetic field are presented.« less
Analysis of magnetically immersed electron guns with non-adiabatic fields.
Pikin, Alexander; Alessi, James G; Beebe, Edward N; Raparia, Deepak; Ritter, John
2016-11-01
Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams with high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map, different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. The tests' results of a non-adiabatic electron gun with modified magnetic field are presented.
NASA Astrophysics Data System (ADS)
Xiang, An; Xu, Xingliang; Zhang, Lin; Li, Zhiqiang; Li, Juntao; Dai, Gang
2018-02-01
The conduction of current from n-4H-SiC into pyrogenic and dry oxidized films is studied. Anomalous current conduction was observed at a high electric field above 8 MV/cm for dry oxidized metal-oxide-semiconductor (MOS) capacitors, which cannot be interpreted in the framework of pure Fowler-Nordheim tunneling. The temperature-dependent current measurement and density of interface trap estimated from the hi-lo method for the SiO2/4H-SiC interface revealed that the combined current conduction of Fowler-Nordheim and Poole-Frenkel emission is responsible for the current conduction in both pyrogenic and dry oxidized MOS capacitors. Furthermore, the origin of temperature dependent current conduction is the Poole-Frenkel emission via the carbon pair defect trap level at 1.3 eV below the conduction band edge of SiO2. In addition, with the dry oxidized capacitors, the enhanced temperature dependent current above 8 MV/cm is attributed to the PF emission via a trap level at 1.47 eV below the conduction band edge of SiO2, which corresponds to another configuration of a carbon pair defect in SiO2 films.
Electrically-induced stresses and deflection in multiple plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jih-Perng; Tichler, P.R.
Thermohydraulic tests are being planned at the High Flux Beam Reactor of Brookhaven National Laboratory, in which direct electrical heating of metal plates will simulate decay heating in parallel plate-type fuel elements. The required currents are high if plates are made of metal with a low electrical resistance, such as aluminum. These high currents will induce either attractive or repulsive forces between adjacent current-carrying plates. Such forces, if strong enough, will cause the plates to deflect and so change the geometry of the coolant channel between the plates. Since this is undesirable, an analysis has been made to evaluate themore » magnitude of the deflection and related stresses. In contrast to earlier publications in which either a concentrated or a uniform load was assumed, in this paper an exact force distribution on the plate is analytically solved and then used for stress and deflection calculations, assuming each plate to be a simply supported beam. Results indicate that due to superposition of the induced forces between plates in a multiple-and-parallel plate array, the maximum deflection and bending stress occur at the midpoint of the outermost plate. The maximum shear stress, which is inversely proportional to plate thickness, occurs at both ends of the outermost plate.« less
Determination of P3HT Trap Site Energies by Thermally Stimulated Current
NASA Astrophysics Data System (ADS)
Souza, J. F. P.; Serbena, J. P. M.; Kowalski, E. L.; Akcelrud, L. C.
2018-02-01
The thermal, electrical and morphological characterization of poly(3-hexylthiophene-2,5diyl) (P3HT) is presented and discussed. Thermal analyses revealed high glass transition, melting and degradation temperatures, indicating high stability of the polymer to annealings in the range 25-200°C. Electrical measurements were performed in spin-coated devices constructed using indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) in the sandwich structure ITO/PEDOT:PSS/P3HT/Al. The devices were thermally treated at 25°C, 100°C, 150°C, and 200°C prior to the measurements. Characteristic curves of current density versus voltage showed that the injection of charge carriers is governed by tunneling at high electric fields. Hole mobility was estimated by impedance spectroscopy, showing a maximum value of 8.6 × 10-5 cm2/Vs for annealed films at 150°C. A thermally stimulated current technique was used to analyze the trap density in the P3HT and its respective energies for all devices, presenting the lowest trap density for annealed films at 150°C. Morphological features observed by atomic force microscopy showed that the 150°C thermally treated film presents the best interface condition of the four investigated annealing temperatures.
A comparison between initial continuous currents of different types of upward lightning
NASA Astrophysics Data System (ADS)
Wang, D.; Sawada, N.; Takagi, N.
2009-12-01
We have observed the lightning to a wind turbine and its lightning-protection tower for four consecutive winter seasons from 2005 to 2009. Our observation items include (1) thunderstorm electrical fields and lightning-caused electric field changes at multi sites around the wind turbine, (2) electrical currents at the bottom of the wind turbine and its lightning protection tower, (3) normal video and high speed image of lightning optical channels. Totally, we have obtained the data for 42 lightning that hit either on wind turbine or its lightning protection tower or both. Among these 42 lightning, 38 are upward lightning and 2 are downward lightning. We found the upward lightning can be sub-classified into two types. Type 1 upward lightning are self-triggered from a high structure, while type 2 lightning are triggered by a discharge occurred in other places which could be either a cloud discharge or a cloud-to-ground discharge (other-triggered). In this study, we have compared the two types of upward lightning in terms of initial continuous current rise time, peak current and charge transferred to the ground. We found that the initial current of self-triggered lightning tends to rise significantly faster and to a bigger peak value than the other-triggered lightning, although both types of lightning transferred similar amount of charge to the ground.
NASA Astrophysics Data System (ADS)
Takahashi, Toru; Fujino, Takayasu; Ishikawa, Motoo
Time dependent three-dimensional numerical analysis is carried out in order to clarify causes of voltage loss occurring near power takeoff regions and to suggest how to reduce the voltage loss for the scramjet engine driven MHD generator which was developed under the hypersonic vehicle electric power system program in USA. The numerical results under the experimental condition show that the local positive electric field is induced near the power takeoff electrodes. The phenomenon is due to the electric field loss by the high electric current through the weakly ionized plasma with low temperature and also by the low electromotive force near the power takeoff electrodes. When the configuration of power takeoff electrodes is modified, the current density near the power takeoff electrodes becomes small and the electromotive force becomes strong. The electric power output under the optimum electrode configuration of power takeoff is improved by 22 percent, compared with the value under the experimental condition.
NASA Astrophysics Data System (ADS)
Kim, J.-Y.; Nielsen, M. C.; Rymaszewski, E. J.; Lu, T.-M.
2000-02-01
Room temperature deposition of tantalum oxide films on metallized silicon substrates was investigated by reactive pulsed magnetron sputtering of Ta in an Ar/O2 ambient. The dielectric constant of the tantalum oxide ranged from 19 to 31 depending on the oxygen percentage [P(%)=PO2/(PO2+PAr)] used during sputtering. The leakage current density was less than 10 nA/cm2 at 0.5 MV/cm electric field and the dielectric breakdown field was greater than 3.8 MV/cm for P=60%. A charge storage as high as 3.3 μF/cm2 was achieved for 70-Å-thick film. Pulse frequency variation (from 20 to 200 kHz) did not give a significant effect in the electrical properties (dielectric constant or leakage current density) of the Ta2O5 films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haisch, B.M.; Bruner, M.E.; Hagyard, M.J.
This paper presents an extensive set of coordinated observations of a solar active region, taking into account spectroheliograms obtained with the aid of the Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP) instrument, SMM soft x-ray polychromator (XRP) raster maps, and high spatial resolution ultraviolet images of the sun in Lyman-alpha and in the 1600 A continuum. These data span together the upper solar atmosphere from the temperature minimum to the corona. The data are compared to maps of the inferred photospheric electric current derived from the Marshall Space Flight Center (MSFC) vector magnetograph observations. Some empirical correlation is foundmore » between regions of inferred electric current density and the brightest features in the ultraviolet continuum and to a lesser extent those seen in Lyman-alpha within an active region. 29 references.« less
Electrical resistance tomography from measurements inside a steel cased borehole
Daily, William D.; Schenkel, Clifford; Ramirez, Abelardo L.
2000-01-01
Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.
A High-Sensitivity Current Sensor Utilizing CrNi Wire and Microfiber Coils
Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Shen, Xiang; Jin, Long; Guan, Bai-ou
2014-01-01
We obtain an extremely high current sensitivity by wrapping a section of microfiber on a thin-diameter chromium-nickel wire. Our detected current sensitivity is as high as 220.65 nm/A2 for a structure length of only 35 μm. Such sensitivity is two orders of magnitude higher than the counterparts reported in the literature. Analysis shows that a higher resistivity or/and a thinner diameter of the metal wire may produce higher sensitivity. The effects of varying the structure parameters on sensitivity are discussed. The presented structure has potential for low-current sensing or highly electrically-tunable filtering applications. PMID:24824372
A high-sensitivity current sensor utilizing CrNi wire and microfiber coils.
Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Shen, Xiang; Jin, Long; Guan, Bai-ou
2014-05-12
We obtain an extremely high current sensitivity by wrapping a section of microfiber on a thin-diameter chromium-nickel wire. Our detected current sensitivity is as high as 220.65 nm/A2 for a structure length of only 35 μm. Such sensitivity is two orders of magnitude higher than the counterparts reported in the literature. Analysis shows that a higher resistivity or/and a thinner diameter of the metal wire may produce higher sensitivity. The effects of varying the structure parameters on sensitivity are discussed. The presented structure has potential for low-current sensing or highly electrically-tunable filtering applications.
Highly sensitive current sensor utilizing CrNi-wire supported microfiber coils
NASA Astrophysics Data System (ADS)
Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Jin, Long; Guan, Bai-ou
2013-09-01
High current sensitivity is obtained based on a microfiber that is wrapping around a chrome-nickel (CrNi) wire. Due to the strong heating effect of the CrNi wire with the flowing electric current, the mode index and the loop length of microfiber are changed, resulting in the shift of resonant wavelength. The measured current responsivity is as high as 220.65nm/A2, which is in two or three magnitude orders than the previously-obtained ones. We study the influence of component size to the structure performance, which is useful for future applications of current sensing or tuning devices.
Numerical modeling of high-voltage circuit breaker arcs and their interraction with the power system
NASA Astrophysics Data System (ADS)
Orama, Lionel R.
In this work the interaction between series connected gas and vacuum circuit breaker arcs has been studied. The breakdown phenomena in vacuum interrupters during the post arc current period have been of special interest. Numerical models of gas and vacuum arcs were developed in the form of black box models. Especially, the vacuum post arc model was implemented by combining the existing transition model with an ion density function and expressions for the breakdown mechanisms. The test series studied reflect that for electric fields on the order of 10sp7V/m over the anode, the breakdown of the vacuum gap can result from a combination of both thermal and electrical stresses. For a particular vacuum device, the vacuum model helps to find the interruption limits of the electric field and power density over the anode. The series connection of gas and vacuum interrupters always performs better than the single gas device. Moreover, to take advantage of the good characteristics of both devices, the time between the current zero crossing in each interrupter can be changed. This current zero synchronization is controlled by changing the capacitance in parallel to the gas device. This gas/vacuum interrupter is suitable for interruption of very stressful short circuits in which the product of the dI/dt before current zero and the dV/dt after current zero is very high. Also, a single SF6 interrupter can be replaced by an air circuit breaker of the same voltage rating in series with a vacuum device without compromising the good performance of the SF6 device. Conceptually, a series connected vacuum device can be used for high voltage applications with equal distribution of electrical stresses between the individual interrupters. The equalization can be made by a sequential opening of the individual contact pairs, beginning with the interruptors that are closer to ground potential. This could eliminate the use of grading capacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallo, Giulia
Integrating increasingly high levels of variable generation in U.S. electricity markets requires addressing not only power system and grid modeling challenges but also an understanding of how market participants react and adapt to them. Key elements of current and future wholesale power markets can be modeled using an agent-based approach, which may prove to be a useful paradigm for researchers studying and planning for power systems of the future.
NASA Technical Reports Server (NTRS)
Curtis, H. B.; Decker, A. J.
1975-01-01
The electrical characteristics of a high-power, long-lived, free-burning dc argon arc are presented. Empirical formulas relating voltage to current, electrode separation, and operating pressure are given for two types of cathodes: a typical point tip cathode and a cathode with a 1.27-cm-(0.5-in.-) diameter crater in the tip. Power was varied from 90 to 563 kW. A discussion of the cathode with the crater tip is given.
Method of manufacturing carbon nanotubes
NASA Technical Reports Server (NTRS)
Benavides, Jeanette M. (Inventor); Leidecker, Henning W. (Inventor); Frazier, Jeffrey (Inventor)
2004-01-01
A process for manufacturing carbon nanotubes, including a step of inducing electrical current through a carbon anode and a carbon cathode under conditions effective to produce the carbon nanotubes, wherein the carbon cathode is larger than the carbon anode. Preferably, a welder is used to induce the electrical current via an arc welding process. Preferably, an exhaust hood is placed on the anode, and the process does not require a closed or pressurized chamber. The process provides high-quality, single-walled carbon nanotubes, while eliminating the need for a metal catalyst.
Arc driver operation for either efficient energy transfer or high-current generator
NASA Technical Reports Server (NTRS)
Dannenberg, R. E.; Silva, A. F.
1972-01-01
An investigation is made to establish predictable electric arcs along triggered paths for research purposes, the intended application being the heating of the driver gas of a 1 MJ electrically driven shock tube. Trigger conductors consisting of wires, open tubes, and tubes pressurized with different gases were investigated either on the axis of the arc chamber or spiraled along the chamber walls. Design criteria are presented for successful arc initiation with reproducible voltage-current characteristics. Results are compared with other facilities and several application areas are discussed.
NASA Astrophysics Data System (ADS)
Kumar, M.; Yang, Sung-Hyun; Janardhan Reddy, K.; JagadeeshChandra, S. V.
2017-04-01
Hafnium oxide (HfO2) thin films were grown on cleaned P-type <1 0 0> Ge and Si substrates by using atomic layer deposition technique (ALD) with thickness of 8 nm. The composition analysis of as-deposited and annealed HfO2 films was characterized by XPS, further electrical measurements; we fabricated the metal-oxide-semiconductor (MOS) devices with Pt electrode. Post deposition annealing in O2 ambient at 500 °C for 30 min was carried out on both Ge and Si devices. Capacitance-voltage (C-V) and conductance-voltage (G-V) curves measured at 1 MHz. The Ge MOS devices showed improved interfacial and electrical properties, high dielectric constant (~19), smaller EOT value (0.7 nm), and smaller D it value as Si MOS devices. The C-V curves shown significantly high accumulation capacitance values from Ge devices, relatively when compare with the Si MOS devices before and after annealing. It could be due to the presence of very thin interfacial layer at HfO2/Ge stacks than HfO2/Si stacks conformed by the HRTEM images. Besides, from current-voltage (I-V) curves of the Ge devices exhibited similar leakage current as Si devices. Therefore, Ge might be a reliable substrate material for structural, electrical and high frequency applications.
Breakover mechanism of GaAs photoconductive switch triggering spark gap for high power applications
NASA Astrophysics Data System (ADS)
Tian, Liqiang; Shi, Wei; Feng, Qingqing
2011-11-01
A spark gap (SG) triggered by a semi-insulating GaAs photoconductive semiconductor switch (PCSS) is presented. Currents as high as 5.6 kA have been generated using the combined switch, which is excited by a laser pulse with energy of 1.8 mJ and under a bias of 4 kV. Based on the transferred-electron effect and gas streamer theory, the breakover characteristics of the combined switch are analyzed. The photoexcited carrier density in the PCSS is calculated. The calculation and analysis indicate that the PCSS breakover is caused by nucleation of the photoactivated avalanching charge domain. It is shown that the high output current is generated by the discharge of a high-energy gas streamer induced by the strong local electric field distortion or by overvoltage of the SG resulting from quenching of the avalanching domain, and periodic oscillation of the current is caused by interaction between the gas streamer and the charge domain. The cycle of the current oscillation is determined by the rise time of the triggering electric pulse generated by the PCSS, the pulse transmission time between the PCSS and the SG, and the streamer transit time in the SG.
Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses.
Lee, Sangmin; Ahn, Jae Hyun; Seo, Jong-Mo; Chung, Hum; Cho, Dong-Il Dan
2015-06-17
In order to provide high-quality visual information to patients who have implanted retinal prosthetic devices, the number of microelectrodes should be large. As the number of microelectrodes is increased, the dimensions of each microelectrode must be decreased, which in turn results in an increased microelectrode interface impedance and decreased injection current dynamic range. In order to improve the trade-off envelope between the number of microelectrodes and the current injection characteristics, a 3D microelectrode structure can be used as an alternative. In this paper, the electrical characteristics of 2D and 3D Au microelectrodes were investigated. In order to examine the effects of the structural difference, 2D and 3D Au microelectrodes with different base areas but similar effective surface areas were fabricated and evaluated. Interface impedances were measured and similar dynamic ranges were obtained for both 2D and 3D Au microelectrodes. These results indicate that more electrodes can be implemented in the same area if 3D designs are used. Furthermore, the 3D Au microelectrodes showed substantially enhanced electrical durability characteristics against over-injected stimulation currents, withstanding electrical currents that are much larger than the limit measured for 2D microelectrodes of similar area. This enhanced electrical durability property of 3D Au microelectrodes is a new finding in microelectrode research, and makes 3D microelectrodes very desirable devices.
Source of electrical power for an electric vehicle and other purposes, and related methods
LaFollette, Rodney M.
2000-05-16
Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries, silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (j) higher capacities (A.multidot.hr); and k) high specific capacitance.
Source of electrical power for an electric vehicle and other purposes, and related methods
LaFollette, Rodney M.
2002-11-12
Microthin sheet technology is disclosed by which superior batteries are constructed which, among other things, accommodate the requirements for high load rapid discharge and recharge, mandated by electric vehicle criteria. The microthin sheet technology has process and article overtones and can be used to form corrugated thin electrodes used in batteries of various kinds and types, such as spirally-wound batteries, bipolar batteries, lead acid batteries, silver/zinc batteries, and others. Superior high performance battery features include: (a) minimal ionic resistance; (b) minimal electronic resistance; (c) minimal polarization resistance to both charging and discharging; (d) improved current accessibility to active material of the electrodes; (e) a high surface area to volume ratio; (f) high electrode porosity (microporosity); (g) longer life cycle; (h) superior discharge/recharge characteristics; (i) higher capacities (A.multidot.hr); and (j) high specific capacitance.
Electrical Experiments. VT-214-12-2. Part II. A-C Across the Line Control.
ERIC Educational Resources Information Center
Connecticut State Dept. of Education, Hartford. Div. of Vocational Education.
Designed for high school electronics students, this second document in a series of six electrical learning activity packages focuses on alternating current across-the-line control. An introductory section gives the objective for the activities, an introduction, and an outline of the content. The remainder of the activity book is comprised of…
Electric field tomography for contactless imaging of resistivity in biomedical applications.
Korjenevsky, A V
2004-02-01
The technique of contactless imaging of resistivity distribution inside conductive objects, which can be applied in medical diagnostics, has been suggested and analyzed. The method exploits the interaction of a high-frequency electric field with a conductive medium. Unlike electrical impedance tomography, no electric current is injected into the medium from outside. The interaction is accompanied with excitation of high-frequency currents and redistribution of free charges inside the medium leading to strong and irregular perturbation of the field's magnitude outside and inside the object. Along with this the considered interaction also leads to small and regular phase shifts of the field in the area surrounding the object. Measuring these phase shifts using a set of electrodes placed around the object enables us to reconstruct the internal structure of the medium. The basics of this technique, which we name electric field tomography (EFT), are described, simple analytical estimations are made and requirements for measuring equipment are formulated. The realizability of the technique is verified by numerical simulations based on the finite elements method. Results of simulation have confirmed initial estimations and show that in the case of EFT even a comparatively simple filtered backprojection algorithm can be used for reconstructing the static resistivity distribution in biological tissues.
Causal electric charge diffusion and balance functions in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Kapusta, Joseph I.; Plumberg, Christopher
2018-01-01
We study the propagation and diffusion of electric charge fluctuations in high-energy heavy-ion collisions using the Cattaneo form for the dissipative part of the electric current. As opposed to the ordinary diffusion equation this form limits the speed at which charge can propagate. Including the noise term in the current, which arises uniquely from the fluctuation-dissipation theorem, we calculate the balance functions for charged hadrons in a simple 1+1-dimensional Bjorken hydrodynamical model. Limiting the speed of propagation of charge fluctuations increases the height and reduces the width of these balance functions when plotted versus rapidity. We also estimate the numerical value of the associated diffusion time constant from anti-de Sitter-space/conformal-field theory.
Suga, Hiroshi; Suzuki, Hiroya; Shinomura, Yuma; Kashiwabara, Shota; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa
2016-01-01
Highly stable, nonvolatile, high-temperature memory based on resistance switching was realized using a polycrystalline platinum (Pt) nanogap. The operating temperature of the memory can be drastically increased by the presence of a sharp-edged Pt crystal facet in the nanogap. A short distance between the facet edges maintains the nanogap shape at high temperature, and the sharp shape of the nanogap densifies the electric field to maintain a stable current flow due to field migration. Even at 873 K, which is a significantly higher temperature than feasible for conventional semiconductor memory, the nonvolatility of the proposed memory allows stable ON and OFF currents, with fluctuations of less than or equal to 10%, to be maintained for longer than eight hours. An advantage of this nanogap scheme for high-temperature memory is its secure operation achieved through the assembly and disassembly of a Pt needle in a high electric field. PMID:27725705
High power, electrically tunable quantum cascade lasers
NASA Astrophysics Data System (ADS)
Slivken, Steven; Razeghi, Manijeh
2016-02-01
Mid-infrared laser sources (3-14 μm wavelengths) which have wide spectral coverage and high output power are attractive for many applications. This spectral range contains unique absorption fingerprints of most molecules, including toxins, explosives, and nerve agents. Infrared spectroscopy can also be used to detect important biomarkers, which can be used for medical diagnostics by means of breath analysis. The challenge is to produce a broadband midinfrared source which is small, lightweight, robust, and inexpensive. We are currently investigating monolithic solutions using quantum cascade lasers. A wide gain bandwidth is not sufficient to make an ideal spectroscopy source. Single mode output with rapid tuning is desirable. For dynamic wavelength selection, our group is developing multi-section laser geometries with wide electrical tuning (hundreds of cm-1). These devices are roughly the same size as a traditional quantum cascade lasers, but tuning is accomplished without any external optical components. When combined with suitable amplifiers, these lasers are capable of multi-Watt single mode output powers. This manuscript will describe our current research efforts and the potential for high performance, broadband electrical tuning with the quantum cascade laser.
NASA Astrophysics Data System (ADS)
Hsu, Sheng-Chia; Li, Yiming
2014-11-01
In this work, we study the impact of random interface traps (RITs) at the interface of SiO x /Si on the electrical characteristic of 16-nm-gate high-κ/metal gate (HKMG) bulk fin-type field effect transistor (FinFET) devices. Under the same threshold voltage, the effects of RIT position and number on the degradation of electrical characteristics are clarified with respect to different levels of RIT density of state ( D it). The variability of the off-state current ( I off) and drain-induced barrier lowering (DIBL) will be severely affected by RITs with high D it varying from 5 × 1012 to 5 × 1013 eV-1 cm-2 owing to significant threshold voltage ( V th) fluctuation. The results of this study indicate that if the level of D it is lower than 1 × 1012 eV-1 cm-2, the normalized variability of the on-state current, I off, V th, DIBL, and subthreshold swing is within 5%.
Optimization of Industrial Ozone Generation with Pulsed Power
NASA Astrophysics Data System (ADS)
Lopez, Jose; Guerrero, Daniel; Freilich, Alfred; Ramoino, Luca; Seton Hall University Team; Degremont Technologies-Ozonia Team
2013-09-01
Ozone (O3) is widely used for applications ranging from various industrial chemical synthesis processes to large-scale water treatment. The consequent surge in world-wide demand has brought about the requirement for ozone generation at the rate of several hundreds grams per kilowatt hour (g/kWh). For many years, ozone has been generated by means of dielectric barrier discharges (DBD), where a high-energy electric field between two electrodes separated by a dielectric and gap containing pure oxygen or air produce various microplasmas. The resultant microplasmas provide sufficient energy to dissociate the oxygen molecules while allowing the proper energetics channels for the formation of ozone. This presentation will review the current power schemes used for large-scale ozone generation and explore the use of high-voltage nanosecond pulses with reduced electric fields. The created microplasmas in a high reduced electric field are expected to be more efficient for ozone generation. This is confirmed with the current results of this work which observed that the efficiency of ozone generation increases by over eight time when the rise time and pulse duration are shortened. Department of Physics, South Orange, NJ, USA.
Dedicated nuclear facilities for electrolytic hydrogen production
NASA Technical Reports Server (NTRS)
Foh, S. E.; Escher, W. J. D.; Donakowski, T. D.
1979-01-01
An advanced technology, fully dedicated nuclear-electrolytic hydrogen production facility is presented. This plant will produce hydrogen and oxygen only and no electrical power will be generated for off-plant use. The conceptual design was based on hydrogen production to fill a pipeline at 1000 psi and a 3000 MW nuclear base, and the base-line facility nuclear-to-shaftpower and shaftpower-to-electricity subsystems, the water treatment subsystem, electricity-to-hydrogen subsystem, hydrogen compression, efficiency, and hydrogen production cost are discussed. The final conceptual design integrates a 3000 MWth high-temperature gas-cooled reactor operating at 980 C helium reactor-out temperature, direct dc electricity generation via acyclic generators, and high-current density, high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced and pipeline hydrogen is produced at 1000 psi. Hydrogen costs were about half of the conventional nuclear electrolysis process.
Atmospheric electricity. [lightning protection criteria in spacecraft design
NASA Technical Reports Server (NTRS)
Daniels, G. E.
1973-01-01
Atmospheric electricity must be considered in the design, transportation, and operation of aerospace vehicles. The effect of the atmosphere as an insulator and conductor of high voltage electricity, at various atmospheric pressures, must also be considered. The vehicle can be protected as follows: (1) By insuring that all metallic sections are connected by electrical bonding so that the current flow from a lightning stroke is conducted over the skin without any gaps where sparking would occur or current would be carried inside; (2) by protecting buildings and other structures on the ground with a system of lightning rods and wires over the outside to carry the lightning stroke into the ground; (3) by providing a zone of protection for launch complexes; (4) by providing protection devices in critical circuits; (5) by using systems which have no single failure mode; and (6) by appropriate shielding of units sensitive to electromagnetic radiation.
Electrical detection of nuclear spins in organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Malissa, H.; Kavand, M.; Waters, D. P.; Lupton, J. M.; Vardeny, Z. V.; Saam, B.; Boehme, C.
2014-03-01
We present pulsed combined electrically detected electron paramagnetic and nuclear magnetic resonance experiments on MEH-PPV OLEDs. Spin dynamics in these structures are governed by hyperfine interactions between charge carriers and the surrounding hydrogen nuclei, which are abundant in these materials. Hyperfine coupling has been observed by monitoring the device current during coherent spin excitation. Electron spin echoes (ESEs) are detected by applying one additional readout pulse at the time of echo formation. This allows for the application of high-resolution spectroscopy based on ESE detection, such as electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance (ENDOR) available for electrical detection schemes. We conduct electrically detected ESEEM and ENDOR experiments and show how hyperfine interactions in MEH-PPV with and without deuterated polymer side groups can be observed by device current measurements. We acknowledge support by the Department of Energy, Office of Basic Energy Sciences under Award #DE-SC0000909.
NASA Astrophysics Data System (ADS)
Hesslow, L.; Embréus, O.; Wilkie, G. J.; Papp, G.; Fülöp, T.
2018-07-01
We derive a formula for the effective critical electric field for runaway generation and decay that accounts for the presence of partially ionized impurities in combination with synchrotron and bremsstrahlung radiation losses. We show that the effective critical field is drastically larger than the classical Connor–Hastie field, and even exceeds the value obtained by replacing the free electron density by the total electron density (including both free and bound electrons). Using a kinetic equation solver with an inductive electric field, we show that the runaway current decay after an impurity injection is expected to be linear in time and proportional to the effective critical electric field in highly inductive tokamak devices. This is relevant for the efficacy of mitigation strategies for runaway electrons since it reduces the required amount of injected impurities to achieve a certain current decay rate.
NASA Technical Reports Server (NTRS)
Cho, Y.-C.
1983-01-01
The results of ground observations as well as high resolution rocket electric field and particle observations during a breakup event of an intense magnetospheric substorm over northern Scandinavia are discussed. In particular, the characteristics of the substorm-associated electric field, ionospheric currents, and power dissipation during a time period about 15 minutes after substorm onset are addressed. A comparison of the observations with those of a pre-breakup event earlier in the day (Marklund et al., 1982) showed that the ionospheric substorm-related electric field could be split up into two parts: (1) an ambient LT-dependent field, probably of magnetospheric origin; and (2) a small-scale electric field associated with the bright auroral structures, which is superimposed on the LT-dependent field. The consequences for the location of the ionospheric currents and the Joule energy dissipation relative to the auroral forms are discussed. Previously announced in STAR as N83-23117
Low Current Surface Flashover for Initiation of Electric Propulsion Devices
NASA Astrophysics Data System (ADS)
Dary, Omar G.
There has been a recent increase in interest in miniaturization of propulsion systems for satellites. These systems are needed to propel micro- and nano-satellites, where platforms are much smaller than conventional satellites and require smaller levels of thrust. Micro-propulsion systems for these satellites are in their infancy and they must manage with smaller power systems and smaller propellant volumes. Electric propulsion systems operating on various types of electric discharges are typically used for these needs. One of the central components of such electrical micropropulsion systems are ignitor subsystems, which are required for creation the breakdown and initiation of the main discharge. Ignitors have to provide reliable ignition for entire lifetime of the micropropulsion system. Electric breakdown in vacuum usually require high voltage potentials of hundreds of kilovolts per mm to induce breakdown. The breakdown voltage can be significantly decreased (down to several kVs per mm) if dielectric surface flashover is utilized. However, classical dielectric surface flashover operates at large electric current (100s of Amperes) and associated with overheating and damage of the electrodes/dielectric assembly after several flashover events. The central idea of this work was to eliminate the damage to the flashover electrode assembly by limiting the flashover currents to low values in milliampere range (Low Current Surface Flashover -LCSF) and utilize LCSF system as an ignition source for the main discharge on the micropropulsion system. The main objective of this research was to create a robust LCSF ignition system, capable producing a large number of surface flashover triggering events without significant damage to the LCSF electrode assembly. The thesis aims to characterize the plasma plume created at LCSF, study electrodes ablation and identify conditions required for robust triggering of main discharge utilized on micro-propulsion system. Conditioning of a new LCSF assembly (flashover current was limited to <100 mA in all experiments) was measured and breakdown voltages in the range of 8kV to 12kV were observed for the fully conditioned assembly. No damage to the LCSF electrode assembly was observed after about 104 LCSF events. The LCSF assembly created sufficient amount of seed plasma in order to bridge a vacuum gap between the high-current electrodes and to reliably ignite high-current arcs (10A-12A arc were used in this work). Ignition of the high-current arc was observed at three different cases of LCSF with limiting currents 100 mA, 33 mA and 20 mA respectively. Plasma parameter measurements were conducted with variety of Langmuir probes inside the LCSF plume. Ion currents created by the LCSF were primarily expelled directly perpendicular from the insulator surface. The plasma expansion for the LCSF assembly was measured to be 2 x 106-6 x 106 cm/s. Plasma density was measured to range 10 10-1011 cm-3. The plasma density was maximal near the LCSF assembly and quickly reduced radially. Temporal decay of the plasma was observed on a time scale of about 5 micros after the LCSF event. The results of this work are significant for creation of ignitor for micropropulsion systems. LCSF system offers reliable triggering for numerous ignition pulses for entire lifetime of the micropropulsion system and reduces complexity and volume of the system by excluding moving parts and the need for an external gas tanks.
NASA Astrophysics Data System (ADS)
Esakky, Papanasam; Kailath, Binsu J.
2017-08-01
HfO2 as a gate dielectric enables high electric field operation of SiC MIS structure and as gas sensor HfO2/SiC capacitors offer higher sensitivity than SiO2/SiC capacitors. The issue of higher density of oxygen vacancies and associated higher leakage current necessitates better passivation of HfO2/SiC interface. Effect of post deposition annealing in N2O plasma and post metallization annealing in forming gas on the structural and electrical characteristics of Pd/HfO2/SiC MIS capacitors are reported in this work. N2O plasma annealing suppresses crystallization during high temperature annealing thereby improving the thermal stability and plasma annealing followed by rapid thermal annealing in N2 result in formation of Hf silicate at the HfO2/SiC interface resulting in order of magnitude lower density of interface states and gate leakage current. Post metallization annealing in forming gas for 40 min reduces interface state density by two orders while gate leakage current density is reduced by thrice. Post deposition annealing in N2O plasma and post metallization annealing in forming gas are observed to be effective passivation techniques improving the electrical characteristics of HfO2/SiC capacitors.
Rahmani, Turaj; Rahimi, Atyeh; Nojavan, Saeed
2016-01-15
This contribution presents an experimental approach to improve analytical performance of electromembrane extraction (EME) procedure, which is based on the scrutiny of current pattern under different extraction conditions such as using different organic solvents as supported liquid membrane, electrical potentials, pH values of donor and acceptor phases, variable extraction times, temperatures, stirring rates, different hollow fiber lengths and the addition of salts or organic solvents to the sample matrix. In this study, four basic drugs with different polarities were extracted under different conditions with the corresponding electrical current patterns compared against extraction recoveries. The extraction process was demonstrated in terms of EME-HPLC analyses of selected basic drugs. Comparing the obtained extraction recoveries with the electrical current patterns, most cases exhibited minimum recovery and repeatability at the highest investigated magnitude of electrical current. . It was further found that identical current patterns are associated with repeated extraction efficiencies. In other words, the pattern should be repeated for a successful extraction. The results showed completely different electrical currents under different extraction conditions, so that all variable parameters have contributions into the electrical current pattern. Finally, the current patterns of extractions from wastewater, plasma and urine samples were demonstrated. The results indicated an increase in the electrical current when extracting from complex matrices; this was seen to decrease the extraction efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.
High-Tc superconducting materials for electric power applications.
Larbalestier, D; Gurevich, A; Feldmann, D M; Polyanskii, A
2001-11-15
Large-scale superconducting electric devices for power industry depend critically on wires with high critical current densities at temperatures where cryogenic losses are tolerable. This restricts choice to two high-temperature cuprate superconductors, (Bi,Pb)2Sr2Ca2Cu3Ox and YBa2Cu3Ox, and possibly to MgB2, recently discovered to superconduct at 39 K. Crystal structure and material anisotropy place fundamental restrictions on their properties, especially in polycrystalline form. So far, power applications have followed a largely empirical, twin-track approach of conductor development and construction of prototype devices. The feasibility of superconducting power cables, magnetic energy-storage devices, transformers, fault current limiters and motors, largely using (Bi,Pb)2Sr2Ca2Cu3Ox conductor, is proven. Widespread applications now depend significantly on cost-effective resolution of fundamental materials and fabrication issues, which control the production of low-cost, high-performance conductors of these remarkable compounds.
Electric field-based technologies for valorization of bioresources.
Rocha, Cristina M R; Genisheva, Zlatina; Ferreira-Santos, Pedro; Rodrigues, Rui; Vicente, António A; Teixeira, José A; Pereira, Ricardo N
2018-04-01
This review provides an overview of recent research on electrotechnologies applied to the valorization of bioresources. Following a comprehensive summary of the current status of the application of well-known electric-based processing technologies, such as pulsed electric fields (PEF) and high voltage electrical discharges (HVED), the application of moderate electric fields (MEF) as an extraction or valorization technology will be considered in detail. MEF, known by its improved energy efficiency and claimed electroporation effects (allowing enhanced extraction yields), may also originate high heating rates - ohmic heating (OH) effect - allowing thermal stabilization of waste stream for other added-value applications. MEF is a simple technology that mostly makes use of green solvents (mainly water) and that can be used on functionalization of compounds of biological origin broadening their application range. The substantial increase of MEF-based plants installed in industries worldwide suggests its straightforward application for waste recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.
Current-induced modulation of backward spin-waves in metallic microstructures
NASA Astrophysics Data System (ADS)
Sato, Nana; Lee, Seo-Won; Lee, Kyung-Jin; Sekiguchi, Koji
2017-03-01
We performed a propagating spin-wave spectroscopy for backward spin-waves in ferromagnetic metallic microstructures in the presence of electric-current. Even with the smaller current injection of 5× {{10}10} A m-2 into ferromagnetic microwires, the backward spin-waves exhibit a gigantic 200 MHz frequency shift and a 15% amplitude change, showing 60 times larger modulation compared to previous reports. Systematic experiments by measuring dependences on a film thickness of mirowire, on the wave-vector of spin-wave, and on the magnitude of bias field, we revealed that for the backward spin-waves a distribution of internal magnetic field generated by electric-current efficiently modulates the frequency and amplitude of spin-waves. The gigantic frequency and amplitude changes were reproduced by a micromagnetics simulation, predicting that the current-injection of 5× {{10}11} A m-2 allows 3 GHz frequency shift. The effective coupling between electric-current and backward spin-waves has a potential to build up a logic control method which encodes signals into the phase and amplitude of spin-waves. The metallic magnonics cooperating with electronics could suggest highly integrated magnonic circuits both in Boolean and non-Boolean principles.
NASA Astrophysics Data System (ADS)
Longtin, Rémi; Sanchez-Valencia, Juan Ramon; Shorubalko, Ivan; Furrer, Roman; Hack, Erwin; Elsener, Hansrudolf; Gröning, Oliver; Greenwood, Paul; Rupesinghe, Nalin; Teo, Kenneth; Leinenbach, Christian; Gröning, Pierangelo
2015-02-01
The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm-1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.
Longtin, Rémi; Ramon Sanchez-Valencia, Juan; Shorubalko, Ivan; Furrer, Roman; Hack, Erwin; Elsener, Hansrudolf; Gröning, Oliver; Greenwood, Paul; Rupesinghe, Nalin; Teo, Kenneth; Leinenbach, Christian; Gröning, Pierangelo
2015-01-01
The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag–Cu–Ti alloy and at 880 °C with a Cu–Sn–Ti–Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm−1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected. PMID:27877755
Simulation of switching overvoltages in the mine electric power supply system
NASA Astrophysics Data System (ADS)
Ivanchenko, D. I.; Novozhilov, N. G.
2017-02-01
Overvoltages occur in mine power supply systems during switching off consumers with high inductive load, such as transformers, reactors and electrical machines. Overvoltages lead to an increase of insulation degradation rate and may cause electric faults, power outage, fire and explosion of methane and coal dust. This paper is dedicated to simulation of vacuum circuit breaker switching overvoltages in a mine power supply system by means of Simulink MATLAB. The model of the vacuum circuit breaker implements simulation of transient recovery voltage, current chopping and an electric arc. Obtained results were compared to available experimental data.
Young, S; Hampton, S; Tadej, M
2011-08-01
To evaluate the efficacy of a medical device, Accel-Heal, which generates a low-intensity pulsed direct current, on the management of oedema in chronic leg ulcers, using high-frequency diagnostic ultrasound. High-frequency diagnostic ultrasound (20MHz) with an axial resolution of 60um was used to assess the effect of an electrical stimulation device delivering a low-intensity pulsed current on levels of oedema in chronic non-healing venous and mixed aetiology leg ulcers for a period of 10 days. Thirty patients' wounds were monitored over a 3-month period, during which time changes in levels of oedema in the wound bed and surrounding tissues were imaged and measured. A significant fall in the, previously high level, of periwound oedema was noted in the patient population after 10 days of device application. By 20 days after the first application of the device the level of periwound oedema had decreased by approximately 60% of the original level, which was maintained up to the 90-day follow-up. Occurring in parallel with this, scans of the wound bed showed a rapid decrease in the levels of oedema as the new wound matrix was laid down. The electrical stimulation device appeared to be effective in reducing oedema levels in a range of chronic wounds and their surrounding tissues. The study was funded by a grant from Synapse micro-current Ltd.
Using electric current to surpass the microstructure breakup limit
Qin, Rongshan
2017-01-01
The elongated droplets and grains can break up into smaller ones. This process is driven by the interfacial free energy minimization, which gives rise to a breakup limit. We demonstrated in this work that the breakup limit can be overpassed drastically by using electric current to interfere. Electric current free energy is dependent on the microstructure configuration. The breakup causes the electric current free energy to reduce in some cases. This compensates the increment of interfacial free energy during breaking up and enables the processing to achieve finer microstructure. With engineering practical electric current parameters, our calculation revealed a significant increment of the obtainable number of particles, showing electric current a powerful microstructure refinement technology. The calculation is validated by our experiments on the breakup of Fe3C-plates in Fe matrix. Furthermore, there is a parameter range that electric current can drive spherical particles to split into smaller ones. PMID:28120919
Zabek, Daniel; Seunarine, Kris; Spacie, Chris; Bowen, Chris
2017-03-15
Thermal energy can be effectively converted into electricity using pyroelectrics, which act as small scale power generator and energy harvesters providing nanowatts to milliwatts of electrical power. In this paper, a novel pyroelectric harvester based on free-standing poly(vinylidene difluoride) (PVDF) was manufactured that exploits the high thermal radiation absorbance of a screen printed graphene ink electrode structure to facilitate the conversion of the available thermal radiation energy into electrical energy. The use of interconnected graphene nanoplatelets (GNPs) as an electrode enable high thermal radiation absorbance and high electrical conductivity along with the ease of deposition using a screen print technique. For the asymmetric structure, the pyroelectric open-circuit voltage and closed-circuit current were measured, and the harvested electrical energy was stored in an external capacitor. For the graphene ink/PVDF/aluminum system the closed circuit pyroelectric current improves by 7.5 times, the open circuit voltage by 3.4 times, and the harvested energy by 25 times compared to a standard aluminum/PVDF/aluminum system electrode design, with a peak energy density of 1.13 μJ/cm 3 . For the pyroelectric device employed in this work, a complete manufacturing process and device characterization of these structures are reported along with the thermal conductivity of the graphene ink. The material combination presented here provides a new approach for delivering smart materials and structures, wireless technologies, and Internet of Things (IoT) devices.
Giovanni Aldini: from animal electricity to human brain stimulation.
Parent, André
2004-11-01
Two hundred years ago, Giovanni Aldini published a highly influential book that reported experiments in which the principles of Luigi Galvani (animal electricity) and Alessandro Volta (bimetallic electricity) were used together for the first time. Aldini was born in Bologna in 1762 and graduated in physics at the University of his native town in 1782. As nephew and assistant of Galvani, he actively participated in a series of crucial experiments with frog's muscles that led to the idea that electricity was the long-sought vital force coursing from brain to muscles. Aldini became professor of experimental physics at the University of Bologna in 1798. He traveled extensively throughout Europe, spending much time defending the concept of his discreet uncle against the incessant attacks of Volta, who did not believe in animal electricity. Aldini used Volta's bimetallic pile to apply electric current to dismembered bodies of animals and humans; these spectacular galvanic reanimation experiments made a strong and enduring impression on his contemporaries. Aldini also treated patients with personality disorders and reported complete rehabilitation following transcranial administration of electric current. Aldini's work laid the ground for the development of various forms of electrotherapy that were heavily used later in the 19th century. Even today, deep brain stimulation, a procedure currently employed to relieve patients with motor or behavioral disorders, owes much to Aldini and galvanism. In recognition of his merits, Aldini was made a knight of the Iron Crown and a councillor of state at Milan, where he died in 1834.
Deformation of contact surfaces in a vacuum interrupter after high-current interruptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haoran; Wang, Zhenxing, E-mail: zxwang@xjtu.edu.cn; Zhou, Zhipeng
2016-08-07
In a high-current interruption, the contact surface in a vacuum interrupter might be severely damaged by constricted vacuum arcs causing a molten area on it. As a result, a protrusion will be initiated by a transient recovery voltage after current zero, enhancing the local electric field and making breakdowns occur easier. The objective of this paper is to simulate the deformation process on the molten area under a high electric field by adopting the finite element method. A time-dependent Electrohydrodynamic model was established, and the liquid-gas interface was tracked by the level-set method. From the results, the liquid metal canmore » be deformed to a Taylor cone if the applied electric field is above a critical value. This value is correlated to the initial geometry of the liquid metal, which increases as the size of the liquid metal decreases. Moreover, the buildup time of a Taylor cone obeys the power law t = k × E{sup −3}, where E is the initial electric field and k is a coefficient related to the material property, indicating a temporal self-similar characteristic. In addition, the influence of temperature has little impact on the deformation but has great impact on electron emission. Finally, the possible reason to initiate a delayed breakdown is associated with the deformation. The breakdown does not occur immediately when the voltage is just applied upon the gap but is postponed to several milliseconds later when the tip is formed on the liquid metal.« less
Electron collection enhancement arising from neutral gas jets on a charged vehicle in the ionosphere
NASA Technical Reports Server (NTRS)
Gilchrist, Brian E.; Banks, Peter M.; Neubert, Torsten; Williamson, P. Roger; Myers, Neil B.
1990-01-01
Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated rocket payload in the ionosphere have been made during the cooperative high altitude rocket gun experiment (CHARGE) 2 using an electrically tethered mother/daughter payload system. The current collection enhancement was observed on a platform (daughter payload) located 100 to 400 m away from the main payload firing an energetic electron beam (mother payload). These results are interpreted in terms of an electrical discharge forming in close proximity to the daughter vehicle during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. The results are also compared with recent laboratory observations of hollow cathode plasma contactors operating in the 'ignited' mode.
NASA Astrophysics Data System (ADS)
Glazebrook, R. T.
2016-10-01
1. Electrostatics: fundamental facts; 2. Electricity as a measurable quantity; 3. Measurement of electric force and potential; 4. Condensers; 5. Electrical machines; 6. Measurement of potential and electric force; 7. Magnetic attraction and repulsion; 8. Laws of magnetic force; 9. Experiments with magnets; 10. Magnetic calculations; 11. Magnetic measurements; 12. Terrestrial magnetism; 13. The electric current; 14. Relation between electromagnetic force and current; 15. Measurement of current; 16. Measurement of resistance and electromotive force; 17. Measurement of quantity of electricity, condensers; 18. Thermal activity of a current; 19. The voltaic cell (theory); 20. Electromagnetism; 21. Magnetisation of iron; 22. Electromagnetic instruments; 23. Electromagnetic induction; 24. Applications of electromagnetic induction; 25. Telegraphy and telephony; 26. Electric waves; 27. Transference of electricity through gases: corpuscles and electrons; Answers to examples; Index.
Stacking multiple connecting functional materials in tandem organic light-emitting diodes
Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong
2017-01-01
Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency. PMID:28225028
Stacking multiple connecting functional materials in tandem organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong
2017-02-01
Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency.
Analysis of High Power IGBT Short Circuit Failures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pappas, G.
2005-02-11
The Next Linear Collider (NLC) accelerator proposal at SLAC requires a highly efficient and reliable, low cost, pulsed-power modulator to drive the klystrons. A solid-state induction modulator has been developed at SLAC to power the klystrons; this modulator uses commercial high voltage and high current Insulated Gate Bipolar Transistor (IGBT) modules. Testing of these IGBT modules under pulsed conditions was very successful; however, the IGBTs failed when tests were performed into a low inductance short circuit. The internal electrical connections of a commercial IGBT module have been analyzed to extract self and mutual partial inductances for the main current pathsmore » as well as for the gate structure. The IGBT module, together with the partial inductances, has been modeled using PSpice. Predictions for electrical paths that carry the highest current correlate with the sites of failed die under short circuit tests. A similar analysis has been carried out for a SLAC proposal for an IGBT module layout. This paper discusses the mathematical model of the IGBT module geometry and presents simulation results.« less
Reverse electrowetting as a new approach to high-power energy harvesting
Krupenkin, Tom; Taylor, J. Ashley
2011-01-01
Over the last decade electrical batteries have emerged as a critical bottleneck for portable electronics development. High-power mechanical energy harvesting can potentially provide a valuable alternative to the use of batteries, but, until now, a suitable mechanical-to-electrical energy conversion technology did not exist. Here we describe a novel mechanical-to-electrical energy conversion method based on the reverse electrowetting phenomenon. Electrical energy generation is achieved through the interaction of arrays of moving microscopic liquid droplets with novel nanometer-thick multilayer dielectric films. Advantages of this process include the production of high power densities, up to 103 W m−2; the ability to directly utilize a very broad range of mechanical forces and displacements; and the ability to directly output a broad range of currents and voltages, from several volts to tens of volts. These advantages make this method uniquely suited for high-power energy harvesting from a wide variety of environmental mechanical energy sources. PMID:21863015
High speed shutter. [electrically actuated ribbon loop for shuttering optical or fluid passageways
NASA Technical Reports Server (NTRS)
Mcclenahan, J. O. (Inventor)
1974-01-01
A shutter element is described which is formed by a loop of an electrically conductive ribbon disposed adjacent to the end of a passageway to be shuttered. The shuttered end of the passageway is cut at an acute angle. The two leg portions of the ribbon loop are closely spaced to each other and disposed in a plane parallel to the axis of the passageway. A pulse of high current is switched through the loop to cause the current flowing in opposite directions through adjacent leg portions of the ribbon. This produces a magnetically induced pressure on one of the legs of the ribbon forcing the leg over the end of the passageway in gas tight sealing engagement, and thereby blocking passageway.
21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.
Code of Federal Regulations, 2010 CFR
2010-04-01
... vapor lamp, incorporating a high-pressure arc discharge tube that has a fill consisting primarily of... use. (4) Outer envelope means the lamp element, usually glass, surrounding a high-pressure arc... operating time means the sum of the times during which electric current passes through the high-pressure arc...
Batteries and fuel cells for emerging electric vehicle markets
NASA Astrophysics Data System (ADS)
Cano, Zachary P.; Banham, Dustin; Ye, Siyu; Hintennach, Andreas; Lu, Jun; Fowler, Michael; Chen, Zhongwei
2018-04-01
Today's electric vehicles are almost exclusively powered by lithium-ion batteries, but there is a long way to go before electric vehicles become dominant in the global automotive market. In addition to policy support, widespread deployment of electric vehicles requires high-performance and low-cost energy storage technologies, including not only batteries but also alternative electrochemical devices. Here, we provide a comprehensive evaluation of various batteries and hydrogen fuel cells that have the greatest potential to succeed in commercial applications. Three sectors that are not well served by current lithium-ion-powered electric vehicles, namely the long-range, low-cost and high-utilization transportation markets, are discussed. The technological properties that must be improved to fully enable these electric vehicle markets include specific energy, cost, safety and power grid compatibility. Six energy storage and conversion technologies that possess varying combinations of these improved characteristics are compared and separately evaluated for each market. The remainder of the Review briefly discusses the technological status of these clean energy technologies, emphasizing barriers that must be overcome.
NASA Astrophysics Data System (ADS)
Parali, Levent; Kurbanov, Mirza A.; Bayramov, Azad A.; Tatardar, Farida N.; Sultanakhmedova, Ramazanova I.; Xanlar, Huseynova Gulnara
2015-11-01
High-density polymer composites with semiconductor or dielectric fillers such as aluminum nitride (AIN), aluminum oxide (Al2O3), titanium carbide (TiC), titanium nitride (TiN), boron nitride (BN), silicon nitride (Si3N4), and titanium carbonitride (TiCN) were prepared by the hot pressing method. Each powder phase of the composites was exposed to an electric discharge plasma process before composite formation. The effects of the electric discharge plasma process and the filler content (volume fraction) on the thermal conductivity, volt-ampere characteristics, thermally stimulated depolarization current, as well as electrical and mechanical strength were investigated. The results of the study indicate that, with increasing filler volume fraction, the thermal conductivity of the samples also increased. Furthermore, the thermal conductivity, and electrophysical and mechanical properties of the high-density polyethylene + 70% BN composite modified using the electric discharge plasma showed improvement when compared with that without electric discharge plasma treatment.
Plasma rotation by electric and magnetic fields in a discharge cylinder
NASA Technical Reports Server (NTRS)
Wilhelm, H. E.; Hong, S. H.
1977-01-01
A theoretical model for an electric discharge consisting of a spatially diverging plasma sustained electrically between a small ring cathode and a larger ring anode in a cylindrical chamber with an axial magnetic field is developed to study the rotation of the discharge plasma in the crossed electric and magnetic fields. The associated boundary-value problem for the coupled partial differential equations which describe the electric potential and the plasma velocity fields is solved in closed form. The electric field, current density, and velocity distributions are discussed in terms of the Hartmann number and the Hall coefficient. As a result of Lorentz forces, the plasma rotates with speeds as high as 1 million cm/sec around its axis of symmetry at typical conditions. As an application, it is noted that rotating discharges of this type could be used to develop a high-density plasma-ultracentrifuge driven by j x B forces, in which the lighter (heavier) ion and atom components would be enriched in (off) the center of the discharge cylinder.
Acoustic wave-driven oxidized liquid metal-based energy harvester
NASA Astrophysics Data System (ADS)
Jeon, Jinpyo; Chung, Sang Kug; Lee, Jeong-Bong; Doo, Seok Joo; Kim, Daeyoung
2018-06-01
We report an oxidized liquid metal droplet-based energy harvester that converts acoustic energy into electrical energy by modulating an electrical double layer that originates from the deformation of the oxidized liquid metal droplet. Gallium-based liquid metal alloy has been developed for various applications owing to the outstanding material properties, such as its high electrical conductivity (metallic property) and unlimited deformability (liquid property). In this study, we demonstrated energy harvesting using an electrical double layer between the acoustic wave-modulated liquid metal droplet and two electrodes. The proposed energy harvester consisted of top and bottom electrodes covered with the dielectric layer and a Gallium-based liquid metal droplet placed between the electrodes. When we applied an external bias voltage and acoustic wave to the proposed device, the contact area between the liquid metal droplet and the electrodes changed, leading to the variation of the capacitance in the electrical double layer and the generation of electrical output current. Using the proposed energy harvester, the maximum output current of 41.2 nA was generated with an applied acoustic wave of 30 Hz. In addition, we studied the relationships between the maximum output current and a variety of factors, such as the size of the liquid metal droplet, the thickness of the hydrophobic layer, and the distance between the top and bottom electrode plates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, X.; Gan, W.; Liu, S.
We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics.more » Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.« less
Tests of Convection Electric Field Models For The January 10, 1997, Geomagnetic Storm
NASA Astrophysics Data System (ADS)
Jordanova, V.; Boonsiriseth, A.; Thorne, R.; Dotan, Y.
The January 10-11, 1997, geomagnetic storm was caused by the passage at Earth of a magnetic cloud with a negative to positive Bz variation extending for 1 day. The ge- omagnetic indices had values of minimum Dst=-83 nT and maximum Kp=6 during the period of southward IMF within the cloud. We simulate ring current development during this storm using our kinetic drift-loss model and compare the results inferred from Volland-Stern type, Weimer, and AMIE convection electric field models. A pen- etration electric field is added to the AMIE model [Boonsiriseth et al., 2001] in order to improve the agreement with measurements from the electric field instrument on Po- lar spacecraft. The ionospheric electric potentials are mapped to the equatorial plane using the Tsyganenko 1996 magnetic field model and the resulting equatorial poten- tial models are coupled with our ring current model. While the temporal evolution of the large-scale features is similar in all three convection models, detailed comparison indicates that AMIE model shows highly variable small-scale features not present in the Volland-Stern or Weimer convection models. Results from our kinetic ring current model are compared with energetic particle data from the HYDRA, TIMAS, IPS, and CAMMICE instruments on Polar to test the applicability of the convection electric field models for this storm period.
Infrasonic acoustic waves generated by fast air heating in sprite cores
NASA Astrophysics Data System (ADS)
Silva, Caitano L.; Pasko, Victor P.
2014-03-01
Acceleration, expansion, and branching of sprite streamers can lead to concentration of high electrical currents in regions of space, that are observed in the form of bright sprite cores. Driven by this electrical current, a series of chemical processes take place in the sprite plasma. Excitation, followed by quenching of excited electronic states leads to energy transfer from charged to neutral species. The consequence is heating and expansion of air leading to emission of infrasonic acoustic waves. Results indicate that ≳0.01 Pa pressure perturbations on the ground, observed in association with sprites, can only be produced by exceptionally strong currents in sprite cores, exceeding 2 kA.
Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA
Gierhart, Brian C.; Howitt, David G.; Chen, Shiahn J.; Zhu, Zhineng; Kotecki, David E.; Smith, Rosemary L.; Collins, Scott D.
2009-01-01
A DNA sequencing device which integrates transverse conducting electrodes for the measurement of electrode currents during DNA translocation through a nanopore has been nanofabricated and characterized. A focused electron beam (FEB) milling technique, capable of creating features on the order of 1 nm in diameter, was used to create the nanopore. The device was characterized electrically using gold nanoparticles as an artificial analyte with both DC and AC measurement methods. Single nanoparticle/electrode interaction events were recorded. A low-noise, high-speed transimpedance current amplifier for the detection of nano to picoampere currents at microsecond time scales was designed, fabricated and tested for future integration with the nanopore device. PMID:19584949
Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA.
Gierhart, Brian C; Howitt, David G; Chen, Shiahn J; Zhu, Zhineng; Kotecki, David E; Smith, Rosemary L; Collins, Scott D
2008-06-16
A DNA sequencing device which integrates transverse conducting electrodes for the measurement of electrode currents during DNA translocation through a nanopore has been nanofabricated and characterized. A focused electron beam (FEB) milling technique, capable of creating features on the order of 1 nm in diameter, was used to create the nanopore. The device was characterized electrically using gold nanoparticles as an artificial analyte with both DC and AC measurement methods. Single nanoparticle/electrode interaction events were recorded. A low-noise, high-speed transimpedance current amplifier for the detection of nano to picoampere currents at microsecond time scales was designed, fabricated and tested for future integration with the nanopore device.
Thermal power and heat energy of cloud-to-ground lightning process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xuejuan; Yuan, Ping; Xue, Simin
2016-07-15
A cloud-to-ground lightning flash with nine return strokes has been recorded using a high speed slitless spectrograph and a system composed of a fast antenna and a slow antenna. Based on the spectral data and the synchronous electric field changes that were caused by the lightning, the electrical conductivity, the channel radii, the resistance per unit length, the peak current, the thermal power at the instant of peak current, and the heat energy per unit length during the first 5 μs in the discharge channel have all been calculated. The results indicate that the channel radii have linear relationships with themore » peak current. The thermal power at the peak current time increases with increasing resistance, but exponential decays with the square of the peak current.« less
Analysis of electric current flow through the HTc multilayered superconductors
NASA Astrophysics Data System (ADS)
Sosnowski, J.
2016-02-01
Issue of the flow of the transport current through multilayered high-temperature superconductors is considered, depending on the direction of the electric current towards the surface of the superconducting CuO2 layers. For configuration of the current flow inside of the layers and for perpendicular magnetic field, it will be considered the current limitations connected with interaction of pancake type vortices with nano-sized defects, created among other during fast neutrons irradiation. So it makes this issue associated with work of nuclear energy devices, like tokamak ITER, LHC and actually developed accelerator Nuclotron-NICA, as well as cryocables. Phenomenological analysis of the pinning potential barrier formation will be in the paper given, which determines critical current flow inside the plane. Comparison of theoretical model with experimental data will be presented too as well as influence of fast neutrons irradiation dose on critical current calculated. For current direction perpendicular to superconducting planes the current-voltage characteristics are calculated basing on model assuming formation of long intrinsic Josephson's junctions in layered HTc superconductors.
Electric breakdowns of the "plasma capacitors" occurs on insulation coating of the ISS surface
NASA Astrophysics Data System (ADS)
Homin, Taras; Korsun, Anatolii
High electric fields and currents are occurred in the spacecrafts plasma environment by onboard electric generators. Thus the high voltage solar array (SA) of the American segment of International Space Station (ISS) generates potential 160 V. Its negative pole is shorted to the frames of all the ISS segments. There is electric current between the SA and the frame through the plasma environment, i.e. electric discharge occurs. As a result a potential drop exists between the frames of all the ISS segments and the environmental plasma [1], which is cathode drop potential varphi _{c} defined. When ISS orbiting, the φc varies greatly in the range 0-100 V. A large area of the ISS frames and SA surface is coated with a thin dielectric film. Because of cathode drop potential the frame surfaces accumulate ion charges and the SA surfaces accumulate electron charges. These surfaces become plasma capacitors, which accumulate much charge and energy. Micrometeorite impacts or buildup of potential drop in excess of breakdown threshold varphi_{b} (varphi _{c} > varphi _{b} = 60 V) may cause breakdowns of these capacitors. Following a breakdown, the charge collected at the surfaces disperses and transforms into a layer of dense plasma [2]. This plasma environment of the spacecraft produces great pulsed electric fields E at the frame surfaces as well as heavy currents between construction elements which in turn induce great magnetic fields H. Therefore the conductive frame and the environmental plasma is plasma inductors. We have calculated that the densities of these pulsing and high-frequency fields E and H generated in the plasma environment of the spacecraft may exceed values hazardous to human. Besides, these fields must induce large electromagnetic impulses in the space-suit and in the power supply and control circuits of onboard systems. During astronaut’s space-suit activity, these fields will penetrate the space-suit and the human body with possible hazardous effects. These effects need to be studied, and appropriate remedies are to be developed. References 1. Mikatarian, R., et al., «Electrical Charging of the International Space Station», AIAA Paper No. 2003-1079, 41th. Aerospace Sciences Meeting and Exhibit, January 2003. 2. A.G. Korsun, «Electric discharge processes intensification mechanisms on International Space Station surface». Astronautics and rocket production, 1, 2011 (in Russian).
The Impact of Harness Impedance on Hall Thruster Discharge Oscillations
NASA Technical Reports Server (NTRS)
Pinero, Luis R.
2017-01-01
Hall thrusters exhibit characteristic discharge voltage and current oscillations during steady-state operation. The lower frequency breathing-mode current oscillations are inherent to each thruster and could impact thruster operation and power processing unit (PPU) design. The design of the discharge output filter, in particular, the output capacitor is important because it supplies the high peak current oscillations that the thruster demands. However, space-rated, high-voltage capacitors are not readily available and can have significant mass and volume. So, it is important for a PPU designer to know what is the minimum amount of capacitance required to operate a thruster. Through Simulation Program with Integrated Circuit Emphasis modeling and electrical measurements on the Hall Effect Rocket with Magnetic Shielding thruster, it was shown that the harness impedance between the power supply and the thruster is the main contributor towards generating voltage ripple at the thruster. Also, increasing the size of the discharge filter capacitor, as previously implemented during thruster tests, does not reduce the voltage oscillations. The electrical characteristics of the electrical harness between the discharge supply and the thruster is crucial to system performance and could have a negative impact on performance, life and operation.