Science.gov

Sample records for high energy colliding

  1. High energy colliders

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p{anti p}), lepton (e{sup +}e{sup {minus}}, {mu}{sup +}{mu}{sup {minus}}) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed.

  2. High Energy Colliders

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.; Gallardo, J. C.

    INTRODUCTION PHYSICS CONSIDERATIONS GENERAL REQUIRED LUMINOSITY FOR LEPTON COLLIDERS THE EFFECTIVE PHYSICS ENERGIES OF HADRON COLLIDERS HADRON-HADRON MACHINES LUMINOSITY SIZE AND COST CIRCULAR e^{+}e^- MACHINES LUMINOSITY SIZE AND COST e^{+}e^- LINEAR COLLIDERS LUMINOSITY CONVENTIONAL RF SUPERCONDUCTING RF AT HIGHER ENERGIES γ - γ COLLIDERS μ ^{+} μ^- COLLIDERS ADVANTAGES AND DISADVANTAGES DESIGN STUDIES STATUS AND REQUIRED R AND D COMPARISION OF MACHINES CONCLUSIONS DISCUSSION

  3. Physics at high energy photon photon colliders

    SciTech Connect

    Chanowitz, M.S.

    1994-06-01

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.

  4. On the Future High Energy Colliders

    SciTech Connect

    Shiltsev, Vladimir

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  5. The Large Hadron Collider: Redefining High Energy

    SciTech Connect

    Demers, Sarah

    2007-06-19

    Particle physicists have a description of the forces of nature known as the Standard Model that has successfully withstood decades of testing at laboratories around the world. Though the Standard Model is powerful, it is not complete. Important details like the masses of particles are not explained well, and realities as fundamental as gravity, dark matter, and dark energy are left out altogether. I will discuss gaps in the model and why there is hope that some puzzles will be solved by probing high energies with the Large Hadron Collider. Beginning next year, this machine will accelerate protons to record energies, hurling them around a 27 kilometer ring before colliding them 40 million times per second. Detectors the size of five-story buildings will record the debris of these collisions. The new energy frontier made accessible by the Large Hadron Collider will allow thousands of physicists to explore nature's fundamental forces and particles from a fantastic vantage point.

  6. Future high energy colliders symposium. Summary report

    SciTech Connect

    Parsa, Z. |

    1996-12-31

    A `Future High Energy Colliders` Symposium was held October 21-25, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was one of the 3 symposia hosted by the ITP and supported by its sponsor, the National Science Foundation, as part of a 5 month program on `New Ideas for Particle Accelerators`. The long term program and symposia were organized and coordinated by Dr. Zohreh Parsa of Brookhaven National Laboratory/ITP. The purpose of the symposium was to discuss the future direction of high energy physics by bringing together leaders from the theoretical, experimental and accelerator physics communities. Their talks provided personal perspectives on the physics objectives and the technology demands of future high energy colliders. Collectively, they formed a vision for where the field should be heading and how it might best reach its objectives.

  7. Crystal Ball: On the Future High Energy Colliders

    SciTech Connect

    Shiltsev, Vladimir

    2015-09-20

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of next generation collider facilities have been proposed and are currently under consideration for the medium- and far-future of the accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance reach and cost range. We briefly review such post-LHC options as linear e+e- colliders in Japan (ILC) or at CERN (CLIC), muon collider, and circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with a look into ultimate energy reach accelerators based on plasmas and crystals, and some perspectives for the far future of accelerator-based particle physics.

  8. Physics of very high energy hadron-hadron colliders

    SciTech Connect

    Hinchliffe, I.

    1986-09-01

    A review is given of the physics accessible at a very high energy hadron-hadron collider. Emphasis is placed on the reliability of the predicted rates, and upon the energy and luminosity required to explore new physics options. 38 refs., 19 figs.

  9. Muon-muon and other high energy colliders

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The first section looks at the high energy physics advantages, disadvantages and luminosity requirements of hadron, of lepton and photon-photon colliders for comparison. The second section discusses the physics considerations for the muon collider. The third section covers muon collider components. The fourth section is about the intersection region and detectors. In the fifth section, the authors discuss modifications to enhance the muon polarization`s operating parameters with very small momentum spreads, operations at energies other than the maximum for which the machine is designed, and designs of machines for different maximum energies. The final section discusses a Research and Development plan aimed at the operation of a 0.5 TeV demonstration machine by the year 2010, and of the 4 TeV machine by the year 2020.

  10. Stochastic cooling of a high energy collider

    SciTech Connect

    Blaskiewicz, M.; Brennan, J.M.; Lee, R.C.; Mernick, K.

    2011-09-04

    Gold beams in RHIC revolve more than a billion times over the course of a data acquisition session or store. During operations with these heavy ions the event rates in the detectors decay as the beams diffuse. A primary cause for this beam diffusion is small angle Coloumb scattering of the particles within the bunches. This intra-beam scattering (IBS) is particularly problematic at high energy because the negative mass effect removes the possibility of even approximate thermal equilibrium. Stochastic cooling can combat IBS. A theory of bunched beam cooling was developed in the early eighties and stochastic cooling systems for the SPS and the Tevatron were explored. Cooling for heavy ions in RHIC was also considered.

  11. Projects for ultra-high-energy circular colliders at CERN

    NASA Astrophysics Data System (ADS)

    Bogomyagkov, A. V.; Koop, I. A.; Levichev, E. B.; Piminov, P. A.; Sinyatkin, S. V.; Shatilov, D. N.; Benedict, M.; Oide, K.; Zimmermann, F.

    2016-12-01

    Within the Future Circular Collider (FCC) design study launched at CERN in 2014, it is envisaged to construct hadron (FCC-hh) and lepton (FCC-ee) ultra-high-energy machines aimed to replace the LHC upon the conclusion of its research program. The Budker Institute of Nuclear Physics is actively involved in the development of the FCC-ee electron-positron collider. The Crab Waist (CR) scheme of the collision region that has been proposed by INP and will be implemented at FCC-ee is expected to provide high luminosity over a broad energy range. The status and development of the FCC project are described, and its parameters and limitations are discussed for the lepton collider in particular.

  12. High Energy Colliders as Tools to Understand the Early Universe

    SciTech Connect

    Tait, Tim

    2008-08-16

    Cosmological observations have reached a new era of precision, and reveal many interesting and puzzling features of the Universe. I will briefly review two of the most exciting mysteries: the nature of the dark components of the Universe, and the origin of the asymmetry between matter and anti-matter. I will argue that our best hope of unraveling these questions will need to combine information from the heavens with measurements in the lab at high energy particle accelerators. The end of run II of the Tevatron, the up-coming Large Hadron Collider and proposed International Linear Collider all have great potential to help us answer these questions in the near future.

  13. Superconducting Magnet Technology for Future High Energy Proton Colliders

    NASA Astrophysics Data System (ADS)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  14. Neutralinos in vector boson fusion at high energy colliders

    NASA Astrophysics Data System (ADS)

    Berlin, Asher; Lin, Tongyan; Low, Matthew; Wang, Lian-Tao

    2015-06-01

    Discovering dark matter at high-energy colliders continues to be a compelling and well-motivated possibility. Weakly interacting massive particles are a particularly interesting class in which the dark matter particles interact with the standard model weak gauge bosons. Neutralinos are a prototypical example that arise in supersymmetric models. In the limit where all other superpartners are decoupled, it is known that for relic density motivated masses, the rates for neutralinos are too small to be discovered at the Large Hadron Collider (LHC), but that they may be large enough to observe at 100 TeV. In this work we perform a careful study in the vector boson fusion channel for pure winos and pure Higgsinos. We find that given a systematic uncertainty of 1% (5%), with 3000 fb-1 , the LHC is sensitive to winos of 240 GeV (125 GeV) and Higgsinos of 125 GeV (55 GeV). A future 100 TeV collider would be sensitive to winos of 1.1 TeV (750 GeV) and Higgsinos of 530 GeV (180 GeV) with a 1% (5%) uncertainty, also with 3000 fb-1 .

  15. Radiative return capabilities of a high-energy, high-luminositye+e-collider

    DOE PAGES

    Karliner, Marek; Low, Matthew; Rosner, Jonathan L.; ...

    2015-08-14

    An electron-positron collider operating at a center-of-mass energy ECM can collect events at all lower energies through initial-state radiation (ISR or radiative return). We explore the capabilities for radiative return studies by a proposed high-luminosity collider at ECM = 250 or 90 GeV, to fill in gaps left by lower-energy colliders such as PEP, PETRA, TRISTAN, and LEP. These capabilities are compared with those of the lower-energy e+e- colliders as well as hadron colliders such as the Tevatron and the CERN Large Hadron Collider (LHC). Some examples of accessible questions in dark photon searches and heavy flavor spectroscopy are given.

  16. Precision muon tracking detectors for high-energy hadron colliders

    NASA Astrophysics Data System (ADS)

    Gadow, Ph.; Kortner, O.; Kroha, H.; Richter, R.

    2017-02-01

    Small-diameter muon drift tube (sMDT) chambers with 15 mm tube diameter are a cost-effective technology for high-precision muon tracking over large areas at high background rates as expected at future high-energy hadron colliders including HL-LHC. The chamber design and construction procedures have been optimised for mass production and provide sense wire positioning accuracy of better than 10 μm. The rate capability of the sMDT chambers has been extensively tested at the CERN Gamma Irradiation Facility. It exceeds the one of the ATLAS muon drift tube (MDT) chambers, which are operated at unprecedentedly high background rates of neutrons and γ-rays, by an order of magnitude, which is sufficient for almost the whole of the muon detector acceptance at FCC-hh at maximum luminosity. sMDT operational and construction experience exists from ATLAS muon spectrometer upgrades which are in progress or under preparation for LHC Phase 1 and 2.

  17. Accelerator physics and technology challenges of very high energy hadron colliders

    DOE PAGES

    Shiltsev, Vladimir D.

    2015-08-20

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  18. Accelerator physics and technology challenges of very high energy hadron colliders

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir D.

    2015-08-01

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  19. HIGH-ENERGY PARTICLE COLLIDERS: PAST 20 YEARS, NEXT 20 YEARS, AND BEYOND

    SciTech Connect

    Shiltsev, V.

    2013-09-25

    Particle colliders for high-energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the colliders has progressed immensely, while the beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the colliding beam method and the history of colliders, discusses the development of the method over the last two decades in detail, and examines near-term collider projects that are currently under development. The paper concludes with an attempt to look beyond the current horizon and to find what paradigm changes are necessary

  20. High-energy high-luminosity µ+ µ- collider design

    SciTech Connect

    Palmer, Robert B.; Fernow, Richard; Gallardo, Juan C.; Lee, Y. Y.; Torun, Yagmur; Neuffer, David; Winn, David

    1996-01-01

    We discuss the design of a high luminosity (1035 cm-2 s-1), high energy (2 + 2 TeV) µ+µ- collider, starting from the proton accelerator needed to generate the muon beams and proceeding through the muon storage ring.

  1. Low scale inflation at high energy colliders and meson factories

    NASA Astrophysics Data System (ADS)

    Bramante, Joseph; Cook, Jessica; Delgado, Antonio; Martin, Adam

    2016-12-01

    Inflation occurring at energy densities less than (1014 GeV )4 produces tensor perturbations too small to be measured by cosmological surveys. However, we show that it is possible to probe low scale inflation by measuring the mass of the inflaton in low energy experiments. Detection prospects and cosmological constraints are determined for low scale quartic hilltop models of inflation paired with a curvaton field, which imprints the spectrum of scalar perturbations observed in large scale structure and on the cosmic microwave background. With cosmological constraints applied, low scale quartic inflation at energies GeV-PeV can be mapped to a MeV-TeV mass inflaton resonance, discoverable through a Higgs portal coupling at upcoming collider and meson decay experiments. It is demonstrated that low scale inflatons can have detectably large couplings to Standard Model particles through a Higgs portal, permitting prompt reheating after inflation, without spoiling, through radiative corrections to the inflaton's self-coupling, the necessary flatness of a low scale inflationary potential. A characteristic particle spectrum for a quartic inflaton-curvaton pair is identified: to within an order of magnitude, the mass of the curvaton can be predicted from the mass of the inflaton, and vice versa. Low scale inflation Higgs portal sensitivity targets are found for experiments like the LHC, SHiP, BEPC, and KEKB.

  2. High energy particle colliders: past 20 years, next 20 years and beyond

    SciTech Connect

    Shiltsev, Vladimir D.; /Fermilab

    2012-04-01

    Particle colliders for high energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the collider has progressed immensely, while the beam energy, luminosity, facility size and the cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but its pace of progress has greatly slowed down. In this paper we very briefly review the method and the history of colliders, discuss in detail the developments over the past two decades and the directions of the R and D toward near future colliders which are currently being explored. Finally, we make an attempt to look beyond the current horizon and outline the changes in the paradigm required for the next breakthroughs.

  3. High luminosity particle colliders

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1997-03-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p{anti p}), lepton (e{sup +}e{sup {minus}}, {mu}{sup +}{mu}{sup {minus}}) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed.

  4. High Energy Accelerator and Colliding Beam User Group

    SciTech Connect

    Snow, G.A.; Skuja, A.

    1992-05-01

    This report discusses research in the following areas: the study of e{sup +}e{sup {minus}} interactions; Hadron collider physics at Fermilab; fixed target physics and particle physics of general interest; and, the solenoidal detector collaboration at SSCL.

  5. The frontier of high energy physics and the large hadron collider

    SciTech Connect

    Mishra, Kalanand

    2013-09-09

    High Energy Physics explores the most fundamental questions about the nature of the universe, e.g., basic building blocks of matter and energy, existence of the smallest sub-atomic particles, dark matter, dark energy etc. The Large Hadron Collider (LHC) is the most powerful accelerator on earth located near Geneva, Switzerland. It recreates the conditions just after the Big Bang by colliding two proton beams head-on at very high energy every 25-50 nanosecond. With the recent discovery of Higgs boson, the LHC is firmly marching on to explore the TeV energy scale.

  6. Probing contact interactions at high energy lepton colliders

    SciTech Connect

    Cheung, K.; Godfrey, S.; Hewett, J.A.

    1996-12-01

    Fermion compositeness and other new physics can be signaled by the presence of a strong four-fermion contact interaction. Here the authors present a study of {ell}{ell}qq and {ell}{ell}{ell}{prime}{ell}{prime} contact interactions using the reactions: {ell}{sup +}{ell}{sup {minus}} {r_arrow} {ell}{prime}{sup +} {ell}{prime}{sup {minus}}, b{anti b}, c{anti c} at future e{sup +}e{sup {minus}} linear colliders with {radical}s = 0.5--5 TeV and {mu}{sup +}{mu}{sup {minus}} colliders with {radical}s = 0.5, 4 TeV. They find that very large compositeness scales can be probed at these machines and that the use of polarized beams can unravel their underlying helicity structure.

  7. High energy accelerator and colliding beam user group

    SciTech Connect

    Not Available

    1990-09-01

    This report discusses the following topics: OPAL experiment at LEP; D{phi} experiment at Fermilab; deep inelastic muon interactions at TEV II; CYGNUS experiment; final results from {nu}{sub e}{sup {minus}e} elastic scattering; physics with CLEO detector at CESR; results from JADE at PETRA; rare kaon-decay experiment at BNL; search for top quark; and super conducting super collider activities.

  8. Progress with high-field superconducting magnets for high-energy colliders

    DOE PAGES

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nbmore » $$_3$$Sn superconductors. Nb$$_3$$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$$_3$$Sn accelerator magnet research and development and work toward 20-T magnets.« less

  9. Progress with high-field superconducting magnets for high-energy colliders

    SciTech Connect

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nb$_3$Sn superconductors. Nb$_3$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$_3$Sn accelerator magnet research and development and work toward 20-T magnets.

  10. Detecting W/Z pairs and Higgs at high energy pp colliders: Main experimental issues

    SciTech Connect

    Alverson, G.; Bengtsson, H.U.; Hauptman, J.; Hedin, D.; Herrero, M.J.; Wang, E.; Linn, S.; Young, C.; Milliken, B.; Paige, F.

    1987-03-01

    The main detection issues implied by the search for W and Z/sup 0/ pairs and Higgs in a high energy pp collider context are discussed here. It includes: precise electron identification, missing energy measurement, multilepton recognition, sophisticated jet pattern recognition, and pile-up. The study uses, as much as possible, a ''realistic simulation of life.''

  11. Wedge Absorbers for Final Cooling for a High-Energy High-Luminosity Lepton Collider

    SciTech Connect

    Neuffer, David; Mohayai, Tanaz; Snopok, Pavel; Summers, Don

    2016-06-01

    A high-energy high-luminosity muon collider scenario requires a "final cooling" system that reduces transverse emittance to ~25 microns (normalized) while allowing longitudinal emittance increase. Ionization cooling using high-field solenoids (or Li Lens) can reduce transverse emittances to ~100 microns in readily achievable configurations, confirmed by simulation. Passing these muon beams at ~100 MeV/c through cm-sized diamond wedges can reduce transverse emittances to ~25 microns, while increasing longitudinal emittance by a factor of ~5. Implementation will require optical matching of the exiting beam into downstream acceleration systems.

  12. [Calorimeter based detectors for high energy hadron colliders]. [Progress report

    SciTech Connect

    Not Available

    1992-08-04

    This document provides a progress report on research that has been conducted under DOE Grant DEFG0292ER40697 for the past year, and describes proposed work for the second year of this 8 year grant starting November 15, 1992. Personnel supported by the contract include 4 faculty, 1 research faculty, 4 postdocs, and 9 graduate students. The work under this grant has in the past been directed in two complementary directions -- DO at Fermilab, and the second SSC detector GEM. A major effort has been towards the construction and commissioning of the new Fermilab Collider detector DO, including design, construction, testing, the commissioning of the central tracking and the central calorimeters. The first DO run is now underway, with data taking and analysis of the first events. Trigger algorithms, data acquisition, calibration of tracking and calorimetry, data scanning and analysis, and planning for future upgrades of the DO detector with the advent of the FNAL Main Injector are all involved. The other effort supported by this grant has been towards the design of GEM, a large and general-purpose SSC detector with special emphasis on accurate muon measurement over a large solid angle. This effort will culminate this year in the presentation to the SSC laboratory of the GEM Technical Design Report. Contributions are being made to the detector design, coordination, and physics simulation studies with special emphasis on muon final states. Collaboration with the RD5 group at CERN to study muon punch through and to test cathode strip chamber prototypes was begun.

  13. RHIC: The World's First High-Energy, Polarized-Proton Collider (423rd Brookhaven Lecture)

    SciTech Connect

    Bai, Mei

    2007-03-28

    The Relativistic Heavy Ion Collider (RHIC) at BNL has been colliding polarized proton at a beam energy of 100 billion electron volts (GeV) since 2001. In addition to reporting upon the progress of RHIC polarized-proton program, this talk will focus upon the mechanisms that cause the beam to depolarize and the strategies developed to overcome this. As the world first polarized-proton collider, RHIC is designed to collide polarized protons up to an energy of 250 GeV, thereby providing an unique opportunity to measure the contribution made by the gluon to a proton's spin and to study the spin structure of proton. Unlike other high-energy proton colliders, however, the challenge for RHIC is to overcome the mechanisms that cause partial or total loss of beam polarization, which is due to the interaction of the spin vector with the magnetic fields. In RHIC, two Siberian snakes have been used to avoid these spin depolarizing resonances, which are driven by vertical closed-orbit distortion and vertical betatron oscillations. As a result, polarized-proton beams have been accelerated to 100 GeV without polarization loss, although depolarization has been observed during acceleration from 100 GeV to 205 GeV.

  14. High Energy Accelerator and Colliding Beam User Group: Progress report, March 1, 1988--February 28, 1989

    SciTech Connect

    Not Available

    1988-09-01

    This report discusses work carried out by the High Energy Accelerator and Colliding Beam User Group at the University of Maryland. Particular topics discussed are: OPAL experiment at LEP; deep inelastic muon interactions; B physics with the CLEO detector at CESR; further results from JADE; and search for ''small'' violation of the Pauli principle. (LSP)

  15. Final Cooling For a High-luminosity High-Energy Lepton Collider

    SciTech Connect

    Neuffer, D.; Sayed, H.; Hart, T.; Summers, D.

    2015-05-01

    The final cooling system for a high-energy high-luminosity heavy lepton collider requires reduction of the transverse emittance εt by an order of magnitude to ~0.00003 m (rms, N), while allowing longitudinal emittance εL to increase to ~0.1m. In the present baseline approach, this is obtained by transverse cooling of low-energy muons within a sequence of high-field solenoids with low-frequency rf systems. Recent studies of such systems are presented. Since the final cooling steps are mostly emittance exchange, a variant form of that final system can be obtained by a round to flat transform in x-y, with transverse slicing of the enlarged flat transverse dimension followed by longitudinal recombination of the sliced bunchlets. Other variants are discussed. More explicit emittance exchange can greatly reduce the cost of a final cooling system.

  16. Final Cooling for a High-Energy High-Luminosity Lepton Collider

    SciTech Connect

    Neuffer, David; Sayed, H.; Hart, T.; Summers, D.

    2015-12-03

    A high-energy muon collider scenario require a “final cooling” system that reduces transverse emittance by a factor of ~10 while allowing longitudinal emittance increase. The baseline approach has low-energy transverse cooling within high-field solenoids, with strong longitudinal heating. This approach and its recent simulation are discussed. Alternative approaches which more explicitly include emittance exchange are also presented. Round-to-flat beam transform, transverse slicing, and longitudinal bunch coalescence are possible components of an alternative approach. Wedge-based emittance exchange could provide much of the required transverse cooling with longitudinal heating. Li-lens and quadrupole focusing systems could also provide much of the required final cooling.

  17. Theoretical studies of hadronic calorimetry for high luminosity, high energy colliders

    SciTech Connect

    Brau, J.E.; Gabriel, T.A.

    1989-01-01

    Experiments at the high luminosity, high energy colliders of the future are going to demand optimization of the state of the art of calorimetry design and construction. During the past few years, the understanding of the basic phenomenology of hadron calorimeters has advanced through paralleled theoretical and experimental investigations. The important underlying processes are reviewed to set the framework for the presentation of recent calculations of the expected performance of silicon detector based hadron calorimeters. Such devices employing uranium are expected to achieve the compensation condition (that is, e/h approx. 1.0) based on the understanding that has been derived from the uranium-liquid argon and uranium-plastic scintillator systems. In fact, even lead-silicon calorimeters are found to achieve the attractive value for the e/h ratio of 1.16 at 10 GeV. 62 refs., 22 figs., 3 tabs.

  18. Nucleon Decay and Neutrino Experiments, Experiments at High Energy Hadron Colliders, and String Theor

    SciTech Connect

    Jung, Chang Kee; Douglas, Michaek; Hobbs, John; McGrew, Clark; Rijssenbeek, Michael

    2013-07-29

    This is the final report of the DOE grant DEFG0292ER40697 that supported the research activities of the Stony Brook High Energy Physics Group from November 15, 1991 to April 30, 2013. During the grant period, the grant supported the research of three Stony Brook particle physics research groups: The Nucleon Decay and Neutrino group, the Hadron Collider Group, and the Theory Group.

  19. Scattering of W and Z bosons at high-energy lepton colliders

    NASA Astrophysics Data System (ADS)

    Fleper, Christian; Kilian, Wolfgang; Reuter, Jürgen; Sekulla, Marco

    2017-02-01

    We present a new study of quasi-elastic W and Z scattering processes in high-energy e^+e^- collisions, based on and extrapolating the low-energy effective theory which extends the standard model with a 125 {GeV} Higgs boson. We parameterize deviations in the low-energy range in terms of the dimension-eight operators that arise in the effective theory. Smoothly extending this to higher energy, we study a set of simplified models of new physics in W / Z scattering, (1) a structureless extrapolation of the effective theory, and (2) scalar and tensor resonance multiplets. The high-energy asymptotics of all models is regulated by a universal unitarization procedure. This enables us to provide benchmark scenarios which can be meaningfully evaluated off shell and in exclusive event samples, and to determine the sensitivity of an e^+e^- collider to the model parameters. We analyze the longitudinal vector-boson scattering modes, where we optimize the cuts for the fiducial cross section for different collider scenarios. Here, we choose energy stages of 1.0, 1.4 and 3 TeV, as motivated by the extendability of the ILC project and the staging scenario of the CLIC project.

  20. High baryon densities in heavy ion collisions at energies attainable at the BNL Relativistic Heavy-Ion Collider and the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Li, Ming; Kapusta, Joseph I.

    2017-01-01

    In very high-energy collisions nuclei are practically transparent to each other but produce very hot nearly baryon-free matter in the so-called central rapidity region. The energy in the central rapidity region comes from the kinetic energy of the colliding nuclei. We calculate the energy and rapidity loss of the nuclei using the color glass condensate model. This model also predicts the excitation energy of the nuclear fragments. Using a space-time picture of the collision we calculate the baryon and energy densities of the receding baryonic fireballs. For central collisions of gold nuclei at the highest energy attainable at the Relativistic Heavy-Ion Collider, for example, we find baryon densities more than ten times that of atomic nuclei over a large volume.

  1. High-energy high-luminosity electron-ion collider eRHIC

    SciTech Connect

    Litvinenko, V.N.; Ben-Zvi, I.; Hammons, L.; Hao, Y.; Webb, S.; et al

    2011-08-09

    In this paper, we describe a future electron-ion collider (EIC), based on the existing Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconducting rings, each 3.8 km in circumference. The replacement cost of the RHIC facility is about two billion US dollars, and the eRHIC will fully take advantage and utilize this investment. We plan adding a polarized 5-30 GeV electron beam to collide with variety of species in the existing RHIC accelerator complex, from polarized protons with a top energy of 325 GeV, to heavy fully-striped ions with energies up to 130 GeV/u. Brookhaven's innovative design, is based on one of the RHIC's hadron rings and a multi-pass energy-recovery linac (ERL). Using the ERL as the electron accelerator assures high luminosity in the 10{sup 33}-10{sup 34} cm{sup -2} sec{sup -1} range, and for the natural staging of eRHIC, with the ERL located inside the RHIC tunnel. The eRHIC will provide electron-hadron collisions in up to three interaction regions. We detail the eRHIC's performance in Section 2. Since first paper on eRHIC paper in 2000, its design underwent several iterations. Initially, the main eRHIC option (the so-called ring-ring, RR, design) was based on an electron ring, with the linac-ring (LR) option as a backup. In 2004, we published the detailed 'eRHIC 0th Order Design Report' including a cost-estimate for the RR design. After detailed studies, we found that an LR eRHIC has about a 10-fold higher luminosity than the RR. Since 2007, the LR, with its natural staging strategy and full transparency for polarized electrons, became the main choice for eRHIC. In 2009, we completed technical studies of the design and dynamics for MeRHIC with 3-pass 4 GeV ERL. We learned much from this evaluation, completed a bottom-up cost estimate for this $350M machine, but then shelved the design. In the same year, we turned again to considering the cost-effective, all-in-tunnel six-pass ERL for our design of the high

  2. QCD at collider energies

    NASA Astrophysics Data System (ADS)

    Nicolaidis, A.; Bordes, G.

    1986-05-01

    We examine available experimental distributions of transverse energy and transverse momentum, obtained at the CERN pp¯ collider, in the context of quantum chromodynamics. We consider the following. (i) The hadronic transverse energy released during W+/- production. This hadronic transverse energy is made out of two components: a soft component which we parametrize using minimum-bias events and a semihard component which we calculate from QCD. (ii) The transverse momentum of the produced W+/-. If the transverse momentum (or the transverse energy) results from a single gluon jet we use the formalism of Dokshitzer, Dyakonov, and Troyan, while if it results from multiple-gluon emission we use the formalism of Parisi and Petronzio. (iii) The relative transverse momentum of jets. While for W+/- production quarks play an essential role, jet production at moderate pT and present energies is dominated by gluon-gluon scattering and therefore we can study the Sudakov form factor of the gluon. We suggest also how through a Hankel transform of experimental data we can have direct access to the Sudakov form factors of quarks and gluons.

  3. Multiple production of MSSM neutral Higgs bosons at high-energy e+e- colliders

    NASA Astrophysics Data System (ADS)

    Djouadi, A.; Haber, H. E.; Zerwas, P. M.

    1996-02-01

    The cross sections for the multiple production of the lightest neutral Higgs boson at high-energy e+e- colliders are presented in the framework of the Minimal Supersymmetric extension of the Standard Model (MSSM). We consider production through Higgs-strahlung, associated production of the scalar and the pseudoscalar bosons, and the fusion mechanisms for which we use the effective longitudinal vector-boson approximation. These cross sections allow one to determine trilinear Higgs couplings λHhh and λhhh, which are theoretically determined by the Higgs potential.

  4. Characterizing invisible electroweak particles through single-photon processes at high energy e+e- colliders

    NASA Astrophysics Data System (ADS)

    Choi, Seong Youl; Han, Tao; Kalinowski, Jan; Rolbiecki, Krzysztof; Wang, Xing

    2015-11-01

    We explore the scenarios where the only accessible new states at the electroweak scale consist of a pair of color-singlet electroweak particles, the masses of which are degenerate at the tree level and split only by electroweak symmetry breaking at the loop level. For the sake of illustration, we consider a supersymmetric model and study the following three representative cases with the lower-lying states as (a) two spin-1 /2 Higgsino SU(2 ) L doublets, (b) a spin-1 /2 wino SU(2 ) L triplet and (c) a spin-0 left-handed slepton SU(2 ) L doublet. Due to the mass degeneracy, those lower-lying electroweak states are difficult to observe at the LHC and rather challenging to detect at the e+e- collider as well. We exploit the pair production in association with a hard photon radiation in high energy e+e- collisions. If kinematically accessible, such single-photon processes at e+e- colliders with polarized beams enable us to characterize each scenario by measuring the energy of the associated hard photon and to determine the spin of the nearly invisible particles unambiguously through the threshold behavior in the photon energy distribution.

  5. High-energy Particle Transport in Three-dimensional Hydrodynamic Models of Colliding-wind Binaries

    NASA Astrophysics Data System (ADS)

    Reitberger, K.; Kissmann, R.; Reimer, A.; Reimer, O.; Dubus, G.

    2014-02-01

    Massive stars in binary systems (such as WR 140, WR 147, or η Carinae) have long been regarded as potential sources of high-energy γ-rays. The emission is thought to arise in the region where the stellar winds collide and produce relativistic particles that subsequently might be able to emit γ-rays. Detailed numerical hydrodynamic simulations have already offered insight into the complex dynamics of the wind collision region (WCR), while independent analytical studies, albeit with simplified descriptions of the WCR, have shed light on the spectra of charged particles. In this paper, we describe a combination of these two approaches. We present a three-dimensional hydrodynamical model for colliding stellar winds and compute spectral energy distributions of relativistic particles for the resulting structure of the WCR. The hydrodynamic part of our model incorporates the line-driven acceleration of the winds, gravity, orbital motion, and the radiative cooling of the shocked plasma. In our treatment of charged particles, we consider diffusive shock acceleration in the WCR and the subsequent cooling via inverse Compton losses (including Klein-Nishina effects), bremsstrahlung, collisions, and other energy loss mechanisms.

  6. Semiconductor devices as track detectors in high energy colliding beam experiments

    SciTech Connect

    Ludlam, T

    1980-01-01

    In considering the design of experiments for high energy colliding beam facilities one quickly sees the need for better detectors. The full exploitation of machines like ISABELLE will call for detector capabilities beyond what can be expected from refinements of the conventional approaches to particle detection in high energy physics experiments. Over the past year or so there has been a general realization that semiconductor device technology offers the possibility of position sensing detectors having resolution elements with dimensions of the order of 10 microns or smaller. Such a detector could offer enormous advantages in the design of experiments, and the purpose of this paper is to discuss some of the possibilities and some of the problems.

  7. Opportunities and requirements for experimentation at high energy e/sup +/e/sup /minus// collider

    SciTech Connect

    Ahn, C.; Baltay, C.; Barklow, T.L.; Burchat, P.R.; Burke, D.L.; Cooper, A.R.; Dib, C.; Feldman, G.J.; Gunion, J.F.; Haber, H.E.

    1988-05-01

    Over the past fifteen years of high-energy physics, electron-positron annihilation has been the most productive of all reactions probing the fundamental interactions. The e/sup +/e/sup /minus// annihilation process is unique in offering at the same time copious production of novel particles, low backgrounds from more conventional physics, and the most efficient use of the energy which an accelerator provides. These features have allowed the detailed characterization of the charm and bottom quark-antiquark systems and the unambiguous discovery of gluon jets---the crucial ingredients in the establishment of Quantum Chromodynamics as the correct theory of the strong interactions---as well as the discovery of the tau lepton and confirmation of the weak and electromagnetic properties of all the quarks and leptons at high energy. Over the past few years, experiments will begin at SLC and LEP, and we anticipate new discoveries from the detailed study of the Z/sup 0/ resonance. It is time, then to begin to think out how one might continue this mode experimentation to still higher energies. This document is the report of a committee convened by the Director of SLAC, Burton Richter, to set out the major physics goals of an e/sup +/e/sup /minus// collider in the energy range 600 GeV-1 TeV, corresponding to the next feasible step in accelerator technology. The committee was charged with the task of outlining the main experiments that such a collider might carry out and the requirements which those experiments place on the accelerator design. 106 refs., 105 figs., 13 tabs.

  8. Cross sections for production of closed superstrings at high energy colliders in brane world models

    SciTech Connect

    Chialva, Diego; Iengo, Roberto; Russo, Jorge G.

    2005-05-15

    In brane world string models with large extra dimensions, there are processes where fermion and antifermion (or two gluons) can annihilate producing a light particle (e.g. gluon) carrying transverse momentum and a Kaluza-Klein graviton or an excited closed string that propagates in the extra dimensions. In high energy colliders, this process gives a missing-momentum signature. We compute the total cross section for this process within the context of type II superstring theory in the presence of a D-brane. This includes all missing-energy sources for this string-theory model up to s=8M{sub s}{sup 2}, and it can be used to put new limits on the string scale M{sub s}.

  9. Light dark sector searches at low-energy high-luminosity e + e - colliders

    NASA Astrophysics Data System (ADS)

    Yin, Peng-Fei; Zhu, Shou-Hua

    2016-10-01

    Although the standard model (SM) is extremely successful, there are various motivations for considering the physics beyond the SM. For example, the SM includes neither dark energy nor dark matter, which has been confirmed through astrophysical observations. Examination of the dark sector, which contains new, light, weakly-coupled particles at the GeV scale or lower, is well motivated by both theory and dark-matter detection experiments. In this mini-review, we focus on one particular case in which these new particles can interact with SM particles through a kinematic mixing term between U(1) gauge bosons. The magnitude of the mixing can be parameterized by a parameter є. Following a brief overview of the relevant motivations and the constraints determined from numerous experiments, we focus on the light dark sector phenomenology at low-energy high-luminosity e + e - colliders. These colliders are ideal for probing the new light particles, because of their large production rates and capacity for precise resonance reconstruction. Depending on the details of a given model, the typical observed signatures may also contain multi lepton pairs, displaced vertices, and/or missing energy. Through the use of extremely large data samples from existing experiments, such as KLOE, CLEO, BABAR, Belle, and BESIII, the magnitude of the mixing can be parameterized by a parameter є < 10-4-10-3 constraint can be obtained. Obviously, future experiments with larger datasets will provide opportunities for the discovery of new particles in the dark sector, or for stricter upper limits on є. Once the light dark sector is confirmed, the particle physics landscape will be changed significantly.

  10. Physics of (very) high energy e/sup +/-e/sup -/ colliders

    SciTech Connect

    Peskin, M.E.

    1984-10-01

    I review the physics capabilities of e/sup +/e/sup -/ colliders of hundred GeV to TeV center-of-mass energies, emphasizing issues relevant to the physics of symmetry breaking in the weak interactions. 24 references.

  11. FEL-based coherent electron cooling for high-energy hadron colliders

    SciTech Connect

    Litvinenko,V.N.; Derbenev, Y.S.

    2008-06-23

    Cooling intense high-energy hadron beams is a major challenge in modern accelerator physics. Synchrotron radiation is too feeble and two common methods--stochastic and electron cooling--are not efficient in providing significant cooling for high energy, high intensity proton colliders. In this paper they discuss a practical scheme of Coherent Electron Cooling (CeC), which promises short cooling times (below one hour) for intense proton beams in RHIC at 250 GeV or in LHC at 7 TeV. A possibility of CeC using various microwave instabilities was discussed since 1980s. In this paper, they present first evaluation of specific CeC scheme based on capabilities of present-day accelerator technology, ERLs, and high-gain Free-Electron lasers (FELs). They discuss the principles, the main limitations of this scheme and present some predictions for Coherent Electron Cooling in RHIC and the LHC operating with ions or protons, summarized in Table 1.

  12. The CERN Large Hadron Collider as a tool to study high-energy density matter.

    PubMed

    Tahir, N A; Kain, V; Schmidt, R; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Temporal, M; Hoffmann, D H H; Fortov, V E

    2005-04-08

    The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15x10(11) protons so that the total number of protons in one beam will be about 3x10(14) and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma=0.2 mm. The total duration of the beam will be about 89 mus. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.

  13. SUSY effects in Higgs production at high energy e+ e- colliders

    NASA Astrophysics Data System (ADS)

    Cao, Junjie; Han, Chengcheng; Ren, Jie; Wu, Lei; Yang, Jin-Min; Zhang, Yang

    2016-11-01

    Considering the constraints from collider experiments and dark matter detection, we investigate the SUSY effects in the Higgs production channels e+ e- → Zh at an e+ e- collider with a center-of-mass energy above 240 GeV and γγ → h → bb¯ at a photon collider with a center-of-mass energy above 125 GeV. In the parameter space allowed by current experiments, we find that the SUSY corrections to e+ e- → Zh can reach a few percent and the production rate of γγ → h → bb¯ can be enhanced by a factor of 1.2 over the SM prediction. We also calculate the exotic Higgs production e+ e-→ Zh1 in the next-to-minimal supersymmetric model (NMSSM) (h is the SM-like Higgs, h1 is the CP-even Higgs bosons which can be much lighter than h). We find that at a 250 GeV e+ e- collider the production rates of e+ e-→ Zh1 can reach 60 fb. Supported by National Natural Science Foundation of China (NNSFC)(10821504, 11222548, 11305049, 11135003), Program for New Century Excellent Talents in University, and ARC Center of Excellence for Particle Physics at Tera-scale. C. Han is supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan

  14. Large Hadron Collider at CERN: Beams generating high-energy-density matter.

    PubMed

    Tahir, N A; Schmidt, R; Shutov, A; Lomonosov, I V; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-04-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic responses of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/ c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. These data have been used as input to a sophisticated two-dimensional hydrodynamic computer code BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1 m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy deposition region will extend to a length of about 35 m over the beam duration. This is due to the fact that first few tens of bunches deposit sufficient energy that leads to high pressure that generates an outgoing radial shock wave. Shock propagation leads to continuous reduction in the density at the target center that allows the protons delivered in subsequent bunches to penetrate deeper and deeper into the target. This phenomenon has also been seen in case of heavy-ion heated targets [N. A. Tahir, A. Kozyreva, P. Spiller, D. H. H. Hoffmann, and A. Shutov, Phys. Rev. E 63, 036407 (2001)]. This effect needs to be considered in the design of a sacrificial beam stopper. These simulations have also shown that the target is severely damaged and is converted into a huge sample of high-energy density (HED) matter. In fact, the inner part of the target is transformed into a strongly coupled plasma with fairly uniform physical conditions. This work, therefore, has

  15. Considerations on Energy Frontier Colliders after LHC

    SciTech Connect

    Shiltsev, Vladimir

    2016-11-15

    Since 1960’s, particle colliders have been in the forefront of particle physics, 29 total have been built and operated, 7 are in operation now. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics. This paper largely follows previous study [1] and the presenta ion given at the ICHEP’2016 conference in Chicago [2].

  16. Higgs boson self-coupling at a high-energy γγ collider

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Rodríguez, A.; Peressutti, Javier; Sampayo, O. A.

    2011-09-01

    We analyzed the double production and the triple self-coupling of the standard model Higgs boson at future γγ collider energies, with the reactions \\gamma \\gamma \\rightarrow f \\bar{f} HH (f = b, t). We evaluated the total cross-section for f\\bar{f}HH and calculated the total number of events considering the complete set of Feynman diagrams at the tree level and for different values of the triple coupling κλHHH. We have also analyzed the sensitivity for the considered reaction and we show the results as 95% CL regions in the κ-MH plane for different values of the center-of-mass energy and different levels of background. The numerical computation was done for the energies which are expected to be available at a possible future linear γγ collider with a center-of-mass energy 500-3000 GeV and luminosities of 1 and 5\\hspace{1.42262pt} ab^{-1}. We found that the number of events for the process \\gamma \\gamma \\rightarrow t \\bar{t} HH, taking into account the decay products of both t and H, is small but enough to obtain information on the triple Higgs boson self-coupling in an independent way, complementing other studies on the triple vertex.

  17. High Energy Accelerator and Colliding Beam User Group. Progress report, March 1, 1992--October 31, 1992

    SciTech Connect

    Snow, G.A.; Skuja, A.

    1992-05-01

    This report discusses research in the following areas: the study of e{sup +}e{sup {minus}} interactions; Hadron collider physics at Fermilab; fixed target physics and particle physics of general interest; and, the solenoidal detector collaboration at SSCL.

  18. The Very Large Hadron Collider: The farthest energy frontier

    SciTech Connect

    Barletta, William A.

    2001-06-21

    The Very Large Hadron Collider (or Eloisatron) represents what may well be the final step on the energy frontier of accelerator-based high energy physics. While an extremely high luminosity proton collider at 100-200 TeV center of mass energy can probably be built in one step with LHC technology, that machine would cost more than what is presently politically acceptable. This talk summarizes the strategies of collider design including staged deployment, comparison with electron-positron colliders, opportunities for major innovation, and the technical challenges of reducing costs to manageable proportions. It also presents the priorities for relevant R and D for the next few years.

  19. PROSPECTS FOR COLLIDERS AND COLLIDER PHYSICS TO THE 1 PEV ENERGY SCALE

    SciTech Connect

    KING,B.J.

    2000-05-05

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing the authors progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC--one each of e{sup +}e{sup {minus}} and hadron colliders and three {mu}{sup +}{mu}{sup {minus}} colliders--and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R and D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

  20. Report of the 1990 HEPAP (High Energy Physics Advisory Panel) Subpanel on SSC (Superconducting Super Collider) Cost Estimate Oversight

    SciTech Connect

    Not Available

    1990-07-01

    At the request of the Office of Energy Research, the High Energy Physics Advisory Panel (HEPAP) established a subpanel to conduct an independent assessment of the Superconducting Super Collider (SSC). This assessment was conducted before, during, and after the DOE's in-depth assessment of the entire project in June 1990. In summary, the subpanel believes that to reduce risk, 6 to 12 months should be added to the schedule; the project should be rephased; and additional funding planned to bring the total project cost, including contingency and escalation, to about $8.6 billion. In addition, we suggest adding another $300 million to the detector budget to allow for two large detectors and, therefore, a more balanced experimental program initially.

  1. Experimental search for W/Z pairs and Higgs bosons at very high energy hadron-hadron colliders

    SciTech Connect

    Alverson, G.; Bengtsson, H.U.; Hauptman, J.; Hedin, D.; Herrero, M.J.; Wang, E.; Linn, S.; Young, C.; Milliken, B.; Paige, F.

    1987-03-01

    We study, from an experimental point of view, the main ways to detect standard high mass Higgs bosons (from 300 GeV up to about 1 TeV) when they decay into W- and Z-pairs at the SSC. We also consider the corresponding W- and Z/sup 0/-pair continuum which may itself provide interesting physics, and we pay some attention to the case of an intermediate mass charged Higgs decaying into tau..nu../sub tau/ (m/sub H+-/ = 300 GeV). We first explain why and how high energy pp colliders may search for Higgs' and we compare their possible performances to those of the e/sup +/e/sup -/ and ep colliders at all possible mass scale (from few tens of GeV's up to 1 TeV). We then estimate the rates of the signals and the main backgrounds. We define the main characteristics of these events as reproduced by M.C. generators (especially implemented with these processes) and simulated through an idealized 4..pi.. fine-grained calorimeter. A trigger strategy for W- and Z-pairs is derived from this study. 26 refs., 28 figs.

  2. Measuring the trilinear couplings of MSSM neutral Higgs bosons at high-energy e+e- colliders

    NASA Astrophysics Data System (ADS)

    Osland, P.; Pandita, P. N.

    1999-03-01

    We present a detailed analysis of multiple production of the lightest CP-even Higgs boson (h) of the minimal supersymmetric standard model (MSSM) at high-energy e+e- colliders. We consider the production of the heavier CP-even Higgs boson (H) via Higgs-strahlung e+e--->ZH, in association with the CP-odd Higgs boson (A) in e+e--->AH, or via the fusion mechanism e+e--->νeν¯eH, with H subsequently decaying through H-->hh, thereby resulting in a pair of lighter Higgs bosons (h) in the final state. These processes can enable one to measure the trilinear Higgs couplings λHhh and λhhh, which can be used to theoretically reconstruct the Higgs potential. We delineate the regions of the MSSM parameter space in which these trilinear Higgs couplings could be measured at a future e+e- collider. In our calculations, we include in detail the radiative corrections to the Higgs sector of the MSSM, especially the mixing in the squark sector.

  3. High energy accelerator and colliding beam user group: Progress report, March 1, 1987-February 29, 1988

    SciTech Connect

    Not Available

    1987-09-01

    Progress is reported on the OPAL experiment at LEP, including construction and assembly of the hadron calorimeter and development of OPAL software. Progress on the JADE experiment, which examines e/sup +/e/sup -/ interactions at PETRA, and of the PLUTO collaboration are also discussed. Experiments at Fermilab are reported, including deep inelastic muon scattering at TeV II, the D0 experiment at TeV I, and hadron jet physics. Neutrino-electron elastic scattering and a search for point-sources of ultra-high energy cosmic rays are reported. Other activities discussed include polarization in electron storage rings, participation in studies for the SSC and LEP 200, neutron-antineutron oscillations, and the work of the electronics support group. High energy physics computer experience is also discussed. 158 refs. (LEW)

  4. Remarkable virtual supersymmetric effects in W{sup {+-}} production at high energy hadron colliders

    SciTech Connect

    Gounaris, G. J.; Layssac, J.; Renard, F. M.

    2008-01-01

    We present a complete 1-loop study of the electroweak corrections to the process ug{yields}dW{sup +} in the minimal supersymmetric standard model and the standard model. The occurrence of a number of remarkable properties in the behavior of the helicity amplitudes at high energies is stressed, and the crucial role of the virtual supersymmetric (SUSY) contributions in establishing them is emphasized. The approach to asymptopia of these amplitudes is discussed, comparing the effects of the logarithmic and constant contributions to the mass-suppressed ones, which are relevant at lower energies. Applying crossing to ug{yields}dW{sup +}, we obtain all subprocesses needed for the 1-loop electroweak corrections to W{sup {+-}}-production at LHC. The SUSY model dependence of such a production is then studied, and illustrations are given for the transverse W{sup {+-}} momentum distribution, as well as the angular distribution in the subprocess center of mass.

  5. (Calorimeter based detectors for high energy hadron colliders). [State Univ. of New York

    SciTech Connect

    Not Available

    1992-08-04

    This document provides a progress report on research that has been conducted under DOE Grant DEFG0292ER40697 for the past year, and describes proposed work for the second year of this 8 year grant starting November 15, 1992. Personnel supported by the contract include 4 faculty, 1 research faculty, 4 postdocs, and 9 graduate students. The work under this grant has in the past been directed in two complementary directions -- DO at Fermilab, and the second SSC detector GEM. A major effort has been towards the construction and commissioning of the new Fermilab Collider detector DO, including design, construction, testing, the commissioning of the central tracking and the central calorimeters. The first DO run is now underway, with data taking and analysis of the first events. Trigger algorithms, data acquisition, calibration of tracking and calorimetry, data scanning and analysis, and planning for future upgrades of the DO detector with the advent of the FNAL Main Injector are all involved. The other effort supported by this grant has been towards the design of GEM, a large and general-purpose SSC detector with special emphasis on accurate muon measurement over a large solid angle. This effort will culminate this year in the presentation to the SSC laboratory of the GEM Technical Design Report. Contributions are being made to the detector design, coordination, and physics simulation studies with special emphasis on muon final states. Collaboration with the RD5 group at CERN to study muon punch through and to test cathode strip chamber prototypes was begun.

  6. Centrality dependence of high energy jets in p+Pb collisions at energies available at the CERN Large Hadron Collider

    DOE PAGES

    Bzdak, Adam; Skokov, Vladimir; Bathe, Stefan

    2016-04-08

    We investigate the recently measured centrality dependence of high energy jets in proton-lead collisions at the LHC. Here, we hypothesize that events with jets of very high energy (a few hundred GeV) are characterized by a suppressed number of soft particles, thus shifting these events into more peripheral bins. This naturally results in the suppression (enhancement) of the nuclear modification factor, RpA, in central (peripheral) collisions. Our calculations suggest that a moderate suppression of the order of 20%, for 103 GeV jets, can quantitatively reproduce the experimental data. Finally, we further extract the suppression factor as a function of jetmore » energy and test our conjecture using available RpA data for various centralities.« less

  7. QCD parton model at collider energies

    SciTech Connect

    Ellis, R.K.

    1984-09-01

    Using the example of vector boson production, the application of the QCD improved parton model at collider energies is reviewed. The reliability of the extrapolation to SSC energies is assessed. Predictions at ..sqrt..S = 0.54 TeV are compared with data. 21 references.

  8. High-brightness injectors for hadron colliders

    SciTech Connect

    Wangler, T.P.

    1990-01-01

    The counterrotating beams in collider rings consist of trains of beam bunches with N{sub B} particles per bunch, spaced a distance S{sub B} apart. When the bunches collide, the interaction rate is determined by the luminosity, which is defined as the interaction rate per unit cross section. For head-on collisions between cylindrical Gaussian beams moving at speed {beta}c, the luminosity is given by L = N{sub B}{sup 2}{beta}c/4{pi}{sigma}{sup 2}S{sub B}, where {sigma} is the rms beam size projected onto a transverse plane (the two transverse planes are assumed identical) at the interaction point. This beam size depends on the rms emittance of the beam and the focusing strength, which is a measure of the 2-D phase-space area in each transverse plane, and is defined in terms of the second moments of the beam distribution. Our convention is to use the rms normalized emittance, without factors of 4 or 6 that are sometimes used. The quantity {tilde {beta}} is the Courant-Synder betatron amplitude function at the interaction point, a characteristic of the focusing lattice and {gamma} is the relativistic Lorentz factor. Achieving high luminosity at a given energy, and at practical values of {tilde {beta}} and S{sub B}, requires a large value for the ratio N{sub B}{sup 2}/{var epsilon}{sub n}, which implies high intensity and small emittance. Thus, specification of the luminosity sets the requirements for beam intensity and emittance, and establishes the requirements on the performance of the injector to the collider ring. In general, for fixed N{sub B}, the luminosity can be increased if {var epsilon}{sub n} can be reduced. The minimum emittance of the collider is limited by the performance of the injector; consequently the design of the injector is of great importance for the ultimate performance of the collider.

  9. Will there be energy frontier colliders after LHC?

    SciTech Connect

    Shiltsev, Vladimir

    2016-09-15

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics.

  10. Potential Remedies for the High Synchrotron-Radiation-Induced Heat Load for Future Highest-Energy-Proton Circular Colliders

    NASA Astrophysics Data System (ADS)

    Cimino, R.; Baglin, V.; Schäfers, F.

    2015-12-01

    We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic vacuum issues, etc. If experimentally fully validated, a highly reflecting beam screen surface will provide a viable and solid solution to be eligible as a baseline design in FCC-hh projects to come, rendering them more cost effective and sustainable.

  11. The 3-3-1 Model with RH Neutrinos and Associated ZH Production at High-Energy {textit{e}}+{textit{e}}- Collider

    NASA Astrophysics Data System (ADS)

    Liu, Yao-Bei; An, Ai-Qin; Han, Hong-Mei

    2011-05-01

    In the context of SU(3) C ⊗ SU(3) L ⊗ U(1) X (3-3-1) model with right-handed neutrinos, we study the Higgsstrahlung process e + e - → ZH and calculate the cross section of this process at leading order. Our numerical results showed that the production cross sections for this process can be significantly large as M_{Z'}≈ sqrt{s}. With reasonable values of the Z' mass M Z', Z' exchange can generate large corrections to the cross sections of this process, which might be detected in the future high-energy linear e + e - collider experiments.

  12. Drell-Yan production at collider energies

    SciTech Connect

    Neerven, W.L. Van

    1995-07-01

    We present some results of the Drell-Yan cross sections d{sigma}/dm and {sigma}{sub tot} which includes the O ({alpha}{sub s}{sup 2}) contribution to the coefficient function. In particular we study the total cross section {sigma}{sub tot} for vector boson production and d{sigma}/dm for low invariant masses m of the lepton pairs at large hadron collider energies. This study includes a detailed discussion of the dependence of the cross sections on the chosen scheme ({bar M}S versus DIS) and the factorization scale.

  13. An energy recovery electron linac-on-ring collider

    SciTech Connect

    Merminga, L.; Krafft, G.A.; Lebedev, V.A.; Ben-Zvi, I.

    2000-09-14

    We present the design of high-luminosity electron-proton/ion colliders in which the electrons are produced by an Energy Recovering Linac (ERL). Electron-proton/ion colliders with center of mass energies between 14 GeV and 100 GeV (protons) or 63 GeV/A (ions) and luminosities at the 10{sup 33}(per nucleon) level have been proposed recently as a means for studying hadronic structure. The linac-on-ring option presents significant advantages with respect to: (1) spin manipulations (2) reduction of the synchrotron radiation load in the detectors (3) a wide range of continuous energy variability. Rf power and beam dump considerations require that the electron linac recover the beam energy. Based on extrapolations from actual measurements and calculations, energy recovery is expected to be feasible at currents of a few hundred mA and multi-GeV energies. Luminosity projections for the linac-ring scenario based on fundamental limitations are presented. The feasibility of an energy recovery electron linac-on-proton ring collider is investigated and four conceptual point designs are shown corresponding to electron to proton energies of: 3 GeV on 15 GeV, 5 GeV on 50 GeV and 10 GeV on 250 GeV, and for gold ions with 100 GeV/A. The last two designs assume that the protons or ions are stored in the existing RHIC accelerator. Accelerator physics issues relevant to proton rings and energy recovery linacs are discussed and a list of required R and D for the realization of such a design is presented.

  14. Radiative return capabilities of a high-energy, high-luminositye+e-collider

    SciTech Connect

    Karliner, Marek; Low, Matthew; Rosner, Jonathan L.; Wang, Lian-Tao

    2015-08-14

    An electron-positron collider operating at a center-of-mass energy ECM can collect events at all lower energies through initial-state radiation (ISR or radiative return). We explore the capabilities for radiative return studies by a proposed high-luminosity collider at ECM = 250 or 90 GeV, to fill in gaps left by lower-energy colliders such as PEP, PETRA, TRISTAN, and LEP. These capabilities are compared with those of the lower-energy e+e- colliders as well as hadron colliders such as the Tevatron and the CERN Large Hadron Collider (LHC). Some examples of accessible questions in dark photon searches and heavy flavor spectroscopy are given.

  15. Circular lepton colliders as an option for a Higgs factory: The highest energy circular lepton collider

    NASA Astrophysics Data System (ADS)

    Zimmermann, Frank

    With a maximum centre-of-mass energy of 209 GeV, LEP2, in operation at CERN until 2001, has been the highest energy e+e-. collider so far. The discovery, in 2012 by two LHC experiments, of a Higgs-like boson at an energy reachable by a collider slightly more energetic than LEP2, together with the excellent performance achieved in the two B factories PEP-II and KEKB during the first decade of the 21st century, have led to new proposals for a next-generation circular e+e-. collider at the energy frontier [1-5]. In order to serve as a Higgs factory such a collider needs to be able to operate at least at a centre-of-mass energy of 240 GeV (for efficient e+e- → ZH production), i.e. 15% above the LEP2 peak energy. Reaching even higher energies, e.g. 350 GeV centre-of-mass (CM), for tbar t production or 500 GeV for ZHH and Ztbar t studies would be possible for a new ring of larger circumference...

  16. High pulse power rf sources for linear colliders

    SciTech Connect

    Wilson, P.B.

    1983-09-01

    RF sources with high peak power output and relatively short pulse lengths will be required for future high gradient e/sup +/e/sup -/ linear colliders. The required peak power and pulse length depend on the operating frequency, energy gradient and geometry of the collider linac structure. The frequency and gradient are in turn constrained by various parameters which depend on the beam-beam collision dynamics, and on the total ac wall-plug power that has been committed to the linac rf system. Various rf sources which might meet these requirements are reviewed. Existing source types (e.g., klystrons, gyrotrons) and sources which show future promise based on experimental prototypes are first considered. Finally, several proposals for high peak power rf sources based on unconventional concepts are discussed. These are an FEL source (two beam accelerator), rf energy storage cavities with switching, and a photocathode device which produces an rf current by direct emission modulation of the cathode.

  17. Report of the 1990 HEPAP (High Energy Physics Advisory Panel) subpanel on SSC (Superconducting Super Collider) physics

    SciTech Connect

    Not Available

    1990-01-01

    As requested, this report focuses on the physics research to be done at the SSC and provides advice on the range of useful machine parameters in order to complete the design phase of the facility. The Subpanel concludes that the SSC Laboratory, in its current proposal, has chosen wisely among the alternatives and that the project should move forward expeditiously. We feel strongly about the need for a flexible and reliable facility at 20 TeV beam energy for decades to come, and, therefore, we believe it would be very unwise to redesign the machine with a reduced circumference.

  18. Heavy Meson Production at a Low-Energy Photon Collider

    SciTech Connect

    Asztalos, S

    2004-04-15

    A low-energy {gamma}{gamma} collider has been discussed in the context of a testbed for a {gamma}{gamma} interaction region at the Next Linear Collider(NLC). We consider the production of heavy mesons at such a testbed using Compton-backscattered photons and demonstrate that their production rivals or exceeds those by BELLE, BABAR or LEP where they are produced indirectly via virtual {gamma}{gamma} luminosities.

  19. Centrality dependence of high energy jets in p+Pb collisions at energies available at the CERN Large Hadron Collider

    SciTech Connect

    Bzdak, Adam; Skokov, Vladimir; Bathe, Stefan

    2016-04-08

    We investigate the recently measured centrality dependence of high energy jets in proton-lead collisions at the LHC. Here, we hypothesize that events with jets of very high energy (a few hundred GeV) are characterized by a suppressed number of soft particles, thus shifting these events into more peripheral bins. This naturally results in the suppression (enhancement) of the nuclear modification factor, RpA, in central (peripheral) collisions. Our calculations suggest that a moderate suppression of the order of 20%, for 103 GeV jets, can quantitatively reproduce the experimental data. Finally, we further extract the suppression factor as a function of jet energy and test our conjecture using available RpA data for various centralities.

  20. High luminosity electron-hadron collider eRHIC

    SciTech Connect

    Ptitsyn, V.; Aschenauer, E.; Bai, M.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Blaskiewicz, M..; Calaga, R.; Chang, X.; Fedotov, A.; Gassner, D.; Hammons, L.; Hahn, H.; Hammons, L.; He, P.; Hao, Y.; Jackson, W.; Jain, A.; Johnson, E.C.; Kayran, D.; Kewisch, J.; Litvinenko, V.N.; Luo, Y.; Mahler, G.; McIntyre, G.; Meng, W.; Minty, M.; Parker, B.; Pikin, A.; Rao, T.; Roser, T.; Skaritka, J.; Sheehy, B.; Skaritka, J.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Wu, Q.; Xu, W.; Pozdeyev, E.; Tsentalovich, E.

    2011-03-28

    We present the design of a future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 10{sup 34} cm{sup -2} s{sup -1} can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling, ERL test facility and the compact magnets for recirculation passes. A natural staging scenario of step-by-step increases of the electron beam energy by building-up of eRHIC's SRF linacs is presented.

  1. RF System Requirements for a Medium-Energy Electron-Ion Collider (MEIC) at JLab

    SciTech Connect

    Rimmer, Robert A; Hannon, Fay E; Guo, Jiquan; Huang, Shichun; Huang, Yulu; Wang, Haipeng; Wang, S

    2015-09-01

    JLab is studying options for a medium energy electron-ion collider that could fit on the JLab site and use CEBAF as a full-energy electron injector. A new ion source, linac and booster would be required, together with collider storage rings for the ions and electrons. In order to achieve the maximum luminosity these will be high-current storage rings with many bunches. We present the high-level RF system requirements for the storage rings, ion booster ring and high-energy ion beam cooling system, and describe the technology options under consideration to meet them. We also present options for staging that might reduce the initial capital cost while providing a smooth upgrade path to a higher final energy. The technologies under consideration may also be useful for other proposed storage ring colliders or ultimate light sources.

  2. High luminosity {mu}{sup +} {mu}{sup {minus}} collider: Report of a feasibility study

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.; Tollestrup, A.; Sessler, A.

    1996-12-01

    Parameters are given of 4 TeV and 0.5 TeV (c-of-m) high luminosity {mu}{sup +}{mu}{sup -} colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Detector background, polarization, and nonstandard operating conditions are analyzed. Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. We briefly mention the luminosity requirements of hadrons and lepton machines and their high-energy-physics advantages and disadvantages in reference to their effective center of mass energy. Finally, we present an R & D plan to determine whether such machines are practical.

  3. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    SciTech Connect

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B; Zhang, Y

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  4. Prospects for very-high-gradient linac-colliders

    SciTech Connect

    Wilson, P.B.

    1981-02-01

    The energy realistically attainable by an electron-positron storage ring is limited by the RF voltage and power requirements imposed by synchrotron radiation to about 100 GeV. To reach energies of 300 x 300 GeV and higher in a colliding beam machine of reasonable dimensions, we must look to the linac-collider operating at an energy gradient on the order of 100 MV/m. Proper choice of an RF structure or such a collider can minimize the total RF power requirement and the effects of longitudinal and transverse single-bunch beam loading. For an operating frequency in the range 4 to 6 GHz, the total RF power requirement for a 300 x 300 GeV collider with a luminosity of 10/sup 32/ cm/sup -2/s/sup -1/ accelerating 10/sup 11/ particles per bunch is on the order of 50 MW. To drive this collider, RF power sources are needed having a peak output power in the range 1-2 GW. Possibilities for attaining these peak power levels by direct generation and by energy storage and fast switching are discussed.

  5. High-yield positron systems for linear colliders

    SciTech Connect

    Clendenin, J.E.

    1989-04-01

    Linear colliders, such as the SLC, are among those accelerators for which a high-yield positron source operating at the repetition rate of the accelerator is desired. The SLC, having electron energies up to 50 GeV, presents the possibility of generating positron bunches with useful charge even exceeding that of the initial electron bunch. The exact positron yield to be obtained depends on the particular capture, transport and damping system employed. Using 31 GeV electrons impinging on a W-type converter phase-space at the target to the acceptance of the capture rf section, the SLC source is capable of producing, for every electron, up to two positrons within the acceptance of the positron damping ring. The design of this source and the performance of the positron system as built are described. Also, future prospects and limitations for high-yield positron systems are discussed. 11 refs., 5 figs., 3 tabs.

  6. Production of high intensity electron bunches for the SLAC Linear Collider

    SciTech Connect

    James, M.B.

    1987-08-01

    This thesis describes the design and performance of a high intensity electron injecfor for the SLAC Linear Collider. Motivation for the collider and the specifications for the injector are discussed. An analytic theory of the bunching and capture of electrons by rf fields is discussed in the limit of low space charge and small signal. The design and performance of SLAC's main injector are described to illustrate a successful application of this theory. The bunching and capture of electrons by rf fields are then discussed in the limit of high space charge and large signal, and a description of the design of the collider injector follows. In the limit of high space charge forces and large rf signals, the beam dynamics are considerably more complex and numerical simulations are required to predict particle motion. A computer code which models the longitudinal dynamics of electrons in the presence of space charge and rf fields is described. The results of the simulations, the resulting collider injector design and the various components which make up the collider injector are described. These include the gun, subharmonic bunchers, traveling-wave buncher and velocity-of-light accelerator section. Finally, the performance of the injector is described including the beam intensity, bunch length, transverse emittance and energy spectrum. While the final operating conditions differ somewaht from the design, the performance of the collider injector is in good agreement with the numerical simulations and meets all of the collider specifications. 28 refs.

  7. An Energy Recovery Electron Linac On Ring Collider

    SciTech Connect

    Nikolitsa Merminga; Geoffrey Krafft; Valeri Lebedev; Ilan Ben-Zvi

    2001-09-01

    Electron-proton/ion colliders with center of mass energies between 14 GeV and 100 GeV (protons) or 63 GeV/A (ions) and luminosities at the 10{sup 33} (per nucleon) level have been proposed recently as a means for studying hadronic structure. Electron beam polarization appears to be crucial for many of the experiments. Two accelerator design scenarios have been examined in detail: colliding rings and recirculating linac-on-ring. Although the linac-on-ring scenario is not as well developed as the ring-ring scenario, comparable luminosities appear feasible. The linac-on-ring option presents significant advantages with respect to: (1) spin manipulations; (2) reduction of the synchrotron radiation load in the detectors; (3) a wide range of continuous energy variability. Rf power and beam dump considerations require that the electron linac recover the beam energy. This technology has been demonstrated at Jefferson Lab's IR FEL with cw current up to 5 mA and beam energy up to 50 MeV. Based on extrapolations from actual measurements and calculations, energy recovery is expected to be feasible at higher currents (a few hundred mA) and higher energies (a few GeV) as well. The report begins with a brief overview of Jefferson Lab's experience with energy recovery and summarize its benefits. Luminosity projections for the linac-ring scenario based on fundamental limitations are presented next. The feasibility of an energy recovery electron linac-on-proton ring collider is investigated and four conceptual point designs are shown corresponding to electron to proton energies of: 3 GeV on 15 GeV, 5 GeV on 50 GeV and 10 GeV on 250 GeV, and for gold ions with 100 GeV/A. The last two designs assume that the protons or ions are stored in the existing RHIC accelerator. Accelerator physics issues relevant to proton rings and energy recovery linacs are discussed next and a list of required R and D for the realization of such a design is presented.

  8. Free Electron Laser for Gamma-Gamma Collider at a Low-Energy Option of International Linear Collider

    SciTech Connect

    Saldin, Evgeny; Schneidmiller, Evgeny; Yurkov, Mikhail; Seryi, Andrei; /SLAC

    2009-10-30

    Different scenarios of a start-up with International Linear Collider (ILC) are under discussion at the moment in the framework of the Global Design Effort (GDE). One of them assumes construction of the ILC in stages from some minimum CM energy up to final target of 500 GeV CM energy. Gamma-gamma collider with CM energy of 180GeV is considered as a candidate for the first stage of the facility. In this report we present conceptual design of a free electron laser as a source of primary photons for the first stage of ILC.

  9. Ion colliders

    SciTech Connect

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  10. Department of Energy assessment of the Large Hadron Collider

    SciTech Connect

    1996-06-01

    This report summarizes the conclusions of the committee that assessed the cost estimate for the Large Hadron Collider (LHC). This proton-proton collider will be built at CERN, the European Laboratory for Particle Physics near Geneva, Switzerland. The committee found the accelerator-project cost estimate of 2.3 billion in 1995 Swiss francs, or about $2 billion US, to be adequate and reasonable. The planned project completion date of 2005 also appears achievable, assuming the resources are available when needed. The cost estimate was made using established European accounting procedures. In particular, the cost estimate does not include R and D, prototyping and testing, spare parts, and most of the engineering labor. Also excluded are costs for decommissioning the Large Electron-Positron collider (LEP) that now occupies the tunnel, modifications to the injector system, the experimental areas, preoperations costs, and CERN manpower. All these items are assumed by CERN to be included in the normal annual operations budget rather than the construction budget. Finally, contingency is built into the base estimate, in contrast to Department of Energy (DOE) estimates that explicitly identify contingency. The committee`s charge, given by Dr. James F. Decker, Deputy Directory of the DOE Office of Energy Research, was to understand the basis for the LHC cost estimate, identify uncertainties, and judge the overall validity of the estimate, proposed schedule, and related issues. The committee met at CERN April 22--26, 1996. The assessment was based on the October 1995 LHC Conceptual Design Report or ``Yellow Book,`` cost estimates and formal presentations made by the CERN staff, site inspection, detailed discussions with LHC technical experts, and the committee members` considerable experience.

  11. Experimental validation of a novel compact focusing scheme for future energy-frontier linear lepton colliders.

    PubMed

    White, G R; Ainsworth, R; Akagi, T; Alabau-Gonzalvo, J; Angal-Kalinin, D; Araki, S; Aryshev, A; Bai, S; Bambade, P; Bett, D R; Blair, G; Blanch, C; Blanco, O; Blaskovic-Kraljevic, N; Bolzon, B; Boogert, S; Burrows, P N; Christian, G; Corner, L; Davis, M R; Faus-Golfe, A; Fukuda, M; Gao, J; García-Morales, H; Geffroy, N; Hayano, H; Heo, A Y; Hildreth, M; Honda, Y; Huang, J Y; Hwang, W H; Iwashita, Y; Jang, S; Jeremie, A; Kamiya, Y; Karataev, P; Kim, E S; Kim, H S; Kim, S H; Kim, Y I; Komamiya, S; Kubo, K; Kume, T; Kuroda, S; Lam, B; Lekomtsev, K; Liu, S; Lyapin, A; Marin, E; Masuzawa, M; McCormick, D; Naito, T; Nelson, J; Nevay, L J; Okugi, T; Omori, T; Oroku, M; Park, H; Park, Y J; Perry, C; Pfingstner, J; Phinney, N; Rawankar, A; Renier, Y; Resta-López, J; Ross, M; Sanuki, T; Schulte, D; Seryi, A; Shevelev, M; Shimizu, H; Snuverink, J; Spencer, C; Suehara, T; Sugahara, R; Takahashi, T; Tanaka, R; Tauchi, T; Terunuma, N; Tomás, R; Urakawa, J; Wang, D; Warden, M; Wendt, M; Wolski, A; Woodley, M; Yamaguchi, Y; Yamanaka, T; Yan, J; Yokoya, K; Zimmermann, F

    2014-01-24

    A novel scheme for the focusing of high-energy leptons in future linear colliders was proposed in 2001 [P. Raimondi and A. Seryi, Phys. Rev. Lett. 86, 3779 (2001)]. This scheme has many advantageous properties over previously studied focusing schemes, including being significantly shorter for a given energy and having a significantly better energy bandwidth. Experimental results from the ATF2 accelerator at KEK are presented that validate the operating principle of such a scheme by demonstrating the demagnification of a 1.3 GeV electron beam down to below 65 nm in height using an energy-scaled version of the compact focusing optics designed for the ILC collider.

  12. High Resolution BPM for Linear Colliders

    SciTech Connect

    Simon, C.; Chel, S.; Luong, M.; Napoly, O.; Novo, J.; Roudier, D.; Rouviere, N.

    2006-11-20

    A high resolution Beam Position Monitor (BPM) is necessary for the beam-based alignment systems of high energy and low emittance electron linacs. Such a monitor is developed in the framework of the European CARE/SRF programme, in a close collaboration between DESY and CEA/DSM/DAPNIA. This monitor is a radiofrequency re-entrant cavity, which can be used either at room or cryogenic temperature, in an environment where dust particle contamination has to be avoided, such as superconducting cavities in a cryomodule. A first prototype of a re-entrant BPM has already delivered measurements at 2K. inside the first cryomodule (ACC1) on the TESLA Test Facility 2 (TTF2). The performances of this BPM are analyzed both experimentally and theoretically, and the limitations of this existing system clearly identified. A new cavity and new electronics have been designed in order to improve the position resolution down to 1 {mu}m and the damping time down to 10 ns.

  13. Future colliders

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1996-10-01

    The high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, pp), of lepton (e{sup +}e{sup {minus}}, {mu}{sup +} {mu}{sup {minus}}) and photon-photon colliders are considered. Technical arguments for increased energy in each type of machine are presented. Their relative size, and the implications of size on cost are discussed.

  14. Introductory Lectures on Collider Physics

    NASA Astrophysics Data System (ADS)

    Tait, Tim M. P.; Wang, Lian-Tao

    2013-12-01

    These are elementary lectures about collider physics. They are aimed at graduate students who have some background in computing Feynman diagrams and the Standard Model, but assume no particular sophistication with the physics of high energy colliders.

  15. Prospects at high energies

    SciTech Connect

    Quigg, C.

    1988-11-01

    I discuss some possibilities for neutrino experiments in the fixed-target environment of the SPS, Tevatron, and UNK, with their primary proton beams of 0.4, 0.9, and 3.0 TeV. The emphasis is on unfinished business: issues that have been recognized for some time, but not yet resolved. Then I turn to prospects for proton-proton colliders to explore the 1-TeV scale. I review the motivation for new physics in the neighborhood of 1 TeV and mention some discovery possibilities for high-energy, high-luminosity hadron colliders and the implications they would have for neutrino physics. I raise the possibility of the direct study of neutrino interactions in hadron colliders. I close with a report on the status of the SSC project. 38 refs., 17 figs.

  16. High speed data transmission at the Superconducting Super Collider

    SciTech Connect

    Leskovar, B. )

    1991-04-01

    In this paper high speed data transmission using fiber optics in the data acquisition system of the Superconducting Super Collider has been investigated. Emphasis is placed on the high speed data transmission system overview, the local data network and on subassemblies, such as optical transmitters and receivers. Also, the performance of candidate subassemblies having a low power dissipation for the data acquisition system is discussed.

  17. Physics with linear colliders in the TeV CM energy region

    SciTech Connect

    Bulos, F.; Cook, V.; Hinchliffe, I.; Lane, K.; Pellet, D.; Perl, M.; Seiden, A.; Wiedemann, H.

    1982-07-01

    From a technical point of view a linear collider of high energy and luminosity cannot be operated economically at the present date. A series of R and D efforts in different areas are required to produce the necessary technology for an economically feasible linear collider. No fundamental limits, however, have been found as yet that would prevent us from reaching the goals outlined in this report. Most of the critical component will be tested in a real like situation once the SLC comes into operation. Beyond that much R and D is required in rf-power sources to reduce the power consumption and in high gradient accelerating structures to minimize the required real estate and linear construction costs.

  18. The development of colliders

    SciTech Connect

    Sessler, A.M.

    1997-03-01

    During the period of the 50`s and the 60`s colliders were developed. Prior to that time there were no colliders, and by 1965 a number of small devices had worked, good understanding had been achieved, and one could speculate, as Gersh Budker did, that in a few years 20% of high energy physics would come from colliders. His estimate was an under-estimate, for now essentially all of high energy physics comes from colliders. The author presents a brief review of that history: sketching the development of the concepts, the experiments, and the technological advances which made it all possible.

  19. Progress on the design of the polarized Medium-energy Electron Ion Collider at JLAB

    SciTech Connect

    Lin, F.; Bogacz, A.; Brindza, P.; Camsonne, A.; Daly, E.; Derbenev, Ya. S.; Douglas, D.; Ent, R.; Gaskell, D.; Geng, R.; Grames, J.; Guo, J.; Harwood, L.; Hutton, A.; Jordan, K.; Kimber, A.; Krafft, G.; Li, R.; Michalski, T.; Morozov, V. S.; Nadel-Turonski, P.; /Jefferson Lab /Argonne /DESY /Moscow , Inst. Phys. Tech., Dolgoprydny /Dubna, JINR /Northern Illinois U. /Old Doominion U. /Novosibirsk, GOO Zaryad /SLAC /Texas A-M

    2015-07-14

    The Medium-energy Electron Ion Collider (MEIC) at JLab is designed to provide high luminosity and high polarization needed to reach new frontiers in the exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. A fully consistent set of parameters have been developed considering the balance of machine performance, required technical development and cost. This paper reports recent progress on the MEIC accelerator design including electron and ion complexes, integrated interaction region design, figure-8-ring-based electron and ion polarization schemes, RF/SRF systems and ERL-based high-energy electron cooling. Luminosity performance is also presented for the MEIC baseline design.

  20. 100 kW CW highly-efficient multi-beam klystron for a future electron-ion collider

    NASA Astrophysics Data System (ADS)

    Teryaev, Vladimir E.; Shchelkunov, Sergey V.; Jiang, Yong; Hirshfield, Jay L.

    2017-03-01

    Initial results are presented for the development of a CW highly-efficient RF source needed for operation of a future electron-ion collider. The design of this compact multi-beam klystron yields high efficiency (above 70%) for the power output of 125 kW at 952.6 MHz. The klystron is to work for the RF systems for ion acceleration in the polarized Medium-energy Electron Ion Collider as being developed at Thomas Jefferson National Accelerator Facility.

  1. Future of high energy physics

    SciTech Connect

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e/sup -/ colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place.

  2. Highly Polarized Ion Sources for Electron Ion Colliders (EIC)

    SciTech Connect

    V.G. Dudnikov, R.P. Johnson, Y.S. Derbenev, Y. Zhang

    2010-03-01

    The operation of the RHIC facility at BNL and the Electron Ion Colliders (EIC) under development at Jefferson Laboratory and BNL need high brightness ion beams with the highest polarization. Charge exchange injection into a storage ring or synchrotron and Siberian snakes have the potential to handle the needed polarized beam currents, but first the ion sources must create beams with the highest possible polarization to maximize collider productivity, which is proportional to a high power of the polarization. We are developing one universal H-/D- ion source design which will synthesize the most advanced developments in the field of polarized ion sources to provide high current, high brightness, ion beams with greater than 90% polarization, good lifetime, high reliability, and good power efficiency. The new source will be an advanced version of an atomic beam polarized ion source (ABPIS) with resonant charge exchange ionization by negative ions. An integrated ABPIS design will be prepared based on new materials and an optimized magnetic focusing system. Polarized atomic and ion beam formation, extraction, and transport for the new source will be computer simulated.

  3. Determination of the jet energy scale at the collider detector at Fermilab

    SciTech Connect

    Bhatti, A.; Canelli, Florencia; Heinemann, B.; Adelman, J.; Ambrose, D.; Arguin, J.-F.; Barbaro-Galtieri, A.; Budd, H.; Chung, Y.S.; Chung, K.; Cooper, B.; Currat, C.; D'Onofrio, M.; Dorigo, T.; Erbacher, R.; Field, R.; Flanagan, G.; Gibson, A.; Hatakeyama, K.; Happacher, F.; Hoffman, D.; /Argonne /UCLA /Carnegie Mellon U. /Chicago U., EFI /Fermilab /Florida U. /Frascati /Geneva U. /LBL, Berkeley /Liverpool U. /University Coll. London /Michigan State U. /Toronto U. /Padua U. /INFN, Padua /Pavia U. /INFN, Pavia /Pennsylvania U. /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore

    2005-10-01

    A precise determination of the energy scale of jets at the Collider Detector at Fermilab at the Tevatron p{bar p} collider is described. Jets are used in many analyses to estimate the energies of partons resulting from the underlying physics process. Several correction factors are developed to estimate the original parton energy from the observed jet energy in the calorimeter. The jet energy response is compared between data and Monte Carlo simulation for various physics processes, and systematic uncertainties on the jet energy scale are determined. For jets with transverse momenta above 50 GeV the jet energy scale is determined with a 3% systematic uncertainty.

  4. Higher order QED in high-mass e{sup +}e{sup -} pair production at energies available at the BNL Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect

    Baltz, Anthony J.; Nystrand, Joakim

    2010-08-15

    Lowest order and higher order QED calculations have been carried out for the RHIC high mass e{sup +}e{sup -} pairs observed by PHENIX with single zero-degree-calorimeter triggers. The lowest order QED results for the experimental acceptance are about two standard deviations larger than the PHENIX data. Corresponding higher order QED calculations are within one standard deviation of the data.

  5. Exotic colliders

    SciTech Connect

    Chattopadhyay, S.

    1994-11-01

    The motivation, feasibility and potential for two unconventional collider concepts - the Gamma-Gamma Collider and the Muon Collider - are described. The importance of the development of associated technologies such as high average power, high repetition rate lasers and ultrafast phase-space techniques are outlined.

  6. Color fluctuations in pA collisions at collider energies

    NASA Astrophysics Data System (ADS)

    Strikman, Mark

    2015-04-01

    In pA collisions at collider energies a projectile stays in a frozen configuration over the distances which by far exceed the nuclear diameter. As a result proton coherently interacts with nucleons along its impact parameter. In QCD nucleon is build of configurations of different transverse size which are expected to interact with different strength leading to the fluctuations of the global strength of the projectile interaction. Also, configurations of smaller size are expected to have a reduced gluon field leading to a correlation of soft and hard interactions. The shape of the distribution over the strength of interaction is strongly constrained by the diffractive pp data, behavior of the distribution for σ --> 0 expected in pQCD, etc. We developed a Monte Carlo procedure for taking into account these effects in soft collisions and collisions with a hard trigger taking into account difference of the transverse scales of hard and soft interactions. We predicted that distribution over the number of wounded nucleons should be broader than in the Glauber model in agreement with the recent LHC data. We argue that a strong violation of the Glauber approximation in the dependence of the rate of forward jet production on centrality observed in pA collisions at the LHC provides the first experimental evidence that parton configurations in the projectile proton containing a parton with large xp interact with a nuclei with a significantly smaller than average cross section and have smaller than average size. Implementing effects of the interaction strength fluctuations and using the ATLAS analysis of the dependence of the hadron production at backward rapidities on the number of wounded nucleons, we make quantitative predictions for the centrality dependence of the jet production rate as a function of the interaction strength σ(xp) . We find σ(xp = 0.6) ~σtot(pp)/2 which sheds light on the origin of the EMC effect. Future pA dijet studies along these lines would allow

  7. LEIC - A Polarized Low Energy Electron-ion Collider at Jefferson Lab

    SciTech Connect

    Derbenev, Yaroslav S.; Hutton, Andrew M.; Krafft, Geoffrey A.; Li, Rui; Lin, Fanglei; Morozov, Vasiliy; Nissen, Edward W.; Yunn, Byung C.; Zhang, He; Sullivan, Michael K.; Zhang, Yuhong

    2013-06-01

    A polarized electron-ion collider is envisioned as the future nuclear science program at JLab beyond the 12 GeV CEBAF. Presently, a medium energy collider (MEIC) is set as an immediate goal with options for a future energy upgrade. A comprehensive design report for MEIC has been released recently. The MEIC facility could also accommodate electron and proton/ion collisions in a low CM energy range, covering proton energies from 10 to 25 GeV and ion energies with a similar magnetic rigidity, for additional science reach. In this paper, we present a conceptual design of this low energy collider, LEIC, showing its luminosity can reach above 10{sup 33} cm{sup -2}s{sup -1}. The design specifies that the large booster of the MEIC is converted to a low energy ion collider ring with an interaction region and an electron cooler integrated into it. The design provides options for either sharing the detector with the MEIC or a dedicated low energy detector in a third collision point, with advantages of either a minimum cost or extra detection parallel to the MEIC operation, respectively. The LEIC could be positioned as the first and low cost phase of a multi-stage approach to realize the full MEIC.

  8. Probing dark forces and light hidden sectors at low-energy e+e- colliders

    NASA Astrophysics Data System (ADS)

    Essig, Rouven; Schuster, Philip; Toro, Natalia

    2009-07-01

    A dark sector—a new non-Abelian gauge group Higgsed or confined near the GeV scale—can be spectacularly probed in low-energy e+e- collisions. A low-mass dark sector can explain the annual modulation signal reported by DAMA/LIBRA and the PAMELA, ATIC, and INTEGRAL observations by generating small mass splittings and new interactions for weak-scale dark matter. Some of these observations may be the first signs of a low-mass dark sector that collider searches can definitively confirm. Production and decay of O(GeV)-mass dark states is mediated by a Higgsed Abelian gauge boson that mixes kinetically with hypercharge. Existing data from BABAR, BELLE, CLEO-c, and KLOE may contain thousands of striking dark-sector events with a high multiplicity of leptons that reconstruct mass resonances and possibly displaced vertices. We discuss the production and decay phenomenology of Higgsed and confined dark sectors and propose e+e- collider search strategies. We also use the DAMA/LIBRA signal to estimate the production cross sections and decay lifetimes for dark-sector states.

  9. Overview of a high luminosity {mu}{sup +}{mu}{sup {minus}} collider

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1997-03-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should be regarded as complementary. Parameters are given of a 4 TeV high luminosity {mu}{sup +}{mu}{sup {minus}} collider, and of a 0.5 TeV lower luminosity demonstration machine. The authors discuss the various systems in such muon colliders.

  10. Towards future circular colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Zimmermann, Frank

    2016-09-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

  11. THE ELECTRON ION COLLIDER. A HIGH LUMINOSITY PROBE OF THE PARTONIC SUBSTRUCTURE OF NUCLEONS AND NUCLEI.

    SciTech Connect

    EDITED BY M.S. DAVIS

    2002-02-01

    By the end of this decade, the advancement of current and planned research into the fundamental structure of matter will require a new facility, the Electron Ion Collider (EIC). The EIC will collide high-energy beams of polarized electrons from polarized protons and neutrons, and unpolarized beams of electrons off atomic nuclei with unprecedented intensity. Research at the EIC will lead to a detailed understanding of the structure of the proton, neutron, and atomic nuclei as described by Quantum Chromo-Dynamics (QCD), the accepted theory of the strong interaction. The EIC will establish quantitative answers to important questions by delivering dramatically increased precision over existing and planned experiments and by providing completely new experimental capabilities. Indeed, the EIC will probe QCD in a manner not possible previously. This document presents the scientific case for the design, construction and operation of the EIC. While realization of the EIC requires a significant advance in the development of efficient means of producing powerful beams of energetic electrons, an important consideration for choosing the site of the EIC is the planned upgrade to the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The upgrade planned for RHIC will fully meet the requirements for the ion beam for the EIC, providing a distinct advantage in terms of cost, schedule and the final operation.

  12. High Reliability Prototype Quadrupole for the Next Linear Collider

    SciTech Connect

    Spencer, Cherrill M

    2001-01-04

    The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85% overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20% and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths.

  13. High Reliability Prototype Quadrupole for the Next Linear Collider

    NASA Astrophysics Data System (ADS)

    Spencer, C. M.

    2001-01-01

    The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85/ overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20/ and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20/ adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths.

  14. Linear collider: a preview

    SciTech Connect

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

  15. Shedding Light on Dark Matter at Colliders

    NASA Astrophysics Data System (ADS)

    Mitsou, Vasiliki A.

    2013-12-01

    Dark matter remains one of the most puzzling mysteries in Fundamental Physics of our times. Experiments at high-energy physics colliders are expected to shed light to its nature and determine its properties. This review focuses on recent searches for dark matter signatures at the Large Hadron Collider, also discussing related prospects in future e+e- colliders.

  16. Muon colliders and neutrino factories

    SciTech Connect

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  17. Muon Colliders and Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  18. Design of the Proposed Low Energy Ion Collider Ring at Jefferson Lab

    SciTech Connect

    Nissen, Edward W.; Lin, Fanglei; Morozov, Vasiliy; Zhang, Yuhong

    2013-06-01

    The polarized Medium energy Electron-Ion Collider (MEIC) envisioned at Jefferson Lab will cover a range of center-of-mass energies up to 65 GeV. The present MEIC design could also allow the accommodation of low energy electron-ion collisions (LEIC) for additional science reach. This paper presents the first design of the low energy ion collider ring which is converted from the large ion booster of MEIC. It can reach up to 25 GeV energy for protons and equivalent ion energies of the same magnetic rigidity. An interaction region and an electron cooler designed for MEIC are integrated into the low energy collider ring, in addition to other required new elements including crab cavities and ion spin rotators, for later reuse in MEIC itself. A pair of vertical chicanes which brings the low energy ion beams to the plane of the electron ring and back to the low energy ion ring are also part of the design.

  19. Computing and data handling requirements for SSC (Superconducting Super Collider) and LHC (Large Hadron Collider) experiments

    SciTech Connect

    Lankford, A.J.

    1990-05-01

    A number of issues for computing and data handling in the online in environment at future high-luminosity, high-energy colliders, such as the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC), are outlined. Requirements for trigger processing, data acquisition, and online processing are discussed. Some aspects of possible solutions are sketched. 6 refs., 3 figs.

  20. Muon colliders

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.; Sessler, A.; Skrinsky, A.; Tollestrup, A.; Baltz, A. J.; Chen, P.; Cheng, W.-H.; Cho, Y.; Courant, E.; Fernow, R. C.; Gallardo, J. C.; Garren, A.; Green, M.; Kahn, S.; Kirk, H.; Lee, Y. Y.; Mills, F.; Mokhov, N.; Morgan, G.; Neuffer, D.; Noble, R.; Norem, J.; Popovic, M.; Schachinger, L.; Silvestrov, G.; Summers, D.; Stumer, I.; Syphers, M.; Torun, Y.; Trbojevic, D.; Turner, W.; Van Ginneken, A.; Vsevolozhskaya, T.; Weggel, R.; Willen, E.; Winn, D.; Wurtele, J.

    1996-05-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity μ+μ- colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  1. Muon colliders

    SciTech Connect

    Palmer, R.B. |; Sessler, A.; Skrinsky, A.

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity {micro}{sup +}{micro}{sup {minus}}colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  2. Analysis of colliding nuclear matter in terms of symmetry energy and cross-section using computational method

    SciTech Connect

    Sharma, Arun Bharti, Arun; Gautam, Sakshi

    2015-08-28

    Here we perform a systematic study to extract the information for colliding nuclear matter via symmetry energy and nucleon-nucleon cross section in the fragmentation of some asymmetric colliding nuclei (O{sup 16}+Br{sup 80,} {sup 84,} {sup 92}) in the energy range between 50-200 MeV/nucleon. The simulations are carried out using isospin-dependent quantum-molecular dynamics (IQMD) computational approach for central collisions. Our study reveals that fragmentation pattern of neutron-rich colliding nuclei is sensitive to symmetry energy at lower incident energies, whereas isospin dependence of nucleon-nucleon cross section becomes dominant for reactions at higher incident energies.

  3. Strain energy minimization in SSC (Superconducting Super Collider) magnet winding

    SciTech Connect

    Cook, J.M.

    1990-09-24

    Differential geometry provides a natural family of coordinate systems, the Frenet frame, in which to specify the geometric properties of magnet winding. By a modification of the Euler-Bernoulli thin rod model, the strain energy is defined with respect to this frame. Then it is minimized by a direct method from the calculus of variations. The mathematics, its implementation in a computer program, and some analysis of an SSC dipole by the program will be described. 16 refs.

  4. Mid-IR lasers for energy frontier plasma accelerators and colliders

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.; Babzien, M.; Polyanskiy, M. N.; Kimura, W. D.

    2017-03-01

    Plasma wakefield accelerators driven by solid-state, near-IR lasers have been considered as an alternative to conventional RF accelerators for next-generation TeV-class lepton colliders. Here, we extend this study to the mid-IR spectral domain covered by CO2 lasers. We show that the increase in the laser driver wavelength favors the regime of electron acceleration at a low plasma density and high bunch charge. The revealed benefits from spectral diversification of laser drivers for future colliders and offspring applications validate our reported ongoing efforts in advancing the enabling CO2 laser technology.

  5. A high energy physics perspective

    SciTech Connect

    Marciano, W.J.

    1997-01-13

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional {open_quotes}Hidden Symmetries {close_quotes} are discussed. Experimental approaches to uncover {open_quotes}New Physics{close_quotes} associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given.

  6. Photon collider at TESLA

    NASA Astrophysics Data System (ADS)

    Telnov, Valery

    2001-10-01

    High energy photon colliders ( γγ, γe) based on backward Compton scattering of laser light is a very natural addition to e +e - linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the γγ luminosity in the high energy part of spectrum can reach about (1/3) Le +e -. Typical cross-sections of interesting processes in γγ collisions are higher than those in e +e - collisions by about one order of magnitude, so the number of events in γγ collisions will be more than that in e +e - collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is "an optical storage ring (optical trap)" with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems.

  7. Exploring the Standard Model with the High Luminosity, Polarized Electron-Ion Collider

    SciTech Connect

    Milner, Richard G.

    2009-08-04

    The Standard Model is only a few decades old and has been successfully confirmed by experiment, particularly at the high energy frontier. This will continue with renewed vigor at the LHC. However, many important elements of the Standard Model remain poorly understood. In particular, the exploration of the strong interaction theory Quantum Chromodynamics is in its infancy. How does the spin-1/2 of the proton arise from the fundamental quark and gluon constituents? Can we understand the new QCD world of virtual quarks and gluons in the nucleon? Using precision measurements can we test the limits of the Standard Model and look for new physics? To address these and other important questions, physicists have developed a concept for a new type of accelerator, namely a high luminosity, polarized electron-ion collider. Here the scientific motivation is summarized and the accelerator concepts are outlined.

  8. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    NASA Astrophysics Data System (ADS)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  9. Nuclear physics with a medium-energy Electron-Ion Collider

    SciTech Connect

    A. Accardi, V. Guzey, A. Prokudin, C. Weiss

    2012-06-01

    A polarized ep/eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy {radical}s {approx} 20-70 GeV and a luminosity {approx}10{sup 34} cm{sup -2} s{sup -1} would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: (i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); (ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); (iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12 GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.

  10. Nuclear physics with a medium-energy Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Accardi, A.; Guzey, V.; Prokudin, A.; Weiss, C.

    2012-06-01

    A polarized ep/ eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy √ s ˜ 20-70 GeV and luminosity ˜1034 cm-2 s-1 would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.

  11. Recent Progress on Design Studies of High-Luminosity Ring-Ring Electron-Ion Collider at CEBAF

    SciTech Connect

    Zhang, Y; Bruell, A; Chevtsov, P; Derbenev, Y S; Ent, R; Krafft, G A; Li, R; Merminga, L; Yunn, B C

    2009-05-01

    The conceptual design of a ring-ring electron-ion collider based on CEBAF has been continuously optimized to cover a wide center-of-mass energy region and to achieve high luminosity and polarization to support next generation nuclear science programs. Here, we summarize the recent design improvements and R&D progress on interaction region optics with chromatic aberration compensation, matching and tracking of electron polarization in the Figure-8 ring, beam-beam simulations and ion beam cooling studies.

  12. Strange quark suppression and strange hadron production in pp collisions at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    SciTech Connect

    Long Haiyan; Feng Shengqin; Zhou Daimei; Yan Yuliang; Ma Hailiang; Sa Benhao

    2011-09-15

    The parton and hadron cascade model PACIAE based on PYTHIA is utilized to systematically investigate strange particle production in pp collisions at energies available at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC). Globally speaking, the PACIAE results of the strange particle rapidity density at midrapidity and the transverse momentum distribution are better than those of PYTHIA (default) in comparison with STAR and ALICE experimental data. This may represent the importance of the parton and hadron rescatterings, as well as the reduction mechanism of strange quark suppression, added in the PACIAE model. The K/{pi} ratios as a function of reaction energy in pp collisions from CERN Super Proton Synchrotron (SPS) to LHC energies are also analyzed in this paper.

  13. Chiral electric field in relativistic heavy-ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Zhong, Yang; Yang, Chun-Bin; Cai, Xu; Feng, Sheng-Qin

    2016-08-01

    It has been proposed that electric fields may lead to chiral separation in quark-gluon plasma (QGP). This is called the chiral electric separation effect. The strong electromagnetic field and the QCD vacuum can both be completely produced in off-central nuclear-nuclear collision. We use the Woods-Saxon nucleon distribution to calculate the electric field distributions of off-central collisions. The chiral electric field spatial distribution at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) energy regions are systematically studied in this paper. The dependence of the electric field produced by the thermal quark in the central position with different impact parameters on the proper time with different collision energies in the RHIC and LHC energy regions are studied in this paper. Supported by National Natural Science Foundation of China (11375069, 11435054, 11075061, 11221504) and Key Laboratory Foundation of Quark and Lepton Physics (Hua-Zhong Normal University)(QLPL2014P01)

  14. Update on the high-current injector for the Stanford Linear collider

    SciTech Connect

    James, M.B.; Clendenin, J.E.; Ecklund, S.D.; Miller, R.H.; Sheppard, J.C.; Sinclair, C.K.; Sodja, J.

    1983-03-01

    The high current injector has become operational. There are two crucial areas where improvements must be made to meet collider specifications: while the injector can produce up to 10/sup 11/ e/sup -/ in a single S-band bucket, initially much of this charge was captured in a low energy tail and was this not suitable for transport through the accelerator and injection into the damping ring. Pulse to pulse position jitter has been observed, resulting in transverse wake field which increases beam emittance. The problems described above contribute to substantial current loss during transport from the injector (40 MeV) to the SLC damping ring (1.2 GeV). Experimental studies are continuing with the aim of understanding and improving beam characteristics including bunch length, pulse to pulse stability and emittance. The present status of these studies is reported.

  15. Positron sources for Linear Colliders

    SciTech Connect

    Gai Wei; Liu Wanming

    2009-09-02

    Positron beams have many applications and there are many different concepts for positron sources. In this paper, only positron source techniques for linear colliders are covered. In order to achieve high luminosity, a linear collider positron source should have a high beam current, high beam energy, small emittance and, for some applications, a high degree of beam polarization. There are several different schemes presently being developed around the globe. Both the differences between these schemes and their common technical challenges are discussed.

  16. Photon-photon and electron-photon colliders with energies below a TeV

    SciTech Connect

    Mayda M. Velasco et al.

    2001-11-29

    We investigate the potential for detecting and studying Higgs bosons in {gamma}{gamma} and e{gamma} collisions at future linear colliders with energies below a TeV. Our study incorporates realistic {gamma}{gamma}spectra based on available laser technology, and NLC and CLIC acceleration techniques. Results include detector simulations. We study the cases of: (a) a SM-like Higgs boson based on a devoted low energy machine with {radical}s{sub ee} {le} 200 GeV; (b) the heavy MSSM Higgs bosons; and (c) charged Higgs bosons in e{gamma} collisions.

  17. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    SciTech Connect

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  18. CRYSTALLINE BEAMS AT HIGH ENERGIES.

    SciTech Connect

    WEI, J.; OKAMOTO, H.; YURI, Y.; SESSLER, A.; MACHIDA, S.

    2006-06-23

    Previously it was shown that by crystallizing each of the two counter-circulating beams, a much larger beam-beam tune shift can be tolerated during the beam-beam collisions; thus a higher luminosity can be reached for colliding beams [1]. On the other hand, crystalline beams can only be formed at energies below the transition energy ({gamma}{sub T}) of the accelerators [2]. In this paper, we investigate the formation of crystals in a high-{gamma}{sub T} lattice that also satisfies the maintenance condition for a crystalline beam [3].

  19. Reinventing the Accelerator for the High Energy Frontier

    ScienceCinema

    Rosenzweig, James [UCLA, Los Angeles, California, United States

    2016-07-12

    The history of discovery in high-energy physics has been intimately connected with progress in methods of accelerating particles for the past 75 years. This remains true today, as the post-LHC era in particle physics will require significant innovation and investment in a superconducting linear collider. The choice of the linear collider as the next-generation discovery machine, and the selection of superconducting technology has rather suddenly thrown promising competing techniques -- such as very large hadron colliders, muon colliders, and high-field, high frequency linear colliders -- into the background. We discuss the state of such conventional options, and the likelihood of their eventual success. We then follow with a much longer view: a survey of a new, burgeoning frontier in high energy accelerators, where intense lasers, charged particle beams, and plasmas are all combined in a cross-disciplinary effort to reinvent the accelerator from its fundamental principles on up.

  20. Comprehensive description of J/ψ production in proton-proton collisions at collider energies

    DOE PAGES

    Ma, Yan -Qing; Venugopalan, Raju

    2014-11-04

    We employ a small x Color Glass Condensate + Non-Relativistic QCD (NRQCD) formalism to compute J/ψ production at low p⊥ in proton-proton collisions at collider energies. Very good agreement is obtained for total cross-sections, rapidity distributions and low momentum p⊥ distributions. Similar agreement is obtained for ψ' production. We observe an overlap region in p⊥ where our results match smoothly to those obtained in a next-to-leading order (NLO) collinearly factorized NRQCD formalism. The relative contribution of color singlet and color octet contributions can be quantified in the CGC+NRQCD framework, with the former contributing approximately 10% of the total cross-section.

  1. Development of High Average Power Lasers for the Photon Collider

    SciTech Connect

    Gronberg, J; Stuart, B; Seryi, A

    2010-05-17

    The laser and optics system for the photon collider seeks to minimize the required laser power by using an optical stacking cavity to recirculate the laser light. An enhancement of between 300 to 400 is desired. In order to achieve this the laser pulses which drive the cavity must precisely match the phase of the pulse circulating within the cavity. We report on simulations of the performance of a stacking cavity to various variations of the drive laser in order to specify the required tolerances of the laser system. We look at the behavior of a simple four mirror cavity as shown in Fig. 1. As a unit input pulse is applied to the coupling mirror a pulse begins to build up in the interior of the cavity. If the drive pulses and the interior pulse arrive at the coupling mirror in phase the interior pulse will build up to a larger value. The achievable enhancement is a strong function of the reflectivity of the cavities. The best performance if attained when the reflectivities of the input coupler is matched to the internal reflectivities of the cavity. In Fig. 2 we show the build up of the internal pulse after a certain number of drive pulses, assuming the input coupler has a reflectivity of 0.996 and the interior mirrors have 0.998 reflectivity. With these parameters the cavity will reach an enhancement factor of 450. Reducing the coupler reflectivity gives a faster cavity loading rate but with a reduced enhancement of the internal pulse. The enhancement as a function of coupler reflectivity and total internal cavity reflectivity is shown in Fig. 3. The best enhancement is achieved when the coupling mirror is matched to the reflectivity of the cavity. A coupler reflectivity just below the internal cavity reflectivity minimizes the required laser power.

  2. High energy physics

    SciTech Connect

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  3. The Design of a Large Booster Ring for the Medium Energy Electron-Ion Collider at Jlab

    SciTech Connect

    Edward Nissen, Todd Satogata, Yuhong Zhang

    2012-07-01

    In this paper, we present the current design of the large booster ring for the Medium energy Electron-Ion Collider at Jefferson Lab. The booster ring takes 3 GeV protons or ions of equivalent rigidity from a pre-booster ring, and accelerates them to 20 GeV for protons or equivalent energy for light to heavy ions before sending them to the ion collider ring. The present design calls for a figure-8 shape of the ring for superior preservation of ion polarization. The ring is made of warm magnets and shares a tunnel with the two collider rings. Acceleration is achieved by warm RF systems. The linear optics has been designed with the transition energy above the highest beam energy in the ring so crossing of transition energy will be avoided. Preliminary beam dynamics studies including chromaticity compensation are presented in this paper.

  4. Multiplicities in high energy interactions

    SciTech Connect

    Derrick, M.

    1985-05-13

    This paper reviews the data on multiplicities in high energy interactions. Results from e/sup +/e/sup -/ annihilation, from neutrino interactions, and from hadronic collisions, both diffractive and nondiffractive, are compared and contrasted. The energy dependence of the mean charged multiplicity, , as well as the rapidity density at Y = 0 are presented. For hadronic collisions, the data on neutral pion production shows a strong correlation with . The heavy particle fractions increase with ..sqrt..s up to the highest energies. The charged particle multiplicity distributions for each type of reaction show a scaling behavior when expressed in terms of the mean. Attempts to understand this behavior, which was first predicted by Koba, Nielsen, and Olesen, are discussed. The multiplicity correlations and the energy variation of the shape of the KNO scaling distribution provide important constraints on models. Some extrapolations to the energies of the Superconducting Super Collider are made. 51 refs., 27 figs.

  5. The great high-energy write-off

    NASA Astrophysics Data System (ADS)

    Robinson, Andrew

    2015-12-01

    The US Congress wrote off $2bn and 10,000 person-years of effort in 1993 when it cancelled the giant, high-energy particle accelerator project known as the Superconducting Super Collider (SSC), approved in 1987.

  6. Concept design of the high voltage transmission system for the collider tunnel

    NASA Astrophysics Data System (ADS)

    Norman, L. S.

    1992-03-01

    In order to provide electrical service to the Superconducting Super Collider Laboratory (SSCL) 54-mile-circumference collider of 125 MVA at 69 kV or 155 MVA at 138 kV of distributed power, it must be demonstrated that the concept design for a high-voltage transmission system can meet the distribution requirements of the collider electrical system with its cryogenic system's large motor loads and its pulsed power technical systems. It is a practical design, safe for operating personnel and cost-effective. The normal high-voltage transmission techniques of overhead and underground around the 54-mile collider tunnel could not be applied because of technical and physical constraints, or was environmentally unacceptable. The approach taken to solve these problems is the installation of 69-kV or 138-kV exposed solid dielectric transmission cable inside the collider tunnel with the superconducting magnets, cryogenic piping, electrical medium, and low-voltage distribution systems, and electronic/instrumentation wiring systems. This mixed-use approach has never been attempted in a collider tunnel. Research into all aspects of the engineering and installation problems and consultation with transmission cable manufacturers, electrical utilities, and European entities with similar installations--such as the Channel Tunnel--demonstrate that the concept design is feasible and practical. This paper presents a history of the evolution of the concept design. Design studies are underway to determine the system configuration and voltages. Included in this report are tunnel transmission cable system considerations and evaluation of solid dielectric high-voltage cable design.

  7. Indiana University High Energy Physics, Task A

    SciTech Connect

    Brabson, B.; Crittenden, R.; Dzierba, A.; Hanson, G.; Martin, H.; Marshall, T.; Mir, R.; Mouthuy, T.; Ogren, H.; Rust, D.; Teige, S.; Zieminska, D.; Zieminski, A.

    1991-01-01

    This report discusses research in High Energy Physics under the following experiments: Meson spectroscopy at BNL; dimuon production at FNAL; the DO collider experiment at FNAL; the Mark II experiment at SLC and PEP; the OPAL experiment at CERN; and the superconducting supercollider.

  8. The beam energy feedback system for Beijing electron positron collider II linac.

    PubMed

    Wang, S; Iqbal, M; Chi, Y; Liu, R; Huang, X

    2017-03-01

    A beam-energy feedback system has been developed for the injection linac to meet the beam quality needed for the Beijing electron positron collider II storage ring. This paper describes the implementation and commissioning of this system in detail. The system consists of an energy measurement unit, application software, and an actuator unit. A non-intersecting beam energy monitor was developed to allow real-time online energy adjustment. The beam energy adjustment is achieved by adjusting the output microwave phase of the RF power source station. The phase control mechanism has also been modified, and a new control method taking the return difference of the phase shifter into account is used to improve the system's performance. This system achieves the design aim and can adjust the beam center energy with a rate of 2 Hz. With the energy feedback system, the stability of the injection rate is better; the fluctuation range is reduced from 20 mA/min to 10 mA/min, while the stability of the beam center energy is maintained within ±0.1%.

  9. Hadron collider physics at UCR

    SciTech Connect

    Kernan, A.; Shen, B.C.

    1997-07-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.

  10. Development of a High-Average-Power Compton Gamma Source for Lepton Colliders

    SciTech Connect

    Pogorelsky, Igor; Polyanskiy, Mikhail N.; Yakimenko, Vitaliy; Platonenko, Viktor T.

    2009-01-22

    Gamma-({gamma}{sup -}) ray beams of high average power and peak brightness are of demand for a number of applications in high-energy physics, material processing, medicine, etc. One of such examples is gamma conversion into polarized positrons and muons that is under consideration for projected lepton colliders. A {gamma}-source based on the Compton backscattering from the relativistic electron beam is a promising candidate for this application. Our approach to the high-repetition {gamma}-source assumes placing the Compton interaction point inside a CO{sub 2} laser cavity. A laser pulse interacts with periodical electron bunches on each round-trip inside the laser cavity producing the corresponding train of {gamma}-pulses. The round-trip optical losses can be compensated by amplification in the active laser medium. The major challenge for this approach is in maintaining stable amplification rate for a picosecond CO{sub 2}-laser pulse during multiple resonator round-trips without significant deterioration of its temporal and transverse profiles. Addressing this task, we elaborated on a computer code that allows identifying the directions and priorities in the development of such a multi-pass picosecond CO{sub 2} laser. Proof-of-principle experiments help to verify the model and show the viability of the concept. In these tests we demonstrated extended trains of picosecond CO{sub 2} laser pulses circulating inside the cavity that incorporates the Compton interaction point.

  11. Development of a High-Average-Power Compton Gamma Source for Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Pogorelsky, Igor; Polyanskiy, Mikhail N.; Yakimenko, Vitaliy; Platonenko, Viktor T.

    2009-01-01

    Gamma- (γ-) ray beams of high average power and peak brightness are of demand for a number of applications in high-energy physics, material processing, medicine, etc. One of such examples is gamma conversion into polarized positrons and muons that is under consideration for projected lepton colliders. A γ-source based on the Compton backscattering from the relativistic electron beam is a promising candidate for this application. Our approach to the high-repetition γ-source assumes placing the Compton interaction point inside a CO2 laser cavity. A laser pulse interacts with periodical electron bunches on each round-trip inside the laser cavity producing the corresponding train of γ-pulses. The round-trip optical losses can be compensated by amplification in the active laser medium. The major challenge for this approach is in maintaining stable amplification rate for a picosecond CO2-laser pulse during multiple resonator round-trips without significant deterioration of its temporal and transverse profiles. Addressing this task, we elaborated on a computer code that allows identifying the directions and priorities in the development of such a multi-pass picosecond CO2 laser. Proof-of-principle experiments help to verify the model and show the viability of the concept. In these tests we demonstrated extended trains of picosecond CO2 laser pulses circulating inside the cavity that incorporates the Compton interaction point.

  12. High energy physics

    SciTech Connect

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics Program at the University of California, Riverside. In 1990, we will concentrate on analysis of LEP data from the OPAL detector. We expect to record 10{sup 5} Z`s by the end of 1989 and 10{sup 6} in 1990. This data will be used to measure the number of quark-lepton families in the universe. In the second half of 1990 we will also be occupied with the installation of the D-Zero detector in the Tevatron Collider and the preparation of software for the 1991 run. A new initiative made possible by generous university support is a laboratory for detector development at UCR. The focus will be on silicon strip tracking detectors both for the D-Zero upgrade and for SSC physics. The theory program will pursue further various mass-generating radiative mechanisms for understanding small quark and lepton masses as well as some novel phenomenological aspects of supersymmetry.

  13. High energy physics research. Final technical report, 1957--1994

    SciTech Connect

    Williams, H.H.

    1995-10-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development.

  14. Research and Development of Future Muon Collider

    SciTech Connect

    Yonehara, K.; /Fermilab

    2012-05-01

    Muon collider is a considerable candidate of the next generation high-energy lepton collider machine. A novel accelerator technology must be developed to overcome several intrinsic issues of muon acceleration. Recent research and development of critical beam elements for a muon accelerator, especially muon beam phase space ionization cooling channel, are reviewed in this paper.

  15. Physics goals of the next linear collider

    SciTech Connect

    Kuhlman, S.; Marciano, W.J.; Gunion, J. F.; NLC ZDR Design Group; NLC Physics Working Group

    1996-05-01

    We present the prospects for the next generation of high-energy physics experiments with electron-positron colliding beams. This report summarizes the current status of the design and technological basis of a linear collider of center of mass energy 500 GeV-1.5 TeV, and the opportunities for high-energy physics experiments that this machine is expected to open. 132 refs., 54 figs., 14 tabs.

  16. High energy physics in the United States

    SciTech Connect

    Month, M.

    1985-10-16

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range. (LEW)

  17. High energy physics

    SciTech Connect

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R&D on silicon microstrip tracking devices for the SSC. High statistics studies of Z{sup 0} decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPF will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka`s program includes a detailed investigation of the magnetic-flip approach to the solar neutrino.

  18. Global Λ polarization in high energy collisions

    NASA Astrophysics Data System (ADS)

    Xie, Yilong; Wang, Dujuan; Csernai, László P.

    2017-03-01

    With a Yang-Mills flux-tube initial state and a high-resolution (3+1)D particle-in-cell relativistic (PICR) hydrodynamics simulation, we calculate the Λ polarization for different energies. The origination of polarization in high energy collisions is discussed, and we find linear impact parameter dependence of the global Λ polarization. Furthermore, the global Λ polarization in our model decreases very quickly in the low energy domain, and the decline curve fits well the recent results of Beam Energy Scan (BES) program launched by the STAR Collaboration at the Relativistic Heavy Ion Collider (RHIC). The time evolution of polarization is also discussed.

  19. Feasibility of Colliding-beam fast-fission reactor via 238U80++238 U80+ --> 4 FF + 5n + 430 MeV beam with suppressed plutonium and direct conversion of fission fragment (FF) energy into electricity and/or Rocket propellant with high specific impulse

    NASA Astrophysics Data System (ADS)

    Maglich, Bogdan; Hester, Tim; Calsec Collaboration

    2015-10-01

    Uranium-uranium colliding beam experiment1, used fully ionized 238U92+ at energy 100GeV --> <-- 100 GeV, has measured total σ = 487 b. Reaction rate of colliding beams is proportional to neutron flux-squared. First functional Auto-Collider3-6, a compact Migma IV, 1 m in diameter, had self-colliding deuterons, D+, of 725 KeV --> <-- 725 KeV, resulting in copious production of T and 3He. U +U Autocollider``EXYDER'' will use strong-focusing magnet7, which would increase reaction rate by 104. 80 times ionized U ions accelerated through 3 MV accelerator, will collide beam 240 MeV --> <-- 240 MeV. Reaction is: 238U80+ +238 U80+ --> 4 FF + 5n + 430 MeV. Using a simple model1 fission σf ~ 100 b. Suppression of Pu by a factor of 106 will be achieved because NO thermal neutron fission can take place; only fast, 1-3 MeV, where σabs is negligible. Direct conversion of 95% of 430 MeV produced is carried by electrically charged FFs which are magnetically funneled for direct conversion of energy of FFs via electrostatic decelerators4,11. 90% of 930 MeV is electrically recoverable. Depending on the assumptions, we project electric _ power density production of 20 to 200 MWe m-3, equivalent to Thermal 1.3 - 13 GWthm-3. If one-half of unburned U is used for propulsion while rest powers system, heavy FF ion mass provides specific impulse Isp = 106 sec., 103 times higher than current rocket engines.

  20. High Energy Physics Research at Louisiana Tech

    SciTech Connect

    Sawyer, Lee; Greenwood, Zeno; Wobisch, Marcus

    2013-06-28

    The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the DØ experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

  1. Thermal Photon Radiation in High Multiplicity p+Pb Collisions at the Large Hadron Collider

    DOE PAGES

    Shen, Chun; Paquet, Jean-François; Denicol, Gabriel S.; ...

    2016-02-18

    We observed the collective behavior of hadronic particles in high multiplicity proton-lead collisions at the Large Hadron Collider, as well as in deuteron-gold collisions at the Relativistic Heavy-Ion Collider. In our work we present the first calculation, in the hydrodynamic framework, of thermal photon radiation from such small collision systems. Owing to their compact size, these systems can reach temperatures comparable to those in central nucleus-nucleus collisions. Moreover, the thermal photons can thus shine over the prompt background, and increase the low pT direct photon spectrum by a factor of 2–3 in 0%–1% p+Pb collisions at 5.02 TeV. This thermalmore » photon enhancement can therefore serve as a signature of the existence of a hot quark-gluon plasma during the evolution of these small collision systems, as well as validate hydrodynamic behavior in small systems.« less

  2. Hadrons from coalescence plus fragmentation in A A collisions at energies available at the BNL Relativistic Heavy Ion Collider to the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Minissale, Vincenzo; Scardina, Francesco; Greco, Vincenzo

    2015-11-01

    In a coalescence plus independent fragmentation approach we calculate the pT spectra of the main hadrons: π ,K ,p ,p ¯,Λ ,ϕ in a wide range of transverse momentum from low pT up to about 10 GeV. The approach in its main features was developed several years ago at Relativistic Heavy Ion Collider (RHIC) energy. Augmenting the model with the inclusion of some more main resonance decays, we show that the approach correctly predicts the evolution of the pT spectra from RHIC to LHC (Large Hadron Collider) energy and in particular the baryon-to-meson ratios p /π ,p ¯/π ,Λ /K that reach a value of the order of unit at pT˜3 GeV . This is achieved without any change of the coalescence parameters. The more recent availability of experimental data up to pT˜10 GeV for Λ spectrum as well as for p /π and Λ /K shows some lack of yield in a limited pT range around 6 GeV. This indicates that the baryons pT spectra from Albino-Kniehl-Kramer fragmentation functions are too flat at pT≲8 GeV . We also show that in a coalescence plus fragmentation approach one predicts a nearly pT independent p /ϕ ratio up to pT˜4 GeV followed by a significant decrease at higher pT. Such a behavior is driven by a similar radial flow effect at pT<2 GeV and the dominance of fragmentation for ϕ at larger pT.

  3. FSU High Energy Physics

    SciTech Connect

    Prosper, Harrison B.; Adams, Todd; Askew, Andrew; Berg, Bernd; Blessing, Susan K.; Okui, Takemichi; Owens, Joseph F.; Reina, Laura; Wahl, Horst D.

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  4. High density harp for SSCL linac. [Suerconducting Super Collider Laboratory (SSCL)

    SciTech Connect

    Fritsche, C.T.; Krogh, M.L. . Bendix Kansas City Div.); Crist, C.E. )

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities.

  5. Final Report for U.S. DOE GRANT No. DEFG02-96ER41015 November 1, 2010 - April 30, 2013 entitled HIGH ENERGY ACCELERATOR AND COLLIDING BEAM USER GROUP at the UNIVERSITY of MARYLAND

    SciTech Connect

    Hadley, Nicholas; Jawahery, Abolhassan; Eno, Sarah C; Skuja, Andris; Baden, Andrew; Roberts, Douglas

    2013-07-26

    We have finished the third year of a three year grant cycle with the U.S. Department of Energy for which we were given a five month extension (U.S. D.O.E. Grant No. DEFG02-96ER41015). This document is the fi nal report for this grant and covers the period from November 1, 2010 to April 30, 2013. The Maryland program is administered as a single task with Professor Nicholas Hadley as Principal Investigator. The Maryland experimental HEP group is focused on two major research areas. We are members of the CMS experiment at the LHC at CERN working on the physics of the Energy Frontier. We are also analyzing the data from the Babar experiment at SLAC while doing design work and R&D towards a Super B experiment as part of the Intensity Frontier. We have recently joined the LHCb experiment at CERN. We concluded our activities on the D experiment at Fermilab in 2009.

  6. Recent results from hadron colliders

    SciTech Connect

    Frisch, H.J. )

    1990-12-10

    This is a summary of some of the many recent results from the CERN and Fermilab colliders, presented for an audience of nuclear, medium-energy, and elementary particle physicists. The topics are jets and QCD at very high energies, precision measurements of electroweak parameters, the remarkably heavy top quark, and new results on the detection of the large flux of B mesons produced at these machines. A summary and some comments on the bright prospects for the future of hadron colliders conclude the talk. 39 refs., 44 figs., 3 tabs.

  7. Extremely High Current, High-Brightness Energy Recovery Linac

    SciTech Connect

    I. Ben-Zvi; D.S. Barton; D.B. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X.Y. Chang; R. Connolly; D.M. Gassner; J.G. Grimes; H. Hahn; A. Hershcovitch; H.-C. Hseuh; P.D.J. Johnson; D. Kayran; J. Kewisch; R.F. Lambiase; V. Litvinenko; G.T. McIntyre; W. Meng; T.C.N. Nehring; T. Nicoletti; B. Oerter; D. Pate; J. Rank; T. Rao; T. Roser; T. Russo; J. Scaduto; Z. Segalov; K. Smith; N.W.W. Williams; K.-C. Wu; V. Yakimenko; K. Yip; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; M.D. Cole; A.J. Favale; D. Holmes; J. Rathke; T. Schultheiss; A.M.M. Todd; J.R. Delayen; L. W. Funk; P. Kneisel; H.L. Phillips; J.P. Preble

    2005-05-16

    Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

  8. EXTREMELY HIGH CURRECT, HIGH-BRIGHTNESS ENERGY RECOVERY LINAC.

    SciTech Connect

    BEN-ZVI, I.; BARTON, D.; BEAVIS, D. BLASKIEWICZ, M.; ET AL.

    2005-05-16

    Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

  9. Kinematical Correlations for Higgs Boson Plus High P_{T} Jet Production at Hadron Colliders.

    PubMed

    Sun, Peng; Yuan, C-P; Yuan, Feng

    2015-05-22

    We investigate the effect of QCD resummation to kinematical correlations in the Higgs boson plus high transverse momentum (P(T)) jet events produced at hadron colliders. We show that at the complete one-loop order, the Collins-Soper-Sterman resummation formalism can be applied to derive the Sudakov form factor. We compare the singular behavior of resummation calculation to fixed order prediction in the case that a Higgs boson and high P(T) jet are produced nearly back to back in their transverse momenta, and find perfect agreement. The phenomenological importance of the resummation effect at the LHC is also demonstrated.

  10. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    SciTech Connect

    Rutherfoord, John P.; Johns, Kenneth A.; Shupe, Michael A.; Cheu, Elliott C.; Varnes, Erich W.; Dienes, Keith; Su, Shufang; Toussaint, William Doug; Sarcevic, Ina

    2013-07-29

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  11. Klystron switching power supplies for the Internation Linear Collider

    SciTech Connect

    Fraioli, Andrea; /Cassino U. /INFN, Pisa

    2009-12-01

    The International Linear Collider is a majestic High Energy Physics particle accelerator that will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. ILC will complement the Large Hadron Collider (LHC), a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, by producing electron-positron collisions at center of mass energy of about 500 GeV. In particular, the subject of this dissertation is the R&D for a solid state Marx Modulator and relative switching power supply for the International Linear Collider Main LINAC Radio Frequency stations.

  12. Collective accelerator for electron colliders

    SciTech Connect

    Briggs, R.J.

    1985-05-13

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch.

  13. Accurate crab cavity modeling for the high luminosity Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Brett, D. R.; Appleby, R. B.; De Maria, R.; Garcia, J. Barranco; Garcia, R. Tomás; Hall, B.; Burt, G.

    2014-10-01

    As part of the Large Hadron Collider high luminosity upgrade it is proposed to include crab cavities in the lattice in order to enhance the luminosity. For one proposed cavity design the dynamics of the cavity is considered in terms of its impact upon the dynamic aperture of the machine. Taylor maps of the cavity are created and used to perform this analysis with a full assessment of their validity. Furthermore from these Taylor maps, symplectic methods are developed further, guided by the knowledge gained in the study of the physics contained in them.

  14. High p{sub T} jet physics at the Tevatron Collider

    SciTech Connect

    Buckley-Geer, E.

    1996-09-01

    We present results on high {ital p{sub T}} jet physics from the CDF and D{null} experiments at the Fermilab Tevatron Collider. Recent results on the inclusive jet cross-section at {radical}{ital s} = 1.8 TeV will be presented and compared with QCD. We will also present results on the dijet angular distribution. Limits on quark compositeness are presented from the CDF dijet angular distribution. Finally we will discuss the results on the inclusive jet cross section at {radical}{ital s} = 0.63 TeV and tests of scaling.

  15. Constraining Dark Matter Interactions with Pseudoscalar and Scalar Mediators Using Collider Searches for Multijets plus Missing Transverse Energy.

    PubMed

    Buchmueller, Oliver; Malik, Sarah A; McCabe, Christopher; Penning, Bjoern

    2015-10-30

    The monojet search, looking for events involving missing transverse energy (E_{T}) plus one or two jets, is the most prominent collider dark matter search. We show that multijet searches, which look for E_{T} plus two or more jets, are significantly more sensitive than the monojet search for pseudoscalar- and scalar-mediated interactions. We demonstrate this in the context of a simplified model with a pseudoscalar interaction that explains the excess in GeV energy gamma rays observed by the Fermi Large Area Telescope. We show that multijet searches already constrain a pseudoscalar interpretation of the excess in much of the parameter space where the mass of the mediator M_{A} is more than twice the dark matter mass m_{DM}. With the forthcoming run of the Large Hadron Collider at higher energies, the remaining regions of the parameter space where M_{A}>2m_{DM} will be fully explored. Furthermore, we highlight the importance of complementing the monojet final state with multijet final states to maximize the sensitivity of the search for the production of dark matter at colliders.

  16. Long term dynamics of the high luminosity Large Hadron Collider with crab cavities

    NASA Astrophysics Data System (ADS)

    Barranco García, J.; De Maria, R.; Grudiev, A.; Tomás García, R.; Appleby, R. B.; Brett, D. R.

    2016-10-01

    The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) aims to achieve an integrated luminosity of 200 - 300 fb-1 per year, including the contribution from the upgrade of the injector chain. For the HL-LHC the larger crossing angle together with a smaller beta function at the collision point would result in more than 70% luminosity loss due to the incomplete geometric overlap of colliding bunches. To recover head-on collisions at the high-luminosity particle-physics detectors ATLAS and CMS and benefit from the very low β* provided by the Achromatic Telescopic Squeezing (ATS) optics, a local crab cavity scheme provides transverse kicks to the proton bunches. The tight space constraints at the location of these cavities leads to designs which are axially non-symmetric, giving rise to high order multipoles components of the main deflecting mode and, since these kicks are harmonic in time, we expand them in a series of multipoles in a similar fashion as is done for static field magnets. In this work we calculate, for the first time, the higher order multipoles and their impact on beam dynamics for three different crab cavity prototypes. Different approaches to calculate the multipoles are presented. Furthermore, we perform the first calculation of their impact on the long term stability of the machine using the concept of dynamic aperture.

  17. High-Power Multimode X-Band RF Pulse Compression System for Future Linear Colliders

    SciTech Connect

    Tantawi, S.G.; Nantista, C.D.; Dolgashev, V.A.; Pearson, C.; Nelson, J.; Jobe, K.; Chan, J.; Fant, K.; Frisch, J.; Atkinson, D.; /LLNL, Livermore

    2005-08-10

    We present a multimode X-band rf pulse compression system suitable for a TeV-scale electron-positron linear collider such as the Next Linear Collider (NLC). The NLC main linac operating frequency is 11.424 GHz. A single NLC rf unit is required to produce 400 ns pulses with 475 MW of peak power. Each rf unit should power approximately 5 m of accelerator structures. The rf unit design consists of two 75 MW klystrons and a dual-moded resonant-delay-line pulse compression system that produces a flat output pulse. The pulse compression system components are all overmoded, and most components are designed to operate with two modes. This approach allows high-power-handling capability while maintaining a compact, inexpensive system. We detail the design of this system and present experimental cold test results. We describe the design and performance of various components. The high-power testing of the system is verified using four 50 MW solenoid-focused klystrons run off a common 400 kV solid-state modulator. The system has produced 400 ns rf pulses of greater than 500 MW. We present the layout of our system, which includes a dual-moded transmission waveguide system and a dual-moded resonant line (SLED-II) pulse compression system. We also present data on the processing and operation of this system, which has set high-power records in coherent and phase controlled pulsed rf.

  18. High energy accelerator and colliding beam user group

    SciTech Connect

    Not Available

    1989-09-01

    This report discusses the following topics: OPAL experiment at LEP; Deep inelastic muon interactions at TeV II; D{phi} experiment; Physics with the CLEO detector at CESR; CYGNUS experiment; {nu}{sub e}e elastic scattering experiment; Further results from JADE; Theory of polarization in electron storage rings; and Rare kaon decay experiments at Brookhaven National Laboratory.

  19. Matching into the Helical Bunch Coalescing Channel for a High Luminosity Muon Collider

    SciTech Connect

    Sy, Amy; Ankenbrandt, Charles; Derbenev, Yaroslav; Morozov, Vasiliy; Neuffer, David; Yonehara, Katsuya; Yoshikawa, Cary; Johnson, R. P.

    2015-09-01

    For high luminosity in a muon collider, muon bunches that have been cooled in the six-dimensional helical cooling channel (HCC) must be merged into a single bunch and further cooled in preparation for acceleration and transport to the collider ring. The helical bunch coalescing channel has been previously simulated and provides the most natural match from helical upstream and downstream subsystems. This work focuses on the matching from the exit of the multiple bunch HCC into the start of the helical bunch coalescing channel. The simulated helical matching section simultaneously matches the helical spatial period lambda in addition to providing the necessary acceleration for efficient bunch coalescing. Previous studies assumed that the acceleration of muon bunches from p=209.15 MeV/c to 286.816 MeV/c and matching of lambda from 0.5 m to 1.0 m could be accomplished with zero particle losses and zero emittance growth in the individual bunches. This study demonstrates nonzero values for both particle loss and emittance growth, and provides considerations for reducing these adverse effects to best preserve high luminosity.

  20. Future directions in high energy electron-positron experimentation

    SciTech Connect

    Trilling, G.H.

    1988-09-01

    In this report, the possibilities of studying particle physics at the TeV scale with high energy electron-positron linear colliders are discussed. A status report on the SLC and the MARK II program is given to provide some insights on the feasibility of experiments at linear colliders. The technical issues in going from SLC to the development of TeV colliders are briefly discussed. Some of the elements of the e/sup +/e/sup -/ experimental environment which differentiate it from that in hadron colliders and give examples of processes particularly well suited to attack by e/sup +/e/sup -/ annihilation are summarized. Finally, some concluding remarks are given. 8 refs., 10 figs., 2 tabs.

  1. Far Future Colliders and Required R&D Program

    SciTech Connect

    Shiltsev, V.; /Fermilab

    2012-06-01

    Particle colliders for high energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the collider has progressed immensely, while the beam energy, luminosity, facility size and the cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but its pace of progress has greatly slowed down. In this paper we very briefly review the R&D toward near future colliders and make an attempt to look beyond the current horizon and outline the changes in the paradigm required for the next breakthroughs.

  2. Taking Energy to the Physics Classroom from the Large Hadron Collider at CERN

    ERIC Educational Resources Information Center

    Cid, Xabier; Cid, Ramon

    2009-01-01

    In 2008, the greatest experiment in history began. When in full operation, the Large Hadron Collider (LHC) at CERN will generate the greatest amount of information that has ever been produced in an experiment before. It will also reveal some of the most fundamental secrets of nature. Despite the enormous amount of information available on this…

  3. Precision muon tracking detectors and read-out electronics for operation at very high background rates at future colliders

    NASA Astrophysics Data System (ADS)

    Kortner, O.; Kroha, H.; Nowak, S.; Richter, R.; Schmidt-Sommerfeld, K.; Schwegler, Ph.

    2016-07-01

    The experience of the ATLAS MDT muon spectrometer shows that drift-tube chambers provide highly reliable precision muon tracking over large areas. The ATLAS muon chambers are exposed to unprecedentedly high background of photons and neutrons induced by the proton collisions. Still higher background rates are expected at future high-energy and high-luminosity colliders beyond HL-LHC. Therefore, drift-tube detectors with 15 mm tube diameter (30 mm in ATLAS), optimised for high rate operation, have been developed for such conditions. Several such full-scale sMDT chambers have been constructed with unprecedentedly high sense wire positioning accuracy of better than 10 μm. The chamber design and assembly methods have been optimised for large-scale production, reducing considerably cost and construction time while maintaining the high mechanical accuracy and reliability. Tests at the Gamma Irradiation Facility at CERN showed that the rate capability of sMDT chambers is improved by more than an order of magnitude compared to the MDT chambers. By using read-out electronics optimised for high counting rates, the rate capability can be further increased.

  4. Beam-induced Electron Loading Effects in High Pressure Cavities for a Muon Collider

    SciTech Connect

    Chung, M.; Tollestrup, A.; Jansson, A.; Yonehara, K.; Insepov, Z.; /Argonne

    2010-05-01

    Ionization cooling is a critical building block for the realization of a muon collider. To suppress breakdown in the presence of the external magnetic field, an idea of using an RF cavity filled with high pressure hydrogen gas is being considered for the cooling channel design. One possible problem expected in the high pressure RF cavity is, however, the dissipation of significant RF power through the beam-induced electrons accumulated inside the cavity. To characterize this detrimental loading effect, we develop a simplified model that relates the electron density evolution and the observed pickup voltage signal in the cavity, with consideration of several key molecular processes such as the formation of the polyatomic molecules, recombination and attachment. This model is expected to be compared with the actual beam test of the cavity in the MuCool Test Area (MTA) of Fermilab.

  5. The future of the Large Hadron Collider and CERN.

    PubMed

    Heuer, Rolf-Dieter

    2012-02-28

    This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

  6. Muon collider design

    NASA Astrophysics Data System (ADS)

    Palmer, R.; Sessler, A.; Skrinsky, A.; Tollestrup, A.; Baltz, A.; Caspi, S.; P., Chen; W-H., Cheng; Y., Cho; Cline, D.; Courant, E.; Fernow, R.; Gallardo, J.; Garren, A.; Gordon, H.; Green, M.; Gupta, R.; Hershcovitch, A.; Johnstone, C.; Kahn, S.; Kirk, H.; Kycia, T.; Y., Lee; Lissauer, D.; Luccio, A.; McInturff, A.; Mills, F.; Mokhov, N.; Morgan, G.; Neuffer, D.; K-Y., Ng; Noble, R.; Norem, J.; Norum, B.; Oide, K.; Parsa, Z.; Polychronakos, V.; Popovic, M.; Rehak, P.; Roser, T.; Rossmanith, R.; Scanlan, R.; Schachinger, L.; Silvestrov, G.; Stumer, I.; Summers, D.; Syphers, M.; Takahashi, H.; Torun, Y.; Trbojevic, D.; Turner, W.; van Ginneken, A.; Vsevolozhskaya, T.; Weggel, R.; Willen, E.; Willis, W.; Winn, D.; Wurtele, J.; Zhao, Y.

    1996-11-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity \\mu^+ \\mu^- colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Detector background, polarization, and nonstandard operating conditions are discussed.

  7. High energy neutron radiography

    SciTech Connect

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-06-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos.

  8. Dynamic formation of a hot field reversed configuration with improved confinement by supersonic merging of two colliding high-β compact toroids.

    PubMed

    Binderbauer, M W; Guo, H Y; Tuszewski, M; Putvinski, S; Sevier, L; Barnes, D; Rostoker, N; Anderson, M G; Andow, R; Bonelli, L; Brandi, F; Brown, R; Bui, D Q; Bystritskii, V; Ceccherini, F; Clary, R; Cheung, A H; Conroy, K D; Deng, B H; Dettrick, S A; Douglass, J D; Feng, P; Galeotti, L; Garate, E; Giammanco, F; Glass, F J; Gornostaeva, O; Gota, H; Gupta, D; Gupta, S; Kinley, J S; Knapp, K; Korepanov, S; Hollins, M; Isakov, I; Jose, V A; Li, X L; Luo, Y; Marsili, P; Mendoza, R; Meekins, M; Mok, Y; Necas, A; Paganini, E; Pegoraro, F; Pousa-Hijos, R; Primavera, S; Ruskov, E; Qerushi, A; Schmitz, L; Schroeder, J H; Sibley, A; Smirnov, A; Song, Y; Sun, X; Thompson, M C; Van Drie, A D; Walters, J K; Wyman, M D

    2010-07-23

    A hot stable field-reversed configuration (FRC) has been produced in the C-2 experiment by colliding and merging two high-β plasmoids preformed by the dynamic version of field-reversed θ-pinch technology. The merging process exhibits the highest poloidal flux amplification obtained in a magnetic confinement system (over tenfold increase). Most of the kinetic energy is converted into thermal energy with total temperature (T{i}+T{e}) exceeding 0.5 keV. The final FRC state exhibits a record FRC lifetime with flux confinement approaching classical values. These findings should have significant implications for fusion research and the physics of magnetic reconnection.

  9. Fundamental cavity impedance and longitudinal coupled-bunch instabilities at the High Luminosity Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Baudrenghien, P.; Mastoridis, T.

    2017-01-01

    The interaction between beam dynamics and the radio frequency (rf) station in circular colliders is complex and can lead to longitudinal coupled-bunch instabilities at high beam currents. The excitation of the cavity higher order modes is traditionally damped using passive devices. But the wakefield developed at the cavity fundamental frequency falls in the frequency range of the rf power system and can, in theory, be compensated by modulating the generator drive. Such a regulation is the responsibility of the low-level rf (llrf) system that measures the cavity field (or beam current) and generates the rf power drive. The Large Hadron Collider (LHC) rf was designed for the nominal LHC parameter of 0.55 A DC beam current. At 7 TeV the synchrotron radiation damping time is 13 hours. Damping of the instability growth rates due to the cavity fundamental (400.789 MHz) can only come from the synchrotron tune spread (Landau damping) and will be very small (time constant in the order of 0.1 s). In this work, the ability of the present llrf compensation to prevent coupled-bunch instabilities with the planned high luminosity LHC (HiLumi LHC) doubling of the beam current to 1.1 A DC is investigated. The paper conclusions are based on the measured performances of the present llrf system. Models of the rf and llrf systems were developed at the LHC start-up. Following comparisons with measurements, the system was parametrized using these models. The parametric model then provides a more realistic estimation of the instability growth rates than an ideal model of the rf blocks. With this modeling approach, the key rf settings can be varied around their set value allowing for a sensitivity analysis (growth rate sensitivity to rf and llrf parameters). Finally, preliminary measurements from the LHC at 0.44 A DC are presented to support the conclusions of this work.

  10. High energy photon-photon collisions

    SciTech Connect

    Brodsky, S.J.; Zerwas, P.M.

    1994-07-01

    The collisions of high energy photons produced at a electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions and extensions of the standard model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary e{sup +}e{sup {minus}} collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly {gamma}{gamma} {yields} W{sup +}W{sup {minus}}, {gamma}{gamma} {yields} Higgs bosons, and higher-order loop processes, such as {gamma}{gamma} {yields} {gamma}{gamma}, Z{gamma} and ZZ. Since each photon can be resolved into a W{sup +}W{sup minus} pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying WW collisions and annihilation. We also review high energy {gamma}{gamma} tests of quantum chromodynamics, such as the scaling of the photon structure function, t{bar t} production, mini-jet processes, and diffractive reactions.

  11. Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    The ALICE Collaboration

    2016-01-01

    ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density ρμ > 5.9 m-2. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 1016 eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. The development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.

  12. RF pulse compression for future linear colliders

    SciTech Connect

    Wilson, P.B.

    1995-05-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0--1.5 TeV, 5 TeV and 25 TeV. In order keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0--1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150--200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30--40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-11 system) can be used to reduce the klystron peak power by about a factor of two, or alternately, to cut the number of klystrons in half for a 1.0--1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  13. Photon Collider Physics with Real Photon Beams

    SciTech Connect

    Gronberg, J; Asztalos, S

    2005-11-03

    Photon-photon interactions have been an important probe into fundamental particle physics. Until recently, the only way to produce photon-photon collisions was parasitically in the collision of charged particles. Recent advances in short-pulse laser technology have made it possible to consider producing high intensity, tightly focused beams of real photons through Compton scattering. A linear e{sup +}e{sup -} collider could thus be transformed into a photon-photon collider with the addition of high power lasers. In this paper they show that it is possible to make a competitive photon-photon collider experiment using the currently mothballed Stanford Linear Collider. This would produce photon-photon collisions in the GeV energy range which would allow the discovery and study of exotic heavy mesons with spin states of zero and two.

  14. Studies of high energy phenomena using muons. [Northern Illinois Univ

    SciTech Connect

    Hedin, D.; Kaplan, D.; Green, J.

    1993-02-01

    The NIU high energy physics group has three main efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789. Finally, members of the group participate in the SDC collaboration at the SSC.

  15. The optics of the low energy FFAG cell of the eRHIC collider, using realistic field maps

    SciTech Connect

    Tsoupas, N.; Brooks, S.; Jain, A.; Meot, F.; Mahler, G.; Ptitsyn, V.; Trbojevic, D.; Severance, M.

    2015-07-02

    The proposed electron accelerator of the eRHIC complex [1] will use a 1.32 GeV Energy Recovery Linac (ERL) to accelerate the e-bunches to a top energy of 21.2 GeV before they collide with the hadron bunches. The e-bunches attain the 21.2 GeV energy after passing through the ERL 16 times as they recirculate in two rings which are placed alongside the RHIC hadron accelerator. The two rings [1] are made of periodic cells and each cell is made of one focusing and one defocusing permanent magnet qudrupole. In this paper we present the electromagnetic calculations of the 2D and 3D models of a cell which is comprised of two modified Halbach quadrupoles [4], and the optical properties of the cell.

  16. A phenomenological cost model for high energy particle accelerators

    NASA Astrophysics Data System (ADS)

    Shiltsev, V.

    2014-07-01

    Accelerator-based facilities have enabled forefront research in high-energy physics for more than half a century. The accelerator technology of colliders has progressed immensely, while beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. In this paper we derive a simple scaling model for the cost of large accelerators and colliding beam facilities based on costs of 17 big facilities which have been either built or carefully estimated. Although this approach cannot replace an actual cost estimate based on an engineering design, this parameterization is to indicate a somewhat realistic cost range for consideration of what future frontier accelerator facilities might be fiscally realizable.

  17. Muon Collider Task Force Report

    SciTech Connect

    Ankenbrandt, C.; Alexahin, Y.; Balbekov, V.; Barzi, E.; Bhat, C.; Broemmelsiek, D.; Bross, A.; Burov, A.; Drozhdin, A.; Finley, D.; Geer, S.; /Fermilab /Argonne /Brookhaven /Jefferson Lab /LBL, Berkeley /MUONS Inc., Batavia /UCLA /UC, Riverside /Mississippi U.

    2007-12-01

    Muon Colliders offer a possible long term path to lepton-lepton collisions at center-of-mass energies {radical}s {ge} 1 TeV. In October 2006 the Muon Collider Task Force (MCTF) proposed a program of advanced accelerator R&D aimed at developing the Muon Collider concept. The proposed R&D program was motivated by progress on Muon Collider design in general, and in particular, by new ideas that have emerged on muon cooling channel design. The scope of the proposed MCTF R&D program includes muon collider design studies, helical cooling channel design and simulation, high temperature superconducting solenoid studies, an experimental program using beams to test cooling channel RF cavities and a 6D cooling demonstration channel. The first year of MCTF activities are summarized in this report together with a brief description of the anticipated FY08 R&D activities. In its first year the MCTF has made progress on (1) Muon Collider ring studies, (2) 6D cooling channel design and simulation studies with an emphasis on the HCC scheme, (3) beam preparations for the first HPRF cavity beam test, (4) preparations for an HCC four-coil test, (5) further development of the MANX experiment ideas and studies of the muon beam possibilities at Fermilab, (6) studies of how to integrate RF into an HCC in preparation for a component development program, and (7) HTS conductor and magnet studies to prepare for an evaluation of the prospects for of an HTS high-field solenoid build for a muon cooling channel.

  18. Soviet Hadron Collider

    NASA Astrophysics Data System (ADS)

    Kotchetkov, Dmitri

    2017-01-01

    Rapid growth of the high energy physics program in the USSR during 1960s-1970s culminated with a decision to build the Accelerating and Storage Complex (UNK) to carry out fixed target and colliding beam experiments. The UNK was to have three rings. One ring was to be built with conventional magnets to accelerate protons up to the energy of 600 GeV. The other two rings were to be made from superconducting magnets, each ring was supposed to accelerate protons up to the energy of 3 TeV. The accelerating rings were to be placed in an underground tunnel with a circumference of 21 km. As a 3 x 3 TeV collider, the UNK would make proton-proton collisions with a luminosity of 4 x 1034 cm-1s-1. Institute for High Energy Physics in Protvino was a project leading institution and a site of the UNK. Accelerator and detector research and development studies were commenced in the second half of 1970s. State Committee for Utilization of Atomic Energy of the USSR approved the project in 1980, and the construction of the UNK started in 1983. Political turmoil in the Soviet Union during late 1980s and early 1990s resulted in disintegration of the USSR and subsequent collapse of the Russian economy. As a result of drastic reduction of funding for the UNK, in 1993 the project was restructured to be a 600 GeV fixed target accelerator only. While the ring tunnel and proton injection line were completed by 1995, and 70% of all magnets and associated accelerator equipment were fabricated, lack of Russian federal funding for high energy physics halted the project at the end of 1990s.

  19. Development of N+ in P pixel sensors for a high-luminosity large hadron collider

    NASA Astrophysics Data System (ADS)

    Kamada, Shintaro; Yamamura, Kazuhisa; Unno, Yoshinobu; Ikegami, Yoichi

    2014-11-01

    Hamamatsu Photonics K. K. is developing an N+ in a p planar pixel sensor with high radiation tolerance for the high-luminosity large hadron collider (HL-LHC). The N+ in the p planar pixel sensor is a candidate for the HL-LHC and offers the advantages of high radiation tolerance at a reasonable price compared with the N+ in an n planar sensor, the three-dimensional sensor, and the diamond sensor. However, the N+ in the p planar pixel sensor still presents some problems that need to be solved, such as its slim edge and the danger of sparks between the sensor and readout integrated circuit. We are now attempting to solve these problems with wafer-level processes, which is important for mass production. To date, we have obtained a 250-μm edge with an applied bias voltage of 1000 V. To protect against high-voltage sparks from the edge, we suggest some possible designs for the N+ edge.

  20. Transverse emittance-preserving arc compressor for high-brightness electron beam-based light sources and colliders

    NASA Astrophysics Data System (ADS)

    Di Mitri, S.; Cornacchia, M.

    2015-03-01

    Bunch length magnetic compression is used in high-brightness linacs driving free-electron lasers (FELs) and particle colliders to increase the peak current of the injected beam. To date, it is performed in dedicated insertions made of few degrees bending magnets and the compression factor is limited by the degradation of the beam transverse emittance owing to emission of coherent synchrotron radiation (CSR). We reformulate the known concept of CSR-driven optics balance for the general case of varying bunch length and demonstrate, through analytical and numerical results, that a 500 pC charge beam can be time-compressed in a periodic 180 deg arc at 2.4 GeV beam energy and lower, by a factor of up to 45, reaching peak currents of up to 2 kA and with a normalized emittance growth at the 0.1 μ \\text{m} rad level. The proposed solution offers new schemes of beam longitudinal gymnastics; an application to an energy recovery linac driving FEL is discussed.

  1. Muon Muon Collider: Feasibility Study

    SciTech Connect

    Gallardo, J.C.; Palmer, R.B.; Tollestrup, A.V.; Sessler, A.M.; Skrinsky, A.N.; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  2. (Studies of high energy phenomena using muons)

    SciTech Connect

    Not Available

    1991-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract FG02-91ER40641 during the period from March 1991 to December 1991. Our group has three main efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789. Finally, we are also members of the SDC collaboration at the SSC.

  3. [Experimental and theoretical high energy physics program

    SciTech Connect

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac{endash}Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e{sup +}e{sup {minus}} collisions at CERN; {bar p}{endash}p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab. (RWR)

  4. Polarized proton collider at RHIC

    NASA Astrophysics Data System (ADS)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S. Y.; Luccio, A.; MacKay, W. W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A. N.

    2003-03-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998 [2]), reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to s=500 GeV.

  5. Research supported by the department of energy Task C: Experimental high energy physics. 1995 Final report

    SciTech Connect

    Brau, J.

    1996-07-01

    This report describes work of the University of Oregon high-energy physics group related to the Stanford Linear Detector, LEP`s OPAL detector, the NuTeV experiment at Fermilab, the SSC`s GEM detector, and top-quark studies at the Next Linear Collider. 160 refs., 53 figs., 12 tabs.

  6. Generating Polarized High-Brightness Muon Beams With High-Energy Gammas

    SciTech Connect

    Yakimenko, Vitaly

    2009-01-22

    Hadron colliders are impractical at very high energies as effective interaction energy is a fraction of the energies of the beams and luminosity must rise as energy squared. Further, the prevailing gluon-gluon background radiation makes it difficult to sort out events. e{sup +}e{sup -} colliders, on other hand, are constrained at TeV energies by beamstrahlung radiation and also by cost as long linacs are required to avoid synchrotron radiation in the rings. A muon collider will have the same advantages in energy reach as an e{sup +}e{sup -} collider, but without prohibitive beamstrahlung- and synchrotron- radiation. Generation of the high-brightness polarized muon ({mu}{sup -}{mu}{sup +}) beams through gamma conversion into pairs in the nuclei field is considered in this paper. The dominant effect in the interaction of the high-energy photons with the solid target will be the production of electron-positron pairs. The low-phase space of the resulting muon beams adequately compensates for the small probability of generating a {mu}{sup -}{mu}{sup +} pair.

  7. ACCELERATING POLARIZED PROTONS TO HIGH ENERGY.

    SciTech Connect

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; BLASKIEWICZ, M.; BRAVAR, A.; BRENNAN, J.M.; BRUNO, D.; BUNCE, G.; ET AL.

    2006-10-02

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

  8. Cosmic ray antiprotons at high energies

    NASA Astrophysics Data System (ADS)

    Winkler, Martin Wolfgang

    2017-02-01

    Cosmic ray antiprotons provide a powerful tool to probe dark matter annihilations in our galaxy. The sensitivity of this important channel is, however, diluted by sizable uncertainties in the secondary antiproton background. In this work, we improve the calculation of secondary antiproton production with a particular focus on the high energy regime. We employ the most recent collider data and identify a substantial increase of antiproton cross sections with energy. This increase is driven by the violation of Feynman scaling as well as by an enhanced strange hyperon production. The updated antiproton production cross sections are made publicly available for independent use in cosmic ray studies. In addition, we provide the correlation matrix of cross section uncertainties for the AMS-02 experiment. At high energies, the new cross sections improve the compatibility of the AMS-02 data with a pure secondary origin of antiprotons in cosmic rays.

  9. Comparing Tsallis and Boltzmann temperatures from relativistic heavy ion collider and large hadron collider heavy-ion data

    NASA Astrophysics Data System (ADS)

    Gao, Y.-Q.; Liu, F.-H.

    2016-03-01

    The transverse momentum spectra of charged particles produced in Au + Au collisions at the relativistic heavy ion collider and in Pb + Pb collisions at the large hadron collider with different centrality intervals are described by the multisource thermal model which is based on different statistic distributions for a singular source. Each source in the present work is described by the Tsallis distribution and the Boltzmann distribution, respectively. Then, the interacting system is described by the (two-component) Tsallis distribution and the (two-component) Boltzmann distribution, respectively. The results calculated by the two distributions are in agreement with the experimental data of the Solenoidal Tracker At Relativistic heavy ion collider, Pioneering High Energy Nuclear Interaction eXperiment, and A Large Ion Collider Experiment Collaborations. The effective temperature parameters extracted from the two distributions on the descriptions of heavy-ion data at the relativistic heavy ion collider and large hadron collider are obtained to show a linear correlation.

  10. Influence on collective effects on the performance of high-luminosity colliders

    NASA Astrophysics Data System (ADS)

    Zisman, Michael S.

    1990-10-01

    The design of a high-luminosity electron-position collider to study B physics is a challenging task from many points of view. In this paper we consider the influence of collective effects on the machine performance; most of our findings are ``generic,'' in the sense that they depend rather weakly on the details of the machine design. Both single-bunch and coupled-bunch instabilities are described and their effects are estimated based upon an example machine design (APIARY-IV). In addition, we examine the possibility of emittance growth from intrabeam scattering and calculate the beam lifetime from both Touschek and gas scattering. We find that the single-bunch instabilities should not lead to difficulty, and that the emittance growth is essentially negligible. At a background gas pressure of 10 nTorr, beam lifetimes of only a few hours are expected. Multibunch growth rates are very severe, even when using an optimized RF system consisting of single-cell, room-temperature RF cavities with geometrical shapes typical of superconducting cavities. Thus, a powerful feedback system will be required. In terms of collective effects, it does not appear that there are any fundamental problems standing in the way of successfully designing and building a high-luminosity B factory.

  11. Influence on collective effects on the performance of high-luminosity colliders

    SciTech Connect

    Zisman, M.S. )

    1990-10-10

    The design of a high-luminosity electron-position collider to study B physics is a challenging task from many points of view. In this paper we consider the influence of collective effects on the machine performance; most of our findings are generic,'' in the sense that they depend rather weakly on the details of the machine design. Both single-bunch and coupled-bunch instabilities are described and their effects are estimated based upon an example machine design (APIARY-IV). In addition, we examine the possibility of emittance growth from intrabeam scattering and calculate the beam lifetime from both Touschek and gas scattering. We find that the single-bunch instabilities should not lead to difficulty, and that the emittance growth is essentially negligible. At a background gas pressure of 10 nTorr, beam lifetimes of only a few hours are expected. Multibunch growth rates are very severe, even when using an optimized RF system consisting of single-cell, room-temperature RF cavities with geometrical shapes typical of superconducting cavities. Thus, a powerful feedback system will be required. In terms of collective effects, it does not appear that there are any fundamental problems standing in the way of successfully designing and building a high-luminosity B factory.

  12. Influence of collective effects on the performance of high-luminosity colliders

    SciTech Connect

    Zisman, M.S. )

    1990-05-25

    The design of a high-luminosity electron-positron collider to study B physics is a challenging task from many points of view. In this paper we consider the influence of collective effects on the machine performance; most of our findings are generic,'' in the sense that they depend rather weakly on the details of the machine design. Both single-bunch and coupled-bunch instabilities are described and their effects are estimated based upon an example machine design (APIARY-IV). In addition, we examine the possibility of emittance growth from intrabeam scattering and calculate the beam lifetime from both Touschek and gas scattering. We find that the single-bunch instabilities should not lead to difficulty, and that the emittance growth is essentially negligible. At a background gas pressure of 10 nTorr, beam lifetimes of only a few hours are expected. Multibunch growth rates are very severe, even when using an optimized RF system consisting of single-cell, room-temperature RF cavities with geometrical shapes typical of superconducting cavities. Thus, a powerful feedback system will be required. In terms of collective effects, it does not appear that there are any fundamental problems standing in the way of successfully designing and building a high-luminosity B factory. 15 refs., 21 figs., 5 tabs.

  13. High-Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Colliders

    NASA Astrophysics Data System (ADS)

    Tantawi, Sami G.; Tamura, Fumihiko

    2000-04-01

    We describe the potential of semiconductor X-band RF switch arrays as a means of developing high power RF pulse compression systems for future linear colliders. The switch systems described here have two designs. Both designs consist of two 3dB hybrids and active modules. In the first design the module is composed of a cascaded active phase shifter. In the second design the module uses arrays of SPST (Single Pole Single Throw) switches. Each cascaded element of the phase shifter and the SPST switch has similar design. The active element consists of symmetrical three-port tee-junctions and an active waveguide window in the symmetrical arm of the tee-junction. The design methodology of the elements and the architecture of the whole switch system are presented. We describe the scaling law that governs the relation between power handling capability and number of elements. The design of the active waveguide window is presented. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of tens of megawatts at X-band.

  14. The effect of neutron skin on inclusive prompt photon production in Pb + Pb collisions at Large Hadron Collider energies

    NASA Astrophysics Data System (ADS)

    De, Somnath

    2017-04-01

    Recent experiments on lead ({{{Pb}}}82208) nuclei have observed the celebrated phenomenon of the neutron skin thickness of low energy nuclear physics. Skin thickness provides a measure of the extension of the spatial distribution of neutrons inside the atomic nucleus than protons. We have studied the effect of neutron skin thickness on inclusive prompt photon production in Pb + Pb collisions at Large Hadron Collider energies. We have calculated the ‘central-to-peripheral ratio’ ({R}{cp}) of prompt photon production with and without accounting for the neutron skin effect. The neutron skin causes a characteristic enhancement of the ratio, in particular at forward rapidity, which is distinguishable in our calculation. However, a very precise direct photon measurement up to large transverse momenta would be necessary to constrain the feature in experiment.

  15. Drag of heavy quarks in quark gluon plasma at energies available at the CERN Large Hadron Collider (LHC)

    SciTech Connect

    Das, Santosh K.; Alam, Jan-e; Mohanty, Payal

    2010-07-15

    The drag and diffusion coefficients of charm and bottom quarks propagating through quark gluon plasma (QGP) have been evaluated for conditions relevant to nuclear collisions at the Large Hadron Collider (LHC). The dead cone and Landau-Pomeronchuk-Migdal (LPM) effects on radiative energy loss of heavy quarks have been considered. Both radiative and collisional processes of energy loss are included in the effective drag and diffusion coefficients. With these effective transport coefficients, we solve the Fokker-Plank (FP) equation for the heavy quarks executing Brownian motion in the QGP. The solution of the FP equation has been used to evaluate the nuclear suppression factor, R{sub AA}, for the nonphotonic single-electron spectra resulting from the semileptonic decays of hadrons containing charm and bottom quarks. The effects of mass on R{sub AA} have also been highlighted.

  16. Rf System Requirements for JLab’s MEIC Collider Ring

    SciTech Connect

    Wang, Shaoheng; Li, Rui; Rimmer, Robert A.; Wang, Haipeng; Zhang, Yuhong

    2013-06-01

    The Medium-energy Electron Ion Collider (MEIC), proposed by Jefferson Lab, consists of a series of accelerators. At the top energy are the electron and ion collider rings. For the ion ring, it accelerates five long ion bunches to colliding energy and rebunches ions into a train of very short bunches before colliding. A set of low frequency RF system is needed for the long ion bunch energy ramping. Another set of high frequency RF cavities is needed to rebunch ions. For the electron ring, superconducting RF (SRF) cavities are needed to compensate the synchrotron radiation energy loss. The impedance of the SRF cavities must be low enough to keep the high current electron beam stable. The preliminary design requirements of these RF cavities are presented.

  17. Future Accelerator Challenges in Support of High-Energy Physics

    SciTech Connect

    Zisman, Michael S.; Zisman, M.S.

    2008-05-03

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision.

  18. Future Electron-Hadron Colliders

    SciTech Connect

    Litvinenko, V.

    2010-05-23

    Outstanding research potential of electron-hadron colliders (EHC) was clearly demonstrated by first - and the only - electron-proton collider HERA (DESY, Germany). Physics data from HERA revealed new previously unknown facets of Quantum Chromo-Dynamics (QCD). EHC is an ultimate microscope probing QCD in its natural environment, i.e. inside the hadrons. In contrast with hadrons, electrons are elementary particles with known initial state. Hence, scattering electrons from hadrons provides a clearest pass to their secrets. It turns EHC into an ultimate machine for high precision QCD studies and opens access to rich physics with a great discovery potential: solving proton spin puzzle, observing gluon saturation or physics beyond standard model. Access to this physics requires high-energy high-luminosity EHCs and a wide reach in the center-of-mass (CM) energies. This paper gives a brief overview of four proposed electron-hadron colliders: ENC at GSI (Darmstadt, Germany), ELIC/MEIC at TJNAF (Newport News, VA, USA), eRHIC at BNL (Upton, NY, USA) and LHeC at CERN (Geneva, Switzerland). Future electron-hadron colliders promise to deliver very rich physics not only in the quantity but also in the precision. They are aiming at very high luminosity two-to-four orders of magnitude beyond the luminosity demonstrated by the very successful HERA. While ENC and LHeC are on opposite side of the energy spectrum, eRHIC and ELIC are competing for becoming an electron-ion collider (EIC) in the U.S. Administrations of BNL and Jlab, in concert with US DoE office of Nuclear Physics, work on the strategy for down-selecting between eRHIC and ELIC. The ENC, EIC and LHeC QCD physics programs to a large degree are complimentary to each other and to the LHC physics. In last decade, an Electron Ion Collider (EIC) collaboration held about 25 collaboration meetings to develop physics program for EIC with CM energy {approx}100 GeV. One of these meetings was held at GSI, where ENC topic was in the

  19. Influence of collective effects on the performance of high-luminosity colliders

    SciTech Connect

    Zisman, M.S.

    1990-04-01

    The design of a high-luminosity electron-positron collider to study B physics is a challenging task from many points of view. In this paper we consider the influence of collective effects on the machine performance; most of our findings are generic,'' in the sense that they depend rather weakly on the details of the machine design. Both single-bunch and coupled-bunch instabilities are described and their effects are estimated based upon an example machine design (APIARY-IV). In addition, we examine the possibility of emittance growth from intrabeam scattering and calculate the beam lifetime from both Touschek and gas scattering. We find that the single-bunch instabilities should not lead to difficulty, and that the emittance growth is essentially negligible. At a background gas pressure of 10 nTorr, beam lifetimes of only a few hours are expected. Multibunch growth rates are very severe, even when using an optimized RF system consisting of single-cell, room-temperature RF cavities with geometrical shapes typical of superconducting cavities. Thus, a powerful feedback system will be required. In terms of collective effects, it does not appear

  20. Production of high-beta magnetised plasmas by colliding supersonic flows from inverse wire arrays

    NASA Astrophysics Data System (ADS)

    Hare, Jack; Suttle, Lee; Lebedev, Sergey; Bennett, Matthew; Burdiak, Guy; Clayson, Thomas; Suzuki-Vidal, Francisco; Swadling, George; Patankar, Siddharth; Robinson, Timothy; Stuart, Nicholas; Smith, Roland; Yang, Qingguo; Wu, Jian; Rozmus, Wojciech

    2015-11-01

    HEDP often exhibit a high plasma β and an electron Hall parameter greater than one. This results in a complex interplay between the transport of heat and magnetic fields, relevant to the Magnetised Liner Inertial Fusion (MagLIF) concept. We can produce such plasmas by colliding two supersonic quasi-planar flows from two adjacent inverse wire arrays made from carbon. The standing shock formed by the collision heats and compresses the plasma. The plasma flows advect magnetic fields which are perpendicular to the flow direction. Depending on the experimental set up, this can result in either flux compression or reconnection in the interaction region. The experiments are conducted on MAGPIE (1.4 MA, 250 ns current pulse). The formed shock is stable over long timescales (~100 ns), and the electron temperature (100 eV) is close to the ion temperature (500 eV), measured by spatially resolved Thomson scattering. Magnetic fields above 5 T is observed using a Faraday rotation diagnostic, and an electron density of around 5x1017 cm-3 is measured by interferometry.

  1. Development of the Continuous Acquisition Pixel (CAP) sensor for high luminosity lepton colliders

    NASA Astrophysics Data System (ADS)

    Varner, G.; Aihara, H.; Barbero, M.; Bozek, A.; Browder, T.; Hazumi, M.; Kennedy, J.; Martin, E.; Mueller, J.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Stanič, S.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.; Yang, Q.; Yarema, R.

    2006-09-01

    A future higher luminosity B-factory detector and concept study detectors for the proposed International Linear Collider require precision vertex reconstruction while coping with high track densities and radiation exposures. Compared with current silicon strip and hybrid pixels, a significant reduction in the overall detector material thickness is needed to achieve the desired vertex resolution. Considerable progress in the development of thin CMOS-based Monolithic Active Pixel Sensors (MAPS) in recent years makes them a viable technology option and feasibility studies are being actively pursued. The most serious concerns are their radiation hardness and their readout speed. To address these, several prototypes denoted as the Continuous Acquisition Pixel (CAP) sensors have been developed and tested. The latest of the CAP sensor prototypes is CAP3, designed in the TSMC 0.25 μm process with a 5-deep Correlated Double Sample (CDS) pair pipeline in each pixel. A setup with several CAP3 sensors is under evaluation to assess the performance of a full-scale pixel readout system running at realistic readout speed. Given the similarity in the occupancy numbers and hit throughput requirements, per unit area, between a Belle vertex detector upgradation and the requirements for a future ILC pixel detector, this effort can be considered a small-scale functioning prototype for such a future system. The results and plans for the next stages of R&D towards a full Belle Pixel Vertex Detector (PVD) are presented.

  2. Influence of collective effects on the performance of high-luminosity colliders

    NASA Astrophysics Data System (ADS)

    Zisman, Michael S.

    1990-04-01

    The design of a high-luminosity electron-positron collider to study B physics is a challenging task from many points of view. In this paper we consider the influence of collective effects on the machine performance; most of our findings are generic, in the sense that they depend rather weakly on the details of the machine design. Both single-bunch and coupled-bunch instabilities are described and their effects are estimated based upon an example machine design (APIARY-IV). In addition, we examine the possibility of emittance growth from intrabeam scattering and calculate the beam lifetime from both Touschek and gas scattering. We find that the single-bunch instabilities should not lead to difficulty, and that the emittance growth is essentially negligible. At a background gas pressure of 10 nTorr, beam lifetimes of only a few hours are expected. Multibunch growth rates are very severe, even when using an optimized RF system consisting of single-cell, room-temperature RF cavities with geometrical shapes typical of superconducting cavities. Thus, a powerful feedback system will be required. In terms of collective effects, it does not appear.

  3. B_c Meson Production Around the Z^0 Peak at a High Luminosity e^+ e^- Collider

    SciTech Connect

    Yang, Zhi; Wu, Xing-Gang; Chen, Gu; Liao, Qi-Li; Zhang, Jia-Wei; /Chongqing U.

    2012-05-22

    Considering the possibility to build an e{sup +}e{sup -} collider at the energies around the Z{sup 0}-boson resonance with a planned luminosity so high as L {proportional_to} 10{sup 34} {approx} 10{sup 36} cm{sup -2}s{sup -1} (super Z-factory), we make a detailed discussion on the (c{bar b})-quarkonium production through e{sup +}e{sup -} {yields} (c{bar b})[n] + b + {bar c} within the framework of non-relativistic QCD. Here [n] stands for the Fock-states |(c{sub b}){sub 1}[{sup 1}S{sub 0}]>, |(c{bar b})8[{sup 1}S{sub 0}]g>, |(c{bar b} ){sub 1}[{sup 3}S{sub 1}]>, |(c{bar b}){sub 8}[{sup 3}S{sub 1}]g>, |(c{bar b}){sub 1}[{sup 1}P{sub 1}]> and |(c{bar b}){sub 1}[{sup 3}P{sub J}]> (with J = (1, 2, 3)) respectively. To simplify the hard-scattering amplitude as much as possible and to derive analytic expressions for the purpose of future events simulation, we adopt the 'improved trace technology' to do our calculation, which deals with the hard scattering amplitude directly at the amplitude level other than the conventional way at the squared-amplitude level. Total cross-section uncertainties caused by the quark masses are predicted by taking m{sub c} = 1.50 {+-} 0.30 GeV and m{sub b} = 4.90 {+-} 0.40 GeV. If all higher (c{bar b})-quarkonium states decay to the ground state B{sub c} (|(c{bar b}){sub 1}[{sup 1}S{sub 0}]>) with 100% efficiency, we obtain {sigma}{sub e{sup +}+e{sup -}{yields}B{sub c}+b+{bar c}} = 5.190{sub -2.419}{sup +6.222} pb, which shows that about 10{sup 5} {approx} 10{sup 7} B{sub c} events per operation year can be accumulated in the super Z-factory. If taking the collider energy runs slightly off the Z{sup 0}-peak, i.e. {radical}S = (1.00 {+-} 0.05)m{sub Z}, the total cross-section shall be lowered by about one-order from its peak value. Such a super Z-factory shall provide another useful platform to study the properties of B{sub c} meson, or even the properties of its excited P-wave states, in addition to its production at the hadronic colliders

  4. High-energy detector

    DOEpatents

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  5. High energy physics at Brookhaven National Laboratory

    SciTech Connect

    Samios, N.P.

    1982-01-01

    The high energy plans at BNL are centered around the AGS and ISABELLE, or a variant thereof. At present the AGS is maintaining a strong and varied program. This last year a total of 4 x 10/sup 19/ protons were delivered on target in a period of approximately 20 weeks. Physics interest is very strong, half of the submitted proposals are rejected (thereby maintaining high quality experiments) and the program is full over the next two years. The future colliding beam facility will utilize the AGS as an injector and will be a dedicated facility. It will have six intersection regions, run > 10/sup 7/ sec/year, and explore a new domain of energy and luminosity. Common to all the considered alternatives is a large aperture proton ring. These possible choices involve pp, ep, and heavy ion variants. The long term philosophy is to run the AGS as much as possible, continuously to upgrade it in performance and reliability, and then to phase it down as the new collider begins operation. (WHK)

  6. Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

    SciTech Connect

    Collaboration: ALICE Collaboration

    2016-01-01

    ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density ρ{sub μ} > 5.9 m{sup −2}. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 10{sup 16} eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. The development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.

  7. Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

    SciTech Connect

    Adam, J.

    2016-01-19

    ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. Here, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. Our analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density rho(mu) > 5.9 m(-2). Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 10(16) eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. Furthermore, the development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.

  8. Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

    DOE PAGES

    Adam, J.

    2016-01-19

    ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. Here, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. Our analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more thanmore » 100 reconstructed muons and corresponding to a muon areal density rho(mu) > 5.9 m(-2). Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 10(16) eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. Furthermore, the development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.« less

  9. High energy collision of two particles in wormhole spacetimes

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Naoki; Bambi, Cosimo

    2015-04-01

    We study the collision of two particles in the Teo wormhole spacetime, in which the wormhole is stationary and axisymmetric. We show that a nonrotating Teo wormhole cannot be a high energy particle collider, while a rotating Teo wormhole can be used to accelerate particles and create high energy collisions because of the deep effective potential of the colliding particles. The process is different from that in the vicinity of a near-extremal black hole, since here there is no event horizon. This is the first example of particle collision with high center-of-mass energy in a spacetime with no event horizon and no naked singularity and not being extremal in a clear sense. The process can unlikely have direct implications for astrophysical observations, but it is interesting as a tool to investigate wormhole instabilities.

  10. The evolution of high energy accelerators

    SciTech Connect

    Courant, E.D.

    1994-08-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.

  11. Heavy quarkonium production at collider energies: Partonic cross section and polarization

    SciTech Connect

    Qiu, Jian -Wei; Kang, Zhong -Bo; Ma, Yan -Qing; Sterman, George

    2015-01-27

    We calculate the O(α³s) short-distance, QCD collinear-factorized coefficient functions for all partonic channels that include the production of a heavy quark pair at short distances. Thus, this provides the first power correction to the collinear-factorized inclusive hadronic production of heavy quarkonia at large transverse momentum, pT, including the full leading-order perturbative contributions to the production of heavy quark pairs in all color and spin states employed in NRQCD treatments of this process. We discuss the role of the first power correction in the production rates and the polarizations of heavy quarkonia in high-energy hadronic collisions. The consistency of QCD collinear factorization and nonrelativistic QCD factorization applied to heavy quarkonium production is also discussed.

  12. Heavy quarkonium production at collider energies: Partonic cross section and polarization

    DOE PAGES

    Qiu, Jian -Wei; Kang, Zhong -Bo; Ma, Yan -Qing; ...

    2015-01-27

    We calculate the O(α³s) short-distance, QCD collinear-factorized coefficient functions for all partonic channels that include the production of a heavy quark pair at short distances. Thus, this provides the first power correction to the collinear-factorized inclusive hadronic production of heavy quarkonia at large transverse momentum, pT, including the full leading-order perturbative contributions to the production of heavy quark pairs in all color and spin states employed in NRQCD treatments of this process. We discuss the role of the first power correction in the production rates and the polarizations of heavy quarkonia in high-energy hadronic collisions. The consistency of QCD collinearmore » factorization and nonrelativistic QCD factorization applied to heavy quarkonium production is also discussed.« less

  13. High energy physics at UC Riverside

    SciTech Connect

    1997-07-01

    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given.

  14. Power Supplies for High Energy Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  15. Unparticles: Scales and high energy probes

    SciTech Connect

    Bander, Myron; Feng, Jonathan L.; Rajaraman, Arvind; Shirman, Yuri

    2007-12-01

    Unparticles from hidden conformal sectors provide qualitatively new possibilities for physics beyond the standard model. In the theoretical framework of minimal models, we clarify the relation between energy scales entering various phenomenological analyses. We show that these relations always counteract the effective field theory intuition that higher dimension operators are more highly suppressed, and that the requirement of a significant conformal window places strong constraints on possible unparticle signals. With these considerations in mind, we examine some of the most robust and sensitive probes and explore novel effects of unparticles on gauge coupling evolution and fermion production at high energy colliders. These constraints are presented both as bounds on four-fermion interaction scales and as constraints on the fundamental parameter space of minimal models.

  16. Single top quark production in heavy ion collisions at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Baskakov, A. V.; Boos, E. E.; Dudko, L. V.; Lokhtin, I. P.; Snigirev, A. M.

    2015-10-01

    The article presents analysis of the single top quark production in PbPb collisions at the CERN Large Hadron Collider at center-of-mass energy 5.5 TeV per nucleon pair. The analysis is performed with CompHEP and PYQUEN event generators. The neutron and proton content in the nuclei is taken into account. NLO precision has been implemented to simulate kinematic properties and rate of single top production. The modification of different characteristics of single top quark decay products due to interactions of jet partons in quark-gluon medium, and the specific charge asymmetry of top/antitop quark yields due to the isospin effect are evaluated.

  17. High energy beam lines

    NASA Astrophysics Data System (ADS)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  18. Experimental High Energy Physics Research

    SciTech Connect

    Hohlmann, Marcus

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 GeV for a Z

  19. The Next Linear Collider: NLC2001

    SciTech Connect

    D. Burke et al.

    2002-01-14

    Recent studies in elementary particle physics have made the need for an e{sup +}e{sup -} linear collider able to reach energies of 500 GeV and above with high luminosity more compelling than ever [1]. Observations and measurements completed in the last five years at the SLC (SLAC), LEP (CERN), and the Tevatron (FNAL) can be explained only by the existence of at least one particle or interaction that has not yet been directly observed in experiment. The Higgs boson of the Standard Model could be that particle. The data point strongly to a mass for the Higgs boson that is just beyond the reach of existing colliders. This brings great urgency and excitement to the potential for discovery at the upgraded Tevatron early in this decade, and almost assures that later experiments at the LHC will find new physics. But the next generation of experiments to be mounted by the world-wide particle physics community must not only find this new physics, they must find out what it is. These experiments must also define the next important threshold in energy. The need is to understand physics at the TeV energy scale as well as the physics at the 100-GeV energy scale is now understood. This will require both the LHC and a companion linear electron-positron collider. A first Zeroth-Order Design Report (ZDR) [2] for a second-generation electron-positron linear collider, the Next Linear Collider (NLC), was published five years ago. The NLC design is based on a high-frequency room-temperature rf accelerator. Its goal is exploration of elementary particle physics at the TeV center-of-mass energy, while learning how to design and build colliders at still higher energies. Many advances in accelerator technologies and improvements in the design of the NLC have been made since 1996. This Report is a brief update of the ZDR.

  20. Implications of HARP Results for the Energy of the Proton Driver for a Neutrino Factory and Muon Collider

    SciTech Connect

    Strait, J.; Mokhov, N.V.; Striganov, S.I.; /Fermilab

    2010-06-09

    Cross-section data from the HARP experiment for pion production by protons from a tantalum target have been convoluted with the acceptance of the front-end channel for the proposed neutrino factory or muon collider and integrated over the full phase space measured by HARP, to determine the beam-energy dependence of the muon yield. This permits a determination of the optimal beam energy for the proton driver for these projects. The cross-section data are corrected for the beam-energy dependent 'amplification' due to the development of hadronic showers in a thick target. The conclusion is that, for constant beam power, the yield is maximum for a beam energy of about 7 GeV, but it is within 10% of this maximum for 4 < T{sub beam} < 11 GeV, and within 20% of the maximum for T{sub beam} as low as 2 GeV. This result is insensitive to which of the two HARP groups results are used, and to which pion generator is used to compute the thick target effects.

  1. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed by members of the USRA (Universities Space Research Association) contract team during the six months during the reporting period (10/95 - 3/96) and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science, Archive Research Center (HEASARC), and others.

  2. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed-by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, visiting the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA); X-ray Timing Experiment (XTE); X-ray Spectrometer (XRS); Astro-E; High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  3. Beam-energy dependence of charge balance functions from Au + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2016-08-16

    Balance functions have been measured in terms of relative pseudorapidity ( Δη ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider (RHIC) from Au + Au collisions atmore » $$\\sqrt{s}$$$_{NN}$$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at $$\\sqrt{s}$$$_{NN}$$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). Finally, the narrowing of the balance function in central collisions at $$\\sqrt{s}$$$_{NN}$$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.« less

  4. Beam-energy dependence of charge balance functions from Au + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider

    SciTech Connect

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, H. F.; Cheng, J.; Cherney, M.; Christie, W.; Codrington, M. J. M.; Contin, G.; Crawford, H. J.; Cui, X.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng,; Filip, P.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Han, L. -X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Z. M.; Li, X.; Li, W.; Li, Y.; Li, X.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, R. M.; Ma, Y. G.; Magdy, N.; Mahapatra, D. P.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solanki, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X. M.; Sun, Z.; Sun, Y.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Takahashi, J.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, H.; Wang, F.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, N.; Xu, Z.; Xu, H.; Xu, Y.; Xu, Q. H.; Yan, W.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I. -K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Z. P.; Zhang, J. B.; Zhang, J. L.; Zhang, Y.; Zhang, S.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, Y. H.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.

    2016-08-16

    Balance functions have been measured in terms of relative pseudorapidity ( Δη ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider (RHIC) from Au + Au collisions at $\\sqrt{s}$$_{NN}$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at $\\sqrt{s}$$_{NN}$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). Finally, the narrowing of the balance function in central collisions at $\\sqrt{s}$$_{NN}$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.

  5. Beam-energy dependence of charge balance functions from Au + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, H. F.; Cheng, J.; Cherney, M.; Christie, W.; Codrington, M. J. M.; Contin, G.; Crawford, H. J.; Cui, X.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Filip, P.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Z. M.; Li, X.; Li, W.; Li, Y.; Li, X.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, R. M.; Ma, Y. G.; Magdy, N.; Mahapatra, D. P.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solanki, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X. M.; Sun, Z.; Sun, Y.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Takahashi, J.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, H.; Wang, F.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, N.; Xu, Z.; Xu, H.; Xu, Y.; Xu, Q. H.; Yan, W.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Z. P.; Zhang, J. B.; Zhang, J. L.; Zhang, Y.; Zhang, S.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, Y. H.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-08-01

    Balance functions have been measured in terms of relative pseudorapidity (Δ η ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at √{sNN}=7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at √{sNN}=2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at √{sNN}=7.7 GeV implies that a QGP is still being created at this relatively low energy.

  6. The centre-of-mass energy of two colliding particles in STU black holes

    NASA Astrophysics Data System (ADS)

    Saadat, Hassan

    2014-12-01

    In this paper we consider collision of two particle near the STU black hole and calculate center of mass energy. In the case of uncharged black hole we find that the maximum energy obtained near the black hole horizon which similarly happen for charged black hole. We verify that the black hole charge may be decreased or increased the center of mass energy near the black hole horizon.

  7. High Energy Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An overview of the High Energy Astronomy Observatory 2 contributions to X-ray astronomy is presented along with a brief description of the satellite and onboard telescope. Observations relating to galaxies and galactic clusters, black holes, supernova remnants, quasars, and cosmology are discussed.

  8. High energy particle astronomy.

    NASA Technical Reports Server (NTRS)

    Buffington, A.; Muller, R. A.; Smith, L. H.; Smoot, G. F.

    1972-01-01

    Discussion of techniques currently used in high energy particle astronomy for measuring charged and neutral cosmic rays and their isotope and momentum distribution. Derived from methods developed for accelerator experiments in particle physics, these techniques help perform important particle astronomy experiments pertaining to nuclear cosmic ray and gamma ray research, electron and position probes, and antimatter searches.

  9. High energy factorization in electroweak processes

    NASA Astrophysics Data System (ADS)

    Camici, G.; Ciafaloni, M.

    1994-06-01

    We propose to use high energy, k⊥-dependent, factorization (HEF) in electroweak fusion processes in order to systematically improve the effective W approximation (EWA) at collider energies. Starting from the example of top production, we show that HEF provides correctly all quasi constant terms in the production cross section, i.e. not only the ones O(1/ Mw2) which are typical of the EWA and are due to longitudinal polarizations of exchanged bosons, but also the ones O(1/ Mw2) which are partly due to transverse polarizations. It turns out that latter contributions cannot be accounted for by collinear factorization only, but also come from longitudinal off-shell effects, typical of broken gauge theories, which are explicitly evaluated here.

  10. High-Energy QCD Asymptotics of Photon--Photon Collisions

    SciTech Connect

    Brodsky, Stanley J.

    2002-07-26

    The high-energy behavior of the total cross section for highly virtual photons, as predicted by the BFKL equation at next-to-leading order (NLO) in QCD, is discussed. The NLO BFKL predictions, improved by the BLM optimal scale setting, are in good agreement with recent OPAL and L3 data at CERN LEP2. NLO BFKL predictions for future linear colliders are presented.

  11. Monolithic electronics for nuclear and high-energy physics experiments

    SciTech Connect

    Young, G.R.

    1994-12-31

    Electronic instrumentation for large fixed-target and collider experiments is rapidly moving to the use of highly integrated electronics wherever it is cost effective. This trend is aided by the development of circuit building blocks useful for nuclear and high-energy physics instrumentation and has accelerated recently with the development of monolithic silicon chips with multiple functions on one substrate. Examples of recent developments are given, together with remarks on the rationale for use of monolithic electronics and economic considerations.

  12. Diffusion bonding and brazing of high purity copper for linear collider accelerator structures

    NASA Astrophysics Data System (ADS)

    Elmer, J. W.; Klingmann, J.; van Bibber, K.

    2001-05-01

    Diffusion bonding and brazing of high purity copper were investigated to develop procedures for joining precision machined copper components for the Next Linear Collider (NLC). Diffusion bonds were made over a range of temperatures from 400 °C to 1000 °C, under two different loading conditions [3.45 kPa (0.5 psi) and 3.45 MPa (500 psi)], and on two different diamond machined surface finishes. Brazes were made using pure silver, pure gold, and gold-nickel alloys, and different heating rates produced by both radiation and induction heating. Braze materials were applied by both physical vapor deposition (PVD) and conventional braze alloy shims. Results of the diffusion bonding experiments showed that bond strengths very near that of the copper base metal could be made at bonding temperatures of 700 °C or higher at 3.45 MPa bonding pressure. At lower temperatures, only partial strength diffusion bonds could be made. At low bonding pressures (3.45 kPa), full strength bonds were made at temperatures of 800 °C and higher, while no bonding (zero strength) was observed at temperatures of 700 °C and lower. Observations of the fracture surfaces of the diffusion bonded samples showed the effects of surface finish on the bonding mechanism. These observations clearly indicate that bonding began by point asperity contact, and flatter surfaces resulted in a higher percentage of bonded area under similar bonding conditions. Results of the brazing experiments indicated that pure silver worked very well for brazing under both conventional and high heating rate scenarios. Similarly, pure silver brazed well for both the PVD layers and the braze alloy shims. The gold and gold-containing brazes had problems, mainly due to the high diffusivity of gold in copper. These problems led to the necessity of overdriving the temperature to ensure melting, the presence of porosity in the joint, and very wide braze joints. Based on the overall findings of this study, a two-step joining method

  13. Theoretical High Energy Physics

    SciTech Connect

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  14. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    SciTech Connect

    Not Available

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  15. Precision timing measurements for high energy photons

    SciTech Connect

    Anderson, Dustin; Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si; Zhu, Ren-Yuan

    2014-11-21

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm3 lutetium–yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm3 LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  16. Science and status of the Electron Ion Collider

    NASA Astrophysics Data System (ADS)

    Deshpande, A.

    The US Nuclear Science Advisory Committee (NSAC) recently recommended the construction of a high-luminosity, high-energy Electron Ion Collider (EIC), with polarized beams capable of colliding polarized electrons with polarized proton and light ion beams, and with any nucleus. The s range between 40GeV and 140GeV, and luminosity range from 1033‑34cm‑2s‑1 were recommended. It is anticipated that under the current guidance from the DOE, the collider could become operational in the second half of the 2020’s. This paper summarizes its science and the scope of this over all project.

  17. High energy from space

    NASA Technical Reports Server (NTRS)

    Margon, Bruce; Canizares, Claude; Catura, Richard C.; Clark, George W.; Fichtel, Carl E.; Friedman, Herbert; Giacconi, Riccardo; Grindlay, Jonathan E.; Helfand, David J.; Holt, Stephen S.

    1991-01-01

    The following subject areas are covered: (1) important scientific problems for high energy astrophysics (stellar activity, the interstellar medium in galaxies, supernovae and endpoints of stellar evolution, nucleosynthesis, relativistic plasmas and matter under extreme conditions, nature of gamma-bursts, identification of black holes, active nuclei, accretion physics, large-scale structures, intracluster medium, nature of dark matter, and the X- and gamma-ray background); (2) the existing experimental programs (Advanced X-Ray Astrophysics Facility (AXAF), Gamma Ray Observatory (GRO), X-Ray Timing Explorer (XTE), High Energy Transient Experiment (HETE), U.S. participation in foreign missions, and attached Shuttle and Space Station Freedom payloads); (3) major missions for the 1990's; (4) a new program of moderate missions; (5) new opportunities for small missions; (6) technology development issues; and (7) policy issues.

  18. High energy transients

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.

    1984-01-01

    A meeting was convened on the campus of the University of California at Santa Cruz during the two-week interval July 11 through July 22, 1983. Roughly 100 participants were chosen so as to give broad representation to all aspects of high energy transients. Ten morning review sessions were held in which invited speakers discussed the current status of observations and theory of the above subjects. Afternoon workshops were also held, usually more than one per day, to informally review various technical aspects of transients, confront shortcomings in theoretical models, and to propose productive courses for future research. Special attention was also given to the instrumentation used to study high energy transient and the characteristics and goals of a dedicated space mission to study transients in the next decade were determined. A listing of articles written by various members of the workshop is included.

  19. Compensation of the beam-beam effect in proton-proton colliders

    SciTech Connect

    Tsyganov, E.; Meinke, R.; Nexsen, W.; Zinchenko, A.

    1993-10-01

    Compensation of the beam-beam effect in high-energy proton-proton colliders using a low-energy electron beam is proposed. It is concluded that such compensation looks feasible. Requirements for such a device are formulated.

  20. Time average neutralized migma: A colliding beam/plasma hybrid physical state as aneutronic energy source — A review

    NASA Astrophysics Data System (ADS)

    Maglich, Bogdan C.

    1988-08-01

    A D + beam of kinetic energy Ti = 0.7 MeV was stored in a "simple mirror" magnetic field as self-colliding orbits or migma and neutralized by ambient, oscillating electrons whose bounce frequencies were externally controlled. Space charge density was exceeded by an order of magnitude without instabilities. Three nondestructive diagnostic methods allowed measurements of ion orbit distribution, ion storage times, ion energy distribution, nuclear reaction rate, and reaction product spectrum. Migma formed a disc 20 cm in diameter and 0.5 cm thick. Its ion density was sharply peaked in the center; the ion-to-electron temperature ratio was TiTe ˜ 10 3; ion-electron temperature equilibrium was never reached. The volume average and central D + density were n = 3.2 × 10 9 cm -3 and nc = 3 × 10 10 cm -3 respectively, compared to the space charge limit density nsc = 4 × 10 8 cm -3. The energy confinement time was τc = 20-30 s, limited by the change exchange reactions with the residual gas in the vacuum (5 × 10 -9 Torr). The ion energy loss rate was 1.4 keV/s. None of the instabilities that were observed in mirrors at several orders of magnitude lower density occurred. The proton energy spectrum for dd + d → T + p + 4 MeV shows that dd collided at an average crossing angle of 160°. Evidence for exponential density buildup has also been observed. Relative to Migma III results and measured in terms of the product of ion energy E, density n, and confinement time τ, device performance was improved by a factor of 500. Using the central fast ion density, we obtained the triple product: Tnτ ≅ 4 × 10 14 keV s cm -3, which is greater than that of the best fusion devices. The luminosity (collision rate per unit cross section) was ˜ 10 29 cm -2s -1, with o.7 A ion current through the migma center. The stabilizing features of migma are: (1) large Larmor radius; (2) small canonical angular momentum; (3) short axial length z (disc shape); (4) nonadiabatic motions in r and z

  1. High-energy emission from transients.

    PubMed

    Hinton, J A; Starling, R L C

    2013-06-13

    Cosmic explosions dissipate energy into their surroundings on a very wide range of time scales: producing shock waves and associated particle acceleration. The historical culprits for the acceleration of the bulk of Galactic cosmic rays are supernova remnants: explosions on approximately 10(4) year time scales. Increasingly, however, time-variable emission points to rapid and efficient particle acceleration in a range of different astrophysical systems. Gamma-ray bursts have the shortest time scales, with inferred bulk Lorentz factors of approximately 1000 and photons emitted beyond 100 GeV, but active galaxies, pulsar wind nebulae and colliding stellar winds are all now associated with time-variable emission at approximately teraelectron volt energies. Cosmic photons and neutrinos at these energies offer a powerful probe of the underlying physical mechanisms of cosmic explosions, and a tool for exploring fundamental physics with these systems. Here, we discuss the motivations for high-energy observations of transients, the current experimental situation, and the prospects for the next decade, with particular reference to the major next-generation high-energy observatory, the Cherenkov Telescope Array.

  2. High Energy Polarized e+e- Beams

    NASA Astrophysics Data System (ADS)

    Shatunov, Yu.; Koop, I.; Otboev, A.; Mane, S.

    2016-02-01

    Recently, the wide discussion about Higgs-factory design again returns to problem of high energy polarized electrons and positrons. It’s good known the radiative beam polarization at LEP-collider. It was obtained after spin resonance suppression at Z0 pick, but didn’t appear at energies above 70 GeV due to an enhancement of unavoidable depolarization effects. We examine in this paper various ideas for radiative polarization at TLEP/FCC-ee and formulate some estimates for the polarization buildup time and the asymptotic polarization. Using wigglers, a useful degree of polarization (for energy calibration), with a time constant of about 1 h, may be possible up to the threshold of W pair production. At higher energies such as the threshold of Higgs production, attaining a useful level of polarization may be difficult in a planar ring. With Siberian Snakes, wigglers and some imagination, polarization of reasonable magnitude, with a reasonable time constant (of not more than about 1 h), may be achievable at very high energies.

  3. Collider physics for the late 1980's

    SciTech Connect

    Hinchliffe, I.

    1987-02-27

    Topics in the Standard Model of strong and electroweak interactions and how these topics are relevant for the high energy colliders are discussed. Radiative corrections in the Glashow-Weinberg-Salam model are discussed, stressing how these corrections may be measured at LEP and the SLC. CP violation is discussed, followed by a discussion of the Higgs boson and the searches which can be carried out for it. Some features of quantum chromodynamics are discussed which are relevant to hadron colliders. Some of the problems which the Standard Model does not solve are discussed. 115 refs., 53 figs. (LEW)

  4. Angular correlations in gluon production at high energy

    SciTech Connect

    Kovner, Alex; Lublinsky, Michael

    2011-02-01

    We present a general, model independent argument demonstrating that gluons produced in high energy hadronic collision are necessarily correlated in rapidity and also in the emission angle. The strength of the correlation depends on the process and on the structure/model of the colliding particles. In particular we argue that it is strongly affected (and underestimated) by factorized approximations frequently used to quantify the effect.

  5. High energy physics - The large and the small

    SciTech Connect

    Santoro, Alberto

    2012-09-24

    In this Sixth International School on Field Theory and Gravitation, I was invited to give this talk to the students and researchers of Field Theory mainly about LHC - The Large Hadron Collider and results. I will try to summarize the main daily life of the high energy physics and give an idea about the experiments and the expectations for the near future. I will comment the present results and the prospects to LHC/CMS.

  6. Proposal for a High Energy Nuclear Database

    SciTech Connect

    Brown, D A; Vogt, R

    2005-03-31

    The authors propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, they propose periodically performing evaluations of the data and summarizing the results in topical reviews.

  7. The Muon Collider

    SciTech Connect

    Zisman, Michael S

    2010-05-17

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  8. The Muon Collider

    SciTech Connect

    Zisman, Michael S.

    2011-01-05

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  9. Luminosity, Energy and Polarization Studies for the Linear Collider: Comparing e+e- and e-e- for NLC and TESLA

    SciTech Connect

    Woods, M

    2004-02-25

    We present results from luminosity, energy and polarization studies at a future Linear Collider. We compare e{sup +}e{sup -} and e{sup -}e{sup -} modes of operation and consider both NLC and TESLA beam parameter specifications at a center-of-mass energy of 500 GeV. Realistic colliding beam distributions are used, which include dynamic effects of the beam transport from the Damping Rings to the Interaction Point. Beam-beam deflections scans and their impact for beam-based feedbacks are considered. A transverse kink instability is studied, including its impact on determining the luminosity-weighted center-of-mass energy. Polarimetry in the extraction line from the IP is presented, including results on beam distributions at the Compton IP and at the Compton detector.

  10. High energy electron cooling

    SciTech Connect

    Parkhomchuk, V.

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  11. High energy physics, past, present and future

    NASA Astrophysics Data System (ADS)

    Sugawara, Hirotaka

    2017-03-01

    At the beginning of last century we witnessed the emergence of new physics, quantum theory and gravitational theory, which gave us correct understanding of the world of atoms and deep insight into the structure of universe we live in. Towards the end of the century, string theory emerged as the most promising candidate to unify these two theories. In this talk, I would like to assert that the understanding of the origin of physical constants, ℏ (Planck constant) for quantum theory, and G (Newton’s gravitational constant) for gravitational theory within the framework of string theory is the key to understanding string theory. Then, I will shift to experimental high energy physics and discuss the necessity of world-wide collaboration in the area of superconducting technology which is essential in constructing the 100 TeV hadron collider.

  12. NEUTRINO RADIATION CHALLENGES AND PROPOSED SOLUTIONS FOR MANY-TEV MUON COLLIDERS

    SciTech Connect

    KING,B.J.

    2000-05-05

    Neutrino radiation is expected to impose major design and siting constraints on many-TeV muon colliders. Previous predictions for radiation doses at TeV energy scales are briefly reviewed and then modified for extension to the many-TeV energy regime. The energy-cubed dependence of lower energy colliders is found to soften to an increase of slightly less than quadratic when averaged over the plane of the collider ring and slightly less than linear for the radiation hot spots downstream from straight sections in the collider ring. Despite this, the numerical values are judged to be sufficiently high that any many-TeV muon colliders will likely be constructed on large isolated sites specifically chosen to minimize or eliminate human exposure to the neutrino radiation. It is pointed out that such sites would be of an appropriate size scale to also house future proton-proton and electron-positron colliders at the high energy frontier, which naturally leads to conjecture on the possibilities for a new world laboratory for high energy physics. Radiation dose predictions are also presented for the speculative possibility of linear muon colliders. These have greatly reduced radiation constraints relative to circular muon colliders because radiation is only emitted in two pencil beams directed along the axes of the opposing linacs.

  13. High Energy Physics at the University of Illinois

    SciTech Connect

    Liss, Tony M.; Thaler, Jon J.

    2013-07-26

    This is the final report for DOE award DE-FG02-91ER40677 (“High Energy Physics at the University of Illinois”), covering the award period November 1, 2009 through April 30, 2013. During this period, our research involved particle physics at Fermilab and CERN, particle physics related cosmology at Fermilab and SLAC, and theoretical particle physics. Here is a list of the activities described in the final report: * The CDF Collaboration at the Fermilab Tevatron * Search For Lepton Flavor Violation in the Mu2e Experiment At Fermilab * The ATLAS Collaboration at the CERN Large Hadron Collider * the Study of Dark Matter and Dark Energy: DES and LSST * Lattice QCD * String Theory and Field Theory * Collider Phenomenology

  14. The Tevatron Hadron Collider: A short history

    SciTech Connect

    Tollestrup, A.V.

    1994-11-01

    The subject of this presentation was intended to cover the history of hadron colliders. However this broad topic is probably better left to historians. I will cover a much smaller portion of this subject and specialize my subject to the history of the Tevatron. As we will see, the Tevatron project is tightly entwined with the progress in collider technology. It occupies a unique place among accelerators in that it was the first to make use of superconducting magnets and indeed the basic design now forms a template for all machines using this technology. It was spawned in an incredibly productive era when new ideas were being generated almost monthly and it has matured into our highest energy collider complete with two large detectors that provide the major facility in the US for probing high Pt physics for the coming decade.

  15. Measurement of very forward neutron energy spectra for 7 TeV proton-proton collisions at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Adriani, O.; Berti, E.; Bonechi, L.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Del Prete, M.; Haguenauer, M.; Itow, Y.; Kasahara, K.; Kawade, K.; Makino, Y.; Masuda, K.; Matsubayashi, E.; Menjo, H.; Mitsuka, G.; Muraki, Y.; Okuno, Y.; Papini, P.; Perrot, A.-L.; Ricciarini, S.; Sako, T.; Sakurai, N.; Sugiura, Y.; Suzuki, T.; Tamura, T.; Tiberio, A.; Torii, S.; Tricomi, A.; Turner, W. C.; Zhou, Q. D.

    2015-11-01

    The Large Hadron Collider forward (LHCf) experiment is designed to use the LHC to verify the hadronic-interaction models used in cosmic-ray physics. Forward baryon production is one of the crucial points to understand the development of cosmic-ray showers. We report the neutron-energy spectra for LHC √{ s} = 7 TeV proton-proton collisions with the pseudo-rapidity η ranging from 8.81 to 8.99, from 8.99 to 9.22, and from 10.76 to infinity. The measured energy spectra obtained from the two independent calorimeters of Arm1 and Arm2 show the same characteristic feature before unfolding the detector responses. We unfolded the measured spectra by using the multidimensional unfolding method based on Bayesian theory, and the unfolded spectra were compared with current hadronic-interaction models. The QGSJET II-03 model predicts a high neutron production rate at the highest pseudo-rapidity range similar to our results, and the DPMJET 3.04 model describes our results well at the lower pseudo-rapidity ranges. However, no model perfectly explains the experimental results over the entire pseudo-rapidity range. The experimental data indicate a more abundant neutron production rate relative to the photon production than any model predictions studied here.

  16. International linear collider reference design report

    SciTech Connect

    Aarons, G.

    2007-06-22

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

  17. Soft Fusion Energy Path: Isotope Production in Energy Subcritical/Economy Hypercritical D +D Colliding-Beam Mini Fusion Reactor `Exyder'

    NASA Astrophysics Data System (ADS)

    Hester, Tim; Maglich, Bogdan; Calsec Collaboration

    2015-03-01

    Bethe1 and Sakharov2 argued for soft fusion energy path via isotope production, substantiated by Manheimer3. - Copious T and 3He production4 , 5 from D(d, p) T and D(d, n) 3He reactions in 725 KeV D +D colliding beams was measured in weak-focusing Self-Collider6 , 7 radius 0.15 m, in B = 3.12 T, non-linearly stabilized by electron cloud oscillations8 to confinement time = 24 s. Simulations6 predict that by switching to strong focusing9, 10 deuterons 0.75 MeV each, generate 1 3He +1T +1p + 1n at total input energy cost 10.72 MeV. Economic value of T and 3He is 65 and 120 MeV/atom, respectively. We obtain economic gain 205MeV/10.72 MeV ~ 2,000% i.e. 3He production funds cost of T. If first wall is made of Thorium n's will breed 233U releasing 200 MeV/fission, at neutron cost 5.36 MeV versus 160 MeV in beam on target, resulting in no cost 3He production, valued 75K/g. 1. Physics Today, May 1979, p.44; 2. Memoirs, Vintage Books, (1992); 3. Phys. Today, May 2012 p. 12; 4. Phys. Rev. Lett. 54, 796 (1985); 5. Bull. APS, 57, No. 3 (2012); 6. Part. Acc.1, (1970); 7. ANEUTRONIC FUSION NIM A 271 1-167 (1988); 8. Phys. Rev. Lett. 70, 1818 (1993); 9. Part. Acc. 34, 13 (1990).

  18. 2 x 2 TeV mu(superscript +) mu (superscript) collider

    SciTech Connect

    Mokhov, N.V.; Noble, R.J.

    1996-10-01

    The scenarios for high-luminosity 2 x 2 TeV and 250 x 250 GeV {mu}{sup +}{mu}{sup -} colliders are presented. Having a high physics potential, such a machine has specific physics and technical advantages and disadvantages when compared with an e{sup +}e{sup -} collider. Parameters for the candidate designs and the basic components - proton source, pion production and decay channel, cooling, acceleration and collider storage ring - are considered. Attention is paid to the areas mostly affecting the collider performance: targetry, energy spread, superconducting magnet survival, detector backgrounds, polarization, environmental issues. 13 refs., 9 figs., 4 tabs.

  19. Radio detection of ultra-high energy cosmic neutrinos

    SciTech Connect

    Vieregg, Abigail G.

    2015-07-15

    Ultra-high energy (UHE) neutrino astronomy constitutes a new window of observation onto the UHE universe. The detection and characterization of astrophysical neutrinos at the highest energies (E> 10{sup 18} eV) would reveal the sources of high-energy cosmic rays, the highest energy particles ever seen, and would constrain the evolution of such sources over time. UHE neutrino astrophysics also allows us to probe weak interaction couplings at energies much greater than those available at particle colliders. One promising way of detecting the highest energy neutrinos is through the radio emission created when they interact in a large volume of dielectric, such as ice. Here I discuss current results and future efforts to instrument large volumes of detector material with radio antennas to detect, point back, and characterize the energy of UHE astrophysical neutrinos.

  20. High Energy Astrophysics Mission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Ormes, Jonathan F. (Technical Monitor)

    2000-01-01

    The nature of gravity and its relationship to the other three forces and to quantum theory is one of the major challenges facing us as we begin the new century. In order to make progress we must challenge the current theories by observing the effects of gravity under the most extreme conditions possible. Black holes represent one extreme, where the laws of physics as we understand them break down. The Universe as whole is another extreme, where its evolution and fate is dominated by the gravitational influence of dark matter and the nature of the Cosmological constant. The early universe represents a third extreme, where it is thought that gravity may somehow be unified with the other forces. NASA's "Cosmic Journeys" program is part of a NASA/NSF/DoE tri-agency initiative designed to observe the extremes of gravity throughout the universe. This program will probe the nature of black holes, ultimately obtaining a direct image of the event horizon. It will investigate the large scale structure of the Universe to constrain the location and nature of dark matter and the nature of the cosmological constant. Finally it will search for and study the highest energy processes, that approach those found in the early universe. I will outline the High Energy Astrophysics part of this program.

  1. HIGH ENERGY PHYSICS: CERN Link Breathes Life Into Russian Physics.

    PubMed

    Stone, R

    2000-10-13

    Without fanfare, 600 Russian scientists here at CERN, the European particle physics laboratory, are playing key roles in building the Large Hadron Collider (LHC), a machine that will explore fundamental questions such as why particles have mass, as well as search for exotic new particles whose existence would confirm supersymmetry, a popular theory that aims to unify the four forces of nature. In fact, even though Russia is not one of CERN's 20 member states, most top high-energy physicists in Russia are working on the LHC. Some say their work could prove the salvation of high-energy physics back home.

  2. Investigation of physical structures and interactions at high energy. Progress report, June 1, 192--May 31, 1992

    SciTech Connect

    Anderson, W.E.; Hauptman, J.M.; Qui, J.

    1993-05-31

    This report contains discussions on the following topics: Experimental program at the Fermilab Tevatron Collider: FNAL E-740; Experimental program at the superconducting super collider: Solenoidal detector collaboration; Computation development program at Iowa State University: Batch after twilight running and parallel processing; Experimental program at the University of Hawaii: Deep underwater muon and neutrino detector; Global analysis of parton distributions; high energy direct photon production; photon fragmentation functions; single transverse-spin asymmetry; associated production of Higgs Boson at collider energies; Cronin effect in photoproduction and deeply inelastic scattering; and heavy meson production.

  3. Physics at future hadron colliders

    SciTech Connect

    U. Baur et al.

    2002-12-23

    We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.

  4. Perspectives on future high energy physics

    SciTech Connect

    Samios, N.P.

    1996-12-31

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e{sup +}e{sup {minus}} and {mu}{sup +}{mu}{sup {minus}} colliders. Finally, the international cooperative activities should be strengthened and maintained.

  5. A search for the higgs boson and a search for dark-matter particle with jets and missing transverse energy at collider detector at Fermilab

    SciTech Connect

    Liu, Qiuguang

    2013-05-01

    Finding the standard model Higgs boson and discovering beyond-standard model physics phenomena have been the most important goals for the high-energy physics in the last decades. In this thesis, we present two such searches. First is the search for the low mass standard model Higgs boson produced in association with a vector boson; second is the rst search for a dark-matter candidate (D) produced in association with a top quark (t) in particle colliders. We search in events with energetic jets and large missing transverse energy { a signature characterized by complicated backgrounds { in data collected by the CDF detector with proton-antiproton collisions at p s = 1:96 TeV. We discuss the techniques that have been developed for background modeling, for discriminating signal from background, and for reducing background resulting from detector e ects. In the Higgs search, we report the 95% con dence level upper limits on the pro- duction cross section across masses of 90 to 150 GeV/c2. The expected limits are improved by an average of 14% relative to the previous analysis. The Large Hadron Collider experiments reported a Higgs-like particle with mass of 125 GeV/c2 by study- ing the data collected in year 2011/12. At a Higgs boson mass of 125 GeV/c2, our observed (expected) limit is 3.06 (3.33) times the standard model prediction, corre- sponding to one of the most sensitive searches to date in this nal state. In the dark matter search, we nd the data are consistent with the standard model prediction, thus set 95% con dence level upper limits on the cross section of the process p p ! t + D as a function of the mass of the dark-matter candidate. The xviii upper limits are approximately 0.5 pb for a dark-matter particle with masses in the range of 0 􀀀 150 GeV/c2.

  6. (High energy physics)

    SciTech Connect

    Bonner, B.E.; Roberts, J.B. Jr.

    1991-09-01

    An intense analysis effort on the data we obtained in a seven month run on E704 last year has produced a flood of new results on polarization effects in particle production at 200 GeV/c. We are fortunate to be able to report in detail on those results. Our other Fermilab experiment, E683 (photoproduction of jets) has been delayed an unbelievable amount of time by Fermilab schedule slippages. It was scheduled and ready for beam two years ago As this report is being written, we have been running for two months and are expecting four months of production data taking. In this report we show some of our preliminary results. In addition we are near the end of a six month run on our CERN experiment, NA47 (SMC) which will measure the spin dependent structure functions for the proton and neutron. It is with a sense of relief, mixed with pride, that we report that all the equipment which we constructed for that experiment is currently working as designed. The random coincidence of accelerator schedules has left us slightly dazed, but all experiments are getting done and analyzed in a timely fashion. As members of the Solenoidal Detector Collaboration, we have been preparing for the only currently approved experiment at the SSC. Here we report on our scintillating fiber tracker design and simulation activities. In addition we report the results of our investigation of the detector response to heavy Z particles. Since our last report, we have joined the D0 collaboration with the primary aim of contributing to the D0 upgrade over the next few years. It is also important for us to gain experience in collider physics during the period leading up to the SDC turn-on.

  7. High Energy Density Capacitors

    SciTech Connect

    2010-07-01

    BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

  8. Microbunched electron cooling for high-energy hadron beams.

    PubMed

    Ratner, D

    2013-08-23

    Electron and stochastic cooling are proven methods for cooling low-energy hadron beams, but at present there is no way of cooling hadrons as they near the TeV scale. In the 1980s, Derbenev suggested that electron instabilities, such as free-electron lasers, could create collective space charge fields strong enough to correct the hadron energies. This Letter presents a variation on Derbenev's electron cooling scheme using the microbunching instability as the amplifier. The large bandwidth of the instability allows for faster cooling of high-density beams. A simple analytical model illustrates the cooling mechanism, and simulations show cooling rates for realistic parameters of the Large Hadron Collider.

  9. Indiana University High Energy Physics, Task A. Technical progress report, 1992--1993

    SciTech Connect

    Brabson, B.; Crittenden, R.; Dzierba, A.

    1993-10-01

    This report discusses research at Indians University on the following high energy physics experiments: A search for mesons with unusual quantum numbers; hadronic states produced in association with high-mass dimuons; FNAL E740 (D0); superconducting super collider; and OPAL experiment at CERN.

  10. Slepton Flavor Physics at Linear Colliders

    NASA Astrophysics Data System (ADS)

    Dine, Michael; Grossman, Yuval; Thomas, Scott

    If low energy supersymmetry is realized in nature it is possible that a first generation linear collider will only have access to some of the superpartners with electroweak quantum numbers. Among these, sleptons can provide sensitive probes for lepton flavor violation through potentially dramatic lepton violating signals. Theoretical proposals to understand the absence of low energy quark and lepton flavor changing neutral currents are surveyed and many are found to predict observable slepton flavor violating signals at linear colliders. The observation or absence of such sflavor violation will thus provide important indirect clues to very high energy physics. Previous analyses of slepton flavor oscillations are also extended to include the effects of finite width and mass differences.

  11. Generating high-brightness electron beams via ionization injection by transverse colliding lasers in a plasma-wakefield accelerator.

    PubMed

    Li, F; Hua, J F; Xu, X L; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2013-07-05

    The production of ultrabright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional particle-in-cell simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is reduced, and the injection is localized along the propagation axis of the wake. This minimizes both the initial thermal emittance and the emittance growth due to transverse phase mixing. Simulations show that ultrashort (~8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes, respectively, and a brightness of 1.7×10(19) A rad(-2) m(-2) can be obtained for realistic parameters.

  12. Massive Stars in Colliding Wind Systems: the GLAST Perspective

    SciTech Connect

    Reimer, Anita; Reimer, Olaf; /Stanford U., HEPL /KIPAC, Menlo Park

    2011-11-29

    Colliding winds of massive stars in binary systems are considered as candidate sites of high-energy non-thermal photon emission. They are already among the suggested counterparts for a few individual unidentified EGRET sources, but may constitute a detectable source population for the GLAST observatory. The present work investigates such population study of massive colliding wind systems at high-energy gamma-rays. Based on the recent detailed model (Reimer et al. 2006) for non-thermal photon production in prime candidate systems, we unveil the expected characteristics of this source class in the observables accessible at LAT energies. Combining the broadband emission model with the presently cataloged distribution of such systems and their individual parameters allows us to conclude on the expected maximum number of LAT-detections among massive stars in colliding wind binary systems.

  13. High Energy Physics at Tufts University Final Report

    SciTech Connect

    Goldstein, Gary R.; Oliver, William P.; Napier, Austin; Gallagher, Hugh R.

    2012-07-18

    In this Final Report, we the researchers of the high energy physics group at Tufts University summarize our works and achievements in three frontier areas of elementary particle physics: (i) Neutrino physics at the Intensity Frontier, (ii) Collider physics at the Energy Frontier, and (iii) Theory investigations of spin structure and quark-gluon dynamics of nucleons using quantum chromodynamics. With our Neutrino research we completed, or else brought to a useful state, the following: Data-taking, physics simulations, physics analysis, physics reporting, explorations of matter effects, and detector component fabrication. We conducted our work as participants in the MINOS, NOvA, and LBNE neutrino oscillation experiments and in the MINERvA neutrino scattering experiment. With our Collider research we completed or else brought to a useful state: Data-taking, development of muon system geometry and tracking codes, software validation and maintenance, physics simulations, physics analysis, searches for new particles, and study of top-quark and B-quark systems. We conducted these activities as participants in the ATLAS proton-proton collider experiment at CERN and in the CDF proton-antiproton collider experiment at Fermilab. In our Theory research we developed QCD-based models, applications of spin phenomenology to fundamental systems, fitting of models to data, presenting and reporting of new concepts and formalisms. The overarching objectives of our research work have always been: 1) to test and clarify the predictions of the Standard Model of elementary particle physics, and 2) to discover new phenomena which may point the way to a more unified theoretical framework.

  14. High energy physics at UCR

    SciTech Connect

    Kernan, A.; Shen, B.C.

    1997-07-01

    The hadron collider group is studying proton-antiproton interactions at the world`s highest collision energy 2 TeV. Data-taking with the D0 detector is in progress at Fermilab and the authors have begun the search for the top quark. S. Wimpenny is coordinating the effort to detect t{bar t} decaying to two leptons, the most readily identifiable channel. At UC Riverside design and testing for a silicon tracker for the D0 upgrade is in progress; a parallel development for the SDC detector at SSC is also underway. The major group effort of the lepton group has been devoted to the OPAL experiment at LEP. They will continue to focus on data-taking to improve the quality and quantity of their data sample. A large number of papers have been published based on approximately 500,000 events taken so far. The authors will concentrate on physics analysis which provides stringent tests of the Standard Model. The authors are continuing participation in the RD5 experiment at the SPS to study muon triggering and tracking. The results of this experiment will provide critical input for the design of the Compact Muon Solenoid experiment being proposed for the LHC. The theory group has been working on problems concerning the possible vilation of e-{mu}-{tau} universality, effective Lagrangians, neutrino physics, as well as quark and lepton mass matrices.

  15. Linear Collider Physics Resource Book Snowmass 2001

    SciTech Connect

    Ronan , M.T.

    2001-06-01

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be designed and

  16. eRHIC, the BNL design for a future Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Roser, Thomas

    2016-03-01

    With the addition of a 20 GeV polarized electron accelerator to the existing Brookhaven Relativistic Heavy Ion Collider (RHIC), the world's only high energy heavy ion and polarized proton collider, a future eRHIC facility will be able to produce polarized electron-nucleon collisions at center-of-mass energies of up to 145 GeV and cover the whole science case as outlined in the Electron-Ion Collider White Paper and endorsed by the 2015 Nuclear Physics Long Range Plan with high luminosity. The presentation will describe the eRHIC design concepts and recent efforts to reduce the technical risks of the project.

  17. High energy forming facility

    NASA Technical Reports Server (NTRS)

    Ciurlionis, B.

    1967-01-01

    Watertight, high-explosive forming facility, 25 feet in diameter and 15 feet deep, withstands repeated explosions of 10 pounds of TNT equivalent. The shell is fabricated of high strength steel and allows various structural elements to deform or move elastically and independently while retaining structural integrity.

  18. Luminosity limitations for Electron-Ion Collider

    SciTech Connect

    Valeri Lebedev

    2000-09-01

    The major limitations on reaching the maximum luminosity for an electron ion collider are discussed in application to the ring-ring and linac-ring colliders. It is shown that with intensive electron cooling the luminosity of 10{sup 33} cm{sup -2} s{sup -1} is feasible for both schemes for the center-of-mass collider energy above approximately 15 GeV. Each scheme has its own pros and cons. The ring-ring collider is better supported by the current accelerator technology while the linac-ring collider suggests unique features for spin manipulations of the electron beam. The article addresses a general approach to a choice of collider scheme and parameters leaving details for other conference publications dedicated to particular aspects of the ring-ring and linac-ring colliders.

  19. Energy spectra of high energy atmospheric neutrinos

    NASA Technical Reports Server (NTRS)

    Mitsui, K.; Minorikawa, Y.

    1985-01-01

    Focusing on high energy neutrinos ( or = 1 TeV), a new calculation of atmospheric neutrino intensities was carried out taking into account EMC effects observed in P-A collisions by accelerator, recent measurement of primary cosmic ray spectrum and results of cosmic ray muon spectrum and charge ratio. Other features of the present calculation are (1) taking into account kinematics of three body decays of kaons and charm particles in diffusion equations and (2) taking into account energy dependence of kaon production.

  20. Linear collider research and development at SLAC, LBL and LLNL

    SciTech Connect

    Mattison, T.S.

    1988-10-01

    The study of electron-positron (e/sup +/e/sup /minus//) annihilation in storage ring colliders has been very fruitful. It is by now well understood that the optimized cost and size of e/sup +/e/sup /minus// storage rings scales as E(sub cm//sup 2/ due to the need to replace energy lost to synchrotron radiation in the ring bending magnets. Linear colliders, using the beams from linear accelerators, evade this scaling law. The study of e/sup +/e/sup /minus// collisions at TeV energy will require linear colliders. The luminosity requirements for a TeV linear collider are set by the physics. Advanced accelerator research and development at SLAC is focused toward a TeV Linear Collider (TLC) of 0.5--1 TeV in the center of mass, with a luminosity of 10/sup 33/--10/sup 34/. The goal is a design for two linacs of less than 3 km each, and requiring less than 100 MW of power each. With a 1 km final focus, the TLC could be fit on Stanford University land (although not entirely within the present SLAC site). The emphasis is on technologies feasible for a proposal to be framed in 1992. Linear collider development work is progressing on three fronts: delivering electrical energy to a beam, delivering a focused high quality beam, and system optimization. Sources of high peak microwave radio frequency (RF) power to drive the high gradient linacs are being developed in collaboration with Lawrence Berkeley Laboratory (LBL) and Lawrence Livermore National Laboratory (LLNL). Beam generation, beam dynamics and final focus work has been done at SLAC and in collaboration with KEK. Both the accelerator physics and the utilization of TeV linear colliders were topics at the 1988 Snowmass Summer Study. 14 refs., 4 figs., 1 tab.

  1. Methods for Probing New Physics at High Energies

    NASA Astrophysics Data System (ADS)

    Denton, Peter B.

    This dissertation covers two broad topics. The title, " Methods for Probing New Physics at High Energies," hopefully encompasses both of them. The first topic is located in part I of this work and is about integral dispersion relations. This is a technique to probe for new physics at energy scales near to the machine energy of a collider. For example, a hadron collider taking data at a given energy is typically only sensitive to new physics occurring at energy scales about a factor of five to ten beneath the actual machine energy due to parton distribution functions. This technique is sensitive to physics happening directly beneath the machine energy in addition to the even more interesting case: directly above. Precisely where this technique is sensitive is one of the main topics of this area of research. The other topic is located in part II and is about cosmic ray anisotropy at the highest energies. The unanswered questions about cosmic rays at the highest energies are numerous and interconnected in complicated ways. What may be the first piece of the puzzle to fall into place is determining their sources. This work looks to determine if and when the use of spherical harmonics becomes sensitive enough to determine these sources. The completed papers for this work can be found online. For part I on integral dispersion relations see reference published in Physical Review D. For part II on cosmic ray anisotropy, there are conference proceedings published in the Journal of Physics: Conference Series. The analysis of the location of an experiment on anisotropy reconstruction is, and the comparison of different experiments' abilities to reconstruct anisotropies is published in The Astrophysical Journal and the Journal of High Energy Astrophysics respectively. While this dissertation is focused on three papers completed with Tom Weiler at Vanderbilt University, other papers were completed at the same time. The first was with Nicusor Arsene, Lauretiu Caramete, and

  2. Comprehensive description of J/ψ production in proton-proton collisions at collider energies

    SciTech Connect

    Ma, Yan -Qing; Venugopalan, Raju

    2014-11-04

    We employ a small x Color Glass Condensate + Non-Relativistic QCD (NRQCD) formalism to compute J/ψ production at low p⊥ in proton-proton collisions at collider energies. Very good agreement is obtained for total cross-sections, rapidity distributions and low momentum p⊥ distributions. Similar agreement is obtained for ψ' production. We observe an overlap region in p⊥ where our results match smoothly to those obtained in a next-to-leading order (NLO) collinearly factorized NRQCD formalism. The relative contribution of color singlet and color octet contributions can be quantified in the CGC+NRQCD framework, with the former contributing approximately 10% of the total cross-section.

  3. Energy Dependence of Directed Flow over a Wide Range of Pseudorapidity in Au+Au Collisions at the BNL Relativistic Heavy Ion Collider

    SciTech Connect

    Back, B.B.; Wuosmaa, A.H.; Baker, M.D.; Barton, D.S.; Carroll, A.; Chai, Z.; Gushue, S.; Hauer, M.; Heintzelman, G.A.; Holzman, B.; Pak, R.; Remsberg, L.P.; Seals, H.; Sedykh, I.; Stankiewicz, M.A.; Steinberg, P.; Sukhanov, A.; Ballintijn, M.; Busza, W.; Decowski, M.P.

    2006-07-07

    We report on measurements of directed flow as a function of pseudorapidity in Au+Au collisions at energies of {radical}(s{sub NN})=19.6, 62.4, 130 and 200 GeV as measured by the PHOBOS detector at the BNL Relativistic Heavy Ion Collider. These results are particularly valuable because of the extensive, continuous pseudorapidity coverage of the PHOBOS detector. There is no significant indication of structure near midrapidity and the data surprisingly exhibit extended longitudinal scaling similar to that seen for elliptic flow and charged particle pseudorapidity density.

  4. 2001 Report on the Next Linear Collider

    SciTech Connect

    Gronnberg, J; Breidenbach; Burke, D; Corlett, J; Dombeck, T; Markiewicz, T

    2001-08-28

    Recent studies in elementary particle physics have made the need for an e{sup +}e{sup -} linear collider able to reach energies of 500 GeV and above with high luminosity more compelling than ever [1]. Observations and measurements completed in the last five years at the SLC (SLAC), LEP (CERN), and the Tevatron (FNAL) can be explained only by the existence of at least one particle or interaction that has not yet been directly observed in experiment. The Higgs boson of the Standard Model could be that particle. The data point strongly to a mass for the Higgs boson that is just beyond the reach of existing colliders. This brings great urgency and excitement to the potential for discovery at the upgraded Tevatron early in this decade, and almost assures that later experiments at the LHC will find new physics. But the next generation of experiments to be mounted by the world-wide particle physics community must not only find this new physics, they must find out what it is. These experiments must also define the next important threshold in energy. The need is to understand physics at the TeV energy scale as well as the physics at the 100-GeV energy scale is now understood. This will require both the LHC and a companion linear electron-positron collider.

  5. Studies of high energy phenomena using muons. Progress report, [March 1992--February 1993

    SciTech Connect

    Hedin, D.; Kaplan, D.; Green, J.

    1993-02-01

    The NIU high energy physics group has three main efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789. Finally, members of the group participate in the SDC collaboration at the SSC.

  6. [High energy particle physics at Purdue, 1990--1991]. Progress report, January 1990--May 1991

    SciTech Connect

    Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1991-05-01

    Progress made in the experimental and theoretical high energy physics program is reviewed. The CLEO experiment, particle astrophysics, dynamical symmetry breaking in gauge theories, the Collider Detector at Fermilab, the TOPAZ Experiment, and elementary particle physics beyond the standard model are included.

  7. Heavy-ion physics studies for the Future Circular Collider

    NASA Astrophysics Data System (ADS)

    Armesto, N.; Dainese, A.; d'Enterria, D.; Masciocchi, S.; Roland, C.; Salgado, C. A.; van Leeuwen, M.; Wiedemann, U. A.

    2014-11-01

    The Future Circular Collider (FCC) design study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron-hadron collision mode including proton and nucleus beams, more than seven times larger than the nominal LHC energies. An electron-positron collider in the same tunnel is also considered as an intermediate step, which in the long term would allow for electron-hadron collisions. First ideas on the physics opportunities with heavy ions at the FCC are presented, covering the physics of quark-gluon plasma, gluon saturation, photon-induced collisions, as well as connections with the physics of ultra-high-energy cosmic rays.

  8. High energy particle collisions near black holes

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    2016-10-01

    If two geodesic particles collide near a rotating black hole, their energy in the centre of mass frame Ec.m. can become unbound under certain conditions (the so-called BSW effect). The special role is played here by so-called critical geodesics when one of particles has fine-tuned energy and angular momentum. The nature of geodesics reveals itself also in fate of the debris after collisions. One of particles moving to a remote observer is necessarily near-critical. We discuss, when such a collision can give rise not only unboud Ec.m. but also unbound Killing energy E (so-called super-Penrose process).

  9. Experimental and theoretical high energy physics research. [UCLA

    SciTech Connect

    Buchanan, Charles D.; Cline, David B.; Byers, N.; Ferrara, S.; Peccei, R.; Hauser, Jay; Muller, Thomas; Atac, Muzaffer; Slater, William; Cousins, Robert; Arisaka, Katsushi

    1992-01-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R D.

  10. The development of an annular-beam, high power free-electron maser for future linear colliders

    SciTech Connect

    Fazio, M.V.; Carlsten, B.E.; Earley, L.M.; Fortgang, C.M.; Haddock, P.C.; Haynes, W.B.

    1996-09-01

    Work is under way to develop a 17 GHz free electron maser (FEM) for producing a 500 MW output pulse with a phase stability appropriate for linear collider applications. We plan to use a 500 keV, 5 kV, 6 cm diameter annular electron beam to excite a TM{sub 02} mode Raman FEM amplifier in a corrugated cylindrical waveguide. The annular beam will run close to the interaction device walls to reduce the power density in the fields, and to greatly reduce the kinetic energy loss caused by beam potential depression associated with the space charge which is a significant advantage in comparison with conventional solid beam microwave tubes at the same beam current. A key advantage of the annular beam is that the reduced plasma wave number can be tuned to achieve phase stability for an arbitrary correlation on interaction strength with beam velocity. It should be noted that this technique for improving phase stability of an EM in not possible with a solid beam klystron. The annular beam FEM provides the opportunity to extend the output power of sources in the 17 GHz regime by well over an order of magnitude with enhanced phase stability. The design and experimental status are discussed.

  11. Studies of high energy phenomena using muons. Final progress report

    SciTech Connect

    Hedin, D.; Kaplan, D.; Green, J.

    1993-05-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract AC02-87ER40368 during the period from July of 1990 to June of 1991 and from February to March 1992. Our group has three main efforts which will be discussed in this paper. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789 which involved detection of meson decays. Finally, we discuss our work with the SDC collaboration at the SSC.

  12. Do high-energy neutrinos travel faster than photons in a discrete space-time?

    NASA Astrophysics Data System (ADS)

    Xue, She-Sheng

    2011-12-01

    The recent OPERA measurement of high-energy neutrino velocity, once independently verified, implies new physics in the neutrino sector. We revisit the theoretical inconsistency of the fundamental high-energy cutoff attributing to quantum gravity with the parity-violating gauge symmetry of local quantum field theory describing neutrinos. This inconsistency suggests high-dimension operators of neutrino interactions. Based on these studies, we try to view the OPERA result, high-energy neutrino oscillations and indicate to observe the restoration of parity conservation by measuring the asymmetry of high-energy neutrinos colliding with left- and right-handed polarized electrons.

  13. High energy fuel compositions

    SciTech Connect

    Fisher, D.H.

    1983-07-19

    A high density liquid hydrocarbon fuel composition is disclosed, singularly suited for propelling turbojet limited volume missile systems designed for shipborne deployment. The contemplated fuels are basically composed of the saturated analogues of dimers of methyl cyclopentadiene and of dicyclopentadiene and optionally include the saturated analogues of the co-trimers of said dienes or the trimers of cyclopentadiene. The various dimers and trimers are combined in a relative relationship to provide optimal performing fuels for the indicated purpose.

  14. PROGRESS OF HIGH-ENERGY ELECTRON COOLING FOR RHIC.

    SciTech Connect

    FEDOTOV,A.V.

    2007-09-10

    The fundamental questions about QCD which can be directly answered at Relativistic Heavy Ion Collider (RHIC) call for large integrated luminosities. The major goal of RHIC-I1 upgrade is to achieve a 10 fold increase in luminosity of Au ions at the top energy of 100 GeV/nucleon. Such a boost in luminosity for RHIC-II is achievable with implementation of high-energy electron cooling. The design of the higher-energy cooler for RHIC-II recently adopted a non-magnetized approach which requires a low temperature electron beam. Such electron beams will be produced with a superconducting Energy Recovery Linac (ERL). Detailed simulations of the electron cooling process and numerical simulations of the electron beam transport including the cooling section were performed. An intensive R&D of various elements of the design is presently underway. Here, we summarize progress in these electron cooling efforts.

  15. High energy cosmic ray composition

    NASA Astrophysics Data System (ADS)

    Seo, E. S.

    Cosmic rays are understood to result from energetic processes in the galaxy, probably from supernova explosions. However, cosmic ray energies extend several orders of magnitude beyond the limit thought possible for supernova blast waves. Over the past decade several ground-based and space-based investigations were initiated to look for evidence of a limit to supernova acceleration in the cosmic-ray chemical composition at high energies. These high-energy measurements are difficult because of the very low particle fluxes in the most interesting regions. The space-based detectors must be large enough to collect adequate statistics, yet stay within the weight limit for space flight. Innovative approaches now promise high quality measurements over an energy range that was not previously possible. The current status of high energy cosmic-ray composition measurements and planned future missions are discussed in this paper.

  16. High-Current Energy-Recovering Electron Linacs

    SciTech Connect

    Nikolitsa Merminga; David Douglas; Geoffrey Krafft

    2003-12-01

    The use of energy recovery provides a potentially powerful new paradigm for generation of the charged particle beams used in synchrotron radiation sources, high-energy electron cooling devices, electron-ion colliders, and other applications in photon science and nuclear and high-energy physics. Energy-recovering electron linear accelerators (called energy-recovering linacs, or ERLs) share many characteristics with ordinary linacs, as their six-dimensional beam phase space is largely determined by electron source properties. However, in common with classic storage rings, ERLs possess a high average-current-carrying capability enabled by the energy recovery process, and thus promise similar efficiencies. The authors discuss the concept of energy recovery and its technical challenges and describe the Jefferson Lab (JLab) Infrared Demonstration Free-Electron Laser (IR Demo FEL), originally driven by a 3548-MeV, 5-mA superconducting radiofrequency (srf) ERL, which provided the most substantial demonstration of energy recovery to date: a beam of 250 kW average power. They present an overview of envisioned ERL applications and a development path to achieving the required performance. They use experimental data obtained at the JLab IR Demo FEL and recent experimental results from CEBAF-ERL GeV-scale, comparatively low-current energy-recovery demonstration at JLab to evaluate the feasibility of the new applications of high-current ERLs, as well as ERLs' limitations and ultimate performance.

  17. New DIS and collider results on PDFs

    SciTech Connect

    Rizvi, E.

    2015-05-15

    The HERA ep collider experiments have measured the proton structure functions over a wide kinematic range. New data from the H1 experiment now extend the range to higher 4-momentum transfer (√(Q{sup 2})) over which a precision of ∼ 2% is achieved in the neutral current channel. A factor of two reduction in the systematic uncertainties over previous measurement is attained. The charged current structure function measurements are also significantly improved in precision. These data, when used in QCD analyses of the parton density functions (PDFs) reduce the PDF uncertainties particularly at high momentum fractions x which is relevant to low energy neutrino scattering cross sections. New data from the LHC pp collider experiments may also offer significant high x PDF improvements as the experimental uncertainties improve.

  18. Reverse Emittance Exchange for Muon Colliders

    SciTech Connect

    V. Ivanov, A. Afanasev, C.M. Ankenbrandt, R.P. Johnson, G.M. Wang, S.A. Bogacz, Y.S. Derbenev

    2009-05-01

    Muon collider luminosity depends on the number of muons in the storage ring and on the transverse size of the beams in collision. Ionization cooling as it is currently envisioned will not cool the beam sizes sufficiently well to provide adequate luminosity without large muon intensities. Six-dimensional cooling schemes will reduce the longitudinal emittance of a muon beam so that smaller high frequency RF cavities can be used for later stages of cooling and for acceleration. However, the bunch length at collision energy is then shorter than needed to match the interaction region beta function. New ideas to shrink transverse beam dimensions by lengthening each bunch will help achieve high luminosity in muon colliders. Analytic expressions for the reverse emittance exchange mechanism were derived, including a new resonant method of beam focusing.

  19. Experimental And Theoretical High Energy Physics Research At UCLA

    SciTech Connect

    Cousins, Robert D.

    2013-07-22

    This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERN’s Large Hadron Collider. For our theory group, the report describes frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity.

  20. Very large hadron collider (VLHC)

    SciTech Connect

    1998-09-01

    A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future of US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.

  1. High energy physics

    SciTech Connect

    Not Available

    1992-04-10

    The Counter Group continues to work on data analysis for Fermilab Experiment E653. Altogether, they expect several thousand reconstructed charm events and approximately 25 B pair events of which 12 have been observed thus far. Preparation continue for Fermilab Experiment E781, a high statistics study of charm baryon production. In the Theory Group, Cutkosky and collaborators study hadron phenomenology and non-perturbative QCD calculations. Levine has a long standing program in computational QED to obtain improved theoretical values for g-2 of the electron. Wolfenstein, Li, and their collaborators have worked on areas of weak interaction phenomenology that may yield insights beyond the standard model, e.g. CP violation and non-zero neutrino masses. Holman has been concerned with phase transitions in gauge theories relevant to cosmological problems. During 1991 most of the group effort was concentrated on the L3 experiment at CERN. Highlights of the results from the analysis of the Z[degrees] resonance include (a) a measurement of the strong coupling constant [alpha][sub s] for b quarks (b) a precision measurement of the average time of B hadrons and (c) a direct determination of the number of light neutrino faculties from the reaction e[sup +]e[sup [minus

  2. Acceleration and collision of ultra-high energy particles using crystal channels

    SciTech Connect

    Chen, P.; Noble, R.J.

    1997-04-01

    We assume that, independent of any near-term discoveries, the continuing goal of experimental high-energy physics (HEP) will be to achieve ultra-high center-of-mass energies early in the next century. To progress to these energies in such a brief span of time will require a radical change in accelerator and collider technology. We review some of our recent theoretical work on high-gradient acceleration of charged particles along crystal channels and the possibility of colliding them in these same strong-focusing atomic channels. An improved understanding of energy and emittance limitations in natural crystal accelerators leads to the suggestion that specially manufactured nano-accelerators may someday enable us to accelerate particles beyond 10{sup 8} eV with emittances limited only by the uncertainty principle of quantum mechanics.

  3. High-energy spectroscopic astrophysics

    NASA Astrophysics Data System (ADS)

    Güdel, Manuel; Walter, Roland

    After three decades of intense research in X-ray and gamma-ray astronomy, the time was ripe to summarize basic knowledge on X-ray and gamma-ray spectroscopy for interested students and researchers ready to become involved in new high-energy missions. This volume exposes both the scientific basics and modern methods of high-energy spectroscopic astrophysics. The emphasis is on physical principles and observing methods rather than a discussion of particular classes of high-energy objects, but many examples and new results are included in the three chapters as well.

  4. Experimental High Energy Neutrino Astrophysics

    SciTech Connect

    Distefano, Carla

    2005-10-12

    Neutrinos are considered promising probes for high energy astrophysics. More than four decades after deep water Cerenkov technique was proposed to detect high energy neutrinos. Two detectors of this type are successfully taking data: BAIKAL and AMANDA. They have demonstrated the feasibility of the high energy neutrino detection and have set first constraints on TeV neutrino production astrophysical models. The quest for the construction of km3 size detectors have already started: in the South Pole, the IceCube neutrino telescope is under construction; the ANTARES, NEMO and NESTOR Collaborations are working towards the installation of a neutrino telescope in the Mediterranean Sea.

  5. High energy physics

    SciTech Connect

    Not Available

    1992-04-10

    The Counter Group continues to work on data analysis for Fermilab Experiment E653. Altogether, they expect several thousand reconstructed charm events and approximately 25 B pair events of which 12 have been observed thus far. Preparation continue for Fermilab Experiment E781, a high statistics study of charm baryon production. In the Theory Group, Cutkosky and collaborators study hadron phenomenology and non-perturbative QCD calculations. Levine has a long standing program in computational QED to obtain improved theoretical values for g-2 of the electron. Wolfenstein, Li, and their collaborators have worked on areas of weak interaction phenomenology that may yield insights beyond the standard model, e.g. CP violation and non-zero neutrino masses. Holman has been concerned with phase transitions in gauge theories relevant to cosmological problems. During 1991 most of the group effort was concentrated on the L3 experiment at CERN. Highlights of the results from the analysis of the Z{degrees} resonance include (a) a measurement of the strong coupling constant {alpha}{sub s} for b quarks (b) a precision measurement of the average time of B hadrons and (c) a direct determination of the number of light neutrino faculties from the reaction e{sup +}e{sup {minus}} {yields} {nu}{bar {nu}}{gamma}. We also began a major upgrade of the L3 luminosity monitor by replacing PWC chamber by a Si strip system in front of the BGO calorimeters. Finally we have continued our SSC R&D work on BaF{sub 2} by joining the GEM collaboration.

  6. UPR/Mayaguez High Energy Physics

    SciTech Connect

    López, Angel M.

    2015-10-27

    For the period of sixteen years covered by this report (June 1, 1997 - July 31, 2013) the High Energy Physics Group at the University of Puerto Rico’s Mayaguez Campus (UPRM) carried out an extensive research program that included major experiments at Fermi National Accelerator Laboratory (Fermilab), the Cornell Electron-positron Collider and CERN. In particular, these were E831 (FOCUS) at Fermilab, CLEOc at Cornell and the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) at CERN. The group’s history is one of successful execution and growth. Beginning with one faculty researcher in 1985, it eventually included four faculty researchers, one post-doctoral research associate, two undergraduates and as many as six graduate students at one time working on one of the experiments that discovered the Higgs boson. Some of this expansion was due to the group’s leveraging of funds from the Department of Energy’s core grant to attract funds from National Science Foundation programs not targeted to high energy physics. Besides the group’s research productivity, its other major contribution was the training of a large number of MS students who later went on to successful technical careers in industry as well as academia including many who obtained PhD degrees at US universities. In an attempt to document this history, this final report gives a general description of the Group’s work prior to June 1, 2010, the starting date for the last grant renewal period. Much more detail can, of course, be found in the annual reports submitted up to that date. The work during the last grant period is discussed in detail in a separate section. To summarize the group’s scientific accomplishments, one can point to the results of the experiments. Both FOCUS and CLEOc were designed to carry out precise measurements of processes involving the heavy quarks, charm and bottom. Heavy quarks are particularly interesting because, due to their mass, theoretical calculations

  7. Muon collider//neutrino factory: status and prospects

    NASA Astrophysics Data System (ADS)

    Kaplan, Daniel M.; Neutrino Factory Collaboration; Muon Collider Collaboration

    2000-10-01

    During the 1990s an international collaboration has been studying the possibility of constructing and operating a high-energy high-luminosity μ +μ - collider. Such a machine could be the approach of choice to extend our discovery reach beyond that of the LHC. More recently, a growing collaboration is exploring the potential of a stored-muon-beam "neutrino factory" to elucidate neutrino oscillations. A neutrino factory could be an attractive stepping-stone to a muon collider. Its construction, possibly feasible within the coming decade, could have substantial impact on neutrino physics.

  8. A model for computing at the SSC (Superconducting Super Collider)

    SciTech Connect

    Baden, D. . Dept. of Physics); Grossman, R. . Lab. for Advanced Computing)

    1990-06-01

    High energy physics experiments at the Superconducting Super Collider (SSC) will show a substantial increase in complexity and cost over existing forefront experiments, and computing needs may no longer be met via simple extrapolations from the previous experiments. We propose a model for computing at the SSC based on technologies common in private industry involving both hardware and software. 11 refs., 1 fig.

  9. High-luminosity primary vertex selection in top-quark studies using the Collider Detector at Fermilab

    SciTech Connect

    Buzatu, Adrian; /McGill U.

    2006-08-01

    Improving our ability to identify the top quark pair (t{bar t}) primary vertex (PV) on an event-by-event basis is essential for many analyses in the lepton-plus-jets channel performed by the Collider Detector at Fermilab (CDF) Collaboration. We compare the algorithm currently used by CDF (A1) with another algorithm (A2) using Monte Carlo simulation at high instantaneous luminosities. We confirm that A1 is more efficient than A2 at selecting the t{bar t} PV at all PV multiplicities, both with efficiencies larger than 99%. Event selection rejects events with a distance larger than 5 cm along the proton beam between the t{bar t} PV and the charged lepton. We find flat distributions for the signal over background significance of this cut for all cut values larger than 1 cm, for all PV multiplicities and for both algorithms. We conclude that any cut value larger than 1 cm is acceptable for both algorithms under the Tevatron's expected instantaneous luminosity improvements.

  10. Study the effect of beam energy spread and detector resolution on the search for Higgs boson decays to invisible particles at a future e^+e^- circular collider

    NASA Astrophysics Data System (ADS)

    Cerri, Olmo; de Gruttola, Michele; Pierini, Maurizio; Podo, Alessandro; Rolandi, Gigi

    2017-02-01

    We study the expected sensitivity to measure the branching ratio of Higgs boson decays to invisible particles at a future circular e^+e^-collider (FCC-ee) in the process e^+e^-→ HZ with Z→ ℓ ^+ℓ ^- (ℓ =e or μ ) using an integrated luminosity of 3.5 ab^{-1} at a center-of-mass energy √{s}=240 GeV. The impact of the energy spread of the FCC-ee beam and of the resolution in the reconstruction of the leptons is discussed. The minimum branching ratio for a 5σ observation after 3.5 ab^{-1} of data taking is 1.7± 0.1%(stat+syst) . The branching ratio exclusion limit at 95% CL is 0.63 ± 0.22%((stat+syst)).

  11. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    ScienceCinema

    None

    2016-07-12

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  12. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    SciTech Connect

    2010-02-17

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  13. Collider searches for extra dimensions

    SciTech Connect

    Landsberg, Greg; /Brown U.

    2004-12-01

    Searches for extra spatial dimensions remain among the most popular new directions in our quest for physics beyond the Standard Model. High-energy collider experiments of the current decade should be able to find an ultimate answer to the question of their existence in a variety of models. Until the start of the LHC in a few years, the Tevatron will remain the key player in this quest. In this paper, we review the most recent results from the Tevatron on searches for large, TeV{sup -1}-size, and Randall-Sundrum extra spatial dimensions, which have reached a new level of sensitivity and currently probe the parameter space beyond the existing constraints. While no evidence for the existence of extra dimensions has been found so far, an exciting discovery might be just steps away.

  14. Precision Timing Calorimeter for High Energy Physics

    DOE PAGES

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; ...

    2016-04-01

    Here, we present studies on the performance and characterization of the time resolution of LYSO-based calorimeters. Results for an LYSO sampling calorimeter and an LYSO-tungsten Shashlik calorimeter are presented. We also demonstrate that a time resolution of 30 ps is achievable for the LYSO sampling calorimeter. Timing calorimetry is described as a tool for mitigating the effects due to the large number of simultaneous interactions in the high luminosity environment foreseen for the Large Hadron Collider.

  15. Analyzing high energy physics data using database computing: Preliminary report

    NASA Technical Reports Server (NTRS)

    Baden, Andrew; Day, Chris; Grossman, Robert; Lifka, Dave; Lusk, Ewing; May, Edward; Price, Larry

    1991-01-01

    A proof of concept system is described for analyzing high energy physics (HEP) data using data base computing. The system is designed to scale up to the size required for HEP experiments at the Superconducting SuperCollider (SSC) lab. These experiments will require collecting and analyzing approximately 10 to 100 million 'events' per year during proton colliding beam collisions. Each 'event' consists of a set of vectors with a total length of approx. one megabyte. This represents an increase of approx. 2 to 3 orders of magnitude in the amount of data accumulated by present HEP experiments. The system is called the HEPDBC System (High Energy Physics Database Computing System). At present, the Mark 0 HEPDBC System is completed, and can produce analysis of HEP experimental data approx. an order of magnitude faster than current production software on data sets of approx. 1 GB. The Mark 1 HEPDBC System is currently undergoing testing and is designed to analyze data sets 10 to 100 times larger.

  16. The Smith Cloud: A High-Velocity Cloud Colliding with the Milky Way

    NASA Astrophysics Data System (ADS)

    Lockman, Felix J.; Benjamin, Robert A.; Heroux, A. J.; Langston, Glen I.

    2008-05-01

    New 21 cm H I observations made with the Green Bank Telescope show that the high-velocity cloud known as the Smith Cloud has a striking cometary appearance and many indications of interaction with the Galactic interstellar medium. The velocities of interaction give a kinematic distance of 12.4 +/- 1.3 kpc, consistent with the distance derived from other methods. The Cloud is >3 × 1 kpc in size, and its tip at (l, b) ≈ 39°, -13° is 7.6 kpc from the Galactic center and 2.9 kpc below the Galactic plane. It has >106 M⊙ in H I. Its leading section has a total space velocity near 300 km s-1, is moving toward the Galactic plane with a velocity of 73 +/- 26 km s-1, and is shedding material to the Galaxy. In the absence of drag, the Cloud will cross the plane in about 27 Myr. The Smith Cloud may be an example of the accretion of gas by the Milky Way that is needed to explain certain persistant anomalies in Galactic chemical evolution.

  17. Advanced Concepts for Electron-Ion Collider

    SciTech Connect

    Yaroslav Derbenev

    2002-08-01

    A superconducting energy recovery linac (ERL) of 5 to 10 GeV was proposed earlier as an alternative to electron storage rings to deliver polarized electron beam for electron-ion collider (EIC). To enhance the utilization efficiency of electron beam from a polarized source, it is proposed to complement the ERL by circulator ring (CR) wherein the injected electrons undergo up to 100 revolutions colliding with the ion beam. In this way, electron injector and linac operate in pulsed current (beam energy recovery) regime of a relatively low average current, while the polarization is still easily delivered and preserved. To make it also easier delivering and manipulating the proton and light ion polarization, twisted (figure 8) synchrotrons are proposed for heavy particle booster and collider ring. Same type of beam orbit can be used then for electron circulator. Electron cooling (EC) of the ion beam is considered an inevitable component of high luminosity EIC (1033/s. cm2 or above). It is recognized that EC also gives a possibility to obtain very short ion bunches, that allows much stronger final focusing. At the same time, short bunches make feasible the crab crossing (and traveling focus for ion beam) at collision points, hence, allow maximizing the collision rate. As a result, one can anticipate the luminosity increase by one or two orders of magnitude.

  18. High-Resolution X-Ray Imaging of Colliding Radio-Jet Galaxies

    NASA Technical Reports Server (NTRS)

    Born, Kirk D.; Whitmore, Brad

    1996-01-01

    We received ROSAT data for four program objects:3C31,3C278,3C449,and NGC1044. The first three sources were observed with the ROSAT HRI instrument. Our plan was to use the HRI to image the hot gas distribution in a few pairs of strongly disturbed interacting elliptical galaxies which are also strong radio sources having a bent-jet source morphology. The PSPC was used for NGC1044 in order to obtain a flux measurement to use in planning future High Resolution Imager (HRI) observations of that source. Though we never requested such HRI observations of NGC1044, others have used those archival PSPC data from our project for other research projects and analyses. The goal of the program was to elucidate the detailed distribution of hot gas into which the jets flow. The X-ray data were consequently analyzed in conjunction with existing VLA radio maps, optical broad-band and H-alpha Charge Couple device (CCD) images, and optical kinematic data to constrain models for the propagation of ballistic jets in interacting galaxies. We were able to test and validate the claimed causal connection between tidal interaction, the presence of gas, and the onset of activity in galaxies. The full multi-wavelength multi-observatory analyses described here are still on-going and will be published in the future. Because of the relevance of this research to on-going work in the field of active galaxies, the grant was used to support travel to several scientific meetings where our x-ray analysis, numerical modeling, and related radio results were presented and discussed.

  19. Proceedings of the 2005 International Linear Collider Workshop (LCWS05)

    SciTech Connect

    Hewett, JoAnne,; /SLAC

    2006-12-18

    Exploration of physics at the TeV scale holds the promise of addressing some of our most basic questions about the nature of matter, space, time, and energy. Discoveries of the Electroweak Symmetry Breaking mechanism, Supersymmetry, Extra Dimensions of space, Dark Matter particles, and new forces of nature are all possible. We have been waiting and planning for this exploration for over 20 years. In 2007 the Large Hadron Collider at CERN will begin its operation and will break into this new energy frontier. A new era of understanding will emerge as the LHC data maps out the Terascale. With the LHC discoveries, new compelling questions will arise. Responding to these questions will call for a new tool with greater sensitivity--the International Linear Collider. Historically, the most striking progress in the exploration of new energy frontiers has been made from combining results from hadron and electron-positron colliders. The precision measurements possible at the ILC will reveal the underlying theory which gave rise to the particles discovered at the LHC and will open the window to even higher energies. The world High Energy Physics community has reached an accord that an e+e- linear collider operating at 0.5-1.0 TeV would provide both unique and essential scientific opportunities; the community has endorsed with highest priority the construction of such a machine. A major milestone toward this goal was reached in August 2004 when the International Committee on Future Accelerators approved a recommendation for the technology of the future International Linear Collider. A global research and design effort is now underway to construct a global design report for the ILC. This endeavor is directed by Barry Barrish of the California Institute of Technology. The offer, made by Jonathan Dorfan on the behalf of ICFA, and acceptance of this directorship took place during the opening plenary session of this workshop. The 2005 International Linear Collider Workshop was held

  20. Harvard University High Energy Physics. [Annual report, 1992--1993

    SciTech Connect

    Not Available

    1993-11-01

    The mainly experimental research program in high energy physics at Harvard is summarized in a descriptive fashion according to the following outline: Proton{endash}antiproton colliding beam program at Fermilab -- CDF (forward/backward electromagnetic calorimeters -- FEM, central muon extension -- CMX, gas calorimetry and electronics development, front-end electronics upgrades, software development, physics analysis, timetable), electron -- positron collisions in the upsilon region -- CLEO (the hardware projects including CLEO II barrel TOF system and silicon drift detector R&D, physics analysis), search for {nu}{sub {mu}} to {nu}{sub {tau}} oscillations with the NOMAD experiment at CERN, the solenoidal detector collaboration at the SSC, muon scattering at FNAL -- E665, the L3 experiment, and phenomenological analysis of high-energy {bar p}p cross sections. 149 refs.

  1. Oklahoma Center for High Energy Physics (OCHEP)

    SciTech Connect

    Nandi, S; Strauss, M J; Snow, J; Rizatdinova, F; Abbott, B; Babu, K; Gutierrez, P; Kao, C; Khanov, A; Milton, K A; Neaman, H; H Severini, P Skubic

    2012-02-29

    The DOE EPSCoR implementation grant, with the support from the State of Oklahoma and from the three universities, Oklahoma State University, University of Oklahoma and Langston University, resulted in establishing of the Oklahoma Center for High Energy Physics (OCHEP) in 2004. Currently, OCHEP continues to flourish as a vibrant hub for research in experimental and theoretical particle physics and an educational center in the State of Oklahoma. All goals of the original proposal were successfully accomplished. These include foun- dation of a new experimental particle physics group at OSU, the establishment of a Tier 2 computing facility for the Large Hadron Collider (LHC) and Tevatron data analysis at OU and organization of a vital particle physics research center in Oklahoma based on resources of the three universities. OSU has hired two tenure-track faculty members with initial support from the grant funds. Now both positions are supported through OSU budget. This new HEP Experimental Group at OSU has established itself as a full member of the Fermilab D0 Collaboration and LHC ATLAS Experiment and has secured external funds from the DOE and the NSF. These funds currently support 2 graduate students, 1 postdoctoral fellow, and 1 part-time engineer. The grant initiated creation of a Tier 2 computing facility at OU as part of the Southwest Tier 2 facility, and a permanent Research Scientist was hired at OU to maintain and run the facility. Permanent support for this position has now been provided through the OU university budget. OCHEP represents a successful model of cooperation of several universities, providing the establishment of critical mass of manpower, computing and hardware resources. This led to increasing Oklahoma's impact in all areas of HEP, theory, experiment, and computation. The Center personnel are involved in cutting edge research in experimental, theoretical, and computational aspects of High Energy Physics with the research areas ranging from the

  2. High-energy neutrino astrophysics

    NASA Astrophysics Data System (ADS)

    Halzen, Francis

    2017-03-01

    The chargeless, weakly interacting neutrinos are ideal astronomical messengers as they travel through space without scattering, absorption or deflection. But this weak interaction also makes them notoriously di cult to detect, leading to neutrino observatories requiring large-scale detectors. A few years ago, the IceCube experiment discovered neutrinos originating beyond the Sun with energies bracketed by those of the highest energy gamma rays and cosmic rays. I discuss how these high-energy neutrinos can be detected and what they can tell us about the origins of cosmic rays and about dark matter.

  3. High flux solar energy transformation

    DOEpatents

    Winston, Roland; Gleckman, Philip L.; O'Gallagher, Joseph J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  4. High flux solar energy transformation

    DOEpatents

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  5. Solid State Technology Meets Collider Challenge

    SciTech Connect

    Hazi, A

    2005-09-20

    Probing the frontiers of particle physics and delving into the mysteries of the universe and its beginnings require machines that can accelerate beams of fundamental particles to very high energies and then collide those beams together, producing a multitude of exotic subatomic particles. The proposed Next Linear Collider (NLC), being developed by Stanford Linear Accelerator Center (SLAC), Lawrence Livermore and Lawrence Berkeley national laboratories, and Fermi National Accelerator Laboratory (Fermilab), is such a machine. The NLC is expected to produce a variety of subatomic particles by smashing together electrons and their antimatter counterparts (positrons) at nearly the speed of light with energies in the teraelectronvolt (TeV) range. Plans are that the NLC will initially operate at 0.5 TeV and ultimately be scaled up to 1.5 TeV. (See S&TR, April 2000, pp. 12-16.) Work at the facility will complement the research to be conducted at another high-energy particle accelerator, the 14-TeV Large Hadron Collider at the European Laboratory for Particle Physics (commonly known by the acronym CERN from its former name) in Geneva, which is scheduled for completion in 2007. Achieving beam energy levels in the TeV range requires modulator systems that can convert ac line power--the same type of power one gets from the wall plug--into dc pulses. Ultimately, these pulses are transformed into radiofrequency (rf) pulses that ''kick'' the particles up to the required energy levels. Livermore scientists and engineers have designed a solid-state modulator to replace oldstyle modulators based on vacuum-tube technology. These new modulators promise to be far more efficient, reliable, and serviceable than the previous components. Livermore's Laboratory Directed Research and Development Program supported the basic research and development on the solid-state modulator technology, and SLAC supported the systems integration.

  6. Prospects for collider searches for dark matter with heavy quarks

    SciTech Connect

    Artoni, Giacomo; Lin, Tongyan; Penning, Bjoern; Sciolla, Gabriella; Venturini, Alessio

    2013-08-05

    We present projections for future collider searches for dark matter produced in association with bottom or top quarks. Such production channels give rise to final states with missing transverse energy and one or more b-jets. Limits are given assuming an effective scalar operator coupling dark matter to quarks, where the dedicated analysis discussed here improves significantly over a generic monojet analysis. We give updated results for an anticipated high-luminosity LHC run at 14 TeV and for a 33 TeV hadron collider.

  7. Experimental overview on small colliding systems at RHIC

    NASA Astrophysics Data System (ADS)

    Stankus, Paul

    2016-12-01

    Beginning with the observation of ridge/flow-like features in pair correlations measurements in p+Pb, d+Au and high-density p+p events at RHIC and LHC, the last few years have seen a great surge of interest in the question of whether anything like a hot, locally-equilibrated QCD medium is formed in the small systems at collider energies. Many intriguing and suggestive results have been presented, but conclusions about medium formation must be approached with care. This presentation will attempt to summarize the experimental results from small colliding systems measured at RHIC, as part of a careful and objective evaluation of this question.

  8. Extraterrestrial high energy neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    Using the most recent cosmic ray spectra up to 2x10 to the 20th power eV, production spectra of high energy neutrinos from cosmic ray interactions with interstellar gas and extragalactic interactions of ultrahigh energy cosmic rays with 3K universal background photons are presented and discussed. Estimates of the fluxes from cosmic diffuse sources and the nearby quasar 3C273 are made using the generic relationship between secondary neutrinos and gammas and using recent gamma ray satellite data. These gamma ray data provide important upper limits on cosmological neutrinos. Quantitative estimates of the observability of high energy neutrinos from the inner galaxy and 3C273 above atmospheric background for a DUMAND type detector are discussed in the context of the Weinberg-Salam model with sq sin theta omega = 0.2 and including the atmospheric background from the decay of charmed mesons. Constraints on cosmological high energy neutrino production models are also discussed. It appears that important high energy neutrino astronomy may be possible with DUMAND, but very long observing times are required.

  9. Muon Colliders: The Next Frontier

    ScienceCinema

    Tourun, Yagmur [Illinois Institute of Technology, Chicago, Illinois, United States

    2016-07-12

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  10. High Energy Astrophysics Program (HEAP)

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella; Corcoran, Michael; Drake, Stephen; McGlynn, Thomas A.; Snowden, Stephen; Mukai, Koji; Cannizzo, John; Lochner, James; Rots, Arnold; Christian, Eric; Barthelmy, Scott; Palmer, David; Mitchell, John; Esposito, Joseph; Sreekumar, P.; Hua, Xin-Min; Mandzhavidze, Natalie; Chan, Kai-Wing; Soong, Yang; Barrett, Paul

    1998-01-01

    This report reviews activities performed by the members of the USRA contract team during the 6 months of the reporting period and projected activities during the coming 6 months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in astrophysics. Supported missions include advanced Satellite for Cosmology and Astrophysics (ASCA), X-Ray Timing Experiment (XTE), X-Ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC) and others.

  11. High Energy Astrophysics Program (HEAP)

    NASA Technical Reports Server (NTRS)

    Angelini, L.

    1998-01-01

    This report reviews activities performed by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  12. Beamstrahlung spectra in next generation linear colliders

    SciTech Connect

    Barklow, T.; Chen, P. ); Kozanecki, W. )

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  13. Thermal Photon Radiation in High Multiplicity p+Pb Collisions at the Large Hadron Collider

    SciTech Connect

    Shen, Chun; Paquet, Jean-François; Denicol, Gabriel S.; Jeon, Sangyong; Gale, Charles

    2016-02-18

    We observed the collective behavior of hadronic particles in high multiplicity proton-lead collisions at the Large Hadron Collider, as well as in deuteron-gold collisions at the Relativistic Heavy-Ion Collider. In our work we present the first calculation, in the hydrodynamic framework, of thermal photon radiation from such small collision systems. Owing to their compact size, these systems can reach temperatures comparable to those in central nucleus-nucleus collisions. Moreover, the thermal photons can thus shine over the prompt background, and increase the low pT direct photon spectrum by a factor of 2–3 in 0%–1% p+Pb collisions at 5.02 TeV. This thermal photon enhancement can therefore serve as a signature of the existence of a hot quark-gluon plasma during the evolution of these small collision systems, as well as validate hydrodynamic behavior in small systems.

  14. Mutual colliding impact fast ignition

    SciTech Connect

    Winterberg, Friedwardt

    2014-09-15

    It is proposed to apply the well established colliding beam technology of high energy physics to the fast hot spot ignition of a highly compressed DT (deuterium-tritium) target igniting a larger D (deuterium) burn, by accelerating a small amount of solid deuterium, and likewise a small amount of tritium, making a head-on collision in the center of the target, projecting them through conical ducts situated at the opposite side of the target and converging in its center. In their head-on collision, the relative collision velocity is 5/3 times larger compared to the collision velocity of a stationary target. The two pieces have for this reason to be accelerated to a smaller velocity than would otherwise be needed to reach upon impact the same temperature. Since the velocity distribution of the two head-on colliding projectiles is with its two velocity peaks non-Maxwellian, the maximum cross section velocity product turns out to be substantially larger than the maximum if averaged over a Maxwellian. The D and T projectiles would have to be accelerated with two sabots driven by powerful particle or laser beams, permitting a rather large acceleration length. With the substantially larger cross section-velocity product by virtue of the non-Maxwellian velocity distribution, a further advantage is that the head-on collision produces a large magnetic field by the thermomagnetic Nernst effect, enhancing propagating burn. With this concept, the ignition of the neutron-less hydrogen-boron (HB{sup 11}) reaction might even be possible in a heterogeneous assembly of the hydrogen and the boron to reduce the bremsstrahlung-losses, resembling the heterogeneous assembly in a graphite-natural uranium reactor, there to reduce the neutron losses.

  15. Mexican High Energy Physics Network

    NASA Astrophysics Data System (ADS)

    D'Olivo, J. C.; Napsuciale, M.; Pérez-Angón, M. A.

    2016-10-01

    The Mexican High Energy Physics Network is one of CONACYT's thematic research networks, created with the aim of increasing the communication and cooperation of the scientific and technology communities of Mexico in strategic areas. In this report we review the evolution, challenges, achievements and opportunities faced by the network.

  16. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1987-01-01

    High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.

  17. The gluon condensation at high energy hadron collisions

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Lan, Jiangshan

    2017-03-01

    We report that the saturation/CGC model of gluon distribution is unstable under action of the chaotic solution in a nonlinear QCD evolution equation, and it evolves to the distribution with a sharp peak at the critical momentum. We find that this gluon condensation is caused by a new kind of shadowing-antishadowing effects, and it leads to a series of unexpected effects in high energy hadron collisions including astrophysical events. For example, the extremely intense fluctuations in the transverse-momentum and rapidity distributions of the gluon jets present the gluon-jet bursts; a sudden increase of the proton-proton cross sections may fill the GZK suppression; the blocking QCD evolution will restrict the maximum available energy of the hadron-hadron colliders.

  18. Performance and optimization of support vector machines in high-energy physics classification problems

    NASA Astrophysics Data System (ADS)

    Sahin, M. Ö.; Krücker, D.; Melzer-Pellmann, I.-A.

    2016-12-01

    In this paper we promote the use of Support Vector Machines (SVM) as a machine learning tool for searches in high-energy physics. As an example for a new-physics search we discuss the popular case of Supersymmetry at the Large Hadron Collider. We demonstrate that the SVM is a valuable tool and show that an automated discovery-significance based optimization of the SVM hyper-parameters is a highly efficient way to prepare an SVM for such applications.

  19. Update on the MEIC electron collider ring design

    SciTech Connect

    Lin, Fangei; Derbenev, Yaroslav S.; Harwood, Leigh; Hutton, Andrew; Morozov, Vasiliy; Pilat, Fulvia; Zhang, Yuhong; Cai, Y.; Nosochkov, Y. M.; Sullivan, Michael; Wang, M.-H; Wienands, Uli

    2015-09-01

    The electron collider ring of the Medium-energy Electron-Ion Collider (MEIC) at Jefferson Lab is designed to accumulate and store a high-current polarized electron beam for collisions with an ion beam. We consider a design of the electron collider ring based on reusing PEP-II components, such as magnets, power supplies, vacuum system, etc. This has the potential to significantly reduce the cost and engineering effort needed to bring the project to fruition. This paper reports on an electron ring optics design considering the balance of PEP-II hardware parameters (such as dipole sagitta, magnet field strengths and acceptable synchrotron radiation power) and electron beam quality in terms of equilibrium emittances.

  20. Update on the MEIC electron collider ring design

    SciTech Connect

    Lin, F.; Derbenev, Ya. S.; Harwood, L.; Hutton, A.; Morozov, V. S.; Pilat, F.; Zhang, Y.; Cai, Y.; Nosochkov, Y. M.; Sullivan, M.; Wang, M-H; Wienands, U.

    2015-07-14

    The electron collider ring of the Medium-energy Electron-Ion Collider (MEIC) at Jefferson Lab is designed to accumulate and store a high-current polarized electron beam for collisions with an ion beam. We consider a design of the electron collider ring based on reusing PEPII components, such as magnets, power supplies, vacuum system, etc. This has the potential to significantly reduce the cost and engineering effort needed to bring the project to fruition. This paper reports on an electron ring optics design considering the balance of PEP-II hardware parameters (such as dipole sagitta, magnet field strengths and acceptable synchrotron radiation power) and electron beam quality in terms of equilibrium emittances.

  1. A Laser-Driven Linear Collider: Sample Machine Parameters and Configuration

    SciTech Connect

    Colby, E.R.; England, R.J.; Noble, R.J.; /SLAC

    2011-05-20

    We present a design concept for an e{sup +}e{sup -} linear collider based on laser-driven dielectric accelerator structures, and discuss technical issues that must be addressed to realize such a concept. With a pulse structure that is quasi-CW, dielectric laser accelerators potentially offer reduced beamstrahlung and pair production, reduced event pileup, and much cleaner environment for high energy physics and. For multi-TeV colliders, these advantages become significant.

  2. Research in High Energy Physics at Duke University

    SciTech Connect

    Goshaw, Alfred; Kotwal, Ashutosh; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, five postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the {mu} {yields} e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detector. This water-filled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  3. Research in High Energy Physics at Duke University

    SciTech Connect

    Kotwal, Ashutosh V.; Goshaw, Al; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, ve postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the ! e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detec- tor. This water- lled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  4. Physics perspectives of heavy-ion collisions at very high energy

    DOE PAGES

    Chang, Ning-bo; Cao, ShanShan; Chen, Bao-yi; ...

    2016-01-15

    We expect heavy-ion collisions at very high colliding energies to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We also report theoretical investigations of the physics perspectives of heavy-ion collisions at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. Here, we illustrate the potential of future experimental studies of the initial particle production andmore » formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter.« less

  5. Physics perspectives of heavy-ion collisions at very high energy

    SciTech Connect

    Chang, Ning-bo; Cao, ShanShan; Chen, Bao-yi; Chen, Shi-yong; Chen, Zhen-yu; Ding, Heng-Tong; He, Min; Liu, Zhi-quan; Pang, Long-gang; Qin, Guang-you; Rapp, Ralf; Schenke, Björn; Shen, Chun; Song, HuiChao; Xu, Hao-jie; Wang, Qun; Wang, Xin-Nian; Zhang, Ben-wei; Zhang, Han-zhong; Zhu, XiangRong; Zhuang, Peng-fei

    2016-01-15

    We expect heavy-ion collisions at very high colliding energies to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We also report theoretical investigations of the physics perspectives of heavy-ion collisions at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. Here, we illustrate the potential of future experimental studies of the initial particle production and formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter.

  6. The Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Fischer, Wolfram

    The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...

  7. UPR/Mayaguez High Energy Physics

    SciTech Connect

    Mendez, Hector

    2014-10-31

    This year the University of Puerto Rico at Mayaguez (UPRM) High Energy Physics (HEP) group continued with the ongoing research program outlined in the grant proposal. The program is centered on the Compact Muon Solenoid (CMS) experiment at the proton-proton (pp) collisions at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The main research focus is on data analysis and on the preparation for the High Luminosity (HL) LHC or experiment detector upgrade. The physics data analysis included Higgs Doublet Search and measurement of the (1) Λ0b branching fraction, (2) B meson mass, and (3) hyperon θ-b lifetime. The detector upgrade included work on the preparations for the Forward Pixel (FPIX) detector Silicon Sensor Testing in a production run at Fermilab. In addition, the group has taken responsibilities on the Software Release through our former research associate Dr. Eric Brownson who acted until last December as a Level Two Offline Manager for the CMS Upgrade. In support of the CMS data analysis activities carried out locally, the UPRM group has built and maintains an excellent Tier3 analysis center in Mayaguez. This allowed us to analyze large data samples and to continue the development of algorithms for the upgrade tracking robustness we started several years ago, and we plan to resume in the near future. This project involves computer simulation of the radiation damage to be suffered at the higher luminosities of the upgraded LHC. This year we continued to serve as a source of outstanding students for the field of high energy physics. Three of our graduate students finished their MS work in May, 2014, Their theses research were on data analysis of heavy quark b-physics. All of them are currently enrolled at Ph.D. physics program across the nation. One of them (Hector Moreno) at New Mexico University (Hector Moreno), one at University of New Hampshire (Sandra Santiesteban) and one at University of

  8. Photon and dilepton production at the Facility for Proton and Anti-Proton Research and beam-energy scan at the Relativistic Heavy-Ion Collider using coarse-grained microscopic transport simulations

    NASA Astrophysics Data System (ADS)

    Endres, Stephan; van Hees, Hendrik; Bleicher, Marcus

    2016-05-01

    We present calculations of dilepton and photon spectra for the energy range Elab=2 A to35 A GeV which will be available for the Compressed Baryonic Matter (CBM) experiment at the future Facility for Proton and Anti-Proton Research (FAIR). The same energy regime will also be covered by phase II of the beam-energy scan at the Relativistic Heavy-Ion Collider (RHIC-BES). Coarse-grained dynamics from microscopic transport calculations of the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) model is used to determine temperature and chemical potentials, which allows for the use of dilepton and photon-emission rates from equilibrium quantum-field-theory calculations. The results indicate that nonequilibrium effects, the presence of baryonic matter, and the creation of a deconfined phase might show up in specific manners in the measurable dilepton invariant-mass spectra and in the photon transverse-momentum spectra. However, as the many influences are difficult to disentangle, we argue that the challenge for future measurements of electromagnetic probes will be to provide a high precision with uncertainties much lower than in previous experiments. Furthermore, a systematic study of the whole energy range covered by CBM at FAIR and RHIC-BES is necessary to discriminate between different effects, which influence the spectra, and to identify possible signatures of a phase transition.

  9. Electron Ion Collider transverse spin physics

    SciTech Connect

    Prokudin, Alexei

    2011-07-01

    Electron Ion Collider is a future high energy facility for studies of the structure of the nucleon. Three-dimensional parton structure is one of the main goals of EIC. In momentum space Transverse Momentum Dependent Distributions (TMDs) are the key ingredients to map such a structure. At leading twist spin structure of spin-1/2 hadron can be described by 8 TMDs. Experimentally these functions can be studied in polarised SIDIS experiments. We discuss Sivers distribution function that describes distribution of unpolarised quarks in a transversely polarised nucleon and transversity that measures distribution of transversely polarised quarks in a transversely polarised nucleon

  10. Electron Ion Collider transverse spin physics

    SciTech Connect

    Prokudin, Alexei

    2011-07-15

    Electron Ion Collider is a future high energy facility for studies of the structure of the nucleon. Three-dimensional parton structure is one of the main goals of EIC. In momentum space Transverse Momentum Dependent Distributions (TMDs) are the key ingredients to map such a structure. At leading twist spin structure of spin-1/2 hadron can be described by 8 TMDs. Experimentally these functions can be studied in polarised SIDIS experiments. We discuss Sivers distribution function that describes distribution of unpolarised quarks in a transversely polarised nucleon and transversity that measures distribution of transversely polarised quarks in a transversely polarised nucleon.

  11. High-energy neutrino astronomy

    NASA Astrophysics Data System (ADS)

    Montaruli, Teresa

    2012-07-01

    Neutrino astronomy, conceptually conceived four decades ago, has entered an exciting phase for providing results on the quest for the sources of the observed highest energy particles. IceCube and ANTARES are now completed and are scanning in space and time possible signals of high energy neutrinos indicating the existence of such sources. DeepCore, inside IceCube, is a playground for vetoed neutrino measurement with better potential below 1 TeV. A larger and denser detector is now being discussed. ARA, now in test phase, will be composed by radio stations that could cover up to ~ 100 km2 and aims at the highest energy region of cosmogenic neutrinos. The non observation of cosmic events is on one side a source of disappointment, on the other it represents by itself an important result. If seen in the context of a multi-messenger science, the combination of photon and cosmic ray experiment results brings invaluable information. The experimental upper bounds of the cubic-kilometer telescope IceCube are now below the theoretical upper bounds for extragalactic fluxes of neutrinos from optically thin sources. These are responsible for accelerating the extragalactic cosmic rays. Such limits constrain the role of gamma-ray bursts, described by the fireball picture, as sources of ultra-high energy cosmic rays. Neutrino telescopes are exciting running multi-task experiments that produce astrophysics and particle physics results some of which have been illustrated at this conference and are summarized in this report.

  12. Chromaticity correction for a muon collider optics

    SciTech Connect

    Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.; /Fermilab

    2011-03-01

    Muon Collider (MC) is a promising candidate for the next energy frontier machine. However, in order to obtain peak luminosity in the 10{sup 34} cm{sup 2}s{sup -1} range the collider lattice designmust satisfy a number of stringent requirements. In particular the expected large momentum spread of the muon beam and the very small {beta}* call for a careful correction of the chromatic effects. Here we present a particular solution for the interaction region (IR) optics whose distinctive feature is a three-sextupole local chromatic correction scheme. The scheme may be applied to other future machines where chromatic effects are expected to be large. The expected large muon energy spread requires the optics to be stable over a wide range of momenta whereas the required luminosity calls for {beta}* in the mm range. To avoid luminosity degradation due to hour-glass effect, the bunch length must be comparatively small. To keep the needed RF voltage within feasible limits the momentum compaction factor must be small over the wide range of momenta. A low {beta}* means high sensitivity to alignment and field errors of the Interaction Region (IR) quadrupoles and large chromatic effects which limit the momentum range of optics stability and require strong correction sextupoles, which eventually limit the Dynamic Aperture (DA). Finally, the ring circumference should be as small as possible, luminosity being inversely proportional to the collider length. A promising solution for a 1.5 TeV center of mass energy MC with {beta}* = 1 m in both planes has been proposed. This {beta}* value has been chosen as a compromise between luminosity and feasibility based on the magnet design and energy deposition considerations. The proposed solution for the IR optics together with a new flexible momentum compaction arc cell design allows to satisfy all requirements and is relatively insensitive to the beam-beam effect.

  13. High energy density aluminum battery

    SciTech Connect

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  14. Cosmology for high energy physicists

    SciTech Connect

    Albrecht, A.

    1987-11-01

    The standard big bang model of cosmology is presented. Although not perfect, its many successes make it a good starting point for most discussions of cosmology. Places are indicated where well understood laboratory physics is incorporated into the big bang, leading to successful predictions. Much less established aspects of high energy physics and some of the new ideas they have introduced into the field of cosmology are discussed, such as string theory, inflation and monopoles. 49 refs., 5 figs.

  15. High energy overcurrent protective device

    DOEpatents

    Praeg, Walter F.

    1982-01-01

    Electrical loads connected to capacitance elements in high voltage direct current systems are protected from damage by capacitance discharge overcurrents by connecting between the capacitance element and the load, a longitudinal inductor comprising a bifilar winding wound about a magnetic core, which forms an incomplete magnetic circuit. A diode is connected across a portion of the bifilar winding which conducts a unidirectional current only. Energy discharged from the capacitance element is stored in the inductor and then dissipated in an L-R circuit including the diode and the coil winding. Multiple high voltage circuits having capacitance elements may be connected to loads through bifilar windings all wound about the aforementioned magnetic core.

  16. The Relativistic Heavy Ion Collider, Rhic

    NASA Astrophysics Data System (ADS)

    Foelsche, H.; Hahn, H.; Harrison, M.; Ozaki, S.; Rhoades-Brown, M. J.

    1993-03-01

    The scope of the first relativistic energy heavy ion collider, RHIC, is discussed. Particular attention is paid to those novel features of a heavy ion collider that are distinct from the more usual proton machines. These features are derived from the experimental requirements of operation with a variety of ion species over a wide energy range as well as the increased demands on available ion sources and injector complexes. Storage of heavy ion beams for many hours is severely impacted by intrabeam scattering.

  17. Effects of Photon Absorption in High Energy Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Winchell, Joshua; Somanathan, Sidharth; Fries, Ranier

    2014-09-01

    Photons are an important probe of the hot and dense nuclear matter created in high-energy collisions of nuclei at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Since the mean free path of photons is larger than the size of the fireball of nuclear matter, final state interactions of photons are usually neglected. In light of recent tension between theoretical calculations and data from RHIC and LHC, we study the effect of reabsorption of photons on elliptic flow v2 and on the nuclear modification factor RAA. We consider photons emitted in primary hard collisions and thermal photons from quark-gluon plasma and hot hadron gas. We use the jet-quenching code PPM to simulate the propagation of those photons in a fireball of quark-gluon plasma and hot hadron gas created by collisions of heavy nuclei. For the absorption cross-sections we consider three different approaches: (a) Compton and pair production processes calculated by us in a static approximation, (b) the photon damping rates calculated by Thoma (1995), and (c) absorption rates derived from a recent photon calculation by van Hees et al.

  18. Performance of the SLAC Linear Collider klystrons

    SciTech Connect

    Allen, M.A.; Fowkes, W.R.; Koontz, R.F.; Schwarz, H.D.; Seeman, J.T.; Vlieks, A.E.

    1987-01-01

    There are now 200 new, high power 5045 klystrons installed on the two-mile Stanford Linear Accelerator. Peak power per klystron averages over 63 MW. Average energy contribution is above 240 MeV per station. Electron beam energy has been measured as high as 53 GeV. Energy instability due to klystron malfunction is less than 0.2%. The installed klystrons have logged over one million operating hours with close to 20,000 klystron hours cumulative operating time between failures. Data are being accumulated on klystron operation and failure modes with failure signatures starting to become apparent. To date, no wholesale failure modes have surfaced that would impair the SLAC Linear Collider (SLC) program.

  19. High energy physics in cosmic rays

    SciTech Connect

    Jones, Lawrence W.

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  20. Physics and technology of the next linear collider

    SciTech Connect

    1996-06-01

    The authors present the prospects for the next generation of high-energy physics experiments with electron-positron colliding beams. This report summarizes the current status of the design and technological basis of a linear collider of center-of-mass energy 0.5--1.5 TeV, and the opportunities for high-energy physics experiments that this machine is expected to open. The physics goals discussed here are: Standard Model processes and simulation; top quark physics; Higgs boson searches and properties; supersymmetry; anomalous gauge boson couplings; strong WW scattering; new gauge bosons and exotic particles; e{sup {minus}}e{sup {minus}}, e{sup {minus}}{gamma}, and {gamma}{gamma} interactions; and precision tests of QCD.

  1. Opening the high-energy frontier

    SciTech Connect

    Quigg, C.

    1988-12-01

    I review the scientific motivation for an experimental assault on the 1-TeV scale, elaborating the idea of technicolor as one interesting possibility for what may be found there. I then summarize some of the discovery possibilities opened by a high-luminosity, multi-TeV proton-proton collider. After a brief resume of the experimental environment anticipated at the SSC, I report on the status of the SSC R D effort and discuss the work to be carried out over the course of the next year. 37 refs., 10 figs., 1 tab.

  2. Polarization Effects at a Muon Collider

    SciTech Connect

    Parsa, Z.

    1998-11-01

    For Muon Colliders, Polarization will be a useful tool if high polarization is achievable with little luminosity loss. Formulation and effects of beam polarization and luminosity including polarization effects in Higgs resonance studies are discussed for improving precision measurements and Higgs resonance ''discovery'' capability e.g. at the First Muon Collider (FMC).

  3. Progress report of a research program in experimental and theoretical high energy physics, 1 January 1992--31 May 1992

    SciTech Connect

    Brandenberger, R.; Cutts, D.; Fried, H.M.; Guralnik, G.; Jevicki, A.; King, K.; Lanou, R.E.; Partridge, R.; Tan, C.I.; Widgoff, M.

    1992-06-01

    This report discusses research at Brown University in experimental and theoretical high energy physics. Some of the research programs conducted are: interactions of leptons and hadrons form accelerator and astrophysical sources; hadron interactions with hydrogen and heavier nuclei; large volume detector at the Gran Sasso Laboratory; GEM collaboration at SSC; and hadron colliders and neutrino physics. (LSP)

  4. [High energy particle physics at Purdue, 1990--1991]. [Dept. of Physics, Purdue Univ. , West Lafayette, Indiana

    SciTech Connect

    Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1991-05-01

    Progress made in the experimental and theoretical high energy physics program is reviewed. The CLEO experiment, particle astrophysics, dynamical symmetry breaking in gauge theories, the Collider Detector at Fermilab, the TOPAZ Experiment, and elementary particle physics beyond the standard model are included.

  5. Low Energy Building for High Energy People.

    ERIC Educational Resources Information Center

    American School and University, 1982

    1982-01-01

    The Huston Huffman Center at the University of Oklahoma's Norman campus has a jogging track as well as facilities for exercise and court games that are fully accessible to the handicapped. The building is set eight feet in the ground both to reduce its bulk and to conserve energy. (Author/MLF)

  6. Physics considerations for laser-plasma linear colliders

    SciTech Connect

    Schroeder, Carl; Esarey, Eric; Geddes, Cameron; Benedetti, Carlo; Leemans, Wim

    2010-06-11

    Physics considerations for a next-generation linear collider based on laser-plasma accelerators are discussed. The ultra-high accelerating gradient of a laser-plasma accelerator and short laser coupling distance between accelerator stages allows for a compact linac. Two regimes of laser-plasma acceleration are discussed. The highly nonlinear regime has the advantages of higher accelerating fields and uniform focusing forces, whereas the quasi-linear regime has the advantage of symmetric accelerating properties for electrons and positrons. Scaling of various accelerator and collider parameters with respect to plasma density and laser wavelength are derived. Reduction of beamstrahlung effects implies the use of ultra-short bunches of moderate charge. The total linac length scales inversely with the square root of the plasma density, whereas the total power scales proportional to the square root of the density. A 1 TeV center-of-mass collider based on stages using a plasma density of 10{sup 17} cm{sup -3} requires tens of J of laser energy per stage (using 1 {micro}m wavelength lasers) with tens of kHz repetition rate. Coulomb scattering and synchrotron radiation are examined and found not to significantly degrade beam quality. A photon collider based on laser-plasma accelerated beams is also considered. The requirements for the scattering laser energy are comparable to those of a single laser-plasma accelerator stage.

  7. Review of total cross sections and forward scattering parameters at ultra-high energies

    SciTech Connect

    Block, M.M.; White, A.R.

    1991-10-01

    We review the field of the elastic scattering of pp and {bar p}p at the ultra-high energies. The recent total cross section, {sigma}{sub tot}, and {rho}-value results from the Fermilab Tevatron Collider experiments presented at the 4th `Blois` Workshop on Elastic and Diffractive Scattering (Elba, Italy, in May, 1991), allow us a comprehensive overview of the field. 24 refs., 10 figs., 3 tabs.

  8. Review of total cross sections and forward scattering parameters at ultra-high energies

    SciTech Connect

    Block, M.M. . Dept. of Physics and Astronomy); White, A.R. . High Energy Physics Div.)

    1991-10-01

    We review the field of the elastic scattering of pp and {bar p}p at the ultra-high energies. The recent total cross section, {sigma}{sub tot}, and {rho}-value results from the Fermilab Tevatron Collider experiments presented at the 4th Blois' Workshop on Elastic and Diffractive Scattering (Elba, Italy, in May, 1991), allow us a comprehensive overview of the field. 24 refs., 10 figs., 3 tabs.

  9. Pion exchange at high energies

    SciTech Connect

    Jones, L.M.

    1980-07-01

    The state of Regge pion exchange calculations for high-energy reactions is reviewed. Experimental evidence is summarized to show that (i) the pion trajectory has a slope similar to that of other trajectories; (ii) the pion exchange contribution can dominate contributions of higher trajectories up to quite a large energy; (iii) many two-body cross sections with large pion contributions can be fit only by models which allow for kinematical conspiracy at t=0. The theory of kinematic conspiracy is reviewed for two-body amplitudes, and calculations of the conspiring pion--Pomeron cut discussed. The author then summarizes recent work on pion exchange in Reggeized Deck models for multiparticle final states, with emphasis on the predictions of various models (with and without resonances) for phases of the partial wave amplitudes.

  10. From a {nu} factory to {mu} super + mu super {minus} Colliders

    SciTech Connect

    David Neuffer

    2000-12-21

    An important feature of a {mu}-storage ring {nu}-source is that it can be extended to the possibility of a future high-energy muon collider. The neutrino source provides a useful physics device that initiates key technologies required for future {mu}{sup +}-{mu}{sup {minus}} Colliders, but with much less demanding parameter requirements. These technologies include high-intensity {mu}-production, {mu}-capture, {mu}-cooling, {mu}-acceleration and multiturn {mu} storage rings. {mu}{sup +}-{mu}{sup {minus}} colliders require a similar number of muons, but they require that the muons be cooled to a much smaller phase space and formed into a small number of bunches, and both positive and negative bunches must be simultaneously captured. These differences are discussed, and the extension of the {nu}-source to {mu}{sup +}-{mu}{sup {minus}} collider specifications is described.

  11. B physics at hadron colliders

    SciTech Connect

    Butler, J.N.; /Fermilab

    2005-09-01

    This paper discusses the physics opportunity and challenges for doing high precision B physics experiments at hadron colliders. It describes how these challenges have been addressed by the two currently operating experiments, CDF and D0, and how they are addressed by three experiments, ATLAS, CMS, and LHCb, at the LHC.

  12. A study on dual readout crystal calorimeter for hadron and jet energy measurement at a future lepton collider

    SciTech Connect

    Yeh, G.P.; /Fermilab

    2010-01-01

    Studies of requirements and specifications of crystals are necessary to develop a new generation of crystals for dual readout crystal hadron or total absorption calorimeter. This is a short and basic study of the characteristics and hadron energy measurement of PbWO4 and BGO crystals for scintillation and Cerenkov Dual Readout hadron calorimeter.

  13. High Energy Laser Diagnostic Sensors

    NASA Astrophysics Data System (ADS)

    Luke, James R.; Goddard, Douglas N.; Lewis, Jay; Thomas, David

    2010-10-01

    Recent advancements in high energy laser (HEL) sources have outpaced diagnostic tools capable of accurately quantifying system performance. Diagnostic tools are needed that allow system developers to measure the parameters that define HEL effectiveness. The two critical parameters for quantifying HEL effectiveness are the irradiance on target and resultant rise in target temperature. Off-board sensing has its limitations, including unpredictable changes in the reflectivity of the target, smoke and outgassing, and atmospheric distortion. On-board sensors overcome the limitations of off-board techniques but must survive high irradiance levels and extreme temperatures. We have developed sensors for on-target diagnostics of high energy laser beams and for the measurement of the thermal response of the target. The conformal sensors consist of an array of quantum dot photodetectors and resistive temperature detectors. The sensor arrays are lithographically fabricated on flexible substrates and can be attached to a variety of laser targets. We have developed a nanoparticle adhesive process that provides good thermal contact with the target and that ensures the sensor remains attached to the target for as long as the target survives. We have calibrated the temperature and irradiance sensors and demonstrated them in a HEL environment.

  14. HIGH ENERGY GASEOUS DISCHARGE DEVICES

    DOEpatents

    Josephson, V.

    1960-02-16

    The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.

  15. High Energy Astronomy Observatory (HEAO)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This is an artist's concept describing the High Energy Astronomy Observatory (HEAO). The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. This concept was painted by Jack Hood of the Marshall Space Flight Center (MSFC). Hardware support for the imaging instruments was provided by American Science and Engineering. The HEAO spacecraft were built by TRW, Inc. under project management of the MSFC.

  16. Measurement of Hadronic Event Shapes and Jet Substructure in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider

    SciTech Connect

    Miller, David Wilkins

    2012-03-20

    This thesis presents the first measurement of 6 hadronic event shapes in proton-proton collisions at a center-of-mass energy of {radical}s = 7 TeV using the ATLAS detector at the Large Hadron Collider. Results are presented at the particle-level, permitting comparisons to multiple Monte Carlo event generator tools. Numerous tools and techniques that enable detailed analysis of the hadronic final state at high luminosity are described. The approaches presented utilize the dual strengths of the ATLAS calorimeter and tracking systems to provide high resolution and robust measurements of the hadronic jets that constitute both a background and a signal throughout ATLAS physics analyses. The study of the hadronic final state is then extended to jet substructure, where the energy flow and topology within individual jets is studied at the detector level and techniques for estimating systematic uncertainties for such measurements are commissioned in the first data. These first substructure measurements in ATLAS include the jet mass and sub-jet multiplicity as well as those concerned with multi-body hadronic decays and color flow within jets. Finally, the first boosted hadronic object observed at the LHC - the decay of the top quark to a single jet - is presented.

  17. High-Energy-Density Capacitors

    NASA Technical Reports Server (NTRS)

    Slenes, Kirk

    2003-01-01

    Capacitors capable of storing energy at high densities are being developed for use in pulse-power circuits in such diverse systems as defibrillators, particle- beam accelerators, microwave sources, and weapons. Like typical previously developed energy-storage capacitors, these capacitors are made from pairs of metal/solid-dielectric laminated sheets that are wound and pressed into compact shapes to fit into cans, which are then filled with dielectric fluids. Indeed, these capacitors can be fabricated largely by conventional fabrication techniques. The main features that distinguish these capacitors from previously developed ones are improvements in (1) the selection of laminate materials, (2) the fabrication of the laminated sheets from these materials, and (3) the selection of dielectric fluids. In simplest terms, a high-performance laminated sheet of the type used in these capacitors is made by casting a dielectric polymer onto a sheet of aluminized kraft paper. The dielectric polymer is a siloxane polymer that has been modified with polar pendant groups to increase its permittivity and dielectric strength. Potentially, this polymer is capable of withstanding an energy density of 7.5 J/cm3, which is four times that of the previous state-of-the-art-capacitor dielectric film material. However, the full potential of this polymer cannot be realized at present because (1) at thicknesses needed for optimum performance (.8.0 m), the mechanical strength of a film of this polymer is insufficient for incorporation into a wound capacitor and (2) at greater thickness, the achievable energy density decreases because of a logarithmic decrease in dielectric strength with increasing thickness. The aluminized kraft paper provides the mechanical strength needed for processing of the laminate and fabrication of the capacitor, and the aluminum film serves as an electrode layer. Because part of the thickness of the dielectric is not occupied by the modified siloxane polymer, the

  18. High Energy Density Laboratory Astrophysics

    SciTech Connect

    Remington, B A

    2004-11-11

    High-energy-density (HED) physics refers broadly to the study of macroscopic collections of matter under extreme conditions of temperature and density. The experimental facilities most widely used for these studies are high-power lasers and magnetic-pinch generators. The HED physics pursued on these facilities is still in its infancy, yet new regimes of experimental science are emerging. Examples from astrophysics include work relevant to planetary interiors, supernovae, astrophysical jets, and accreting compact objects (such as neutron stars and black holes). In this paper, we will review a selection of recent results in this new field of HED laboratory astrophysics and provide a brief look ahead to the coming decade.

  19. Final performance report to the Department of Energy by Prairie View A & M University High Energy Physics

    SciTech Connect

    Judd, D.J.

    1992-05-14

    The High Energy Physics (HEP) group at Prairie View A&M University is a collaboratory with Fermi National Accelerator Laboratory (Fermilab), and the universities listed below. The purpose of this collaboration is to contribute to the understanding of heavy quark hadroproduction. Our efforts began in the early 1980`s at Fermilab with the study of the charmonium states, J/{psi} and {chi}, (DE-FG-86ER-40297) and presently with the continued studies of the charmonium system and direct photon production (Fermilab experiment E705) and new studies on bottom production (Fermilab experiment E771) in the High Intensity Laboratory (Proton-West Area) of Fermilab. The Prairie View group will, as a part of their task, be directly responsible for a major part of the PWC system upgrade by developing the electronics for the readouts of the PWC pad chambers. Six in all, these chambers, are a part of new multilevel triggering scheme and represents a departure from the triggering methodology of the previous trigger processors in earlier experiments. The Prairie View group is also involved with the Bottom Collider Detector (BCD) Collaboration which is proposing to study bottom production at the Fermilab Collider and at the Superconducting Super Collider (SSC).

  20. Scanning Synchronization of Colliding Bunches for MEIC Project

    SciTech Connect

    Derbenev, Yaroslav S.; Popov, V. P.; Chernousov, Yu D.; Kazakevich, G. M.

    2015-09-01

    Synchronization of colliding beams is one of the major issues of an electron-ion collider (EIC) design because of sensitivity of ion revolution frequency to beam energy. A conventional solution for this trouble is insertion of bent chicanes in the arcs space. In our report we consider a method to provide space coincidence of encountering bunches in the crab-crossing orbits Interaction Region (IR) while repetition rates of two beams do not coincide. The method utilizes pair of fast kickers realizing a bypass for the electron bunches as the way to equalize positions of the colliding bunches at the Interaction Point (IP). A dipole-mode warm or SRF cavities fed by the magnetron transmitters are used as fast kickers, allowing a broad-band phase and amplitude control. The proposed scanning synchronization method implies stabilization of luminosity at a maximum via a feedback loop. This synchronization method is evaluated as perspective for the Medium Energy Electron-Ion collider (MEIC) project of JLab with its very high bunch repetition rate.

  1. Shadowing effects on J/ψ and Υ production at energies available at the CERN Large Hadron Collider

    DOE PAGES

    Vogt, R.

    2015-09-17

    Proton-nucleus collisions have been used as a intermediate baseline for the determination of cold medium effects. They lie between proton-proton collisions in vacuum and nucleus-nucleus collisions which are expected to be dominated by hot matter effects. Modifications of the quark densities in nuclei relative to those of the proton are well established although those of the gluons in the nucleus are not well understood. We focus on the effect of these on quarkonium production in proton-lead collisions at the LHC at a center of mass energy of 5.02 TeV.

  2. Electromagnetic probes of a pure-glue initial state in nucleus-nucleus collisions at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Vovchenko, V.; Karpenko, Iu. A.; Gorenstein, M. I.; Satarov, L. M.; Mishustin, I. N.; Kämpfer, B.; Stoecker, H.

    2016-08-01

    Partonic matter produced in the early stage of ultrarelativistic nucleus-nucleus collisions is assumed to be composed mainly of gluons, and quarks and antiquarks are produced at later times. To study the implications of such a scenario, the dynamical evolution of a chemically nonequilibrated system is described by ideal (2+1)-dimensional hydrodynamics with a time dependent (anti)quark fugacity. The equation of state interpolates linearly between the lattice data for the pure gluonic matter and the lattice data for the chemically equilibrated quark-gluon plasma. The spectra and elliptic flows of thermal dileptons and photons are calculated for central Pb+Pb collisions at the CERN Large Hadron Collider energy of √{sN N}=2.76 TeV. We test the sensitivity of the results to the choice of equilibration time, including also the case where the complete chemical equilibrium of partons is reached already at the initial stage. It is shown that a suppression of quarks at early times leads to a significant reduction of the yield of the thermal dileptons, but only to a rather modest suppression of the pT distribution of direct photons. It is demonstrated that an enhancement of photon and dilepton elliptic flows might serve as a promising signature of the pure-glue initial state.

  3. SLAC Linear Collider

    SciTech Connect

    Richter, B.

    1985-12-01

    A report is given on the goals and progress of the SLAC Linear Collider. The status of the machine and the detectors are discussed and an overview is given of the physics which can be done at this new facility. Some ideas on how (and why) large linear colliders of the future should be built are given.

  4. Type II seesaw model and multilepton signatures at hadron colliders

    NASA Astrophysics Data System (ADS)

    Mitra, Manimala; Niyogi, Saurabh; Spannowsky, Michael

    2017-02-01

    We investigate multilepton signatures, arising from the decays of doubly charged and singly charged Higgs bosons in the Type II seesaw model. Depending on the vacuum expectation value of the triplet vΔ , the doubly and singly charged Higgs bosons can decay into a large variety of multilepton final states. We explore all possible decay modes corresponding to different regimes of vΔ that generate distinguishing four and five leptonic signatures. We focus on the 13 TeV Large Hadron Collider (LHC) and further extend the study to a very high energy proton-proton collider (VLHC) with a center-of-mass energy of 100 TeV. We find that a doubly charged Higgs boson of masses around 375 GeV can be discovered at immediate LHC runs. A heavier mass of 630 GeV can instead be discovered at the high-luminosity run of the LHC or at the VLHC with 30 fb-1 .

  5. Effect of the orbital debris environment on the high-energy Van Allen proton belt

    NASA Technical Reports Server (NTRS)

    Konradi, Andrei

    1988-01-01

    The lifetimes of high-energy (greater than 55 MeV) protons in the Van Allen radiation belt are calculated, assuming that in time the protons will collide with and be absorbed by particulate orbiting material. The calculations are based on the NASA/DoD Civil Needs Database for orbital debris (Gaines, 1966) and moderate assumptions of future space traffic. It is found that the lifetimes of high-energy protons below 1500 km will decrease, leading to a noticeable redution in their fluxes.

  6. First detection of high-energy astrophysical neutrinos with IceCube

    NASA Astrophysics Data System (ADS)

    Hill, Gary C.

    2015-07-01

    The IceCube detector at the South Pole is the world's largest neutrino telescope, instrumenting a cubic kilometre of deep clear ice. Completed in late 2010, the detector has recorded the arrival directions and energies of tens of thousands of neutrinos - mostly those produced when cosmic rays collide with the Earth's atmosphere. Here, we report on the first observation of high-energy neutrinos from beyond the Earth's atmosphere, identified using a novel method to strongly suppress atmospheric neutrinos coming downward into the detector from the southern sky, leaving a sample of neutrinos highly likely to be of astrophysical origin.

  7. First detection of high-energy astrophysical neutrinos with IceCube

    SciTech Connect

    Hill, Gary C.

    2015-07-15

    The IceCube detector at the South Pole is the world’s largest neutrino telescope, instrumenting a cubic kilometre of deep clear ice. Completed in late 2010, the detector has recorded the arrival directions and energies of tens of thousands of neutrinos – mostly those produced when cosmic rays collide with the Earth’s atmosphere. Here, we report on the first observation of high-energy neutrinos from beyond the Earth’s atmosphere, identified using a novel method to strongly suppress atmospheric neutrinos coming downward into the detector from the southern sky, leaving a sample of neutrinos highly likely to be of astrophysical origin.

  8. Event simulation based on three-fluid hydrodynamics for collisions at energies available at the Dubna Nuclotron-based Ion Collider Facility and at the Facility for Antiproton and Ion Research in Darmstadt

    NASA Astrophysics Data System (ADS)

    Batyuk, P.; Blaschke, D.; Bleicher, M.; Ivanov, Yu. B.; Karpenko, Iu.; Merts, S.; Nahrgang, M.; Petersen, H.; Rogachevsky, O.

    2016-10-01

    We present an event generator based on the three-fluid hydrodynamics approach for the early stage of the collision, followed by a particlization at the hydrodynamic decoupling surface to join to a microscopic transport model, ultrarelativistic quantum molecular dynamics, to account for hadronic final-state interactions. We present first results for nuclear collisions of the Facility for Antiproton and Ion Research-Nuclotron-based Ion Collider Facility energy scan program (Au+Au collisions, √{sN N}=4 -11 GeV ). We address the directed flow of protons and pions as well as the proton rapidity distribution for two model equations of state, one with a first-order phase transition and the other with a crossover-type softening at high densities. The new simulation program has the unique feature that it can describe a hadron-to-quark matter transition which proceeds in the baryon stopping regime that is not accessible to previous simulation programs designed for higher energies.

  9. High energy beam lifetime analysis

    SciTech Connect

    Howell, R.H.; Sterne, P.A.; Hartley, J.; Cowan, T.E.

    1997-05-01

    We have developed a positron lifetime defect analysis capability based on a 3 MeV electrostatic accelerator. The high energy beam lifetime spectrometer is operational with a 60 mCi {sup 22}Na source providing a current of 7 10{sup 5} positrons per second. Lifetime data are derived from a thin plastic transmission detector providing an implantation time and a BaF{sub 2} detector to determine the annihilation time. Positron lifetime analysis is performed with a 3 MeV positron beam on thick sample specimens at counting rates in excess of 2000 per second. The instrument is being used for bulk sample analysis and analysis of samples encapsulated in controlled environments for in situ measurements.

  10. High energy femtosecond pulse compression

    NASA Astrophysics Data System (ADS)

    Lassonde, Philippe; Mironov, Sergey; Fourmaux, Sylvain; Payeur, Stéphane; Khazanov, Efim; Sergeev, Alexander; Kieffer, Jean-Claude; Mourou, Gerard

    2016-07-01

    An original method for retrieving the Kerr nonlinear index was proposed and implemented for TF12 heavy flint glass. Then, a defocusing lens made of this highly nonlinear glass was used to generate an almost constant spectral broadening across a Gaussian beam profile. The lens was designed with spherical curvatures chosen in order to match the laser beam profile, such that the product of the thickness with intensity is constant. This solid-state optics in combination with chirped mirrors was used to decrease the pulse duration at the output of a terawatt-class femtosecond laser. We demonstrated compression of a 33 fs pulse to 16 fs with 170 mJ energy.

  11. Oxides having high energy densities

    DOEpatents

    Ceder, Gerbrand; Kang, Kisuk

    2013-09-10

    Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

  12. Nuclear collisions at the Future Circular Collider

    NASA Astrophysics Data System (ADS)

    Armesto, N.; Dainese, A.; d'Enterria, D.; Masciocchi, S.; Roland, C.; Salgado, C. A.; van Leeuwen, M.; Wiedemann, U. A.

    2016-12-01

    The Future Circular Collider is a new proposed collider at CERN with centre-of-mass energies around 100 TeV in the pp mode. Ongoing studies aim at assessing its physics potential and technical feasibility. Here we focus on updates in physics opportunities accessible in pA and AA collisions not covered in previous Quark Matter contributions, including Quark-Gluon Plasma and gluon saturation studies, novel hard probes of QCD matter, and photon-induced collisions.

  13. CERN-RD39 collaboration activities aimed at cryogenic silicon detector application in high-luminosity Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Eremin, Vladimir; Verbitskaya, Elena; Dehning, Bernd; Sapinski, Mariusz; Bartosik, Marcin R.; Alexopoulos, Andreas; Kurfürst, Christoph; Härkönen, Jaakko

    2016-07-01

    Beam Loss Monitors (BLM) made of silicon are new devices for monitoring of radiation environment in the vicinity of superconductive magnets of the Large Hadron Collider. The challenge of BLMs is extreme radiation hardness, up to 1016 protons/cm2 while placed in superfluid helium (temperature of 1.9 K). CERN BE-BI-BL group, together with CERN-RD39 collaboration, has developed prototypes of BLMs and investigated their device physics. An overview of this development-results of the in situ radiation tests of planar silicon detectors at 1.9 K, performed in 2012 and 2014-is presented. Our main finding is that silicon detectors survive under irradiation to 1×1016 p/cm2 at 1.9 K. In order to improve charge collection, current injection into the detector sensitive region (Current Injection Detector (CID)) was tested. The results indicate that the detector signal increases while operated in CID mode.

  14. Studies of high energy phenomena using muons. Final report

    SciTech Connect

    1995-12-31

    This report covers the activities of the NIU high energy physics group as supported by DOE contract DE-FG02-91ER40641.A000 during the period from 1992 to 1995, and is the final report for this award. The group had three main efforts. The first was the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789. Finally, the authors were members of the SDC collaboration at the SSC. The group consisted of four faculty members, three research associates, and undergraduate and graduate students. The D0 experiment at Fermilab is one of two (the other is CDF) general purpose experiments operating at the Tevatron proton-antiproton collider. Starting in the Fall of 1992, the first data collection occurred at D0. Physics publications are tabulated in the Appendix, with the discovery of the top quark in 1995 being the most prominent. Members of the NIU group worked on a variety of physics topics: Hedin on B-physics and the top-quark search, Fortner on Drell-Yan and other QCD topics, Green on di-Boson production, and Markeloff on excited-quark states. Hedin was also co-coordinator of the B-physics group during this period. The primary emphasis of the NIU D0 group was the muon system. NIU had particular responsibilities for data acquisition; chamber calibration; the Level-2 trigger; and the reconstruction. Hedin also was coordinator of muon software and had the responsibility for muon identification. Work on these items is summarized in a series of D0 Notes listed in the Appendix. Willis, Sirotenko, Hedin and Fortener were also members of the SDC collaboration at the SSC. NIU was a key participant in the calculation of low-energy neutron and photon backgrounds in the SDC experiment, and in designing shielding for the proposed muon system.

  15. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  16. Linear collider approach to a B anti B factory

    SciTech Connect

    Wilson, P.B.

    1987-06-01

    In this paper we consider the basic design expression and principal design constraints for a linear collider suitable for a B anti-B factory: Energy approx. =10 GeV, luminosity 10/sup 33/-10/sup 34/ cm/sup -2/s/sup -1/, energy resolution approx. =10/sup -2/. The design of room temperature linear colliders for a B factory is discussed. In such colliders, the rf energy stored in the linac structure is thrown away after each linac pulse. Linear colliders using superconducting rf cavities are considered. Some brief conclusions are presented.

  17. High Energy Physics and Nuclear Physics Network Requirements

    SciTech Connect

    Dart, Eli; Bauerdick, Lothar; Bell, Greg; Ciuffo, Leandro; Dasu, Sridhara; Dattoria, Vince; De, Kaushik; Ernst, Michael; Finkelson, Dale; Gottleib, Steven; Gutsche, Oliver; Habib, Salman; Hoeche, Stefan; Hughes-Jones, Richard; Ibarra, Julio; Johnston, William; Kisner, Theodore; Kowalski, Andy; Lauret, Jerome; Luitz, Steffen; Mackenzie, Paul; Maguire, Chales; Metzger, Joe; Monga, Inder; Ng, Cho-Kuen; Nielsen, Jason; Price, Larry; Porter, Jeff; Purschke, Martin; Rai, Gulshan; Roser, Rob; Schram, Malachi; Tull, Craig; Watson, Chip; Zurawski, Jason

    2014-03-02

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physics (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily

  18. COLLIDE: Collisions into Dust Experiment

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    1999-01-01

    The Collisions Into Dust Experiment (COLLIDE) was completed and flew on STS-90 in April and May of 1998. After the experiment was returned to Earth, the data and experiment were analyzed. Some anomalies occurred during the flight which prevented a complete set of data from being obtained. However, the experiment did meet its criteria for scientific success and returned surprising results on the outcomes of very low energy collisions into powder. The attached publication, "Low Velocity Microgravity Impact Experiments into Simulated Regolith," describes in detail the scientific background, engineering, and scientific results of COLLIDE. Our scientific conclusions, along with a summary of the anomalies which occurred during flight, are contained in that publication. We offer it as our final report on this grant.

  19. ep Collider experiments and physics

    SciTech Connect

    Atwood, D.; Baur, U.; Bluemlein, J.

    1992-12-31

    The physics prospects for detectors at ep colliders are examined. Colliders considered include the HERA facility at DESY, LEP I {times} LHC, and LEP II {times} LHC at CERN. Physics topics studied include machine energy and polarization, as well as detector resolution, calibration, jet identification and backgrounds from beam-gas interactions. QCD topics include measurements of the quark and gluon structure functions and parton distributions, as well as the expansion of the observable cross section into angular functions. Electroweak topics include measurements of the weak mixing angle, radiative corrections, and WW{gamma} (WWZ) couplings. Topics beyond the standard model include observation of new Z`s, indirect production of Leptoquarks, pair production of sfermions and searches for R-parity-violating SUSY particle production.

  20. Compact, high energy gas laser

    DOEpatents

    Rockwood, Stephen D.; Stapleton, Robert E.; Stratton, Thomas F.

    1976-08-03

    An electrically pumped gas laser amplifier unit having a disc-like configuration in which light propagation is radially outward from the axis rather than along the axis. The input optical energy is distributed over a much smaller area than the output optical energy, i.e., the amplified beam, while still preserving the simplicity of parallel electrodes for pumping the laser medium. The system may thus be driven by a comparatively low optical energy input, while at the same time, owing to the large output area, large energies may be extracted while maintaining the energy per unit area below the threshold of gas breakdown.

  1. NEUTRINO FACTORY BASED ON MUON-STORAGE-RINGS TO MUON COLLIDERS: PHYSICS AND FACILITIES.

    SciTech Connect

    PARSA,Z.

    2001-06-18

    Intense muon sources for the purpose of providing intense high energy neutrino beams ({nu} factory) represents very interesting possibilities. If successful, such efforts would significantly advance the state of muon technology and provides intermediate steps in technologies required for a future high energy muon collider complex. High intensity muon: production, capture, cooling, acceleration and multi-turn muon storage rings are some of the key technology issues that needs more studies and developments, and will briefly be discussed here. A muon collider requires basically the same number of muons as for the muon storage ring neutrino factory, but would require more cooling, and simultaneous capture of both {+-} {mu}. We present some physics possibilities, muon storage ring based neutrino facility concept, site specific examples including collaboration feasibility studies, and upgrades to a full collider.

  2. Progress towards next generation hadron colliders: FCC-hh, HE-LHC, and SPPC

    NASA Astrophysics Data System (ADS)

    Zimmermann, Frank; EuCARD-2 Extreme Beams Collaboration; Future Circular Collider (FCC) Study Collaboration

    2017-01-01

    A higher-energy circular proton collider is generally considered to be the only path available in this century for exploring energy scales well beyond the reach of the Large Hadron Collider (LHC) presently in operation at CERN. In response to the 2013 Update of the European Strategy for Particle Physics and aligned with the 2014 US ``P5'' recommendations, the international Future Circular Collider (FCC) study, hosted by CERN, is designing such future frontier hadron collider. This so-called FCC-hh will provide proton-proton collisions at a centre-of-mass energy of 100 TeV, with unprecedented luminosity. The FCC-hh energy goal is reached by combining higher-field, 16 T magnets, based on Nb3Sn superconductor, and a new 100 km tunnel connected to the LHC complex. In addition to the FCC-hh proper, the FCC study is also exploring the possibility of a High-Energy LHC (HE-LHC), with a centre-of-mass energy of 25-27 TeV, as could be achieved in the existing 27 km LHC tunnel using the FCC-hh magnet technology. A separate design effort centred at IHEP Beijing aims at developing and constructing a similar collider in China, with a smaller circumference of about 54 km, called SPPC. Assuming even higher-field 20 T magnets, by relying on high-temperature superconductor, the SPPC could reach a c.m. energy of about 70 TeV. This presentation will report the motivation and the present status of the R&D for future hadron colliders, a comparison of the three designs under consideration, the major challenges, R&D topics, the international technology programs, and the emerging global collaboration. Work supported by the European Commission under Capacities 7th Framework Programme project EuCARD-2, Grant Agreement 312453, and the HORIZON 2020 project EuroCirCol, Grant Agreement 654305.

  3. Observation of snake resonances at Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Bai, M.; Ahrens, L.; Alekseev, I. G.; Alessi, J.; Courant, E.; Drees, A.; Fischer, W.; Gardner, C.; Gill, R.; Glenn, J.; Huang, H.; Litvinenko, V.; Luccio, A.; Luo, Y.; Pilat, F.; MacKay, W. W.; Makdisi, Y.; Marusic, A.; Minty, M.; Montag, C.; Ptitsyn, V.; Roser, T.; Svirida, D.; Satogata, T.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Zelenski, A.; Zeno, K.; Zhang, S. Y.

    2011-05-01

    The Siberian snakes are powerful tools in preserving polarization in high energy accelerators has been demonstrated at the Brookhaven Relativistic Heavy Ion Collider (RHIC). Equipped with two full Siberian snakes in each ring, polarization is preserved during acceleration from injection to 100 GeV. However, the Siberian snakes also introduce a new set of depolarization resonances, i.e. snake resonances as first discoverd by Lee and Tepikian [1]. The intrinsic spin resonances above 100 GeV are about a factor of two stronger than those below 100 GeV which raises the challenge to preserve the polarization up to 250 GeV. In 2009, polarized protons collided for the first time at the RHIC design store energy of 250 GeV. This paper presents the experimental measurements of snake resonances at RHIC. The plan for avoiding these resonanances is also presented.

  4. Observation of snake resonances at Relativistic Heavy Ion Collider

    SciTech Connect

    Bai, M.; Ahrens, L.; Alekseev, I.G.; Alessi, J.; et al

    2010-09-27

    The Siberian snakes are powerful tools in preserving polarization in high energy accelerators has been demonstrated at the Brookhaven Relativistic Heavy Ion Collider (RHIC). Equipped with two full Siberian snakes in each ring, polarization is preserved during acceleration from injection to 100 GeV. However, the Siberian snakes also introduce a new set of depolarization resonances, i.e. snake resonances as first discovered by Lee and Tepikian. The intrinsic spin resonances above 100 GeV are about a factor of two stronger than those below 100 GeV which raises the challenge to preserve the polarization up to 250 GeV. In 2009, polarized protons collided for the first time at the RHIC design store energy of 250 GeV. This paper presents the experimental measurements of snake resonances at RHIC. The plan for avoiding these resonances is also presented.

  5. The VEPP-2000 electron-positron collider: First experiments

    SciTech Connect

    Berkaev, D. E. Shwartz, D. B.; Shatunov, P. Yu.; Rogovskii, Yu. A.; Romanov, A. L.; Koop, I. A.; Shatunov, Yu. M.; Zemlyanskii, I. M.; Lysenko, A. P.; Perevedentsev, E. A.; Stankevich, A. S.; Senchenko, A. I.; Khazin, B. I.; Anisenkov, A. V.; Gayazov, S. E.; Kozyrev, A. N.; Ryzhenenkov, A. E.; Shemyakin, D. N.; Epshtein, L. B.; Serednyakov, S. I.; and others

    2011-08-15

    In 2007, at the Institute of Nuclear Physics (Novosibirsk), the construction of the VEPP-2000 electron-positron collider was completed. The first electron beam was injected into the accelerator structure with turned-off solenoids of the final focus. This mode was used to tune all subsystems of the facility and to train the vacuum chamber using synchrotron radiation at electron currents of up to 150 mA. The VEPP-2000 structure with small beta functions and partially turned-on solenoids was used for the first testing of the 'round beams' scheme at an energy of 508 MeV. Beam-beam effects were studied in strong-weak and strong-strong modes. Measurements of the beam sizes in both cases showed a dependence corresponding to model predictions for round colliding beams. Using a modernized SND (spherical neutral detector), the first energy calibration of the VEPP-2000 collider was performed by measuring the excitation curve of the phimeson resonance; the phi-meson mass is known with high accuracy from previous experiments at VEEP-2M. In October 2009, a KMD-3 (cryogenic magnetic detector) was installed at the VEPP-2000 facility, and the physics program with both the SND and LMD-3 particle detectors was started in the energy range of 1-1.9 GeV. This first experimental season was completed in summer 2010 with precision energy calibration by resonant depolarization.

  6. High energy chemical laser system

    DOEpatents

    Gregg, D.W.; Pearson, R.K.

    1975-12-23

    A high energy chemical laser system is described wherein explosive gaseous mixtures of a reducing agent providing hydrogen isotopes and interhalogen compounds are uniformly ignited by means of an electrical discharge, flash- photolysis or an electron beam. The resulting chemical explosion pumps a lasing chemical species, hydrogen fluoride or deuterium fluoride which is formed in the chemical reaction. The generated lasing pulse has light frequencies in the 3- micron range. Suitable interhalogen compounds include bromine trifluoride (BrF$sub 3$), bromine pentafluoride (BrF$sub 5$), chlorine monofluoride (ClF), chlorine trifluoride (ClF$sub 3$), chlorine pentafluoride (ClF$sub 5$), iodine pentafluoride (IF$sub 5$), and iodine heptafluoride (IF$sub 7$); and suitable reducing agents include hydrogen (H$sub 2$), hydrocarbons such as methane (CH$sub 4$), deuterium (D$sub 2$), and diborane (B$sub 2$H$sub 6$), as well as combinations of the gaseous compound and/or molecular mixtures of the reducing agent.

  7. High Energy Plasma Space Propulsion

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    In order to meet NASA's challenge on advanced concept activity in the propulsion area, we initiated a new program entitled "High Energy Plasma Space Propulsion Studies" within the current cooperative agreement in 1998. The goals of this work are to gain further understanding of the engine of the AIMStar spacecraft, a concept which was developed at Penn State University, and to develop a prototype concept for the engine. The AIMStar engine concept was developed at Penn State University several years ago as a hybrid between antimatter and fusion technologies. Because of limited amounts of antimatter available, and concurrently the demonstrated ability for antiprotons to efficiently ignite nuclear fusion reactions, it was felt that this was a very good match. Investigations have been made concerning the performance of the reaction trap. This is a small Penning-like electromagnetic trap, which is used to simultaneously confine antiprotons and fusion fuels. Small DHe3 or DT droplets, containing a few percent molar of a fissile material, are injected into the trap, filled with antiprotons. We have found that it is important to separate the antiprotons into two adjacent wells, to inject he droplet between them and to simultaneously bring the antiprotons to the center of the trap, surrounding the droplet. Our previous concept had the droplet falling onto one cloud of antiprotons. This proved to be inefficient, as the droplet tended to evaporate away from the cloud as it interacted on its surface.

  8. When Black Holes Collide

    NASA Technical Reports Server (NTRS)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  9. High-energy thermal synchrotron emission

    NASA Technical Reports Server (NTRS)

    Imamura, J. N.; Epstein, R. I.; Petrosian, V.

    1985-01-01

    It is shown how the thermal synchrotron emission spectrum is modified when the photon energy is greater than the mean energy of the radiating particles. The effect if applying this energy conservation constraint is to produce spectra which have less high-energy photon emission than had been previously estimated. The thermal synchrotron spectra provide satisfactory fits to recently observed very high energy gamma ray spectra of certain burst sources.

  10. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    SciTech Connect

    Rocca, Jorge J.

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achieved using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm-3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.

  11. Report of the 1983 HEPAP Subpanel on New Facilities for the US high-energy physics program

    SciTech Connect

    Not Available

    1983-07-01

    The 1983 Subpanel on New Facilities of the High Energy Physics Advisory Panel (HEPAP) was formed in February 1983 and completed its report in July 1983. During the intervening 5 months the Subpanel held site meetings at three major accelerator laboratories, heard formal presentations from a number of prominent physicists, received almost 200 letters from members of the high energy physics community, and studied in depth all of the relevant written material. The final recommendations were arrived at after two lengthy deliberative meetings held in June and July at the National Academy of Sciences (NAS) Study Center at Woods Hole, Massachusetts, and at the Nevis Laboratory, Columbia University. The recommendations arrived at by the Subpanel are as follows: (1) the Subpanel unanimously recommends the immediate initiation of a multi-TeV high-luminosity proton-proton collider project with the goal of physics experiments at this facility at the earliest possible date; (2) the Subpanel recommends the rapid completion of current construction projects, Tevatron and the SLAC Linear Collider (SLC), the upgrading of the Cornell Electron Storage Ring (CESR) and associated detectors, and the thorough utilization of all existing facilities; (3) the Subpanel recommends that Fermilab not proceed at this time with the Dedicated Collider (DC); (4) by a majority vote, the Subpanel recommends that the Colliding Beam Accelerator (CBA) project at Brookhaven not be approved; (5) the Subpanel recommends that technology research and development, particularly advanced accelerator research and development, be strongly supported.

  12. SLAC linear collider conceptual design report

    SciTech Connect

    Not Available

    1980-06-01

    The linear collider system is described in detail, including the transport system, the collider lattice, final focusing system, positron production, beam damping and compression, high current electron source, instrumentation and control, and the beam luminosity. The experimental facilities and the experimental uses are discussed along with the construction schedule and estimated costs. Appendices include a discussion of space charge effects in the linear accelerator, emittance growth in the collider, the final focus system, beam-beam instabilities and pinch effects, and detector backgrounds. (GHT)

  13. Searching for squeezed particle-antiparticle correlations in high-energy heavy-ion collisions

    SciTech Connect

    Padula, Sandra S.; Socolowski, O. Jr.

    2010-09-15

    Squeezed correlations of particle-antiparticle pairs were predicted to exist if the hadron masses were modified in the hot and dense medium formed in high-energy heavy-ion collisions. Although well-established theoretically, they have not yet been observed experimentally. We suggest here a clear method to search for such a signal by analyzing the squeezed correlation functions in terms of measurable quantities. We illustrate this suggestion for simulated {phi}{phi} pairs at the Relativistic Heavy Ion Collider (RHIC) energies.

  14. Large-x connections of nuclear and high-energy physics

    DOE PAGES

    Accardi, Alberto

    2013-11-20

    I discuss how global QCD fits of parton distribution functions can make the somewhat separated fields of high-energy particle physics and lower energy hadronic and nuclear physics interact to the benefit of both. I review specific examples of this interplay from recent works of the CTEQ-Jefferson Lab collaboration, including hadron structure at large parton momentum and gauge boson production at colliders. Particular attention is devoted to quantifying theoretical uncertainties arising in the treatment of large partonic momentum contributions to deep inelastic scattering observables, and to discussing the experimental progress needed to reduce these.

  15. HEPAP Subpanel on the US High Energy Physics Research Program for the 1990's

    SciTech Connect

    Not Available

    1990-04-01

    The entire community of high energy physicists looks expectantly to the Superconducting Super Collider (SSC) era. The SSC is the highest priority in the US high energy physics (HEP) program, and physics at the SSC will increasingly become its focus. In this report, the High Energy Physics Advisory Panel (HEPAP) Subpanel on the US High Energy Physics Research Program for the 1990's examines how the National HEP program can go forward vigorously in the period of preparation for the SSC. The Subpanel concluded early that a viable and productive physics research program in the next decade on a range of promising fronts is essential for this field to continue to attract and educate scientists of great creativity. The Subpanel found that such a program requires both exploiting existing opportunities and undertaking some new initiatives. The recommendations are based on the constant budget scenario,'' which the Subpanel interprets as averaging the FY 1991 budget level over the next decade.

  16. Linear Collider Physics Resource Book for Snowmass 2001

    SciTech Connect

    Peskin, Michael E

    2001-06-05

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide.

  17. LINEAR COLLIDER PHYSICS RESOURCE BOOK FOR SNOWMASS 2001.

    SciTech Connect

    ABE,T.; DAWSON,S.; HEINEMEYER,S.; MARCIANO,W.; PAIGE,F.; TURCOT,A.S.; ET AL

    2001-05-03

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup {minus}} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup {minus}} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup {minus}} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup {minus}} experiments can provide.

  18. Gamma rays made on Earth have unexpectedly high energies

    SciTech Connect

    Miller, Johanna

    2011-01-15

    Terrestrial gamma-ray flashes (TGFs) are the source of the highest-energy nonanthropogenic photons produced on Earth. Associated with thunder-storms - and in fact, with individual lightning discharges - they are presumed to be the bremsstrahlung produced when relativistic electrons, accelerated by the storms' strong electric fields, collide with air molecules some 10-20 km above sea level. The TGFs last up to a few milliseconds and contain photons with energies on the order of MeV.

  19. Searching for exotic particles in high-energy physics with deep learning.

    PubMed

    Baldi, P; Sadowski, P; Whiteson, D

    2014-07-02

    Collisions at high-energy particle colliders are a traditionally fruitful source of exotic particle discoveries. Finding these rare particles requires solving difficult signal-versus-background classification problems, hence machine-learning approaches are often used. Standard approaches have relied on 'shallow' machine-learning models that have a limited capacity to learn complex nonlinear functions of the inputs, and rely on a painstaking search through manually constructed nonlinear features. Progress on this problem has slowed, as a variety of techniques have shown equivalent performance. Recent advances in the field of deep learning make it possible to learn more complex functions and better discriminate between signal and background classes. Here, using benchmark data sets, we show that deep-learning methods need no manually constructed inputs and yet improve the classification metric by as much as 8% over the best current approaches. This demonstrates that deep-learning approaches can improve the power of collider searches for exotic particles.

  20. The ANSTO high energy heavy ion microprobe

    NASA Astrophysics Data System (ADS)

    Siegele, Rainer; Cohen, David D.; Dytlewski, Nick

    1999-10-01

    Recently the construction of the ANSTO High Energy Heavy Ion Microprobe (HIMP) at the 10 MV ANTARES tandem accelerator has been completed. The high energy heavy ion microprobe focuses not only light ions at energies of 2-3 MeV, but is also capable of focusing heavy ions at high energies with ME/ q2 values up to 150 MeV amu and greater. First performance tests and results are reported here.

  1. 35th International Conference of High Energy Physics

    NASA Astrophysics Data System (ADS)

    The French particle physics community is particularly proud to have been selected to host the 35th ICHEP conference in 2010 in Paris. This conference is the focal point of all our field since more than fifty years and is the reference event where all important results in particle physics cosmology and astroparticles are presented and discussed. This alone suffices to make this event very important. But in 2010, a coincidence of exceptional events will make this conference even more attractive! What is then so special about ICHEP 2010 conference? It will be the first ICHEP conference where physics results obtained at the LHC will be presented! New results about the elusive Higgs boson, or signals of physics beyond the standard model might therefore be announced at this conference! Major discoveries in other domains such as gravitational waves, neutrino telescopes, neutrino oscillations, dark matter or in the flavour sector are also possible, just to name a few. In addition , 2010 will be an important date to shape up the future of our field. Several major projects will present the status of their Conceptual or Engineering Design Reports during the conference. The International Linear Collider (ILC) Global Design Effort team will present the report corresponding to the end of their Technical Design Phase 1. The Compact Linear Collider (CLIC) will also report on its Conceptual Design Report. Other major projects such as Super B factories will also be presented. These reports together with LHC physics results will form the basis for key political decisions needed to be taken in the years to come. In summary, there can be no doubt that Paris is the place to be in summer 2010 for anyone interested in High Energy Physics and we will make every effort to make your stay as interesting and enjoyable as possible.

  2. Scaling behavior of circular colliders dominated by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Talman, Richard

    2015-08-01

    RF cavities that restore the lost energy. To the contrary, until now, the large proton to electron mass ratio has caused synchrotron radiation to be negligible in proton accelerators. The LHC beam energy has still been low enough that synchrotron radiation has little effect on beam dynamics; but the thermodynamic penalty in cooling the superconducting magnets has still made it essential for the radiated power not to be dissipated at liquid helium temperatures. Achieving this has been a significant challenge. For the next generation p, p collider this will be even more true. Furthermore, the radiation will effect beam distributions on time scales measured in minutes, for example causing the beams to be flattened, wider than they are high. In this regime scaling relations previously valid only for electrons will be applicable also to protons.

  3. A vision unfulfilled: The hopeful birth and painful death of the Superconducting Super Collider

    NASA Astrophysics Data System (ADS)

    Riordan, Michael

    As Europe began to approach parity with the United States in high energy physics around 1980, US physicists were becoming increasingly concerned about the future of their national program. While Europeans were pushing ahead with ambitious plans for two advanced particle colliders, LEP at CERN and HERA at DESY, the United States found itself faced by knotty problems in manufacturing the 4-T superconducting magnets required for the new Isabelle proton-proton collider at Brookhaven [1]. Its ballooning costs, which had swelled from an initial 275 million to an estimated 600 million (and counting), threatened to drain funds from the rest of the high energy physics program, including at Fermilab and SLAC. And by mid-1982, it seemed likely that physicists doing research at CERN's new proton-antiproton collider would soon discover the massive W and Z particles predicted by the Standard Model, among Isabelle's primary targets...

  4. Future e/sup +/e/sup -/ linear colliders and beam-beam effects

    SciTech Connect

    Wilson, P.B.

    1986-05-01

    Numerous concepts, ranging from conventional to highly exotic, hae been proposed for the acceleration of electrons and positrons to very high energies. For any such concept to be viable, it must be possible to produce from it a set of consistent parameters for one of these ''benchmark'' machines. Attention is directed to the choice of parameters for a collider in the 300 GeV energy range, operating at a gradient on the order of 200 MV/m, using X-band power sources to drive a conventional disk-loaded accelerating structure. These rf power sources, while not completely conventional represent a reasonable extrapolation from present technology. The choice of linac parameters is strongly coupled to various beam-beam effects which take place when the electron and positron bunches collide. We summarize these beam-beam effects, and then return to the rf design of a 650 GeV center-of-mass collider. 14 refs.

  5. Report of Snowmass 2001 working group E2: Electron - positron colliders from the phi to the Z

    SciTech Connect

    Zhen-guo Zhao et al.

    2002-12-23

    We report on the status and plans of experiments now running or proposed for electron-positron colliders at energies between the {phi} and the Z. The e{sup +}e{sup -}B and charm factories we considered were PEP-II/BABAR, KEKB/Belle, superKEK, SuperBABAR, and CESR-c/CLEO-c. We reviewed the programs at the {phi} factory at Frascati and the proposed PEP-N facility at Stanford Linear Accelerator Center. We studied the prospects for B physics with a dedicated linear collider Z factory, associated with the TESLA high energy linear collider. In all cases, we compared the physics reach of these facilities with that of alternative experiments at hadron colliders or fixed target facilities.

  6. HEND: A Database for High Energy Nuclear Data

    SciTech Connect

    Brown, D; Vogt, R

    2007-02-21

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. The database will be searchable and cross-indexed with relevant publications, including published detector descriptions. It should eventually contain all published data from older heavy-ion programs such as the Bevalac, AGS, SPS and FNAL fixed-target programs, as well as published data from current programs at RHIC and new facilities at GSI (FAIR), KEK/Tsukuba and the LHC collider. This data includes all proton-proton, proton-nucleus to nucleus-nucleus collisions as well as other relevant systems and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of experiments. To enhance the utility of the database, we propose periodic data evaluations and topical reviews. These reviews would provide an alternative and impartial mechanism to resolve discrepancies between published data from rival experiments and between theory and experiment. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support.

  7. Physics Opportunity with an Electron-Ion Collider

    SciTech Connect

    Rossi, Patrizia

    2016-12-01

    Understanding the emergence of nucleons and nuclei and their interactions from the properties and dynamics of quarks and gluons in Quantum Chromodynamics (QCD) is a fundamental and compelling goal of nuclear science. A high-energy, high-luminosity polarized electron-ion collider (EIC) will be needed to explore and advance many aspects of QCD studies in the gluon dominated regions in nucleon and nuclei. The federal Nuclear Science Advisory Committee unanimously approved a high-energy electro-ion collider to explore a new frontier in physics research. In fact, the committee calls the collider the country's next "highest priority" in new facility construction, and is one of four main recommendations contained in its 2015 Long Range Plan for Nuclear Science. Two proposals for the EIC are being considered in the U.S.: one each at Jefferson Laboratory (JLab) and at Brookhaven National Laboratory (BNL). An overview of the physics opportunities an EIC presents to the nuclear science community in future decades is presented.

  8. Physics Opportunity with an Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Rossi, Patrizia

    2016-11-01

    Understanding the emergence of nucleons and nuclei and their interactions from the properties and dynamics of quarks and gluons in Quantum Chromodynamics (QCD) is a fundamental and compelling goal of nuclear science. A high-energy, high-luminosity polarized electron-ion collider (EIC) will be needed to explore and advance many aspects of QCD studies in the gluon dominated regions in nucleon and nuclei. The federal Nuclear Science Advisory Committee unanimously approved a high-energy electro-ion collider to explore a new frontier in physics research. In fact, the committee calls the collider the country's next “highest priority” in new facility construction, and is one of four main recommendations contained in its 2015 Long Range Plan for Nuclear Science. Two proposals for the EIC are being considered in the U.S.: one each at Jefferson Laboratory (JLab) and at Brookhaven National Laboratory (BNL). An overview of the physics opportunities an EIC presents to the nuclear science community in future decades is presented.

  9. Energy reconstruction in a highly granularity semi-digital hadronic calorimeter

    SciTech Connect

    Sameh Mannai

    2015-07-01

    A semi-digital hadronic calorimeter using Glass Resistive Plate Chambers (GRPCs) is one of the calorimeters candidates proposed for particle physics experiments at the future electrons collider. It is a high granular calorimeter which is required for application of the particle flow algorithm in order to improve the jet energy resolution as one of the goals of this experiments. We discussed the energy reconstruction, based on digital and semi-Digital methods, to study the effect on the improvement of the single particle energy resolution and the linearity of the detector response. This study was performed with the GEANT4 simulation. Results on the energy resolution and linearity, for negative pions over an energy range from 1 to 100 GeV are presented and compared with different energy reconstruction methods including Artificial Neural Networks. (authors)

  10. States of high energy density

    SciTech Connect

    Murray, M.

    1988-02-01

    The transverse energy, E/sub tau/ spectra for O/sup 16/ and S/sup 32/ incident for various elements at 200 GeVnucleon are shown. The target and projectile dependencies of the data are discussed. The energy density achieved is estimated. For O/sup 16/ on Tungsten the multiplicity spectrum is also presented as well as the pseudorapidity spectra as a function of the transverse energy. The multiplicity cross section dsigmadN as measured in the backward hemisphere (0.9 < /eta/ < 2.9/ is found to be very similar in shape to the transverse energy distribution dsigmadE/tau/ reflecting the particular geometry of nucleus nucleus nucleus collisions. The dependence on the atomic mass of the target, A/sub tau/ and projectile A/sub p/ is not what one would expect from naive considerations.

  11. Experimental Studies of Elementary Particle Interactions at High Energies

    SciTech Connect

    Goulianos, Konstantin

    2013-07-31

    This is the final report of a program of research on ``Experimental Studies of Elementary Particle Interactions at High Energies'' of the High Energy Physics (HEP) group of The Rockefeller University. The research was carried out using the Collider Detector at Fermilab (CDF) and the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN. Three faculty members, two research associates, and two postdoctoral associates participated in this project. At CDF, we studied proton-antiproton collisions at an energy of 1.96 TeV. We focused on diffractive interactions, in which the colliding antiproton loses a small fraction of its momentum, typically less than 1%, while the proton is excited into a high mass state retaining its quantum numbers. The study of such collisions provides insight into the nature of the diffractive exchange, conventionally referred to as Pomeron exchange. In studies of W and Z production, we found results that point to a QCD-based interpretation of the diffractive exchange, as predicted in a data-driven phenomenology developed within the Rockefeller HEP group. At CMS, we worked on diffraction, supersymmetry (SUSY), dark matter, large extra dimensions, and statistical applications to data analysis projects. In diffraction, we extended our CDF studies to higher energies working on two fronts: measurement of the single/double diffraction and of the rapidity gap cross sections at 7 TeV, and development of a simulation of diffractive processes along the lines of our successful model used at CDF. Working with the PYTHIA8 Monte Carlo simulation authors, we implemented our model as a PYTHIA8-MBR option in PYTHIA8 and used it in our data analysis. Preliminary results indicate good agreement. We searched for SUSY by measuring parameters in the Constrained Minimal Supersymmetric extension of the Standard Model (CMSSM) and found results which, combined with other experimental constraints and theoretical considerations, indicate that the

  12. High-Energy Astrophysics: An Overview

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2007-01-01

    High-energy astrophysics is the study of objects and phenomena in space with energy densities much greater than that found in normal stars and galaxies. These include black holes, neutron stars, cosmic rays, hypernovae and gamma-ray bursts. A history and an overview of high-energy astrophysics will be presented, including a description of the objects that are observed. Observing techniques, space-borne missions in high-energy astrophysics and some recent discoveries will also be described. Several entirely new types of astronomy are being employed in high-energy astrophysics. These will be briefly described, along with some NASA missions currently under development.

  13. Argonne National Laboratory, High Energy Physics Division: Semiannual report of research activities, July 1, 1986-December 31, 1986

    SciTech Connect

    Not Available

    1987-01-01

    This paper discusses the research activity of the High Energy Physics Division at the Argonne National Laboratory for the period, July 1986-December 1986. Some of the topics included in this report are: high resolution spectrometers, computational physics, spin physics, string theories, lattice gauge theory, proton decay, symmetry breaking, heavy flavor production, massive lepton pair production, collider physics, field theories, proton sources, and facility development. (LSP)

  14. Physics validation studies for muon collider detector background simulations

    SciTech Connect

    Morris, Aaron Owen; /Northern Illinois U.

    2011-07-01

    Within the broad discipline of physics, the study of the fundamental forces of nature and the most basic constituents of the universe belongs to the field of particle physics. While frequently referred to as 'high-energy physics,' or by the acronym 'HEP,' particle physics is not driven just by the quest for ever-greater energies in particle accelerators. Rather, particle physics is seen as having three distinct areas of focus: the cosmic, intensity, and energy frontiers. These three frontiers all provide different, but complementary, views of the basic building blocks of the universe. Currently, the energy frontier is the realm of hadron colliders like the Tevatron at Fermi National Accelerator Laboratory (Fermilab) or the Large Hadron Collider (LHC) at CERN. While the LHC is expected to be adequate for explorations up to 14 TeV for the next decade, the long development lead time for modern colliders necessitates research and development efforts in the present for the next generation of colliders. This paper focuses on one such next-generation machine: a muon collider. Specifically, this paper focuses on Monte Carlo simulations of beam-induced backgrounds vis-a-vis detector region contamination. Initial validation studies of a few muon collider physics background processes using G4beamline have been undertaken and results presented. While these investigations have revealed a number of hurdles to getting G4beamline up to the level of more established simulation suites, such as MARS, the close communication between us, as users, and the G4beamline developer, Tom Roberts, has allowed for rapid implementation of user-desired features. The main example of user-desired feature implementation, as it applies to this project, is Bethe-Heitler muon production. Regarding the neutron interaction issues, we continue to study the specifics of how GEANT4 implements nuclear interactions. The GEANT4 collaboration has been contacted regarding the minor discrepancies in the neutron

  15. Cooling of electronics in collider experiments

    SciTech Connect

    Richard P. Stanek et al.

    2003-11-07

    Proper cooling of detector electronics is critical to the successful operation of high-energy physics experiments. Collider experiments offer unique challenges based on their physical layouts and hermetic design. Cooling systems can be categorized by the type of detector with which they are associated, their primary mode of heat transfer, the choice of active cooling fluid, their heat removal capacity and the minimum temperature required. One of the more critical detector subsystems to require cooling is the silicon vertex detector, either pixel or strip sensors. A general design philosophy is presented along with a review of the important steps to include in the design process. Factors affecting the detector and cooling system design are categorized. A brief review of some existing and proposed cooling systems for silicon detectors is presented to help set the scale for the range of system designs. Fermilab operates two collider experiments, CDF & D0, both of which have silicon systems embedded in their detectors. A review of the existing silicon cooling system designs and operating experience is presented along with a list of lessons learned.

  16. MUON COLLIDERS - IONIZATION COOLING AND SOLENOIDS.

    SciTech Connect

    PARSA,Z.

    1999-03-29

    For a muon collider, to obtain the needed luminosity, the phase space volume must be greatly reduced within the muon life time. The ionization cooling is the preferred method used to compress the phase space and reduce the emittance to obtain high luminosity muon beams. Alternating solenoid lattices has been proposed for muon colliders, where the emittance are huge. We present an overview, discuss formalism, transfer maps for solenoid magnets and beam dynamics.

  17. Surfing the High Energy Output Branch of Nonlinear Energy Harvesters.

    PubMed

    Mallick, D; Amann, A; Roy, S

    2016-11-04

    Hysteresis and multistability are fundamental phenomena of driven nonlinear oscillators, which, however, restrict many applications such as mechanical energy harvesting. We introduce an electrical control mechanism to switch from the low to the high energy output branch of a nonlinear energy harvester by exploiting the strong interplay between its electrical and mechanical degrees of freedom. This method improves the energy conversion efficiency over a wide bandwidth in a frequency-amplitude-varying environment using only a small energy budget. The underlying effect is independent of the device scale and the transduction method and is explained using a modified Duffing oscillator model.

  18. Surfing the High Energy Output Branch of Nonlinear Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Mallick, D.; Amann, A.; Roy, S.

    2016-11-01

    Hysteresis and multistability are fundamental phenomena of driven nonlinear oscillators, which, however, restrict many applications such as mechanical energy harvesting. We introduce an electrical control mechanism to switch from the low to the high energy output branch of a nonlinear energy harvester by exploiting the strong interplay between its electrical and mechanical degrees of freedom. This method improves the energy conversion efficiency over a wide bandwidth in a frequency-amplitude-varying environment using only a small energy budget. The underlying effect is independent of the device scale and the transduction method and is explained using a modified Duffing oscillator model.

  19. High energy resolution plastic scintillator

    NASA Astrophysics Data System (ADS)

    van Loef, Edgar V.; Feng, Patrick; Markosyan, Gary; Shirwadkar, Urmila; Doty, Patrick; Shah, Kanai S.

    2016-09-01

    In this paper we present results on a novel tin-loaded plastic scintillator. We will show that this particular plastic scintillator has a light output similar to that of BGO, a fast scintillation decay (< 10 ns), exhibits good neutron/gamma PSD with a Figure-of-Merit of 1.3 at 2.5 MeVee cut-off energy, and excellent energy resolution of about 12% (FWHM) at 662 keV. Under X-ray excitation, the radioluminescence spectrum exhibits a broad band between 350 and 500 nm peaking at 420 nm which is well-matched to bialkali photomultiplier tubes and UV-enhanced photodiodes.

  20. DOE-HEP Final Report for 2013-2016: Studies of plasma wakefields for high repetition-rate plasma collider, and Theoretical study of laser-plasma proton and ion acceleration

    SciTech Connect

    Katsouleas, Thomas C.; Sahai, Aakash A.

    2016-08-08

    There were two goals for this funded project: 1. Studies of plasma wakefields for high repetition-rate plasma collider, and 2. Theoretical study of laser-plasma proton and ion acceleration. For goal 1, an analytical model was developed to determine the ion-motion resulting from the interaction of non-linear “blow-out” wakefields excited by beam-plasma and laser-plasma interactions. This is key to understanding the state of the plasma at timescales of 1 picosecond to a few 10s of picoseconds behind the driver-energy pulse. More information can be found in the document. For goal 2, we analytically and computationally analyzed the longitudinal instabilities of the laser-plasma interactions at the critical layer. Specifically, the process of “Doppler-shifted Ponderomotive bunching” is significant to eliminate the very high-energy spread and understand the importance of chirping the laser pulse frequency. We intend to publish the results of the mixing process in 2-D. We intend to publish Chirp-induced transparency. More information can be found in the document.

  1. Research in Theoretical High-Energy Physics at Southern Methodist University

    SciTech Connect

    Olness, Fredrick; Nadolsky, Pavel

    2016-08-05

    The SMU Theory group has developed a strong expertise in QCD, PDFs, and incisive comparisons between collider data and theory. The group pursues realistic phenomenological calculations for high-energy processes, the highly demanded research area driven by the LHC physics. Our field has seen major discoveries in recent years from a variety of experiments, large and small, including a number recognized by Nobel Prizes. There is a wealth of novel QCD data to explore. The SMU theory group develops the most advanced and innovative tools for comprehensive analysis in applications ranging from Higgs physics and new physics searches to nuclear scattering.

  2. High energy hadrons in extensive air showers

    NASA Technical Reports Server (NTRS)

    Tonwar, S. C.

    1985-01-01

    Experimental data on the high energy hadronic component in extensive air showers of energies approx. 10 to the 14 to 10 to the 16 eV when compared with expectations from Monte Carlo simulations have shown the observed showers to be deficient in high energy hadrons relative to simulated showers. An attempt is made to understand these anomalous features with more accurate comparison of observations with expectations, taking into account the details of the experimental system. Results obtained from this analysis and their implications for the high energy physics of particle interactions at energy approx. 10 to the 15 eV are presented.

  3. ELECTRON COOLING AND ELECTRON-ION COLLIDERS AT BNL.

    SciTech Connect

    BEN-ZVI,I.

    2007-10-03

    Superconducting Energy Recovery Linacs (ERL) have significant potential uses in various fields, including High Energy Physics and Nuclear Physics. Brookhaven National Laboratory (BNL) is pursuing some of the potential applications in this area and the technology issues that are associated with these applications. The work addressed in this paper is carried out at BNL towards applications in electron cooling of high-energy hadron beams and electron-nucleon colliders. The common issues for these applications are the generation of high currents of polarized or high-brightness unpolarized electrons, high-charge per bunch and high-current. One must address the associated issue of High-Order Modes generation and damping. Superconducting ERLs have great advantages for these applications as will be outlined in the text.

  4. Luminosity Limitations of Linear Colliders Based on Plasma Acceleration

    SciTech Connect

    Lebedev, Valeri; Burov, Alexey; Nagaitsev, Sergei

    2016-01-01

    Particle acceleration in plasma creates a possibility of exceptionally high accelerating gradients and appears as a very attractive option for future linear electron-positron and/or photon-photon colliders. These high accelerating gradients were already demonstrated in a number of experiments. Furthermore, a linear collider requires exceptionally high beam brightness which still needs to be demonstrated. In this article we discuss major phenomena which limit the beam brightness of accelerated beam and, consequently, the collider luminosity.

  5. Beam Induced Hydrodynamic Tunneling in the Future Circular Collider Components

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2016-08-01

    A future circular collider (FCC) has been proposed as a post-Large Hadron Collider accelerator, to explore particle physics in unprecedented energy ranges. The FCC is a circular collider in a tunnel with a circumference of 80-100 km. The FCC study puts an emphasis on proton-proton high-energy and electron-positron high-intensity frontier machines. A proton-electron interaction scenario is also examined. According to the nominal FCC parameters, each of the 50 TeV proton beams will carry an amount of 8.5 GJ energy that is equivalent to the kinetic energy of an Airbus A380 (560 t) at a typical speed of 850 km /h . Safety of operation with such extremely energetic beams is an important issue, as off-nominal beam loss can cause serious damage to the accelerator and detector components with a severe impact on the accelerator environment. In order to estimate the consequences of an accident with the full beam accidently deflected into equipment, we have carried out numerical simulations of interaction of a FCC beam with a solid copper target using an energy-deposition code (fluka) and a 2D hydrodynamic code (big2) iteratively. These simulations show that, although the penetration length of a single FCC proton and its shower in solid copper is about 1.5 m, the full FCC beam will penetrate up to about 350 m into the target because of the "hydrodynamic tunneling." These simulations also show that a significant part of the target is converted into high-energy-density matter. We also discuss this interesting aspect of this study.

  6. Fast feedback for linear colliders

    SciTech Connect

    Hendrickson, L.; Adolphsen, C.; Allison, S.; Gromme, T.; Grossberg, P.; Himel, T.; Krauter, K.; MacKenzie, R.; Minty, M.; Sass, R.

    1995-05-01

    A fast feedback system provides beam stabilization for the SLC. As the SLC is in some sense a prototype for future linear colliders, this system may be a prototype for future feedbacks. The SLC provides a good base of experience for feedback requirements and capabilities as well as a testing ground for performance characteristics. The feedback system controls a wide variety of machine parameters throughout the SLC and associated experiments, including regulation of beam position, angle, energy, intensity and timing parameters. The design and applications of the system are described, in addition to results of recent performance studies.

  7. LHC: The Large Hadron Collider

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  8. LHC: The Large Hadron Collider

    SciTech Connect

    Lincoln, Don

    2015-03-04

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  9. Muon Colliders and Neutrino Factories

    SciTech Connect

    Kaplan, Daniel M.

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  10. The development of colliders

    SciTech Connect

    Sessler, A.M.

    1993-02-01

    Don Kerst, Gersh Budker, and Bruno Touschek were the individuals, and the motivating force, which brought about the development of colliders, while the laboratories at which it happened were Stanford, MURA, the Cambridge Electron Accelerator, Orsay, Frascati, CERN, and Novosibirsk. These laboratories supported, during many years, this rather speculative activity. Of course, many hundreds of physicists contributed to the development of colliders but the men who started it, set it in the right direction, and forcefully made it happen, were Don, Gersh, and Bruno. Don was instrumental in the development of proton-proton colliders, while Bruno and Gersh spearheaded the development of electron-positron colliders. In this brief review of the history, I will sketch the development of the concepts, the experiments, and the technological developments which made possible the development of colliders. It may look as if the emphasis is on theoretical concepts, but that is really not the case, for in this field -- the physics of beams -- the theory and experiment go hand in hand; theoretical understanding and advances are almost always motivated by the need to explain experimental results or the desire to construct better experimental devices.

  11. High energy physics experiment triggers and the trustworthiness of software

    SciTech Connect

    Nash, T.

    1991-10-01

    For all the time and frustration that high energy physicists expend interacting with computers, it is surprising that more attention is not paid to the critical role computers play in the science. With large, expensive colliding beam experiments now dependent on complex programs working at startup, questions of reliability -- the trustworthiness of software -- need to be addressed. This issue is most acute in triggers, used to select data to record -- and data to discard -- in the real time environment of an experiment. High level triggers are built on codes that now exceed 2 million source lines -- and for the first time experiments are truly dependent on them. This dependency will increase at the accelerators planned for the new millennium (SSC and LHC), where cost and other pressures will reduce tolerance for first run problems, and the high luminosities will make this on-line data selection essential. A sense of this incipient crisis motivated the unusual juxtaposition to topics in these lectures. 37 refs., 1 fig.

  12. Exploration of Plasma Jets Approach to High Energy Density Physics. Final report

    SciTech Connect

    Chen, Chiping

    2013-08-26

    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  13. Thermal and mechanical effects of quenches on Nb{sub 3}Sn high field hadron collider magnets

    SciTech Connect

    Ryuji Yamada et al.

    2001-11-05

    Thermal and its resulting mechanical stress due to quenches inside short and long epoxy impregnated Nb{sub 3}Sn high field magnets are studied with a quench simulation program, Kuench, and ANSYS program. For the protection of a long high field magnet, we have to use heaters to dump the stored energy uniformly inside the magnet, after detection of a spontaneous quench. The time delay of starting a forced quench with heaters, is estimated using ANSYS. Using this information, the thermal distribution in two-dimensional magnet cross section is studied. First a one meter model magnet with a dump resistor is used to estimate the effects and then a 10 meter long magnet is studied. The two-dimensional temperature distributions in the magnet cross sections are recorded every 5 ms, and visually displayed. With this visual animation displays we can understand intuitively the thermal and quench propagation in 2-dimensional field. The quenching cables get heated locally much more than the surrounding material and non-quenching conductor cables. With a one meter magnet with a dump resistor of 30 m{Omega}, typically only the quench starting cables and its neighbor cables get heated up to 100 K without significant effects from the heaters. With a10 meter magnet, heaters cause the quenches to most of the conductor blocks. The quench initiating cables get up to 250 to 300 K in 100 ms, but the surrounding and wedges are not heated up significantly. This causes the excessive stress in the quenching conductors and in their insulation material locally. The stress and strain in the conductor as well as in the insulation become excessive, and they are studied using the ANSYS stress analysis, using Von Mises criterion. It is concluded that for the one meter magnet with the presented cross section and configuration, the thermal effects due to the quench is tolerable. But we need much more quench study and improvements in the design for the extended ten meter long magnet [1].

  14. Harvard University High Energy Physics progress report

    SciTech Connect

    Not Available

    1992-10-01

    The principal goals of this work are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. The program is based at Harvard`s High Energy Physics Laboratory, which has offices, computing facilities, and engineering support, and both electronics and machine shops.

  15. Harvard University High Energy Physics progress report

    SciTech Connect

    Not Available

    1992-01-01

    The principal goals of this work are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. The program is based at Harvard's High Energy Physics Laboratory, which has offices, computing facilities, and engineering support, and both electronics and machine shops.

  16. Worldwide Activities towards a Future Circular Collider: Physics and Detector Studies

    NASA Astrophysics Data System (ADS)

    Mangano, Michelangelo

    2015-04-01

    Collider rings with circumference in the range of 50-100 km could host electron-positron colliders with center-of-mass energies up to 350 GeV, and proton-proton colliders up to 100 TeV. Two-stage projects, along the lines of the LEP-LHC complex, are under study by the high-energy physics community worldwide. The physics potential of such a future facility spans from improving by orders of magnitude the precision study of the Higgs boson, to extending by a factor of 10 the mass reach for the search of new particles. The talk will review the physics opportunities and the challenges that are emerging from the current studies.

  17. R&D Toward a Neutrino Factory and Muon Collider

    SciTech Connect

    Zisman, Michael S

    2009-04-29

    There is considerable interest in the use of muon beams to create either an intense source of decay neutrinos aimed at a detector located 3000-7500 km away (a Neutrino Factory), or a Muon Collider that produces high-luminosity collisions at the energy frontier. R&D aimed at producing these facilities has been under way for more than 10 years. This paper will review experimental results from MuCool, MERIT, and MICE and indicate the extent to which they will provide proof-of-principle demonstrations of the key technologies required for a Neutrino Factory or Muon Collider. Progress in constructing components for the MICE experiment will also be described.

  18. Energy Activities for Junior High Science.

    ERIC Educational Resources Information Center

    Beaver, David; And Others

    This document is a collection of six energy education activities for junior high school science. Its purpose is to help promote knowledge about energy, provide laboratory experiences, provoke inquiry, and relate energy to society through the science curriculum. The six activities are designed to take one to three class periods. Two of the…

  19. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  20. e-A PHYSICS AT A COLLIDER.

    SciTech Connect

    G. T. GARVEY

    2001-01-09

    An electron-nucleus (e-A) collider with center-of-mass energy in excess of 50 GeV per electron-nucleon collision will allow the physics community to obtain unprecedented new knowledge of the partonic structure of nuclei. If reliable information is to be extracted on these partonic densities, it is essential to realize that with our current level of understanding of QCD, momentum transfers to the struck partons greater than 1 GeV/c are necessary. This requirement puts a priority on high center-of-mass energy if partonic densities are to be measured over a wide range. Comparing the partonic structure of the free nucleon to that of bound nucleons and measuring the systematic changes in that structure as a function of nucleon number (A) will provide deeper insight into the origins and dynamics of nuclear binding. In addition, e-A collisions will allow the exploration of partonic densities appreciably higher than is accessible in e-p collisions. An e-A collider will allow one to measure the gluonic structure functions of nuclei down to x {approx} 10{sup -3}, information valuable in its own right and essential to a quantitative understanding of highly relativistic A-A collisions. The time-space evolution of partons can only be investigated by studying the modifications of hard collisions that take place when nuclear targets are employed. In a hard collision the partonic fragments interact, hadronize, and reinteract on their way to the distant detectors without revealing their evolution into the hadrons finally detected. Nuclear targets of differing A place varying amounts of nuclear matter in proximity to the hard collision producing unique information about the quantum fluctuations of incident projectile prior to the collision and on the early evolution of the produced partons. Using charged leptons (e, {mu}) to investigate this physics has been the richest source of information to date and extending the reach of these investigations by the constructing an e -A collider

  1. High energy physics program: Task A, Experiment and theory; Task B, Numerical simulation. Progress report, July 1, 1988--June 30, 1993

    SciTech Connect

    Not Available

    1993-08-01

    This report discusses research in High Energy Physics at Florida State University. Contained in this paper are: highlights of activities during the past few years; five year summary; fixed target experiments; collider experiments; SSC preparation, detector development and detector construction; computing, networking and VAX upgrade to ALPHA; and particle theory programs.

  2. A high-granularity plastic scintillator tile hadronic calorimeter with APD readout for a linear collider detector

    NASA Astrophysics Data System (ADS)

    Andreev, V.; Cvach, J.; Danilov, M.; Devitsin, E.; Dodonov, V.; Eigen, G.; Garutti, E.; Gilitzky, Yu.; Groll, M.; Heuer, R.-D.; Janata, M.; Kacl, I.; Korbel, V.; Kozlov, V.; Meyer, H.; Morgunov, V.; Němeček, S.; Pöschl, R.; Polák, I.; Raspereza, A.; Reiche, S.; Rusinov, V.; Sefkow, F.; Smirnov, P.; Terkulov, A.; Valkár, Š.; Weichert, J.; Zálešák, J.

    2006-08-01

    We report upon the performance of an analog hadron calorimeter prototype, where plastic scintillator tiles are read out with wavelength-shifting fibers coupled to avalanche photodiodes. This prototype configuration has been tested using a positron beam at DESY with energies between 1 and 6 GeV. We present different detector calibration methods, show measurements for noise, linearity, and energy resolution and discuss gain monitoring with an LED system. The results are in good agreement with our simulation studies and previous measurements using silicon photomultiplier readout.

  3. Charm and bottom production in inclusive double Pomeron exchange in heavy-ion collisions at energies available at the CERN Large Hadron Collider

    SciTech Connect

    Gay Ducati, M. B.; Machado, M. M.; Machado, M. V. T.

    2011-01-15

    The inclusive double Pomeron exchange cross section for heavy-quark pair production is calculated for nucleus-nucleus collisions at the Large Hadron Collider. The present estimate is based on hard diffractive factorization, corrected by absorptive corrections and nuclear effects. The theoretical uncertainties for nuclear collisions are investigated and a comparison to other approaches is presented. The production channels giving a similar final state configuration are discussed as well.

  4. High-bay Lighting Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple high-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: 1000 Watt to 750 Watt High-pressure Sodium lighting retrofit, 400 Watt to 360 Watt High Pressure Sodium lighting retrofit, High Intensity Discharge to T5 lighting retrofit, High Intensity Discharge to T8 lighting retrofit, and Daylighting. This tool calculates energy savings, demand reduction, cost savings, building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  5. High-energy limit of collision-induced false vacuum decay

    NASA Astrophysics Data System (ADS)

    Demidov, Sergei; Levkov, Dmitry

    2015-06-01

    We develop a consistent semiclassical description of field-theoretic collision-induced tunneling at arbitrary high collision energies. As a playground we consider a (1 + 1)-dimensional false vacuum decay initiated by a collision of N particles at energy E, paying special attention to the realistic case of N = 2 particles. We demonstrate that the cross section of this process is exponentially suppressed at all energies. Moreover, the respective suppressesion exponent F N ( E) exhibits a specific behavior which is significant for our semiclassical method and assumed to be general: it decreases with energy, reaches absolute minimum F = F min( N ) at a certain threshold energy E = E rt( N ), and stays constant at higher energies. We show that the minimal suppression F min( N ) and threshold energy can be evaluated using a special class of semiclassical solutions which describe exponentially suppressed transitions but nevertheless evolve in real time. Importantly, we argue that the cross section at energies above E rt( N ) is computed perturbatively in the background of the latter solutions, and the terms of this perturbative expansion stay bounded in the infinite-energy limit. Transitions in the high-energy regime proceed via emission of many soft quanta with total energy E rt; the energy excess E - E rt remains in the colliding particles till the end of the process.

  6. Black holes and high energy physics

    NASA Astrophysics Data System (ADS)

    Grib, A. A.; Pavlov, Yu. V.

    2016-01-01

    Three mechanisms of getting high energies in particle collisions in the ergosphere of the rotating black holes are considered. The consequences of these mechanisms for observation of ultra high energy cosmic rays particles on the Earth as result of conversion of superheavy dark matter particles into ordinary particles are discussed.

  7. GEANT4: Applications in High Energy Physics

    SciTech Connect

    Mahmood, Tariq; Zafar, Abrar Ahmed; Hussain, Talib; Rashid, Haris

    2007-02-14

    GEANT4 is a detector simulation toolkit aimed at studying, mainly experimental high energy physics. In this paper we will give an overview of this software with special reference to its applications in high energy physics experiments. A brief of process methods is given. Object-oriented nature of the simulation toolkit is highlighted.

  8. High energy interactions of cosmic ray particles

    NASA Technical Reports Server (NTRS)

    Jones, L. W.

    1986-01-01

    The highlights of seven sessions of the Conference dealing with high energy interactions of cosmic rays are discussed. High energy cross section measurements; particle production-models of experiments; nuclei and nuclear matter; nucleus-nucleus collision; searches for magnetic monopoles; and studies of nucleon decay are covered.

  9. Experimental and theoretical high energy physics research. Annual progress report, September 1, 1991--September 31, 1992

    SciTech Connect

    Not Available

    1992-10-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R & D.

  10. Estimates of Hadronic Backgrounds in Future e+e- LinearColliders

    SciTech Connect

    Ohgaki, Tomomi

    1998-05-01

    We have estimated hadronic backgrounds for an e+e- linear collider at a center- of-mass energy of 5 TeV. In order to achieve a required luminosity in TeV e+ e- colliders, the high beamstrahlung parameter {Upsilon}, such as several thousands, is caused. In the high {Upsilon} regime, the {gamma}{gamma} luminosities due to the collision of beamstrahlung photons are calculated by using the CAIN code. According to the {gamma}{gamma} luminosity distribution, we have estimated the hadronic backgrounds of {gamma}{gamma} {yields} minijets based on the parton distributions of the Drees and Grassie model by the PYTHIA 5.7 code. The Japan Linear Collider (J LC-1) detector simulator is applied for selection performances in the detector.

  11. High Energy Continuum of High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin

    2000-01-01

    Discussion with the RXTE team at GSFC showed that a sufficiently accurate background subtraction procedure had now, been derived for sources at the flux level of PKS 2126-158. However this solution does not apply to observations carried out before April 1997, including our observation. The prospect of an improved solution becoming available soon is slim. As a result the RXTE team agreed to re-observe PKS2126-158. The new observation was carried out in April 1999. Quasi-simultaneous optical observations were obtained, as Service observing., at the 4-meter Anglo-Australian Telescope, and ftp-ed from the AAT on 22April. The RXTE data was processed in late June, arriving at SAO in early July. Coincidentally, our collaborative Beppo-SAX observation of PKS2126-158 was made later in 1999, and a GTO Chandra observation (with which we are involved) was made on November 16. Since this gives us a unique monitoring data for a high redshift quasar over a broad pass-band we are now combining all three observations into a single comprehensive study Final publication of the RXTE data will thus take place under another grant.

  12. Proceedings of the 1992 workshops on high-energy physics with colliding beams. Volume 3, Electroweak symmetry breaking at colliding-beam facilities

    SciTech Connect

    Rogers, J.

    1992-12-31

    This report contains viewgraphs on the following topics: Introduction to Electroweak Symmetry Breaking: Intermediate-Mass Higgs Bosons; Extended Higgs Sectors and Novel Searches; and Heavy Higgs Bosons and Strong WW Scattering.

  13. High-energy effective action from scattering of QCD shock waves

    SciTech Connect

    Ian Balitsky

    2005-07-01

    At high energies, the relevant degrees of freedom are Wilson lines - infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops.

  14. High-energy effective action from scattering of QCD shock waves

    SciTech Connect

    Ian Balitsky

    2005-10-25

    At high energies, the relevant degrees of freedom are Wilson lines--infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to the projectile and target, includes both up and down fan diagrams and pomeron loops.

  15. [Studies of high energy phenomena using muons]. Progress report, [March 1991--December 1991

    SciTech Connect

    Not Available

    1991-12-31

    This report covers the activities of the NIU high energy physics group as supported by DOE contract FG02-91ER40641 during the period from March 1991 to December 1991. Our group has three main efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789. Finally, we are also members of the SDC collaboration at the SSC.

  16. High-energy effective action from scattering of QCD shock waves

    SciTech Connect

    Ian Balitsky

    2005-05-15

    At high energies, the relevant degrees of freedom are Wilson lines - infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops.

  17. Hadron collider physics

    SciTech Connect

    Pondrom, L.

    1991-10-03

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.

  18. Indiana University high energy physics, Task A

    SciTech Connect

    Brabson, B.; Crittenden, R.; Dzierba, A.; Hanson, G.; Martin, H.; Marshall, T.; Mir, R.; Mouthy, T.; Ogren, H.; Rust, D.; Teige, S.; Zieminska, D.; Zieminski, A.

    1992-01-01

    During this reporting period the group has been carrying out programs in several areas. These are presented in this paper is follows: The group was a collaborator in the Mark II experiment at the SLC and completed analysis on the experiment. Three students completed their theses this reporting period; the group is the prime mover in (E672), a high mass dimuon experiment which now in its final data collection period. Our group is also a collaborator in the DO collider experiment which is now preparing for the first data run in 1992; the group is a collaborator in the OPAL experiment at LEP which is now taking data. The group also is working on the development of a major offline facility shift and on a silicon vertex chamber for 1993; the group is the prime mover in the construction of a major new experiment (E852) in precision meson spectroscopy. A test run is presently underway and data taking will begin in 1993; and the group is a prime mover in the tracking design of the SDC experiment. The SDC has completed the Technical Design report. Construction will begin in 1993.

  19. Les Houches guidebook to Monte Carlo generators for hadron collider physics

    SciTech Connect

    Dobbs, Matt A.; Frixione, Stefano; Laenen, Eric; Tollefson, Kirsten

    2004-03-01

    Recently the collider physics community has seen significant advances in the formalisms and implementations of event generators. This review is a primer of the methods commonly used for the simulation of high energy physics events at particle colliders. We provide brief descriptions, references, and links to the specific computer codes which implement the methods. The aim is to provide an overview of the available tools, allowing the reader to ascertain which tool is best for a particular application, but also making clear the limitations of each tool.

  20. Les Houches Guidebook to Monte Carlo generators for hadron collider physics

    SciTech Connect

    Dobbs, M.A

    2004-08-24

    Recently the collider physics community has seen significant advances in the formalisms and implementations of event generators. This review is a primer of the methods commonly used for the simulation of high energy physics events at particle colliders. We provide brief descriptions, references, and links to the specific computer codes which implement the methods. The aim is to provide an overview of the available tools, allowing the reader to ascertain which tool is best for a particular application, but also making clear the limitations of each tool.