Science.gov

Sample records for high energy cr

  1. High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V

    SciTech Connect

    Werner, S.A.; Fawcett, E.; Elmiger, M.W.; Shirane, G.

    1992-11-01

    Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.

  2. High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V

    SciTech Connect

    Werner, S.A. . Dept. of Physics); Fawcett, E. . Dept. of Physics); Elmiger, M.W.; Shirane, G. )

    1992-01-01

    Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.

  3. Characterization of Cr poisoning in a solid oxide fuel cell cathode using a high-energy x-ray microbeam.

    SciTech Connect

    Liu, D. J.; Almer, J.; Cruse, T.

    2010-01-01

    A key feature of planar solid oxide fuel cells (SOFCs) is the feasibility of using metallic interconnects made of high temperature ferritic stainless steels, which reduce system cost while providing excellent electric conductivity. Such interconnects, however, contain high levels of chromium, which has been found to be associated with SOFC cathode performance degradation at SOFC operating temperatures; a phenomenon known as Cr poisoning. Here, we demonstrate an accurate measurement of the phase and concentration distributions of Cr species in a degraded SOFC, as well as related properties including deviatoric strain, integrated porosity, and lattice parameter variation, using high energy microbeam X-ray diffraction and radiography. We unambiguously identify (MnCr){sub 3}O{sub 4} and Cr{sub 2}O{sub 3} as the two main contaminant phases and find that their concentrations correlate strongly with the cathode layer composition. Cr{sub 2}O{sub 3} deposition within the active cathode region reduces porosity and produces compressive residual strains, which hinders the reactant gas percolation and can cause structural breakdown of the SOFC cathode. The information obtained through this study can be used to better understand the Cr-poisoning mechanism and improve SOFC design.

  4. Oxidation behavior and electrical property of ferritic stainless steel interconnects with a Cr-La alloying layer by high-energy micro-arc alloying process

    NASA Astrophysics Data System (ADS)

    Feng, Z. J.; Zeng, C. L.

    Chromium volatility, poisoning of the cathode material and rapidly decreasing electrical conductivity are the major problems associated with the application of ferritic stainless steel interconnects of solid oxide fuel cells operated at intermediate temperatures. Recently, a novel and simple high-energy micro-arc alloying (HEMAA) process is proposed to prepare LaCrO 3-based coatings for the type 430 stainless steel interconnects using a LaCrO 3-Ni rod as deposition electrode. In this work, a Cr-La alloying layer is firstly obtained on the alloy surface by HEMAA using Cr and La as deposition electrode, respectively, followed by oxidation treatment at 850 °C in air to form a thermally grown LaCrO 3 coating. With the formation of a protective scale composed of a thick LaCrO 3 outer layer incorporated with small amounts of Cr-rich oxides and a thin Cr 2O 3-rich sub-layer, the oxidation rate of the coated steel is reduced remarkably. A low and stable electrical contact resistance is achieved with the application of LaCrO 3-based coatings, with a value less than 40 mΩ cm 2 during exposure at 850 °C in air for up to 500 h.

  5. LaCrO 3-based coatings deposited by high-energy micro-arc alloying process on a ferritic stainless steel interconnect material

    NASA Astrophysics Data System (ADS)

    Feng, Z. J.; Zeng, C. L.

    Currently used ferritic stainless steel interconnects are unsuitable for practical applications in solid oxide fuel cells operated at intermediate temperatures due to chromium volatility, poisoning of the cathode material, rapidly decreasing electrical conductivity and a low oxidation resistance. To overcome these problems, a novel, simple and cost-effective high-energy micro-arc alloying (HEMAA) process is proposed to prepare LaCrO 3-based coatings for the type 430 stainless steel interconnects. However, it is much difficult to deposit an oxide coating by HEMAA than a metallic coating due to the high brittleness of oxide electrodes for deposition. Therefore, a Cr-alloying layer is firstly obtained on the alloy surface by HEMAA using a Cr electrode rod, followed by a LaCrO 3-based coating using an electrode rod of LaCrO 3-20 wt.%Ni, with a metallurgical bonding between the coating and the substrate. The preliminary oxidation tests at 850 °C in air indicate that the LaCrO 3-based coatings showed a three-layered microstructure with a NiFe 2O 4 outer layer, a thick LaCrO 3 sub-layer and a thin Cr 2O 3-rich inner layer, which thereby possesses an excellent protectiveness to the substrate alloy and a low electrical contact resistance.

  6. The precise energy spectra measurement of laser-accelerated MeV/n-class high-Z ions and protons using CR-39 detectors

    NASA Astrophysics Data System (ADS)

    Kanasaki, M.; Jinno, S.; Sakaki, H.; Kondo, K.; Oda, K.; Yamauchi, T.; Fukuda, Y.

    2016-03-01

    The diagnosis method, using a combination of a permanent magnet and CR-39 track detectors, has been developed to separately measure the energy spectrum of the laser-accelerated MeV/n-class high-Z ions and that of MeV protons. The main role of magnet is separating between high-Z ions and protons, not for the usual energy spectrometer, while ion energy was precisely determined from careful analysis of the etch pit shapes and the etch pit growth behaviors in the CR-39. The method was applied to laser-driven ion acceleration experiments using CO2 clusters embedded in a background H2 gas. Ion energy spectra with uncertainty ΔE  =  0.1 MeV n-1 for protons and carbon/oxygen ions were simultaneously obtained separately. The maximum energies of carbon/oxygen ions and protons were determined as 1.1  ±  0.1 MeV and 1.6  ±  0.1 MeV n-1, respectively. The sharp decrease around 1 MeV n-1 observed in the energy spectrum of carbon/oxygen ions could be due to a trace of the ambipolar hydrodynamic expansion of CO2 clusters. Thanks to the combination of the magnet and the CR-39, the method is robust against electromagnetic pulse (EMP).

  7. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    SciTech Connect

    Tanaka, Koichi; Anders, André

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  8. Direct observation of low energy nuclear spin excitations in HoCrO3 by high resolution neutron spectroscopy.

    PubMed

    Chatterji, T; Jalarvo, N; Kumar, C M N; Xiao, Y; Brückel, Th

    2013-07-17

    We have investigated low energy nuclear spin excitations in the strongly correlated electron compound HoCrO3. We observe clear inelastic peaks at E = 22.18 ± 0.04 μeV in both energy loss and gain sides. The energy of the inelastic peaks remains constant in the temperature range 1.5-40 K at which they are observed. The intensity of the inelastic peak increases at first with increasing temperature and then decreases at higher temperatures. The temperature dependence of the energy and intensity of the inelastic peaks is very unusual compared to that observed in other Nd, Co, V and also simple Ho compounds. Huge quasielastic scattering appears at higher temperatures presumably due to the fluctuating electronic moments of the Ho ions that get increasingly disordered at higher temperatures. The strong quasielastic scattering may also originate in the first Ho crystal-field excitations at about 1.5 meV.

  9. Microstructure of X210Cr12 steel after the forming in semi-solid state visualized by very low energy SEM in ultra high vacuum

    NASA Astrophysics Data System (ADS)

    Mikmeková, Š.; Mašek, B.; Jirková, H.; Aišman, D.; Müllerová, I.; Frank, L.

    2013-06-01

    Progress in materials science is inseparably connected with development of new analytical methods which make possible to observe the materials microstructure with high sensitivity. The aim of the present study is shown that scanning low energy electron microscopy (SLEEM) has a significant impact in advance of a fundamental understanding of the evolution of microstructure upon semi-solid processing. This paper deals with the application of the ultra high vacuum scanning low energy electron microscopy (UHV SLEEM) to the study of microstructure of X210Cr12 steel after the formation in semi-solid state and the study of the annealing of deformed metastable austenite. Examples from these specimens show that the contrast between differently oriented grains in polycrystalline materials is very sensitive to the parameters such as energy of the primary beam, working distance and detection of high angle backscattered electrons.

  10. Charge, energy and LET spectra of high LET primary and secondary particles in CR-39 plastic nuclear track detectors of the P0006 experiment

    NASA Technical Reports Server (NTRS)

    Csige, I.; Frigo, L. A.; Benton, E. V.; Oda, K.

    1995-01-01

    We have measured the charge, energy and linear energy transfer (LET) spectra of about 800 high LET (LET(sub infinity) H2O greater than 50 keV/micron) particles in CR-39 plastic nuclear track detectors in the P0006 experiment of LDEF. Primary particles with residual range at the reference surface greater than about 2 microns and secondary particles produced in the detector material with total range greater than about 4 microns were measured. We have used a multi-etch technique and an internal calibration to identify and measure the energy of the particles at the reference surface. The LET spectrum was obtained from the charge and energy distribution of the particles.

  11. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo

    SciTech Connect

    Niu, C.; Zaddach, A. J.; Oni, A. A.; Sang, X.; LeBeau, J. M.; Koch, C. C.; Irving, D. L.; Hurt, J. W.

    2015-04-20

    Spin-driven ordering of Cr in an equiatomic fcc NiFeCrCo high entropy alloy (HEA) was predicted by first-principles calculations. Ordering of Cr is driven by the reduction in energy realized by surrounding anti-ferromagnetic Cr with ferromagnetic Ni, Fe, and Co in an alloyed L1{sub 2} structure. The fully Cr-ordered alloyed L1{sub 2} phase was predicted to have a magnetic moment that is 36% of that for the magnetically frustrated random solid solution. Three samples were synthesized by milling or casting/annealing. The cast/annealed sample was found to have a low temperature magnetic moment that is 44% of the moment in the milled sample, which is consistent with theoretical predictions for ordering. Scanning transmission electron microscopy measurements were performed and the presence of ordered nano-domains in cast/annealed samples throughout the equiatomic NiFeCrCo HEA was identified.

  12. Functionally Graded High-Alloy CrMnNi TRIP Steel Produced by Local Heat Treatment Using High-Energy Electron Beam

    NASA Astrophysics Data System (ADS)

    Heinze, D.; Buchwalder, A.; Jung, A.; Weidner, A.; Segel, C.; Müller, A.; Zenker, R.; Biermann, H.

    2016-01-01

    Cold-rolled, high-alloy CrMnNi TRIP steel was heat treated by electron beam (EB) treatment. After cold rolling to a deformation degree of 70 pct, the microstructure was mainly martensitic with residual austenite. The aim of the subsequent EB treatment was to improve mechanical properties regarding strength and ductility by grain refinement. The process is influenced by EB-specific parameters, resulting in different temperature-time regimes due to different heating and cooling rates. Grain size gradients over the cross section could not be completely suppressed, but minimized. Investigations included optical microscopy, scanning electron microscopy, hardness measurements, quasi static tensile tests, digital image correlation, and thermography for functionally graded tensile specimens. The local heat treatment was used to set specific tailored properties.

  13. Alloying effects on the high-temperature oxidation resistance of Cr-Cr{sub 2}Nb

    SciTech Connect

    Tortorelli, P.F.; DeVan, J.H.

    1994-09-01

    Alloying effects on the high-temperature oxidation resistance of Cr-Cr{sub 2}Nb were examined on the basis of isothermal exposures to air at 950 C. Additions of either Re and Al or Fe, Ni, and Al had relatively little effect on weight gains relative to the Cr-6% Nb binary alloy. One alloying element that improved the mechanical behavior of Cr-Cr{sub 2}Nb alloys substantially increased the oxidation rates and spallation susceptibilities of Cr-6 and -12% Nb alloys. However, the addition of another element completely offset these deleterious effects. The presence of this latter element resulted in the best overall oxidation behavior (in terms of both weight gains and spallation tendencies) of all Cr-Cr{sub 2}Nb compositions. Its beneficial effect can be attributed to improvement in the oxidation resistance of the Cr-rich phase.

  14. Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy

    PubMed Central

    Okamoto, Norihiko L.; Fujimoto, Shu; Kambara, Yuki; Kawamura, Marino; Chen, Zhenghao M. T.; Matsunoshita, Hirotaka; Tanaka, Katsushi; Inui, Haruyuki; George, Easo P.

    2016-01-01

    High-entropy alloys (HEAs) comprise a novel class of scientifically and technologically interesting materials. Among these, equatomic CrMnFeCoNi with the face-centered cubic (FCC) structure is noteworthy because its ductility and strength increase with decreasing temperature while maintaining outstanding fracture toughness at cryogenic temperatures. Here we report for the first time by single-crystal micropillar compression that its bulk room temperature critical resolved shear stress (CRSS) is ~33–43 MPa, ~10 times higher than that of pure nickel. CRSS depends on pillar size with an inverse power-law scaling exponent of –0.63 independent of orientation. Planar ½ < 110 > {111} dislocations dissociate into Shockley partials whose separations range from ~3.5–4.5 nm near the screw orientation to ~5–8 nm near the edge, yielding a stacking fault energy of 30 ± 5 mJ/m2. Dislocations are smoothly curved without any preferred line orientation indicating no significant anisotropy in mobilities of edge and screw segments. The shear-modulus-normalized CRSS of the HEA is not exceptionally high compared to those of certain concentrated binary FCC solid solutions. Its rough magnitude calculated using the Fleischer/Labusch models corresponds to that of a hypothetical binary with the elastic constants of our HEA, solute concentrations of 20–50 at.%, and atomic size misfit of ~4%. PMID:27775026

  15. High pulse energy passive Q-switching of a diode-pumped Tm:YLF laser by Cr:ZnSe

    NASA Astrophysics Data System (ADS)

    Korenfeld, Arik; Sebbag, Daniel; Ben-Ami, Udi; Shalom, Eran; Marcus, Gilad; Noach, Salman

    2015-04-01

    A passively Q-switched diode-pumped Tm:YLF laser with polycrystalline Cr:ZnSe as the saturable absorber is demonstrated for the first time, to the best of our knowledge. By using saturable absorbers with different initial transmission, the maximum pulse energy reached 4.22 mJ with peak power of 162.3 kW for a pulse duration of 26 ns. The maximum output average power amounted to 2.2 W. These results constitute significant improvement from the highest average power, pulse energy and peak power results for the PQS Tm:YLF laser to date.

  16. High Temperature Behavior of Cr3C2-NiCr Coatings in the Actual Coal-Fired Boiler Environment

    NASA Astrophysics Data System (ADS)

    Bhatia, Rakesh; Sidhu, Hazoor Singh; Sidhu, Buta Singh

    2015-03-01

    Erosion-corrosion is a serious problem observed in steam-powered electricity generation plants, and industrial waste incinerators. In the present study, four compositions of Cr3C2-(Ni-20Cr) alloy coating powder were deposited by high-velocity oxy-fuel spray technique on T-91 boiler tube steel. The cyclic studies were performed in a coal-fired boiler at 1123 K ± 10 K (850 °C ± 10 °C). X-ray diffraction, scanning electron microscopy/energy dispersive X-ray analysis and elemental mapping analysis techniques were used to analyze the corrosion products. All the coatings deposited on T-91 boiler tube steel imparted hot corrosion resistance. The 65 pctCr3C2 -35 pct (Ni-20Cr)-coated T-91 steel sample performed better than all other coated samples in the given environment.

  17. High temperature coarsening of Cr2Nb precipitates in Cu-8 Cr-4 Nb alloy

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    1996-01-01

    A new high-temperature-strength, high-conductivity Cu-Cr-Nb alloy with a CrNb ratio of 2:1 was developed to achieve improved performance and durability. The Cu-8 Cr4 Nb alloy studied has demonstrated remarkable thermal and microstructural stability after long exposures at temperatures up to 0.98 T(sub m). This stability was mainly attributed to the slow coarsening kinetics of the Cr2Nb precipitates present in the alloy. At all temperatures, the microstructure consists of a bimodal and sometimes trimodal distribution of strengthening Cr2Nb precipitates, depending on precipitation condition, i.e. from liquid or solid solution, and cooling rates. These precipitates remain in the same size range, i.e. large precipitates of approximately I pm, and small precipitates less dm 300 nm, and effectively pin the grain boundaries thus retaining a fine grain size of 2.7 micro-m after 100 h at 1323 K. (A relatively small number of Cr-rich and Nb-rich particles were also present.) This grain boundary pinning and sluggish coarsening of Cr2Nb particles explain the retention of good mechanical properties after prolonged holding at very high temperatures, e.g., 75% of the original hardness after aging for 100 h at 1273 K. Application of LSW-based coarsening models indicated that the coarsening kinetics of the large precipitates are most likely governed by grain boundary diffsion and, to a lesser extent, volume diffusion mechanisms.

  18. Cr-Al Diffusion in Chromite Spinel at High Pressure

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Yasuda, A.; Ozawa, K.

    2005-12-01

    Compositional zoning in chromite spinel gives us important information to constrain thermal and deformation history of ultramafic-mafic rocks. For the quantitative estimation, diffusivity of elements in spinel is a critical parameter. Although the Mg-Fe2+ interdiffusion coefficient in MgAl2O4 spinel has experimentally studied by Freer & O'Reilly (1980) and Liemann & Ganguly (2002), Cr-Al interdiffusion coefficient has not been determined yet. In this study, we have experimentally determined Cr-Al interdiffusion coefficient in chromite spinel at temperatures ranging 1400-1700 °C and pressures ranging 3-7 GPa, by using diffusion couple of natural single crystals of spinel and chromite. Experiments were carried out with a multi-anvil type (MA-8 type) high-pressure apparatus at the Earthquake Research Institute, University of Tokyo. After experiments, the samples were cut perpendicular to the contact plane and analyzed with EPMA and EBSD. The elemental mapping showed that Cr, Al, Fe3+, Fe2+, and Mg diffused perpendicular to the contact plane. The Cr-Al diffusion profiles are complementary with each other and asymmetric with steeper profile in the spinel side suggesting a compositional dependence of Cr-Al diffusion in spinel. The Cr-Al interdiffusion coefficient was estimated by the Boltzmann-Matano method. The coefficient decreases with Cr# (=Cr/(Cr+Al)) of spinel, which varies more than one order of magnitude as the Cr# changes from 0.1 to 0.85 at 3 GPa and 1600 °C. It is concluded that the self-diffusion coefficient of Al is more than one order of magnitude larger than that of Cr. The Cr-Al interdiffusion coefficient is expressed by D=D0exp(-Q/RT), where D0=2.8×10-2 m2/s and Q=498 kJ/mol at Cr#=0.2. This relation is applicable up to Cr#=0.5. Extrapolation of the self-diffusion coefficient of Cr to the lower temperature shows that Cr is the slowest diffusion species in chromite spinel including oxygen. This extremely slow Cr self-diffusion is consistent with the Cr

  19. Chemical and electrochemical behavior of the Cr(3)/Cr(2) half cell in the NASA Redox Energy Storage System

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.; Reid, M. A.

    1982-01-01

    The Cr(III) complexes in the NASA Redox Energy Storage System were isolated and identified as Cr(H2O)6(+3) and Cr(H2O)5Cl(+2) by ion exchange chromatography and visible spectrophotometry. The cell reactions during charge-discharge cycles were followed by means of visible spectrophotometry. The spectral bands were resolved into component peaks and concentrations calculated using Beer's Law. During the charge mode Cr(H2O)5Cl(+2) is reduced to Cr(H2O)5Cl(+) and during the discharge mode Cr(H2O)5Cl(+) is oxidized back to Cr(H2O)5Cl(+2). Both electrode reactions occur via a chloride-bridge inner-sphere reaction pathway. Hysteresis effects can be explained by the slow attainment of equilibrium between Cr(H2O)6(+3) and Cr(H2O)5Cl(+2).

  20. The evolution of internal stress and dislocation during tensile deformation in a 9Cr ferritic/martensitic (F/M) ODS steel investigated by high-energy X-rays

    SciTech Connect

    Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Stubbins, James F.

    2015-12-01

    An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ Xray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at high temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 C, while the screw type dislocations dominate at 600 C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 C may be explained by the activated cross slip of screw segments.

  1. 9 Cr-- 1 Mo steel material for high temperature application

    SciTech Connect

    Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-11-27

    One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

  2. C/CrC nanocomposite coating deposited by magnetron sputtering at high ion irradiation conditions

    SciTech Connect

    Zhou, Z.; Rainforth, W. M.; Gass, M. H.; Bleloch, A.; Ehiassarian, A. P.; Hovsepian, P. Eh.

    2011-10-01

    CrC with the fcc NaCl (B1) structure is a metastable phase that can be obtained under the non-equilibrium conditions of high ion irradiation. A nano-composite coating consisting of amorphous carbon embedded in a CrC matrix was prepared via the unbalanced magnetron sputtering of graphite and Cr metal targets in Ar gas with a high ionized flux (ion-to-neutral ratio Ji/Jn = 6). The nanoscale amorphous carbon clusters self-assembled into layers alternated by CrC, giving the composite a multilayer structure. The phase, microstructure, and composition of the coating were characterized using x-ray diffraction, transmission electron microscopy, and aberration corrected scanning transmission electron microscopy coupled with electron energy loss spectroscopy. The interpretation of the true coating structure, in particular the carbide type, is discussed.

  3. Modeling Cr-to-Tm and Cr-to-Tm-to-Ho energy transfer in YAG crystals

    NASA Technical Reports Server (NTRS)

    Swetits, John J.

    1991-01-01

    A systematic analysis of energy transfer processes in crystals of YAG doped with varying concentrations of Cr and Tm is described. Both spectral measurements and measurements of the temporal response to pulsed excitation are used to give independent determinations of the microscopic interaction parameter for Cr to Tm transfer. The different factors in influencing the temperature dependence of the Cr to Tm transfer are discussed. The dependence of the Tm cross-relaxation rate on Tm concentration is determined.

  4. Cr(3+) substituted spinel ferrite nanoparticles with high coercivity.

    PubMed

    Zhang, Wei; Zuo, Xudong; Zhang, Dongmei; Wu, Chengwei; Silva, S Ravi P

    2016-06-17

    The low coercivity of spinel ferrites is a major barrier that significantly limits their use in high density magnetic recording applications. By controlling the substituting content of Cr(3+), in this article we describe how magnetic CoCr x Fe2-x O4 (0 < x < 1.2) nanoparticles with coercivity of up to 6.4 kOe were successfully obtained by the hydrothermal process. The high coercivity is attributed to the synergetic effects of magnetocrystalline anisotropy and the nanoscale size effect. X-ray diffraction analysis confirmed the spinel structure of the nanoparticles with transmission electron microscopy (TEM) suggesting regular tetragonal morphology. The TEM indicated an edge length ranging from 15 nm to 150 nm, which increases monotonically with increasing Cr content. Raman analyses supported the proposed model on the formation mechanism of the nanoparticles, i.e. heterogeneous and homogeneous nucleation. PMID:27159283

  5. Cr3+ substituted spinel ferrite nanoparticles with high coercivity

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zuo, Xudong; Zhang, Dongmei; Wu, Chengwei; Silva, S. Ravi P.

    2016-06-01

    The low coercivity of spinel ferrites is a major barrier that significantly limits their use in high density magnetic recording applications. By controlling the substituting content of Cr3+, in this article we describe how magnetic CoCr x Fe2‑x O4 (0 < x < 1.2) nanoparticles with coercivity of up to 6.4 kOe were successfully obtained by the hydrothermal process. The high coercivity is attributed to the synergetic effects of magnetocrystalline anisotropy and the nanoscale size effect. X-ray diffraction analysis confirmed the spinel structure of the nanoparticles with transmission electron microscopy (TEM) suggesting regular tetragonal morphology. The TEM indicated an edge length ranging from 15 nm to 150 nm, which increases monotonically with increasing Cr content. Raman analyses supported the proposed model on the formation mechanism of the nanoparticles, i.e. heterogeneous and homogeneous nucleation.

  6. Cr(3+) substituted spinel ferrite nanoparticles with high coercivity.

    PubMed

    Zhang, Wei; Zuo, Xudong; Zhang, Dongmei; Wu, Chengwei; Silva, S Ravi P

    2016-06-17

    The low coercivity of spinel ferrites is a major barrier that significantly limits their use in high density magnetic recording applications. By controlling the substituting content of Cr(3+), in this article we describe how magnetic CoCr x Fe2-x O4 (0 < x < 1.2) nanoparticles with coercivity of up to 6.4 kOe were successfully obtained by the hydrothermal process. The high coercivity is attributed to the synergetic effects of magnetocrystalline anisotropy and the nanoscale size effect. X-ray diffraction analysis confirmed the spinel structure of the nanoparticles with transmission electron microscopy (TEM) suggesting regular tetragonal morphology. The TEM indicated an edge length ranging from 15 nm to 150 nm, which increases monotonically with increasing Cr content. Raman analyses supported the proposed model on the formation mechanism of the nanoparticles, i.e. heterogeneous and homogeneous nucleation.

  7. High-Temperature Mechanical Properties of Cr(3+) Doped Sapphire Fibers

    NASA Technical Reports Server (NTRS)

    Sayir, A.; QuispeCancapa, J. J.; deArellanoLopez, A. R.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    High-temperature slow-crack growth of single crystal 10 wt% Cr2O3 - Al2O3 (nominal composition) fibers has been studied by tensile rupture experiments at 1400 C, under different stressing rates (0.5 to 41.5 MPa/s). Slow-crack growth (SCG) is less pronounced with increasing Cr2O3. Rupture stresses increased with the stressing rate from 397 MPa to 515 MPa, resulting in a SCG exponent, N=19. The Cr2O3 composition was analyzed by Energy Dispersed X-Ray Spectra (EDS) and fracture surfaces were studied by scanning electron microscopy (SEM). Results are compared with previous studies on 100-300 ppm Cr3(+) doped sapphire fibers and on commercial sapphire fibers.

  8. High-Temperature Exposure Studies of HVOF-Sprayed Cr3C2-25(NiCr)/(WC-Co) Coating

    NASA Astrophysics Data System (ADS)

    Singh, Harpreet; Kaur, Manpreet; Prakash, Satya

    2016-08-01

    In this research, development of Cr3C2-25(NiCr) + 25%(WC-Co) composite coating was done and investigated. Cr3C2-25(NiCr) + 25%(WC-Co) composite powder [designated as HP2 powder] was prepared by mechanical mixing of [75Cr3C2-25(NiCr)] and [88WC-12Co] powders in the ratio of 75:25 by weight. The blended powders were used as feedstock to deposit composite coating on ASTM SA213-T22 substrate using High Velocity Oxy-Fuel (HVOF) spray process. High-temperature oxidation/corrosion behavior of the bare and coated boiler steels was investigated at 700 °C for 50 cycles in air, as well as, in Na2SO4-82%Fe2(SO4)3 molten salt environment in the laboratory. Erosion-corrosion behavior was investigated in the actual boiler environment at 700 ± 10 °C under cyclic conditions for 1500 h. The weight-change technique was used to establish the kinetics of oxidation/corrosion/erosion-corrosion. X-ray diffraction, field emission-scanning electron microscopy/energy-dispersive spectroscopy (FE-SEM/EDS), and EDS elemental mapping techniques were used to analyze the exposed samples. The uncoated boiler steel suffered from a catastrophic degradation in the form of intense spalling of the scale in all the environments. The oxidation/corrosion/erosion-corrosion resistance of the HVOF-sprayed HP2 coating was found to be better in comparison with standalone Cr3C2-25(NiCr) coating. A simultaneous formation of protective phases might have contributed the best properties to the coating.

  9. Transport signatures of quantum critically in Cr at high pressure.

    SciTech Connect

    Jaramillo, R.; Feng, Y.; Wang, J.; Rosenbaum, T. F.

    2010-08-03

    The elemental antiferromagnet Cr at high pressure presents a new type of naked quantum critical point that is free of disorder and symmetry-breaking fields. Here we measure magnetotransport in fine detail around the critical pressure, P{sub c} {approx} 10 GPa, in a diamond anvil cell and reveal the role of quantum critical fluctuations at the phase transition. As the magnetism disappears and T {yields} 0, the magntotransport scaling converges to a non-mean-field form that illustrates the reconstruction of the magnetic Fermi surface, and is distinct from the critical scaling measured in chemically disordered Cr:V under pressure. The breakdown of itinerant antiferromagnetism only comes clearly into view in the clean limit, establishing disorder as a relevant variable at a quantum phase transition.

  10. Development of ODS FeCrAl for compatibility in fusion and fission energy applications

    DOE PAGESBeta

    Pint, Bruce A.; Dryepondt, Sebastien N.; Unocic, Kinga A.; Hoelzer, David T.

    2014-11-15

    In this paper, oxide dispersion strengthened (ODS) FeCrAl alloys with 12–15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is amore » general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.« less

  11. Development of ODS FeCrAl for Compatibility in Fusion and Fission Energy Applications

    NASA Astrophysics Data System (ADS)

    Pint, B. A.; Dryepondt, S.; Unocic, K. A.; Hoelzer, D. T.

    2014-12-01

    Oxide dispersion strengthened (ODS) FeCrAl alloys with 12-15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is a general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.

  12. Development of ODS FeCrAl for compatibility in fusion and fission energy applications

    SciTech Connect

    Pint, Bruce A.; Dryepondt, Sebastien N.; Unocic, Kinga A.; Hoelzer, David T.

    2014-11-15

    In this paper, oxide dispersion strengthened (ODS) FeCrAl alloys with 12–15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is a general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.

  13. High temperature tensile properties of V-4Cr-4Ti

    SciTech Connect

    Zinkle, S.J.; Rowcliffe, A.F.; Stevens, C.O.

    1998-09-01

    Tensile tests have been performed on V-4Cr-4Ti at 750 and 800 C in order to extend the data base beyond the current limit of 700 C. From comparison with previous measurements, the yield strength is nearly constant and tensile elongations decrease slightly with increasing temperature between 300 and 800 C. The ultimate strength exhibits an apparent maximum near 600 C (attributable to dynamic strain aging) but adequate strength is maintained up to 800 C. The reduction in area measured on tensile specimens remained high ({approximately}80%) for test temperatures up to 800 C, in contrast to previous reported results.

  14. High hardness and superlative oxidation resistance in a pseudo-icosahehdral Cr-Al binary

    NASA Astrophysics Data System (ADS)

    Simonson, J. W.; Rosa, R.; Antonacci, A. K.; He, H.; Bender, A. D.; Pabla, J.; Adrip, W.; McNally, D. E.; Zebro, A.; Kamenov, P.; Geschwind, G.; Ghose, S.; Dooryhee, E.; Ibrahim, A.; Aronson, M. C.

    Improving the efficiency of fossil fuel plants is a practical option for decreasing carbon dioxide emissions from electrical power generation. Present limits on the operating temperatures of exposed steel components, however, restrict steam temperatures and therefore energy efficiency. Even as a new generation of creep-resistant, high strength steels retain long term structural stability to temperatures as high as ~ 973 K, the low Cr-content of these alloys hinders their oxidation resistance, necessitating the development of new corrosion resistant coatings. We report here the nearly ideal properties of potential coating material Cr55Al229, which exhibits high hardness at room temperature as well as low thermal conductivity and superlative oxidation resistance at 973 K, with an oxidation rate at least three times smaller than those of benchmark materials. These properties originate from a pseudo-icosahedral crystal structure, suggesting new criteria for future research.

  15. High-Temperature Thermometer Using Cr-Doped GdAlO3 Broadband Luminescence

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey; Chambers, Matthew

    2011-01-01

    A new concept has been developed for a high-temperature luminescence-based optical thermometer that both shows the desired temperature sensitivity in the upper temperature range of present state-of-the-art luminescence thermometers (above 1,300 C), while maintaining substantial stronger luminescence signal intensity that will allow these optical thermometers to operate in the presence of the high thermal background radiation typical of industrial applications. This objective is attained by using a Cr-doped GdAlO3 (Cr:GdAlO3) sensor with an orthorhombic perovskite structure, resulting in broadband luminescence that remains strong at high temperature due to the favorable electron energy level spacing of Cr:GdAlO3. The Cr:GdAlO3 temperature (and pressure) sensor can be incorporated into, or applied onto, a component s surface when a non-contact surface temperature measurement is desired, or alternatively, the temperature sensor can be attached to the end of a fiber-optic probe that can then be positioned at the location where the temperature measurement is desired. In the case of the fiber-optic probe, both the pulsed excitation and the luminescence emission travel through the fiber-optic light guide. In either case, a pulsed light source provides excitation of the luminescence, and the broadband luminescence emission is collected. Real-time temperature measurements are obtain ed using a least-squares fitting algorithm that determines the luminescence decay time, which has a known temperature dependence established by calibration. Due to the broad absorption and emission bands for Cr:GdAlO3, there is considerable flexibility in the choice of excitation wavelength and emission wavelength detection bands. The strategic choice of the GdAlO3 host is based on its high crystal field, phase stability, and distorted symmetry at the Cr3+ occupation sites. The use of the broadband emission for temperature sensing at high temperatures is a key feature of the invention and is

  16. Kinetics of isochronal austenization in modified high Cr ferritic heat-resistant steel

    NASA Astrophysics Data System (ADS)

    Liu, Chenxi; Liu, Yongchang; Zhang, Dantian; Yan, Zesheng

    2011-12-01

    Employment of high Cr ferritic steels as a main structural material is considered as a way to achieve economical competitiveness of main steam pipe and nuclear reactors in power plants. Differential dilatometry and microstructure observation were employed to investigate the isochronal austenitic transformation of the modified high Cr ferritic steel. The kinetics of the isochronal austenitic transformation were described by a phase-transformation model involving site saturation (pre-existing nuclei), diffusion-controlled growth, and incorporating an impingement correction. The experimental results and kinetic analysis indicate that an increase of the heating rate promotes the diffusion-controlled austenitic transformation. The dissolving degree of precipitates during the austenization process affects the activation energy for diffusion and the undissolved precipitates lead to an increase of the onset temperature of the subsequent martensite transformation upon cooling.

  17. High-Temperature Behavior of a High-Velocity Oxy-Fuel Sprayed Cr3C2-NiCr Coating

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Singh, Harpreet; Prakash, Satya

    2012-08-01

    High-velocity oxy-fuel (HVOF) sprayed coatings have the potential to enhance the high-temperature oxidation, corrosion, and erosion-corrosion resistance of boiler steels. In the current work, 75 pct chromium carbide-25 pct (nickel-20 pct chromium) [Cr3C2-NiCr] coating was deposited on ASTM SA213-T22 boiler steel using the HVOF thermal spray process. High-temperature oxidation, hot corrosion, and erosion-corrosion behavior of the coated and bare steel was evaluated in the air, molten salt [Na2SO4-82 pct Fe2(SO4)3], and actual boiler environments under cyclic conditions. Weight-change measurements were taken at the end of each cycle. Efforts were made to formulate the kinetics of the oxidation, corrosion, and erosion-corrosion. X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM)/energy dispersive spectroscopy (EDS) techniques were used to analyze the oxidation products. The coating was found to be intact and spallation free in all the environments of the study in general, whereas the bare steel suffered extensive spallation and a relatively higher rate of degradation. The coating was found to be useful to enhance the high-temperature resistance of the steel in all the three environments in this study.

  18. Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Yoon, Ji Hyun; Hoelzer, David T.; Lee, Yong Bok; Kang, Suk Hoon; Maloy, Stuart A.

    2014-06-01

    This article is to summarize the process development and key characterization results for the newly-developed Fe-9Cr based nanostructured ferritic alloys (NFAs) with high fracture toughness. One of the major drawbacks from pursuing ultra-high strength in the past development of NFAs is poor fracture toughness at high temperatures although a high fracture toughness is essential to prevent cracking during manufacturing and to mitigate or delay irradiation-induced embrittlement in irradiation environments. A study on fracture mechanism using the NFA 14YWT found that the low-energy grain boundary decohesion in fracture process at a high temperature (>200 °C) resulted in low fracture toughness. Lately, efforts have been devoted to explore an integrated process to enhance grain bonding. Two base materials were produced through mechanical milling and hot extrusion and designated as 9YWTV-PM1 and 9YWTV-PM2. Isothermal annealing (IA) and controlled rolling (CR) treatments in two phase region were used to enhance diffusion across the interfaces and boundaries. The PM2 alloy after CR treatments showed high fracture toughness (KJQ) at represented temperatures: 240-280 MPa √m at room temperature and 160-220 MPa √m at 500 °C, which indicates that the goal of 100 MPa √m over possible nuclear application temperature range has been well achieved. Furthermore, it is also confirmed by comparison that the CR treatments on 9YWTV-PM2 result in high fracture toughness similar to or higher than those of the conventional ferritic-martensitic steels such as HT9 and NF616.

  19. High-Temperature Corrosion Studies of HVOF-Sprayed Cr3C2-NiCr Coating on SAE-347H Boiler Steel

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Singh, Harpreet; Prakash, Satya

    2009-12-01

    Cr3C2-NiCr coating was deposited on SAE-347H boiler steel by high velocity oxy fuel (HVOF) spray process. Subsequently, high-temperature corrosion behavior of the bare and coated boiler steel was investigated at 700 °C for 50 cycles in Na2SO4-82Fe2(SO4)3 molten salt, as well as air environments. Weight-change measurements after each cycle were made to establish the kinetics of corrosion. X-ray diffraction, field emission-scanning electron microscopy/energy dispersive spectroscopy, and x-ray mapping analyses were performed on the exposed samples to analyze the oxidation products. The bare 347H steel suffered accelerated oxidation during exposure at 700 °C in the air as well as the molten salt environment in comparison with its respective coated counterparts. The HVOF-spray Cr3C2-NiCr coating was found to be successful in maintaining its adherence in both the environments. The surface oxide scales were also found to be intact. The formation of chromium rich oxide scale might have contributed for the better hot corrosion/oxidation resistance in the coated steel.

  20. Chromium segregation in CoCrTa/Cr and CoCrPt/Cr thin films for longitudinal recording media

    SciTech Connect

    Wittig, J.E.; Nolan, T.P.; Ross, C.A.; Schabes, M.E.; Tang, K.; Sinclair, R.; Bentley, J.

    1998-07-01

    Analytical electron microscopy is employed to correlate Cr segregation in Co{sub 84}Cr{sub 12}Ta{sub 4}/Cr and Co{sub 76}Cr{sub 12}Pt{sub 12}/Cr films with specific microstructural features such as grain boundary mis-orientation. Energy-filtered (EFTEM) chemical maps show that Cr segregation occurs independently of the Cr underlayer, and is highly alloy dependent. The CoCrTa film contained extensive grain boundary Cr enrichment whereas EFTEM images from the CoCrPt media show homogeneous Cr distribution. No statistically significant Ta or Pt segregation was observed. EFTEM elemental maps and energy dispersive spectroscopy (EDS) indicate that grain boundary Cr segregation depends on the type of boundary. Quantitative analysis of the Cr levels using nanoprobe EDS shows that the random angle grain boundaries contain more Cr (23 +/{minus}4 at.%) than 90{degree} boundaries (17 +/{minus}4 at.%). EDS and EFTEM composition profiles show Cr enriched grain boundaries surrounded by regions of Cr depletion.

  1. WC-Co and Cr3C2-NiCr Coatings in Low- and High-Stress Abrasive Conditions

    NASA Astrophysics Data System (ADS)

    Kašparová, Michaela; Zahálka, František; Houdková, Šárka

    2011-03-01

    The article deals with the evaluation of abrasive wear resistance and adhesive strength of thermally sprayed coatings. The main attention was paid to differences between low- and high-stress abrasive conditions of the measuring. Conclusions include the evaluation of specific properties of the WC-Co and the Cr3C2-NiCr High Velocity Oxygen Fuel coatings and the evaluation of the changes in the behavior of the abrasive media. Mainly, the relationship between the low- and high-stress abrasion conditions and the wear mechanism in the tested materials was described. For the wear test, the abrasive media of Al2O3 and SiO2 sands were chosen. During wear tests, the volume loss of the tested materials and the surface roughness of the wear tracks were measured. The wear tracks on the tested materials and abrasive sands' morphologies were observed using Scanning Electron Microscopy. It was found that high-stress abrasive conditions change the coatings' behavior very significantly, particularly that of the Cr3C2-NiCr coating. Adhesive-cohesive properties of the coatings and relationships among individual structure particles were evaluated using tensile testing. It was found that the weak bond strength among the individual splats, structure particles, and phases plays a role in the poor wear resistance of the coatings.

  2. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation

    PubMed Central

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang

    2016-01-01

    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance. PMID:27562023

  3. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang

    2016-08-01

    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance.

  4. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation.

    PubMed

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang

    2016-01-01

    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance. PMID:27562023

  5. Grain boundary depletion and migration during selective oxidation of Cr in a Ni-5Cr binary alloy exposed to high-temperature hydrogenated water

    SciTech Connect

    Schreiber, Daniel K.; Olszta, Matthew J.; Bruemmer, Stephen M.

    2014-10-01

    High-resolution microscopy of a high-purity Ni-5Cr alloy exposed to 360°C hydrogenated water reveals intergranular selective oxidation of Cr accompanied by local Cr depletion and diffusion-induced grain boundary migration (DIGM). The corrosion-product oxide consists of a porous, interconnected network of Cr2O3 platelets with no further O ingress into the metal ahead. Extensive grain boundary depletion of Cr (to <0.05at.%) is observed typically 20–100 nm wide as a result of DIGM and reaching depths of many micrometers beyond the oxidation front.

  6. Electron energy loss spectroscopy analysis of the interaction of Cr and V with MWCNTs.

    PubMed

    Ilari, Gabriele M; Chawla, Vipin; Matam, Santhosh; Zhang, Yucheng; Michler, Johann; Erni, Rolf

    2016-05-01

    The presented scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) results show the strong reaction of Cr and V with the graphitic walls of MWCNTs. For Vanadium, an interfacial VC layer could be observed at the interface between VN and MWCNTs, when the samples were heated in situ to 750°C. Knowledge about this interfacial VC layer is important for the formation of VN-MWCNT hybrid materials, used in supercapacitor electrodes, often synthesized at high temperatures. Chromium reacts at 500°C with the MWCNTs to form Cr3C2 and in some cases, dissolved the MWCNT completely. Together with the previously published results about the interaction of MWCNTs with Cu (no interaction) and Ni (a slight rehybridisation trend for the outermost MWCNT-wall observed with EELS) (Ilari et al., 2015) the influence of the valence d-orbital occupancy of 3d transition metals on the interaction strength with CNTs is shown experimentally. For a transition metal to form chemical bonds towards CNT-walls, unoccupied states in its valence d-orbitals are needed. While Ni (2 unoccupied states) interacts only slightly, Cr (5 unoccupied states) and V (7 unoccupied states) react much stronger and can dissolve the MWCNTs, at least partially.

  7. High-temperature relaxation in a Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Zhou, Z. C.; Han, F. S.

    2003-09-01

    Two relaxational internal friction peaks were found in a (wt%)Fe-25Cr-5Al alloy. The low-temperature peak is related to Zener relaxation and the high-temperature one to grain-boundary relaxation. Their activation energy values are 2.55 (+/-0.14) eV for the Zener peak and 4.07(+/-0.15) eV for the grain-boundary relaxation peak, respectively. Grain-boundary relaxation strength remarkably increases with decreasing grain size, while the Zener peak is independent of the grain size. (

  8. Energy spectrum of iron nuclei measured inside the MIR space craft using CR-39 track detectors.

    PubMed

    Gunther, W; Leugner, D; Becker, E; Flesch, F; Heinrich, W; Huntrup, G; Reitz, G; Rocher, H; Streibel, T

    1999-06-01

    We have exposed stacks of CR-39 plastic nuclear track detectors inside the MIR space craft during the EUROMIR95 space mission for almost 6 months. Over this long period a large number of tracks of high LET events was accumulated in the detector foils. The etching and measuring conditions for this experiment were optimized to detect tracks of stopping iron nuclei. We found 185 stopping iron nuclei inside the stack and identified their trajectories through the material of the experiment. Based on the energy-range relation the energy at the surface of the stack was determined. These particles allow the determination of the low energy part of the spectrum of iron nuclei behind shielding material inside the MIR station.

  9. Au/Cr Sputter Coating for the Protection of Alumina During Sliding at High Temperatures

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.; Dellacorte, Christopher

    1995-01-01

    A sputter deposited bilayer coating of gold and chromium was investigated as a potential solid lubricant to protect alumina substrates in applications involving sliding at high temperature. The proposed lubricant was tested in a pin-on-disk tribometer with coated alumina disks sliding against uncoated alumina pins. Three test parameters; temperature, load, and sliding velocity were varied over a wide range in order to determine the performance envelope on the gold/chromium (Au/Cr) solid lubricant film. The tribo-tests were run in an air atmosphere at temperatures of 25 to 1000 C, under loads of 4.9 to 49.0 N and at sliding velocities from 1 to 15 m/sec. Post test analyses included surface profilometry, wear factor determination and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) examination of worn surfaces. Compared to unlubricated Al2O3 sliding, the use of the Au/Cr film reduced friction by 30 to 50 percent and wear by one to two orders of magnitude. Increases in test temperature resulted in lower friction and the Au/Cr film continued to provide low friction, about 0.3, even at 1000 C. Pin wear factors and friction were largely unaffected by increasing loads up to 29.4 N. Sliding velocity had essentially no effect on friction, however, increased velocity reduced coating life (total sliding distance). Based upon these research results, the Au/Cr film is a promising lubricant for moderately loaded, low speed applications operating at temperatures as high as 1000 C.

  10. Mechanism for the thermal dependence of the Cr to Nd energy transfer in garnets

    NASA Technical Reports Server (NTRS)

    Armagan, Guzin; Di Bartolo, Baldassare

    1988-01-01

    The temperature dependence of the Cr-Nd energy transfer is found to be due to the thermal variation of the radiative decay probability of Cr. The validity of this conjecture is checked in the Gd3Sc2Ga3O12 and CaMg2Y2Ge3O12 crystals. It is also found that above 200 K, the nonradiative energy transfer rate from Cr to Nd is greater in Gd3Sc2Ga3O12 than in CaMg2Y2Ge3O12.

  11. Oxidation behavior of TD-NiCr in a dynamic high temperature environment

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Young, C. T.; Herring, H. W.

    1974-01-01

    The oxidation behavior of TD-NiCr has been studied in static and high-speed flowing air environments at 1100 and 1200 C. It has been found that the stable oxide morphologies formed on the specimens exposed to the static and dynamic environments were markedly different. The faceted crystal morphology characteristic of static oxidation was found to be unstable under high-temperature, high-speed flow conditions and was quickly replaced by a porous NiO 'mushroom' type structure. Also, it was found that the rate of formation of CrO3 from Cr2O3 was greatly enhanced by high gas velocity conditions. The stability of Cr2-O3 was found to be greatly improved by the presence of an outer NiO layer, even though the NiO layer was very porous. An oxidation model is proposed to explain the observed microstructures and overall oxidation behavior of TD-NiCr alloys.

  12. Chemical and electrochemical behavior of the Cr(III)/Cr(II) half-cell in the iron-chromium redox energy storage system

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.; Reid, M. A.

    1985-01-01

    The Cr(III) complexes present in the acidified chromium solutions used in the iron-chromium redox energy storage system have been isolated and identified as Cr(H2O)6(3+) and Cr(H2O)5Cl(2+) by ion-exchange chromatography and visible spectrophotometry. The cell reactions during charge-discharge cycles have been followed by means of visible spectrophotometry. The spectral bands were resolved into component peaks and concentrations of the Cr(III) species calculated using Beer's law. During the charge mode, Cr(H2O)5Cl(2+) is reduced to Cr(H2O)5Cl(+), and during the discharge mode Cr(H2O)5Cl(+) is oxidized back to Cr(H2O)5Cl(2+). Electrode potential measurements also support this interpretation. Hysteresis effects in the charge-discharge curves can be explained by the slow attainment of equilibrium between Cr(H2O)6(3+) and Cr(H2O)5Cl(2+).

  13. Energy levels and radiative rates for Cr-like Cu VI and Zn VII

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Keenan, F. P.; Kisielius, R.

    2016-09-01

    Energy levels and radiative rates (A-values) for transitions in Cr-like Cu VI and Zn VII are reported. These data are determined in the quasi-relativistic approach (QR), by employing a very large configuration interaction (CI) expansion which is highly important for these ions. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST and other available theoretical data, for a majority of the levels. The A-values (and resultant lifetimes) are listed for all significantly contributing E1, E2 and M1 radiative transitions among the energetically lowest 322 levels of each ion.

  14. Precision measurements of nuclear CR energy spectra and composition with the AMS-02 experiment

    NASA Astrophysics Data System (ADS)

    Fiandrini, E.

    2016-05-01

    The Alpha Magnetic Spectrometer 02 (AMS-02) is a large acceptance high-energy physics experiment operating since May 2011 on board the International Space Station. More than 60 billion events have been collected by the instrument in the first four years of operation. AMS-02 offers a unique opportunity to study the Cosmic Rays (CRs) since it measures the spectra of all the species simultaneously. We report on the precision measurements of primary and secondary nuclear spectra, in the GeV-TeV energy interval. These measurements allow for the first time a detailed study of the spectral index variation with rigidity providing a new insight on the origin and propagation of CR.

  15. Energy levels and radiative rates for Cr-like Cu VI and Zn VII

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Keenan, F. P.; Kisielius, R.

    2016-09-01

    Energy levels and radiative rates (A-values) for transitions in Cr-like Cu VI and Zn VII are reported. These data are determined in the quasi-relativistic approach (QR), by employing a very large configuration interaction (CI) expansion which is highly important for these ions. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST and other available theoretical data, for a majority of the levels. The A-values (and resultant lifetimes) are listed for all significantly contributing E1, E2 and M1 radiative transitions among the energetically lowest 322 levels of each ion.

  16. The bond length and bond energy of gaseous CrW.

    PubMed

    Matthew, Daniel J; Oh, Sang Hoon; Sevy, Andrew; Morse, Michael D

    2016-06-01

    Supersonically cooled CrW was studied using resonant two-photon ionization spectroscopy. The vibronically resolved spectrum was recorded over the region 21 100 to 23 400 cm(-1), showing a very large number of bands. Seventeen of these bands, across three different isotopologues, were rotationally resolved and analyzed. All were found to arise from the ground (1)Σ(+) state of the molecule and to terminate on states with Ω' = 0. The average r0 bond length across the three isotopic forms was determined to be 1.8814(4) Å. A predissociation threshold was observed in this dense manifold of vibronic states at 23 127(10) cm(-1), indicating a bond dissociation energy of D0(CrW) = 2.867(1) eV. Using the multiple bonding radius determined for atomic Cr in previous work, the multiple bonding radius for tungsten was calculated to be 1.037 Å. Comparisons are made between CrW and the previously investigated group 6 diatomic metals, Cr2, CrMo, and Mo2, and to previous computational studies of this molecule. It is also found that the accurately known bond dissociation energies of group 5/6 metal diatomics Cr2, V2, CrW, NbCr, VNb, Mo2, and Nb2 display a qualitative linear dependence on the sum of the d-orbital radial expectation values, r; this relationship allows the bond dissociation energies of other molecules of this type to be estimated. PMID:27276956

  17. Identification of electronic state in perovskite CaCr O3 by high-pressure studies

    NASA Astrophysics Data System (ADS)

    Zhou, J.-S.; Alonso, J. A.; Sanchez-Benitez, J.; Fernandez-Diaz, M. T.; Martinez-Coronado, R.; Cao, L.-P.; Li, X.; Marshall, L. G.; Jin, C.-Q.; Goodenough, J. B.

    2015-10-01

    CaCr O3 is at the crossover from localized to itinerant electronic behavior, and interpretation of its electronic state has remained controversial. It is a metal from an optical study. However, the collinear type-C antiferromagnetic spin ordering below TN≈90 K is characteristic of localized electron magnetism. We have performed many runs of high-pressure synthesis. CaCr O3 crystals can be found in some batches. We have used specific-heat measurement as a diagnostic tool to probe the electronic states near the Fermi energy. An electronic bandwidth is broadened by applying high pressure. The magnetization measurement under pressure reveals a d TN/d P <0 . The crystal structural change corresponding to the pressure-induced electron structural change has been monitored by in situ neutron diffraction under high pressure. The t22 d-electron configuration on octahedral site C r4 + is orbitally threefold degenerate. Local site distortions are argued to show that in CaCr O3 the crossover from localized to itinerant 3d electrons does not result in a charge-density wave in which segregation of the interatomic interactions results in the stabilization of molecular clusters, but in an intraatomic orbital ordering that stabilizes a half-filled localized-electron x y orbital and a 1 /4 -filled c -axis π* band. Local structural changes under pressure reveal a weakening of long-range magnetic order is associated with a smooth Mott-Hubbard transition of the x y electrons.

  18. Creep Strength of Dissimilar Welded Joints Using High B-9Cr Steel for Advanced USC Boiler

    NASA Astrophysics Data System (ADS)

    Tabuchi, Masaaki; Hongo, Hiromichi; Abe, Fujio

    2014-10-01

    The commercialization of a 973 K (700 °C) class pulverized coal power system, advanced ultra-supercritical (A-USC) pressure power generation, is the target of an ongoing research project initiated in Japan in 2008. In the A-USC boiler, Ni or Ni-Fe base alloys are used for high-temperature parts at 923 K to 973 K (650 °C to 700 °C), and advanced high-Cr ferritic steels are planned to be used at temperatures lower than 923 K (650 °C). In the dissimilar welds between Ni base alloys and high-Cr ferritic steels, Type IV failure in the heat-affected zone (HAZ) is a concern. Thus, the high B-9Cr steel developed at the National Institute for Materials Science, which has improved creep strength in weldments, is a candidate material for the Japanese A-USC boiler. In the present study, creep tests were conducted on the dissimilar welded joints between Ni base alloys and high B-9Cr steels. Microstructures and creep damage in the dissimilar welded joints were investigated. In the HAZ of the high B-9Cr steels, fine-grained microstructures were not formed and the grain size of the base metal was retained. Consequently, the creep rupture life of the dissimilar welded joints using high B-9Cr steel was 5 to 10 times longer than that of the conventional 9Cr steel welded joints at 923 K (650 °C).

  19. Spectroscopic investigation of Cr to Tm energy transfer in yttrium aluminum garnet crystals

    NASA Technical Reports Server (NTRS)

    Armagan, G.; Di Bartolo, B.; Buoncristiani, A. M.

    1989-01-01

    A series of experiments has been conducted in order to examine the nature of the energy transfer process between the Cr(3+) and Tm(3+) ions in YAG. Data are obtained on various samples doped with Cr(3+) and/or Tm(3+). These data include absorption, luminescence, excitation spectra and time-resolved response to pulsed excitation. The measurements were carried out over a range of temperatures from 78 to 350 K. The rate of nonradiative energy transfer from Cr(3+) to Tm(3+) depends on temperature, and in the region from 200 to 350 K, this dependence is due primarily to the thermal variation in the radiative decay probability of the Cr ion.

  20. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition

    SciTech Connect

    An, Zhinan; Jia, Haoling; Wu, Yueying; Rack, Philip D.; Patchen, Allan D.; Liu, Yuzi; Ren, Yang; Li, Nan; Liaw, Peter K.

    2015-05-04

    The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.

  1. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M.

    2015-12-01

    Al-Cr-Fe-Mn-Ni and Al-Cr-Cu-Fe-Mn-Ni high entropy alloy thin films were prepared by potentiostatic electrodeposition and the microstructure of the deposits was investigated. The thin films were co-deposited in an electrolyte based on a DMF (N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound. The energy dispersive spectrometry investigation (EDS) indicated that all the five respectively six elements were successfully co-deposited. The scanning electron microscopy (SEM) analysis revealed that the film consists of compact and uniform particles with particle sizes of 500 nm to 4 μm. The X-ray diffractometry (XRD) patterns indicated that the as-deposited thin films were amorphous. Body-centered-cubic (BCC) structures were identified by XRD after the films were annealed at various temperatures under inert Ar atmosphere. The alloys adhesion on the substrate was determined by the scratch-testing method, with higher values obtained for the Al-Cr-Cu-Fe-Mn-Ni alloy.

  2. Production of Nanocrystalline Ni-20Cr Coatings for High-Temperature Applications

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Singh, Harpreet; Singh, Narinder

    2014-04-01

    Presynthesized nanocrystalline Ni-20Cr powder was deposited on SA 516 and T91 boiler steels by a high-velocity oxy-fuel spraying process. Ni-20Cr powder was synthesized by the ball milling approach. The high-temperature oxidation behavior of bare and coated samples was then studied under cyclic isothermal conditions at 900 °C for 50 cycles. The kinetics of oxidation was established using weight change measurements for the bare and coated boiler steels. Uncoated and coated samples of T91 steel were exposed to the superheated zone of a power plant boiler at 750 °C under cyclic conditions for 15 cycles. Each cycle consisted of 100 h of heating followed by 1 h of cooling. Attempts were made to study the kinetics of erosion-corrosion using weight change and thickness loss data for the samples. Different characterization techniques were used to study the oxidized and eroded-corroded samples, including x-ray diffraction, scanning electron microscopy/energy-dispersive spectroscopy, and x-ray mapping analyses. The Ni-20Cr alloy powder coating was found to offer excellent oxidation resistance to the base steels and was successful in reducing the weight gain of SA 516 steel by 98.5 % and that of T91 steel by 65 %. The coating was observed to reduce the erosion-corrosion rate of T91 steel by 86 % in terms of thickness loss. This indicates that the investigated nanostructured coating can be a better choice over conventional coating for erosion-corrosion control of boiler tubes.

  3. Rapid speciation analysis of Cr(VI) and Cr(III) by reversed-phase high-performance liquid chromatography with UV detection.

    PubMed

    Hossain, Mohammad Abul; Kumita, Mikio; Michigami, Yoshimasa; Islam, Tajmeri S A; Mori, Shigeru

    2005-02-01

    A simple and rapid method is developed for the simultaneous determination of Cr(VI) and Cr(III) based on the formation of their different complexes with ammonium pyrrolidine-dithiocarbamate (APDC). Separation is performed using reversed-phase high-performance liquid chromatography coupled with UV detection. The conditions for complex formation and speciation are determined, such as solution pH, amount of APDC, temperature, and type of mobile phase. In order to substantially reduce the analysis time, the separation is carried out without extraction of chromium-APDC complexes from the mother liquor. Under the optimum analysis conditions, the chromatograms obtained show good peak separation, and the absolute detection limits (3s) are 2.2 microg/L for Cr(VI) and 4.5 microg/L for Cr(III). The calibration curves are linear from 3 to 5000 microg/L for Cr(VI) and 5 to 3000 microg/L for Cr(III). The relative standard deviations of peak areas in five measurements using a sample solution of 200 microg/L are less than 2% for Cr(VI) and 4% for Cr(III), indicating good reproducibility for this analytical method. Furthermore, simultaneous determination of Cr(VI) and Cr(III) is successful with the application of the proposed procedure in the synthetic wastewaters containing common heavy metal ions: Fe(III), Pb(II), Cd(II), Cu(II), and Zn(II). PMID:15826369

  4. High-pressure and high-temperature synthesis and physical properties of Ca2CrO4 solid

    NASA Astrophysics Data System (ADS)

    Cao, L. P.; Jin, M. L.; Li, W. M.; Wang, X. C.; Liu, Q. Q.; Xu, Y. L.; Pan, L. Q.; Jin, C. Q.

    2016-05-01

    The bulk Ca2CrO4 samples were synthesized under high pressure and high temperature conditions using CaO and CrO2 as starting materials. The structure of the prepared Ca2CrO4 solid is characterized by X-ray diffraction with Rietveld refinement as tetragonal structure with the space group I41/acd. The CrO6 octahedrons elongate along c axis and rotate in ab plane. DC and AC magnetic susceptibility measurement results indicate spin glass behavior at low temperature. Temperature dependence of resistivity measurement results show Ca2CrO4 is an insulator at both ambient condition and high pressure.

  5. Potentially superhard hcp Cr N2 compound studied at high pressure

    NASA Astrophysics Data System (ADS)

    Zhao, Zhonglong; Bao, Kuo; Tian, Fubo; Duan, Defang; Liu, Bingbing; Cui, Tian

    2016-06-01

    Motivated by recent developments in nitrogen-rich transition-metal nitrides, the stability of chromium mononitride (CrN) and the possible formation of chromium dinitride (Cr N2 ) are studied using density functional theory (with the Perdew-Burke-Ernzerhof functional within the generalized gradient approximation, local density approximation plus U, and Heyd-Scuseria-Ernzerhof hybrid exchange-correlation potentials), ab initio evolutionary algorithm, as well as ab initio molecular dynamics. It is found that low-temperature orthorhombic CrN will transform into a hexagonal-close-packed (hcp) structure at above 108 GPa. Two hcp Cr N2 , constructed by replacing the interstitial nitrogen in hcp CrN with nitrogen-nitrogen units, are predicted to be stable at above 7 GPa due to the physics of precompression. We show that the Cr-N bond length in hcp Cr N2 at 0 GPa is comparable to that of the CrN prototype at more than 45 GPa, and the electrons have been transformed from itinerant to localized, which results in unique metal-insulator transitions and a high hardness of 46 GPa. These results, therefore, provide crucial insights for designing covalence-dominated transition-metal compounds.

  6. Spectroscopic investigation of the Cr to Tm energy transfer in Yttrium Aluminum Garnet (YAG) crystals

    NASA Technical Reports Server (NTRS)

    Dibartolo, B.

    1988-01-01

    New and interesting schemes have recently been considered for the efficient operation of solid-state ionic laser systems. Often the available data on these systems were obtained only because they seemed directly related to the laser performance and provide no insight into the physical processes. A more systematic approach is desirable, where more attention is devoted to the elementary basic processes and to the nature of the mechanisms at work. It is with this aim that we have undertaken the present study. Yttrium Aluminum Garnet (Y4Al5O12), called YAG, has two desirable properties as host for rare earth impurities: (1) trivalent rare earth ions can replace the yttrium without any charge compensation problem, and (2) YAG crystals have high cutoff energies. The results of measurements and calculations indicate that the Cr(3+) ion in YAG can be used to sensitize efficiently the Tm(3+) ion.

  7. Anomalous anisotropic compression behavior of superconducting CrAs under high pressure.

    PubMed

    Yu, Zhenhai; Wu, Wei; Hu, Qingyang; Zhao, Jinggeng; Li, Chunyu; Yang, Ke; Cheng, Jinguang; Luo, Jianlin; Wang, Lin; Mao, Ho-Kwang

    2015-12-01

    CrAs was observed to possess the bulk superconductivity under high-pressure conditions. To understand the superconducting mechanism and explore the correlation between the structure and superconductivity, the high-pressure structural evolution of CrAs was investigated using the angle-dispersive X-ray diffraction (XRD) method. The structure of CrAs remains stable up to 1.8 GPa, whereas the lattice parameters exhibit anomalous compression behaviors. With increasing pressure, the lattice parameters a and c both demonstrate a nonmonotonic change, and the lattice parameter b undergoes a rapid contraction at ∼ 0.18-0.35 GPa, which suggests that a pressure-induced isostructural phase transition occurs in CrAs. Above the phase transition pressure, the axial compressibilities of CrAs present remarkable anisotropy. A schematic band model was used to address the anomalous compression behavior of CrAs. The present results shed light on the structural and related electronic responses to high pressure, which play a key role toward understanding the superconductivity of CrAs.

  8. Anomalous anisotropic compression behavior of superconducting CrAs under high pressure

    PubMed Central

    Yu, Zhenhai; Wu, Wei; Hu, Qingyang; Zhao, Jinggeng; Li, Chunyu; Yang, Ke; Cheng, Jinguang; Luo, Jianlin; Wang, Lin; Mao, Ho-kwang

    2015-01-01

    CrAs was observed to possess the bulk superconductivity under high-pressure conditions. To understand the superconducting mechanism and explore the correlation between the structure and superconductivity, the high-pressure structural evolution of CrAs was investigated using the angle-dispersive X-ray diffraction (XRD) method. The structure of CrAs remains stable up to 1.8 GPa, whereas the lattice parameters exhibit anomalous compression behaviors. With increasing pressure, the lattice parameters a and c both demonstrate a nonmonotonic change, and the lattice parameter b undergoes a rapid contraction at ∼0.18−0.35 GPa, which suggests that a pressure-induced isostructural phase transition occurs in CrAs. Above the phase transition pressure, the axial compressibilities of CrAs present remarkable anisotropy. A schematic band model was used to address the anomalous compression behavior of CrAs. The present results shed light on the structural and related electronic responses to high pressure, which play a key role toward understanding the superconductivity of CrAs. PMID:26627230

  9. Identification of new fluorescence processes in the UV spectra of cool stars from new energy levels of Fe II and Cr II

    NASA Technical Reports Server (NTRS)

    Johansson, Sveneric; Carpenter, Kenneth G.

    1988-01-01

    Two fluorescence processes operating in atmospheres of cool stars, symbiotic stars, and the Sun are presented. Two emission lines, at 1347.03 and 1360.17 A, are identified as fluorescence lines of Cr II and Fe II. The lines are due to transitions from highly excited levels, which are populated radiatively by the hydrogen Lyman alpha line due to accidental wavelength coincidences. Three energy levels, one in Cr II and two in Fe II, are reported.

  10. Corrosion behavior of Fe-Ni-Cr alloys in the molten salt of LiCl-Li 2O at high temperature

    NASA Astrophysics Data System (ADS)

    Cho, S. H.; Zhang, J. S.; Shin, Y. J.; Park, S. W.; Park, H. S.

    2004-02-01

    At Korea Atomic Energy Research Institute (KAERI), we investigated the corrosion behavior of a series of Fe-Cr-Ni alloys with different chromium contents in molten LiCl and molten LiCl-25wt%Li 2O mixture at temperatures ranging from 923 to 1123 K. In molten LiCl, dense protective scale of LiCrO 2 grows outwardly while corrosion is accelerated by addition of Li 2O to LiCl. The basic fluxing of Cr 2O 3 by Li 2O would be the cause of accelerated corrosion. Because of low oxygen solubility and very high Li 2O activity in the molten LiCl-Li 2O mixture, Cr is preferentially corroded while Ni remains stable and thus, corrosion rate of the alloys in molten LiCl-Li 2O mixture increases with an increase in Cr content.

  11. VIIRS plus CrIMSS TPW - continuing the record of high spatial resolution moisture determinations

    NASA Astrophysics Data System (ADS)

    Menzel, W. P.; Borbas, E. E.; Li, Z.; Dobor, L.

    2015-12-01

    Total column water vapor properties are being derived from merged VIIRS infrared measurements and CrIMSS (CrIS plus ATMS) water vapor soundings in an attempt to continue the depiction of global moisture at high spatial resolution started with MODIS. While MODIS has two channels within the 6.5-μm H2O band and four channels within the 15-μm CO2 band, VIIRS has no infrared (IR) absorption channels. However, the VIIRS IR windows at 8.6, 10.8 and 12 μm give some indication of low level moisture (which constitutes much of the total column amount) and CrIMSS provide complementary column moisture determinations . The VIIRS/CrIMSS algorithm follows the approach used for MODIS; a clear sky regression relationship is established between total precipitable water vapor (TPW) and VIIRS IR window brightness temperatures (BTs) and CrIMSS water vapor soundings calculated from a global training radiosonde based profile data set. A high spatial resolution surface emissivity database is used to help differentiate surface emission and atmospheric moisture absorption. CrIMSS is added in clear and partly cloudy regions to enhance the TPW depiction and to extend the coverage. This poster presents comparisons of MODIS, VIIRS-only, VIIRS-CrIMSS TPW determinations and validations against ground truth MWR and GPS.

  12. Changes in CR-39 proton sensitivity due to prolonged exposure to high vacuums relevant to the National Ignition Facility and OMEGA.

    PubMed

    Manuel, M J-E; Rosenberg, M J; Sinenian, N; Rinderknecht, H; Zylstra, A B; Séguin, F H; Frenje, J; Li, C K; Petrasso, R D

    2011-09-01

    When used at facilities like OMEGA and the NIF, CR-39 is exposed to high vacuum environments before and after irradiation by charged particles and neutrons. Using an electrostatic linear accelerator at MIT, studies have been conducted to investigate the effects of high vacuum exposure on the sensitivity of CR-39 to fusion protons in the ~1-9 MeV energy range. High vacuum conditions, of order 10(-5) Torr, experienced by CR-39 samples at these facilities were emulated. It is shown that vacuum exposure times longer than ~16 h before proton irradiation result in a decrease in proton sensitivity, whereas no effect was observed for up to 67 h of vacuum exposure after proton irradiation. CR-39 sensitivity curves are presented for samples with prolonged exposure to high vacuum before and after proton irradiation.

  13. Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression

    NASA Astrophysics Data System (ADS)

    Wang, Bingfeng; Fu, Ao; Huang, Xiaoxia; Liu, Bin; Liu, Yong; Li, Zezhou; Zan, Xiang

    2016-07-01

    The equiatomic CoCrFeMnNi high entropy alloy, which crystallizes in the face-centered cubic (FCC) crystal structure, was prepared by the spark plasma sintering technique. Dynamic compressive tests of the CoCrFeMnNi high entropy alloy were deformed at varying strain rates ranging from 1 × 103 to 3 × 103 s-1 using a split-Hopkinson pressure bar (SHPB) system. The dynamic yield strength of the CoCrFeMnNi high entropy alloy increases with increasing strain rate. The Zerilli-Armstrong (Z-A) plastic model was applied to model the dynamic flow behavior of the CoCrFeMnNi high entropy alloy, and the constitutive relationship was obtained. Serration behavior during plastic deformation was observed in the stress-strain curves. The mechanism for serration behavior of the alloy deformed at high strain rate is proposed.

  14. High-Temperature Erosion of HVOF Sprayed Cr3C2-NiCr Coating and Mild Steel for Boiler Tubes

    NASA Astrophysics Data System (ADS)

    Yang, Guan-Jun; Li, Chang-Jiu; Zhang, Shi-Jun; Li, Cheng-Xin

    2008-12-01

    The comparison of the high-temperature erosion behavior of a High-velocity oxyfuel (HVOF) sprayed Cr3C2-NiCr coating with mild steel for circulating fluidized bed boiler tubes was investigated. Results showed that the erosion rate of the mild steel at 800 °C was four times that at 300 °C at an erosion angle of 30°. However, the erosion rate of the HVOF sprayed Cr3C2-NiCr coating was not influenced by the temperature in the range of 300-800 °C. It was found that the erosion resistance of HVOF sprayed Cr3C2-NiCr coating was more than three times higher than that of the mild steel at 700-800 °C. In addition to the ploughing on the coating surface, the cracking along splat interfaces in the coating was clearly observed on the cross-sectional microstructure. The results indicate that the erosion performance of the HVOF sprayed Cr3C2-NiCr coating is controlled by the cohesion between splats and can be further enhanced by improving splat cohesion.

  15. A new Cu-8 Cr-4 Nb alloy for high temperature applications

    NASA Technical Reports Server (NTRS)

    Ellis, D. L.; Michal, G. M.; Dreshfield, R. L.

    1995-01-01

    Various applications exist where a high conductivity alloy with good strength and creep resistance are required. NASA LeRC has developed a Cu-8 at. percent Cr-4 at. percent Nb (Cu-8 Cr-4 Nb) alloy for these applications. The alloy is designed for use up to 700 C and shows exceptional strength, low cycle fatigue (LCF) resistance, and creep resistance. Cu-8 Cr-4 Nb also has a thermal conductivity of at least 72 percent that of pure Cu. Furthermore, the microstructure and mechanical properties of the alloy are very stable. In addition to the original application in combustion chambers, Cu-8 Cr-4 Nb shows promise for welding electrodes, brazing fixtures, and other applications requiring high conductivity and strength at elevated temperatures.

  16. Electron energy loss spectroscopy of CH/sub 3/N/sub 2/CH/sub 3/ adsorbed on Ni(100), Ni(111), Cr(100), Cr(111)

    SciTech Connect

    Schulz, M.A.

    1985-07-01

    A study of the adsorption of CH/sub 3/N/sub 2/CH/sub 3/ on Ni(100), Ni(111), Cr(100), and Cr(111) using high resolution electron energy loss spectroscopy (EELS) is presented. Under approximately the same conditions of coverage, the vibrational spectra of CH/sub 3/N/sub 2/CH/sub 3/ on these four surfaces are quite distinct from one another, implying that the CH/sub 3/N/sub 2/CH/sub 3/-substrate interaction is very sensitive to the physical and electronic structure of each surface. In addition to the room temperature studies, the evolution of surface species on the Ni(100) surface in the temperature range 300 to 425 K was studied. Analysis of the Ni(100) spectra indicates that molecular adsorption, probably through the N lone pair, occurs at room temperature. Spectra taken after annealing the CH/sub 3/N/sub 2/CH/sub 3/-Ni(100) surfaces indicate that CH and CN bond scission occurred at the elevated temperatures. Decomposition of CH/sub 3/N/sub 2/CH/sub 3/ takes place on the Ni(111), Cr(100), and Cr(111) surfaces at room temperature, as evidenced by the intensity of the carbon-metal stretch in the corresponding spectra. Possible identities of coadsorbed dissociation products are considered. The stable coverage of surface species on all four surfaces at 300 K is less than one monolayer. A general description of an electron energy loss (EEL) spectrometer is given. Followed by a more specific discussion of some recent modifications to the EEL monochromator assembly used in this laboratory. Both the previous configuration of our monochromator and the new version are briefly described, as an aid to understanding the motivation for the changes as well as the differences in operation of the two versions. For clarity, the new monochromator design is referred to as variable pass, while the previous design is referred to as double pass. A modified tuning procedure for the new monochromator is also presented. 58 refs., 11 figs.

  17. Strengthening effect of Cr 2O 3 thermally grown on alloy 617 foils at high temperature

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Li, F. X.; Ko, G. D.; Kang, K. J.

    2010-10-01

    Alloy 617 has been selected for the intermediate heat exchanger (IHX) of the very high temperature gas-cooled reactor (VHTR) for the economic production of electricity and hydrogen. In this work, the strengthening effects of Cr 2O 3 thermally grown on alloy 617 foils at 800 and 900 °C were investigated. A micro-tensile test system was used for in situ measurement of tensile strain in the foils and superficial thermally-grown Cr 2O 3. Each foil was heated until the thermally-grown Cr 2O 3 reached a predetermined thickness; then, a load was applied to measure the tensile response. As the Cr 2O 3 layer thickened on the surface of the metal foils, the strengths and stiffnesses of the foils were enhanced. We assumed that there was no interaction between the substrate and the superficial chromia, and the strength of Cr 2O 3 itself was measured. At 800 °C, the Cr 2O 3 was brittle and the strength was governed by crack initiation. At 900 °C, the Cr 2O 3 was much more ductile, and strain hardening was observed for even the smallest thickness. The strength was maintained even after crack initiation was observed on the surface.

  18. Study of the effects of implantation on the high Fe-Ni-Cr and Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Ribarsky, M. W.

    1985-01-01

    A theoretical study of the effects of implantation on the corrosion resistance of Fe-Ni-Cr and Ni-Cr-Al alloys was undertaken. The purpose was to elucidate the process by which corrosion scales form on alloy surfaces. The experiments dealt with Ni implanted with Al, exposed to S at high temperatures, and then analyzed using scanning electron microscopy, scanning Auger spectroscopy and X-ray fluorescence spectroscopy. Pair bonding and tight-binding models were developed to study the compositions of the alloys and as a result, a new surface ordering effect was found which may exist in certain real alloys. With these models, the behavior of alloy constituents in the presence of surface concentrations of O or S was also studied. Improvements of the models to take into account the important effects of long- and short-range ordering were considered. The diffusion kinetics of implant profiles at various temperatures were investigated, and it was found that significant non-equilibrium changes in the profiles can take place which may affect the implants' performance in the presence of surface contaminants.

  19. High energy colliders

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p{anti p}), lepton (e{sup +}e{sup {minus}}, {mu}{sup +}{mu}{sup {minus}}) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed.

  20. Photoluminescence spectroscopy and energy-level analysis of metal-organic-deposited Ga2O3:Cr3+ films

    NASA Astrophysics Data System (ADS)

    Tokida, Yoshinori; Adachi, Sadao

    2012-09-01

    The aims of this study are (i) to demonstrate the synthesis of Cr3+-activated β-Ga2O3 films by metal-organic deposition and (ii) to report the temperature-dependent photoluminescence (PL) properties of such films from 20 to 300 K. An activation energy of ˜0.9 eV for the Cr3+ ions in β-Ga2O3 is determined from a plot of PL intensity vs calcination temperature. The red-line emission doublet R1 and R2 at ˜1.8 eV and the broad emission band with a peak at ˜1.7 eV are ascribed to the Cr3+ ions in the β-Ga2O3 host. The energies of the excited states, i.e., 2E, 4T2, 2T2, 4T1, and 4T1, in Cr3+ are determined from the experimental PL and PL excitation spectra using a newly developed analysis model. The high-energy luminescence tail of the broad 4T2 → 4A2 emission band can be explained by the hot-carrier effect of the photoexcited electrons in the 4T2 state. The relative intensities of the R-line emission doublet can also be explained very well by the population and depopulation of the electron numbers in the E¯ (R1) and 2A¯ (R2) states. PL properties, such as the temperature-dependent PL intensity, peak energy, and spectral width, are analyzed in detail.

  1. High-energy detector

    DOEpatents

    Bolotnikov, Aleksey E.; Camarda, Giuseppe; Cui, Yonggang; James, Ralph B.

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  2. High-resolution crystal structure of Z-DNA in complex with Cr(3+) cations.

    PubMed

    Drozdzal, Pawel; Gilski, Miroslaw; Kierzek, Ryszard; Lomozik, Lechoslaw; Jaskolski, Mariusz

    2015-04-01

    This work is part of our project aimed at characterizing metal-binding properties of left-handed Z-DNA helices. The three Cr(3+) cations found in the asymmetric unit of the d(CGCGCG)2-Cr(3+) crystal structure do not form direct coordination bonds with atoms of the Z-DNA molecule. Instead, the hydrated Cr(3+) ions are engaged in outer-sphere interactions with phosphate groups and O6 and N7 guanine atoms of the DNA. The Cr(3+)(1) and Cr(3+)(2) ions have disordered coordination spheres occupied by six water molecules each. These partial-occupancy chromium cations are 2.354(15) Å apart and are bridged by three water molecules from their hydration spheres. The Cr(3+)(3) cation has distorted square pyramidal geometry. In addition to the high degree of disorder of the DNA backbone, alternate conformations are also observed for the deoxyribose and base moieties of the G2 nucleotide. Our work illuminates the question of conformational flexibility of Z-DNA and its interaction mode with transition-metal cations.

  3. Gravitational radiation from ultra high energy cosmic rays in models with large extra dimensions

    NASA Astrophysics Data System (ADS)

    Koch, Ben; Drescher, Hans-Joachim; Bleicher, Marcus

    2006-06-01

    The effects of classical gravitational radiation in models with large extra dimensions are investigated for ultra high energy cosmic rays (CRs). The cross sections are implemented into a simulation package (SENECA) for high energy hadron induced CR air showers. We predict that gravitational radiation from quasi-elastic scattering could be observed at incident CR energies above 10 9 GeV for a setting with more than two extra dimensions. It is further shown that this gravitational energy loss can alter the energy reconstruction for CR energies ECR ⩾ 5 × 10 9 GeV.

  4. Alpha particles energy estimation from track diameter development in a CR-39 detector.

    PubMed

    Azooz, Aassim A; Al-Jubbori, Mushtaq A

    2016-09-01

    The slight nonlinearity in temporal development of tracks diameter in CR-39 nuclear track detectors is examined with the aim of attempting to find if such nonlinearity can be directly related to the charged particle energy. Narrowly spaced etching time-diameter experimental data for alpha particles at five energy values and for one additional energy value etched at five different temperatures are obtained. Initial results show good indication that measuring such time-diameter relationship can form a useful energy estimation tool. Good consistency with other independent published results is obtained.

  5. Alpha particles energy estimation from track diameter development in a CR-39 detector.

    PubMed

    Azooz, Aassim A; Al-Jubbori, Mushtaq A

    2016-09-01

    The slight nonlinearity in temporal development of tracks diameter in CR-39 nuclear track detectors is examined with the aim of attempting to find if such nonlinearity can be directly related to the charged particle energy. Narrowly spaced etching time-diameter experimental data for alpha particles at five energy values and for one additional energy value etched at five different temperatures are obtained. Initial results show good indication that measuring such time-diameter relationship can form a useful energy estimation tool. Good consistency with other independent published results is obtained. PMID:27341133

  6. High energy beam lines

    NASA Astrophysics Data System (ADS)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  7. Corrosion resistance of stainless steels and high Ni-Cr alloys to acid fluoride wastes

    SciTech Connect

    Smith, H.D.; Mackey, D.B.; Pool, K.H. ); Schwenk, E.B. )

    1992-04-01

    TRUEX processing of Hanford Site waste will utilize potentially corrosive acid fluoride processing solutions. Appropriate construction materials for such a processing facility need to be identified. Toward this objective, candidate stainless steels and high Ni-Cr alloys have been corrosion tested in simulated acid fluoride process solutions at 333K. The high Ni-Cr alloys exhibited corrosion rates as low as 0.14 mm/y in a solution with an HF activity of about 1.2 M, much lower than the 19 to 94 mm/y observed for austenitic stainless steels. At a lower HF activity (about 0.008 M), stainless steels display delayed passivation while high Ni-Cr alloys display essentially no reaction.

  8. Dosimetry for Neutrons from 0.25 to 15 MeV by the Measurement of Linear Energy Transfer Distributions for Secondary Charged Particles in CR-39 Plastic

    NASA Astrophysics Data System (ADS)

    Tawara, Hiroko; Eda, Kazuyoshi; Sanami, Toshiya; Sasaki, Shinichi; Takahashi, Kazutoshi; Sonkawade, Rajendra; Nagamatsu, Aiko; Kitajo, Keiichi; Kumagai, Hidenori; Doke, Tadayoshi

    2008-03-01

    In the radiation fields of high energy accelerator facilities, high-altitude aircraft and space flights, high-energy neutron dosimetry of ˜20 MeV or more is a significant issue for radiological protection. We studied the feasibility of experimental measurements of linear energy transfer (LET) distributions for secondary charged particles induced by fast neutrons using CR-39 plastic nuclear track detectors. In order to investigate a method of analyzing the CR-39 detectors that is appropriate for fast neutron dosimetry, two-layer CR-39 stacks were exposed to monochromatic neutrons (0.25, 0.55, 5, and 15 MeV) at the Fast Neutron Laboratory of Tohoku University in Japan. We also conducted Monte Carlo calculations to estimate the detection efficiency of the CR-39 detector for recoil protons. The CR-39 detectors treated by single-step chemical etching were used to obtain LET distributions for LET > 10 keV/µm-water. The results indicated that measurements of short-range particles are very important for obtaining the correct LET distributions. Using the measured LET distributions, we calculated neutron sensitivities, absorbed doses and dose equivalents based on the ICRP 60 Q-L relation and averaged quality factors. The dose equivalents were compared with the neutron fluence-to-dose equivalent conversion factors given by ICRP 74 and the averaged quality factors were compared with weighting factors given by ICRP 60 and ICRP 92.

  9. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed-by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, visiting the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA); X-ray Timing Experiment (XTE); X-ray Spectrometer (XRS); Astro-E; High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  10. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed by members of the USRA (Universities Space Research Association) contract team during the six months during the reporting period (10/95 - 3/96) and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science, Archive Research Center (HEASARC), and others.

  11. Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Colon, Rafael Antonio; Moncada, Roberto; Guerra, Juan; Anchordoqui, Luis

    2016-01-01

    The search for the origin(s) of ultra-high energy (UHE) cosmic rays (CR) remains one of the cornerstones of high energy astrophysics. The previously proposed sources of acceleration for these UHECRs were gamma-ray bursts (GRB) and active galactic nuclei (AGN) due to their energetic activity and powerful jets. However, a problem arises between the acceleration method and the observed CR spectrum. The CRs from GRBs or AGN jets are assumed to undergo Fermi acceleration and a source injection spectrum proportional to E^-2 is expected. However, the most recent fits to the spectrum and nuclear composition suggest an injection spectrum proportional to E^-1. It is well known that such a hard spectrum is characteristic of unipolar induction of rotating compact objects. When this method is applied to the AGN cores, they prove to be much too luminous to accelerate CR nuclei without photodisintegrating, thus creating significant energy losses. Instead, here we re-examine the possibility of these particles being accelerated around the much less luminous quasar remnants, or dead quasars. We compare the interaction times of curvature radiation and photodisintegration, the two primary energy loss considerations with the acceleration time scale. We show that the energy losses at the source are not significant enough as to prevent these CRs from reaching the maximum observed energies. Using data from observatories in the northern and southern sky, the Telescope Array and the Pierre Auger Observatory respectively, two hotspots have been discerned which have some associated quasar remnants that help to motivate our study.

  12. Half-metallicity in highly L21-ordered CoFeCrAl thin films

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Kharel, P.; Valloppilly, S. R.; Li, X.-Z.; Kim, D. R.; Zhao, G. J.; Chen, T. Y.; Choudhary, R.; Kashyap, A.; Skomski, R.; Sellmyer, D. J.

    2016-10-01

    The structural, magnetic, and electron-transport properties of Heusler-ordered CoFeCrAl thin films are investigated experimentally and theoretically. The films, sputtered onto MgO and having thicknesses of about 100 nm, exhibit virtually perfect single-crystalline epitaxy and a high degree of L21 chemical order. X-ray diffraction and transmission-electron microscopy show that the structure of the films is essentially of the L21 Heusler type. The films are ferrimagnetic, with a Curie temperature of about 390 K, and a net moment of 2 μB per formula unit. The room temperature resistivity is 175 μΩ cm; the carrier concentration and mobility determined from the low temperature (5 K) measurement are 1.2 × 1018 cm-3 and 33 cm2/V s, respectively. In contrast to the well-investigated Heusler alloys such as Co2(Cr1-xFex)Al, the CoFeCrAl system exhibits two main types of weak residual A2 disorder, namely, Co-Cr disorder and Fe-Cr disorder, the latter conserving half-metallicity. Point-contact Andreev reflection yields a lower bound for the spin polarization, 68% at 1.85 K, but our structural and magnetization analyses suggest that the spin polarization at the Fermi level is probably higher than 90%. The high resistivity, spin polarization, and Curie temperature are encouraging in the context of spin electronics.

  13. Solid-solution nanocrystallite formation by high-energy milling.

    PubMed

    Kwon, Hanjung; Jung, Suna; Cho, Sung-Wook; Kil, Dae-Sup; Roh, Ki-Min; Lim, Jae-Won

    2013-09-01

    Solid-solution nanocrystalline powders were prepared by the high-energy milling of Ti alloys with graphite. The B1 structure (NaCl-like structure) phases, (Ti, Cr)C and (Ti, Al)C, were formed during the milling process of Ti-Cr + graphite and Ti-Al + graphite, and the synthetic procedures were investigated in terms of the phase evolution from XRD data. The (Ti, Al)C phase was obtained after milling for 20 hr at BPR = 40:1 (under a more severe condition), while the (Ti, Cr)C phase formed after milling for 20 hr at BPR = 20:1 (a relatively soft condition). The difference in the tendency to create a solid solution with Ti in the B1 structure caused a difference in the synthetic behavior of (Ti, Al)C and (Ti, Cr)C. In other words, (Ti, Cr)C is formed earlier than (Ti, Al)C during milling because the atomic size of Cr (0.166 nm) is similar to that of Ti (0.176 nm), which leads to the straightforward formation of the solid-solution (Ti, Cr)C as compared to when (Ti, Al)C is used. As a result, the crystallite size of the (Ti, Al)C phase (2-3 nm) synthesized at a later stage becomes smaller than that of the (Ti, Cr)C phase (5 10 nm) formed at an earlier stage during milling.

  14. High Energy Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An overview of the High Energy Astronomy Observatory 2 contributions to X-ray astronomy is presented along with a brief description of the satellite and onboard telescope. Observations relating to galaxies and galactic clusters, black holes, supernova remnants, quasars, and cosmology are discussed.

  15. High energy particle astronomy.

    NASA Technical Reports Server (NTRS)

    Buffington, A.; Muller, R. A.; Smith, L. H.; Smoot, G. F.

    1972-01-01

    Discussion of techniques currently used in high energy particle astronomy for measuring charged and neutral cosmic rays and their isotope and momentum distribution. Derived from methods developed for accelerator experiments in particle physics, these techniques help perform important particle astronomy experiments pertaining to nuclear cosmic ray and gamma ray research, electron and position probes, and antimatter searches.

  16. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  17. The use of diffusion multiples to explore the Co-Cr-Fe-Mn-Ni high entropy system

    NASA Astrophysics Data System (ADS)

    Wilson, Paul Nathaniel

    High entropy alloys (HEAs) or Multi-principal element alloys (MEAs) are a relatively new class of alloys. These alloys are defined as having at least five major alloying elements in atomic percent from 5% to 35%. There are hundreds of thousands of equiatomic compositions possible and only a fraction have been explored. This project examines diffusion multiples as a method to accelerate alloy development in these systems. The system chosen for this experiment is the Co-Cr-Fe-Mn-Ni system. The methodology developed for creating these diffusion multiples involved a two-step process. In the first step two binary alloys (50at-% Fe-Mn and 50 at%- Ni-Co ) were diffusion bonded together. In the second step, under uniaxial compression, was used to bond Cr to diffusion couple prepared in Step I. Successful diffusion multiples were created by this method. An auxiliary method named differential melting liquid impingement (DMLI) was developed that created diffusion multiples using liquid processing methods that will be described. After creation of these multiples, the ternary and quinary interface regions were examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and nanoindentation. The Cr/NiCo region experienced interdiffusion but no intermediate phase formation retaining the FCC / BCC interface at the hot-pressing temperature (1200 °C). However, upon cooling from 1200 °C, the BCC region adjacent to the interface decomposed into BCC + sigma. In contrast, the Cr/FeMn interface region developed a layered structure of FCC/sigma/BCC suggesting that sigma is stable at 1200 °C in contradiction to the published 1200 °C ternary phase diagram. Upon cooling, the sigma present at 1200 °C decomposed into FCC + sigma, except in samples that were contaminated with C; in those cases, FCC + M23C6 was observed as the decomposition product. The quinary regions were evaluated using the various HEA parameters, namely

  18. High temperature tensile and creep behaviour of low pressure plasma-sprayed Ni-Co-Cr-Al-Y coating alloy

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Miner, R. V.

    1986-01-01

    The high temperature tensile and creep behavior of low pressure plasma-sprayed plates of a typical Ni-Co-Cr-Al-Y alloy has been studied. From room temperature to 800 K, the Ni-Co-Cr-Al-Y alloy studied has nearly a constant low ductility and a high strength. At higher temperatures, it becomes weak and highly ductile. At and above 1123 K, the behavior is highly dependent on strain rate and exhibits classic superplastic characteristics with a high ductility at intermediate strain rates and a strain rate sensitivity of about 0.5. At either higher or lower strain rates, the ductility decreases and the strain rate sensitivities are about 0.2. In the superplastic deformation range, the activation energy for creep is 120 + or - 20 kJ/mol, suggesting a diffusion-aided grain boundary sliding mechanism. Outside the superplastic range, the activation energy for creep is calculated to be 290 + or - 20 kJ/mol.

  19. Theoretical High Energy Physics

    SciTech Connect

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  20. Creep Testing of High-Temperature Cu-8 Cr-4 Nb Alloy Completed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Cu-8 at.% Cr-4 at.% Nb (Cu-8 Cr-4 Nb) alloy is under development for high-temperature, high heatflux applications, such as actively cooled, hypersonic vehicle heat exchangers and rocket engine combustion chambers. Cu-8 Cr-4 Nb offers a superior combination of strength and conductivity. It has also shown exceptional low-cycle fatigue properties. Following preliminary testing to determine the best processing route, a more detailed testing program was initiated to determine the creep lives and creep rates of Cu-8 Cr-4 Nb alloy specimens produced by extrusion. Testing was conducted at the NASA Lewis Research Center with constant-load vacuum creep units. Considering expected operating temperatures and mission lives, we developed a test matrix to accurately determine the creep properties of Cu-8 Cr-4 Nb between 500 and 800 C. Six bars of Cu-8 Cr-4 Nb were extruded. From these bars, 54 creep samples were machined and tested. The figure on the left shows the steady-state, or second-stage, creep rates for the samples. Comparison data for NARloy-Z (Cu-3 wt % Ag-0.5 wt % Zr), the alloy currently used in combustion chamber liners, were not unavailable. Therefore the steady-state creep rates for Cu at similar temperatures are presented. As expected, in comparison to pure Cu, the creep rates for Cu-8 Cr-4 Nb are much lower. The lives of the samples are presented in the figure on the right. As shown, Cu-8 Cr-4 Nb at 800 C is comparable to NARloy-Z at 648 C. At equivalent temperatures, Cu-8 Cr-4 Nb enjoys a 20 to 50 percent advantage in stress for a given life and 1 to 3 orders of magnitude greater life at a given stress. The improved properties allow for design tradeoffs and improvements in new and existing heat exchangers such as the next generation of combustion chamber liners. Average creep rates for Cu-8 Cr-4 Nb and pure Cu are shown. Average creep lives for Cu-8 Cr- 4 Nb and NARloy-Z are also shown. Currently, two companies are interested in the commercial usage of the Cu

  1. Effects of C and Cr content on high-temperature microstructures of Fe-9Al-30Mn-xC-yCr alloys

    SciTech Connect

    Chen, May-Show; Cheng, Hsin-Chung; Huang, Chiung-Fang; Chao, Chih-Yeh; Ou, Keng-Liang; Yu, Chih-Hua

    2010-02-15

    This investigation elucidated the effects of C and Cr content on the high-temperature microstructures of Fe-9Al-30Mn-xC-yCr alloys by means of optical microscopy and transmission electron microscopy. With increasing Cr content, the phase transition sequence within the {alpha} phase was found to be {alpha} + B2 {yields} {alpha} + B2 + DO{sub 3} {yields} {alpha} + DO{sub 3}. And with increasing C content, a {gamma} {yields} ({gamma} + {kappa}) phase transition was observed within the {gamma} phase. The {kappa} phase carbides ((Fe,Mn){sub 3}AlC{sub x}) had an ordered L'1{sub 2}-type structure with lattice parameter a = 0.368 nm and were formed by a spinodal decomposition during quenching. The amounts of Cr{sub 7}C{sub 3} increased with the C and Cr content. Moreover, the Al and Mn content played important roles in expanding the ({alpha} + {gamma}) region. These features have not been previously reported in the Fe-Al-Mn-C-Cr alloy system.

  2. High energy from space

    NASA Technical Reports Server (NTRS)

    Margon, Bruce; Canizares, Claude; Catura, Richard C.; Clark, George W.; Fichtel, Carl E.; Friedman, Herbert; Giacconi, Riccardo; Grindlay, Jonathan E.; Helfand, David J.; Holt, Stephen S.

    1991-01-01

    The following subject areas are covered: (1) important scientific problems for high energy astrophysics (stellar activity, the interstellar medium in galaxies, supernovae and endpoints of stellar evolution, nucleosynthesis, relativistic plasmas and matter under extreme conditions, nature of gamma-bursts, identification of black holes, active nuclei, accretion physics, large-scale structures, intracluster medium, nature of dark matter, and the X- and gamma-ray background); (2) the existing experimental programs (Advanced X-Ray Astrophysics Facility (AXAF), Gamma Ray Observatory (GRO), X-Ray Timing Explorer (XTE), High Energy Transient Experiment (HETE), U.S. participation in foreign missions, and attached Shuttle and Space Station Freedom payloads); (3) major missions for the 1990's; (4) a new program of moderate missions; (5) new opportunities for small missions; (6) technology development issues; and (7) policy issues.

  3. Dependence with the oxidation state of X-ray transition energies, intensities and natural line widths of CrKβ spectra

    NASA Astrophysics Data System (ADS)

    Torres Deluigi, M.; Tirao, G.; Stutz, G.; Cusatis, C.; Riveros, J. A.

    2006-06-01

    The Kβ emission spectrum of chromium was experimentally analyzed in different compounds and compared with previous data. Measurements of whole Kβ spectra were performed with a wavelength dispersive commercial XRF equipment. To study possible effects of the chemical state in the width and position of the main Kβ 1,3 line, high resolution measurements were also performed. In the latter measurements, a spectrometer based on a backdiffracting crystal analyzer with spherical focalization and synchrotron radiation monochromatic excitation was used. Kβ 1,3 line shifts in relation to metallic Cr were observed, both to higher energies (≅+1 eV) for Cr III and to lower energies (≅-0.5 eV) for Cr VI. It was also found that the natural width of CrKβ 1,3 line, the ionization energy of the 3p orbital of Cr, and the relative intensities of Kβ″ and Kβ 2,5 lines with respect to the main Kβ 1,3 line increase as the oxidation state increases. The use of these features as an index for chemical state analysis is discussed.

  4. Energy, Vacuum, Gas Fueling, and Security Systems for the Spherical Tokamak MEDUSA-CR

    NASA Astrophysics Data System (ADS)

    Gonzalez, Jeferson; Soto, Christian; Carvajal, Johan; Ribeiro, Celso

    2013-10-01

    The former spherical tokamak (ST) MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R < 0.14 m, a < 0.10 m, BT < 0.5 T, Ip < 40 kA, 3 ms pulse) is being recommissioned in Costa Rica Institute of Technology. The main objectives of the MEDUSA-CR project are training and to clarify several issues in relevant physics for conventional and mainly STs, including beta studies in bean-shaped ST plasmas, transport, heating and current drive via Alfvén wave, and natural divertor STs with ergodic magnetic limiter. We present here the energy, vacuum, gas fueling, and security systems for MEDUSA-CR device. The interface with the control and data acquisition systems based on National Instruments (NI) software (LabView) and hardware (on loan to our laboratory via NI-Costa Rica) are also presented. VIE-ITCR, IAEA-CRP contract 17592, National Instruments of Costa Rica.

  5. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    PubMed Central

    Franz, Robert; Polcik, Peter; Anders, André

    2015-01-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr2+ ions were dominating in Ar and N2 and Cr+ in O2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings. PMID:26120236

  6. Cr sup 3+ to Nd sup 3+ energy transfer in substituted GGG in relation to the crystal field distribution

    SciTech Connect

    Monteil, A.; Garapon, C.; Boulon, G. )

    1989-10-20

    In the garnet (Gd, Ca){sub 3} (Ga, Mg, Zr){sub 2} Ga{sub 3} O{sub 12}, Cr{sup 3+} is located in sites of intermediate crystal field strength. This induces a fast energy transfer to Nd{sup 3+}. We have shown that it is possible to differentiate Cr{sup 3+} in sites of rather strong field against sites of rather weak crystal field. Different spectroscopic measurements allow us to conclude that Cr{sup 3+} ions in weaker crystal fields are mainly responsible for the energy transfer to Nd{sup 3+}.

  7. Effect of Cr on Microstructure and Properties of a Series of AlTiCr x FeCoNiCu High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Li, Anmin; Ma, Ding; Zheng, Qifeng

    2014-04-01

    A series of AlTiCr x FeCoNiCu ( x: molar ratio, x = 0.5, 1.0, 1.5, 2.0, 2.5) high-entropy alloys (HEAs) were prepared by vacuum arc furnace. These alloys consist of α-phase, β-phase, and γ-phase. These phases are solid solutions. The structure of α-phase and γ-phase is face-centered cubic structure and that of β-phase is body-centered cubic (BCC) structure. There are four typical cast organizations in these alloys such as petal organization (α-phase), chrysanthemum organization (α-phase + β-phase), dendrite (β-phase), and inter-dendrite (γ-phase). The solidification mode of these alloys is affected by Chromium. If γ-phase is not considered, AlTiCr0.5FeCoNiCu and AlTiCrFeCoNiCu belong to hypoeutectic alloys; AlTiCr1.5FeCoNiCu, AlTiCr2.0FeCoNiCu, and AlTiCr2.5FeCoNiCu belong to hypereutectic alloys. The cast organizations of these alloys consist of pro-eutectic phase and eutectic structure (α + β). Compact eutectic structure and a certain amount of fine β-phase with uniform distribution are useful to improve the microhardness of the HEAs. More γ-phase and the microstructure with similar volume ratio values of α-phase and β-phase improve the compressive strength and toughness of these alloys. The compressive fracture of the series of AlTiCr x FeCoNiCu HEAs shows brittle characteristics, suggesting that these HEAs are brittle materials.

  8. High-energy transients.

    PubMed

    Gehrels, Neil; Cannizzo, John K

    2013-06-13

    We present an overview of high-energy transients in astrophysics, highlighting important advances over the past 50 years. We begin with early discoveries of γ-ray transients, and then delve into physical details associated with a variety of phenomena. We discuss some of the unexpected transients found by Fermi and Swift, many of which are not easily classifiable or in some way challenge conventional wisdom. These objects are important insofar as they underscore the necessity of future, more detailed studies. PMID:23630376

  9. High energy electron cooling

    SciTech Connect

    Parkhomchuk, V.

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  10. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    DOE PAGESBeta

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan; Gao, Michael C.; Tang, Zhi; Poplawsky, Jonathan D.; Liaw, Peter K.

    2016-07-19

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less

  11. The determination of energy transfer rates in the Ho:Tm:Cr:YAG laser material

    NASA Technical Reports Server (NTRS)

    Koker, Edmond B.

    1988-01-01

    Energy transfer processes occurring between atomic, ionic, or molecular systems are very widespread in nature. The applications of such processes range form radiation physics and chemistry to biology. In the field of laser physics, energy transfer processes have been used to extend the lasing range, increase the output efficiency, and influence the spectral and temporal characteristics of the output pulses of energy transfer dye lasers or solid-state laser materials. Thus in the development of solid state lasers, it is important to investigate the basic energy transfer (ET) mechanisms and processes in order to gain detailed knowledge so that successful technical utilization can be achieved. The aim of the present research is to measure the ET rate from a given manifold associated with the chromium sensitizer atom to a given manifold in the holmium activator atom via the thulium transfer atom, in the Ho:Cr:YAG laser material.

  12. Prospects at high energies

    SciTech Connect

    Quigg, C.

    1988-11-01

    I discuss some possibilities for neutrino experiments in the fixed-target environment of the SPS, Tevatron, and UNK, with their primary proton beams of 0.4, 0.9, and 3.0 TeV. The emphasis is on unfinished business: issues that have been recognized for some time, but not yet resolved. Then I turn to prospects for proton-proton colliders to explore the 1-TeV scale. I review the motivation for new physics in the neighborhood of 1 TeV and mention some discovery possibilities for high-energy, high-luminosity hadron colliders and the implications they would have for neutrino physics. I raise the possibility of the direct study of neutrino interactions in hadron colliders. I close with a report on the status of the SSC project. 38 refs., 17 figs.

  13. High-reflectivity Cr/Sc multilayer condenser for compact soft x-ray microscopy

    SciTech Connect

    Stollberg, H.; Yulin, S.; Takman, P. A. C.; Hertz, H. M.

    2006-12-15

    The condenser is a critical component in compact water-window x-ray microscopes as it influences the exposure time via its efficiency and the resolution via its numerical aperture. Normal-incidence multilayer mirrors can reach large geometrical collection efficiencies and match the numerical aperture of the zone plate but require advanced processing for high total reflectivity. In the present article we demonstrate large-diameter normal-incidence spherical Cr/Sc multilayer condensers with high and uniform reflectivity. Dc-magnetron sputtering was used to deposit 300 bilayers of Cr/Sc with a predetermined d-spacing matching the {lambda}=3.374 nm operating wavelength on spherical substrates. The mirrors show a uniform reflectivity of {approx}3% over the full 58 mm diameter condenser area. With these mirrors an improvement in exposure time by a factor of 10 was achieved, thereby improving the performance of the compact x-ray microscope significantly.

  14. An Improved Empirical Potential for the Highly Multi-Reference Sextuply Bonded Transition Metal Benchamrk Molecule Cr_2

    NASA Astrophysics Data System (ADS)

    Dattani, Nikesh S.; Tomza, Michal; Li Manni, Giovanni

    2016-06-01

    The ground electronic state of the chromium dimer dissociates into Cr (^7S) + Cr (^7S) and therefore the fragments are highly open shell systems with a total of 12 singly occupied orbitals among its constituent atoms. It is considered one of the most difficult homonuclear diatomics for ab initio methods because of its highly multi-reference character. Therefore, every new multi-reference method must be tested against this benchmark system. However, the best empirical potential to compare with, has its own weaknesses. The photoelectron measurements of v=0-9 were fitted to a Morse potential (an old function which has only one parameter controlling the shape from r_e to D_e), and also inverted using a semi-classical theory into a potential after combining these data with measurements from what were hypothesized to be v=24-43. This bridging of a ˜2000 cm-1 gap in data back in 1993 was a valiant spectroscopic analysis. However since 1993, there have been enormous improvements in the field of potentiology. In 2011 a Morse/long-range (MLR) function successfully bridged a gap of more than 5000 cm-1 in experimental data^a, and in 2013 an experiment with ±0.000 02 cm-1 resolution confirmed that the 2011 MLR predicted the energy levels in the very center of this gap correctly within ˜ 1 cm-1,^b. While ab initio methods have very recently been able to predict differences in energy levels correctly to within 1 cm-1 for Li_2 ^c and to a lesser extent for BeH^d, ab initio methods have still not had this level of success for predicting binding energies. The MLR function not only has more flexibility than the original Morse function, but it also converges mathematically to the correct long-range limit expected by the state-of-the-art theory. Fitting the data to an MLR potential function in the Schrödinger equation allows for a fully quantum mechanical treatment over the entire range of data. By avoiding a semi-classical treatment, and using this more flexible, more

  15. Ultrashort pulse Cr4+:YAG laser for high precision infrared frequency interval measurements

    PubMed Central

    Alcock, A. J.; Ma, P.; Poole, P. J.; Chepurov, S.; Czajkowski, A.; Bernard, J. E.; Madej, A. A.; Fraser, J. M.; Mitchell, I. V.; Sorokina, I. T.; Sorokin, E.

    2010-01-01

    A cavity stabilized, SESAM mode-locked Cr4+:YAG laser capable of generating sub-100 fs pulses has been developed. Locking the 130-MHz pulse repetition frequency to that of a hydrogen maser-referenced frequency synthesizer provides a 30-nm wide frequency comb for the 1530-nm wavelength region. In conjunction with a pair of acetylene stabilized, external cavity diode lasers, this laser provides a high precision measurement tool for the determination of acetylene transition frequencies. PMID:19498916

  16. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis.

    PubMed

    Larsen, K K; Wielandt, D; Schiller, M; Bizzarro, M

    2016-04-22

    Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of these species can result in incomplete Cr recovery during chromatographic purification. Because of large mass-dependent inter-species isotope fractionation, incomplete recovery can affect the accuracy of high-precision Cr isotope analysis. Here, we demonstrate widely differing cation distribution coefficients of Cr(III)-species (Cr(3+), CrCl(2+) and CrCl2(+)) with equilibrium mass-dependent isotope fractionation spanning a range of ∼1‰/amu and consistent with theory. The heaviest isotopes partition into Cr(3+), intermediates in CrCl(2+) and the lightest in CrCl2(+)/CrCl3°. Thus, for a typical reported loss of ∼25% Cr (in the form of Cr(3+)) through chromatographic purification, this translates into 185 ppm/amu offset in the stable Cr isotope ratio of the residual sample. Depending on the validity of the mass-bias correction during isotope analysis, this further results in artificial mass-independent effects in the mass-bias corrected (53)Cr/(52)Cr (μ(53)Cr* of 5.2 ppm) and (54)Cr/(52)Cr (μ(54)Cr* of 13.5 ppm) components used to infer chronometric and nucleosynthetic information in meteorites. To mitigate these fractionation effects, we developed strategic chemical sample pre-treatment procedures that ensure high and reproducible Cr recovery. This is achieved either through 1) effective promotion of Cr(3+) by >5 days exposure to HNO3H2O2 solutions at room temperature, resulting in >∼98% Cr recovery for most types of sample matrices tested using a cationic chromatographic retention strategy, or 2) formation of Cr(III)-Cl complexes through exposure to concentrated HCl at high temperature (>120 °C) for several hours, resulting in >97.5% Cr recovery using a

  17. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis

    PubMed Central

    Larsen, K.K.; Wielandt, D.; Schiller, M.; Bizzarro, M.

    2016-01-01

    Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of these species can result in incomplete Cr recovery during chromatographic purification. Because of large mass-dependent inter-species isotope fractionation, incomplete recovery can affect the accuracy of high-precision Cr isotope analysis. Here, we demonstrate widely differing cation distribution coefficients of Cr(III)-species (Cr3+, CrCl2+ and CrCl2+) with equilibrium mass-dependent isotope fractionation spanning a range of ~1‰/amu and consistent with theory. The heaviest isotopes partition into Cr3+, intermediates in CrCl2+ and the lightest in CrCl2+/CrCl3°. Thus, for a typical reported loss of ~25% Cr (in the form of Cr3+) through chromatographic purification, this translates into 185 ppm/amu offset in the stable Cr isotope ratio of the residual sample. Depending on the validity of the mass-bias correction during isotope analysis, this further results in artificial mass-independent effects in the mass-bias corrected 53Cr/52Cr (μ53 Cr* of 5.2 ppm) and 54Cr/52Cr (μ54Cr* of 13.5 ppm) components used to infer chronometric and nucleosynthetic information in meteorites. To mitigate these fractionation effects, we developed strategic chemical sample pre-treatment procedures that ensure high and reproducible Cr recovery. This is achieved either through 1) effective promotion of Cr3+ by >5 days exposure to HNO3 —H2O2 solutions at room temperature, resulting in >~98% Cr recovery for most types of sample matrices tested using a cationic chromatographic retention strategy, or 2) formation of Cr(III)-Cl complexes through exposure to concentrated HCl at high temperature (>120 °C) for several hours, resulting in >97.5% Cr recovery using a chromatographic elution strategy that

  18. COMPREHENSIVE OBSERVATIONS OF THE ULTRAVIOLET SPECTRUM AND IMPROVED ENERGY LEVELS FOR SINGLY IONIZED CHROMIUM (Cr II)

    SciTech Connect

    Sansonetti, Craig J.; Nave, Gillian; Reader, Joseph; Kerber, Florian

    2012-10-15

    We report new observations of the spectrum of singly ionized chromium (Cr II) in the region 1142-3954 A. The spectra were recorded with the National Institute of Standards and Technology 10.7 m normal-incidence vacuum spectrograph and FT700 vacuum ultraviolet Fourier transform spectrometer. More than 3600 lines are classified as transitions among 283 even and 368 odd levels. The new spectral data are used to re-optimize the energy levels, reducing their uncertainties by a typical factor of 20.

  19. High-Temperature Extensometry and PdCr Temperature-Compensated Wire Resistance Strain Gages Compared

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A detailed experimental evaluation is underway at the NASA Lewis Research Center to compare and contrast the performance of the PdCr/Pt dual-element temperature-compensated wire resistance strain gage with that of conventional high-temperature extensometry. The advanced PdCr gage, developed by researchers at Lewis, exhibits desirable properties and a relatively small and repeatable apparent strain to 800 C. This gage represents a significant advance in technology because existing commercial resistance strain gages are not reliable for quasi-static strain measurements above approximately 400 C. Various thermal and mechanical loading spectra are being applied by a high-temperature thermomechanical uniaxial testing system to evaluate the two strain-measurement systems. This is being done not only to compare and contrast the two strain sensors, but also to investigate the applicability of the PdCr strain gage to the coupon-level specimen testing environment typically employed when the high-temperature mechanical behavior of structural materials is characterized. Strain measurement capabilities to 800 C are being investigated with a nickel-base superalloy, Inconel 100 (IN 100), substrate material and application to TMC's is being examined with the model system, SCS-6/Ti-15-3. Furthermore, two gage application techniques are being investigated in the comparison study: namely, flame-sprayed and spot welding.

  20. High energy physics

    SciTech Connect

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  1. Microstructure investigation of 13Cr-2Mo ODS steel components obtained by high voltage electric discharge compaction technique

    SciTech Connect

    Bogachev, Igor; Yudin, Artem; Grigoryev, Evgeniy; Chernov, Ivan; Staltsov, Maxim; Khasanov, Oleg; Olevsky, Eugene

    2015-11-02

    Refractory oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated to near theoretical density using high voltage electric discharge compaction. Cylindrical samples with relative density from 90% to 97% and dimensions of 10 mm in diameter and 10–15 mm in height were obtained. Consolidation conditions such as pressure and voltage were varied in some ranges to determine the optimal compaction regime. Three different concentrations of yttria were used to identify its effect on the properties of the samples. It is shown that the utilized ultra-rapid consolidation process in combination with high transmitted energy allows obtaining high density compacts, retaining the initial structure with minimal grain growth. The experimental results indicate some heterogeneity of the structure which may occur in the external layers of the tested samples due to various thermal and electromagnetic in-processing effects. As a result, the choice of the optimal parameters of the consolidation enables obtaining samples of acceptable quality.

  2. Multi-Billion Shot, High-Fluence Exposure of Cr(4+): YAG Passive Q-Switch

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Dallas, Joseph L.; Afzal, Robert S.

    1997-01-01

    NASA's Goddard Space Flight Center is developing the Geoscience Laser Altimeter System (GLAS) employing a diode pumped, Q-Switched, ND:YAG laser operating at 40 Hz repetition rate. To meet the five-year mission lifetime goal, a single transmitter would accumulate over 6.3 billion shots. Cr(4+):YAG is a promising candidate material for passively Q-switching the laser. Historically, the performance of saturable absorbers has degraded over long-duration usage. To measure the multi-billion shot performance of Cr(4+):YAG, a passively Q-switched GLAS-like oscillator was tested at an accelerated repetition rate of 500 Hz. The intracavity fluence was calculated to be approximately 2.5 J/cm(exp 2). The laser was monitored autonomously for 165 days. There was no evidence of change in the material optical properties during the 7.2 billion shot test.. All observed changes in laser operation could be attributed to pump laser diode aging. This is the first demonstration of multi-billion shot exposure testing of Cr(4+):YAG in this pulse energy regime

  3. Role of Chemical Driving Force in Martensitic Transformations of High-Purity Fe-Cr-Ni Alloys

    NASA Astrophysics Data System (ADS)

    Behjati, P.; Najafizadeh, A.

    2011-12-01

    The main objective of the present work is to point out the respective roles of chemical driving force and stacking fault energy (SFE) in the occurrence of martensitic transformations in high-purity Fe-Cr-Ni alloys. For this purpose, the transmission electron microscope (TEM), X-ray diffractometer, thermal differential microanalyzer (TDA), and tension test were employed to report M s temperatures, austenite stacking fault energies, and driving forces for the concerned alloys. It was observed that the martensitic transformations in the studied alloys occur through the γ → ɛ → α' steps. As a remarkable result, it was shown that a low SFE, if necessary to ɛ-phase nucleation, is not a sufficient condition for nucleation of α' phase. In fact, the formation of stable α' nuclei from α' embryos occur if the required chemical driving force is provided. Also, an equation was proposed for the kinetics of spontaneous martensitic transformation as a function of driving force.

  4. Corrosion Behavior of NiCrFe Alloy 600 in High Temperature, Hydrogenated Water

    SciTech Connect

    SE Ziemniak; ME Hanson

    2004-11-02

    The corrosion behavior of Alloy 600 (UNS N06600) is investigated in hydrogenated water at 260 C. The corrosion kinetics are observed to be parabolic, the parabolic rate constant being determined by chemical descaling to be 0.055 mg dm{sup -2} hr{sup -1/2}. A combination of scanning and transmission electron microscopy, supplemented by energy dispersive X-ray spectroscopy and grazing incidence X-ray diffraction, are used to identify the oxide phases present (i.e., spinel) and to characterize their morphology and thickness. Two oxide layers are identified: an outer, ferrite-rich layer and an inner, chromite-rich layer. X-ray photoelectron spectroscopy with argon ion milling and target factor analysis is applied to determine spinel stoichiometry; the inner layer is (Ni{sub 0.7}Fe{sub 0.3})(Fe{sub 0.3}Cr{sub 0.7}){sub 2}O{sub 4}, while the outer layer is (Ni{sub 0.9}Fe{sub 0.1})(Fe{sub 0.85}Cr{sub 0.15}){sub 2}O{sub 4}. The distribution of trivalent iron and chromium cations in the inner and outer oxide layers is essentially the same as that found previously in stainless steel corrosion oxides, thus confirming their invariant nature as solvi in the immiscible spinel binary Fe{sub 3}O{sub 4}-FeCr{sub 2}O{sub 4} (or NiFe{sub 2}O{sub 4}-NiCr{sub 2}O{sub 4}). Although oxidation occurred non-selectively, excess quantities of nickel(II) oxide were not found. Instead, the excess nickel was accounted for as recrystallized nickel metal in the inner layer, as additional nickel ferrite in the outer layer, formed by pickup of iron ions from the aqueous phase, and by selective release to the aqueous phase.

  5. Surface energy driven crystallization of amorphous Ni{sub 69}Cr{sub 14}P{sub 17} alloy

    SciTech Connect

    Schumacher, G.; Wanderka, N.; Wahi, R.P.

    1994-11-01

    Amorphous Ni{sub 69}Cr{sub l4}P{sub l7} specimens thinned for transmission electron microscopy have been studied in situ during thermal treatment. In the thinnest regions of the specimens (thickness d < 50 nm), a metastable hexagonal (Ni,Cr){sub 3}P phase nucleates at the perforation edge with the c-axis perpendicular to the specimen surface. The crystal width of this phase grows linearly with time. Above 530{degrees}C the hexagonal phase transforms into a stable b.c.t. (Ni,Cr){sub 3}P phase. It is concluded that the surface and grain boundary energies dominate nucleation and growth.

  6. High Pressure Structure of Half-Metallic CrO2

    SciTech Connect

    Maddox, B; Yoo, C S; Kasinathan, D; Pickett, W E; Scalettar, R T

    2005-09-07

    Evidence for a structural phase transition from rutile {alpha}-CrO{sub 2} phase I (P4{sub 2}/mnm) to orthorhombic {beta}-CrO{sub 2} phase II (CaCl{sub 2}-like, Pnnm) is presented using angle-resolved synchrotron x-ray diffraction and high sensitivity confocal Raman spectroscopy. The transition to the CaCl{sub 2} structure, which appears to be second-order, occurs at 12 {+-} 3 GPa without any measurable discontinuity in volume, but is accompanied by an apparent increase in compressibility. Raman data are also presented to show further evidence for a second-order structural phase transition as well to demonstrate soft-mode behavior of the B{sub 1g} phonon mode.

  7. Alpha spectroscopy in CR-39 SSNTDs using energy simulation and matrix of energy equations for open field studies

    NASA Astrophysics Data System (ADS)

    Awad, E. M.; Soliman, A. A.; El-Samman, H. M.; Arafa, W. M.; Rammah, Y. S.

    2008-04-01

    Encouraged with the success of the matrix of energy equations in resolving alpha spectra for narrow energy band [O.A. Bondarenko, P.L. Salmon, D.L. Henshaw, A.P. Fews, Radiat. Meas. 26 (1996) 59; O.A. Bondarenko, P.L. Salmon, D.L. Henshaw, A.P. Fews, A.N. Ross, Nucl. Instrum. Methods A 369 (1996) 582] and wide energy band [E.M. Awad, A.A. Soliman, Y.S. Rammah, Phys. Lett. A 369 (5-6) (2007) 359] as well, the present work extends the applicability of this method to work out for open field studies. 241Am alpha source was used for irradiating CR-39 samples in air at normal temperature and pressure and at three different distances to obtain three different energies. Alpha particles were sorted to ten different bins according to their dip angle and the energy inside each bin was determined using alpha particle range-energy relation. Then, the energy matrix inside each bin was constructed using some selected calibration tracks. This matrix was composed of two track axes, the track minor axis (m) and diameter of etched out track end (d) of some selected elliptical tracks. The energy E in (m,d) coordinates was given by E=∑i,j=02adkimkj. The adjusting parameters a were obtained by solving an over-determined system of energy equations using the SVD method. The three energies in each bin were well resolved.

  8. FSU High Energy Physics

    SciTech Connect

    Prosper, Harrison B.; Adams, Todd; Askew, Andrew; Berg, Bernd; Blessing, Susan K.; Okui, Takemichi; Owens, Joseph F.; Reina, Laura; Wahl, Horst D.

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  9. High-temperature oxidation studies of cold-sprayed Ni-20Cr and Ni-50Cr coatings on SAE 213-T22 boiler steel

    NASA Astrophysics Data System (ADS)

    Bala, Niraj; Singh, Harpreet; Prakash, Satya

    2009-05-01

    The high-temperature oxidation behavior of cold-sprayed Ni-20Cr and Ni-50Cr coatings on SAE 213-T22 boiler steel has been investigated at 900 °C in air under cyclic heating and cooling conditions for 50 cycles. The kinetics of oxidation of coated and bare boiler steel has been established with the help of weight change measurements. It was observed that all the coated and bare steels obeyed parabolic rate law of oxidation. X-ray diffraction, FE-SEM/EDAX and X-ray mapping techniques were used to analyse the oxidation products of the coated and uncoated boiler steel. The uncoated steel suffered corrosion in the form of intense spalling and peeling of its oxide scale, which was perhaps due to the formation of unprotective Fe 2O 3 oxide scale. Both the coatings showed better resistance to the air oxidation as compared to the uncoated steel. The Ni-50Cr coating was found to be more protective than the Ni-20Cr-coated steel. The formation of oxides and spinels of nickel and chromium may be contributing to the development of air oxidation resistance in the coatings.

  10. Characterization of the surface of Fe-19Mn-18Cr-C-N during heat treatment in a high vacuum - An XPS study

    SciTech Connect

    Zumsande, K.; Weddeling, A.; Hryha, E.; Huth, S.; Nyborg, L.; Weber, S.; Krasokha, N.; Theisen, W.

    2012-09-15

    Nitrogen-containing CrMn austenitic stainless steels offer evident benefits compared to CrNi-based grades. The production of high-quality parts by means of powder metallurgy could be an appropriate alternative to the standard molding process leading to improved properties. The powder metallurgical production of CrMn austenitic steel is challenging on account of the high oxygen affinity of Mn and Cr. Oxides hinder the densification processes and may lower the performance of the sintered part if they remain in the steel after sintering. Thus, in evaluating the sinterability of the steel Fe-19Mn-18Cr-C-N, characterization of the surface is of great interest. In this study, comprehensive investigations by means of X-ray photoelectron spectroscopy and scanning electron microscopy combined with energy dispersive X-ray spectroscopy were performed to characterize the surface during heat treatment in a high vacuum. The results show a shift of oxidation up to 600 Degree-Sign C, meaning transfer of oxygen from the iron oxide layer to Mn-based particulate oxides, followed by progressive reduction and transformation of the Mn oxides into stable Si-containing oxides at elevated temperatures. Mass loss caused by Mn evaporation was observed accompanied by Mn oxide decomposition starting at 700 Degree-Sign C. - Highlights: Black-Right-Pointing-Pointer Surface characterization by means of XPS, SEM, and EDX analyses. Black-Right-Pointing-Pointer Heat treatment of a high CrMn powder. Black-Right-Pointing-Pointer Transfer of oxygen from the iron oxide layer to manganese-based particulate oxides. Black-Right-Pointing-Pointer Progressive reduction of Mn oxides. Black-Right-Pointing-Pointer Transformation of the Mn oxides into stable Si-containing oxides.

  11. Nanostructured Cu-Cr alloy with high strength and electrical conductivity

    SciTech Connect

    Islamgaliev, R. K. Nesterov, K. M.; Bourgon, J.; Champion, Y.; Valiev, R. Z.

    2014-05-21

    The influence of nanostructuring by high pressure torsion (HPT) on strength and electrical conductivity in the Cu-Cr alloy has been investigated. Microstructure of HPT samples was studied by transmission electron microscopy with special attention on precipitation of small chromium particles after various treatments. Effect of dynamic precipitation leading to enhancement of strength and electrical conductivity was observed. It is shown that nanostructuring leads to combination of high ultimate tensile strength of 790–840 MPa, enhanced electrical conductivity of 81%–85% IACS and thermal stability up to 500 °C. The contributions of grain refinement and precipitation to enhanced properties of nanostructured alloy are discussed.

  12. Energy levels and radiative rates for transitions in Cr-like Co IV and Ni V

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Karpuškienė, R.; Keenan, F. P.; Kisielius, R.; Stancalie, V.

    2016-01-01

    We report calculations of energy levels and radiative rates (A-values) for transitions in Cr-like Co IV and Ni V. The quasi-relativistic Hartree-Fock (QRHF) code is adopted for calculating the data although GRASP (general-purpose relativistic atomic structure package) and flexible atomic code (FAC) have also been employed for comparison purposes. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST for a majority of the levels. However, there are discrepancies for a few levels of up to 3%. The A-values are listed for all significantly contributing E1, E2 and M1 transitions, and the corresponding lifetimes reported, although unfortunately no previous theoretical or experimental results exist to compare with our data.

  13. Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Xu, Lining; Lu, Minxu; Meng, Yao; Zhu, Jinyang; Zhang, Lei

    2014-09-01

    A series of corrosion tests of 13Cr stainless steel were conducted in a simulated completion fluid environment of high temperature and high concentration bromine salt. Corrosion behavior of specimens and the component of corrosion products were investigated by means of scanning electron microscope (SEM), confocal laser scanning microscopy (CLSM) and X-ray photoelectron spectroscopy (XPS). The results indicate that 13Cr steel suffers from severe local corrosion and there is always a passive halo around every pit. The formation mechanism of the passive halo is established. OH- ligand generates and adsorbs in a certain scale because of abundant OH- on the surface around the pits. Passive film forms around each pit, which leads to the occurrence of passivation in a certain region. Finally, the dissimilarities in properties and morphologies of regions, namely the pit and its corresponding passive halo, can result in different corrosion sensitivities and may promote the formation of macroscopic galvanic pairs

  14. A performance test of a new high-surface-quality and high-sensitivity CR-39 plastic nuclear track detector - TechnoTrak

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Morishige, K.; Kawashima, H.; Kitamura, H.; Kurano, M.; Hasebe, N.; Koguchi, Y.; Shinozaki, W.; Ogura, K.

    2016-09-01

    We have studied the performance of a newly-commercialized CR-39 plastic nuclear track detector (PNTD), "TechnoTrak", in energetic heavy ion measurements. The advantages of TechnoTrak are derived from its use of a purified CR-39 monomer to improve surface quality combined with an antioxidant to improve sensitivity to low-linear-energy-transfer (LET) particles. We irradiated these detectors with various heavy ions (from protons to krypton) with various energies (30-500 MeV/u) at the heavy ion accelerator facilities in the National Institute of Radiological Sciences (NIRS). The surface roughness after chemical etching was improved to be 59% of that of the conventional high-sensitivity CR-39 detector (HARZLAS/TD-1). The detectable dynamic range of LET was found to be 3.5-600 keV/μm. The LET and charge resolutions for three ions tested ranged from 5.1% to 1.5% and 0.14 to 0.22 c.u. (charge unit), respectively, in the LET range of 17-230 keV/μm, which represents an improvement over conventional products (HARZLAS/TD-1 and BARYOTRAK). A correction factor for the angular dependence was determined for correcting the LET spectrum in an isotropic radiation field. We have demonstrated the potential of TechnoTrak, with its two key features of high surface quality and high sensitivity to low-LET particles, to improve automatic analysis protocols in radiation dosimetry and various other radiological applications.

  15. Monolithic Cu-Cr-Nb Alloys for High Temperature, High Heat Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Locci, Ivan E.; Michal, Gary M.; Humphrey, Derek M.

    1999-01-01

    Work during the prior four years of this grant has resulted in significant advances in the development of Cu-8 Cr4 Nb and related Cu-Cr-Nb alloys. The alloys are nearing commercial use in the Reusable Launch Vehicle (RLV) where they are candidate materials for the thrust cell liners of the aerospike engines being developed by Rocketdyne. During the fifth and final year of the grant, it is proposed to complete development of the design level database of mechanical and thermophysical properties and transfer it to NASA Glenn Research Center and Rocketdyne. The database development work will be divided into three main areas: Thermophysical Database Augmentation, Mechanical Testing and Metallography and Fractography. In addition to the database development, work will continue that is focussed on the production of alternatives to the powder metallurgy alloys currently used. Exploration of alternative alloys will be aimed at both the development of lower cost materials and higher performance materials. A key element of this effort will be the use of Thermo-Calc software to survey the solubility behavior of a wide range of alloying elements in a copper matrix. The ultimate goals would be to define suitable alloy compositions and processing routes to produce thin sheets of the material at either a lower cost, or, with improved mechanical and thermal properties compared to the current Cu-Cr-Nb powder metallurgy alloys.

  16. High Energy Density Capacitors

    SciTech Connect

    2010-07-01

    BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

  17. High-energy ion processing of materials for improved hardcoatings

    SciTech Connect

    Williams, J.M.; Gorbatkin, S.M.; Rhoades, R.L.; Oliver, W.C.; Riester, L.; Tsui, T.Y.

    1994-02-01

    Research has been directed toward use of economically viable ion processing strategies for production and improvement of hardcoatings. Processing techniques were high-energy ion implantation and electron cyclotron resonance microwave plasma processing. Subject materials were boron suboxides, Ti-6Al-4V alloy, CoCrMo alloy (a Stellite{trademark}), and electroplated Cr. These materials may be regarded either as coatings themselves (which might be deposited by thermal spraying, plasma processing, etc.) or in some cases, as substrates whose surfaces can be improved. hardness and other properties in relation to process variables are reported.

  18. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    DOEpatents

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  19. Preparation of high emissivity NiCr2O4 powders with a spinel structure by spray drying

    NASA Astrophysics Data System (ADS)

    Cheng, Xu-Dong; Min, Jie; Zhu, Zhen-Qi; Ye, Wei-Ping

    2012-02-01

    Spray-drying was used to produce the high emissivity NiCr2O4 powders with a spinel structure. Preliminary investigations focused on fabricating the high emissivity powders for infrared radiation coatings and finding the relationship between microstructure and emissivity. The NiCr2O4 powders were characterized for composition, microstructure, and infrared emissivity by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared radiant instrument, and Fourier transform infrared spectra (FT-IR). Thermogravimetry and differential thermal analysis show that the appropriate baking temperature for NiCr2O4 powder preparation is about 1200°C. The emissivity measurement and FT-IR spectra show that, because of the special spinel structure, the NiCr2O4 powders have a high emissivity about 0.91. Spray-drying is a suitable method to produce the high emissivity ceramic powders.

  20. Subduction initiation for the formation of high-Cr chromitites in the Kop ophiolite, NE Turkey

    NASA Astrophysics Data System (ADS)

    Zhang, Peng-Fei; Uysal, Ibrahim; Zhou, Mei-Fu; Su, Ben-Xun; Avcı, Erdi

    2016-09-01

    The Kop ophiolite in NE Turkey is a forearc fragment of Neo-Tethys ocean, consisting mainly of a paleo-Moho transition zone (MTZ) and a harzburgitic upper mantle unit. Locally, the Kop MTZ contains cumulate dunites and high-Cr chromitites (Cr# up to ca. 79), which are cut by pyroxenites. Dunites and chromitites in the MTZ have REE concentrations that are 1-2 orders of magnitude lower than those of chondrite; they are either depleted in LREE or have concave REE shapes. The LREE depleted patterns are interpreted to reflect production of cumulate rocks by magmas derived from a depleted mantle, the concave patterns the modification of these rocks by LREE-enriched fluids. Clinopyroxenes from pyroxenites are diopsidic and characterized by high Mg#s (ca. 92-96) and high CaO contents (ca. 24-25 wt.%); their Al2O3 contents (1.0-3.0 wt.%) fall between those of clinopyroxenes in N-MORB and komatiite/boninite, suggesting that the parental melts originated from more refractory mantle than abyssal lherzolites. However, these clinopyroxenes display LREE depleted patterns consistent with those of clinopyroxenes in abyssal lherzolites, indicating their genetic connection with decompression melting of asthenosphere. The cross-cutting relationship between pyroxenite veins and chromitiferous rocks suggests that depleted mantle remained beneath the proto-forearc after chromitite formation; it had not been significantly modified by slab-derived components and continued interacting with the upwelling asthenosphere until pyroxenite crystallization. This study provides a temporal constraint on the formation of high-Cr chromitites; they possibly began to be produced during the transition between early and late proto-forearc spreading, during which subduction dehydration had not well developed.

  1. Niobium-gallium oxide with a high concentration of Cr3+ ions: Photoluminescence and structural characteristics

    NASA Astrophysics Data System (ADS)

    Costa, G. K. B.; Pedro, S. S.; López, A.; Carvalho, I. C. S.; Cella, N.; Sosman, L. P.

    2016-10-01

    This work presents photoluminescence data for gallium-niobium oxide with chromium ion as an impurity. The samples were obtained by the solid-state method (SSM) and the wet-chemical method (WCM) and investigated by X-ray diffraction, photoluminescence, excitation, and photoacoustic and X-ray fluorescence. The color of the sample obtained by the SSM was pink, while the color of the sample prepared by the WCM was green. This dramatic difference was associated with Cr3+ concentration and with the neighborhood of the doping ions, obtained from crystallographic data, which is strongly dependent on the preparation method. The difference between the samples was also verified in the photoacoustic and excitation spectra, in which the energy bands were located at different energy levels; on the other hand, in the photoluminescence spectra, no band shift was observed. All spectra were assigned to chromium ions at nonequivalent octahedral sites.

  2. The FERRUM project: Experimental transition probabilities from highly excited even 5s levels in Cr ii

    NASA Astrophysics Data System (ADS)

    Engström, L.; Lundberg, H.; Nilsson, H.; Hartman, H.; Bäckström, E.

    2014-10-01

    We report lifetime measurements of the five levels in the 3d4(a5D)5s e6D term in Cr ii at an energy around 83 000 cm-1, and log(gf) values for 38 transitions from the investigated levels. The lifetimes are obtained using time-resolved, laser-induced fluorescence on ions from a laser-produced plasma. Since the levels have the same parity as the low-lying states directly populated in the plasma, we used a two-photon excitation scheme. This process is greatly facilitated by the presence of the 3d4(a5D)4p z6F levels at roughly half the energy difference. The f-values are obtained by combining the experimental lifetimes with branching fractions derived using relative intensities from a hollow cathode lamp recorded with a Fourier transform spectrometer.

  3. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation

    DOE PAGESBeta

    Leonard, Keith J.; Bei, Hongbin; Zinkle, Steven J.; Kiran Kumar, N. A. P.; Li, C.

    2016-05-13

    In recent years, high entropy alloys (HEAs) have attracted significant attention due to their excellent mechanical properties and good corrosion resistance, making them potential candidates for high temperature fission and fusion structural applications. However there is very little known about their radiation resistance, particularly at elevated temperatures relevant for energy applications. In the present study, a single phase (face centered cubic) concentrated solid solution alloy of composition 27%Fe-28%Ni-27%Mn-18%Cr was irradiated with 3 or 5.8 MeV Ni ions at temperatures ranging from room temperature to 700 °C and midrange doses from 0.03 to 10 displacements per atom (dpa). Transmission electron microscopymore » (TEM), scanning transmission electron microscopy with energy dispersive x-ray spectrometry (STEM/EDS) and X-ray diffraction (XRD) were used to characterize the radiation defects and microstructural changes. Irradiation at higher temperatures showed evidence of relatively sluggish solute diffusion with limited solute depletion or enrichment at grain boundaries. The main microstructural feature at all temperatures was high-density small dislocation loops. Voids were not observed at any irradiation condition. Nano-indentation tests on specimens irradiated at room temperature showed a rapid increase in hardness ~35% and ~80% higher than the unirradiated value at 0.03 and 0.3 dpa midrange doses, respectively. The irradiation-induced hardening was less pronounced for 500 °C irradiations (<20% increase after 3 dpa). Overall, the examined HEA material exhibits superior radiation resistance compared to conventional single phase Fe-Cr-Ni austenitic alloys such as stainless steels. Furthermore, the present study provides insight on the fundamental irradiation behavior of a single phase HEA material over a broad range of irradiation temperatures.« less

  4. Atomic force microscopy methods for the analysis of high-LET tracks in CR-39 plastic nuclear track detector

    NASA Astrophysics Data System (ADS)

    Johnson, Carl E., Jr.

    Scope and Method of Study. Proton- and neutron-induced target fragmentation reactions generate short-range (˜1-10 mum), high-linear energy transfer (LET) heavy nuclear recoil (HNR) particles that contribute to total radiation dose deposited in healthy tissue in patients undergoing proton cancer therapy and to astronauts during spaceflight. Conventional detection using CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy fails because the required bulk etch, B ≈ 40 mum removes short-range tracks. We have developed a method based on Atomic Force Microscopy (AFM) to directly measure HNR particle tracks in CR-39 PNTD. Novel algorithms using least squares ellipse fitting and estimation of fitting in an iterative process were developed to enable the analysis of nuclear tracks in AFM data. In irradiations conducted at the Loma Linda University Medical Center (LLUMC) Proton Therapy Facility and the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), targets of varying composition, including a number of elemental targets of high Z, were exposed in contact with layers of CR-39 PNTD to beams of 60 MeV, 230 MeV, and 1 GeV protons at doses between 2 and 10 Gy. Chemical etching of the CR-39 PNTD was performed under standard conditions (50°C, 6.25 N NaOH) for 2-4 hours (removed layer B = 0.5-1.0 mum). Findings and Conclusions. The use of a short duration chemical etch yielded densities of secondary tracks of 105-10 6 cm-2 using the analysis methods presented in this work for accelerator-based experiments. LET spectra were obtained with good statistics between 200 and 1500 keV/mum and the results were consistent with nonelastic nuclear cross sections. Absorbed dose measurements were also completed for selected detectors, ˜7 x 10-10 Gy ion -1 was measured for 230 MeV protons. Additionally our data are consistent with an isotropic HNR particle production mechanism. The semi

  5. Chromium-rich lawsonite in high-Cr eclogites from the Făgăras Massif (South Carpathians)

    NASA Astrophysics Data System (ADS)

    Negulescu, E.; Săbău, G.

    2012-12-01

    Lawsonite is a relatively rare phase in natural rocks, because of its thermal decomposition during exhumation, and Cr-bearing lawsonite being restricted to only a few occurrences worldwide. Here we report Cr-lawsonite in eclogites hosted in a medium-grade metamorphic complex. Several high-Cr eclogite lenses occur in the Topolog Complex (Făgăras Massif) of dominantly gneissic-amphibolitic composition. High Cr contents are the result of emerald-green mm-sized nodules containing Cr-rich minerals, embedded in a gray-green matrix of kyanite, clinopyroxene, garnet, amphibole, zoisite, and rutile. Garnets occur as porphyroblasts or in coronas around clinopyroxene aggregates probably replacing former magmatic pyroxene. Relict gabbroic textures (sometimes pegmatoid) and whole rock geochemistry indicate a gabbroic cumulate origin. The REE pattern, displaying a slight positive Eu anomaly and a tea spoon-shaped LREE depletion is also indicative of a cumulate origin, as also noted by Pe Piper & Piper (2002) for the Othrys gabbro (as well as others in the Vourinos and Pindos ophiolitic suites) with the same unusual REE-pattern. The emerald-green Cr-rich nodules are unevenly distributed in the rock, and always enclosed in Cr-rich clinopyroxenes (up to 5.46% Cr2O3) which may exhibit Cr-diffusion haloes towards normal Cr-free matrix pyroxene. The nodules consist of diablastic chromite, rutile and Cr-rich kyanite of up to 15.67 wt% Cr2O3, Cr-bearing epidote, to which Cr-rich staurolite (up to 10.45% Cr2O3; XMg up to 0.68) and Cr-rich lawsonite (up to 9.17% Cr2O3) may exceptionally associate. Cr concentrations in kyanite and lawsonite are, to our knowledge, the highest reported so far. Cr-lawsonite was identified in a single sample, as small single phase inclusions armoured in Cr-kyanite. Equilibrium PT-conditions of 2.6 GPa and 610o C were derived from the garnet-mantled clinopyroxene aggregates using multi-equilibria calculation with the PTGIBBS routine of Brandelik & Massonne

  6. Use of high-pressure CO2 for concentrating CrVI from electroplating wastewater by Mg-Al layered double hydroxide.

    PubMed

    Lv, Xiangying; Chen, Zhi; Wang, Yongjing; Huang, Feng; Lin, Zhang

    2013-11-13

    The desorption of Cr(VI) from Cr(VI)-adsorbed layered double hydroxide (Cr(VI)-LDH) and the recycling of LDH adsorbent are the bottlenecks that limit the practical application of LDH in treating Cr(VI)-containing industrial wastewater. Given the strong affinity of LDH for CO2, we studied desorption and enrichment of Cr(VI) from Cr(VI)-LDH as well as recycling of LDH in the presence of high-pressure CO2. Results showed that Cr(VI) solution with concentration of 500 mg/L could be enriched more than 20 times in each adsorption-desorption cycle. The regenerated LDH maintained the layer structure and the sheets as revealed by XRD and TEM patterns. FT-IR data showed CO2 formed HCO3(-) at high pressure. The transformation from CO2 to HCO3(-) followed by the anion-exchange with CrO4(2-) was the critical factor for Cr(VI) desorption and LDH regeneration. A pilot-scale experiment was carried out with 20 L Cr(VI)-containing electroplating wastewater. The concentration of the desorbed Cr(VI) solution could reach up to 10000 mg/L, which could be used in electroplating after appropriate adjustment. The main advantages of this method are high concentration of Cr(VI), direct reuse of enriched Cr(VI), and efficient regeneration of LDH adsorbent. This method showed promises in recycling Cr(VI) and regenerating LDH in treating industrial wastewater.

  7. Surface modification of 40CrNiMo7 steel with high current pulsed electron beam treatment

    NASA Astrophysics Data System (ADS)

    Hao, Shengzhi; Wang, Huihui; Zhao, Limin

    2016-02-01

    High current pulsed electron beam (HCPEB) treatment was conducted on 40CrNiMo7 steel with accelerating voltage 27 kV, energy density 3 J/cm2, pulse duration 2.5 μs and 1-50 pulses. The evolutions of surface microstructure were investigated by using optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. It was found that the carbides in the surface remelted layer of depth ∼4 μm were dissolved gradually along with the increasing number of HCPEB pulses. Eventually, the surface microstructure of 40CrNiMo7 steel was transformed to a complex structure composed of very refined ∼150 nm austenite as the main part and a little quantity of martensite phases. After 15 pulses of HCPEB treatment, the surface microhardness was doubled to 553 HV, and the wear rate decreased to one third of the initial state correspondingly.

  8. High-Temperature Extensometry and PdCr Temperature-Compensated Wire Resistance Strain Gages Compared

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A detailed experimental evaluation is underway at the NASA Lewis Research Center to compare and contrast the performance of the PdCr/Pt dual-element temperature-compensated wire resistance strain gage with that of conventional high-temperature extensometry. The advanced PdCr gage, developed by researchers at Lewis, exhibits desirable properties and a relatively small and repeatable apparent strain to 800 C. This gage represents a significant advance in technology because existing commercial resistance strain gages are not reliable for quasi-static strain measurements above approx. 400 C. Various thermal and mechanical loading spectra are being applied by a high-temperature thermomechanical uniaxial testing system to evaluate the two strain-measurement systems. This is being done not only to compare and contrast the two strain sensors, but also to investigate the applicability of the PdCr strain gage to the coupon-level specimen testing environment typically employed when the high-temperature mechanical behavior of structural materials is characterized. Strain measurement capabilities to 800 C are being investigated with a nickel-base superalloy, Inconel 100 (IN 100), substrate material and application to TMC's is being examined with the model system, SCS-6/Ti-15-3. Furthermore, two gage application techniques are being investigated in the comparison study: namely, flame-sprayed and spot welding. The apparent strain responses of both the weldable and flame-sprayed PdCr wire strain gages were found to be cyclically repeatable on both IN 100 and SCS-6/Ti-15-3 [0]_8. In general, each gage exhibited some uniqueness with respect to apparent strain behavior. Gages mounted on the IN 100 specimens tended to show a repeatable apparent strain within the first few cycles, because the thermal response of IN 100 was stable. This was not the case, however, for the TMC specimens, which typically required several thermal cycles to stabilize the thermal strain response. Thus

  9. Thermoelastic properties of chromium oxide Cr2O3 (eskolaite) at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Dymshits, Anna M.; Dorogokupets, Peter I.; Sharygin, Igor S.; Litasov, Konstantin D.; Shatskiy, Anton; Rashchenko, Sergey V.; Ohtani, Eiji; Suzuki, Akio; Higo, Yuji

    2016-06-01

    A new synchrotron X-ray diffraction study of chromium oxide Cr2O3 (eskolaite) with the corundum-type structure has been carried out in a Kawai-type multi-anvil apparatus to pressure of 15 GPa and temperatures of 1873 K. Fitting the Birch-Murnaghan equation of state (EoS) with the present data up to 15 GPa yielded: bulk modulus ( K 0, T0), 206 ± 4 GPa; its pressure derivative K'0 ,T , 4.4 ± 0.8; (∂ K 0 ,T /∂ T) = ‒0.037 ± 0.006 GPa K‒1; a = 2.98 ± 0.14 × 10-5 K-1 and b = 0.47 ± 0.28 × 10‒8 K‒2, where α 0, T = a + bT is the volumetric thermal expansion coefficient. The thermal expansion of Cr2O3 was additionally measured at the high-temperature powder diffraction experiment at ambient pressure and α 0, T0 was determined to be 2.95 × 10-5 K-1. The results indicate that coefficient of the thermal expansion calculated from the EoS appeared to be high-precision because it is consistent with the data obtained at 1 atm. However, our results contradict α 0 value suggested by Rigby et al. (Brit Ceram Trans J 45:137-148, 1946) widely used in many physical and geological databases. Fitting the Mie-Grüneisen-Debye EoS with the present ambient and high-pressure data yielded the following parameters: K 0, T0 = 205 ± 3 GPa, K'0, T = 4.0, Grüneisen parameter ( γ 0) = 1.42 ± 0.80, q = 1.82 ± 0.56. The thermoelastic parameters indicate that Cr2O3 undergoes near isotropic compression at room and high temperatures up to 15 GPa. Cr2O3 is shown to be stable in this pressure range and adopts the corundum-type structure. Using obtained thermoelastic parameters, we calculated the reaction boundary of knorringite formation from enstatite and eskolaite. The Clapeyron slope (with {{d}}P/{{d}}T = - 0.014 GPa/K) was found to be consistent with experimental data.

  10. High Energy Colliders

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.; Gallardo, J. C.

    INTRODUCTION PHYSICS CONSIDERATIONS GENERAL REQUIRED LUMINOSITY FOR LEPTON COLLIDERS THE EFFECTIVE PHYSICS ENERGIES OF HADRON COLLIDERS HADRON-HADRON MACHINES LUMINOSITY SIZE AND COST CIRCULAR e^{+}e^- MACHINES LUMINOSITY SIZE AND COST e^{+}e^- LINEAR COLLIDERS LUMINOSITY CONVENTIONAL RF SUPERCONDUCTING RF AT HIGHER ENERGIES γ - γ COLLIDERS μ ^{+} μ^- COLLIDERS ADVANTAGES AND DISADVANTAGES DESIGN STUDIES STATUS AND REQUIRED R AND D COMPARISION OF MACHINES CONCLUSIONS DISCUSSION

  11. A new method for separation and determination of Cr(III) and Cr(VI) in water samples by high-performance liquid chromatography based on anion exchange stationary phase of ionic liquid modified silica.

    PubMed

    Sadeghi, Susan; Moghaddam, Ali Zeraatkar

    2015-12-01

    In this work, N-methylimidazolium-chloride ionic liquid functionalized silica was prepared and used as an anion-exchange stationary phase for separation of chromium species by high-performance liquid chromatography (HPLC) with UV detection at 200 nm. The Cr(VI) as HCr2O7(-) and chelated Cr(III) with potassium hydrogen phthalate (PHP) as Cr(PHP)2 (-) was retained on the prepared column and separated using a mobile phase composed of 5% methanol in 25 mM phosphate buffer at pH 6.5. Several variables affecting the chelation/separation steps were modeled by response surface methodology (RSM) using Box-Behnken (BBD) design. The significance of the independent variables and their interactions were tested by the analysis of variances (ANOVA) with 95% confidence limit. Under the optimized conditions, the Cr(III) and Cr(VI) anionic species were well separated with a single peak for each Cr species at retention times of 2.3 and 4.3 min, respectively. The relationship between the peak area and concentration was linear in the range of 0.025-30 for Cr(III) and 0.5-20 mg L(-1) for Cr(VI) with detection limits of 0.010 and 0.210 mg L(-1) for Cr(III) and Cr(VI), respectively. The proposed method was validated by simultaneous separation and determination of the Cr species in tap and underground water samples without impose to any pretreatment.

  12. Design of High Temperature Ti-Pd-Cr Shape Memory Alloys with Small Thermal Hysteresis

    PubMed Central

    Xue, Deqing; Yuan, Ruihao; Zhou, Yumei; Xue, Dezhen; Lookman, Turab; Zhang, Guojun; Ding, Xiangdong; Sun, Jun

    2016-01-01

    The large thermal hysteresis (ΔT) during the temperature induced martensitic transformation is a major obstacle to the functional stability of shape memory alloys (SMAs), especially for high temperature applications. We propose a design strategy for finding SMAs with small thermal hysteresis. That is, a small ΔT can be achieved in the compositional crossover region between two different martensitic transformations with opposite positive and negative changes in electrical resistance at the transformation temperature. We demonstrate this for a high temperature ternary Ti-Pd-Cr SMA by achieving both a small ΔT and high transformation temperature. We propose two possible underlying physics governing the reduction in ΔT. One is that the interfacial strain is accommodated at the austenite/martensite interface via coexistence of B19 and 9R martensites. The other is that one of transformation eigenvalues equal to 1, i.e., λ2 = 1, indicating a perfect coherent interface between austenite and martensite. Our results are not limited to Ti-Pd-Cr SMAs but potentially provide a strategy for searching for SMAs with small thermal hysteresis. PMID:27328764

  13. Design of High Temperature Ti-Pd-Cr Shape Memory Alloys with Small Thermal Hysteresis

    NASA Astrophysics Data System (ADS)

    Xue, Deqing; Yuan, Ruihao; Zhou, Yumei; Xue, Dezhen; Lookman, Turab; Zhang, Guojun; Ding, Xiangdong; Sun, Jun

    2016-06-01

    The large thermal hysteresis (ΔT) during the temperature induced martensitic transformation is a major obstacle to the functional stability of shape memory alloys (SMAs), especially for high temperature applications. We propose a design strategy for finding SMAs with small thermal hysteresis. That is, a small ΔT can be achieved in the compositional crossover region between two different martensitic transformations with opposite positive and negative changes in electrical resistance at the transformation temperature. We demonstrate this for a high temperature ternary Ti-Pd-Cr SMA by achieving both a small ΔT and high transformation temperature. We propose two possible underlying physics governing the reduction in ΔT. One is that the interfacial strain is accommodated at the austenite/martensite interface via coexistence of B19 and 9R martensites. The other is that one of transformation eigenvalues equal to 1, i.e., λ2 = 1, indicating a perfect coherent interface between austenite and martensite. Our results are not limited to Ti-Pd-Cr SMAs but potentially provide a strategy for searching for SMAs with small thermal hysteresis.

  14. Design of High Temperature Ti-Pd-Cr Shape Memory Alloys with Small Thermal Hysteresis.

    PubMed

    Xue, Deqing; Yuan, Ruihao; Zhou, Yumei; Xue, Dezhen; Lookman, Turab; Zhang, Guojun; Ding, Xiangdong; Sun, Jun

    2016-06-22

    The large thermal hysteresis (ΔT) during the temperature induced martensitic transformation is a major obstacle to the functional stability of shape memory alloys (SMAs), especially for high temperature applications. We propose a design strategy for finding SMAs with small thermal hysteresis. That is, a small ΔT can be achieved in the compositional crossover region between two different martensitic transformations with opposite positive and negative changes in electrical resistance at the transformation temperature. We demonstrate this for a high temperature ternary Ti-Pd-Cr SMA by achieving both a small ΔT and high transformation temperature. We propose two possible underlying physics governing the reduction in ΔT. One is that the interfacial strain is accommodated at the austenite/martensite interface via coexistence of B19 and 9R martensites. The other is that one of transformation eigenvalues equal to 1, i.e., λ2 = 1, indicating a perfect coherent interface between austenite and martensite. Our results are not limited to Ti-Pd-Cr SMAs but potentially provide a strategy for searching for SMAs with small thermal hysteresis.

  15. High pressure metal-silicate partitioning of Ni, Co, V, Cr, Si, and O

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Nakajima, Yoichi; Campbell, Andrew J.; Frost, Daniel J.; Harries, Dennis; Langenhorst, Falko; Miyajima, Nobuyoshi; Pollok, Kilian; Rubie, David C.

    2015-10-01

    The distributions of major and minor elements in Earth's core and mantle were primarily established by high pressure, high temperature metal-silicate partitioning during core segregation. The partitioning behaviors of moderately siderophile elements can be used to constrain the pressure-temperature conditions of core formation and the core's composition. We performed experiments to study the partitioning of Ni, Co, V, Cr, Si, and O between silicate melt and Fe-rich metallic melt in a multianvil press and diamond anvil cell, up to 100 GPa and 5700 K. Combining our new results with data from 18 previous studies, we parameterized the effects of pressure, temperature, and metallic melt composition on partitioning. Ni and Co partitioning are insensitive to composition. At low pressures, these elements become less siderophile with increasing temperature, with this trend reversing above ∼45 GPa. V and Cr partitioning are much more sensitive to metallic melt composition and less sensitive to pressure. Partitioning of Si and O are insensitive to pressure, but with strong and moderate temperature dependences, respectively. Our new parameterizations of Ni and Co partitioning suggest that the Earth's distributions of these elements can be matched by single-stage core-mantle equilibration at 54 ± 5 GPa and 3300-3400 K. These conditions would result in 8.5 ± 1.4 wt% Si and 1.6 ± 0.3 wt% O in the core, compatible with the core's measured density. However, this single-stage model matches the Earth's V and Cr distributions less well. We also incorporated our parameterizations into models of multi-stage core formation over evolving pressure-temperature-oxygen fugacity conditions, reproducing the Earth's Ni and Co distributions while simultaneously producing a core whose light element composition is consistent with its density.

  16. Development of Simultaneous Corrosion Barrier and Optimized Microstructure in FeCrAl Heat-Resistant Alloy for Energy Applications. Part 1: The Protective Scale

    NASA Astrophysics Data System (ADS)

    Pimentel, G.; Aranda, M. M.; Chao, J.; González-Carrasco, J. L.; Capdevila, C.

    2015-09-01

    Coarse-grained Fe-based oxide dispersion-strengthened (ODS) steels are a class of advanced materials for combined cycle gas turbine systems to deal with operating temperatures and pressures of around 1100°C and 15-30 bar in aggressive environments, which would increase biomass energy conversion efficiencies up to 45% and above. This two-part paper reports the possibility of the development of simultaneous corrosion barrier and optimized microstructure in a FeCrAl heat-resistant alloy for energy applications. The first part reports the mechanism of generating a dense, self-healing α-alumina layer by thermal oxidation, during a heat treatment that leads to a coarse-grained microstructure with a potential value for high-temperature creep resistance in a FeCrAl ODS ferritic alloy, which will be described in more detail in the second part.

  17. Cu-Cr-Nb-Zr Alloy for Rocket Engines and Other High-Heat- Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2013-01-01

    Rocket-engine main combustion chamber liners are used to contain the burning of fuel and oxidizer and provide a stream of high-velocity gas for propulsion. The liners in engines such as the Space Shuttle Main Engine are regeneratively cooled by flowing fuel, e.g., cryogenic hydrogen, through cooling channels in the back side of the liner. The heat gained by the liner from the flame and compression of the gas in the throat section is transferred to the fuel by the liner. As a result, the liner must either have a very high thermal conductivity or a very high operating temperature. In addition to the large heat flux (>10 MW/sq m), the liners experience a very large thermal gradient, typically more than 500 C over 1 mm. The gradient produces thermally induced stresses and strains that cause low cycle fatigue (LCF). Typically, a liner will experience a strain differential in excess of 1% between the cooling channel and the hot wall. Each time the engine is fired, the liner undergoes an LCF cycle. The number of cycles can be as few as one for an expendable booster engine, to as many as several thousand for a reusable launch vehicle or reaction control system. Finally, the liners undergo creep and a form of mechanical degradation called thermal ratcheting that results in the bowing out of the cooling channel into the combustion chamber, and eventual failure of the liner. GRCop-84, a Cu-Cr-Nb alloy, is generally recognized as the best liner material available at the time of this reporting. The alloy consists of 14% Cr2Nb precipitates in a pure copper matrix. Through experimental work, it has been established that the Zr will not participate in the formation of Laves phase precipitates with Cr and Nb, but will instead react with Cu to form the desired Cu-Zr compounds. It is believed that significant improvements in the mechanical properties of GRCop-84 will be realized by adding Zr. The innovation is a Cu-Cr-Nb-Zr alloy covering the composition range of 0.8 to 8.1 weight

  18. High rising energy savings

    SciTech Connect

    Not Available

    1985-03-01

    In an effort to demonstrate that cost effective energy innovation is found in the synergistic combination of many basic proven architectural, mechanical and electrical elements, a team of consultants, architects and engineers joined together on a project: Galleria One in Atlanta, Georgia. They started with an efficient envelope and excellent individual floor VAV air conditioning systems. They reduced and eliminated heat gains. A Value and Energy Engineering checklist was created and is presented in this paper. There was no additional annual operation and maintenance cost incurred by the energy conserving features of the project with the exception of an emergency generator, which runs approximately 100 hours each summer and thus requires some additional maintenance.

  19. The Effect of Ballistic Impacts on the High Cycle Fatigue Properties of Ti-48Al-2Nb-2Cr (at.%)

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Pereira, J. M.; Nathal, M. V.; Austin, C. M.; Erdman, O.

    2000-01-01

    The ability of gamma - TiAl to withstand potential foreign and/or domestic object damage is a technical risk to the implementation of gamma - TiAl in low pressure turbine (LPT) blade applications. The overall purpose of the present study was to determine the influence of ballistic impact damage on the high cycle fatigue strength of gamma - TiAl simulated LPT blades. Impact and specimen variables included ballistic impact energy, projectile hardness, impact temperature, impact location, and leading edge thickness. The level of damage induced by the ballistic impacting was studied and quantified on both the impact (front) and backside of the specimens. Multiple linear regression was used to model the cracking and fatigue response as a function of the impact variables. Of the impact variables studied, impact energy had the largest influence on the response of gamma - TiAl to ballistic impacting. Backside crack length was the best predictor of remnant fatigue strength for low energy impacts (<0.74J) whereas Hertzian crack length (impact side damage) was the best predictor for higher energy impacts. The impacted gamma - TiAl samples displayed a classical mean stress dependence on the fatigue strength. For the fatigue design stresses of a 6th stage LPT blade in a GE90 engine, a Ti-48Al-2Nb-2Cr LPT blade would survive an impact of normal service conditions.

  20. Gibbs free energy difference between the undercooled liquid and the beta phase of a Ti-Cr alloy

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.; Holzer, J. C.; Johnson, W. L.

    1992-01-01

    The heat of fusion and the specific heats of the solid and liquid have been experimentally determined for a Ti60Cr40 alloy. The data are used to evaluate the Gibbs free energy difference, delta-G, between the liquid and the beta phase as a function of temperature to verify a reported spontaneous vitrification (SV) of the beta phase in Ti-Cr alloys. The results show that SV of an undistorted beta phase in the Ti60Cr40 alloy at 873 K is not feasible because delta-G is positive at the temperature. However, delta-G may become negative with additional excess free energy to the beta phase in the form of defects.

  1. In vitro cytotoxicity of Fe-Cr-Nb-B magnetic nanoparticles under high frequency electromagnetic field

    NASA Astrophysics Data System (ADS)

    Chiriac, Horia; Petreus, Tudor; Carasevici, Eugen; Labusca, Luminita; Herea, Dumitru-Daniel; Danceanu, Camelia; Lupu, Nicoleta

    2015-04-01

    The heating potential, cytotoxicity, and efficiency of Fe68.2Cr11.5Nb0.3B20 magnetic nanoparticles (MNPs), as such or coated with a chitosan layer, to decrease the cell viability in a cancer cell culture model by using high frequency alternating magnetic fields (AMF) have been studied. The specific absorption rate varied from 215 W/g for chitosan-free MNPs to about 190 W/g for chitosan-coated ones, and an equilibrium temperature of 46 °C was reached when chitosan-coated MNPs were subjected to AMF. The chitosan-free Fe68.2Cr11.5Nb0.3B20 MNPs proved a good biocompatibility and low cytotoxicity in all testing conditions, while the chitosan-coated ones induced strong tumoricidal effects when a cell-particle simultaneous co-incubation approach was used. In high frequency AMF, the particle-mediated heat treatment has proved to be a critical cause for decreasing in vitro the viability of a cancer cell line.

  2. Super-High Temperature Alloys and Composites from NbW-Cr Systems

    SciTech Connect

    Shailendra Varma

    2008-12-31

    Nickel base superalloys must be replaced if the demand for the materials continues to rise for applications beyond 1000{sup o}C which is the upper limit for such alloys at this time. There are non-metallic materials available for such high temperature applications but they all present processing difficulties because of the lack of ductility. Metallic systems can present a chance to find materials with adequate room temperature ductility. Obviously the system must contain elements with high melting points. Nb has been chosen by many investigators which has a potential of being considered as a candidate if alloyed properly. This research is exploring the Nb-W-Cr system for the possible choice of alloys to be used as a high temperature material.

  3. Characterization and High-Temperature Oxidation Behavior of Cold-Sprayed Ni-20Cr and Ni-50Cr Coatings on Boiler Steels

    NASA Astrophysics Data System (ADS)

    Bala, Niraj; Singh, Harpreet; Prakash, Satya

    2011-11-01

    Microstructure and mechanical properties of cold-spray coatings are usually required in order to explore the potential industrial application of the latter. This article demonstrates the successful formulation of Ni-20Cr and Ni-50Cr coatings on two boiler steels, namely, SAE 213-T22 and SA 516 steel by cold-spray process. The microstructure, coating thickness, phase formation, and microhardness properties of the coatings were evaluated. The coatings were subjected to cyclic heating and cooling cycles at an elevated temperature of 1173.15 K (900 °C) to ascertain their high-temperature oxidation behavior. Moreover, these cyclic exposures can give useful information regarding the adhesion of the coatings with the substrate steels. Of all the coatings, the Ni-50Cr coating on SA 516 steel had a maximum average hardness value of 469 Hv. As observed from the surface field emission-scanning electron microscopy (FE-SEM) analysis, the coatings were found to have nearly dense microstructure with the sprayed particles in interlocked positions. It was concluded that the cold-spray process is suitable for spraying the preceding powders onto the given boiler steels to produce nearly dense and low oxide coatings. The coatings, in general, were found to follow the parabolic rate of oxidation and were successful in maintaining their surface contact with their respective substrate steels.

  4. High pressure synthesis and properties of Bi{sub 0.5}Pb{sub 0.5}CrO{sub 3}: A novel Cr{sup 4+}/Cr{sup 3+} perovskite

    SciTech Connect

    Pirrotta, Ivan; Schmidt, Rainer; Morán, Emilio; and others

    2015-05-15

    We have synthesized a new Bi{sub 0.5}Pb{sub 0.}5CrO{sub 3} perovskite phase by means of a high pressure reaction at 70 kbar and 1000 °C. The distorted orthorhombic perovskite structure can be indexed in the space group Pnma with lattice parameters a=5.4768 (1) Å, b=7.7450 (2) Å, and c=5.4574 (1) Å at room temperature, but undergoes a structural phase transition and enters into a P2{sub 1}/m monoclinic distorted perovskite phase below 150 K with a=5.4173 (2), b=7.7286 (4) and c=5.4930 (3). The structural transition is coincident with the onset of magnetic interactions. At lower temperatures a weak ferromagnetic structure is evident related to antiferromagnetic Cr-spin canting and a spin-glass transition is observed at ≈40 K. The semiconducting-type electrical resistivity is relatively low, associated with Cr{sup 3+}/Cr{sup 4+} electron hopping, and shows considerable magneto-resistance (up to 15%). Due to the low resistivity the dielectric permittivity ε{sub r} could be determined only below T<80 K to be ≈300 and did not show any strong temperature-dependence. Ferroelectricity was not detected in the T-range investigated and no magnetocapacitance effects were observed. - Graphical abstract: A new Bi{sub 0.5}Pb{sub 0.}5CrO{sub 3} perovskite phase has been synthesized under high pressure (70 kbar) and high temperature (1000 °C) conditions. The room temperature structure is orthorhombic and can be indexed in the space group Pnma but below 150 K undergoes a structural phase transition and enters into a P2{sub 1}/m monoclinic distorted perovskite phase. The structural transition is coincident with the onset of magnetic interactions. Mott variable-range hopping charge transport and magnetoresistance effects are evident. - Highlights: • A new Bi{sub 0.5}Pb{sub 0.}5CrO{sub 3} perovskite has been synthesized under HP/HT conditions. • An orthorhombic-to monoclinic phase transition takes place at 150 K. • The structural transition is coincident with the onset

  5. The nano-particle dispersion strengthening of V-4Cr-4Ti alloys for high temperature application in fusion reactors

    NASA Astrophysics Data System (ADS)

    Zheng, Pengfei; Chen, Jiming; Xu, Zengyu; Duan, Xuru

    2013-10-01

    V-4Cr-4Ti was identified as an attractive structural material for Li blanket in fusion reactors. However, both high temperature and irradiation induced degradation are great challenges for this material. It was thought that the nano-particles with high thermal stability can efficiently strengthen the alloy at elevated temperatures, and accommodate the irradiation induced defects at the boundaries. This study is a starting work aiming at improving the creep resistance and reducing the irradiation induced degradation for V-4Cr-4Ti alloy. Currently, we focus on the preparation of some comparative nano-particle dispersion strengthened V-4Cr-4Ti alloys. A mechanical alloying (MA) route is used to fabricate yttrium and carbides added V-4Cr-4Ti alloys. Nano-scale yttria, carbides and other possible particles have a combined dispersion-strengthening effect on the matrices of these MA-fabricated V-4Cr-4Ti alloys. High-temperature annealing is carried out to stabilize the optimized nano-particles. Mechanical properties are tested. Microstructures of the MA-fabricated V-4Cr-4Ti alloys with yttrium and carbide additions are characterized. Based on these results, the thermal stability of different nano-particle agents are classified. ITER related China domestic project 2011GB108007.

  6. High energy forming facility

    NASA Technical Reports Server (NTRS)

    Ciurlionis, B.

    1967-01-01

    Watertight, high-explosive forming facility, 25 feet in diameter and 15 feet deep, withstands repeated explosions of 10 pounds of TNT equivalent. The shell is fabricated of high strength steel and allows various structural elements to deform or move elastically and independently while retaining structural integrity.

  7. Crystallography and elastic energy analysis of VN precipitates in Fe-Mn-Si-Cr shape memory alloys

    SciTech Connect

    Farjami, Susan . E-mail: sfarjami@stu.material.tohoku.ac.jp; Hiraga, Kenji; Kubo, Hiroshi

    2005-01-10

    High-resolution electron microscopy investigations are carried out to describe the morphology and crystallography of VN precipitates which are formed in an Fe-28Mn-6Si-5Cr (mass%) shape memory alloy. It is revealed that the shape change from a cube with (1 0 0) interfaces to an octahedral shape with (1 1 1) interfaces occurs on aging in the precipitate. In order to identify the equilibrium shape of the VN precipitate, elastic strain energy of the precipitate has been estimated on the basis of microscopic theory of elasticity. It is found that a coherent precipitate ({approx}4 nm in edge width) in a cube shape with (1 0 0) surfaces can be formed, at an early stage of precipitation, with no misfit dislocations existing at the interface of the precipitate. It is also shown that the octahedral-shaped precipitate ({approx}15 nm in edge width) has a minimum elastic energy, among the cube-shaped, sphere-shaped and octahedron-shaped precipitates, only when the misfit dislocations are introduced at the interfaces. The elastic interaction energy between the misfit dislocations and the precipitate-misfit dislocations is estimated for the first time using the Fourier transformed microscopic theory of elasticity.

  8. The Cr(+)-D(2) cation complex: Accurate experimental dissociation energy, intermolecular bond length, and vibrational parameters.

    PubMed

    Dryza, V; Bieske, E J

    2009-10-28

    The infrared spectrum of the T-shaped (52)Cr(+)-D(2) complex is measured over the 2742-2820 cm(-1) range by detecting Cr(+) photofragments. The main band, due to the D-D stretch excitation, is shifted at 215 cm(-1) to lower energy from the Q(0) (1) transition of the free D(2) molecule and displays clearly resolved rovibrational transitions. Observation of a photodissociation onset for the N(')=8 rotational level is used to infer that the dissociation energy of Cr(+)-D(2), with respect to ground-state Cr(+) and D(2) fragments, lies between 2839.7 and 2856.9 cm(-1). Perturbations to the upper state levels are presumed to arise from interactions with quasibound combination levels involving the intermolecular stretch and bend vibrational modes. A vibrationally averaged Cr(+)...D(2) separation of 2.023 A and an estimate of 394 cm(-1) for the intermolecular harmonic stretching frequency are derived from the measured rotational constants.

  9. Cr stable isotope fractionation and reaction kinetics in aqueous milieu

    NASA Astrophysics Data System (ADS)

    Zink, S.; Schoenberg, R.; Staubwasser, M.

    2009-12-01

    using H2O2 as reducing agent. The observed, small Cr isotope fractionation can not be explained by one, unidirectional oxidation process. The high energy needed to oxidise Cr(III) to Cr(VI), potential Cr(III) oligomerisation and the formation of Cr(IV) and/or Cr(V) intermediates make the oxidation of Cr(III) to Cr(VI) a very complex fractionation mechanism. Our best-fit modelling points to an overall isotope fractionation Δ(53,52Cr)Cr(VI)-Cr(III) of +0.15 ‰ during the different oxidation steps, which is overprinted by a much larger isotope fractionation Δ(53,52Cr)Cr(III)-Cr(VI) of -3.4 ‰ during the back reduction of approximately 15 % of the chromium. No isotope exchange between soluble Cr(VI) and Cr(III) species at pH values of 5.5 and 7 was revealed by our experiments over a timescale of 120 hours. This observation is in good agreement with the lack of isotope exchange between oxygen bound in dissolved chromate CrO42- and that of the surrounding water [3]. [1] Schoenberg, R. et al. (2008) Chemical Geology, 249, 294ff. [2] Ellis, A. et al. (2002) Science, 295, 2060ff. [3] Bullen, T. et al. (2009) Geochim. Cosmochim. Acta, 73 (13), Suppl. 1, A173

  10. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    SciTech Connect

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar; Ozcan, Aydogan

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  11. High-Power Diode Laser Surface Treated HVOF Coating to Combat High Energy Particle Impact Wear

    NASA Astrophysics Data System (ADS)

    Mann, B. S.; Arya, Vivek; Pant, B. K.

    2013-07-01

    High-velocity oxy-fuel (HVOF)-sprayed coatings have performed exceptionally well in low-energy particle impact wear and are accepted worldwide. However, their application for high-energy particle impact wear (HEPIW) requires a different approach and more efforts. HVOF-coating systems typically use WC-Co, WC-Co-Cr, WC-Ni-Cr, and FeCrAlY-Cr3C2 powders. WC-Co-Cr powders are preferred when there is a high demand for corrosion resistance. WC-10Co-4Cr coating powder has been selected in the current study. To improve coating properties such as microhardness, fracture toughness, and HEPIW resistance, a new approach of surface treatment with robotically controlled high-power diode laser (HPDL) is attempted. The robotically controlled HVOF-coating deposition and laser surface treatment were monitored using real-time diagnostic control. The HPDL-treated coating has been compared with "as-sprayed" HVOF coating for HEPIW resistance, fracture toughness, microhardness and microstructure. The coating characteristics and properties after laser surface treatment have improved many times compared with "as-sprayed" HVOF coating. This is due to the elimination of pores in the coating and formation of a metallurgical bond between coating and substrate. This new development opens up a possibility of using such laser treatments in specialized areas where HEPIW damages are acute. The fracture toughness and HEPIW resistance along with optical micrographs of HPDL-treated and untreated HVOF coatings are discussed and reported in this article. HEPIW resistance is observed to be proportional to the product of fracture toughness and microhardness of the HVOF coating.

  12. Weldability of a high entropy CrMnFeCoNi alloy

    DOE PAGESBeta

    Wu, Zhenggang; David, Stan A.; Feng, Zhili; Bei, Hongbin

    2016-07-19

    We present the high-entropy alloys are unique alloys in which five or more elements are all in high concentrations. In order to determine its potential as a structural alloy, a model face-centered-cubic CrMnFeCoNi alloy was selected to investigate its weldability. Welds produced by electron beam welding show no cracking. The grain structures within the fusion zone (FZ) are controlled by the solidification behavior of the weld pool. The weldment possesses mechanical properties comparable to those of the base metal (BM) at both room and cryogenic temperatures. Finally, compared with the BM, deformation twinning was more pronounced in the FZ ofmore » the tested alloy.« less

  13. Heat treated 9 Cr-1 Mo steel material for high temperature application

    DOEpatents

    Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-08-21

    The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.

  14. Non-instantaneous growth characteristics of martensitic transformation in high Cr ferritic creep-resistant steel

    NASA Astrophysics Data System (ADS)

    Liu, Chenxi; Shao, Yi; Chen, Jianguo; Liu, Yongchang

    2016-08-01

    Microstructural observation and high-resolution dilatometry were employed to investigate kinetics of martensitic transformation in high Cr ferritic creep-resistant steel upon different quenching/cooling rates. By incorporating the classical athermal nucleation and impingement correction, a non-instantaneous growth model for martensitic transformation has been developed. The developed model describes austenite/martensite interface mobility during martensite growth. The growth rate of martensite is found to be varied from 1 × 10-6 to 3 × 10-6 m/s. The low interface mobility suggests that it is not appropriate to presume the instantaneous growth behavior of martensite. Moreover, based on the proposed model, nucleation rate of martensite under different cooling rates is found to be nearly the same, while the growth rate of martensite is promoted by increasing the cooling rate.

  15. Electrochemical Study of Ni20Cr Coatings Applied by HVOF Process in ZnCl2-KCl at High Temperatures

    PubMed Central

    Porcayo-Calderón, J.; Sotelo-Mazón, O.; Casales-Diaz, M.; Ascencio-Gutierrez, J. A.; Salinas-Bravo, V. M.; Martinez-Gomez, L.

    2014-01-01

    Corrosion behavior of Ni20Cr coatings deposited by HVOF (high velocity oxygen-fuel) process was evaluated in ZnCl2-KCl (1 : 1 mole ratio) molten salts. Electrochemical techniques employed were potentiodynamic polarization curves, open circuit potential, and linear polarization resistance (LPR) measurements. Experimental conditions included static air and temperatures of 350, 400, and 450°C. 304-type SS was evaluated in the same conditions as the Ni20Cr coatings and it was used as a reference material to assess the coatings corrosion resistance. Coatings were evaluated as-deposited and with a grinded surface finished condition. Results showed that Ni20Cr coatings have a better corrosion performance than 304-type SS. Analysis showed that Ni content of the coatings improved its corrosion resistance, and the low corrosion resistance of 304 stainless steel was attributed to the low stability of Fe and Cr and their oxides in the corrosive media used. PMID:25210645

  16. Recrystallization Behavior of CoCrCuFeNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Park, Nokeun; Watanabe, Ikuto; Terada, Daisuke; Yokoyama, Yoshihiko; Liaw, Peter K.; Tsuji, Nobuhiro

    2015-04-01

    We investigated the recrystallization behavior of a cold-rolled CoCrCuFeNi high-entropy alloy (HEA). Two different face-centered cubic phases having different chemical compositions and lattice constants in the as-cast specimen have different chemical compositions: One phase was the Cu-lean matrix and the other was the Cu-rich second phase. The second phase remained even after a heat treatment at 1373 K (1100 °C) and Cu enriched more in the Cu-rich second phase. The calculated mixing enthalpies of both Cu-lean and Cu-rich phases in the as-cast and heat-treated specimens explained that Cu partitioning during the heat treatment decreased the mixing enthalpy in both phases. In the specimens 90 pct cold rolled and annealed at 923 K, 973 K, and 1073 K (650 °C, 700 °C, and 800 °C), recrystallization proceeded with increasing the annealing temperature, and ultrafine recrystallized grains with grain sizes around 1 μm could be obtained. The microhardness tended to decrease with increasing the fraction recrystallized, but it was found that the microhardness values of partially recrystallized specimens were much higher than those expected by a simple rule of mixture between the initial and cold-rolled specimens. The reason for the higher hardness was discussed based on the ultrafine grain size, sluggish diffusion expected in HEAs, and two-phase structure in the CoCrCuFeNi alloy.

  17. Study of mechanical properties and high temperature oxidation behavior of a novel cold-spray Ni-20Cr coating on boiler steels

    NASA Astrophysics Data System (ADS)

    Kaur, Narinder; Kumar, Manoj; Sharma, Sanjeev K.; Kim, Deuk Young; Kumar, S.; Chavan, N. M.; Joshi, S. V.; Singh, Narinder; Singh, Harpreet

    2015-02-01

    In the current investigation, high temperature oxidation behavior of a novel cold-spray Ni-20Cr nanostructured coating was studied. The nanocrystalline Ni-20Cr powder was synthesized by the investigators using ball milling, which was deposited on T22 and SA 516 steels by cold spraying. The crystallite size based upon Scherrer's formula for the developed coatings was found to be in nano-range for both the substrates. The accelerated oxidation testing was performed in a laboratory tube furnace at a temperature 900 °C under thermal cyclic conditions. Each cycle comprised heating for one hour at 900 °C followed by cooling for 20 min in ambient air. The kinetics of oxidation was established using weight change measurements for the bare and the coated steels. The oxidation products were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS) and X-ray mapping techniques. It was found from the results that the coating was successful in reducing the weight gain of SA213-T22 and SA 516-Grade 70 steel by 71% and 94%, respectively. This may be attributed to relatively denser structure, lower porosity and lower oxide content of the coating. Moreover, the developed nano-structured Ni-20Cr powder coating was found to perform better than its counterpart micron-sized Ni-20Cr powder coating, in terms of offering higher oxidation resistance and hardness.

  18. Investigation of the mechanical properties of FeNiCrMnSi high entropy alloy wear resistant

    NASA Astrophysics Data System (ADS)

    Buluc, G.; Florea, I.; Chelariu, R.; Popescu, G.; Carcea, I.

    2016-06-01

    In this paper we investigated microstructure, hardness and wear resistance for FeNiCrMnAl, high entropy alloy. The FeNiCrMnSi, high entropy alloy was elaborated in a medium induction furnace, by choosing the silicon, as an alliance element within the equi- atomic high entropy alloy, we managed to obtain a dendritic structure, the formation of intermetallic compounds or separated silicon. The medium hardness value of the investigated alloy was 948.33 HV and the medium value of the friction coefficient was 0.6655 in the first 20 seconds and 0.5425 for 1667 seconds. The volume loss of the high entropy alloy FeNiCrMnSi was 0.0557 mm3.

  19. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    DOE PAGESBeta

    Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman; Hofstetter, Michael; Venkatesan, Sriram; Wochnik, Angela; Gullikson, Eric M.; Fischer, Stefan; Nickel, Bert; Scheu, Christina; et al

    2014-01-20

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assistedmore » interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.« less

  20. High Temperature Erosive Wear Study of NiCrFeSiB Flame Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Sharma, S.

    2012-04-01

    In the present work erosive wear behavior of NiCrFeSiB coating deposited by flame spraying process was studied. The microstructure, porosity and hardness of the coatings have been evaluated. The high temperature (150, 300 and 450 °C) erosive wear behavior of these coatings was studied under 30, 60 and 90° impact angles against 30, 45 and 60 m/s velocity. The erosive wear was found to increase with the increase in velocity of the erodent and decrease with the increase of impact angle. The erosive wear resistance of the coating is higher than the substrate. The erosive wear of the coating was 4-5 times lower than the substrate. Scanning Electron Microscopy (SEM) analysis was carried out to determine the material removal mechanisms. The ductile fracture and platelets were revealed as the material removal mechanisms in these coatings.

  1. Sliding wear, toughness and microstructural relationships in high strength Fe/Cr/C experimental steels

    SciTech Connect

    Salesky, W.J.

    1980-06-01

    Hardness has been believed to be the major parameter influencing wear resistance of materials. Recently, it was suggested that combinations of high strength and toughness may lead to optimum wear resistance. It is known that the martensite transformation can be exploited to provide a variety of strength-toughness combinations. Small additions of Mn or Ni to the Fe/4Cr/.3C martensitic alloys have been shown to increase toughness while maintaining strength via increasing the volume fraction of retained austenite. An investigation of the relationships between microstructure, toughness, and sliding wear resistance for these experimental alloys is reported. Comparative studies were performed on several industrial alloys to provide a practical basis for comparison of these medium carbon experimental steels.

  2. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    SciTech Connect

    Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman; Hofstetter, Michael; Venkatesan, Sriram; Wochnik, Angela; Gullikson, Eric M.; Fischer, Stefan; Nickel, Bert; Scheu, Christina; Kleineberg, Ulf

    2014-01-20

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assisted interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.

  3. Future of high energy physics

    SciTech Connect

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e/sup -/ colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place.

  4. High energy physics

    SciTech Connect

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R&D on silicon microstrip tracking devices for the SSC. High statistics studies of Z{sup 0} decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPF will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka`s program includes a detailed investigation of the magnetic-flip approach to the solar neutrino.

  5. Sorption of Cr(III) and Cr(VI) to High and Low Pressure Synthetic Nano-Magnetite (Fe3O4)Particles

    PubMed Central

    Parsons, Jason G.; Hernandez, Jeffrey; Gonzalez, Christina M.; Gardea-Torresdey, J. L.

    2014-01-01

    The binding of Cr(III) and Cr(VI) to synthetic nano-magnetie particles synthesized under open vessel conditions and a microwave assisted hydrothermal synthesis techniques was investigated. Batch studies showed that the binding of both the Cr(III) and Cr(VI) bound to the nano-materials in a pH dependent manner. The Cr(III) maximized at binding at pH 4 and 100% binding. Similarly, the Cr(VI) ions showed a maximum binding of 100% at pH 4. The data from the time dependency studies showed for the most part the majority of the binding occurred within the first 5 minutes of contact with the nanomaterial and remained constant thereafter. In addition, the effects of the possible interferences were investigated which showed some effects on the binding of both Cr(III) and Cr(VI). However, the interferences never completely eliminated the chromium binding. Isotherm studies conducted at room temperature showed the microwave synthesized nanomaterials had a binding capacity of 1208 ± 43.9 mg/g and 555 ± 10.5 mg/g for Cr(VI) and Cr(III), respectively. However, the microwave assisted synthesized nanomaterials had capacities of 1705 ± 14.5 and 555± 10.5 mg/g for Cr(VI) and Cr(III), respectively. XANES studies showed the Cr(VI) was reduced to Cr(III), and the Cr(III) remained as Cr(III). In addition, the XANES studies indicated that the chromium remained coordinated in an octahedral arrangement of oxygen atoms. PMID:25097452

  6. Manufacture of thick VPS W coatings on relatively large CuZrCr substrate and its steady high heat load performance

    NASA Astrophysics Data System (ADS)

    Deng, Chunming; Liu, Min; Yang, Zhenxiao; Deng, Changguang; Zhou, Kesong; Kuang, Ziqi; Zhang, Jifu

    2014-12-01

    W material is considered as one of potential Plasma Facing Materials (PFMs) for its high melting point, excellent stability at elevated temperature, good thermal conductivity, excellent anti-plasma sputtering and low Tritium retention. Functionally graded W/Cu coating was applied on CuCrZr substrate (250 mm × 120 mm × 30 mm) with compositionally gradient W/Cu as bond coat (0.4-0.6 mm) and 1.5 mm thick W coating as top coat via Vacuum Plasma Spraying (VPS) for continuous deposition of 5 h. Microstructure, chemical composition, porosity and adhesive strength for as sprayed thick W coating on the CuCrZr substrate were characterized by means of SEM, ICP-MS, Mercury Intrusion Porosimeter and tensile strength tester. The steady high heat load (HHL) performance for W/Cu functional gradient coating was evaluated by high energy electron beam. The results showed that thick VPS W coated CuCrZr substrate can withstand the steady high heat load at the electron beam power density of 9 MW/m2 for 1000 cycles.

  7. Energy spectra of high energy atmospheric neutrinos

    NASA Technical Reports Server (NTRS)

    Mitsui, K.; Minorikawa, Y.

    1985-01-01

    Focusing on high energy neutrinos ( or = 1 TeV), a new calculation of atmospheric neutrino intensities was carried out taking into account EMC effects observed in P-A collisions by accelerator, recent measurement of primary cosmic ray spectrum and results of cosmic ray muon spectrum and charge ratio. Other features of the present calculation are (1) taking into account kinematics of three body decays of kaons and charm particles in diffusion equations and (2) taking into account energy dependence of kaon production.

  8. Thermodynamics of Cr2O3, FeCr2O4, ZnCr2O4 and CoCr2O4

    SciTech Connect

    Ziemniak SE, Anovitz LM, Castelli RA, Porter WD

    2007-01-09

    High temperature heat capacity measurements were obtained for Cr{sub 2}O{sub 3}, FeCr{sub 2}O{sub 4}, ZnCr{sub 2}O{sub 4} and CoCr{sub 2}O{sub 4} using a differential scanning calorimeter. These data were combined with previously-available, overlapping heat capacity data at temperatures up to 400 K and fitted to 5-parameter Maier-Kelley C{sub p}(T) equations. Expressions for molar entropy were then derived by suitable integration of the Maier-Kelley equations in combination with recent S{sup o}(298) evaluations. Finally, a database of high temperature equilibrium measurements on the formation of these oxides was constructed and critically evaluated. Gibbs energies of Cr{sub 2}O{sub 3}, FeCr{sub 2}O{sub 4} and CoCr{sub 2}O{sub 4} were referenced by averaging the most reliable results at reference temperatures of 1100, 1400 and 1373 K, respectively, while Gibbs energies for ZnCr{sub 2}O{sub 4} were referenced to the results of Jacob [Thermochim. Acta 15 (1976) 79-87] at 1100 K. Thermodynamic extrapolations from the high temperature reference points to 298.15 K by application of the heat capacity correlations gave {Delta}{sub f}G{sup o}(298) = -1049.96, -1339.40, -1428.35 and -1326.75 kJ mol{sup -1} for Cr{sub 2}O{sub 3}, FeCr{sub 2}O{sub 4}, ZnCr{sub 2}O{sub 4} and CoCr{sub 2}O{sub 4}, respectively.

  9. Microstructure and Wear Behavior of High-Cr WCI Matrix Surface Composite Reinforced with Cemented Carbide Rods

    NASA Astrophysics Data System (ADS)

    Hou, Shuzeng; Bao, Chonggao; Zhang, Zhiyun; Bai, Yaping

    2013-07-01

    The present article reports a new superior wear resistance surface composite prepared by a vacuum evaporative pattern casting-in process. This surface composite was constructed with reinforcing cemented carbide rod (CCR) array within high-Cr white cast iron (WCI) matrix. Three reaction zones that formed around the CCRs were characterized and established the good metallurgical bonding between CCRs and matrix. In addition, some compound carbide containing Fe, Cr, W, and Co elements were formed in the reaction zones, owing to the partial dissolution of the CCRs and the resulting interdiffusion of elements such as W, Co, C, Fe, and Cr. The wear behavior of the composite was evaluated and compared with unreinforced high-Cr WCI by means of a three-body abrasive wear tester. The results showed that the wear resistance of the composite was significantly higher than that of the unreinforced high-Cr WCI. The exciting wear resistance can be ascribed to protective effect introduced by the CCRs during wear process and the good metallurgical bonding between CCRs and matrix.

  10. Highly tunable magnetism in silicene doped with Cr and Fe atoms under isotropic and uniaxial tensile strain

    SciTech Connect

    Zheng, Rui; Ni, Jun; Chen, Ying

    2015-12-28

    We have investigated the magnetic properties of silicene doped with Cr and Fe atoms under isotropic and uniaxial tensile strain by the first-principles calculations. We find that Cr and Fe doped silicenes show strain-tunable magnetism. (1) The magnetism of Cr and Fe doped silicenes exhibits sharp transitions from low spin states to high spin states by a small isotropic tensile strain. Specially for Fe doped silicene, a nearly nonmagnetic state changes to a high magnetic state by a small isotropic tensile strain. (2) The magnetic moments of Fe doped silicene also show a sharp jump to ∼2 μ{sub B} at a small threshold of the uniaxial strain, and the magnetic moments of Cr doped silicene increase gradually to ∼4 μ{sub B} with the increase of uniaxial strain. (3) The electronic and magnetic properties of Cr and Fe doped silicenes are sensitive to the magnitude and direction of the external strain. The highly tunable magnetism may be applied in the spintronic devices.

  11. Strain rate sensitivity of nanoindentation creep in an AlCoCrFeNi high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Jiao, Z. M.; Wang, Z. H.; Wu, R. F.; Qiao, J. W.

    2016-09-01

    Creep behaviors of an AlCoCrFeNi high-entropy alloy with the body-centered cubic structure were investigated by nanoindentation. The enhanced strain gradient induced by higher strain rate leads to decreased strain rate sensitivity during creep process. The present alloy exhibits excellent creep resistance, mainly due to its large entropy of mixing and highly distorted lattice structure.

  12. The AAVSO High Energy Network

    NASA Astrophysics Data System (ADS)

    Price, Aaron

    2004-06-01

    The AAVSO is expanding its International Gamma-Ray Burst Network to incorporate other high energy objects such as blazars and magnetic cataclysmic variables (polars). The new AAVSO High Energy Network will be collaborating with the Global Telescope Network (GTN) to observe bright blazars in support of the upcoming GLAST mission. We also will be observing polars in support of the XMM mission. This new network will involve both visual and CCD obsrvers and is expected to last for many years.

  13. Structural and magnetization behavior of highly spin polarized Co{sub 2}CrAl full Heusler alloy

    SciTech Connect

    Saha, S. N. Panda, J. Nath, T. K.

    2014-04-24

    The half metallic ferromagnet Co{sub 2}CrAl full Huesler alloy was successfully prepared by arc melting process. The electrical and magnetic properties of Co{sub 2}CrAl alloy have been studied in the temperature range of 5 – 300 K. The ferromagnetic Curie temperature T{sub c} of the same alloy has been observed at 329.8 K. The alloy shows semiconducting like electronic transport behavior throughout the studied temperature range. The origin of the semiconducting behavior of Co{sub 2}CrAl alloy can be best explained by the localization of conduction electrons and the presence of an energy gap in the electronic spectrum near the Fermi level E{sub F}.

  14. Optical and chemical behaviors of CR-39 and Makrofol plastics under low-energy electron beam irradiation

    NASA Astrophysics Data System (ADS)

    El-Saftawy, Ashraf Ali; Abd El Aal, Saad Ahmed; Hassan, Nabil Mohamed; Abdelrahman, Moustafa Mohamed

    2016-07-01

    In this study, CR-39 and Makrofol plastic nuclear track detectors were irradiated with low-energy electron beams to study the effect of the induced changes on their optical and chemical properties. Surface chemical changes were recorded by Fourier transform infrared (FTIR) spectroscopy, which showed successive degradation and crosslinking for CR-39 and decomposition for Makrofol. The optical band gap was determined by UV-vis spectroscopy. Also, the parameters of carbon cluster formation and disordering (Urbach’s energy) occurring on plastic surfaces were examined. The intrinsic viscosity changes were investigated as well. As a result, low-energy electron beams were found to be useful for the control of many properties of the surfaces of the investigated detectors.

  15. Development of an energy discriminate CR-39(®) nuclear track etch dosimeter for Radon-220 gas measurements.

    PubMed

    Brown, J M C; Solomon, S; Tinker, R A

    2011-10-01

    An energy discriminate CR-39(®) nuclear track etch dosimeter for use in a (220)Rn and (222)Rn gas monitor has been developed and experimentally assessed. It utilises a thin film of Mylar(®) C to attenuate the alpha particle energies to allow only the damage tracks created by the 8.785 MeV alpha particles emitted from (212)Po of the (232)Th decay chain to be registered in the CR-39(®) plaque, allowing for the direct measurement of (220)Rn gas concentrations. The dosimeter was developed through a combination of experimental investigations and theoretical simulations using the Monte Carlo ion transport modelling program Stopping and Range of Ions in Materials (SRIM 2008). A film thickness of 54 μm has been shown to attenuate all alpha energies less then 7.7 MeV. PMID:20980083

  16. Pressure-driven high to low spin transition in the bimetallic quantum magnet [Ru2(O2CMe)4]3[Cr(CN)6

    SciTech Connect

    O'Neal, K. R.; Liu, Z.; Miller, Joel S.; Fishman, Randy Scott; Musfeldt, J. L.

    2014-01-01

    Synchrotron-based infrared and Raman spectroscopies were brought together with diamond anvil cell techniques and an analysis of the magnetic properties to investigate the pressure-induced high low spin transition in [Ru2(O2CMe)4]3[Cr(CN)6]. The extended nature of the diruthenium wavefunction combined with coupling to chromium-related local lattice distortions changes the relative energies of the and orbitals and drives the high low spin transition on the mixed-valence diruthenium complex. This is a rare example of an externally controlled metamagnetic transition in which both spin-orbit and spin-lattice interactions contribute to the mechanism.

  17. A mixture of massive and feathery microstructures of Ti48Al2Cr2Nb alloy by high undercooled solidification

    SciTech Connect

    Liu, Yi; Hu, Rui Kou, Hongchao; Zhang, Tiebang; Wang, Jun; Li, Jinshan

    2015-02-15

    A mixture of massive and feathery microstructures was observed in Ti48Al2Cr2Nb alloy subjected to the undercooled solidification rather than the heat treatments in most cases. Double recalescence events and primary β solidification confirmed that massive γ phase did not directly nucleate from the undercooled melt but formed during the solid-state transformations. It is believed that small white areas (aluminium-poor) along lamellar grain boundaries may be closely related to the formation of massive γ phase and feathery γ phase. High dislocation density and stacking faults were detected in massive γ phase by transmission electron microscopy. The high energy of defects and undercooling in the solid state phase transformation can provide sufficiently high driving force for the nucleation of massive γ phase. - Graphical abstract: Display Omitted - Highlights: • A mixture of massive and feathery microstructures was observed. • Massive γ formed during the solid-state transformations. • Defects and undercooling provide driving force for the nucleation of massive γ.

  18. Microstructure investigation of 13Cr-2Mo ODS steel components obtained by high voltage electric discharge compaction technique

    DOE PAGESBeta

    Bogachev, Igor; Yudin, Artem; Grigoryev, Evgeniy; Chernov, Ivan; Staltsov, Maxim; Khasanov, Oleg; Olevsky, Eugene

    2015-11-02

    Refractory oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated to near theoretical density using high voltage electric discharge compaction. Cylindrical samples with relative density from 90% to 97% and dimensions of 10 mm in diameter and 10–15 mm in height were obtained. Consolidation conditions such as pressure and voltage were varied in some ranges to determine the optimal compaction regime. Three different concentrations of yttria were used to identify its effect on the properties of the samples. It is shown that the utilized ultra-rapid consolidation process in combination with high transmitted energy allows obtaining high density compacts, retaining themore » initial structure with minimal grain growth. The experimental results indicate some heterogeneity of the structure which may occur in the external layers of the tested samples due to various thermal and electromagnetic in-processing effects. As a result, the choice of the optimal parameters of the consolidation enables obtaining samples of acceptable quality.« less

  19. Comparative characteristic and erosion behavior of NiCr coatings deposited by various high-velocity oxyfuel spray processes

    NASA Astrophysics Data System (ADS)

    Sidhu, Hazoor Singh; Sidhu, Buta Singh; Prakash, S.

    2006-12-01

    The purpose of this study is to analyze and compare the mechanical properties and microstructure details at the interface of high-velocity oxyfuel (HVOF)-sprayed NiCr-coated boiler tube steels, namely ASTM-SA-210 grade A1, ASTM-SA213-T-11, and ASTM-SA213-T-22. Coatings were developed by two different techniques, and in these techniques liquefied petroleum gas was used as the fuel gas. First, the coatings were characterized by metallographic, scanning electron microscopy/energy-dispersive x-ray analysis, x-ray diffraction, surface roughness, and microhardness, and then were subjected to erosion testing. An attempt has been made to describe the transformations taking place during thermal spraying. It is concluded that the HVOF wire spraying process offers a technically viable and cost-effective alternative to HVOF powder spraying process for applications in an energy generation power plant with a point view of life enhancement and to minimize the tube failures because it gives a coating having better resistance to erosion.

  20. The Cr+-D2 cation complex: Accurate experimental dissociation energy, intermolecular bond length, and vibrational parameters

    NASA Astrophysics Data System (ADS)

    Dryza, V.; Bieske, E. J.

    2009-10-01

    The infrared spectrum of the T-shaped C52r+-D2 complex is measured over the 2742-2820 cm-1 range by detecting Cr+ photofragments. The main band, due to the D-D stretch excitation, is shifted at 215 cm-1 to lower energy from the Q01 transition of the free D2 molecule and displays clearly resolved rovibrational transitions. Observation of a photodissociation onset for the N'=8 rotational level is used to infer that the dissociation energy of Cr+-D2, with respect to ground-state Cr+ and D2 fragments, lies between 2839.7 and 2856.9 cm-1. Perturbations to the upper state levels are presumed to arise from interactions with quasibound combination levels involving the intermolecular stretch and bend vibrational modes. A vibrationally averaged Cr+⋯D2 separation of 2.023 Å and an estimate of 394 cm-1 for the intermolecular harmonic stretching frequency are derived from the measured rotational constants.

  1. Post-synthetic modification of MIL-101(Cr) with pyridine for high-performance liquid chromatographic separation of tocopherols.

    PubMed

    Yang, Fang; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2015-05-01

    Effective separation of tocopherols is challenging and significant due to their structural similarity and important biological role. Here we report the post-synthetic modification of metal-organic framework (MOF) MIL-101(Cr) with pyridine for high-performance liquid chromatographic (HPLC) separation of tocopherols. Baseline separation of four tocopherols was achieved on a pyridine-grafted MIL-101(Cr) packed column within 10 min using hexane/isopropanol (96:4, v/v) as the mobile phase at a flow rate of 0.5 mL min(-1). The pyridine-grafted MIL-101(Cr) packed column gave high column efficiency (85,000 plates m(-1) for δ-tocopherol) and good precision (0.2-0.3% for retention time, 1.8-3.4% for peak area, 2.6-2.7% for peak height), and also offered much better performance than unmodified MIL-101(Cr) and commercial amino-bonded silica packed column for HPLC separation of tocopherols. The results not only show the promising application of pyridine-grafted MIL-101(Cr) as a novel stationary phase for HPLC separation of tocopherols, but also reveal a facile post-modification of MOFs to expand the application of MOFs in separation sciences.

  2. Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components

    NASA Astrophysics Data System (ADS)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Chen, Lei; Cheng, Zhengkui; Wang, Jin; Chen, Jiming

    2016-02-01

    Water-cooled flat-type W/CuCrZr plasma facing components with an interlayer of oxygen-free copper (OFC) have been developed by using vacuum brazing route. The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150 °C-1200 °C in a vacuum furnace. The W/OFC cast tiles were vacuum brazed to a CuCrZr heat sink at 940 °C using the silver-free filler material CuMnSiCr. The microstructure, bonding strength, and high heat flux properties of the brazed W/CuCrZr joint samples were investigated. The W/Cu joint exhibits an average tensile strength of 134 MPa, which is about the same strength as pure annealed copper. High heat flux tests were performed in the electron beam facility EMS-60. Experimental results indicated that the brazed W/CuCrZr mock-up experienced screening tests of up to 15 MW/m2 and cyclic tests of 9 MW/m2 for 1000 cycles without visible damage. supported by National Natural Science Foundation of China (No. 11205049) and the National Magnetic Confinement Fusion Science Program of China (No. 2011GB110004)

  3. Synthesis and magnetic properties of the high-pressure scheelite-type GdCrO{sub 4} polymorph

    SciTech Connect

    Dos santos-Garcia, A.J.; Climent-Pascual, E.; Gallardo-Amores, J.M.; Rabie, M.G.; Doi, Y.; Romero de Paz, J.; Beuneu, B.

    2012-10-15

    The scheelite-type polymorph of GdCrO{sub 4} has been obtained from the corresponding zircon-type compound under high pressure and temperature conditions, namely 4 GPa and 803 K. The crystal structure has been determined by X-ray powder diffraction. This GdCrO{sub 4} scheelite crystallizes in a tetragonal symmetry with space group I4{sub 1}/a (No. 88, Z=4), a=5.0501(1) A, c=11.4533(2) A and V=292.099(7) A{sup 3}. The thermal decomposition leads to the formation of the zircon-polymorph as intermediate phase at 773 K to end in the corresponding GdCrO{sub 3} distorted perovskite-structure at higher temperatures. Magnetic susceptibility and magnetization measurements suggest the existence of long-range antiferromagnetic interactions which have been also confirmed from specific heat measurements. Neutron powder diffraction data reveal the simultaneous antiferromagnetic Gd{sup 3+} and Cr{sup 5+} ordering in the scheelite-type GdCrO{sub 4} with a T{sub N}{approx}20 K. The magnetic propagation vector was found to be k=(0 0 0). Combined with group theory analysis, the best neutron powder diffraction fit was obtained with a collinear antiferromagnetic coupling in which the m{sub Cr{sup 5}{sup +}} and m{sub Gd{sup 3}{sup +}} magnetic moments are confined in the tetragonal basal plane according to the mixed representation {Gamma}{sub 6} Circled-Plus {Gamma}{sub 8}. Thermal decomposition of the GdCrO{sub 4} high pressure polymorph, from the scheelite-type through the zircon-type structure as intermediate to end in the GdCrO{sub 3} perovskite. Highlights: Black-Right-Pointing-Pointer New high pressure GdCrO{sub 4} polymorph crystallizing in the scheelite type structure. Black-Right-Pointing-Pointer It is an antiferromagnet with a metamagnetic transition at low magnetic fields. Black-Right-Pointing-Pointer We have determined its magnetic structure from powder neutron diffraction data. Black-Right-Pointing-Pointer Otherwise, the room pressure zircon-polymorph is a ferromagnet

  4. High-pressure behaviour of Cr-Fe-Mg-Al spinels: applications to diamond geobarometry

    NASA Astrophysics Data System (ADS)

    Periotto, Benedetta; Bruschini, Enrico; Nestola, Fabrizio; Lenaz, Davide; Princivalle, Francesco; Andreozzi, Giovanni B.; Bosi, Ferdinando

    2014-05-01

    Spinels belonging to the chromite - magnesiochromite - hercynite (FeCr2O4-MgCr2O4-FeAl2O4) system are among the most common inclusions found in diamonds (Stachel and Harris 2008). In particular, although FeCr2O4 and MgCr2O4 components sum to between 85 and 88% of spinels found in diamonds, hercynite FeAl2O4 plays a not negligible role in determining their thermo-elastic properties with concentrations reaching 7-9 % (other minor end-members like MgAl2O4, MgFe2O4 and Fe2O3 rarely reach 2-3% in total, see Lenaz et al. 2009). Recent studies were focused on the determination of the diamond formation pressure by the so-called "elastic method" (see for example Nestola et al. 2011 and references therein). It was demonstrated that accurate and precise thermo-elastic parameters are fundamental to minimize the uncertainty of formation pressure. In this work we have determined the equations of state at room temperature of three synthetic spinel end-members chromite - magnesiochromite - hercynite and one natural spinel crystal extracted from a diamond (from Udachnaya mine, Siberia, Russia) by single-crystal X-ray diffraction in situ at high-pressure. A diamond-anvil cell was mounted on a STADI IV diffractometer equipped with a point detector and motorized by SINGLE software (Angel and Finger 2011). The natural crystal was investigated to test (and possibly validate) the "empirical prediction model", capable to provide bulk modulus and its first pressure derivative only knowing the composition of the spinels found in diamonds. Such prediction model could be used to obtain pressure of formation for the diamond-spinel pair through the elastic method. Details and results will be discussed. The research was funded by the ERC Starting Grant to FN (grant agreement n° 307322). References Angel R.J., Finger L.W. (2011) SINGLE A program to control single-crystal diffractometers. Journal of Applied Crystallography, 44, 247-251. Lenaz D., Logvinova A.M., Princivalle F., Sobolev N. (2009

  5. Oxidation Behavior of GRCop-84 (Cu-8Cr-4Nb) at Intermediate and High Temperatures

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.; Humphrey, Donald L.; Greenbauer-Seng, Leslie (Technical Monitor)

    2000-01-01

    The oxidation behavior of GRCop-84 (Cu-8 at %Cr-4 at %Nb) has been investigated in air and in oxygen, for durations of 0.5 to 50 hours and temperatures ranging from 500 to 900 C. For comparison, data was also obtained for the oxidation of Cu and NARloy-Z (Cu-3 wt% Ag-0.5 wt% Zr) under the same conditions. Arrhenius plots of those data showed that all three materials had similar oxidation rates at high temperatures (> 750 C). However, at intermediate temperatures (500 to 750 C) GRCop exhibited significantly higher oxidation resistance than Cu and NARloy-Z. The oxidation kinetics of GRCop-84 exhibited a sharp and discontinuous jump between the two regimes. Also, in the high temperature regime GRCop-84 oxidation rate was found to change from a high initial value to a significantly smaller terminal value at each temperature, with progress of oxidation; the two different oxidation rates were found to correlate with a porous intial oxide and a dense final oxide, respectively.

  6. A new method for separation and determination of Cr(III) and Cr(VI) in water samples by high-performance liquid chromatography based on anion exchange stationary phase of ionic liquid modified silica.

    PubMed

    Sadeghi, Susan; Moghaddam, Ali Zeraatkar

    2015-12-01

    In this work, N-methylimidazolium-chloride ionic liquid functionalized silica was prepared and used as an anion-exchange stationary phase for separation of chromium species by high-performance liquid chromatography (HPLC) with UV detection at 200 nm. The Cr(VI) as HCr2O7(-) and chelated Cr(III) with potassium hydrogen phthalate (PHP) as Cr(PHP)2 (-) was retained on the prepared column and separated using a mobile phase composed of 5% methanol in 25 mM phosphate buffer at pH 6.5. Several variables affecting the chelation/separation steps were modeled by response surface methodology (RSM) using Box-Behnken (BBD) design. The significance of the independent variables and their interactions were tested by the analysis of variances (ANOVA) with 95% confidence limit. Under the optimized conditions, the Cr(III) and Cr(VI) anionic species were well separated with a single peak for each Cr species at retention times of 2.3 and 4.3 min, respectively. The relationship between the peak area and concentration was linear in the range of 0.025-30 for Cr(III) and 0.5-20 mg L(-1) for Cr(VI) with detection limits of 0.010 and 0.210 mg L(-1) for Cr(III) and Cr(VI), respectively. The proposed method was validated by simultaneous separation and determination of the Cr species in tap and underground water samples without impose to any pretreatment. PMID:26526699

  7. Biosorption of Cr(VI) and As(V) at high concentrations by organic and inorganic wastes

    NASA Astrophysics Data System (ADS)

    María Rivas Pérez, Ivana; Paradelo Núñez, Remigio; Nóvoa Muñoz, Juan Carlos; Arias Estévez, Manuel; José Fernández Sanjurjo, María; Álvarez Rodríguez, Esperanza; Núñez Delgado, Avelino

    2016-04-01

    The potential reutilization of several wastes as biosorbents for As(V) and Cr(VI) has been assessed in batch-type experiments. The materials studied were one inorganic: mussel shell, and three organic: pine bark, oak ash and hemp waste. Batch experiments were performed in order to determine the removal capacity of the wastes under conditions of high As(V) and Cr(VI) loads. For this, 3 g of each waste material were added with 30 mL NaNO3 0.01 M dissolutions containing 0, 0.5, 1.5, 3 and 6 mmol As(V) L-1 or Cr(VI) L-1, prepared from analytical grade Na2HAsO4 or K2Cr2O7. The resulting suspensions were shaken for 24 h, centrifuged and filtered. Once each batch experiment corresponding to the sorption trials ended, each individual sample was added with 30 mL of NaNO3 0.01 M to desorb As(V) or Cr(VI), shaken for 24 h, centrifuged and filtered as in the sorption trials. Oak ash showed high sorption (>76%) and low desorption (<7%) for As(V), which was lower on mussel shell (<31%), hemp waste (<16%) and pine bark (<9.9%). In turn, pine bark showed the highest Cr(VI) sorption (>98%) with very low desorption (<0.5%), followed by oak ash (27% sorption), and hemp waste and mussel shell, that presented very low Cr(VI) sorption (<10%). Sorption data for both elements were better described by the Freundlich than by the Langmuir model. The variable results obtained for the removal of the two anionic contaminants for a given sorbent suggest that different mechanisms govern removal from the solution in each case. In summary, oak ash would be an efficient sorbent material for As(V), but not for Cr(VI), while pine bark would be the best sorbent for Cr(VI) removal.

  8. Isolation and Cr(VI) reduction characteristics of quinone respiration in Mangrovibacter plantisponsor strain CR1.

    PubMed

    Lian, Jing; Li, Zifu; Xu, Zhifang; Guo, Jianbo; Hu, Zhenzhen; Guo, Yankai; Li, Min; Yang, Jingliang

    2016-07-01

    A Cr(VI)-reducing Mangrovibacter plantisponsor strain, CR1, was isolated from tannery effluent sludge and had quinone respiration characteristics. Its chromate (CrO4 (2-) ) resistance, quinone respiration characteristics, and Cr(VI) reduction efficiencies were evaluated in detail. Strain CR1 exhibited a high Cr(VI) resistance with a minimal inhibitory concentration (MIC) of 32 mM in LB medium, and its quinone respiration could occur when an electron donor and strain CR1 both existed in the reaction system. Cr(VI) reduction by strain CR1 was significantly enhanced by a factor of 0.4-4.3 with five different quinone compounds: anthraquinone-2,7-disulfonate, anthraquinone-1-sulfonate, anthraquinone-2-sulfonate (AQS), anthraquinone-2,6-disulfonate, and anthraquinone-1,5-disulfonate. AQS was the best electron shuttle among them, and the greatest enhancement to the Cr(VI) bio-reduction was achieved with 0.96 mM AQS. The correlation between the reaction constant k (mg Cr(VI) g(-1) dry cell weight H(-1) ) and thermodynamic temperature T (K) was expressed as an Arrhenius equation lnk=-7662.9/T+27.931(R2=0.9486); the activation energy Ea was 63.71 kJ mol(-1) , and the pre-exponential factor A was 1.35 × 10(12)  mg Cr(VI) g(-1) dry cell weight H(-1) . During the Cr(VI) reduction process, the pH tended to become neutral, and the oxidation-reduction potential decreased to -440 mV. The efficient reduction of Cr(VI) mediated by a quinone respiration strain shows potential for the rapid anaerobic removal of Cr(VI).

  9. High speed imaging of an Er,Cr:YSGG laser in a model of a root canal

    NASA Astrophysics Data System (ADS)

    Verdaasdonk, Rudolf; Blanken, Jan; van Heeswijk, Hans; de Roode, Rowland; Klaessens, John

    2007-02-01

    Laser systems of various wavelengths and pulse characteristics have been introduced in dentistry. At present, the range of applications for the different systems is being investigated mainly differentiating between soft and hard tissue applications. For the preparation of root canals both hard and soft tissues are involved. Ideally, one would like to use one laser system for the whole treatment. In this study, we studied the characteristics of the pulsed 2,78 Er,Cr:YSGG laser (Biolase, Waterlase Millenium), in view of root canal cleaning and desinfection. The laser energy was fiber delivered with fiber tip diameters from 400 μm down to 200 μm. Special thermal and high speed imaging techniques were applied in a transparent model of a tapered root canal and slices cut from human teeth. High speed imaging revealed the dynamics of an explosive vapor bubble at the tip of the Er laser in water and the root canal model. Typically for Erbium lasers, within a time span of several hundred μs, a longitudinal bubble expanded to maximum size of 5 mm length and 2 mm diameter at 100 mJ and imploded afterwards. In the root canal, the explosive bubble created turbulent high speed water streaming which resects soft tissue from the hard tissue. Thermal imaging showed the dynamics of all lasers heating of the canal wall up to several mm depending on the wavelength and energy settings. The mechanism of smear layer removal and sterilization in the root canal, is attributed to cavitation effects induced by the pulsed laser. The heat generation into the dentine wall was minimal.

  10. High flux solar energy transformation

    DOEpatents

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  11. High flux solar energy transformation

    DOEpatents

    Winston, Roland; Gleckman, Philip L.; O'Gallagher, Joseph J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  12. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-10-01

    A 3D laser coating technology using Cr powder was developed for Zr-based alloys considering parameters such as: the laser beam power, inert gas flow, cooling of Zr-based alloys, and Cr powder control. This technology was then applied to Zr cladding tube samples to study the effect of Cr coating on the high-temperature oxidation of Zr-based alloys in a steam environment of 1200 °C for 2000s. It was revealed that the oxide layer thickness formed on the Cr-coated tube surface was about 25-times lower than that formed on a Zircaloy-4 tube surface. In addition, both the ring compression and the tensile tests were performed to evaluate the adhesion properties of the Cr-coated sample. Although some cracks were formed on the Cr-coated layer, the Cr-coated layer had not peeled off after the two tests.

  13. Effect of Strain Rate on Deformation Behavior of AlCoCrFeNi High-Entropy Alloy by Nanoindentation

    NASA Astrophysics Data System (ADS)

    Tian, L.; Jiao, Z. M.; Yuan, G. Z.; Ma, S. G.; Wang, Z. H.; Yang, H. J.; Zhang, Y.; Qiao, J. W.

    2016-06-01

    In this study, nanoindentation tests with continuous stiffness measurement technique were measured to investigate the deformation behavior of a high-entropy alloy AlCoCrFeNi under different indentation strain rates at room temperature. Results suggest that the creep behavior exhibits remarkable strain rate dependence. In-situ scanning images showed a conspicuous pileup around the indents, indicating that an extremely localized plastic deformation occurred during the nanoindentation. Under different strain rates, elastic modulus basically remains unchanged, while the hardness decreases with increasing indentation depth due to the indentation size effect. Furthermore, the modulus and hardness of AlCoCrFeNi HEAs are greater than that of the Al x CoCrFeNi ( x = 0.3,0.5) at the strain rate of 0.2 s-1 due to its higher negative enthalpy of mixing related to the atomic binding force, and the solid solution strengthening induced by the lattice distortion, respectively.

  14. Flood-basalt magmatism of the Vodlozero Block of the Karelian Craton: relations between high- and low-Cr Varieties

    NASA Astrophysics Data System (ADS)

    Bogina, Maria; Zlobin, Valeriy; Sharkov, Evgenii; Chistyakov, Alexii

    2016-04-01

    The early Paleoproterozoic (2.5-2.3 Ga) volcanic rocks of the Karelian Craton are ascribed to the large igneous province of the eastern Fennoscandian Shield. They are mainly represented by calc-alkaline low-Ti basalts and basaltic andesites with relatively high SiO2 and clearly pronounced continental trace element signatures. The compositions of the rocks vary in the different domains of the Karelian craton. In particular, basalts developed in the Central Domain are represented by strongly fractionated varieties (Mg # < 50), which cannot be used to decipher the source composition. Basaltic rocks of the Vodlozero Block are clustered in two groups. The first group is usually developed in the lower parts of the early Paleopoterozoic volcanic sequences and includes the low Cr (< 200 ppm), low Mg rocks similar to the fractionated varieties developed in the Central Domain. They are characterized by high contents of Zr, Y, and REE, and LILE, fractionated REE patterns with (La/Yb)n = 5.44-12.34, (La/Sm)n = 4.4-2.03, and (Gd/Yb)n = 1.36-2.71), and demonstrate negative Ti and Nb anomalies. The second group is represented by more primitive high Cr (up to 1000 ppm) high Mg# (up to 68) basalts with high Ni contents. Such composition is close to the primary non-fractionated mantle-derived magmas and may be used to provide insight into parental melts of continental flood basalts and their crustal evolution. In the spidergrams they demonstrate weak positive Ti anomaly at positive or absent Zr anomaly and negative Nb anomaly. The rocks of the second group are also characterized (with rare exception) by LREE enriched but less fractionated patterns than the first group: ((La/Yb)n up to 7.5, (La/Sm)n = up to 2.8, (Gd/Yb)n = up to 2.0). High Cr and low Y contents are indicative of relatively high degree of partial melting of a depleted mantle source. These rocks are simulated by sequential fractionation of uncontaminated continental flood basalts leaving Ol residue and lower crustal

  15. Extraterrestrial high energy neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    Using the most recent cosmic ray spectra up to 2x10 to the 20th power eV, production spectra of high energy neutrinos from cosmic ray interactions with interstellar gas and extragalactic interactions of ultrahigh energy cosmic rays with 3K universal background photons are presented and discussed. Estimates of the fluxes from cosmic diffuse sources and the nearby quasar 3C273 are made using the generic relationship between secondary neutrinos and gammas and using recent gamma ray satellite data. These gamma ray data provide important upper limits on cosmological neutrinos. Quantitative estimates of the observability of high energy neutrinos from the inner galaxy and 3C273 above atmospheric background for a DUMAND type detector are discussed in the context of the Weinberg-Salam model with sq sin theta omega = 0.2 and including the atmospheric background from the decay of charmed mesons. Constraints on cosmological high energy neutrino production models are also discussed. It appears that important high energy neutrino astronomy may be possible with DUMAND, but very long observing times are required.

  16. Estimation of excess energies and activity coefficients for the penternary Ni-Cr-Co-Al-Mo system and its subsystems

    NASA Astrophysics Data System (ADS)

    Dogan, A.; Arslan, H.; Dogan, T.

    2015-06-01

    Using different prediction methods, such as the General Solution Model of Kohler and Muggianu, the excess energy and activities of molybdenum for the sections of the phase diagram for the penternary Ni-Cr-Co-Al-Mo system with mole ratios xNi/ xMo = 1, xCr/ xMo = 1, xCo/ xMo = 1, and xAl/ xMo = r = 0.5 and 1, were thermodynamically investigated at a temperature of 2000 K, whereas the excess energy and activities of Bi for the section corresponding to the ternary Bi-Ga-Sb system with mole ratio xGa/ xSb = 1/9 were thermodynamically investigated at a temperature of 1073 K. In the case of r = 0.5 and 1 in the alloys Ni-Cr-Co-Al-Mo, a positive deviation in the activity coefficient was revealed, as molybdenum content increased. Moreover, in the calculations performed in Chou's GSM model, the obtained values for excess Gibbs energies are negative in the whole concentration range of bismuth at 1073 K and exhibit the minimum of about -2.2 kJ/mol at the mole ratio xGa/ xSb = 1/9 in the alloy Bi-Ga-Sb.

  17. High Energy Astrophysics Program (HEAP)

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella; Corcoran, Michael; Drake, Stephen; McGlynn, Thomas A.; Snowden, Stephen; Mukai, Koji; Cannizzo, John; Lochner, James; Rots, Arnold; Christian, Eric; Barthelmy, Scott; Palmer, David; Mitchell, John; Esposito, Joseph; Sreekumar, P.; Hua, Xin-Min; Mandzhavidze, Natalie; Chan, Kai-Wing; Soong, Yang; Barrett, Paul

    1998-01-01

    This report reviews activities performed by the members of the USRA contract team during the 6 months of the reporting period and projected activities during the coming 6 months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in astrophysics. Supported missions include advanced Satellite for Cosmology and Astrophysics (ASCA), X-Ray Timing Experiment (XTE), X-Ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC) and others.

  18. High Energy Astrophysics Program (HEAP)

    NASA Technical Reports Server (NTRS)

    Angelini, L.; Holdridge, David V.; Norris, J. (Technical Monitor)

    1998-01-01

    This report reviews activities performed by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  19. Effect of Corrosion Film Composition and Structure on the Corrosion Kinetics of Ni-Cr-Fe Alloys in High Temperature Water

    SciTech Connect

    P.M. Rosecrans; N. Lewis; D.J. Duquette

    2002-02-27

    Nickel alloys such as Alloy 600 undergo Stress Corrosion Cracking (SCC) in pure water at temperatures between about 260 C and the critical point. Increasing the level of Cr in Ni-Fe-Cr alloys increases SCC resistance in aerated and deaerated water. The mechanism is not understood. The effect of Cr composition on oxide microstructure and corrosion kinetics of Ni-Fe-Cr alloys was determined experimentally, to evaluate whether the anodic dissolution model for SCC can account for the effect of Cr on SCC. The alloy corrosion rate and corrosion product oxide microstructure is strongly influenced by the Cr composition. Corrosion kinetics are parabolic and influenced by chromium concentration, with the parabolic constant first increasing then decreasing as Cr increases from 5 to 39%. Surface analyses using Analytical Electron microscopy (AEM) and Auger Electron Spectroscopy (AES) show that the corrosion product film that forms initially on all alloys exposed to high purity high temperature water is a nickel rich oxide. With time, the amount of chromium in the oxide film increases and corrosion proceeds toward the formation of the more thermodynamically stable spinel or hexagonal Cr-rich oxides, similar to high temperature gaseous oxidation. Due to the slower diffusion kinetics at the temperatures of water corrosion compared to those in high temperature gaseous oxidation, however, the films remain as a mixture of NiO, mixed Ni, Fe and Cr spinels, NiCrO{sub 3} and FeCrO{sub 3}. As the amount of Cr in the film increases and the nature of the film changes from NiO to spinel or hexagonal oxides, cation diffusion through the films slows, slowing the corrosion rate. These observations are qualitatively consistent with an anodic dissolution SCC mechanism. However, parametric modeling of the SCC growth process, applying available creep, oxide rupture strain and corrosion kinetics data, indicates that the anodic dissolution mechanism accounts for only a fraction of the effect of Cr

  20. Comparison of AlCrN and AlCrTiSiN coatings deposited on the surface of plasma nitrocarburized high carbon steels

    NASA Astrophysics Data System (ADS)

    Chen, Wanglin; Zheng, Jie; Lin, Yue; Kwon, Sikchol; Zhang, Shihong

    2015-03-01

    The AlCrN and AlCrTiSiN coatings were produced on the surface of plasma nitrocarburized T10 steels by multi-arc ion plating. The comparison of the microstructures and mechanical properties of the duplex coatings were investigated by means of X-ray diffraction, optical microscope, scanning electron microscope and transmission electron microscope, in association with mechanical property measurement. The results show that the AlCrN coatings with columnar grown are mainly composed of nanocrytalline fcc-(Cr,Al)N phases with {111} preferred orientation, whereas the superlattice and nanocomposite AlCrTiSiN coatings with planar growth mainly consist of nanocrystalline fcc-(Cr,Al)N phases with {100} perfected orientation, hcp-AlN and Si3N4 amorphous phases. The AlCrTiSiN duplex coating with the compound layer reveals higher hardness, adhesion strength, load capacity and lower friction coefficient when compared with the other duplex coatings, which is due to its superlattice and nanocomposite structure. Additionally, these improved properties are related to the appearance of the γ‧-phase which plays the nucleation sites for the coating nitrides and provides a strong supporting effect for the AlCrN and AlCrTiSiN coatings. The main wear mechanism of the duplex coatings without compound layer is spalling and chipping wear as well as tribooxidation wear, whereas the main wear mechanism of the duplex coatings with compound layer is tribooxidation wear.

  1. Why CO bonds side-on at low coverage and both side-on and upright at high coverage on the Cr(110) surface

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, A. B.

    1985-01-01

    An atom superposition and electron delocalization molecular orbital study of CO adsorption on the Cr(110) surface shows a high coordinate lying down orientation is favored. This is a result of the large number of empty d-band energy levels in chromium, which allows the antibonding counterparts to sigma and pi donation bonds to the surface to be empty. When lying down, backbonding to CO pi sup * orbitals is enhanced. Repulsive interactions cause additional CO to stand upright at 1/4 monolyer coverage. The results confirm the recent experimental study of Shinn and Madey.

  2. 2.79 μm high peak power LGS electro-optically Q-switched Cr,Er:YSGG laser.

    PubMed

    Wang, Li; Wang, Jintao; Yang, Jingwei; Wu, Xianyou; Sun, Dunlu; Yin, Shaotang; Jiang, Haihe; Wang, Jiyang; Xu, Changqing

    2013-06-15

    A flash lamp pumped Cr,Er:YSGG laser utilizing a langasite (LGS) crystal as an electro-optic Q-switch is proposed and demonstrated. It is proved that a LGS crystal with relatively high damage threshold can be used as the electro-optic Q-switch at 2.79 μm, and 216 mJ pulse energy with 14.36 ns pulse width is achieved. Its corresponding peak power of pulse can reach 15 MW, to our knowledge the best result at a 2.79 μm wavelength.

  3. High-power diode-pumped passively Q-switched Nd:S-VAP laser with Cr4+:YAG crystal saturable absorber

    NASA Astrophysics Data System (ADS)

    Shen, Deyuan; Tang, Ding Y.; Tam, Siu Chung; Ueda, Ken-ichi

    2001-10-01

    Neodymium-doped strontium fluoro-vanadate is a favorable laser material for diode-pumped, compact, and passively Q-switched lasers. We have constructed a high power passively Q-switched Nd:S-VAP laser with a fiber coupled 10 W laser diode pumping. To avoid severe thermal deposition and thermal induced crystal fracture, several measures have been taken in the laser design. With a Cr4+:YAG of initial transmission of 80%, stable laser pulses of duration of 3 ns, energy of 45 micro-joule and repetition rate of 23 kHz are obtained at an incident pump power of 7.75 W.

  4. PVD synthesis and high-throughput property characterization of NiFeCr alloy libraries

    SciTech Connect

    Rar, A.; Frafjord, J. J.; Fowlkes, Jason D.; Specht, E. D.; Rack, P. D.; Santella, M. L.; Bei, H.; George, E. P.; Pharr, G. M.

    2004-12-16

    Three methods of alloy library synthesis, thick-layer deposition followed by interdiffusion, composition-spread codeposition and electron-beam melting of thick deposited layers, have been applied to Ni-Fe-Cr ternary and Ni-Cr binary alloys. Structural XRD mapping and mechanical characterization by means of nanoindentation have been used to characterize the properties of the libraries. The library synthesis methods are compared from the point of view of the structural and mechanical information they can provide.

  5. Epitaxial CrN thin films with high thermoelectric figure of merit.

    PubMed

    Quintela, Camilo X; Podkaminer, Jacob P; Luckyanova, Maria N; Paudel, Tula R; Thies, Eric L; Hillsberry, Daniel A; Tenne, Dmitri A; Tsymbal, Evgeny Y; Chen, Gang; Eom, Chang-Beom; Rivadulla, Francisco

    2015-05-20

    A large enhancement of the thermoelectric figure of merit is reported in single-crystalline films of CrN. The mechanism of the reduction of the lattice thermal conductivity in cubic CrN is similar to the resonant bonding in IV-VI compounds. Therefore, useful ideas from classic thermo-electrics can be applied to tune functionalities in transition metal nitrides and oxides. PMID:25856781

  6. Effects of Tungsten on Microstructure and Mechanical Properties of CrFeNiV0.5W x and CrFeNi2V0.5W x High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Jiang, Li; Han, Kaiming; Lu, Yiping; Wang, Tongmin; Cao, Zhiqiang; Li, Tingju

    2015-12-01

    CrFeNiV0.5W x and CrFeNi2V0.5W x ( x = 0.25, 0.5, 0.75, and 1.0) high-entropy alloys were prepared by vacuum arc melting. The effects of W element on the microstructures and mechanical properties of these alloys were investigated. The experimental results indicated that the CrFeNiV0.5W x alloys were composed of σ, FCC, and BCC phases. Although the microstructures of the CrFeNi2V0.5W x alloys were still constituted by FCC, BCC, and σ phases, the volume fraction of the FCC phase increased significantly. Dendrite morphology was also observed in the CrFeNi2V0.5W x alloys. With the addition of W element, the hardness of the CrFeNiV0.5W x alloys declined from 869 to 633 HV, while the hardness of the CrFeNi2V0.5W x alloys increased from 226 to 305 HV. Moreover, the CrFeNi2V0.5W x alloys exhibited better compressive ductility than the CrFeNiV0.5W x alloys. This study was the first known incidence in which the FCC phase increased in the HEAs with a decrease of the valence electron concentration (VEC) value (i.e., the FCC phase of the CrFeNiV0.5W x alloys increased with the addition of the BCC-structured W elements).

  7. Mechanical characteristics and microstructure of weld joint of high-temperature martensitic steel containing 9% Cr

    NASA Astrophysics Data System (ADS)

    Shakhova, Ya. E.; Belyakov, A. N.; Kaibyshev, R. O.

    2016-04-01

    The structure and mechanical characteristics of a weld joint of 10Kh9K3V2MFBR steel (0.097 C, 0.17.Si, 0.54 Mn, 8.75 Cr, 0.21 Ni, 0.51 Mo, 0.07 Nb, 0.23 V, 0.004 N, 0.003 B, 1.6 W, 0.15 Cu, and Fe for balance, wt %) have been studied; the joint was produced by hand welding in an argon atmosphere using 03Kh20N45M7G6B welding wire (0.3 C, 20 Cr, 45 Ni, 7 Mo, 6 Mn, and 1 Nb, wt %). The weld joint is divided into the zone of the base metal, a thermal effect zone, which consists of zones that contain fine and coarse original austenitic grains, and the zone of seam metal. It has been shown that the weld joint of 10Kh9K3V2MFBR steel possesses high strength characteristics at the room temperature under static loading and a satisfactorily impact toughness, which has the minimum value of 30 J/cm2 in the zone of the seam metal and does not depend on the temperature. With a decrease in the temperature from the room temperature to 253 K, a ductile-brittle transition occurs in the thermal effect zone. Creep tests carried out at the temperature of 923 K have shown that the long-term strength of the weld seam is lower than that of the base material in the entire stress range being tested. At stresses of 140 MPa or higher, the acceleration of creep in the weld seam is observed, while at low stresses of about 120 MPa, the rates of creep in the weld seam and in the base metal remain similar until the transition to the stage of accelerated fracture occurs. The difference in the values of the long-term strength is due to premature fracture, which occurs in the thermal effect zone with the finegrained structure.

  8. PHONON PRECURSORS TO THE HIGH TEMPERATURE MARTENSITIC TRANSFORMATION IN TI50PD42CR8.

    SciTech Connect

    SHAPIRO,S.M.; WINN,B.L.; SCHLAGEL,D.L.; LOGRASSO,T.; ERWIN,R.

    2002-06-10

    Inelastic neutron scattering measurements were carried out on the Ti{sub 50}Pd{sub 50-x}Cr{sub x} alloy, which has the potential for being a high temperature shape memory material. For x = 0, the transformation temperature is {approx}800K and for the composition studied (x = 8 at.%) T{sub M} {approx} 400K. The majority of the measurements were performed in the parent, {beta}-phase, up to 873K. Most of the phonons propagating along the three symmetry directions [{zeta}00], [{zeta}{zeta}{zeta}], and [{zeta}{zeta}0] were well defined with the exception of the [{zeta}{zeta}0] transverse acoustic mode with displacements along the [-{zeta}{zeta}0] corresponding to the C{prime} = 1/2(C{sub 11}-C{sub 12}) elastic constant. These phonons are well defined for small {zeta}, but for {zeta} > 0.15 they are strongly overdamped near the transition temperature, but become better defined at higher temperatures. An elastic peak develop in the cubic phase at {zeta} = 0.22 and increases in intensity as T{sub M} is approached. However, this dispersion curves show no anomaly at this particular wavevector, in marked contrast to the lattice dynamic studies of other systems exhibiting Martensitic transformations.

  9. High-energy neutron dosimetry

    NASA Astrophysics Data System (ADS)

    Sutton, Michele Rhea

    2001-12-01

    Fluence-to-dose conversion coefficients for the radiation protection quantity effective dose were calculated for neutrons, photons and protons with energies up to 2 GeV using the MCNPX code. The calculations were performed using the Pacific Northwest National Laboratory versions of the MIRD-V male and female anthropomorphic phantoms modified to include the skin and esophagus. The latest high-energy neutron evaluated cross-section libraries and the recommendations given in ICRP Publication 60 and ICRP Publication 74 were utilized to perform the calculations. Sets of fluence-to- effective dose conversion coefficients are given for anterior-posterior, posterior-anterior, left-lateral, right-lateral and rotational irradiation geometries. This is the first set of dose conversion coefficients over this energy range calculated for the L-LAT irradiation geometry. A unique set of high-energy neutron depth-dose benchmark experiments were performed at the Los Alamos Neutron Science Center/Weapons Neutron Research (LANSCE/WNR) complex. The experiments consisted of filtered neutron beams with energies up to 800 MeV impinging on a 30 x 30 x 30 cm3 tissue-equivalent phantom. The absorbed dose was measured in the phantom at various depths with tissue-equivalent ion chambers. The phantom and the experimental set-up were modeled using MCNPX. Comparisons of the experimental and computational depth- dose distributions indicate that the absorbed dose calculated by MCNPX is within 13% for neutrons with energies up to 750 MeV. This experiment will serve as a benchmark experiment for the testing of high-energy radiation transport codes for the international radiation protection community.

  10. High energy density electrochemical cell

    NASA Technical Reports Server (NTRS)

    Byrne, J. J.; Williams, D. L.

    1970-01-01

    Primary cell has an anode of lithium, a cathode containing dihaloisocyanuric acid, and a nonaqueous electrolyte comprised of a solution of lithium perchlorate in methyl formate. It produces an energy density of 213 watt hrs/lb and can achieve a high current density.

  11. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1987-01-01

    High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.

  12. High Energy Astronomy Observatory program

    NASA Technical Reports Server (NTRS)

    Wojtalik, F. S.

    1979-01-01

    The series of three orbiting high energy astronomy observatories that comprise the HEAO program are described. Several unique designs as well as the attitude control and determination system, used for observatory scan rotation of the first and third missions and for precision pointing on the second mission, are analyzed. Attention is given to observatory requirements, design characteristics, and the RGA performance summary.

  13. Development of superlattice CrN/NbN coatings for joint replacements deposited by high power impulse magnetron sputtering.

    PubMed

    Hovsepian, Papken Ehiasarian; Ehiasarian, Arutiun Papken; Purandare, Yashodhan; Sugumaran, Arunprabhu Arunachalam; Marriott, Tim; Khan, Imran

    2016-09-01

    The demand for reliable coating on medical implants is ever growing. In this research, enhanced performance of medical implants was achieved by a CrN/NbN coating, utilising nanoscale multilayer/superlattice structure. The advantages of the novel high power impulse magnetron sputtering technology, namely, its unique highly ionised plasma, were exploited to deposit dense and strongly adherent coatings on CoCr implants. Transmission electron microscopy analysis revealed coating superlattice structure with bi-layer thickness of 3.5 nm. CrN/NbN deposited on CoCr samples showed exceptionally high adhesion, critical load values of LC2 = 50 N in scratch adhesion tests. Nanoindentation tests showed high hardness of 34 GPa and Young's modulus of 447 GPa. Low coefficient of friction (μ) 0.49 and coating wear coefficient (K C) = 4.94 × 10(-16) m(3) N(-1) m(-1) were recorded in dry sliding tests. Metal ion release studies showed a reduction in Co, Cr and Mo release at physiological and elevated temperatures (70 °C) to almost undetectable levels (<1 ppb). Rotating beam fatigue testing showed a significant increase in fatigue strength from 349 ± 59 MPa (uncoated) to 539 ± 59 MPa (coated). In vitro biological testing has been performed in order to assess the safety of the coating in biological environment; cytotoxicity, genotoxicity and sensitisation testing have been performed, all showing no adverse effects.

  14. Development of superlattice CrN/NbN coatings for joint replacements deposited by high power impulse magnetron sputtering.

    PubMed

    Hovsepian, Papken Ehiasarian; Ehiasarian, Arutiun Papken; Purandare, Yashodhan; Sugumaran, Arunprabhu Arunachalam; Marriott, Tim; Khan, Imran

    2016-09-01

    The demand for reliable coating on medical implants is ever growing. In this research, enhanced performance of medical implants was achieved by a CrN/NbN coating, utilising nanoscale multilayer/superlattice structure. The advantages of the novel high power impulse magnetron sputtering technology, namely, its unique highly ionised plasma, were exploited to deposit dense and strongly adherent coatings on CoCr implants. Transmission electron microscopy analysis revealed coating superlattice structure with bi-layer thickness of 3.5 nm. CrN/NbN deposited on CoCr samples showed exceptionally high adhesion, critical load values of LC2 = 50 N in scratch adhesion tests. Nanoindentation tests showed high hardness of 34 GPa and Young's modulus of 447 GPa. Low coefficient of friction (μ) 0.49 and coating wear coefficient (K C) = 4.94 × 10(-16) m(3) N(-1) m(-1) were recorded in dry sliding tests. Metal ion release studies showed a reduction in Co, Cr and Mo release at physiological and elevated temperatures (70 °C) to almost undetectable levels (<1 ppb). Rotating beam fatigue testing showed a significant increase in fatigue strength from 349 ± 59 MPa (uncoated) to 539 ± 59 MPa (coated). In vitro biological testing has been performed in order to assess the safety of the coating in biological environment; cytotoxicity, genotoxicity and sensitisation testing have been performed, all showing no adverse effects. PMID:27571960

  15. The Property Research on High-entropy Alloy AlxFeCoNiCuCr Coating by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoyang; Ma, Mingxing; Cao, Yangxiaolu; Liu, Wenjin; Ye, Xiaohui; Gu, Yu

    High-entropy alloys have been found to have novel microstructures and unique properties. The main method of manufacturing is vacuum arc remelting. As in situ cladding laser cladding has capability of achieving a controllable dilution ratio, fabricating highentropy alloy by laser cladding is of great significance and potential for extensive use. In this study, a novel AlxFeCoNiCuCr high-entropy alloy system was manufactured as the thin layer of the substrate by laser cladding; also high temperature hardness, abrasion performance, corrosion nature of the AlxFeCoNiCuCr high-entropy alloy were tested under the different ratio of aluminum. This study shows higher aluminum clad exhibit higher hardness, better abrasion resistance and corrosion resistance.

  16. Structural variety beyond appearance: high-pressure phases of CrB4 in comparison with FeB4.

    PubMed

    Zhang, Yunkun; Wu, Lailei; Wan, Biao; Zhao, Yan; Gao, Rui; Li, Zhiping; Zhang, Jingwu; Gou, Huiyang; Mao, Ho-kwang

    2016-01-28

    Employing particle swarm optimization (PSO) combined with first-principles calculations, we systemically studied high-pressure behaviors of hard CrB4. Our predictions reveal a distinct structural evolution under pressure for CrB4 despite having the same initial structure as FeB4. CrB4 is found to adopt a new P2/m structure above 196 GPa, another Pm structure at a pressure range of 261-294 GPa and then a Pmma structure beyond 294 GPa. Instead of puckering boron sheets in the initial structure, the high-pressure phases have planar boron sheets with different motifs upon compression. Comparatively, FeB4 prefers an I41/acd structure over 48 GPa with tetrahedron B4 units and a P213 structure above 231 GPa having equilateral triangle B3 units. Significantly, CrB4 exhibits persistent metallic behavior in contrast with the semiconducting features of FeB4 upon compression. The varied pressure response of hard tetraborides studied here is of importance for understanding boron-rich compounds and designing new materials with superlative properties. PMID:26692374

  17. Novel composite material polyoxovanadate@MIL-101(Cr): a highly efficient electrocatalyst for ascorbic acid oxidation.

    PubMed

    Fernandes, Diana M; Barbosa, André D S; Pires, João; Balula, Salete S; Cunha-Silva, Luís; Freire, Cristina

    2013-12-26

    A novel hybrid composite material, PMo10V2@MIL-101 was prepared by the encapsulation of the tetra-butylammonium (TBA) salt of the vanadium-substituted phosphomolybdate [PMo10V2O40](5-) (PMo10V2) into the porous metal-organic framework (MOF) MIL-101(Cr). The materials characterization by powder X-ray diffraction, Fourier transform infrared spectra and scanning electron microscopy confirmed the preparation of the composite material without disruption of the MOF porous structure. Pyrolytic graphite electrodes modified with the original components (MIL-101(Cr), PMo10V2), and the composite material PMo10V2@MIL-101 were prepared and their electrochemical responses were studied by cyclic voltammetry. Surface confined redox processes were observed for all the immobilized materials. MIL-101(Cr) showed one-electron reduction process due to chromium centers (Cr(III) → Cr(II)), while PMo10V2 presented five reduction processes: the peak at more positive potentials is attributed to two superimposed 1-electron vanadium reduction processes (V(V) → V(IV)) and the other four peaks to Mo-centred two-electron reduction processes (Mo(VI) → Mo(V)). The electrochemical behavior of the composite material PMo10V2@MIL-101 showed both MIL-101(Cr) and PMo10V2 redox features, although with the splitting of the two vanadium processes and the shift of the Mo- and Cr- centered processes to more negative potentials. Finally, PMo10V2@MIL-101 modified electrode showed outstanding enhanced vanadium-based electrocatalytic properties towards ascorbic acid oxidation, in comparison with the free PMo10V2, as a result of its immobilization into the porous structure of the MOF. Furthermore, PMo10V2@MIL-101 modified electrode showed successful simultaneous detection of ascorbic acid and dopamine.

  18. on the High-Temperature Performance of Ni-Based Welding Material NiCrFe-7

    NASA Astrophysics Data System (ADS)

    Mo, Wenlin; Lu, Shanping; Li, Dianzhong; Li, Yiyi

    2014-10-01

    The effects of M 23C6 ( M = Cr, Fe) on the high-temperature performance of the NiCrFe-7 welding rods and weld metals were studied by high-temperature tensile tests and microstructure analysis. M 23C6 at the grain boundaries (GBs) has a cube-on-cube coherence with one grain in the NiCrFe-7 weld metals, and the adjacent M 23C6 has the coherence relationship with the same grain. The grain with a coherent M 23C6 has a Cr-depletion region. The number and size of M 23C6 particles can be adjusted by heat treatment and alloying. There are two temperatures [ T E1: 923 K to 1083 K (650 °C to 810 °C) and T E2: 1143 K to 1203 K (870 °C to 930 °C)] at which the GBs and grains of the NiCrFe-7 welding rod have equal strength during the high-temperature tensile test. When the temperatures are between T E1 and T E2, the strength of the GBs is lower than that of the grains, and the tensile fractures are intergranular. When the temperatures are below T E1 or over T E2, the strength of the GBs is higher than that of the grains, and the tensile fractures are dimples. M 23C6 precipitates at the GBs, which deteriorates the ductility of the welding rods at temperature between T E1 and T E2. M 23C6 aggravates ductility-dip-cracking (DDC) in the weld metals. The addition of Nb and Ti can form MX ( M = Ti, Nb, X = C, N), fix C in grain, decrease the initial precipitation temperature of M 23C6, and mitigate the precipitation of M 23C6, which is helpful for minimizing DDC in the weld.

  19. Magnetite with anomalously high Cr2O3 as a fingerprint to trace upper Yangtze sediments to the sea

    NASA Astrophysics Data System (ADS)

    Yue, Wei; Liu, James T.; Zhang, Dan; Wang, Zhanghua; Zhao, Baocheng; Chen, Zhongyuan; Chen, Jing

    2016-09-01

    This paper examines geochemical properties of detrital magnetite, in order to link sediments in a Plio-Quaternary core taken in the delta area to their sources in the Yangtze River basin. A total of 40 sediment samples were collected from both the main river channel/tributaries and a sediment core from the Yangtze delta. The geochemical compositions of detrital magnetite in these sediments were analyzed by electron microprobe, including FeO, TiO2, CoO, MgO, Cr2O3, MnO, ZnO, Al2O3 and V2O3. The results revealed that the detrital magnetite grains with anomalously high Cr2O3 occurred exclusively in the upper reaches of the Yangtze (upstream of the Three Gorges Dam), where the E'mei Basalt block is located. This type of magnetite could therefore be considered a unique sediment proxy of the upper river basin to help identify sediment source in the delta area. Our analysis found such magnetite grains with high Cr2O3 occurring throughout the core depth above 186.5 m, in contrast to the extremely low Cr2O3 below this depth. The boundary between high and low Cr2O3 in magnetite grains of the core sediments was dated by paleomagnetism at ca. ~ 1.2-1.0 Ma, signifying that the linkage between the Yangtze River course and the sea was before ~ 1.2-1.0 Ma. This demonstrates that the sediment provenance of the Yangtze delta has experienced a change from local to distal Yangtze River, which took place with the uplift of the Tibetan plateau and coastal subsidence during the Plio-Quaternary.

  20. Overcoats for the Improved Performance of PdCr High Temperature Thin Film Strain Gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J.; Dyer, S. E.; Cooke, James D.

    1998-01-01

    Overcoat protection schemes for thin film devices have typically focused on inhibiting the growth of native oxides formed on the sensor surface, rather than on improving the passivating nature of these native oxides. Here, thin sputtered Cr overcoats and heat treatments in varying oxygen partial pressures enhanced the passivating nature of native Cr203 films formed on PdCr thin film strain gages. Results of strain tests using sensors protected using this approach are presented and the implications are discussed. PdCr gages with sputtered Cr overcoats withstood 12,000 dynamic strain cycles of 1100 micro-epsilon during 100 hours of testing at a temperature of 1000 C in air. Gage factors of 1.3 with drift rates as low as 0.1 Omega/hr were achieved for devices having a nominal resistance of approximately 100 Omega's. TCR's ranging from +550 ppm/C to +798 ppm/C were realized depending on the overcoat and thermal history. Possible mechanisms for an anomaly in the electrical characteristics of these films at 800 C and improvements in stability due to the use of overcoats are presented.

  1. Investigation of Cr0.06(Sb4Te)0.94 alloy for high-speed and high-data-retention phase change random access memory applications

    NASA Astrophysics Data System (ADS)

    Li, Le; Song, Sannian; Zhang, Zhonghua; Song, Zhitang; Cheng, Yan; Lv, Shilong; Wu, Liangcai; Liu, Bo; Feng, Songlin

    2015-08-01

    The effects of Cr doping on the structural and electrical properties of Cr x (Sb4Te)1- x materials have been investigated in order to solve the contradiction between thermal stability and fast crystallization speed of Sb4Te alloys. Cr0.06(Sb4Te)0.94 alloy is considered to be a potential candidate for phase change random access memory (PCM), as evidenced by a higher crystallization temperature (204 °C), a better data retention ability (137.6 °C for 10 years), a lower melting point (558 °C), a lower energy consumption, and a faster switching speed in comparison with those of Ge2Sb2Te5. A reversible switching between set and reset states can be realized by an electric pulse as short as 5 ns for Cr0.06(Sb4Te)0.94-based PCM cell. In addition, Cr0.06(Sb4Te)0.94 shows good endurance up to 1.1 × 104 cycles with a resistance ratio of about two orders of magnitude.

  2. Low and high field sites of Cr3+ ions in calcium tetraborate glasses

    NASA Astrophysics Data System (ADS)

    Lesniewski, T.; Padlyak, B. V.; Barzowska, J.; Mahlik, S.; Adamiv, V. T.; Nurgul, Z.; Grinberg, M.

    2016-09-01

    This paper presents electron paramagnetic resonance and detailed optical spectroscopic characterization of CaB4O7 glasses doped with Cr3+. The luminescence excitation spectrum consists of two broad bands related to transitions from the ground state 4A2g to the excited states 4T1g and 4T2g of the octahedrally coordinated Cr3+ ions. The photoluminescence spectrum is a superposition of the R line related to the 2Eg → 4A2g transition and broad band related to the 4T2g → 4A2g transition. The analysis of electron paramagnetic resonance spectra allowed to distinguish different Cr3+ sites, whereas the analysis of luminescence and luminescence excitation spectra allowed to characterize the crystal field distribution in the glass host.

  3. High-pressure geochemistry of Cr, V and MN and implications for the origin of the moon

    NASA Astrophysics Data System (ADS)

    Ringwood, A. E.; Kato, T.; Hibberson, W.; Ware, N.

    1990-09-01

    Experimental studies of the partitioning of Cr, V, and Mn between molten iron and silicates show that these elements are lithophile at the pressures, temperatures, and oxygen fugacities prevailing in the earth's upper mantle and in the moon. Here, it is shown that at much higher pressures, corresponding to those in the earth's lower mantle, the partitioning behavior of Cr, V, and Mn changes owing to increasing solubility of oxygen in molten iron. Cr and V, and perhaps Mn, are preferentially partitioned into molten iron under these conditions. The depletion of these elements in the earth's mantle is therefore attributed to their siderophile behavior during formation of the earth's core, at pressures that were sufficiently high to cause substantial amounts of oxygen to dissolve in molten metallic iron. Similar depletion patterns of Cr, V, and Mn in the earth's mantle and the moon strongly suggest that a large proportion of the moon was derived from the earth's mantle after the earth's core had segregated.

  4. High P-T experiments and first principles calculations of Si, O, and Cr diffusion in liquid iron

    NASA Astrophysics Data System (ADS)

    Posner, E. S.; Rubie, D. C.; Frost, D. J.; Steinle-Neumann, G.; Vlček, V.

    2014-12-01

    The mobility of alloying elements in liquid iron has important kinetic implications for timescales and processes occurring in metallic cores and core-mantle boundaries of differentiated bodies. According to current models of the Earth's core-mantle segregation, substantial amounts of light elements (Si and/or O), as well as Cr, should have partitioned from a magma ocean into metallic Fe-Ni cores of planetesimals during accretion. In contrast to these predictions, however, the Si, O, and Cr contents of iron meteorites, which are derived from the metallic cores of early-formed planetesimals, are surprisingly low (e.g. < 1 ppm). The partitioning of Si, O, and Cr into liquid iron has been shown experimentally to increase with temperature so that that the alloy component of a planetesimal core should decrease during cooling. Ongoing metal-silicate interaction at the CMB of larger bodies, such as the Earth, and potential diffusive profiles of light elements in the outmost region of the Earth's outer core have been used to model and interpret deviations from reference model seismic wave speeds in these respective regions. We are conducting a series of high P-T experiments and first principles calculations to constrain the diffusivity of Si, O, and Cr in liquid iron in order to understand the kinetics of chemical transport and equilibration during core formation and processes occurring at CMBs. Experimental diffusion couples comprised of highly polished cylindrical disks of 99.97% Fe and metallic Fe alloy (Fe6Si, Fe12Si, Fe9O, Fe92Cr, Fe85Si14Cr) were contained in an MgO capsule and annealed within the P-T range 1642-2573 K and 3-18 GPa in a multi-anvil apparatus. A series of experiments are conducted at each pressure using variable heating rates, final temperatures (Tf), and time duration at Tf. To extend our dataset to P-T conditions of the Earth's core-mantle boundary, we have begun first principles molecular dynamics (FP-MD) calculations. Fe supercells are overheated

  5. Microstructure and High Temperature Oxidation Behavior of Cr-W Alloys

    SciTech Connect

    Dogan, O.N.

    2007-02-01

    Cr alloys containing 0-30%W by weight were investigated for use in elevated temperature applications. The alloys were melted in a water-cooled, copper-hearth arc furnace. Microstructure of the alloys was characterized using x-ray diffraction, scanning electron microscopy, and light microscopy. A pseudocyclic oxidation test was employed to study scale formation at 1000ºC in dry air. The scale was predominantly chromia and spalled upon cooling. Alloying with aluminum up to 8 weight percent reduced the spalling drastically. Furthermore, aluminizing the surface of the Cr-W alloys completely stopped the spalling.

  6. High energy density aluminum battery

    DOEpatents

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  7. Cosmology for high energy physicists

    SciTech Connect

    Albrecht, A.

    1987-11-01

    The standard big bang model of cosmology is presented. Although not perfect, its many successes make it a good starting point for most discussions of cosmology. Places are indicated where well understood laboratory physics is incorporated into the big bang, leading to successful predictions. Much less established aspects of high energy physics and some of the new ideas they have introduced into the field of cosmology are discussed, such as string theory, inflation and monopoles. 49 refs., 5 figs.

  8. A high energy physics perspective

    SciTech Connect

    Marciano, W.J.

    1997-01-13

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional {open_quotes}Hidden Symmetries {close_quotes} are discussed. Experimental approaches to uncover {open_quotes}New Physics{close_quotes} associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given.

  9. Precipitation strengthened high strength, high conductivity Cu-Cr-Nb alloys produced by chill block melt spinning. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.

    1989-01-01

    A series of Cu-based alloys containing 2 to 10 a/o Cr and 1 to 5 a/o Nb were produced by chill block melt spinning (CBMS). The melt spun ribbons were consolidated and hot rolled to sheet to produce a supersaturated Cu-Cr-Nb solid solution from which the high melting point intermetallic compound Cr2Nb could be precipitated to strengthen the Cu matrix. The results show that the materials possess electrical conductivities in excess of 90 percent that of pure Cu at 200 C and above. The strengths of the Cu-Cr-Nb alloys were much greater than Cu, Cu-0.6 Cr, NARloy-A, and NARloy-Z in the as-melt spun condition. The strengths of the consolidated materials were less than Cu-Cr and Cu-Cr-Zr below 500 C and 600 C respectively, but were significantly better above these temperatures. The strengths of the consolidated materials were greater than NARloy-Z, at all temperatures. The GLIDCOP possessed similar strength levels up to 750 C when the strength of the Cu-Cr-Nb alloys begins to degrade. The long term stability of the Cu-Cr-Nb alloys was measured by the microhardness of aged samples and the growth of precipitates. The microhardness measurements indicate that the alloys overage rapidly, but do not suffer much loss in strength between 10 and 100 hours which confirms the results of the electrical resistivity measurements taken during the aging of the alloys at 500 C. The loss in strength from peak strength levels is significant, but the strength remains exceptionally good. Transmission electron microscopy (TEM) of the as-melt spun samples revealed that Cr2Nb precipitates formed in the liquid Cu during the chill block melt spinning, indicating a very strong driving force for the formation of the precipitates. The TEM of the aged and consolidated materials indicates that the precipitates coarsen considerably, but remain in the submicron range.

  10. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes

    SciTech Connect

    Lisnyak, M.; Pipa, A. V.; Gorchakov, S. E-mail: weltmann@inp-greifswald.de; Iseni, S.; Franke, St.; Khapour, A.; Methling, R.; Weltmann, K.-D. E-mail: weltmann@inp-greifswald.de

    2015-09-28

    Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350–810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution was used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.

  11. The influence of (LaSr)CoO{sub 3} coatings on the electrical resistance of Ni-20Cr alloys in high temperature oxidizing atmosphere

    SciTech Connect

    Shiomitsu, Tohru; Kadowaki, Takuya; Ogawa, Takashi; Maruyama, Toshio

    1995-12-31

    Ni-20Cr alloys coated with (LaSr)CoO{sub 3} maintained their electrical resistance as low as 5m {Omega} cm{sup 2} for 12,000 h at 1,273 K in air, and showed their applicability for the separator of solid oxide fuel cell (SOFC). Energy dispersive X-ray analysis of the fracture surface of the coated Ni-20Cr alloys revealed that Sr diffused into the Cr{sub 2}O{sub 3} scale and precipitated as oxides in the Sr-Cr-O system. X-ray diffraction profile of the outer portion of the Cr{sub 2}O{sub 3} scale adjacent to the coating layer indicated SrCr{sub 2}O{sub 4} and Cr{sub 2}O{sub 3}. Electron diffraction and Energy dispersive X-ray analysis of the oxide particles inside the scale close to the alloy/scale interface indicated that the oxide is a rhombohedral crystal with the unit-cell dimension of a = 11.28, c = 36.44 and the atomic ratio of Sr/Cr = 3.165/2.

  12. Novel High-Speed High Pressure Torsion Technology for Obtaining Fe-Mn-Si-Cr Shape Memory Alloy Active Elements

    NASA Astrophysics Data System (ADS)

    Gurău, Gheorghe; Gurău, Carmela; Potecaşu, Octavian; Alexandru, Petrică; Bujoreanu, Leandru-Gheorghe

    2014-07-01

    This paper introduces an adapted high-speed high pressure torsion (HS-HPT) method of severe plastic deformation applied for obtaining shape memory alloy (SMA) active elements with revolution symmetry, able to develop axial displacement/force. Billets with circular crown forms were cut from Fe-28Mn-6Si-5Cr (mass%) SMA ingots and, by means of HS-HPT technology, were directly turned into modules, with truncated cone shell configurations. This process was performed, during time intervals of seconds, under the effect of high pressure (up to 1 GPa) cumulated with high rotation speed (hundreds of rotations per minute) applied on the active surfaces of sintered-carbide anvils, specially designed for this purpose. Due to pressure and friction, generated by rotation, the entire sample volume is heated and simultaneously deformed to final shape. During the process, microstructure fragmentation occurred enabling to obtain (ultra)fine grains and nanocrystalline areas, in spite of the heat developed by friction, which was removed by conduction at the contact surface between sample and anvils, before the occurrence of any recrystallization phenomena. When compressed between flat surfaces, the truncated cone modules developed a superelastic-like response, unique among Fe -Mn-Si base SMAs and, when heated in compressed state, they were able to develop either axial strokes or recovery forces by either free or constrained recovery shape memory effect (SME), respectively. By means of optical (OM) and scanning electron microscopy (SEM) marked structural changes caused by HT-HPT were revealed, along with fine and ultrafine crystalline grains. The presence of stress-induced ɛ-hexagonal close-packed ( hcp) martensite, together with nanocrystalline areas were confirmed by x-ray diffraction.

  13. High energy electron positron physics

    SciTech Connect

    Ali, A.; Soding, P.

    1987-01-01

    With the termination of the physics program at PETRA in a year from now, and with the start of TRISTAN and the SLC and later LEP, an era of e/sup +/e/sup -/ physics will come to an end and a new one begins. The field is changing from a field of a few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way more useful to any high energy physicist in particular to newcomers in the e/sup +/e/sup -/ field. This is the purpose of the book. This book should be used as a reference for future workers in the field of e/sup +/e/sup -/ interactions. It includes the most relevant data, parametrizations, theoretical background, and a chapter on detectors. Contents: Foreword; Detectors for High Energy e/sup +/e/sup -/ Physics; Lepton Pair Production and Electroweak Parameters; Hadron Production, Strong and Electroweak Properties; tau Physics; Recent Results on the Charm Sector; Bottom Physics; Lifetime Measurements of tau, Charmed and Beauty Hadrons; UPSILON Spectroscopy; Hadronic Decays of the UPSILON; Quark and Gluon Fragmentation in the e/sup +/e/sup -/ Continuum; Jet Production and QCD; Two Photon Physics; Search for New Particles.

  14. The band structure-matched and highly spin-polarized Co{sub 2}CrZ/Cu{sub 2}CrAl Heusler alloys interface

    SciTech Connect

    Ko, V.; Han, G.; Qiu, J.; Feng, Y. P.

    2009-11-16

    Here we present a lattice- and band-matched nonmagnetic L21 Heusler alloy spacer for Co{sub 2}CrZ Heusler alloys where Z=Si or Al. By first principle calculations, we find that the band structure matching is almost perfectly satisfied when they are interfaced with Cu{sub 2}CrAl. Despite the loss of half-metallicity due to interface states, our calculations show that the spin polarization at these band-matched (001) interfaces is higher than 80%. These lattice-matched Co{sub 2}CrZ/Cu{sub 2}CrAl interfaces with excellent band matching and enhanced spin scattering asymmetry are promising for all-metallic current-perpendicular-to-plane giant magnetoresistance device applications.

  15. Formation of Cr2O3 Diffusion Barrier Between Cr-Contained Stainless Steel and Cold-Sprayed Ni Coatings at High Temperature

    NASA Astrophysics Data System (ADS)

    Xu, Ya-Xin; Luo, Xiao-Tao; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2016-02-01

    A novel approach to prepare a coating system containing an in situ grown Cr2O3 diffusion barrier between a nickel top layer and 310SS was reported. Cold spraying was employed to deposit Ni(O) interlayer and top nickel coating on the Cr-contained stainless steel substrate. Ni(O) feedstock was prepared by mechanical alloying of pure nickel powders in ambient atmosphere, acting as an oxygen provider. The post-spray annealing was adopted to grow in situ Cr2O3 layer between the substrate and nickel coating. The results revealed that the diffusible oxygen can be introduced into nickel powders by mechanical alloying. The oxygen content increases to 3.25 wt.% with the increase of the ball milling duration to 8 h, while Ni(O) powders maintain a single phase of Ni. By annealing the sample in Ar atmosphere at 900 °C, a continuous Cr2O3 layer of 1-2 μm thick at the interface between 310SS and cold-sprayed Ni coating is formed. The diffusion barrier effect evaluation by thermal exposure at 750 °C shows that the Cr2O3 oxide layer effectively suppresses the outward diffusion of Fe and Cr in the substrate effectively.

  16. Corrosion Behavior of High Nitrogen Nickel-Free Fe-16Cr-Mn-Mo-N Stainless Steels

    NASA Astrophysics Data System (ADS)

    Chao, K. L.; Liao, H. Y.; Shyue, J. J.; Lian, S. S.

    2014-04-01

    The purpose of the current study is to develop austenitic nickel-free stainless steels with lower chromium content and higher manganese and nitrogen contents. In order to prevent nickel-induced skin allergy, cobalt, manganese, and nitrogen were used to substitute nickel in the designed steel. Our results demonstrated that manganese content greater than 14 wt pct results in a structure that is in full austenite phase. The manganese content appears to increase the solubility of nitrogen; however, a lower corrosion potential was found in steel with high manganese content. Molybdenum appears to be able to increase the pitting potential. The effects of Cr, Mn, Mo, and N on corrosion behavior of Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were evaluated with potentiodynamic tests and XPS surface analysis. The results reveal that anodic current and pits formation of the Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were smaller than those of lower manganese and nitrogen content stainless steel.

  17. Pion exchange at high energies

    SciTech Connect

    Jones, L.M.

    1980-07-01

    The state of Regge pion exchange calculations for high-energy reactions is reviewed. Experimental evidence is summarized to show that (i) the pion trajectory has a slope similar to that of other trajectories; (ii) the pion exchange contribution can dominate contributions of higher trajectories up to quite a large energy; (iii) many two-body cross sections with large pion contributions can be fit only by models which allow for kinematical conspiracy at t=0. The theory of kinematic conspiracy is reviewed for two-body amplitudes, and calculations of the conspiring pion--Pomeron cut discussed. The author then summarizes recent work on pion exchange in Reggeized Deck models for multiparticle final states, with emphasis on the predictions of various models (with and without resonances) for phases of the partial wave amplitudes.

  18. 2D-QSPR/DFT studies of aryl-substituted PNP-Cr-based catalyst systems for highly selective ethylene oligomerization.

    PubMed

    Tang, Siyang; Liu, Zhen; Zhan, Xingwen; Cheng, Ruihua; He, Xuelian; Liu, Boping

    2014-03-01

    1-Hexene and 1-octene are important comonomers for the synthesis of high performance polyolefins. Recently, various N-substituted Cr-bis(diphenylphosphino)amine (PNP-Cr) catalysts show the potential as excellent candidates for highly selective ethylene trimerization/tetramerization. In this work, a series of aryl-substituted PNP-Cr catalysts were studied by two-dimensional quantitative structure-property relationship (QSPR) method based on density functional theory (DFT) calculations. The heuristic method (HM) and best multi-linear regression (BMLR) were used to establish the best linear regression models to describe the relationship between selectivities and catalyst structures. Both Cr(I) and Cr(II) active site models for ethylene trimerization/tetramerization were considered. It was found that 1) the relativity and stability of the models were increased by using self-defined descriptors based on DFT calculations; 2) Cr(I)/Cr(III) centers were the most plausible active sites for ethylene trimerization, while Cr(II)/Cr(IV) active sites were most possibly responsible for ethylene tetramerization; and 3) the skeleton structures of the PNP-Cr system with good complanation and symmetry were crucial for achieving excellent catalytic selectivity of 1-octene, while the PNP-Cr backbone with a large steric effect on N atom would benefit ethylene trimerization. Six new PNP ligands with high selectivity toward ethylene trimerization/tetramerization were predicted based on descriptor analysis and the best linear regression models providing a good basis for further development of novel catalyst systems with better performance. PMID:24554126

  19. Progress in ultra high energy neutrino experiments using radio techniques

    SciTech Connect

    Liu Jiali; Tiedt, Douglas

    2013-05-23

    Studying the source of Ultra High Energy Cosmic Ray (UHECR) can provide important clues on the understanding of UHE particle physics, astrophysics, and other extremely energetic phenomena in the universe. However, charged CR particles are deflected by magnetic fields and can not point back to the source. Furthermore, UHECR charged particles above the Greisen-Zatsepin-Kuzmin (GZK) cutoff (about 5 Multiplication-Sign 10{sup 19} eV) suffer severe energy loss due to the interaction with the Cosmic Microwave Background Radiation (CMBR). Consequently almost all the information carried by CR particles about their origin is lost. Neutrinos, which are neutral particles and have extremely weak interactions with other materials can arrive at the earth without deflection and absorption. Therefore UHE neutrinos can be traced back to the place where they are produced. Due to their weak interaction and ultra high energies (thus extremely low flux) the detection of UHE neutrinos requires a large collecting area and massive amounts of material. Cherenkov detection at radio frequency, which has long attenuation lengths and can travel freely in natural dense medium (ice, rock and salt et al), can fulfill the detection requirement. Many UHE neutrino experiments are being performed by radio techniques using natural ice, lunar, and salt as detection mediums. These experiments have obtained much data about radio production, propagation and detection, and the upper limit of UHE neutrino flux.

  20. Duke University high energy physics

    SciTech Connect

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and {sub {Chi}} meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report.

  1. High Energy Laser Diagnostic Sensors

    SciTech Connect

    Luke, James R.; Goddard, Douglas N.; Thomas, David; Lewis, Jay

    2010-10-08

    Recent advancements in high energy laser (HEL) sources have outpaced diagnostic tools capable of accurately quantifying system performance. Diagnostic tools are needed that allow system developers to measure the parameters that define HEL effectiveness. The two critical parameters for quantifying HEL effectiveness are the irradiance on target and resultant rise in target temperature. Off-board sensing has its limitations, including unpredictable changes in the reflectivity of the target, smoke and outgassing, and atmospheric distortion. On-board sensors overcome the limitations of off-board techniques but must survive high irradiance levels and extreme temperatures.We have developed sensors for on-target diagnostics of high energy laser beams and for the measurement of the thermal response of the target. The conformal sensors consist of an array of quantum dot photodetectors and resistive temperature detectors. The sensor arrays are lithographically fabricated on flexible substrates and can be attached to a variety of laser targets. We have developed a nanoparticle adhesive process that provides good thermal contact with the target and that ensures the sensor remains attached to the target for as long as the target survives. We have calibrated the temperature and irradiance sensors and demonstrated them in a HEL environment.

  2. Dynamic control of substrate bias for highly c-axis textured thin ferromagnetic CoCrTa film in inductively coupled plasma-assisted sputtering

    SciTech Connect

    Okimura, Kunio; Oyanagi, Junya

    2005-01-01

    This study shows highly c-axis textured thin ferromagnetic Co-based alloy (CoCrTa) film growth in inductively coupled plasma (ICP)-assisted sputtering with an internal coil with an insulated surface. Dynamic control of the substrate bias achieved highly c-axis textured CoCrTa film with a thickness of 70 nm in 3 min depositions on a Si substrate. The prepared film showed a smooth, dense surface consisting of small crystal grains. The film had a perpendicular magnetic coercivity of 1030 Oe and coercive squareness of 0.36. ICP-assisted sputtering with an internal coil with an insulated surface enabled higher-density ({>=}1.0x10{sup 11} cm{sup -3}) plasma with lower space potential ({<=}30 V) compared to ICP-assisted sputtering with bare coil systems. Therefore, the proposed bias control is quite effective for textured growth of thinner Co layers via the effect of a high flux of ions with proper energies. This method can be a candidate for the deposition technique of c-axis textured films as perpendicular magnetic recording media.

  3. High Energy Gas Fracturing Test

    SciTech Connect

    Schulte, R.

    2001-02-27

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed two tests of a high-energy gas fracturing system being developed by Western Technologies of Crossville, Tennessee. The tests involved the use of two active wells located at the Naval Petroleum Reserve No. 3 (NPR-3), thirty-five miles north of Casper, Wyoming (See Figure 1). During the testing process the delivery and operational system was enhanced by RMOTC, Western Technologies, and commercial wireline subcontractors. RMOTC has assisted an industrial client in developing their technology for high energy gas fracturing to a commercial level. The modifications and improvements implemented during the technology testing process are instrumental in all field testing efforts at RMOTC. The importance of well selection can also be critical in demonstrating the success of the technology. To date, significant increases in well productivity have been clearly proven in well 63-TPX-10. Gross fluid production was initially raised by a factor of three. Final production rates increased by a factor of six with the use of a larger submersible pump. Well productivity (bbls of fluid per foot of drawdown) increased by a factor of 15 to 20. The above results assume that no mechanical damage has occurred to the casing or cast iron bridge plug which could allow well production from the Tensleep ''B'' sand. In the case of well 61-A-3, a six-fold increase in total fluid production was seen. Unfortunately, the increase is clouded by the water injection into the well that was necessary to have a positive fluid head on the propellant tool. No significant increase in oil production was seen. The tools which were retrieved from both 63-TPX-10 and 61-A-3 indicated a large amount of energy, similar to high gram perforating, had been expended downhole upon the formation face.

  4. A Successful Synthesis of the CoCrFeNiAl0.3 Single-Crystal, High-Entropy Alloy by Bridgman Solidification

    SciTech Connect

    Ma, S. G.; Zhang, S. F.; Gao, M. C.; Liaw, P. K.; Zhang, Y.

    2013-08-22

    For the first time, a face-centered-cubic, single-crystal CoCrFeNiAl{sub 0.3} (designated as Al0.3), high-entropy alloy (HEA) was successfully synthesized by the Bridgman solidification (BS) method, at an extremely low withdrawal velocity through a constant temperature gradient, for which it underwent two BS steps. Specially, at the first BS step, the alloy sample underwent several morphological transitions accompanying the crystal growth from the melt. This microstructure evolves from as-cast dendrites, to equiaxed grains, and then to columnar crystals, and last to the single crystal. In particular, at the equiaxed-grain region, some visible annealing twins were observed, which indicates a low stacking fault energy of the Al0.3 alloy. Although a body-centered- cubic CoCrFeNiAl (Al1) HEA was also prepared under the same conditions, only a single columnar-crystal structure with instinctively preferential crystallographic orientations was obtained by the same procedure. A similar morphological transition from dendrites to equiaxed grains occurred at the equiaxed-grain region in Al1 alloy, but the annealing twins were not observed probably because a higher Al addition leads to a higher stacking fault energy for this alloy.

  5. High Energy Astronomy Observatory (HEAO)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This is an artist's concept describing the High Energy Astronomy Observatory (HEAO). The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. This concept was painted by Jack Hood of the Marshall Space Flight Center (MSFC). Hardware support for the imaging instruments was provided by American Science and Engineering. The HEAO spacecraft were built by TRW, Inc. under project management of the MSFC.

  6. Superior Mechanical Properties of AlCoCrFeNiTi x High-Entropy Alloys upon Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Jiao, Z. M.; Ma, S. G.; Chu, M. Y.; Yang, H. J.; Wang, Z. H.; Zhang, Y.; Qiao, J. W.

    2016-02-01

    High-entropy alloys with composition of AlCoCrFeNiTi x ( x: molar ratio; x = 0, 0.2, 0.4) under quasi-static and dynamic compression exhibit excellent mechanical properties. A positive strain-rate sensitivity of yield strength and the strong work-hardening behavior during plastic flows dominate upon dynamic loading in the present alloy system. The constitutive relationships are extracted to model flow behaviors by employing the Johnson-Cook constitutive model. Upon dynamic loading, the ultimate strength and fracture strain of AlCoCrFeNiTi x alloys are superior to most of bulk metallic glasses and in situ metallic glass matrix composites.

  7. Auger electron spectroscopy study of oxidation of a PdCr alloy used for high-temperature sensors

    NASA Technical Reports Server (NTRS)

    Boyd, Darwin L.; Zeller, Mary V.; Vargas-Aburto, Carlos

    1993-01-01

    A Pd-13 wt. percent Cr solid solution is a promising high-temperature strain gage alloy. In bulk form it has a number of properties that are desirable in a resistance strain gage material, such as a linear electrical resistance versus temperature curve to 1000 C and stable electrical resistance in air at 1000 C. However, unprotected fine wire gages fabricated from this alloy perform well only to 600 C. At higher temperatures severe oxidation degrades their electrical performance. In this work Auger electron spectroscopy was used to study the oxidation chemistry of the alloy wires and ribbons. Results indicate that the oxidation is caused by a complex mechanism that is not yet fully understood. As expected, during oxidation, a layer of chromium oxide is formed. This layer, however, forms beneath a layer of metallic palladium. The results of this study have increased the understanding of the oxidation mechanism of Pd-13 wt. percent Cr.

  8. Simulated spatial and temporal dependence of chromium concentration in pure Fe and Fesbnd 14%Cr under high dpa ion irradiation

    NASA Astrophysics Data System (ADS)

    Vörtler, K.; Mamivand, M.; Barnard, L.; Szlufarska, I.; Garner, F. A.; Morgan, D.

    2016-10-01

    In this work we develop an ab initio informed rate theory model to track the spatial and temporal evolution of implanted ions (Cr+) in Fe and Fesbnd 14%Cr during high dose irradiation. We focus on the influence of the specimen surface, the depth dependence of ion-induced damage, the damage rate, and the consequences of ion implantation, all of which influence the depth dependence of alloy composition evolving with continued irradiation. We investigate chemical segregation effects in the material by considering the diffusion of the irradiation-induced defects. Moreover, we explore how temperature, grain size, grain boundary sink strength, and defect production bias modify the resulting distribution of alloy composition. Our results show that the implanted ion profile can be quite different than the predicted SRIM implantation profile due to radiation enhanced transport and segregation.

  9. Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy

    DOE PAGESBeta

    Sharma, Aayush; Singh, Prashant; Johnson, Duane D.; Liaw, Peter K.; Balasubramanian, Ganesh

    2016-08-08

    Here, computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived propertiesmore » are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study AlxCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al0.1CrCoFeNi.« less

  10. Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Sharma, Aayush; Singh, Prashant; Johnson, Duane D.; Liaw, Peter K.; Balasubramanian, Ganesh

    2016-08-01

    Computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived properties are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study AlxCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al0.1CrCoFeNi.

  11. Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy.

    PubMed

    Sharma, Aayush; Singh, Prashant; Johnson, Duane D; Liaw, Peter K; Balasubramanian, Ganesh

    2016-01-01

    Computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived properties are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study AlxCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al0.1CrCoFeNi. PMID:27498807

  12. Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy

    PubMed Central

    Sharma, Aayush; Singh, Prashant; Johnson, Duane D.; Liaw, Peter K.; Balasubramanian, Ganesh

    2016-01-01

    Computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived properties are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study AlxCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al0.1CrCoFeNi. PMID:27498807

  13. High Energy Density Laboratory Astrophysics

    SciTech Connect

    Remington, B A

    2004-11-11

    High-energy-density (HED) physics refers broadly to the study of macroscopic collections of matter under extreme conditions of temperature and density. The experimental facilities most widely used for these studies are high-power lasers and magnetic-pinch generators. The HED physics pursued on these facilities is still in its infancy, yet new regimes of experimental science are emerging. Examples from astrophysics include work relevant to planetary interiors, supernovae, astrophysical jets, and accreting compact objects (such as neutron stars and black holes). In this paper, we will review a selection of recent results in this new field of HED laboratory astrophysics and provide a brief look ahead to the coming decade.

  14. High-Energy-Density Capacitors

    NASA Technical Reports Server (NTRS)

    Slenes, Kirk

    2003-01-01

    Capacitors capable of storing energy at high densities are being developed for use in pulse-power circuits in such diverse systems as defibrillators, particle- beam accelerators, microwave sources, and weapons. Like typical previously developed energy-storage capacitors, these capacitors are made from pairs of metal/solid-dielectric laminated sheets that are wound and pressed into compact shapes to fit into cans, which are then filled with dielectric fluids. Indeed, these capacitors can be fabricated largely by conventional fabrication techniques. The main features that distinguish these capacitors from previously developed ones are improvements in (1) the selection of laminate materials, (2) the fabrication of the laminated sheets from these materials, and (3) the selection of dielectric fluids. In simplest terms, a high-performance laminated sheet of the type used in these capacitors is made by casting a dielectric polymer onto a sheet of aluminized kraft paper. The dielectric polymer is a siloxane polymer that has been modified with polar pendant groups to increase its permittivity and dielectric strength. Potentially, this polymer is capable of withstanding an energy density of 7.5 J/cm3, which is four times that of the previous state-of-the-art-capacitor dielectric film material. However, the full potential of this polymer cannot be realized at present because (1) at thicknesses needed for optimum performance (.8.0 m), the mechanical strength of a film of this polymer is insufficient for incorporation into a wound capacitor and (2) at greater thickness, the achievable energy density decreases because of a logarithmic decrease in dielectric strength with increasing thickness. The aluminized kraft paper provides the mechanical strength needed for processing of the laminate and fabrication of the capacitor, and the aluminum film serves as an electrode layer. Because part of the thickness of the dielectric is not occupied by the modified siloxane polymer, the

  15. Metformin prevents aggressive ovarian cancer growth driven by high-energy diet: similarity with calorie restriction.

    PubMed

    Al-Wahab, Zaid; Mert, Ismail; Tebbe, Calvin; Chhina, Jasdeep; Hijaz, Miriana; Morris, Robert T; Ali-Fehmi, Rouba; Giri, Shailendra; Munkarah, Adnan R; Rattan, Ramandeep

    2015-05-10

    Caloric restriction (CR) was recently demonstrated by us to restrict ovarian cancer growth in vivo. CR resulted in activation of energy regulating enzymes adenosine monophosphate activated kinase (AMPK) and sirtuin 1 (SIRT1) followed by downstream inhibition of Akt-mTOR. In the present study, we investigated the effects of metformin on ovarian cancer growth in mice fed a high energy diet (HED) and regular diet (RD) and compared them to those seen with CR in an immunocompetent isogeneic mouse model of ovarian cancer. Mice either on RD or HED diet bearing ovarian tumors were treated with 200 mg/kg metformin in drinking water. Metformin treatment in RD and HED mice resulted in a significant reduction in tumor burden in the peritoneum, liver, kidney, spleen and bowel accompanied by decreased levels of growth factors (IGF-1, insulin and leptin), inflammatory cytokines (MCP-1, IL-6) and VEGF in plasma and ascitic fluid, akin to the CR diet mice. Metformin resulted in activation of AMPK and SIRT1 and inhibition of pAkt and pmTOR, similar to CR. Thus metformin can closely mimic CR's tumor suppressing effects by inducing similar metabolic changes, providing further evidence of its potential not only as a therapeutic drug but also as a preventive agent.

  16. Physical properties and phase diagram of the magnetic compound Cr0.26NbS1.74 at high pressures

    NASA Astrophysics Data System (ADS)

    Sidorov, V. A.; Petrova, A. E.; Pinyagin, A. N.; Kolesnikov, N. N.; Khasanov, S. S.; Stishov, S. M.

    2016-06-01

    We report the results of a study of magnetic, electrical, and thermodynamic properties of a single crystal of the magnetic compound Cr0.26NbS1.74 at ambient and high pressures. Results of the measurements of magnetization as a function of temperature reveal the existence of a ferromagnetic phase transition in Cr0.26NbS1.74. The effective number of Bohr magnetons per Cr atom in the paramagnetic phase of Cr0.26NbS1.74 is µeff ≈ 4.6µB, which matches the literature data for Cr1/3NbS2. Similarly, the effective number of Bohr magnetons per Cr atom in the saturation fields is rather close in both substances and corresponds to the number of magnetons in the Cr+3 ion. In contrast to the stoichiometric compound, Cr0.26NbS1.74 does not show a metamagnetic transition, that indicates the lack of a magnetic soliton. A high-pressure phase diagram of the compound reveals the quantum phase transition at T = 0 and P ≈ 4.2 GPa and the triple point situated at T ≈ 20 K and P ≈ 4.2 GPa.

  17. High-resolution tropospheric carbon monoxide profiles retrieved from CrIS and TROPOMI

    NASA Astrophysics Data System (ADS)

    Fu, Dejian; Bowman, Kevin W.; Worden, Helen M.; Natraj, Vijay; Worden, John R.; Yu, Shanshan; Veefkind, Pepijn; Aben, Ilse; Landgraf, Jochen; Strow, Larrabee; Han, Yong

    2016-06-01

    The Measurements of Pollution in the Troposphere (MOPITT) instrument is the only satellite-borne sensor in operation that uses both thermal (TIR) and near-infrared (NIR) channels to estimate CO profiles. With more than 15 years (2000 to present) of validated multispectral observations, MOPITT provides the unique capability to separate CO in the lowermost troposphere (LMT, surface to 3 km (˜ 700 hPa)) from the free-tropospheric abundance. To extend this record, a new, hyper-spectral approach is presented here that will provide CO data products exceeding the capabilities of MOPITT by combining the short-wavelength infrared (SWIR, equivalent to the MOPITT NIR) channels from the TROPOspheric Monitoring Instrument (TROPOMI) to be launched aboard the European Sentinel 5 Precursor (S5p) satellite in 2016 and the TIR channels from the Cross-track Infrared Sounder (CrIS) aboard the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite. We apply the MUlti-SpEctra, MUlti-SpEcies, Multi-SEnsors (MUSES) retrieval algorithm to quantify the potential of this joint CO product. CO profiles are retrieved from a single-footprint, full-spectral-resolution CrIS transect over Africa on 27-28 August 2013 coincident with significant biomass burning. Comparisons of collocated CrIS and MOPITT CO observations for the LMT show a mean difference of 2.8 ± 24.9 ppb, which is well within the estimated measurement uncertainty of both sensors. The estimated degrees of freedom (DOF) for CO signals from synergistic CrIS-TROPOMI retrievals are approximately 0.9 in the LMT and 1.3 above the LMT, which indicates that the LMT CO can be distinguished from the free troposphere, similar to MOPITT multispectral observations (0.8 in the LMT, and 1.1 above the LMT). In addition to increased sensitivity, the combined retrievals reduce measurement uncertainty, with ˜ 15 % error reduction in the LMT. With a daily global coverage and a combined spatial footprint of 14 km, the joint Cr

  18. Photoluminescence study of LiNbO3:Cr3+; W4+ at high pressure. Pressure dependence of spectroscopic parameters and local structure of Cr3+

    NASA Astrophysics Data System (ADS)

    Sánchez-Alejo, M. A.; Rodríguez, F.; Barreda-Argüeso, J. A.; Camarillo, I.; Flores J., C.; Murrieta S., H.; Hernández A., J. M.; Jaque, F.; Camarillo, E.

    2016-10-01

    In this study, the photoluminescence properties of congruent codoped LiNbO3:Cr3+; W4+, crystals have been systematically investigated by performing photoluminescence studies at room temperature in the 0-280 kbar pressure range. In particular, we focus on the influence that hydrostatic pressure has on the 2E→ 4A2 (R-lines) transitions of Cr3+. It has been observed that the pressure dependence of the spectral position of the R-lines associated with both Cr3+ centres β and γ shows a bilinear behaviour with an abrupt slope change near 210 kbar. This change is related to the existence of a pressure-induced structural phase transition in the LiNbO3 host. The analysis of experimental results provides the Racah parameters B and C and the crystal field parameter 10Dq and their pressure and volume, through the crystal field theory and equation of state, dependences.

  19. Effects of temperature on serrated flows of Al0.5CoCrCuFeNi high-entropy alloy

    DOE PAGESBeta

    Chen, Shuying; Xie, Xie; Chen, Bilin; Qiao, Junwei; Zhang, Yong; Ren, Yang; Dahmen, Karin A.; Liaw, Peter K.

    2015-08-14

    Compression behavior of the Al0.5CoCrCuFeNi high-entropy alloy (HEA) was studied at different temperatures from 673K to 873K at a low strain rate of 5 x 10-5/s to investigate the temperature effect on the mechanical properties and serration behavior. The face-centered cubic (FCC) structure is confirmed at the lower temperature of 673 K and 773 K, and a structure of mixed FCC and body-centered cubic (BCC) is identified at a higher temperature of 873 K after compression tests using high-energy synchrotron X-ray diffraction. As a result, by comparing the stress-strain curves at different temperatures, two opposite directions of serrations types weremore » found, named upward serrations appearing at 673 K and 773 K and downward serrations at 873 K, which may be due to dynamic strain aging.« less

  20. Effects of temperature on serrated flows of Al0.5CoCrCuFeNi high-entropy alloy

    SciTech Connect

    Chen, Shuying; Xie, Xie; Chen, Bilin; Qiao, Junwei; Zhang, Yong; Ren, Yang; Dahmen, Karin A.; Liaw, Peter K.

    2015-08-14

    Compression behavior of the Al0.5CoCrCuFeNi high-entropy alloy (HEA) was studied at different temperatures from 673K to 873K at a low strain rate of 5 x 10-5/s to investigate the temperature effect on the mechanical properties and serration behavior. The face-centered cubic (FCC) structure is confirmed at the lower temperature of 673 K and 773 K, and a structure of mixed FCC and body-centered cubic (BCC) is identified at a higher temperature of 873 K after compression tests using high-energy synchrotron X-ray diffraction. As a result, by comparing the stress-strain curves at different temperatures, two opposite directions of serrations types were found, named upward serrations appearing at 673 K and 773 K and downward serrations at 873 K, which may be due to dynamic strain aging.

  1. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    SciTech Connect

    Rosenberg, M. J. Séguin, F. H.; Waugh, C. J.; Rinderknecht, H. G.; Orozco, D.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Zylstra, A. B.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Hohenberger, M.; Sangster, T. C.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Landen, O. L.; and others

    2014-04-15

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ∼0.5–8 MeV protons. When the fluence of incident particles becomes too high, overlap of particle tracks leads to under-counting at typical processing conditions (5 h etch in 6N NaOH at 80 °C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 × 10{sup 6} cm{sup −2}. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ∼50, increasing the operating yield upper limit by a comparable amount.

  2. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    SciTech Connect

    Rosenberg, M. J.; Séguin, F. H.; Waugh, C. J.; Rinderknecht, H. G.; Orozco, D.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Zylstra, A. B.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Hohenberger, M.; Sangster, T. C.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Landen, O. L.; Zacharias, R. A.; Kim, Y.; Herrmann, H. W.; Kilkenny, J. D.

    2014-04-14

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ~0.5–8 MeV protons. When the fluence of incident particles becomes too high, the overlap of particle tracks leads to under-counting at typical processing conditions (5h etch in 6N NaOH at 80°C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 ×106 cm-2. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ~50, increasing the operating yield upper limit by a comparable amount.

  3. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications

    DOE PAGESBeta

    Rosenberg, M. J.; Séguin, F. H.; Waugh, C. J.; Rinderknecht, H. G.; Orozco, D.; Frenje, J. A.; Johnson, M. Gatu; Sio, H.; Zylstra, A. B.; Sinenian, N.; et al

    2014-04-14

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ~0.5–8 MeV protons. When the fluence of incident particles becomes too high, the overlap of particle tracks leads to under-counting at typical processing conditions (5h etch in 6N NaOH at 80°C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detectionmore » of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 ×106 cm-2. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ~50, increasing the operating yield upper limit by a comparable amount.« less

  4. Empirical assessment of the detection efficiency of CR-39 at high proton fluence and a compact, proton detector for high-fluence applications.

    PubMed

    Rosenberg, M J; Séguin, F H; Waugh, C J; Rinderknecht, H G; Orozco, D; Frenje, J A; Johnson, M Gatu; Sio, H; Zylstra, A B; Sinenian, N; Li, C K; Petrasso, R D; Glebov, V Yu; Stoeckl, C; Hohenberger, M; Sangster, T C; LePape, S; Mackinnon, A J; Bionta, R M; Landen, O L; Zacharias, R A; Kim, Y; Herrmann, H W; Kilkenny, J D

    2014-04-01

    CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ∼0.5-8 MeV protons. When the fluence of incident particles becomes too high, overlap of particle tracks leads to under-counting at typical processing conditions (5 h etch in 6N NaOH at 80 °C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7-4.3-MeV protons and established that for 2.4-MeV protons, relevant for detection of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 × 10(6) cm(-2). A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ∼50, increasing the operating yield upper limit by a comparable amount. PMID:24784597

  5. Effect of Aluminum Content on Plasma-Nitrided Al x CoCrCuFeNi High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Tang, Wei-Yeh; Yeh, Jien-Wei

    2009-06-01

    High-entropy alloys (HEAs) Al x CoCrCuFeNi with different aluminum contents ( x = 0 to 1.8) were plasma nitrided at 525 °C for 45 hours with an aim to develop wear-resistant structural parts. The nitrided layer comprises a well-nitrided dendrite phase and an un-nitrided Cu-rich interdendrite phase. Surface hardening is a result of the formation of various nitrides in the nitrided dendrite: CrN, Fe4N, and AlN. With increasing aluminum content, the hardness of the nitrided layer increases due to the increased amount of hard AlN phase and the increased volume fraction of bcc phase being harder than the fcc one. The nitrided layer thickness shows an apparent decrease with the increasing aluminum content of the alloy. The present alloy system provides a wide range of substrate hardness from Hv 170 to 560 before nitriding, which even becomes harder by around Hv 30 after nitriding. For Al0.5CoCrCuFeNi alloy having the highest surface hardness of Hv 1300, a layer thickness of 23 μm, and a substrate hardness of Hv 300, an adhesive wear test confirms its superior wear resistance as being 17 times that of the un-nitrided samples.

  6. High Temperature Thermal Stability and Oxidation Resistance of Magnetron-sputtered Homogeneous CrAlON Coatings on 430 Steel

    NASA Astrophysics Data System (ADS)

    Kayani, A.; Wickey, K. J.; Nandasiri, M. I.; Moore, A.; Garratt, E.; AlFaify, S.; Gao, X.; Smith, R. J.; Buchanan, T. L.; Priyantha, W.; Kopczyk, M.; Gannon, P. E.; Gorokhovsky, V. I.

    2009-03-01

    The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800° C. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.

  7. High temperature oxidation resistance of magnetron-sputtered homogeneous CrAlON coatings on 430 steel

    NASA Astrophysics Data System (ADS)

    Garratt, E.; Wickey, K. J.; Nandasiri, M. I.; Moore, A.; AlFaify, S.; Gao, X.; Kayani, A.; Smith, R. J.; Buchanan, T. L.; Priyantha, W.; Kopczyk, M.; Gannon, P. E.

    2009-11-01

    The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800 oC. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). Surface characterization was carried out using Atomic Force Microscopy (AFM) and surfaces of the coatings were found smooth on submicron scale. From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.

  8. High temperature thermoelectric energy conversion

    NASA Technical Reports Server (NTRS)

    Wood, Charles

    1987-01-01

    The theory and current status of materials research for high-temperature thermoelectric energy conversion are reviewed. Semiconductors are shown to be the preferred class of materials for this application. Optimization of the figure of merit of both broadband and narrow-band semiconductors is discussed as a function of temperature. Phonon scattering mechanisms are discussed, and basic material guidelines are given for reduction of thermal conductivity. Two general classes of materials show promise for high temperature figure of merit (Z) values, namely the rare earth chalcogenides and the boron-rich borides. The electronic transport properties of the rare earth chalcogenides are explicable on the basis of degenerate or partially degenerate n-type semiconductors. Boron and boron-rich borides exhibit p-type hopping conductivity, with detailed explanations proposed for the transport differing from compound to compound. Some discussion is presented on the reasons for the low thermal conductivities in these materials. Also, ZTs greater than one appear to have been realized at high temperature in many of these compounds.

  9. Spin-glass behavior and incommensurate modulation in high-pressure perovskite BiCr0.5Ni0.5O3.

    PubMed

    Arévalo-López, Ángel M; Dos Santos-García, Antonio J; Levin, Jessica R; Attfield, J Paul; Alario-Franco, Miguel A

    2015-02-01

    The BiCr(0.5)Ni(0.5)O(3) perovskite has been obtained at high pressure. Neutron and synchrotron diffraction data show a Pnma orthorhombic structure with a = 5.5947(1) Å, b = 7.7613(1) Å, and c = 5.3882(1) Å at 300 K and random B-site Cr/Ni distribution. Electron diffraction reveals an incommensurate modulation parallel to the b axis. The combination of either Cr-O-Ni (J > 0) or Cr-O-Cr/Ni-O-Ni (J < 0) nearest-neighbor spin interactions results in a random-bond spin-glass configuration. Magnetization, neutron diffraction, and muon-spin-relaxation measurements demonstrate that variations in the local bonding and charge states contribute to the magnetic frustration.

  10. Oxides having high energy densities

    DOEpatents

    Ceder, Gerbrand; Kang, Kisuk

    2013-09-10

    Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

  11. High energy beam lifetime analysis

    SciTech Connect

    Howell, R.H.; Sterne, P.A.; Hartley, J.; Cowan, T.E.

    1997-05-01

    We have developed a positron lifetime defect analysis capability based on a 3 MeV electrostatic accelerator. The high energy beam lifetime spectrometer is operational with a 60 mCi {sup 22}Na source providing a current of 7 10{sup 5} positrons per second. Lifetime data are derived from a thin plastic transmission detector providing an implantation time and a BaF{sub 2} detector to determine the annihilation time. Positron lifetime analysis is performed with a 3 MeV positron beam on thick sample specimens at counting rates in excess of 2000 per second. The instrument is being used for bulk sample analysis and analysis of samples encapsulated in controlled environments for in situ measurements.

  12. High energy femtosecond pulse compression

    NASA Astrophysics Data System (ADS)

    Lassonde, Philippe; Mironov, Sergey; Fourmaux, Sylvain; Payeur, Stéphane; Khazanov, Efim; Sergeev, Alexander; Kieffer, Jean-Claude; Mourou, Gerard

    2016-07-01

    An original method for retrieving the Kerr nonlinear index was proposed and implemented for TF12 heavy flint glass. Then, a defocusing lens made of this highly nonlinear glass was used to generate an almost constant spectral broadening across a Gaussian beam profile. The lens was designed with spherical curvatures chosen in order to match the laser beam profile, such that the product of the thickness with intensity is constant. This solid-state optics in combination with chirped mirrors was used to decrease the pulse duration at the output of a terawatt-class femtosecond laser. We demonstrated compression of a 33 fs pulse to 16 fs with 170 mJ energy.

  13. Low Energy Building for High Energy People.

    ERIC Educational Resources Information Center

    American School and University, 1982

    1982-01-01

    The Huston Huffman Center at the University of Oklahoma's Norman campus has a jogging track as well as facilities for exercise and court games that are fully accessible to the handicapped. The building is set eight feet in the ground both to reduce its bulk and to conserve energy. (Author/MLF)

  14. Ultrasound study of FeCr2S4 in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Felea, V.; Yasin, S.; Günther, A.; Deisenhofer, J.; Krug von Nidda, H.-A.; Scheidt, E.-W.; Quach, D. V.; Groza, J. R.; Zherlitsyn, S.; Tsurkan, V.; Lemmens, P.; Wosnitza, J.; Loidl, A.

    2014-12-01

    We report on ultrasound studies of FeCr2S4 in static and pulsed magnetic fields exhibiting an orbital-order transition at 9 K. A longitudinal acoustic mode exhibits distinct features in the phase space of temperature and magnetic field due to magnetic and structural transformations. Pulsed-field measurements show significant differences in the sound velocity below and above the orbital-ordering transition as well as the spin-reorientation transition at 60 K. Our results indicate a reduction of the magnetocrystalline anisotropy on entering the orbitally ordered phase.

  15. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  16. Long-term carbide development in high-velocity oxygen fuel/high-velocity air fuel Cr3C2-NiCr coatings heat treated at 900 °C

    NASA Astrophysics Data System (ADS)

    Matthews, S.; Hyland, M.; James, B.

    2004-12-01

    During the deposition of Cr3C2-NiCr coatings, compositional degradation occurs, primarily through the dissolution of the carbide phase into the matrix. Exposure at an elevated temperature leads to transformations in the compositional distribution and microstructure. While these have been investigated in short-term trials, no systematic investigations of the long-term microstructural development have been presented for high-velocity sprayed coatings. In this work, high-velocity air fuel (HVAF) and high-velocity oxygen fuel (HVOF) coatings were treated at 900 °C for up to 60 days. Rapid refinement of the supersaturated matrix phase occurred, with the degree of matrix phase alloying continuing to decrease over the following 20 to 40 days. Carbide nucleation in the HVAF coatings occurred preferentially on the retained carbide grains, while that in the HVOF coatings developed in the regions of greatest carbide dissolution. This difference resulted in a variation in carbide morphologies. Preferential horizontal growth was evident in both coatings over the first 20 to 30 days of exposure, beyond which spheroidization of the microstructure occurred. After 30 days, the carbide morphology of both coatings was comparable, tending toward an expansive structure of coalesced carbide grains. The development of the carbide phase played a significant role in the microhardness variation of these coatings with time.

  17. Dislocations and deformation microstructure in a B2-ordered Al28Co20Cr11Fe15Ni26 high-entropy alloy.

    PubMed

    Feuerbacher, Michael

    2016-07-19

    High-entropy alloys are multicomponent metallic materials currently attracting high research interest. They display a unique combination of chemical disorder and crystalline long-range order, and due to their attractive properties are promising candidates for technological application. Many high-entropy alloys possess surprisingly high strength, occasionally in combination with high ductility and low density. The mechanisms effecting these attractive mechanical properties are not understood. This study addresses the deformation mechanism of a Al28Co20Cr11Fe15Ni26 high-entropy alloy, which is a two-phase material, consisting of a B2-ordered matrix and disordered body-centred inclusions. We quantitatively analyse the microstructure and dislocations in deformed samples by transmission-electron-microscopic methods including weak-beam imaging and convergent-beam electron diffraction. We find that the deformation process in the B2 phase is dominated by heterogeneous slip of screw dislocations gliding on planes. The dislocations are perfect superdislocations of the B2 lattice and show no dissociation. This indicates that the antiphase-boundary energy in the structure is very high, inhibiting spread of the dislocation core. Along with the observation of a widely extending strain field associated to the dislocations, our results provide a possible explanation for the high strength of this high-entropy alloy as a direct consequence of its dislocation structure.

  18. Dislocations and deformation microstructure in a B2-ordered Al28Co20Cr11Fe15Ni26 high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Feuerbacher, Michael

    2016-07-01

    High-entropy alloys are multicomponent metallic materials currently attracting high research interest. They display a unique combination of chemical disorder and crystalline long-range order, and due to their attractive properties are promising candidates for technological application. Many high-entropy alloys possess surprisingly high strength, occasionally in combination with high ductility and low density. The mechanisms effecting these attractive mechanical properties are not understood. This study addresses the deformation mechanism of a Al28Co20Cr11Fe15Ni26 high-entropy alloy, which is a two-phase material, consisting of a B2-ordered matrix and disordered body-centred inclusions. We quantitatively analyse the microstructure and dislocations in deformed samples by transmission-electron-microscopic methods including weak-beam imaging and convergent-beam electron diffraction. We find that the deformation process in the B2 phase is dominated by heterogeneous slip of screw dislocations gliding on planes. The dislocations are perfect superdislocations of the B2 lattice and show no dissociation. This indicates that the antiphase-boundary energy in the structure is very high, inhibiting spread of the dislocation core. Along with the observation of a widely extending strain field associated to the dislocations, our results provide a possible explanation for the high strength of this high-entropy alloy as a direct consequence of its dislocation structure.

  19. Dislocations and deformation microstructure in a B2-ordered Al28Co20Cr11Fe15Ni26 high-entropy alloy

    PubMed Central

    Feuerbacher, Michael

    2016-01-01

    High-entropy alloys are multicomponent metallic materials currently attracting high research interest. They display a unique combination of chemical disorder and crystalline long-range order, and due to their attractive properties are promising candidates for technological application. Many high-entropy alloys possess surprisingly high strength, occasionally in combination with high ductility and low density. The mechanisms effecting these attractive mechanical properties are not understood. This study addresses the deformation mechanism of a Al28Co20Cr11Fe15Ni26 high-entropy alloy, which is a two-phase material, consisting of a B2-ordered matrix and disordered body-centred inclusions. We quantitatively analyse the microstructure and dislocations in deformed samples by transmission-electron-microscopic methods including weak-beam imaging and convergent-beam electron diffraction. We find that the deformation process in the B2 phase is dominated by heterogeneous slip of screw dislocations gliding on planes. The dislocations are perfect superdislocations of the B2 lattice and show no dissociation. This indicates that the antiphase-boundary energy in the structure is very high, inhibiting spread of the dislocation core. Along with the observation of a widely extending strain field associated to the dislocations, our results provide a possible explanation for the high strength of this high-entropy alloy as a direct consequence of its dislocation structure. PMID:27430993

  20. High-Temperature Behavior of a NiCr-Coated T91 Boiler Steel in the Platen Superheater of Coal-Fired Boiler

    NASA Astrophysics Data System (ADS)

    Chatha, Sukhpal Singh; Sidhu, Hazoor S.; Sidhu, Buta S.

    2013-06-01

    Ni-20Cr coating was deposited on T91 boiler tube steel by high-velocity oxy-fuel (HVOF) process to enhance high-temperature oxidation resistance. High-temperature performance of bare, as well as HVOF-coated steel specimens was evaluated for 1500 h under in the platen superheater zone of coal-fired boiler, where the temperature was around 900 °C. Experiments were carried out for 15 cycles, each of 100-h duration followed by 1-h cooling at ambient temperature. The extent of degradation of the specimens was assessed by the thickness loss and depth of internal corrosion attack. Ni-20Cr-coated steel performed better than the uncoated steel in actual boiler environment. The improved degradation resistance of Ni-20Cr coating can be attributed to the presence of Cr2O3 in the top oxide scale and dense microstructure.

  1. High-energy cosmic rays and neutrinos from semirelativistic hypernovae

    SciTech Connect

    Wang Xiangyu; Razzaque, Soebur; Meszaros, Peter; Dai Zigao

    2007-10-15

    The origin of the ultrahigh-energy (UHE) cosmic rays (CRs) from the second knee ({approx}6x10{sup 17} eV) above in the CR spectrum is still unknown. Recently, there has been growing evidence that a peculiar type of supernovae, called hypernovae, are associated with subenergetic gamma-ray bursts, such as SN1998bw/GRB980425 and SN2003lw/GRB031203. Such hypernovae appear to have high (up to mildly relativistic) velocity ejecta, which may be linked to the subenergetic gamma-ray bursts. Assuming a continuous distribution of the kinetic energy of the hypernova ejecta as a function of its velocity E{sub k}{proportional_to}({gamma}{beta}){sup -{alpha}} with {alpha}{approx}2, we find that (1) the external shock wave produced by the high-velocity ejecta of a hypernova can accelerate protons up to energies as high as 10{sup 19} eV; (2) the cosmological hypernova rate is sufficient to account for the energy flux above the second knee; and (3) the steeper spectrum of CRs at these energies can arise in these sources. In addition, hypernovae would also give rise to a faint diffuse UHE neutrino flux, due to p{gamma} interactions of the UHE CRs with hypernova optical-UV photons.

  2. Cr segregation at the FeCr surface and the origin of corrosion resistance in ferritic steels

    SciTech Connect

    De Caro, M S; Morse, B; Egiebor, N; Farmer, J; Caro, A

    2008-11-22

    Structural materials in Gen-IV nuclear reactors will face severe conditions of high operating temperatures, high neutron flux exposure, and corrosive environment. Radiation effects and corrosion and chemical compatibility issues are factors that will limit the materials lifetime. Low-chromium (9-12 Cr wt.%) ferritic martensitic (F/M) steels are being considered as possible candidates because they offer good swelling resistance and good mechanical properties under extreme conditions of radiation dose and irradiation temperature. The surface chemistry of FeCr alloys, responsible for the corrosion properties, is complex. It exists today a controversy between equilibrium thermodynamic calculations, which suggest Cr depletion at the surface driven by the higher surface energy of Cr, and experimental data which suggest the oxidation process occurs in two stages, first forming a Fe-rich oxide, followed by a duplex oxide layer, and ending with a Cr-rich oxide. Moreover, it has been shown experimentally that corrosion resistance of F/M steels depends significantly on Cr content, increasing with increasing Cr content and with a threshold around 10% Cr, below which, the alloy behaves as pure Fe. In an attempt to rationalize these two contradicting observations and to understand the physical mechanism behind corrosion resistance in these materials we perform atomistic simulations using our FeCr empirical potential and analyze Cr equilibrium distributions at different compositions and temperatures in single and polycrystalline samples. We analyze the controversy in terms of thermodynamic and kinetic considerations.

  3. Compact, high energy gas laser

    DOEpatents

    Rockwood, Stephen D.; Stapleton, Robert E.; Stratton, Thomas F.

    1976-08-03

    An electrically pumped gas laser amplifier unit having a disc-like configuration in which light propagation is radially outward from the axis rather than along the axis. The input optical energy is distributed over a much smaller area than the output optical energy, i.e., the amplified beam, while still preserving the simplicity of parallel electrodes for pumping the laser medium. The system may thus be driven by a comparatively low optical energy input, while at the same time, owing to the large output area, large energies may be extracted while maintaining the energy per unit area below the threshold of gas breakdown.

  4. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    SciTech Connect

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials can be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.

  5. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    DOE PAGESBeta

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials canmore » be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.« less

  6. Temperature and concentration dependent magnetic properties of epitaxial Fe{sub 1−x}Cr{sub x}-alloy films in the high Cr-concentration regime

    SciTech Connect

    Brüssing, F.; Abrudan, R.; Zabel, H.

    2014-07-21

    Soft magnetic materials with a Curie temperature (T{sub c}) close to room temperature are suitable candidates for device applications and for more fundamental aspects of magnetism. Promising candidates are Fe{sub 1−x}Cr{sub x}-alloys with a Fe concentration of about 25%–35%. We have grown by molecular beam epitaxy methods a number of epitaxial Fe{sub 1−x}Cr{sub x} alloys on MgO[100] and MgO[110] substrates, and we report on their structural and magnetic properties in this concentration range, including the dependence of the Curie temperature (T{sub c}) on the concentration, the magnetocrystalline anisotropy, and the development of the magnetic moment.

  7. Effects of Cr and Ni on interdiffusion and reaction between U and Fe-Cr-Ni alloys

    NASA Astrophysics Data System (ADS)

    Huang, K.; Park, Y.; Zhou, L.; Coffey, K. R.; Sohn, Y. H.; Sencer, B. H.; Kennedy, J. R.

    2014-08-01

    Metallic U-alloy fuel cladded in steel has been examined for high temperature fast reactor technology wherein the fuel cladding chemical interaction is a challenge that requires a fundamental and quantitative understanding. In order to study the fundamental diffusional interactions between U with Fe and the alloying effect of Cr and Ni, solid-to-solid diffusion couples were assembled between pure U and Fe, Fe-15 wt.%Cr or Fe-15 wt.%Cr-15 wt.%Ni alloy, and annealed at high temperature ranging from 580 to 700 °C. The microstructures and concentration profiles that developed from the diffusion anneal were examined by scanning electron microscopy, and X-ray energy dispersive spectroscopy (XEDS), respectively. Thick U6Fe and thin UFe2 phases were observed to develop with solubilities: up to 2.5 at.% Ni in U6(Fe,Ni), up to 20 at.%Cr in U(Fe, Cr)2, and up to 7 at.%Cr and 14 at.% Ni in U(Fe, Cr, Ni)2. The interdiffusion and reactions in the U vs. Fe and U vs. Fe-Cr-Ni exhibited a similar temperature dependence, while the U vs. Fe-Cr diffusion couples, without the presence of Ni, yielded greater activation energy for the growth of intermetallic phases - lower growth rate at lower temperature but higher growth rate at higher temperature.

  8. High energy chemical laser system

    DOEpatents

    Gregg, D.W.; Pearson, R.K.

    1975-12-23

    A high energy chemical laser system is described wherein explosive gaseous mixtures of a reducing agent providing hydrogen isotopes and interhalogen compounds are uniformly ignited by means of an electrical discharge, flash- photolysis or an electron beam. The resulting chemical explosion pumps a lasing chemical species, hydrogen fluoride or deuterium fluoride which is formed in the chemical reaction. The generated lasing pulse has light frequencies in the 3- micron range. Suitable interhalogen compounds include bromine trifluoride (BrF$sub 3$), bromine pentafluoride (BrF$sub 5$), chlorine monofluoride (ClF), chlorine trifluoride (ClF$sub 3$), chlorine pentafluoride (ClF$sub 5$), iodine pentafluoride (IF$sub 5$), and iodine heptafluoride (IF$sub 7$); and suitable reducing agents include hydrogen (H$sub 2$), hydrocarbons such as methane (CH$sub 4$), deuterium (D$sub 2$), and diborane (B$sub 2$H$sub 6$), as well as combinations of the gaseous compound and/or molecular mixtures of the reducing agent.

  9. Kinetic Parameters of Secondary Carbide Precipitation in High-Cr White Iron Alloyed by Mn-Ni-Mo-V Complex

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Chabak, Yu. G.; Brykov, M. N.

    2013-05-01

    This study presents kinetics of precipitation of secondary carbides in 14.55%Cr-Mn-Ni-Mo-V white cast iron during the destabilization heat treatment. The as-cast iron was heat treated at temperatures in the range of 800-1100 °C with soaking up to 6 h. Investigation was carried out by optical and electron microscopy, dilatometric analysis, Ms temperature measurement, and bulk hardness evaluation. TTT-curve of precipitation process of secondary carbides (M7C3, M23C6, M3C2) has been constructed in this study. It was determined that the precipitation occurs at the maximum rate at 950 °C where the process is started after 10 s and completed within 160 min further. The precipitation leads to significant increase of Ms temperature and bulk hardness; large soaking times at destabilization temperatures cause coarsening of secondary carbides and decrease in particles number, followed by decrease in hardness. The results obtained are discussed in terms of solubility of carbon in the austenite and diffusion activation of Cr atoms. The precipitation was found to consist of two stages with activation energies of 196.5 kJ/g-mole at the first stage and 47.1 kJ/g-mole at the second stage.

  10. Investigating half-metallicity in PtXSb alloys (X=V, Mn, Cr, Co) at ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Habbak, Enas L.; Shabara, Reham M.; Aly, Samy H.; Yehia, Sherif

    2016-08-01

    The structural, electronic, magnetic and elastic properties of half-Heusler alloys PtMnSb, PtVSb, PtCrSb and PtCoSb are investigated using first-principles calculation based on Density Functional Theory DFT. The Full Potential local Orbital (FPLO) method, within the General Gradient Approximation (GGA) and Local Spin Density Approximation (LSDA), have been used. The calculated structural, electronic and magnetic properties are in good agreement with available experimental and theoretical data. Using GGA approximation, only PtVSb shows a half-metallic behavior with a spin-down band gap and total magnetic moment of 0.802 eV and 2 μB respectively. Both of PtVSb and PtMnSb alloys are half-metallic with spin-down band gaps of 0.925 eV and 0.832 eV and magnetic moments of 2 μB and 4 μB respectively using LSDA approximation. The bulk modulus and its first pressure-derivative of these alloys are calculated using the modified Birch-Murnaghan equation of state (EOS). The effect of pressure on the lattice constant, energy gap and bulk modulus is investigated. Under pressure, PtMnSb and PtCrSb turn into half-metallic alloys at nearly 6 GPa and 27 GPa respectively using GGA approximation.

  11. Microstructure Evolution in a New Refractory High-Entropy Alloy W-Mo-Cr-Ti-Al

    NASA Astrophysics Data System (ADS)

    Gorr, Bronislava; Azim, Maria; Christ, Hans-Juergen; Chen, Hans; Szabo, Dorothee Vinga; Kauffmann, Alexander; Heilmaier, Martin

    2016-02-01

    The microstructure of a body-centered cubic 20W-20Mo-20Cr-20Ti-20Al alloy in the as-cast condition as well as its microstructural evolution during heat treatment was investigated. Different characterization techniques, such as focused ion beam-scanning electron microscope, X-ray diffraction, and transmission electron microscope, were applied. Experimental observations were supported by thermodynamic calculations. The alloy exhibits a pronounced dendritic microstructure in the as-cast condition with the respective dendritic and interdendritic regions showing significant fluctuations of the element concentrations. Using thermodynamic calculations, it was possible to rationalize the measured element distribution in the dendritic and the interdendritic regions. Observations of the microstructure evolution reveal that during heat treatment, substantial homogenization takes place leading to the formation of a single-phase microstructure. Driving forces for the microstructural evolution were discussed from a thermodynamic point of view.

  12. Effect of one-step recrystallization on the grain boundary evolution of CoCrFeMnNi high entropy alloy and its subsystems.

    PubMed

    Chen, Bo-Ru; Yeh, An-Chou; Yeh, Jien-Wei

    2016-01-01

    In this study, the grain boundary evolution of equiatomic CoCrFeMnNi, CoCrFeNi, and FeCoNi alloys after one-step recrystallization were investigated. The special boundary fraction and twin density of these alloys were evaluated by electron backscatter diffraction analysis. Among the three alloys tested, FeCoNi exhibited the highest special boundary fraction and twin density after one-step recrystallization. The special boundary increment after one-step recrystallization was mainly affected by grain boundary velocity, while twin density was mainly affected by average grain boundary energy and twin boundary energy.

  13. Effect of one-step recrystallization on the grain boundary evolution of CoCrFeMnNi high entropy alloy and its subsystems

    PubMed Central

    Chen, Bo-Ru; Yeh, An-Chou; Yeh, Jien-Wei

    2016-01-01

    In this study, the grain boundary evolution of equiatomic CoCrFeMnNi, CoCrFeNi, and FeCoNi alloys after one-step recrystallization were investigated. The special boundary fraction and twin density of these alloys were evaluated by electron backscatter diffraction analysis. Among the three alloys tested, FeCoNi exhibited the highest special boundary fraction and twin density after one-step recrystallization. The special boundary increment after one-step recrystallization was mainly affected by grain boundary velocity, while twin density was mainly affected by average grain boundary energy and twin boundary energy. PMID:26923713

  14. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  15. High-Energy Astrophysics: An Overview

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2007-01-01

    High-energy astrophysics is the study of objects and phenomena in space with energy densities much greater than that found in normal stars and galaxies. These include black holes, neutron stars, cosmic rays, hypernovae and gamma-ray bursts. A history and an overview of high-energy astrophysics will be presented, including a description of the objects that are observed. Observing techniques, space-borne missions in high-energy astrophysics and some recent discoveries will also be described. Several entirely new types of astronomy are being employed in high-energy astrophysics. These will be briefly described, along with some NASA missions currently under development.

  16. High energy gamma ray imaging

    NASA Astrophysics Data System (ADS)

    Doherty, Michael Richard

    This thesis presents a design study into gamma ray collimation techniques for use in high energy radiation imaging devices for the nuclear industry. Such technology is required to provide information on the nature and location of isotopes within nuclear facilities that have reached the end of their useful life. The work has concentrated on the use of two different techniques, namely mechanical collimation using the Anger camera and electronic collimation using a Compton camera. The work has used computational models to evaluate the performance of such systems and thereby suggest optimal design parameters for use in prototype devices. Ray tracing models have been constructed to simulate both parallel hole and tapered bore diverging collimators. Investigations have been carried out to measure the effects on the spatial resolution of changing various design parameters of the collimators. The effects of varying the hole size, septal thickness and collimator length over a range of source to collimator distances likely to be encountered in an industrial scenario have been examined. Some new insight into the nature of the point spread function of mechanical collimators has been gained and the limitations of the conventional analytical approach to collimator evaluation have been highlighted. Modifications to the standard equations used in collimator design have subsequently been suggested. An analytical description of tapered bore collimators has been derived. Monte Carlo models have been developed to model a single scatter Compton camera. Germanium, silicon and sodium iodide have been investigated as candidates for the scattering detector in such a device. A model of a complete ring array Compton camera system has been used to evaluate performance. The data from the Monte Carlo model has been reconstructed to form images. The quality of the images generated have then been compared with images obtained from parallel hole and focusing mechanical collimators.

  17. A role for transforming growth factor-{beta} apoptotic signaling pathway in liver injury induced by ingestion of water contaminated with high levels of Cr(VI)

    SciTech Connect

    Rafael, A.I.; Almeida, A.; Santos, P.; Parreira, I.; Madeira, V.M.S.; Alves, R.; Cabrita, A.M.S.; Alpoim, M.C.

    2007-10-15

    Hexavalent chromium [Cr(VI)] exposure is commonly associated with lung cancer. Although other adverse health effects have been reported, some authors, on assuming that orally ingested Cr(VI) is efficiently detoxified upon reduction by body fluids, believe that Cr(VI) do not target cells other than respiratory tract cells. In rodents, ingested Cr(VI)-contaminated water was reported to induce, in the liver, increases in TGF-{beta} transcripts. As TGF-{beta} dependent signaling pathways are closely associated with hepatic injury, the present study was undertaken addressing two specific issues: the effects of ingestion of water contaminated with high levels of Cr(VI) in rat liver structure and function; and the role of the TGF-{beta} pathway in Cr(VI)-induced liver injury. Examination of Wistar rats exposed to 20 ppm Cr(VI)-contaminated water for 10 weeks showed increased serum glucose and alanine aminotransferase (ALT) levels. Liver histological examination revealed hepatocellular apoptosis, further confirmed by immunohystochemical study of Caspase 3 expression. Liver gene expression analysis revealed increased expression of Smad2/Smad4 and Dapk, suggesting the involvement of the TGF-{beta} pathway in the apoptotic process. Since no changes in Smad3 expression were observed it appears apoptosis is using a Smad3-independent pathway. Increased expression of both Caspase 8 and Daxx genes suggests also the involvement of the Fas pathway. Gene expression analysis also revealed that a p160{sup ROCK}-Rho-independent pathway operates, leading to cell contraction and membrane blebbing, characteristic apoptotic features. These findings suggest that either the amount of Cr(VI) ingested overwhelmed the body fluids reductive capacity or some Cr(VI) escapes the reductive protection barrier, thus targeting the liver and inducing apoptosis.

  18. Pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG passively Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    Li, Chao-yu; Dong, Jun

    2016-08-01

    The incident pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG composite crystal passively Q-switched microchip laser has been investigated experimentally and theoretically by moving the Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction. Highest pulse energy of 0.4 mJ has been generated when the Nd:YAG/Cr4+:YAG composite crystal is moved about 6 mm away from the focused pump beam waist. Laser pulses with pulse width of 1.7 ns and peak power of over 235 kW have been achieved. The theoretically calculated effective laser beam area at different positions of Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction is in good agreement with the experimental results. The highest peak power can be generated by adjusting the pump beam waist incident on the Nd:YAG/Cr4+:YAG composite crystal to optimize the effective laser beam area in passively Q-switched microchip laser.

  19. High field magnetotransport and point contact Andreev reflection measurements on CuCr{sub 2}Se{sub 4} and CuCr{sub 2}Se{sub 3}Br—Degenerate magnetic semiconductor single crystals

    SciTech Connect

    Borisov, K. Coey, J. M. D.; Stamenov, P.; Alaria, J.

    2014-05-07

    Single crystals of the metallically degenerate fully magnetic semiconductors CuCr{sub 2}Se{sub 4} and CuCr{sub 2}Se{sub 3}Br have been prepared by the Chemical Vapour Transport method, using either Se or Br as transport agents. The high-quality, millimetre-sized, octahedrally faceted, needle- and platelet-shaped crystals are characterised by means of high field magnetotransport (μ{sub 0}H≤ 14 T) and Point Contact Andreev Reflection. The relatively high spin polarisation observed |P|>0.56, together with the relatively low minority carrier effective mass of 0.25 m{sub e}, and long scattering time  10{sup −13} s, could poise these materials for integration in low- and close-to-room temperature minority injection bipolar heterojunction transistor demonstrations.

  20. High Affinity Immobilization of Proteins Using the CrAsH/TC Tag.

    PubMed

    Schulte-Zweckel, Janine; Rosi, Federica; Sreenu, Domalapally; Schröder, Hendrik; Niemeyer, Christof M; Triola, Gemma

    2016-01-01

    Protein microarrays represent important tools for biomedical analysis. We have recently described the use of the biarsenical-tetracysteine (TC) tag for the preparation of protein microarrays. The unique feature of this tag enables the site-specific immobilization of TC-containing proteins on biarsenical-modified surfaces, resulting in a fluorescence enhancement that allows the direct quantification of the immobilized proteins. Moreover, the reversibility of the binding upon incubation with large quantities of thiols permits the detachment of the proteins from the surface, thereby enabling recovery of the substrate to extend the life time of the slide. Herein, we describe our recent results that further extend the applicability of the CrAsH/TC tag to the fabrication of biochips. With this aim, the immobilization of proteins on surfaces has been investigated using two different spacers and two TC tags, the minimal TC sequence (CCPGCC) and an optimized motif (FLNCCPGCCMEP). While the minimal peptide motif enables a rapid recycling of the slide, the optimized TC sequence reveals an increased affinity due to its greater resistance to displacement by thiols. Moreover, the developed methodology was applied to the immobilization of proteins via on-chip ligation of recombinant protein thioesters. PMID:27338319

  1. High energy hadrons in extensive air showers

    NASA Technical Reports Server (NTRS)

    Tonwar, S. C.

    1985-01-01

    Experimental data on the high energy hadronic component in extensive air showers of energies approx. 10 to the 14 to 10 to the 16 eV when compared with expectations from Monte Carlo simulations have shown the observed showers to be deficient in high energy hadrons relative to simulated showers. An attempt is made to understand these anomalous features with more accurate comparison of observations with expectations, taking into account the details of the experimental system. Results obtained from this analysis and their implications for the high energy physics of particle interactions at energy approx. 10 to the 15 eV are presented.

  2. Prediction of solidification path and carbide precipitation in Fe-C-V-Cr-Mo-W high speed steels

    NASA Astrophysics Data System (ADS)

    Zhang, Hongwei; Gandin, Charles-André; He, Jicheng; Nakajima, Keiji

    2012-07-01

    The solidification path and precipitation of carbides in the Fe-C-V-Cr-Mo-W high speed steel system are predicted with the help of thermodynamic equilibrium calculations. The Partial Equilibrium (PE) approximation is favoured. According to experimental data for high speed steel samples, the precipitating solidification sequence of carbides, including nature, composition and amount are discussed as a function of the nominal composition of C and V. The results show that the solidification path can be reasonably predicted by the Partial Equilibrium approximation for cooling rate lower than 10 K min-1. The experimental results suffer from the sensitivity limitation of the characterization methods used when the phase fraction becomes too small.

  3. Microstructural characterization of low and high carbon CoCrMo alloy nanoparticles produced by mechanical milling

    NASA Astrophysics Data System (ADS)

    Simoes, T. A.; Goode, A. E.; Porter, A. E.; Ryan, M. P.; Milne, S. J.; Brown, A. P.; Brydson, R. M. D.

    2014-06-01

    CoCrMo alloys are utilised as the main material in hip prostheses. The link between this type of hip prosthesis and chronic pain remains unclear. Studies suggest that wear debris generated in-vivo may be related to post-operative complications such as inflammation. These alloys can contain different amounts of carbon, which improves the mechanical properties of the alloy. However, the formation of carbides could become sites that initiate corrosion, releasing ions and/or particles into the human body. This study analysed the mechanical milling of alloys containing both high and low carbon levels in relevant biological media, as an alternative route to generate wear debris. The results show that low carbon alloys produce significantly more nanoparticles than high carbon alloys. During the milling process, strain induces an fcc to hcp phase transformation. Evidence for cobalt and molybdenum dissolution in the presence of serum was confirmed by ICP-MS and TEM EDX techniques.

  4. Wear Behavior of High Velocity Arc Spraying FeNiCrAlBRE/Ni95Al Composite Coatings

    NASA Astrophysics Data System (ADS)

    Tian, H. L.; Wei, S. C.; Chen, Y. X.; Tong, H.; Liu, Y.; Xu, B. S.

    Wear-resistant FeNiCrAlBRE/Ni95Al composite coatings were deposited on carbon steel plate by high velocity arc spraying. Adhesive strength of the composite coating was improved by spraying Ni95Al cored wires as transition layer between working coating and substrate. Scanning electron microscopy and Vickers hardness testing were used to evaluate coatings structure and mechanical properties. For quantitative investigation of porosity, a computer image analyzer was used. The forming, the wear resistance and its mechanism of the coatings were studied. The results show that coating has relatively high average hardness about 550 HV0.1 and adhesive strength is 47 MPa. The worn surface characterized shallow grooves and few of debris on the coating manifested that the coating has better wear resistance under dry sliding conditions.

  5. Tribological Properties of AlCrCuFeNi2 High-Entropy Alloy in Different Conditions

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Ma, Shengguo; Gao, Michael C.; Zhang, Chuan; Zhang, Teng; Yang, Huijun; Wang, Zhihua; Qiao, Junwei

    2016-07-01

    In order to understand the environmental effect on the mechanical behavior of high-entropy alloys, the tribological properties of AlCrCuFeNi2 are studied systematically in dry, simulated rainwater, and deionized water conditions against the Si3N4 ceramic ball at a series of different normal loads. The present study shows that both the friction and wear rate in simulated rainwater are the lowest. The simulated rainwater plays a significant role in the tribological behavior with the effect of forming passive film, lubricating, cooling, cleaning, and corrosion. The wear mechanism in simulated rainwater is mainly adhesive wear accompanied by abrasive wear as well as corrosive wear. In contrast, those in dry condition and deionized water are abrasive wear, adhesive wear, and surface plastic deformation. Oxidation contributes to the wear behavior in dry condition but is prevented in liquid condition. In addition, the phase diagram of Al x CrCuFeNi2 is predicted using CALPHAD modeling, which is in good agreement with the literature report and the present study.

  6. High-resolution hydro- and geo-stratigraphy at Atlantic Coastal Plain drillhole CR-622 (Strat 8)

    USGS Publications Warehouse

    Wrege, B.M.; Isely, J.J.

    2009-01-01

    We interpret borehole geophysical logs in conjunction with lithology developed from continuous core to produce high-resolution hydro- and geo-stratigraphic profiles for the drillhole CR-622 (Strat 8) in the Atlantic Coastal Plain of North Carolina. The resulting hydrologic and stratigraphic columns show a generalized relation between hydrologic and geologic units. Fresh-water aquifers encountered are the surficial, Yorktown, Pungo River and Castle Hayne. Geologic units present are of the middle and upper Tertiary and Quaternary periods, these are the Castle Hayne (Eocene), Pungo River (Miocene), Yorktown (Pliocene), James City and Flanner Beach (Pleistocene), and the topsoil (Holocene). The River Bend Formation (Oligocene) is missing as a distinct unit between the Pungo River Formation and the Castle Hayne Formation. The confining unit underlying the Yorktown Aquifer corresponds to the Yorktown Geologic Unit. The remaining hydrologic units and geologic units are hydrologically transitional and non-coincident. The lower Pungo River Formation serves as the confining unit for the Castle Hayne Aquifer, rather than the River Bend Aquifer, and separates the Pungo River Aquifer from the upper Castle Hayne Aquifer. All geologic formations were bound by unconformities. All aquifers were confined by the anticipated hydrologic units. We conclude that CR-622 (Strat 8) represents a normal sequence in the Atlantic Coastal Plain.

  7. Manufacturing of high-strength Ni-free Co-Cr-Mo alloy rods via cold swaging.

    PubMed

    Yamanaka, Kenta; Mori, Manami; Yoshida, Kazuo; Kuramoto, Koji; Chiba, Akihiko

    2016-07-01

    The strengthening of biomedical metallic materials is crucial to increasing component durability in biomedical applications. In this study, we employ cold swaging as a strengthening method for Ni-free Co-Cr-Mo alloy rods and examine its effect on the resultant microstructures and mechanical properties. N is added to the alloy to improve the cold deformability, and a maximum reduction in area (r) of 42.6% is successfully obtained via cold swaging. The rod strength and ductility increase and decrease, respectively, with increasing cold-swaging reduction r. Further, the 0.2% proof stress at r=42.6% eventually reaches 1900MPa, which is superior to that obtained for the other strengthening methods proposed to date. Such significant strengthening resulting from the cold-swaging process may be derived from extremely large work hardening due to a strain-induced γ (fcc)→ε (hcp) martensitic transformation, with the resultant intersecting ε-martensite plates causing local strain accumulation at the interfaces. The lattice defects (dislocations/stacking faults) inside the ε phase also likely contribute to the overall strength. However, excessive application of strain during the cold-swaging process results in a severe loss in ductility. The feasibility of cold swaging for the manufacture of high-strength Co-Cr-Mo alloy rods is discussed.

  8. High reflectance Cr/V multilayer with B(4)C barrier layer for water window wavelength region.

    PubMed

    Huang, Qiushi; Fei, Jiani; Liu, Yang; Li, Pin; Wen, Mingwu; Xie, Chun; Jonnard, Philippe; Giglia, Angelo; Zhang, Zhong; Wang, Kun; Wang, Zhanshan

    2016-02-15

    To develop the high reflectance mirror for the short wavelength range of the water window region (λ=2.42-2.73  nm), Cr/V multilayers with B4C barrier layers are studied. The grazing incidence x-ray reflectometry results show that the multilayer interface widths are significantly reduced down to 0.21-0.31 nm, after the introduction of 0.1 nm B4C barrier layers at both interfaces. The [B4C/Cr/B4C/V] multilayer with a large number of bilayers of N=300 maintains the same small interface widths while the surface roughness is only 0.2 nm. According to the transmission electron microscope measurements, the layer structure improvement with barrier layers can be attributed to the suppression of the crystallization of vanadium inside the structure. Using the interface engineered multilayer, a maximum soft x-ray reflectance of 24.3% is achieved at λ=2.441  nm, under the grazing incidence of 42°. PMID:26872167

  9. Experimental determination of the activation energies of CH4 , SO2 and O2 reactions on Cr2O3 / γ -Al2O3

    NASA Astrophysics Data System (ADS)

    Hernández Guiance, S. N.; Coria, I. D.; Irurzun, I. M.; Mola, E. E.

    2016-09-01

    In the present work we experimentally determine the activation energies of CH4,SO2 and O2 reactions on Cr2O3 / γ -Al2O3 . To our knowledge there is no previous determination of these parameters, so fundamental information is provided to determine the velocity laws of these reactions and understand their kinetic behavior.

  10. Compound-specific hydrogen isotope analysis of heteroatom-bearing compounds via gas chromatography-chromium-based high-temperature conversion (Cr/HTC)-isotope ratio mass spectrometry.

    PubMed

    Renpenning, Julian; Kümmel, Steffen; Hitzfeld, Kristina L; Schimmelmann, Arndt; Gehre, Matthias

    2015-09-15

    The traditional high-temperature conversion (HTC) approach toward compound-specific stable isotope analysis (CSIA) of hydrogen for heteroatom-bearing (i.e., N, Cl, S) compounds has been afflicted by fractionation bias due to formation of byproducts HCN, HCl, and H2S. This study presents a chromium-based high-temperature conversion (Cr/HTC) approach for organic compounds containing nitrogen, chlorine, and sulfur. Following peak separation along a gas chromatographic (GC) column, the use of thermally stable ceramic Cr/HTC reactors at 1100-1500 °C and chemical sequestration of N, Cl, and S by chromium result in quantitative conversion of compound-specific organic hydrogen to H2 analyte gas. The overall hydrogen isotope analysis via GC-Cr/HTC-isotope ratio mass spectrometry (IRMS) achieved a precision of better than ± 5 mUr along the VSMOW-SLAP scale. The accuracy of GC-Cr/HTC-IRMS was validated with organic reference materials (RM) in comparison with online EA-Cr/HTC-IRMS and offline dual-inlet IRMS. The utility and reliability of the GC-Cr/HTC-IRMS system were documented during the routine measurement of more than 500 heteroatom-bearing organic samples spanning a δ(2)H range of -181 mUr to 629 mUr.

  11. Compound-specific hydrogen isotope analysis of heteroatom-bearing compounds via gas chromatography-chromium-based high-temperature conversion (Cr/HTC)-isotope ratio mass spectrometry.

    PubMed

    Renpenning, Julian; Kümmel, Steffen; Hitzfeld, Kristina L; Schimmelmann, Arndt; Gehre, Matthias

    2015-09-15

    The traditional high-temperature conversion (HTC) approach toward compound-specific stable isotope analysis (CSIA) of hydrogen for heteroatom-bearing (i.e., N, Cl, S) compounds has been afflicted by fractionation bias due to formation of byproducts HCN, HCl, and H2S. This study presents a chromium-based high-temperature conversion (Cr/HTC) approach for organic compounds containing nitrogen, chlorine, and sulfur. Following peak separation along a gas chromatographic (GC) column, the use of thermally stable ceramic Cr/HTC reactors at 1100-1500 °C and chemical sequestration of N, Cl, and S by chromium result in quantitative conversion of compound-specific organic hydrogen to H2 analyte gas. The overall hydrogen isotope analysis via GC-Cr/HTC-isotope ratio mass spectrometry (IRMS) achieved a precision of better than ± 5 mUr along the VSMOW-SLAP scale. The accuracy of GC-Cr/HTC-IRMS was validated with organic reference materials (RM) in comparison with online EA-Cr/HTC-IRMS and offline dual-inlet IRMS. The utility and reliability of the GC-Cr/HTC-IRMS system were documented during the routine measurement of more than 500 heteroatom-bearing organic samples spanning a δ(2)H range of -181 mUr to 629 mUr. PMID:26291200

  12. High Energy Continuum of High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin

    2000-01-01

    Discussion with the RXTE team at GSFC showed that a sufficiently accurate background subtraction procedure had now, been derived for sources at the flux level of PKS 2126-158. However this solution does not apply to observations carried out before April 1997, including our observation. The prospect of an improved solution becoming available soon is slim. As a result the RXTE team agreed to re-observe PKS2126-158. The new observation was carried out in April 1999. Quasi-simultaneous optical observations were obtained, as Service observing., at the 4-meter Anglo-Australian Telescope, and ftp-ed from the AAT on 22April. The RXTE data was processed in late June, arriving at SAO in early July. Coincidentally, our collaborative Beppo-SAX observation of PKS2126-158 was made later in 1999, and a GTO Chandra observation (with which we are involved) was made on November 16. Since this gives us a unique monitoring data for a high redshift quasar over a broad pass-band we are now combining all three observations into a single comprehensive study Final publication of the RXTE data will thus take place under another grant.

  13. Effect of cold rolling on the microstructure and mechanical properties of Al0.25CoCrFe1.25Ni1.25 high-entropy alloy

    DOE PAGESBeta

    Wang, Z.; Gao, M. C.; Ma, S. G.; Yang, H. J.; Wang, Z. H.; Ziomek-Moroz, M.; Qiao, J. W.

    2015-08-05

    Cold rolling can break down the as-cast dendrite microstructure and thus may have pronounced impact on the mechanical behavior of the alloy. In the present study, the effect of cold rolling on the microstructure and mechanical properties of Al0.25CoCrFe1.25Ni1.25 high-entropy alloy in the face-centered cubic structure was investigated. With increasing the thickness reduction from cold rolling, the hardness, the yield strength, and the fracture strength increased at the cost of reducing ductility. At the thickness reduction of 80%, the tensile strength (hardness) was 702 MPa (406 MPa), 1.62 (2.43) times that in the as-cast condition. Compared to traditional alloys, Al0.25CoCrFe1.25Ni1.25more » has the highest hardening rate with respect to CR thickness reduction. Lastly, the phase relation and the mixing properties of Gibbs free energy, enthalpy and entropy of AlxCoCrFe1.25Ni1.25 were predicted using the CALPHAD method.« less

  14. Effect of cold rolling on the microstructure and mechanical properties of Al0.25CoCrFe1.25Ni1.25 high-entropy alloy

    SciTech Connect

    Wang, Z.; Gao, M. C.; Ma, S. G.; Yang, H. J.; Wang, Z. H.; Ziomek-Moroz, M.; Qiao, J. W.

    2015-08-05

    Cold rolling can break down the as-cast dendrite microstructure and thus may have pronounced impact on the mechanical behavior of the alloy. In the present study, the effect of cold rolling on the microstructure and mechanical properties of Al0.25CoCrFe1.25Ni1.25 high-entropy alloy in the face-centered cubic structure was investigated. With increasing the thickness reduction from cold rolling, the hardness, the yield strength, and the fracture strength increased at the cost of reducing ductility. At the thickness reduction of 80%, the tensile strength (hardness) was 702 MPa (406 MPa), 1.62 (2.43) times that in the as-cast condition. Compared to traditional alloys, Al0.25CoCrFe1.25Ni1.25 has the highest hardening rate with respect to CR thickness reduction. Lastly, the phase relation and the mixing properties of Gibbs free energy, enthalpy and entropy of AlxCoCrFe1.25Ni1.25 were predicted using the CALPHAD method.

  15. Overview of surface studies on high energy materials at Mound

    SciTech Connect

    Moddeman, W.E.; Collins, L.W.; Wang, P.S.; Haws, L.D.; Wittberg, T.N.

    1980-01-01

    Since 1975 Mound has been examining the surface structure of high energy materials and the interaction of these materials with various metal containers. The high energy materials that have been studied include: the pyrotechnic TiH/sub x//KClO/sub 4/, the Al/Cu/sub 2/O machinable thermite, the PETN, HMX and RDX explosives, and two plastic bonded explosives (PBX). Aluminum and alloys of Fe, Ni and Cr have been used as the containment materials. Two aims in this research are: (1) the elucidation of the mechanism of pyrotechnic ignition and (2) the compatibility of high energy materials with their surroundings. New information has been generated by coupling Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS) with thermal data. In particular, AES and XPS studies on the pyrotechnic materials and on thermites have shown the mechanism of ignition to be nearly independent of the type of oxidizer present but directly related to surface chemistry of the fuels. In studies on the two PBX's, PBX-9407 and LX-16, it was concluded that the Exon coating on 9407 was complete and greater than or equal to 100A; whereas in LX-16, the coating was < 100A or even incomplete. AES and scanning Auger have been used to characterize the surface composition and oxide thickness for an iron-nickel alloy and showed the thicker oxides to have the least propensity for atmospheric hydrocarbon adsorption. Data are presented and illustrations made which highlight this new approach to studying ignition and compatibility of high energy materials. Finally, the salient features of the X-SAM-800 purchased by Mound are discussed in light of future studies on high energy materials.

  16. High-energy thermal synchrotron emission

    NASA Astrophysics Data System (ADS)

    Imamura, J. N.; Epstein, R. I.; Petrosian, V.

    1985-09-01

    The authors compute thermal synchrotron spectra for which the photon energy is comparable to the mean electron thermal energy. In this regime it is necessary to include the restriction that a photon receives no more energy than the kinetic energy of the radiating electron. The derived spectra fall off more rapidly at high energies than was previously estimated. It is found that the thermal synchrotron mechanism can still provide satisfactory fits to the very hard γ-ray burst spectra for sufficiently high temperatures and low magnetic fields. As example, data for the γ-ray burst of 1982 January 25 are discussed.

  17. Simulations of ultra-high-energy cosmic rays propagation

    SciTech Connect

    Kalashev, O. E.; Kido, E.

    2015-05-15

    We compare two techniques for simulation of the propagation of ultra-high-energy cosmic rays (UHECR) in intergalactic space: the Monte Carlo approach and a method based on solving transport equations in one dimension. For the former, we adopt the publicly available tool CRPropa and for the latter, we use the code TransportCR, which has been developed by the first author and used in a number of applications, and is made available online with publishing this paper. While the CRPropa code is more universal, the transport equation solver has the advantage of a roughly 100 times higher calculation speed. We conclude that the methods give practically identical results for proton or neutron primaries if some accuracy improvements are introduced to the CRPropa code.

  18. Production and characterization of high porosity porous Fe-Cr-C alloys by the space holder leaching technique

    NASA Astrophysics Data System (ADS)

    Tian, Da-rong; Pang, Yu-hua; Yu, Liang; Sun, Li

    2016-07-01

    Spherical carbamide particles were employed to produce porous Fe-Cr-C alloy with high porosity and large aperture via the space-holder leaching technique. A series of porous samples were prepared by regulating the processing parameters, which included the carbamide content and the compaction pressure. The pore characteristics and compression properties of the produced samples were investigated. The samples were characterized by scanning electron microscopy, image analysis, and compression tests. The results showed that the macro-porosity and the mean pore size were in the ranges 40.4%-82.4% and 0.6-1.5 mm, respectively. The compressive strength varied between 25.38 MPa and 127.9 MPa, and was observed to decrease with increasing total porosity.

  19. Structure and magnetic properties of a Ni3(Al, Fe, Cr) single crystal subjected to high-temperature deformation

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. V.; Rigmant, M. B.; Stepanova, N. N.; Davydov, D. I.; Shishkin, D. A.; Terent'ev, P. B.; Vinogradova, N. I.

    2016-05-01

    The structure and magnetic properties of the Ni3(Al, Fe, Cr) single crystal subjected to high-temperature tensile deformation to failure at 850-900°C have been studied. No recrystallized grains and metastable phases were found. The rupture zone of the alloy subjected to deformation (at 900°C) to the highest degree demonstrates the fragmentation accompanied by rotation of atomic layers and changes of the chemical composition in the nickel and aluminum sublattices. Magnetic studies of the alloy have shown the existence of two Curie temperatures for samples cut from the rupture zone. Samples cut away from the rupture zone exhibit no additional magnetic transitions; twines and planar stacking faults in the alloy structure. The alloy deformed to the lower degree of deformation (at 850°C) also demonstrates twins; no ferromagnetic state was found to form.

  20. Towards consistent chronology in the early Solar System: high resolution 53Mn-53Cr chronometry for chondrules.

    SciTech Connect

    Yin, Q; Jacobsen, B; Moynier, F; Hutcheon, I D

    2007-05-02

    New high-precision {sup 53}Mn-{sup 53}Cr data obtained for chondrules extracted from a primitive ordinary chondrite, Chainpur (LL3.4), define an initial {sup 53}Mn/{sup 55}Mn ratio of (5.1 {+-} 1.6) x 10{sup -6}. As a result of this downward revision from an earlier higher value of (9.4 {+-} 1.7) x 10{sup -6} for the same meteorite (Nyquist et al. 2001), together with an assessment of recent literature, we show that a consistent chronology with other chronometers such as the {sup 26}Al-{sup 26}Mg and {sup 207}Pb-{sup 206}Pb systems emerges in the early Solar System.

  1. High Magnetic Field Study on Giant Negative Magnetoresistance in the Molecular Conductor TPP[Cr(Pc)(CN)2]2

    NASA Astrophysics Data System (ADS)

    Ikeda, Mitsuo; Kida, Takanori; Tahara, Time; Murakawa, Hiroshi; Nishi, Miki; Matsuda, Masaki; Hagiwara, Masayuki; Inabe, Tamotsu; Hanasaki, Noriaki

    2016-06-01

    We investigated the magnetic and transport properties of the phthalocyanine molecular conductor TPP[Cr(Pc)(CN)2]2 in magnetic fields of up to 54 T. We observed giant negative magnetoresistance which hardly depends on the magnetic field direction owing to the isotropic nature confirmed by electron spin resonance measurements. The magnitude of magnetoresistance [|ρ(μ0H)/ρ(0 T) - 1|] is proportional to the square of magnetization as observed in the case of the spin scattering process, while the proportionality coefficient increases with decreasing the temperature. The magnetization does not saturate even at 53 T, indicating the existence of the large antiferromagnetic exchange interactions between the localized spins. In spite of this antiferromagnetic exchange interaction and low dimensionality, a convex magnetization curve was observed in the low temperature and high magnetic field range. To reproduce this magnetization curve, we proposed a model taking into account the antiferromagnetic exchange interaction between the neighboring π-electron spins.

  2. Surface Remelting Treated High Velocity arc Sprayed FeNiCrAlBRE Coating by Tungsten Inert Gas

    NASA Astrophysics Data System (ADS)

    Tian, H. L.; Wei, S. C.; Chen, Y. X.; Tong, H.; Liu, Y.; Xu, B. S.

    This study aims at evaluating the effect of the TIG (Tungsten Inert Gas) remelting treatment of self-fluxing FeNiCrAlBRE alloy coatings, formed by means of high velocity arc spraying on steel surfaces. The treated and untreated samples were subjected to comparative structural examination using scanning electron microscopes. For quantitative investigation of porosity, a computer image analyser was used. Additionally, the wear resistance and wear volume loss of the worn tracks before and after the remelting process were contrastively evaluated in details. After the sprayed coatings were treated by TIG remelting in a proper conditions, the microstructure examination of the remelted coatings showed that a change of the microstructure from lamellar to cellular structure. Also, the results show that the remelting process decrease the coating defects and make the coating more wearable.

  3. Chemical variations of mineral inclusions in Neoproterozoic high-Cr chromitites from Egypt: Evidence of fluids during chromitite genesis

    NASA Astrophysics Data System (ADS)

    Khedr, Mohamed Zaki; Arai, Shoji

    2016-01-01

    This paper details the mode of occurrence, petrography, and chemistry of mineral inclusions hosted in chromian spinels of the Neoproterozoic chromitites in the Southern Eastern Desert of Egypt. Neoproterozoic podiform chromitites from the Arais, Balamhindit, and Abu Dahr areas, in the Southern Eastern Desert, can be texturally and chemically classified into two main types: primary high-Al (spinel Cr# < 0.67) and high-Cr (spinel Cr# > 0.75) chromitites. The former, being free of primary-mineral inclusions, was crystallized mainly from the MORB-like tholeiitic melt generated during proto-forearc spreading at the initiation of subduction, whereas the latter was formed from boninitic melts resulting from the high-degree melting of the sub-arc depleted mantle in the presence of slab-derived fluids at a mature-arc stage. The primary mineral inclusions, such as Na- and K-phlogopites, pargasite-edenite and olivine with subordinate pyroxenes, millerite, and laurite, were trapped within the chromian spinel during the magmatic precipitation of the chromitites. The Abu Dahr chromitites are free of primary hydrous inclusions; on the other hand, Arais and Balamhindit high-Cr chromitites are enriched in Na- and K-phlogopites, respectively, as a result of a difference in the K/Na ratio of the magma responsible for chromitite crystallization at different mantle depths. This difference in the K/Na ratio can possibly be attributed to fractionation of the upward-migrating hydrous fluids/melts by the crystallization of K- or Na-rich minerals. The Balamhindit complex, where the chromitite showed K-phlogopite inclusions within the chromian spinel, was probably derived from a deeper part of the mantle than the other areas, where the chromitite shows inclusions of Na-rich hydrous phases. Both K- and Na-phlogopites were possibly formed from alkali-rich hydrous fluids/melts trapped within the chromian spinels during the chromitite formation at different mantle depths, where the K/Na ratio

  4. High energy physics in the United States

    SciTech Connect

    Month, M.

    1985-10-16

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range. (LEW)

  5. Thoria stability in TD-NiCr at high temperatures in the presence of chromium in solution.

    NASA Technical Reports Server (NTRS)

    Dalal, H.; Grant, N. J.

    1973-01-01

    Study of the influence of chromium in solid solution on the coarsening of ThO2 in TD-NiCr. Comparisons were made of ThO2 coarsening in chromium-free TD-Ni and in TD-NiCr, which is known to be low in Cr2O3 as a contaminant. The results of these comparisons indicate that the presence of 20% Cr in solid solution in a nickel-base alloy does not lead to a more rapid coarsening of ThO2 at temperatures of at least 2462 deg F (1350 deg C).

  6. High energy interactions of cosmic ray particles

    NASA Technical Reports Server (NTRS)

    Jones, L. W.

    1986-01-01

    The highlights of seven sessions of the Conference dealing with high energy interactions of cosmic rays are discussed. High energy cross section measurements; particle production-models of experiments; nuclei and nuclear matter; nucleus-nucleus collision; searches for magnetic monopoles; and studies of nucleon decay are covered.

  7. High energy gamma ray balloon instrument

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Baker, R. G.; Bertsch, D. L.; Chesney, J. R.; Derdeyn, S. M.; Ehrmann, C. H.; Fichtel, C. E.; Hunter, S. D.; Jacques, J. S.; Laubenthal, N. A.

    1985-01-01

    The High Energy Gamma Ray Balloon Instrument was built in part to verify certain subsystems' performance for the Energetic Gamma Ray Experiment Telescope (EGRET) instrument, the high energy telescope to be carried on the Gamma Ray Observatory. This paper describes the instrument, the performance of some subsystems, and some relevant results.

  8. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    SciTech Connect

    PARSA,Z.

    2000-04-07

    In this paper, high energy physics possibilities and future colliders are discussed. The {mu}{sup +} {mu}{sup {minus}} collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged.

  9. Load partitioning between ferrite/martensite and dispersed nanoparticles of a 9Cr ferritic/martensitic (F/M) ODS steel at high temperatures

    SciTech Connect

    Zhang, Guangming; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Zhou, Zhangjian; Stubbins, James F.

    2015-06-18

    In this study, a high-energy synchrotron radiation X-ray technique was used to investigate the tensile deformation processes of a 9Cr-ODS ferritic/martensitic (F/M) steel at different temperatures. Two minor phases within the 9Cr-ODS F/M steel matrix were identified as Y2Ti2O7 and TiN by the high-energy X-ray diffraction, and confirmed by the analysis using energy dispersive X-ray spectroscopy (EDS) of scanning transmission electron microscope (STEM). The lattice strains of the matrix and particles were measured through the entire tensile deformation process. During the tensile tests, the lattice strains of the ferrite/martensite and the particles (TiN and Y2Ti2O7) showed a strong temperature dependence, decreasing with increasing temperature. Analysis of the internal stress at three temperatures showed that the load partitioning between the ferrite/martensite and the particles (TiN and Y2Ti2O7) was initiated during sample yielding and reached to a peak during sample necking. At three studied temperatures, the internal stress of minor phases (Y2Ti2O7 and TiN) was about 2 times that of F/M matrix at yielding position, while the internal stress of Y2Ti2O7 and TiN reached about 4.5-6 times and 3-3.5 times that of the F/M matrix at necking position, respectively. It indicates that the strengthening of the matrix is due to minor phases (Y2Ti2O7 and TiN), especially Y2Ti2O7 particles. Although the internal stresses of all phases decreased with increasing temperature from RT to 600 degrees C, the ratio of internal stresses of each phase at necking position stayed in a stable range (internal stresses of Y2Ti2O7 and TiN were about 4.5-6 times and 3-3.5 times of that of F/M matrix, respectively). The difference between internal stress of the F/M matrix and the applied stress at 600 degrees C is slightly lower than those at RI and 300 degrees C, indicating that the nanoparticles still have good strengthening effect at 600 degrees C. (C) 2015 Elsevier B.V. All rights reserved.

  10. "Espresso" Acceleration of Ultra-high-energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Caprioli, Damiano

    2015-10-01

    We propose that ultra-high-energy (UHE) cosmic rays (CRs) above 1018 eV are produced in relativistic jets of powerful active galactic nuclei via an original mechanism, which we dub “espresso” acceleration: “seed” galactic CRs with energies ≲1017 eV that penetrate the jet sideways receive a “one-shot” boost of a factor of ∼Γ2 in energy, where Γ is the Lorentz factor of the relativistic flow. For typical jet parameters, a few percent of the CRs in the host galaxy can undergo this process, and powerful blazars with Γ ≳ 30 may accelerate UHECRs up to more than 1020 eV. The chemical composition of espresso-accelerated UHECRs is determined by that at the Galactic CR knee and is expected to be proton-dominated at 1018 eV and increasingly heavy at higher energies, in agreement with recent observations made at the Pierre Auger Observatory.

  11. Energy Harvesting Characteristics from Water Flow by Piezoelectric Energy Harvester Device Using Cr/Nb Doped Pb(Zr,Ti)O3 Bimorph Cantilever

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Bum; Kim, Chang Il; Jeong, Young Hun; Cho, Jeong-Ho; Paik, Jong-Hoo; Nahm, Sahn; Lim, Jong Bong; Seong, Tae-Hyeon

    2013-10-01

    A water flow energy harvester, which can convert water flow energy to electric energy, was fabricated for its application to rivers. This harvester can generate power from the bending and releasing motion of piezoelectric bimorph cantilevers. A Pb(Zr0.54Ti0.46)O3 + 0.2 wt % Cr2O3 + 1.0 wt % Nb2O5 (PZT-CN) thick film and a 250-µm-thick stainless steel were used as a bimorph cantilever. The electrical impedance matching was achieved across a resistive load of 1 kΩ. Four bimorph cantilevers can generate power from 5 to 105 rpm. The output powers were steadily increased by increasing the rpm. The maximum output power was 68 mW by 105 rpm. It was found that the water flow energy harvester can generate 58 mW by a flow velocity of (2 m/s) from the stream with the four bimorph cantilevers.

  12. Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Wu, C. L.; Zhang, C. H.; Guan, M.; Tan, J. Z.

    2016-10-01

    FeCoCrAlNi high-entropy alloy coating was synthesized with premixed high-purity Co, Cr, Al and Ni powders on 304 stainless steel by laser surface alloying, aiming at improving corrosion and cavitation erosion resistance. Phase constituents, microstructure and microhardness were investigated using XRD, SEM, and microhardness tester, respectively. The cavitation erosion and electrochemical corrosion behavior of FeCoCrAlNi coating in 3.5% NaCl solution were also evaluated using an ultrasonic vibrator and potentiodynamic polarization measurement. Experimental results showed that with appropriate laser processing parameters, FeCoCrAlNi coating with good metallurgical bonding to the substrate could be achieved. FeCoCrAlNi coating was composed of a single BCC solid solution. The formation of simple solid solutions in HEAs was the combined effect of mixing entropy (ΔSmix), mixing enthalpy (ΔHmix), atom-size difference (δ) and valence electron concentration (VEC), and the effect of ΔSmix was much larger than that of the other factors. The microhardness of the FeCoCrAlNi coating was ~3 times that of the 304 stainless steel. Both the corrosion and cavitation erosion resistance of the coating were improved. The cavitation erosion resistance for FeCoCrAlNi HEA coating was ~7.6 times that of 304 stainless steel. The corrosion resistance was also improved as reflected by a reduction in the current density of one order of magnitude as compared with 304 stainless steel.

  13. High P-T experiments and first principles calculations of the diffusion of Si, O, Cr in liquid iron

    NASA Astrophysics Data System (ADS)

    Posner, Esther; Rubie, David C.; Frost, Daniel J.; Vlček, Vojtěch; Steinle-Neumann, Gerd

    2016-04-01

    Diffusion transport properties of molten iron and iron alloys at high pressures and temperatures are important for understanding large-scale geodynamic processes and thermochemical evolution of planetary interiors, such as the time and length scales of metal-silicate equilibration during core formation and chemical exchange across core-mantle boundaries during cooling. The density of the Earth's outer core is ˜10% too low to be composed of pure Fe-Ni and is assumed to contain significant concentrations of light elements, such as Si, S, O, and/or C, in addition to siderophile transition metals (V, Cr, Mn, W) which are depleted in the Earth's mantle relative to chondrites. The chemical diffusivity of light and siderophile elements in liquid iron under P -T conditions of the Earth's core and its formation are therefore required to constrain the composition and potential chemical stratification of planetary cores, in addition to the kinetics of chemical buoyancy from inner core crystallization that partially drives the geodynamo. In order to better understand the effects of pressure and temperature on Si, O, and Cr diffusion in liquid iron, we have conducted (1) chemical diffusion-couple experiments combined with numerical modeling of diffusion profiles to account for non-isothermal annealing, and (2) first principles molecular dynamic (FP-MD) calculations from ambient pressure to 135 GPa and 2200-5500 K. Experimental diffusion couples comprised of highly polished cylindrical disks of 99.97% Fe and metallic Fe alloy were contained within an MgO capsule and annealed within the P -T range 1873-2653 K and 1-18 GPa using a multi-anvil apparatus. A series of experiments are conducted at each pressure using variable heating rates, final quench temperatures (Tf), and time duration at Tf. Recovered capsules were cut and polished parallel to the axis of the cylindrical sample and measured using EMPA 10 μm-step line scans. To extend our dataset to P -T conditions of the Earth

  14. High P-T experiments and first principles calculations of the diffusion of Si, O, Cr in liquid iron

    NASA Astrophysics Data System (ADS)

    Posner, Esther; Rubie, David C.; Frost, Daniel J.; Vlček, Vojtěch; Steinle-Neumann, Gerd

    2016-04-01

    Diffusion transport properties of molten iron and iron alloys at high pressures and temperatures are important for understanding large-scale geodynamic processes and thermochemical evolution of planetary interiors, such as the time and length scales of metal-silicate equilibration during core formation and chemical exchange across core-mantle boundaries during cooling. The density of the Earth's outer core is ˜10% too low to be composed of pure Fe-Ni and is assumed to contain significant concentrations of light elements, such as Si, S, O, and/or C, in addition to siderophile transition metals (V, Cr, Mn, W) which are depleted in the Earth's mantle relative to chondrites. The chemical diffusivity of light and siderophile elements in liquid iron under P -T conditions of the Earth's core and its formation are therefore required to constrain the composition and potential chemical stratification of planetary cores, in addition to the kinetics of chemical buoyancy from inner core crystallization that partially drives the geodynamo. In order to better understand the effects of pressure and temperature on Si, O, and Cr diffusion in liquid iron, we have conducted (1) chemical diffusion-couple experiments combined with numerical modeling of diffusion profiles to account for non-isothermal annealing, and (2) first principles molecular dynamic (FP-MD) calculations from ambient pressure to 135 GPa and 2200-5500 K. Experimental diffusion couples comprised of highly polished cylindrical disks of 99.97% Fe and metallic Fe alloy were contained within an MgO capsule and annealed within the P -T range 1873-2653 K and 1-18 GPa using a multi-anvil apparatus. A series of experiments are conducted at each pressure using variable heating rates, final quench temperatures (Tf), and time duration at Tf. Recovered capsules were cut and polished parallel to the axis of the cylindrical sample and measured using EMPA 10 μm-step line scans. To extend our dataset to P -T conditions of the Earth

  15. Energy recovery linacs in high-energy and nuclear physics

    SciTech Connect

    I. Ben-Zvi; Ya. Derbenev; V. Litvinenko; L. Merminga

    2005-03-01

    Energy Recovery Linacs (ERL) have significant potential uses in High Energy Physics and Nuclear Physics. We describe some of the potential applications which are under development by our laboratories in this area and the technology issues that are associated with these applications. The applications that we discuss are electron cooling of high-energy hadron beams and electron-nucleon colliders. The common issues for some of these applications are high currents of polarized electrons, high-charge and high-current electron beams and the associated issues of High-Order Modes. The advantages of ERLs for these applications are numerous and will be outlined in the text. It is worth noting that some of these advantages are the high-brightness of the ERL beams and their relative immunity to beam-beam disturbances.

  16. Structural characterization of Cr/Gd/Cr and Cr/Gd/Fe/Cr multilayer nanostructures by X-ray reflectometry

    NASA Astrophysics Data System (ADS)

    Babanov, Yu. A.; Salamatov, Yu. A.; Ponomarev, D. A.; Naumova, L. I.; Proglyado, V. V.; Milyaev, M. A.; Ustinov, V. V.

    2015-11-01

    It is shown that the new approach to low-contrast systems upon the interpretation of X-ray reflectivity data can be applied to multilayer samples such as Cr/Gd/Fe/Cr/Si. The method is based on solving the Fredholm integral equation of the first kind, which connects the reflectivity with the concentration profiles of elements that enter into the sample composition. The inverse ill-posed problem of the determination of the concentration profile is solved using the regularization method. The efficiency of the method proposed is verified by model calculations fulfilled for a Cr/Gd/Fe/Cr/Si four-layer structure, where there are both high-contrast pairs of layers (Cr/Gd) and pairs with a low contrast (Fe/Cr). Experimental data for Cr/Gd/Cr and Cr/Gd/Fe/Cr multilayer nanoheterostructures have been obtained under laboratory conditions. The thicknesses of all layers of all the elements and of the Cr/Gd, Gd/Fe, and Fe/Cr interfaces have been determined.

  17. High-energy cosmic ray interactions

    SciTech Connect

    Engel, Ralph; Orellana, Mariana; Reynoso, Matias M.; Vila, Gabriela S.

    2009-04-30

    Research into hadronic interactions and high-energy cosmic rays are closely related. On one hand--due to the indirect observation of cosmic rays through air showers--the understanding of hadronic multiparticle production is needed for deriving the flux and composition of cosmic rays at high energy. On the other hand the highest energy particles from the universe allow us to study the characteristics of hadronic interactions at energies far beyond the reach of terrestrial accelerators. This is the summary of three introductory lectures on our current understanding of hadronic interactions of cosmic rays.

  18. Illustration of high-active Ag2CrO4 photocatalyst from the first-principle calculation of electronic structures and carrier effective mass

    NASA Astrophysics Data System (ADS)

    Zhang, Jinfeng; Yu, Weilai; Liu, Jianjun; Liu, Baoshun

    2015-12-01

    Although Ag2CrO4 has been frequently studied as a highly active photocatalytic material under visible light irradiation in recent years, we are still less-known on its detailed mechanism. Also, it is difficult to illustrate this issue just from the experimental discussion. Contrarily, theoretical investigation can deepen our understanding on its photocatalytic mechanism from the electronic level. In this work, the crystal structures, band structures, density of states, and chemical bonding for Ag2CrO4 were studied by the first-principles calculation based on the density functional theory. The calculation results indicate that Ag2CrO4 has an indirect band gap of ca. 1.42 eV, a deep position of valence band edge and a strong optical absorption coefficient, implying that Ag2CrO4 has strong oxidation ability and high photocatalytic activity for decomposing organic pollutant under visible light irradiation. Moreover, our calculation also indicates that Ag2CrO4 has small effective mass of electrons and holes, and great effective mass difference between hole and electron, which can respectively facilitate the migration and separation of electrons and holes, and finally improve the photocatalytic performance.

  19. A high-throughput investigation of Fe-Cr-Al as a novel high-temperature coating for nuclear cladding materials

    NASA Astrophysics Data System (ADS)

    Bunn, Jonathan Kenneth; Fang, Randy L.; Albing, Mark R.; Mehta, Apurva; Kramer, Matthew J.; Besser, Matthew F.; Hattrick-Simpers, Jason R.

    2015-07-01

    High-temperature alloy coatings that can resist oxidation are urgently needed as nuclear cladding materials to mitigate the danger of hydrogen explosions during meltdown. Here we apply a combination of computationally guided materials synthesis, high-throughput structural characterization and data analysis tools to investigate the feasibility of coatings from the Fe-Cr-Al alloy system. Composition-spread samples were synthesized to cover the region of the phase diagram previous bulk studies have identified as forming protective oxides. The metallurgical and oxide phase evolution were studied via in situ synchrotron glancing incidence x-ray diffraction at temperatures up to 690 K. A composition region with an Al concentration greater than 3.08 at%, and between 20.0 at% and 32.9 at% Cr showed the least overall oxide growth. Subsequently, a series of samples were deposited on stubs and their oxidation behavior at 1373 K was observed. The continued presence of a passivating oxide was confirmed in this region over a period of 6 h.

  20. Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture.

    PubMed

    Liu, Huihong; Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko; Cho, Ken

    2014-02-01

    In order to meet the requirements of the patients and surgeons simultaneously for spinal fixation applications, a novel biomedical alloy with a changeable Young's modulus, that is, with a low Young's modulus to prevent the stress-shielding effect for patients and a high Young's modulus to suppress springback for surgeons, was developed. In this study, the chromium and oxygen contents in ternary Ti(11, 12 mass%)Cr-(0.2, 0.4, 0.6 mass%)O alloys were optimized in order to achieve a changeable Young's modulus via deformation-induced ω-phase transformation with good mechanical properties. The Young's moduli of all the examined alloys increase after cold rolling, which is attributed to the deformation-induced ω-phase transformation. This transformation is suppressed by oxygen but enhanced with lower chromium content, which is related to the β(bcc)-lattice stability. Among the examined alloys, the Ti-11Cr-0.2O alloy shows a low Young's modulus of less than 80GPa in the solution-treated (ST) condition and a high Young's modulus of more than 90GPa in the cold rolled (CR) condition. The Ti-11Cr-0.2O alloy also exhibits a high tensile strength, above 1000MPa, with an acceptable elongation of ~12% in the ST condition. Furthermore, the Ti-11Cr-0.2O alloy exhibits minimal springback. This value of springback is the closest to that of Ti64 ELI alloy among the compared alloys. Therefore, the Ti-11Cr-0.2O alloy, which has a good balance between large changeable Young's modulus, high tensile strength, good plasticity, and minimal springback, is considered to be a potential candidate for spinal fixation applications. PMID:24317494

  1. Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture.

    PubMed

    Liu, Huihong; Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko; Cho, Ken

    2014-02-01

    In order to meet the requirements of the patients and surgeons simultaneously for spinal fixation applications, a novel biomedical alloy with a changeable Young's modulus, that is, with a low Young's modulus to prevent the stress-shielding effect for patients and a high Young's modulus to suppress springback for surgeons, was developed. In this study, the chromium and oxygen contents in ternary Ti(11, 12 mass%)Cr-(0.2, 0.4, 0.6 mass%)O alloys were optimized in order to achieve a changeable Young's modulus via deformation-induced ω-phase transformation with good mechanical properties. The Young's moduli of all the examined alloys increase after cold rolling, which is attributed to the deformation-induced ω-phase transformation. This transformation is suppressed by oxygen but enhanced with lower chromium content, which is related to the β(bcc)-lattice stability. Among the examined alloys, the Ti-11Cr-0.2O alloy shows a low Young's modulus of less than 80GPa in the solution-treated (ST) condition and a high Young's modulus of more than 90GPa in the cold rolled (CR) condition. The Ti-11Cr-0.2O alloy also exhibits a high tensile strength, above 1000MPa, with an acceptable elongation of ~12% in the ST condition. Furthermore, the Ti-11Cr-0.2O alloy exhibits minimal springback. This value of springback is the closest to that of Ti64 ELI alloy among the compared alloys. Therefore, the Ti-11Cr-0.2O alloy, which has a good balance between large changeable Young's modulus, high tensile strength, good plasticity, and minimal springback, is considered to be a potential candidate for spinal fixation applications.

  2. High energy physics at UCR

    SciTech Connect

    Kernan, A.; Shen, B.C.

    1997-07-01

    The hadron collider group is studying proton-antiproton interactions at the world`s highest collision energy 2 TeV. Data-taking with the D0 detector is in progress at Fermilab and the authors have begun the search for the top quark. S. Wimpenny is coordinating the effort to detect t{bar t} decaying to two leptons, the most readily identifiable channel. At UC Riverside design and testing for a silicon tracker for the D0 upgrade is in progress; a parallel development for the SDC detector at SSC is also underway. The major group effort of the lepton group has been devoted to the OPAL experiment at LEP. They will continue to focus on data-taking to improve the quality and quantity of their data sample. A large number of papers have been published based on approximately 500,000 events taken so far. The authors will concentrate on physics analysis which provides stringent tests of the Standard Model. The authors are continuing participation in the RD5 experiment at the SPS to study muon triggering and tracking. The results of this experiment will provide critical input for the design of the Compact Muon Solenoid experiment being proposed for the LHC. The theory group has been working on problems concerning the possible vilation of e-{mu}-{tau} universality, effective Lagrangians, neutrino physics, as well as quark and lepton mass matrices.

  3. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi

    SciTech Connect

    Zhang, ZiJiao; Mao, M. M.; Wang, Jiangwei; Gludovatz, Bernd; Zhang, Ze; Mao, Scott X.; George, Easo P.; Yu, Qian; Ritchie, Robert O.

    2015-12-09

    Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ~1 GPa, excellent ductility (~60–70%) and exceptional fracture toughness (KJIc>200M Pa√m). Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening and ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. In conclusion, we further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip.

  4. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi

    DOE PAGESBeta

    Zhang, ZiJiao; Mao, M. M.; Wang, Jiangwei; Gludovatz, Bernd; Zhang, Ze; Mao, Scott X.; George, Easo P.; Yu, Qian; Ritchie, Robert O.

    2015-12-09

    Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ~1 GPa, excellent ductility (~60–70%) and exceptional fracture toughness (KJIc>200M Pa√m). Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening andmore » ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. In conclusion, we further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip.« less

  5. High temperature passive film on the surface of Co-Cr-Mo alloy and its tribological properties

    NASA Astrophysics Data System (ADS)

    Guo, Feifei; Dong, Guangneng; Dong, Lishe

    2014-09-01

    For the artificial hip joints, passive film formed on the Co-Cr-Mo alloy acted as a highly protective barrier in the body fluid. But its stability, composition and structure always influenced the protection. In this work, passive film was obtained by high temperature treatment. The effect of passivation environment on the properties of the passive film was investigated. The film's surface roughness, micro-hardness and structure were analyzed. In order to study the tribological behavior of the passive film, pin-on-disk tribotest was carried out under bovine serum albumin (BSA) and saline solution. Results indicated the sample passivated in vacuum had friction coefficient of 0.18 under BSA solution and 0.53 under saline solution; the sample passivated in air had friction coefficient of 0.14 under BSA solution and 0.56 under saline solution. In addition, the reference sample without passivation was tested under the same condition. It showed friction of 0.22 under BSA solution and 0.45 under solution. The lubricating mechanism was attributed to BSA tribo-film absorption on the surface and high hardness passive film.

  6. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi

    PubMed Central

    Zhang, ZiJiao; Mao, M. M.; Wang, Jiangwei; Gludovatz, Bernd; Zhang, Ze; Mao, Scott X.; George, Easo P.; Yu, Qian; Ritchie, Robert O.

    2015-01-01

    Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ∼1 GPa, excellent ductility (∼60–70%) and exceptional fracture toughness (KJIc>200 MPa√m). Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening and ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. We further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip. PMID:26647978

  7. High Energy Physics Research at Louisiana Tech

    SciTech Connect

    Sawyer, Lee; Greenwood, Zeno; Wobisch, Marcus

    2013-06-28

    The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the DØ experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

  8. Computing in high-energy physics

    DOE PAGESBeta

    Mount, Richard P.

    2016-05-31

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  9. High Energy Electron Detection with ATIC

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Adams, James H., Jr.; Ahn, H.; Ampe, J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The ATIC (Advanced Thin Ionization Calorimeter) balloon-borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons. The instrument was exposed to high-energy beams at CERN H2 bean-dine in September of 1999. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well.

  10. New accelerators in high-energy physics

    SciTech Connect

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting.

  11. On the Future High Energy Colliders

    SciTech Connect

    Shiltsev, Vladimir

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  12. Practical neutron dosimetry at high energies

    SciTech Connect

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently.

  13. CERN and the high energy frontier

    NASA Astrophysics Data System (ADS)

    Tsesmelis, Emmanuel

    2014-04-01

    This paper presents the particle physics programme at CERN at the high-energy frontier. Starting from the key open questions in particle physics and the large-scale science facilities existing at CERN, concentrating on the Large Hadron Collider(LHC), this paper goes on to present future possibilities for global projects in high energy physics. The paper presents options for future colliders, all being within the framework of the recently updated European Strategy for Particle Physics, and all of which have a unique value to add to experimental particle physics. The paper concludes by outlining key messages for the way forward for high-energy physics research.

  14. Precision Crystal Calorimeters in High Energy Physics

    ScienceCinema

    Ren-Yuan Zhu

    2016-07-12

    Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal’s radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.

  15. High-energy, high-power, long-life battery

    NASA Technical Reports Server (NTRS)

    Abens, S. G.

    1969-01-01

    High-energy-density primary battery achieves energy densities of up to 130 watt hrs./lb. The electrochemical couple consists of a lithium anode, a copper-fluoride cathode, and uses methyl formate/lithium hexafluoroarsenate for the electrolyte. Once achieved, battery life is approximately 30 hours.

  16. The energy spectrum of ultra high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Abuzayyad, Tareq Ziad

    2000-11-01

    The Energy Spectrum of Ultra High Energy Cosmic Rays is measured by the first of two High Resolution Fly's Eye detectors in the monocular mode. The data set collected in the period of May 1997 to June 1999 was used for the measurement. A new reconstruction procedure (profile constrained geometry fit) was developed to analyze the data. This procedure gives reasonably good energy resolution, but poor xmax resolution. Resolution and systematics are discussed in the thesis. The spectrum measurement results are consistent with previous measurements in normalization and general shape. The spectrum appears to continue beyond the Greisen-Zatsepin-Kuz'min cutoff.

  17. Joining techniques for a reduced activation 12Cr steel for inertial fusion energy

    SciTech Connect

    Hunt, R. M.; El-Dasher, B.; Choi, B. W.; Torres, S. G.

    2014-10-01

    At Lawrence Livermore National Laboratory, we are developing a reduced activation ferritic martensitic steel that is based on the ferritic martensitic steel HT-9. As a part of the development of this steel, we tested a series of welding processes for characterization, including conventional welds (electron beam, tungsten inert gas, and laser) as well as solid-state welds (hot isostatic pressing). We also heat treated the joints at various temperatures between 750 °C and 1050 °C to find a suitable normalization scheme. The modified HT-9 reduced activation ferritic martensitic steel appears highly suitable to welding and diffusion bonding. All welds showed good quality fusion zones with insignificant cracking or porosity. Additionally, a heat treatment schedule of 950 °C for one hour caused minimal grain growth while still converging the hardness of the base metal with that of the fusion and heat-affected zones. Also, modified HT-9 diffusion bonds that were created at temperatures of at least 950 °C for two hours at 103 MPa had interface tensile strengths of greater than 600 MPa. The diffusion bonds showed no evidence of increased hardness nor void formation at the diffusion bonded interface.

  18. High energy mode locked fiber oscillators for high contrast, high energy petawatt laser seed sources

    SciTech Connect

    Dawson, J W; Messerly, M J; An, J; Kim, D; Barty, C J

    2006-06-15

    In a high-energy petawatt laser beam line the ASE pulse contrast is directly related to the total laser gain. Thus a more energetic input pulse will result in increased pulse contrast at the target. We have developed a mode-locked fiber laser with high quality pulses and energies exceeding 25nJ. We believe this 25nJ result is scalable to higher energies. This oscillator has no intra-cavity dispersion compensation, which yields an extremely simple, and elegant laser configuration. We will discuss the design of this laser, our most recent results and characterization of all the key parameters relevant to it use as a seed laser. Our oscillator is a ring cavity mode-locked fiber laser [1]. These lasers operate in a self-similar pulse propagation regime characterized by a spectrum that is almost square. This mode was found theoretically [2] to occur only in the positive dispersion regime. Further increasing positive dispersion should lead to increasing pulse energy [2]. We established that the positive dispersion required for high-energy operation was approximately that of 2m of fiber. To this end, we constructed a laser cavity similar to [1], but with no gratings and only 2m of fiber, which we cladding pumped in order to ensure sufficient pump power was available to achieve mode-locked operation. A schematic of the laser is shown in figure 1 below. This laser produced low noise 25nJ pulses with a broad self similar spectrum (figure 2) and pulses that could be de-chirped to <100fs (figure 3). Pulse contrast is important in peta-watt laser systems. A major contributor to pulse contrast is amplified spontaneous emission (ASE), which is proportional to the gain in the laser chain. As the oscillator strength is increased, the required gain to reach 1PW pulses is decreased, reducing ASE and improving pulse contrast. We believe these lasers can be scaled in a stable fashion to pulse energies as high as 100nJ and have in fact seen 60nJ briefly in our lab, which is work still

  19. Molecular dynamics simulations of point defect production in cementite and Cr23C6 inclusions in α-iron: Effects of recoil energy and temperature

    NASA Astrophysics Data System (ADS)

    Henriksson, K. O. E.

    2016-06-01

    The number of point defects formed in spherical cementite and Cr23C6 inclusions embedded into ferrite (α-iron) has been studied and compared against cascades in pure versions of these materials (only ferrite, Fe3C, or Cr23C6 in a cell). Recoil energies between 100 eV and 3 keV and temperatures between 400 K and 1000 K were used. The overall tendency is that the number of point defects — such as antisites, vacancy and interstitials — increases with recoil energy and temperature. The radial distributions of defects indicate that the interface between inclusions and the host tend to amplify and restrict the defect formation to the inclusions themselves, when compared to cascades in pure ferrite and pure carbide cells.

  20. High Energy Astrophysics Research and Programmatic Support

    NASA Technical Reports Server (NTRS)

    Angellini, L.

    1994-01-01

    This report reviews activities performed by members of the USRA contract team during the three months of the reporting period. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics.

  1. Research in High Energy Physics. Final report

    SciTech Connect

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  2. Repetitively pulsed Cr:LiSAF laser for lidar applications

    SciTech Connect

    Shimada, Tsutomu; Early, J.W.; Lester, C.S.; Cockroft, N.J.

    1994-03-01

    A Cr:LiSAF laser has been successfully operated at time averaged powers up to 11 W and at pulse repetition rates to 12 Hz. During Q-switch operation, output energy as high as 450 mJ (32 ns FWHM) was obtained. Finally, line narrowed Q-switched pulses (< 0.1 nm) from the Cr:LiSAF laser were successfully used as a tunable light source for lidar to measure atmospheric water content.

  3. Local Impurity States in Antiferromagnetic Cr-ALLOYS

    NASA Astrophysics Data System (ADS)

    Galkin, V. Yu.

    The concept of local impurity states within the energy gap of a spin-density-wave (SDW) system is introduced. It is shown that resonant scattering of conduction electrons at these states may lead to greatly enhanced low-temperature resistivity. This impurity resonance scattering (IRS) model is employed to explain the variation of residual resistivity and temperature dependence of resistivity at low temperatures of Cr-Fe and Cr-Si systems on V and Mn doping and application of high pressure.

  4. MODELING THE EFFECT OF WATER VAPOR ON THE INTERFACIAL BEHAVIOR OF HIGH-TEMPERATURE AIR IN CONTACT WITH Fe20Cr SURFACES

    SciTech Connect

    Chialvo, Ariel A; Brady, Michael P; Keiser, James R; Cole, David R

    2011-01-01

    The purpose of this communication is to provide an atomistic view, via molecular dynamic simulation, of the contrasting interfacial behavior between high temperature dry- and (10-40 vol%) wet-air in contact with stainless steels as represented by Fe20Cr. It was found that H2O preferentially adsorbs and displaces oxygen at the metal/fluid interface. Comparison of these findings with experimental studies reported in the literature is discussed. Keywords: Fe-Cr alloys, metal-fluid interfacial behavior, wet-air, molecular simulation

  5. High-temperature Tensile Properties and Creep Life Assessment of 25Cr35NiNb Micro-alloyed Steel

    NASA Astrophysics Data System (ADS)

    Ghatak, Amitava; Robi, P. S.

    2016-05-01

    Reformer tubes in petrochemical industries are exposed to high temperatures and gas pressure for prolonged period. Exposure of these tubes at severe operating conditions results in change in the microstructure and degradation of mechanical properties which may lead to premature failure. The present work highlights the high-temperature tensile properties and remaining creep life prediction using Larson-Miller parametric technique of service exposed 25Cr35NiNb micro-alloyed reformer tube. Young's modulus, yield strength, and ultimate tensile strength of the steel are lower than the virgin material and decreases with the increase in temperature. Ductility continuously increases with the increase in temperature up to 1000 °C. Strain hardening exponent increases up to 600 °C, beyond which it starts decreasing. The tensile properties are discussed with reference to microstructure and fractographs. Based on Larson-Miller technique, a creep life of at least 8.3 years is predicted for the service exposed material at 800 °C and 5 MPa.

  6. Acoustic comparison of Er,Cr:YSGG laser and dental high speed handpiece for primary anterior tooth preparation

    NASA Astrophysics Data System (ADS)

    Jorden, Monserrat; Chen, Jung-Wei; Easley, Elisabeth; Li, Yiming; Kurti, R. Steven

    The acoustics of a dental hard tissue laser (Er,Cr:YSGG laser, Waterlase MD, Biolase, USA) and a traditional dental high speed hand piece (Midwest®, Dentsply International, USA) were compared in vitro using a simple approach that can be easily adapted for in vivo studies. Thirty one extracted caries and restoration free primary anterior teeth were selected. These teeth were sectioned along a symmetry axis to give two identical halves for use in a split study. These halves were randomly assigned to either the laser (experimental) or the high speed (control) group. A miniature electret microphone was coupled to the sample using a polymer and used to collect the acoustic signal at the interface of the pulp chamber. This signal was captured periodically by a digitizing oscilloscope and multiple traces were stored for subsequent analysis. 2x1x1mm3 preparations were made according to manufacturers recommendations for the given method. Each cavity was prepared by the same clinician and calibration tests were performed to ensure consistency. The measurements indicated that the peak acoustic pressures as well as cumulative acoustic effects (due to duty cycle) were significantly higher (P<0.001, T-test) with the dental hand piece than with the dental laser. Our study suggests the need for further investigations into the neurological implications of acoustic effects in dental patient care such as pain studies.

  7. Laser cladding of Ni-Cr-Al-Hf on inconel 718 for improved high-temperature oxidation resistance

    SciTech Connect

    Singh, J.; Nagarathnam, K.; Mazumder, J.

    1987-08-03

    In-situ Ni-Cr-Al-Hf alloy was developed by laser surface cladding with a mixed-powder feed for improved high-temperature oxidation resistance. Oxidation-resistant materials for operation at elevated temperatures must satisfy two requirements: diffusion through the oxide scale must occur at the lowest possible rate, and the oxide scale must resist spallation. Formation of an Al/sub 2/O/sub 3/ protective scale fulfills the former requirement but its adherence is poor. A reactive metal such as Hf is added to improve adhesion. A 10-kW CO/sub 2/ laser was used for laser cladding. Optical, SEM and STEM microanalysis techniques were employed to characterize the different phases produced during the cladding process. Microstructural studies showed a high degree of grain refinement, increased solid solubility of Hf in the matrix and the formation of Hf-rich precipitates. A thermogravimetric analysis was carried out to determine the oxidation properties of these clad alloys with an extended solid solution of Hf. Considerable improvement over the base metal was observed. This paper discusses microstructural development in this laser-clad alloy and its effect on oxidation.

  8. Intergranular Corrosion for Extra High Purity Austenitic Stainless Steel in Boiling Nitric Acid with Cr(VI)

    NASA Astrophysics Data System (ADS)

    Ioka, Ikuo; Kato, Chiaki; Kiuchi, Kiyoshi; Nakayama, Junpei

    Austenitic stainless steels suffer intergranular attack in boiling nitric acid with oxidants. The intergranular corrosion is mainly caused by the segregation of impurities at the grain. An extra high purity austenitic stainless steel (EHP alloys) was developed with conducting the new multiple refined melting technique in order to suppress the total harmful impurities less than 100ppm. The corrosion behavior of type 310 EHP alloy with respect to nitric acid solution with highly oxidizing ions (boiling 8kmol/m3 HNO3 solutions containing 1kg/m3 Cr(VI) ions) was investigated. The straining, aging and recrystallizing (SAR) treated type 310 EHP alloy showed superior corrosion resistance for intergranular attack than solution annealed (ST) type 310 EHP alloy with same impurity level. Boron segregation at the grain boundary was detected in only ST specimen using a Fission Track Etching method. It is believed that the segregated boron along the grain boundaries in type 310 EHP alloy was one of main factor of intergranular corrosion. The SAR treatment was effective to restrain the intergranular corrosion for type 310 EHP alloy with B less than 7ppm.

  9. High-energy redox-flow batteries with hybrid metal foam electrodes.

    PubMed

    Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook; Kim, Ki Jae; Oh, Duk-Jin; Kim, Young-Jun

    2014-07-01

    A nonaqueous redox-flow battery employing [Co(bpy)3](+/2+) and [Fe(bpy)3](2+/3+) redox couples is proposed for use in large-scale energy-storage applications. We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. Our approach intoduces a more efficient conversion of chemical energy into electrical energy and enhances long-term cell durability. The cell exhibits an outstanding cyclic performance of more than 300 cycles without any significant loss of energy efficiency. Considering the increasing demands for efficient energy storage, our achievement provides insight into a possible development pathway for nonaqueous redox-flow batteries with high energy densities.

  10. Elementary particle physics and high energy phenomena

    SciTech Connect

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  11. Experimental Plan and Irradiation Target Design for FeCrAl Embrittlement Screening Tests Conducted Using the High Flux Isotope Reactor

    SciTech Connect

    Field, Kevin G.; Howard, Richard H.; Yamamoto, Yukinori

    2015-06-26

    The objective of the FeCrAl embrittlement screening tests being conducted through the use of Oak Ridge National Laboratories (ORNL) High Flux Isotope Reactor is to provide data on the radiation-induced changes in the mechanical properties including radiation-induced hardening and embrittlement through systematic testing and analysis. Data developed on the mechanical properties will be supported by extensive microstructural evaluations to assist in the development of structure-property relationships and provide a sound, fundamental understanding of the performance of FeCrAl alloys in intense neutron radiation fields. Data and analysis developed as part of this effort will be used to assist in the determination of FeCrAl alloys as a viable material for commercial light water reactor (LWR) applications with a primary focus as an accident tolerant cladding.

  12. High Energy Flywheel Containment Evaluation

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Trase, Larry (Technical Monitor)

    2000-01-01

    A flywheel testing facility is being constructed at the NASA Glenn Research Center. This facility is to be used for life cycle testing of various flywheel rotors. The lifecycle testing consists of spinning a rotor from a low rpm (approx. 20,000 ) to a high rpm (approx. 60,000) and then back to the low rpm. This spin cycle will model that which the rotor will see during use. To simulate the lifetime of the rotor, the spin cycle will be performed tens of thousands of times. A typical life cycle spin test is expected to last six months. During this time the rotor will be spun through a cycle every five minutes. The test will run continuously for the six month period barring a flywheel failure. Since it is not reasonable to have the surrounding area evacuated of personnel for the duration of the testing, the flywheel facility has to be designed to withstand a flywheel rotor failure and insure that there is no danger to any personnel in the adjacent buildings or surrounding areas. In order to determine if the facility can safely contain a flywheel rotor failure an analysis of the facility in conjunction with possible flywheel failure modes was performed. This analysis is intended as a worst case evaluation of the burst liner and vacuum tank's ability to contain a failure. The test chamber consists of a cylindrical stainless steel vacuum tank, two outer steel containment rings, and a stainless steel burst liner. The stainless steel used is annealed 302, which has an ultimate strength of 620 MPa (90,000 psi). A diagram of the vacuum tank configuration is shown. The vacuum tank and air turbine will be located below ground in a pit. The tank is secured in the pit with 0.3 m (12 in.) of cement along the base and the remaining portion of the tank is surrounded by gravel up to the access ports. A 590 kg (1300 lb.) bulkhead is placed on top of the pit during operation and the complete facility is housed within a concrete structure which has 7.5 cm (3 in.) thick walls. A cutaway

  13. The influence of high-energy impacts on the microstructure of synthesized metal ceramics

    NASA Astrophysics Data System (ADS)

    Ovcharenko, V. E.; Solonenko, O. P.; Chesnokov, A. E.; Fomin, V. M.

    2012-11-01

    On the example of the metal-ceramic alloy of titanium carbide (TiC) with nickel-chromium (Ni-Cr) binder, the comparative analysis of the influence of different high-energy impacts on the dispersion of the internal structure and phase composition of the synthesized metal ceramics 70 vol % TiC + 30 vol % (Ni-Cr) has been performed for the first time (self-spreading high-temperature synthesis (SSHTS) under pressure, preliminary mechanical activation (MA) of metal components of the initial powder mixture titanium-carbon-nickel-chromium binder, subsequent MA of the whole powder mixture, and intense plastic deformation of the synthesis product). It has been demonstrated that, under intense plastic deformation with extrusion of the high-temperature synthesis product, there a metal-ceramic structure forms containing particles of the nanosized carbide phase of the stoichiometric composition.

  14. High Energy Density Sciences with High Power Lasers at SACLA

    NASA Astrophysics Data System (ADS)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  15. Intramolecular energy transfer in ruthenium(II)-chromium(III) chromophore-luminophore complexes. Ru(bpy) sub 2 (Cr(cyclam)(CN) sub 2 ) sub 2 sup 4+

    SciTech Connect

    Bignozzi, C.A.; Bortolini, O.; Chiorboli, C.; Indelli, M.T.; Rampi, M.A.; Scandola, F. )

    1992-01-22

    A new trinuclear Ru(II)-Cr(III) chromophore-luminophore complex, Ru(bpy){sub 2}(Cr(cyclam)(CN){sub 2}){sub 2}{sup 4+}, has been synthesized and characterized. Visible light absorption by the Ru(bpy){sub 2}{sup 2+} chromophore leads to emission from the Cr(cyclam)(CN){sub 2}{sup +} luminophore, as a consequence of very efficient ({ge} 99%) and fast (subnanosecond time scale) chromophore-luminophore exchange energy-transfer process. The emission is intense ({Phi} = 5.3 {times} 10{sup {minus}3} in H{sub 2}O) and long-lived ({tau} = 260 {mu}s in H{sub 2}O). The photophysical properties of the luminophore are slightly perturbed by interaction with the chromophore, resulting in a sharper emission band shape and shorter radiative and radiationless lifetimes. The presence of a Ru(II) {yields} Cr(III) intervalence transfer state, hardly detectable in the ground-state spectrum, is clearly revealed by the excited-state absorption spectrum of the chromophore-luminophore complex.

  16. Ultra high energy cosmic ray spectrum

    NASA Technical Reports Server (NTRS)

    Baltrusaitis, R. M.; Cady, R.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, P. R.; Ko, P. R.; Loh, E. C.; Mizumoto, Y.; Salamon, M. H.

    1985-01-01

    Ultra-high energy cosmic rays have been observed by means of atmospheric fluorescence with the Fly's Eye since 1981. The differential energy spectrum above 0.1 EeV is well fitted by a power law with slope 2.94 + or - 0.02. Some evidence of flattening of the spectrum is observed or energies greater than 10 EeV, however only one event is observed with energy greater than 50 EeV and a spectral cutoff is indicated above 70 EeV.

  17. High-bay Lighting Energy Conservation Measures

    2010-12-31

    This software requires inputs of simple high-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: 1000 Watt to 750 Watt High-pressure Sodium lighting retrofit, 400 Watt to 360 Watt High Pressure Sodium lighting retrofit, High Intensity Discharge to T5 lighting retrofit, High Intensity Discharge to T8 lighting retrofit, and Daylighting. This tool calculates energy savings, demand reduction, cost savings, building lifemore » cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  18. Galactic sources of high energy neutrinos

    NASA Astrophysics Data System (ADS)

    Aharonian, Felix

    2011-12-01

    The undisputed galactic origin of cosmic rays at energies below the so-called knee implies an existence of a nonthemal population of galactic objects which effectively accelerate protons and nuclei to TeV-PeV energies. The distinct signatures of these cosmic PeVatrons are high energy neutrinos and γ-rays produced through hadronic interactions. While γ-rays can be produced also by directly accelerated electrons, high energy neutrinos provide the most straightforward and unambiguous information about the nucleonic component of accelerated particles. The planned km3-volume class high energy neutrino detectors are expected to be sensitive enough to provide the first astrophysically meaningful probes of potential VHE neutrino sources. This optimistic prediction is based on the recent discovery of high energy γ-ray sources with hard energy spectra extending to 10 TeV and beyond. Amongst the best-bet candidates are two young shell-type supernova remnants - RXJ 1713.7-4946 and RXJ 0852.0-4622, and perhaps also two prominent plerions - the Crab Nebula and Vela X. Because of strong absorption of TeV γ-rays, one may expect detectable neutrino fluxes also from (somewhat fainter) compact TeV γ-ray emitters like the binary systems LS 5039 and LS I+61 303, and, hopefully, also from hypothetical "hidden" or "orphan" neutrino sources.

  19. Ab initio phase stability at high temperatures and pressures in the V-Cr system

    NASA Astrophysics Data System (ADS)

    Landa, Alexander; Soderlind, Per; Yang, Lin

    2015-03-01

    Vanadium metal has seen a surge in research, experimental and theoretical, driven mainly by its importance in applications but also because of its surprising destabilization of the body-centered cubic (bcc) ground-state phase close to 60 GPa. The phase stability of vanadium metal and vanadium-chromium alloys at high temperatures and pressures is explored by means of first-principles electronic-structure calculations. Utilizing the self-consistent ab initio lattice dynamics approach in conjunction with density-functional theory, we show that pressure-induced mechanical instability of body-centered cubic vanadium metal, which results in formation of a rhombohedral phase at around 60 GPa at room temperatures, will prevail significant heating and compression. Furthermore, alloying with chromium decreases the temperature at which stabilization of the body-centered cubic phase occurs at elevated pressure. Computing support for this work came from the LLNL Computing Grand Challenge program. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344 and funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 11-ER-033.

  20. Effects of Cr and Ni on Interdiffusion and Reaction between U and Fe-Cr-Ni Alloys

    SciTech Connect

    K. Huang; Y. Park; L. Zhou; K.R. Coffey; Y.H. Sohn; B.H. Sencer; J. R. Kennedy

    2014-08-01

    Metallic U-alloy fuel cladded in steel has been examined for high temperature fast reactor technology wherein the fuel cladding chemical interaction is a challenge that requires a fundamental and quantitative understanding. In order to study the fundamental diffusional interactions between U with Fe and the alloying effect of Cr and Ni, solid-to-solid diffusion couples were assembled between pure U and Fe, Fe–15 wt.%Cr or Fe–15 wt.%Cr–15 wt.%Ni alloy, and annealed at high temperature ranging from 580 to 700 °C. The microstructures and concentration profiles that developed from the diffusion anneal were examined by scanning electron microscopy, and X-ray energy dispersive spectroscopy (XEDS), respectively. Thick U6Fe and thin UFe2 phases were observed to develop with solubilities: up to 2.5 at.% Ni in U6(Fe,Ni), up to 20 at.%Cr in U(Fe, Cr)2, and up to 7 at.%Cr and 14 at.% Ni in U(Fe, Cr, Ni)2. The interdiffusion and reactions in the U vs. Fe and U vs. Fe–Cr–Ni exhibited a similar temperature dependence, while the U vs. Fe–Cr diffusion couples, without the presence of Ni, yielded greater activation energy for the growth of intermetallic phases – lower growth rate at lower temperature but higher growth rate at higher temperature.

  1. Microstructure and mechanical properties of Ti-Zr-Cr biomedical alloys.

    PubMed

    Wang, Pan; Feng, Yan; Liu, Fengchao; Wu, Lihong; Guan, Shaokang

    2015-06-01

    The Ti-15Zr-xCr (0≤x≤10, wt.%) alloys were investigated to develop new biomedical materials. It was found that the phase constitutions and mechanical properties strongly depended on the Cr content. The Ti-15Zr alloy was comprised of α' phase and a small fraction of β phase was detected with adding 1wt.% Cr. With addition of 5wt.% or more, the β phase was completely retained. In addition, the ω phase was detected in the Ti-15Zr-5Cr alloy and Ti-15Zr-7Cr alloy which exhibited the highest compressive Young's modulus and the lowest ductility. On the other hand, all the Ti-15Zr-xCr alloys without ω phase exhibited high microhardness, high yield strength and superior ductility. Furthermore, the elastic energy of Ti-15Zr-10Cr alloy (5.89MJ/m(3)) with only β phase and that of Ti-15Zr-3Cr alloy (4.04MJ/m(3)) with α' phase and small fraction of β phase was higher than the elastic energy of c.p. Ti (1.25MJ/m(3)). This study demonstrated that Ti-15Zr-3Cr alloy and Ti-15Zr-10Cr alloy with superior mechanical properties are potential materials for biomedical applications.

  2. Strongly Coupled CoCr2 O4 /Carbon Nanosheets as High Performance Electrocatalysts for Oxygen Evolution Reaction.

    PubMed

    Al-Mamun, Mohammad; Su, Xintai; Zhang, Haimin; Yin, Huajie; Liu, Porun; Yang, Huagui; Wang, Dan; Tang, Zhiyong; Wang, Yun; Zhao, Huijun

    2016-06-01

    A strongly coupled CoCr2 O4 /carbon nanosheet composite is concurrently grown via a facile one-step molten-salt calcination approach. The strong coupling between carbon and CoCr2 O4 has improved the electrical conductivity and preserved the active sites in catalysts. These results may pave the way to improve the performance of spinel oxides as electrocatalysts for oxygen evolution reactions. PMID:27087475

  3. High energy density in multisoliton collisions

    NASA Astrophysics Data System (ADS)

    Saadatmand, Danial; Dmitriev, Sergey V.; Kevrekidis, Panayotis G.

    2015-09-01

    Solitons are very effective in transporting energy over great distances and collisions between them can produce high energy density spots of relevance to phase transformations, energy localization and defect formation among others. It is then important to study how energy density accumulation scales in multisoliton collisions. In this study, we demonstrate that the maximal energy density that can be achieved in collision of N slowly moving kinks and antikinks in the integrable sine-Gordon field, remarkably, is proportional to N2, while the total energy of the system is proportional to N . This maximal energy density can be achieved only if the difference between the number of colliding kinks and antikinks is minimal, i.e., is equal to 0 for even N and 1 for odd N and if the pattern involves an alternating array of kinks and antikinks. Interestingly, for odd (even) N the maximal energy density appears in the form of potential (kinetic) energy, while kinetic (potential) energy is equal to zero. The results of the present study rely on the analysis of the exact multisoliton solutions for N =1 ,2 , and 3 and on the numerical simulation results for N =4 ,5 ,6 , and 7. The effect of weak Hamiltonian and non-Hamiltonian perturbations on the maximal energy density in multikink collisions is also discussed as well as that of the collision relative phase. Based on these results one can speculate that the soliton collisions in the sine-Gordon field can, in principle, controllably produce very high energy density. This can have important consequences for many physical phenomena described by the Klein-Gordon equations.

  4. The interaction of point defects with line dislocations in HVEM (high voltage electron microscope) irradiated Fe-Ni-Cr alloys

    SciTech Connect

    King, S.L.; Jenkins, M.L. . Dept. of Materials); Kirk, M.A. ); English, C.A. . Materials Development Div.)

    1990-05-01

    This paper presents results of a study of the interaction of point defects produced by high voltage electron microscope (HVEM) irradiation with pre-existing dislocations in austenitic Fe-15% 25%Ni-17%Cr alloys, aimed at the determination of the mechanisms of climb of dissociated dislocations. Dislocations were initially characterized at sub-threshold voltages (here 200kV) using the weak-beam technique. These dislocations were then irradiated with 1MeV electrons in the Argonne HVEM before being returned to a lower voltage microscope for post-irradiation characterization. Interstitial climb was seen only at particularly favorable sites, such as pre-existing jogs, whilst vacancies clustered near dislocations, forming stacking fault tetrahedra (SFT). Partial separations were also observed to have decreased after irradiation. The post-irradiation configuration was found to depend strongly on both dislocation character and pre-irradiation dislocation configuration. These results, and their relevance to the void swelling problem, are discussed. 52 refs., 8 figs.

  5. High-temperature mechanical properties improvement on modified 9Cr-1Mo martensitic steel through thermomechanical treatments

    NASA Astrophysics Data System (ADS)

    Hollner, S.; Fournier, B.; Le Pendu, J.; Cozzika, T.; Tournié, I.; Brachet, J.-C.; Pineau, A.

    2010-10-01

    In the framework of the development of generation IV nuclear reactors and fusion nuclear reactors, materials with an improved high temperature (≅650 °C) mechanical strength are required for specific components. The 9-12%Cr martensitic steels are candidate for these applications. Thermomechanical treatments including normalisation at elevated temperature (1150 °C), followed by warm-rolling in metastable austenitic phase and tempering, have been applied on the commercial Grade 91 martensitic steel in order to refine its microstructure and to improve its precipitation state. The temperature of the warm-rolling was set at 600 °C, and those of the tempering heat-treatment at 650 °C and 700 °C thanks to MatCalc software calculations. Microstructural observations proved that the warm-rolling and the following tempering heat-treatment lead to a finer martensitic microstructure pinned with numerous small carbide and nitride particles. The hardness values of thermomechanically treated Grade 91 steel are higher than those of the as-received Grade 91. It is also shown that the yield stress and the ductility of the thermomechanically treated Grade 91 steel are significantly improved compared to the as-received material. Preliminary creep results showed that these thermomechanical treatments improve the creep lifetime by at least a factor 14.

  6. Influence of Processing Parameters on Residual Stress of High Velocity Oxy-Fuel Thermally Sprayed WC-Co-Cr Coating

    NASA Astrophysics Data System (ADS)

    Gui, M.; Eybel, R.; Asselin, B.; Radhakrishnan, S.; Cerps, J.

    2012-10-01

    Residual stress in high velocity oxy-fuel (HVOF) thermally sprayed WC-10Co-4Cr coating was studied based on design of experiment (DOE) with five factors of oxygen flow, fuel gas hydrogen flow, powder feed rate, stand-off distance, and surface speed of substrate. In each DOE run, the velocity and temperature of in-flight particle in flame, and substrate temperature were measured. Almen-type N strips were coated, and their deflections after coating were used for evaluation of residual stress level in the coating. The residual stress in the coating obtained in all DOE runs is compressive. In the present case of HVOF thermally sprayed coating, the residual stress is determined by three types of stress: peening, quenching, and cooling stress generated during spraying or post spraying. The contribution of each type stress to the final compressive residual stress in the coating depends on material properties of coating and substrate, velocity and temperature of in-flight particle, and substrate temperature. It is found that stand-off distance is the most important factor to affect the final residual stress in the coating, following by two-factor interaction of oxygen flow and hydrogen flow. At low level of stand-off distance, higher velocity of in-flight particle in flame and higher substrate temperature post spraying generate more peening stress and cooling stress, resulting in higher compressive residual stress in the coating.

  7. Dengue virus infection elicits highly polarized CX3CR1+ cytotoxic CD4+ T cells associated with protective immunity.

    PubMed

    Weiskopf, Daniela; Bangs, Derek J; Sidney, John; Kolla, Ravi V; De Silva, Aruna D; de Silva, Aravinda M; Crotty, Shane; Peters, Bjoern; Sette, Alessandro

    2015-08-01

    Dengue virus (DENV) is a rapidly spreading pathogen with unusual pathogenesis, and correlates of protection from severe dengue disease and vaccine efficacy have not yet been established. Although DENV-specific CD8(+) T-cell responses have been extensively studied, the breadth and specificity of CD4(+) T-cell responses remains to be defined. Here we define HLA-restricted CD4(+) T-cell epitopes resulting from natural infection with dengue virus in a hyperepidemic setting. Ex vivo flow-cytometric analysis of DENV-specific CD4(+) T cells revealed that the virus-specific cells were highly polarized, with a strong bias toward a CX3CR1(+) Eomesodermin(+) perforin(+) granzyme B(+) CD45RA(+) CD4 CTL phenotype. Importantly, these cells correlated with a protective HLA DR allele, and we demonstrate that these cells have direct ex vivo DENV-specific cytolytic activity. We speculate that cytotoxic dengue-specific CD4(+) T cells may play a role in the control of dengue infection in vivo, and this immune correlate may be a key target for dengue virus vaccine development. PMID:26195744

  8. Development of High Energy Cathode (PNNL)

    SciTech Connect

    Zhang, Jiguang; Liu, Jun

    2011-01-01

    Lithium ion batteries with high energy densities are required to reach DOE’s goal on early commercialization of electrical vehicles, including HEV, PHEV and EV. To increase the energy of cathode, voltage or/and capacity of cathode need to be increased. During FY10, we have investigated cathode materials with high operation voltages, for example LiMnPO4, and renewable organic cathode with high capacities. Environmentally friendly materials and low cost synthesis approaches have been intentionally explored during our efforts.

  9. High Brightness Beam Applications: Energy Recovered Linacs

    SciTech Connect

    Geoffrey A. Krafft

    2005-09-01

    In the first part of the paper some general statements are made regarding applications suitable for utilizing energy recovered linacs (ERLs) by contrasting their potential performance to that of single pass linacs and storage rings. As a result of their potential for extremely good beam quality in combination with high average beam current, ERLs have been used and considered as drivers of both free electron laser and partially coherent photon sources, from THz through X-rays; as a suitable technology for high energy electron cooling; and as a continuous or semi-continuous electron beam source for high energy colliders. At present, beam requirements tend to be highly matched to end use requirements. By reviewing some of the many examples which have either been reduced to practice, or are being explored presently, one can develop an appreciation for the wide range of parameters being considered in ERL applications.

  10. Sequential determination of Cd and Cr in biomass samples and their ashes using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis.

    PubMed

    Duarte, Alvaro T; Dessuy, Morgana B; Vale, Maria Goreti R; Welz, Bernhard; de Andrade, Jailson B

    2013-10-15

    High-resolution continuum source graphite furnace atomic absorption spectrometry, because of the use of only one radiation source for all elements, offers the possibility of sequential determination of two or more elements from the same sample aliquot if their volatilities are significantly different. Cd and Cr were determined sequentially in samples of biomass and biomass ashes employing direct solid sample analysis. The use of a chemical modifier was found to be not necessary, and calibration could be carried out using aqueous standard solutions. A pyrolysis temperature of 400°C and an atomization temperature of 1500°C were used for the determination of Cd; no losses of Cr were observed at this temperature. After the atomization of Cd the wavelength was changed and Cr atomized at 2600°C. The limits of detection (LOD) and quantification (LOQ) were 1.1 μg kg(-1) and 3.7 μg kg(-1), respectively, for Cd and 21 μg kg(-1) and 70 μg kg(-1), respectively, for Cr using the most sensitive line at 357.869 nm, or 90 μg kg(-1) and 300 μg kg(-1), respectively, using the less sensitive line at 428.972 nm. The precision, expressed as relative standard deviation was around 10%, which is typical for direct solid sample analysis. The values found for Cd in biomass samples were between <1.1 µg kg(-1) and 789 µg kg(-1), whereas those for Cr were between 7.9 mg kg(-1) and 89 mg kg(-1); the values found in the ashes were significantly lower for Cd, between <1.1 µg kg(-1) and 6.3 µg kg(-1), whereas the trend was not so clear for Cr, where the values were between 3.4 mg kg(-1) and 28 mg kg(-1).

  11. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid.

    PubMed

    Genç-Fuhrman, Hülya; Mikkelsen, Peter S; Ledin, Anna

    2016-10-01

    The effect of contact time, solution pH, and the presence of humic acid (HA) on the combined removal of As, Cd, Cr, Cu, Ni and Zn is investigated in batch tests using alumina, granulated activated carbon (GAC), and bauxsol coated sand (BCS) as sorbents. It is found that the equilibrium time for Cd, Cu, Ni and Zn is about 4h, while no clear equilibrium is observed for As and Cr. It is also found that increasing the pH until pH~8 enhanced Cd, Cu, Ni and Zn removal, but increasing the pH above this point had no major effect. In the cases of As and Cr, higher pH values (i.e. >7) decreased their removal. The presence of both 20 and 100mg/L HA suppressed the heavy metal removal except for Cr, and the suppression was higher at the higher HA concentration. Geochemical simulations suggest that this is due to the formation of dissolved HA-metal complexes preventing effective metal sorption. In the case of Cr, the presence of HA increased the removal when using alumina or BCS, while hindering the removal when using GAC. The findings show that the pH-value of the stormwater to be treated must be in the range of 6-7 in order to achieve removal of the full spectrum of metals. The results also show that natural organic matter may severely influence the removal efficiency, such that, for most metals the removal was reduced to the half, while for Cr it was increased to the double for alumina and BCS. Consequently, a properly working filter set up may not work properly anymore when receiving high loads of natural organic acids during the pollen season in spring or during defoliation in autumn and early winter, and during mixing of runoff with snowmelt having a low pH. PMID:27213673

  12. Cr{sub 2}Nb-based alloy development

    SciTech Connect

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A.

    1995-06-01

    The objective of this task is to develop a new generation of structural materials based on intermetallic alloys for use as critical hot components in advanced fossil energy conversion systems. The intermetallic phase, Cr{sub 2}Nb, with a complex cubic structure (C-15) has been selected for this development because of its high melting point (1770{degrees}C), relatively low material density (7.7 g/cm{sup 2}), excellent high-temperature strength (at 1000 to 1250{degrees}C), and potential resistance to oxidation and corrosion. This intermetallic phase, like many other Laves phases, has a wide range of compositional homogeneity suggesting the possibility of improving its mechanical and metallurgical properties by alloying additions. The major engineering concern with Cr{sub 2}Nb and other A{sub 2}B Laves phases is their poor fracture toughness and fracture resistance at ambient temperatures. The single-phase Cr{sub 2}Nb is very hard ({approximately}800 DPH) and brittle at room temperature. Because of this brittleness, the development effort has concentrated on two-phase structures containing the hard intermetallic phase Cr{sub 2}Nb and the softer Cr-rich solid solution phase. Potential applications of Cr-Cr{sub 2}Nb alloys include hot components (for example, air heat exchangers and turbine blades) in advanced energy conversion systems and heat engines, wear-resistant parts in coal handling systems (e.g., nozzles), drill bits for oil/gas wells, and valve guides in diesel engines. Current studies are focuses on enhancement of fracture resistance in tension at ambient temperatures and oxidation resistance above 1000{degrees}C. This report summarizes recent progress on controlling microstructure and improving the mechanical and metallurgical properties and the high-temperature corrosion behavior of Cr-Cr{sub 2}Nb alloys through alloying conditions, material processing, and heat treatment.

  13. Electronic and magnetic properties of CrGen (15 ⩽ n ⩽ 29) clusters: A DFT study

    NASA Astrophysics Data System (ADS)

    Mahtout, Sofiane; Tariket, Yacine

    2016-06-01

    We report ab initio calculations of electronic and magnetic properties of medium-sized CrGen (15 ⩽ n ⩽ 29) clusters using density functional theory. The encapsulation of Cr atoms within Gen clusters leads to stable Cr encapsulated Gen clusters. The binding energies generally increase while the differences between the highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO-LUMO gaps) generally decrease with the increasing of cluster size. The clusters of CrGen at size 16, 17, 19, 22, 24 and 29 exhibit high stabilities when compared to their neighbors. This has been discussed in terms of their structures, energies and the effect of the position of doping atom. Doping of Gen clusters with one Cr atom leads to CrGen clusters with magnetic moment depending on the structure of the clusters and the position of Cr atom in the clusters. Moreover, vertical ionization potential, vertical electronic affinity, and chemical hardness are also analyzed.

  14. Ultra high energy cosmic rays: the highest energy frontier

    NASA Astrophysics Data System (ADS)

    de Mello Neto, João R. T.

    2016-04-01

    Ultra-high energy cosmic rays (UHECRs) are the highest energy messengers of the present universe, with energies up to 1020 eV. Studies of astrophysical particles (nuclei, electrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. The primary particles interact in the atmosphere and generate extensive air showers. Analysis of those showers enables one not only to estimate the energy, direction and most probable mass of the primary cosmic particles, but also to obtain information about the properties of their hadronic interactions at an energy more than one order of magnitude above that accessible with the current highest energy human-made accelerator. In this contribution we will review the state-of-the-art in UHECRs detection. We will present the leading experiments Pierre Auger Observatory and Telescope Array and discuss the cosmic ray energy spectrum, searches for directional anisotropy, studies of mass composition, the determination of the number of shower muons (which is sensitive to the shower hadronic interactions) and the proton-air cross section.

  15. Fabrication and Wear Behavior Analysis on AlCrFeNi High Entropy Alloy Coating Under Dry Sliding and Oil Lubrication Test Conditions

    NASA Astrophysics Data System (ADS)

    Tang, Yipin; Wang, Shouren; Sun, Bin; Wang, Yan; Qiao, Yang

    2016-03-01

    In this paper, AlCrFeNi high entropy alloy coating was fabricated on the surface of Q235 steel using hot pressing sintering process. The coating has the controlled thickness size and excellent mechanical properties. Scanning electron microscopy (SEM), XRD and hardness testing method were used to study the morphology, phase structure and hardness of high entropy alloys coating. The lattice distortion plays a significant role in increasing the hardness. Coating formation mechanism caused by the element diffusion under the hot pressing effect is also discussed in the paper. Simultaneously, the dry sliding and oil lubrication wear tests, wear morphology observation and wear mechanism discussion were completed. As the result shows, AlCrFeNi high entropy alloys coating exhibits superior wear resistance either at dry sliding or oil lubrication tests owing to its hard high entropy solid solution structure.

  16. High-pressure X-ray diffraction and Raman spectroscopy of CaFe2O4-type β-CaCr2O4

    NASA Astrophysics Data System (ADS)

    Zhai, Shuangmeng; Yin, Yuan; Shieh, Sean R.; Shan, Shuangming; Xue, Weihong; Wang, Ching-Pao; Yang, Ke; Higo, Yuji

    2016-04-01

    In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopic studies of orthorhombic CaFe2O4-type β-CaCr2O4 chromite were carried out up to 16.2 and 32.0 GPa at room temperature using multi-anvil apparatus and diamond anvil cell, respectively. No phase transition was observed in this study. Fitting a third-order Birch-Murnaghan equation of state to the P-V data yields a zero-pressure volume of V 0 = 286.8(1) Å3, an isothermal bulk modulus of K 0 = 183(5) GPa and the first pressure derivative of isothermal bulk modulus K 0' = 4.1(8). Analyses of axial compressibilities show anisotropic elasticity for β-CaCr2O4 since the a-axis is more compressible than the b- and c-axis. Based on the obtained and previous results, the compressibility of several CaFe2O4-type phases was compared. The high-pressure Raman spectra of β-CaCr2O4 were analyzed to determine the pressure dependences and mode Grüneisen parameters of Raman-active bands. The thermal Grüneisen parameter of β-CaCr2O4 is determined to be 0.93(2), which is smaller than those of CaFe2O4-type CaAl2O4 and MgAl2O4.

  17. Introduction to High-Energy Astrophysics

    NASA Astrophysics Data System (ADS)

    Rosswog, Stephan; Bruggen, Marcus

    2003-04-01

    High-energy astrophysics covers cosmic phenomena that occur under the most extreme physical conditions. It explores the most violent events in the Universe: the explosion of stars, matter falling into black holes, and gamma-ray bursts - the most luminous explosions since the Big Bang. Driven by a wealth of new observations, the last decade has seen a large leap forward in our understanding of these phenomena. Exploring modern topics of high-energy astrophysics, such as supernovae, neutron stars, compact binary systems, gamma-ray bursts, and active galactic nuclei, this textbook is ideal for undergraduate students in high-energy astrophysics. It is a self-supporting, timely overview of this exciting field of research. Assuming a familiarity with basic physics, it introduces all other concepts, such as gas dynamics or radiation processes, in an instructive way. An extended appendix gives an overview of some of the most important high-energy astrophysics instruments, and each chapter ends with exercises.• New, up-to-date, introductory textbook providing a broad overview of high-energy phenomena and the many advances in our knowledge gained over the last decade • Written especially for undergraduate teaching use, it introduces the necessary physics and includes many exercises • This book fills a valuable niche at the advanced undergraduate level, providing professors with a new modern introduction to the subject

  18. Highly-selective and reversible O2 binding in Cr3(1,3,5-benzenetricarboxylate)2.

    PubMed

    Murray, Leslie J; Dinca, Mircea; Yano, Junko; Chavan, Sachin; Bordiga, Silvia; Brown, Craig M; Long, Jeffrey R

    2010-06-16

    Reaction of Cr(CO)(6) with trimesic acid in DMF affords the metal-organic framework Cr(3)(BTC)(2).nDMF (BTC(3-) = 1,3,5-benzenetricarboxylate), which is isostructural to Cu(3)(BTC)(2).3H(2)O. Exchanging DMF for methanol and heating at 160 degrees C under dynamic vacuum for 48 h results in the desolvated framework Cr(3)(BTC)(2). Nitrogen gas adsorption measurements performed at 77 K revealed a type I isotherm, indicating BET and Langmuir surface areas of 1810 and 2040 m(2)/g, respectively. At 298 K, the O(2) adsorption isotherm for Cr(3)(BTC)(2) rises steeply to a capacity of 11 wt % at 2 mbar, while the corresponding N(2) adsorption isotherm displays very little uptake, gradually rising to a capacity of 0.58 wt % at 1 bar. Accordingly, the material displays an unprecedented O(2)/N(2) selectivity factor of 22. Deoxygenation of the sample could be accomplished by heating at 50 degrees C under vacuum for 48 h, leading to a gradually diminishing uptake capacity over the course of 15 consecutive adsorption/desorption cycles. Infrared and X-ray absorption spectra suggest formation of an O(2) adduct with partial charge transfer from the Cr(II) centers exposed on the surface of the framework. Neutron powder diffraction data confirm this mechanism of O(2) binding and indicate a lengthening of the Cr-Cr distance within the paddle-wheel units of the framework from 2.06(2) to 2.8(1) A.

  19. Canadian high energy neutron spectrometry system (chenss)

    NASA Astrophysics Data System (ADS)

    Bennett, Les

    The Canadian high-energy neutron spectrometry system (CHENSS) has been constructed in order to accurately characterize the fluence and energy distribution of high-energy neutrons encountered on space missions in low-Earth orbit. The CHENSS is a proton-recoil spectrometer based on a cylindrical gelled scintillator, with pulse-shape discrimination properties comparable to those of a liquid scintillator, completely surrounded by thin plastic panels, which can be used to veto coincident events due to charged particles. The CHENSS has been irradiated by monoenergetic neutron reference beams with energies up to 19 MeV at the Physikalisch- TechnischeBundesanstalt and in quasi-monoenergetic neutron beams at 100 and 200 MeV at the iThemba Labs facilities. Comparison of the data with fluence determinations performed in parallel to the CHENSS measurements shows good consistency and demonstrates the efficacy of the spectrometer for measurements in space.

  20. High Energy Signatures of POST Adiabatic Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Telezhinsky, Igor; Hnatyk, Bohdan

    Between the well-known adiabatic and radiative stages of the Supernova remnant (SNR) evolution there is, in fact, a transition stage with a duration comparable to the duration of adiabatic one. Physical existence of the transition stage is motivated by cooling of some part of the downstream hot gas with formation of a thin cold shell that is joined to a shell of swept up interstellar medium (ISM). We give an approximate analytical method for full hydrodynamical description of the transition stage. On its base we investigate the evolution of X-ray and γ-ray radiation during this stage. It is shown that formation of a dense shell during the transition stage is accompanied by the decrease of X-ray luminosity because of hot gas cooling and increase of gamma-ray flux according to the increase of target proton density and CR energy in the newly born shell. The role of nonuniformity of ISM and its influence on the high energy fluxes from the SNRs is also discussed.

  1. Alternative Approaches to High Energy Density Fusion

    NASA Astrophysics Data System (ADS)

    Hammer, J.

    2016-10-01

    This paper explores selected approaches to High Energy Density (HED) fusion, beginning with discussion of ignition requirements at the National Ignition Facility (NIF). The needed improvements to achieve ignition are closely tied to the ability to concentrate energy in the implosion, manifested in the stagnation pressure, Pstag. The energy that must be assembled in the imploded state to ignite varies roughly as Pstag-2, so among other requirements, there is a premium on reaching higher Pstag to achieve ignition with the available laser energy. The U.S. inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through improvements to capsule stability and symmetry. One can argue that recent experiments place an approximate upper bound on the ultimate ignition energy requirement. Scaling the implosions consistently in spatial, temporal and energy scales shows that implosions of the demonstrated quality ignite robustly at 9-15 times the current energy of NIF. While lasers are unlikely to reach that bounding energy, it appears that pulsed-power sources could plausibly do so, giving a range of paths forward for ICF depending on success in improving energy concentration. In this paper, I show the scaling arguments then discuss topics from my own involvement in HED fusion. The recent Viewfactor experiments at NIF have shed light on both the observed capsule drive deficit and errors in the detailed modelling of hohlraums. The latter could be important factors in the inability to achieve the needed symmetry and energy concentration. The paper then recounts earlier work in Fast Ignition and the uses of pulsed-power for HED and fusion applications. It concludes with a description of a method for improving pulsed-power driven hohlraums that could potentially provide a factor of 10 in energy at NTF-like drive conditions and reach the energy bound for indirect drive ICF.

  2. Alternative Approaches to High Energy Density Fusion

    NASA Astrophysics Data System (ADS)

    Hammer, J.

    2016-03-01

    This paper explores selected approaches to High Energy Density (HED) fusion, beginning with discussion of ignition requirements at the National Ignition Facility (NIF). The needed improvements to achieve ignition are closely tied to the ability to concentrate energy in the implosion, manifested in the stagnation pressure, Pstag . The energy that must be assembled in the imploded state to ignite varies roughly as Pstag -2, so among other requirements, there is a premium on reaching higher Pstag to achieve ignition with the available laser energy. The U.S. inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through improvements to capsule stability and symmetry. One can argue that recent experiments place an approximate upper bound on the ultimate ignition energy requirement. Scaling the implosions consistently in spatial, temporal and energy scales shows that implosions of the demonstrated quality ignite robustly at 9-15 times the current energy of NIF. While lasers are unlikely to reach that bounding energy, it appears that pulsed-power sources could plausibly do so, giving a range of paths forward for ICF depending on success in improving energy concentration. In this paper, I show the scaling arguments then discuss topics from my own involvement in HED fusion. The recent Viewfactor experiments at NIF have shed light on both the observed capsule drive deficit and errors in the detailed modelling of hohlraums. The latter could be important factors in the inability to achieve the needed symmetry and energy concentration. The paper then recounts earlier work in Fast Ignition and the uses of pulsed- power for HED and fusion applications. It concludes with a description of a method for improving pulsed-power driven hohlraums that could potentially provide a factor of 10 in energy at NIF-like drive conditions and reach the energy bound for indirect drive ICF.

  3. HVOF-Deposited WCCoCr as Replacement for Hard Cr in Landing Gear Actuators

    NASA Astrophysics Data System (ADS)

    Agüero, A.; Camón, F.; García de Blas, J.; Del Hoyo, J. C.; Muelas, R.; Santaballa, A.; Ulargui, S.; Vallés, P.

    2011-12-01

    WCCoCr coatings deposited by HVOF can replace hard Cr on landing gear components. Powders with two different WC particle sizes (micro and nano-) and geometries have been employed to study the effects on the coating's properties. Moreover, coatings produced employing two sets of parameters resulting in high and low flame temperatures have been evaluated. Minor differences in microstructure and morphology were observed for the two powders employing the same spraying parameters, but the nano-sized powder exhibited a higher spraying efficiency. However, more significant microstructural changes result when the low- and high-energy spray parameters are used. Moreover, results of various tests which include adhesion, wear, salt fog corrosion resistance, liquid immersion, and axial fatigue strength, indicate that the coatings produced with high-energy flame are similar in behavior. On the other hand, the nanostructured low-energy flame coating exhibited a significantly lower salt fog corrosion resistance.

  4. Chromizing of 3Cr Steel

    SciTech Connect

    Ravi, Vilupanur; Harrison, Bradley; Koch, Jordan; Ly, Alexander; Schissler, Andrew; Pint, Bruce A; Haynes, James A

    2011-01-01

    Grade 315 steel (Fe-2.9 Cr-1.7 W-0.7 Mo-0.3 Mn-0.3 Si-0.2 V-0.1 Ni-0.13 C-0.01 N) was chromized by the halide-activated pack cementation (HAPC) process. Key process parameters, i.e., coating temperatures and pack compositions, were investigated. Ammonium chloride-activated packs in the 700-1000 C range produced coatings nominally in the 1-8 {micro}m range, as determined by optical and scanning electron microscopy (SEM). Coatings applied in the 900-1000 C temperature range resulted in Cr-rich coatings. The predominant phase in the coating was identified as Cr23C6 by X-ray diffraction. In addition, the presence of chromium nitride, Cr2N, was observed in the coating. The power generation industry is faced with an ever-increasing demand for energy while simultaneously having to reduce carbon emissions. These goals can be facilitated by increasing plant efficiency through the use of higher operating temperatures and pressures. Traditional construction materials, e.g., the ferritic Grade 22 high strength low alloy steel, are limited to operations below {approx} 550 C. Therefore, new materials are required for future plants designed to operate up to 650 C and possibly higher. These new materials need to have improved tensile strength, ductility, toughness, corrosion resistance, and creep properties at elevated temperatures. Oak Ridge National Laboratory (ORNL) is investigating the oxidation and creep behavior of various coatings on Grade 315 steel (Fe-2.9 Cr-1.7 W-0.7 Mo-0.3 Mn-0.3 Si-0.2 V-0.1 Ni-0.13 C-0.01 N), a super-bainitic steel developed for superior creep properties. Thin, chemical vapor-deposited (CVD) aluminide coatings were used to compensate for the reduced corrosion and oxidation resistance that resulted from the low chromium content of the alloy. However, the aluminized Grade 315 alloys performed less-than-favorably under conditions relevant to fossil boilers, leading to the conclusion that higher chromium contents are required for the formation of

  5. Scientific applications for high-energy lasers

    SciTech Connect

    Lee, R.W.

    1994-03-01

    The convergence of numerous factors makes the time ripe for the development of a community of researchers to use the high-energy laser for scientific investigations. This document attempts to outline the steps necessary to access high-energy laser systems and create a realistic plan to implement usage. Since an academic/scientific user community does not exist in the USA to any viable extent, we include information on present capabilities at the Nova laser. This will briefly cover laser performance and diagnostics and a sampling of some current experimental projects. Further, to make the future possibilities clearer, we will describe the proposed next- generation high-energy laser, named for its inertial fusion confinement (ICF) goal, the multi-megaJoule, 500-teraWatt National Facility, or NIF.

  6. Future high energy colliders symposium. Summary report

    SciTech Connect

    Parsa, Z. |

    1996-12-31

    A `Future High Energy Colliders` Symposium was held October 21-25, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was one of the 3 symposia hosted by the ITP and supported by its sponsor, the National Science Foundation, as part of a 5 month program on `New Ideas for Particle Accelerators`. The long term program and symposia were organized and coordinated by Dr. Zohreh Parsa of Brookhaven National Laboratory/ITP. The purpose of the symposium was to discuss the future direction of high energy physics by bringing together leaders from the theoretical, experimental and accelerator physics communities. Their talks provided personal perspectives on the physics objectives and the technology demands of future high energy colliders. Collectively, they formed a vision for where the field should be heading and how it might best reach its objectives.

  7. Spectroscopic investigation of Cr(III)- and Cr(VI)-treated nanoscale zerovalent iron.

    PubMed

    Manning, Bruce A; Kiser, Jon R; Kwon, Hancheol; Kanel, Sushil Raj

    2007-01-15

    The reaction of hexavalent chromium (Cr(VI)) with zerovalent iron (Fe0) during soil and groundwater remediation is an important environmental process. This study used several techniques including X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy to investigate nanometer scale Fe0 particles (nano Fe0) treated with Cr(III) and Cr(VI). X-ray diffraction and XPS analyses of oxidized nano Fe0 showed the crystalline Fe(III) phase is composed of lepidocrocite (gamma-FeOOH). Results of XPS Cr 2p data and Cr K-edge X-ray absorption near edge spectroscopy (XANES) provided evidence that Cr(VI) was entirely reduced to Cr(III) by nano Fe0 with no residual Cr(VI) after reaction. In addition, XPS and XANES results of Cr(III) precipitated as Cr(OH)3 in the presence of corroding nano Fe0 were nearly identical to the Cr(VI)-nano Fe0 reaction product. Detailed analysis of XPS O 1s line spectra revealed that both Cr(III)- and Cr(VI)-treated nano Fe0 yielded a predominantly hydroxylated Cr(OH)3 and/ or a mixed phase CrxFe(1 - x)(OH)3 product. The structure of the Cr(III)- and Cr(VI)-treated nano Fe0 determined using extended X-ray absorption fine structure spectroscopy (EXAFS) revealed octahedral Cr(III) with Cr-O interatomic distances between 1.97 and 1.98 A for both Cr(III) and Cr(VI) treatments and a pronounced Cr-Cr second interatomic shell at 3.01 A. Our results suggest that the reaction product of Cr(VI)-treated nano Fe0 is either a poorly ordered Cr(OH)3 precipitate or possibly a mixed phase CrxFe(1 - x)(OH)3 product, both of which are highly insoluble under environmental conditions.

  8. Strongly Interacting Matter at High Energy Density

    SciTech Connect

    McLerran,L.

    2008-09-07

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  9. The HESP (High Energy Solar Physics) project

    NASA Technical Reports Server (NTRS)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  10. High Energy Astrophysics Research and Programmatic Support

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella

    1998-01-01

    This report reviews activities performed by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  11. High energy particles and quanta in astrophysics

    NASA Technical Reports Server (NTRS)

    Mcdonald, F. B. (Editor); Fichtel, C. E.

    1974-01-01

    The various subdisciplines of high-energy astrophysics are surveyed in a series of articles which attempt to give an overall view of the subject as a whole by emphasizing the basic physics common to all fields in which high-energy particles and quanta play a role. Successive chapters cover cosmic ray experimental observations, the abundances of nuclei in the cosmic radiation, cosmic electrons, solar modulation, solar particles (observation, relationship to the sun acceleration, interplanetary medium), radio astronomy, galactic X-ray sources, the cosmic X-ray background, and gamma ray astronomy. Individual items are announced in this issue.

  12. COMPILATION OF CURRENT HIGH ENERGY PHYSICS EXPERIMENTS

    SciTech Connect

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.; Horne, C.P.; Hutchinson, M.S.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Addis, L.; Ward, C.E.W.; Baggett, N.; Goldschmidt-Clermong, Y.; Joos, P.; Gelfand, N.; Oyanagi, Y.; Grudtsin, S.N.; Ryabov, Yu.G.

    1981-05-01

    This is the fourth edition of our compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. We emphasize that only approved experiments are included.

  13. High Energy Astrophysics Research and Programmatic Support

    NASA Technical Reports Server (NTRS)

    Angelini, L. (Editor)

    1997-01-01

    This report reviews activities performed by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  14. Status of High-Energy Neutrino Astronomy

    NASA Astrophysics Data System (ADS)

    Kowalski, Marek

    2015-08-01

    With the recent discovery of high-energy neutrinos of extra-terrestrial origin by the IceCube neutrino observatory, neutrino-astronomy is entering a new era. This review will cover currently operating open water/ice neutrino telescopes, the latest evidence for a flux of extra-terrestrial neutrinos and current efforts in the search for steady and transient neutrino point sources. Generalised constraints on potential astrophysical sources are presented, allowing to focus the hunt for the sources of the observed high-energy neutrinos.

  15. First Annual Progress Report on Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys

    SciTech Connect

    Field, Kevin G.; Gussev, Maxim N.; Hu, Xunxiang; Yamamoto, Yukinori; Howard, Richard H.

    2015-12-01

    The present report summarizes and discusses the first year efforts towards developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability under the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Significant efforts have been made within the first year of this project including the fabrication of seven candidate FeCrAl alloys with well controlled chemistry and microstructure, the microstructural characterization of these alloys using standardized and advanced techniques, mechanical properties testing and evaluation of base alloys, the completion of welding trials and production of weldments for subsequent testing, the design of novel tensile specimen geometry to increase the number of samples that can be irradiated in a single capsule and also shorten the time of their assessment after irradiation, the development of testing procedures for controlled hydrogen ingress studies, and a detailed mechanical and microstructural assessment of weldments prior to irradiation or hydrogen charging. These efforts and research results have shown promise for the FeCrAl alloy class as a new nuclear grade alloy class.

  16. Preparation and Oxidation Performance of Y and Ce-Modified Cr Coating on open-cell Ni-Cr-Fe Alloy Foam by the Pack Cementation

    NASA Astrophysics Data System (ADS)

    Pang, Q.; Hu, Z. L.; Wu, G. H.

    2016-10-01

    Metallic foams with a high fraction of porosity, low density and high-energy absorption capacity are a rapidly emerging class of novel ultralight weight materials for various engineering applications. In this study, Y-Cr and Ce-Cr-coated Ni-Cr-Fe alloy foams were prepared via the pack cementation method, and the effects of Y and Ce addition on the coating microstructure and oxidation performance were analyzed in order to improve the oxidation resistance of open-cell nickel-based alloy foams. The results show that the Ce-Cr coating is relatively more uniform and has a denser distribution on the surface of the nickel-based alloy foam. The surface grains of the Ce-Cr-coated alloy foam are finer compared to those of the Y-Cr-coated alloy foam. An obvious Ce peak appears on the interface between the coating and the alloy foam strut, which gives rise to a "site-blocking" effect for the short-circuit transport of the cation in the substrate. X-ray diffraction analysis shows that the Y-Cr-coated alloy foam mainly consists of Cr, (Fe, Ni) and (Ni, Cr) phases in the surface layer. The Ce-Cr-coated alloy foam is mainly composed of Cr and (Ni, Cr) phases. Furthermore, the addition of Y and Ce clearly lead to an improvement in the oxidation resistance of the coated alloy foams in the temperature range of 900-1000 °C. The addition of Ce is especially effective in enhancing the diffusion of chromium to the oxidation front, thus, accelerating the formation of a Cr2O3 layer.

  17. Influence of Annealing Heat Treatment and Cr, Mg, and Ti Alloying on the Mechanical Properties of High-Silicon Cast Iron

    NASA Astrophysics Data System (ADS)

    Castro, D. B. V.; Rossino, L. S.; Malafaia, A. M. S.; Angeloni, M.; Maluf, O.

    2011-10-01

    The influence of annealing on the mechanical properties of high-silicon cast iron for three alloys with distinct chromium levels was investigated. Each alloy was melted either with or without the addition of Ti and Mg. These changes in the chemical composition and heat treatment aimed to improve the material's mechanical properties by inhibiting the formation of large columnar crystals, netlike laminae, precipitation of coarse packs of graphite, changing the length and morphology of graphite, and rounding the extremities of the flakes to minimize the stress concentration. For alloys with 0.07 wt.% Cr, the annealing reduced the impact resistance and tensile strength due to an enhanced precipitation of refined carbides and the formation of interdendritic complex nets. Annealing the alloys containing Ti and Mg led to a decrease in the mechanical strength and an increase in the toughness. Alloys containing approximately 2 wt.% Cr achieved better mechanical properties as compared to the original alloy. However, with the addition of Ti and Mg to alloys containing 2% Cr, the chromium carbide formation was inhibited, impairing the mechanical properties. In the third alloy, with 3.5 wt.% of Cr additions, the mechanical strength improved. The annealing promoted a decrease in both hardness and amount of iron and silicon complex carbides. However, it led to a chromium carbide formation, which influenced the mechanical characteristics of the matrix of the studied material.

  18. Cr-free Fe-based metal oxide catalysts for high temperature water gas shift reaction of fuel processor using LPG

    SciTech Connect

    lee, Joon Y.; Lee, Dae-Won; Lee, Kwan Young; Wang, Yong

    2009-08-15

    The goal of this study was to identify the most suitable chromium-free iron-based catalysts for the HTS (high temperature shift) reaction of a fuel processor using LPG. Hexavalent chromium (Cr6+) in the commercial HTS catalyst has been regarded as hazardous material. We selected Ni and Co as the substitution for chromium in the Fe-based HTS catalyst and investigated the HTS activities of these Crfree catalysts at LPG reformate condition. Cr-free Fe-based catalysts which contain Ni, Zn, or Co instead of Cr were prepared by coprecipitation method and the performance of the catalysts in HTS was evaluated under gas mixture conditions (42% H2, 10% CO, 37% H2O, 8% CO2, and 3% CH4; R (reduction factor): about 1.2) similar to the gases from steam reforming of LPG (100% conversion at steam/carbon ratio = 3), which is higher than R (under 1) of typically studied LNG reformate condition. Among the prepared Cr-free Febased catalysts, the 5 wt%-Co/Fe/20 wt%-Ni and 5 wt%-Zn/Fe/20 wt%-Ni catalysts showed good catalytic activity under this reaction condition simulating LPG reformate gas.

  19. Characterization of Oxide Scales Formed on High-Velocity Oxyfuel-Sprayed Ni-Co-Cr-Al-Y + ReTa Coatings

    NASA Astrophysics Data System (ADS)

    Lee, D. B.; Ko, J. H.; Yi, J. H.

    2005-09-01

    A high-velocity oxyfuel-sprayed 30 wt.% Ni-20 wt.% Co-30 wt.% Cr-10 wt.% Al-2 wt.% Y-4 wt.% Re-4 wt.% Ta coating was oxidized between 1000 and 1200 °C for up to 200 h in air, and the oxide scales were examined. The dense, sprayed coating consisted mainly of Cr3Ni2, Ni3Al, Ni3Ta, Ni, NiO, Al5Y3O12, and Cr2O3. Intermetallics and some oxides formed during spraying. During oxidation, mainly αAl2O3, along with some Al5Y3O12, CoAl2O4, CoCr2O4, Ta2O5, and Ta2O2.2 formed on the coating. The preferential oxidation of Al to form the Al-rich scales resulted in the formation of an Al-depleted region beneath the scales. Rhenium, being the most noble element, was distributed throughout the oxide scale and the coating, without forming any independent oxides.

  20. Precision timing measurements for high energy photons

    SciTech Connect

    Anderson, Dustin; Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si; Zhu, Ren-Yuan

    2014-11-21

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm3 lutetium–yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm3 LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  1. The Large Hadron Collider: Redefining High Energy

    SciTech Connect

    Demers, Sarah

    2007-06-19

    Particle physicists have a description of the forces of nature known as the Standard Model that has successfully withstood decades of testing at laboratories around the world. Though the Standard Model is powerful, it is not complete. Important details like the masses of particles are not explained well, and realities as fundamental as gravity, dark matter, and dark energy are left out altogether. I will discuss gaps in the model and why there is hope that some puzzles will be solved by probing high energies with the Large Hadron Collider. Beginning next year, this machine will accelerate protons to record energies, hurling them around a 27 kilometer ring before colliding them 40 million times per second. Detectors the size of five-story buildings will record the debris of these collisions. The new energy frontier made accessible by the Large Hadron Collider will allow thousands of physicists to explore nature's fundamental forces and particles from a fantastic vantage point.

  2. ACCELERATING POLARIZED PROTONS TO HIGH ENERGY.

    SciTech Connect

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; BLASKIEWICZ, M.; BRAVAR, A.; BRENNAN, J.M.; BRUNO, D.; BUNCE, G.; ET AL.

    2006-10-02

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

  3. Trends in experimental high-energy physics

    SciTech Connect

    Sanford, T.W.L.

    1982-06-01

    Data from a scan of papers in Physical Review Letters and Physical Review are used to demonstrate that American high-energy physicists show a pattern of accelerator and instrumentation usage characteristic of that expected from the logistic-substitution model of Marchetti and of Fischer and Pry.

  4. Solar Energy Project, Activities: Junior High Science.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of the junior high science curriculum. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher…

  5. Energy Conservation Featured in Illinois High School

    ERIC Educational Resources Information Center

    Modern Schools, 1976

    1976-01-01

    The William Fremd High School in Palatine, Illinois, scheduled to open in 1977, is being built with energy conservation uppermost in mind. In this system, 70 heat pumps will heat and cool 300,000 square feet of educational facilities. (Author/MLF)

  6. High Energy 2-Micron Laser Developments

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    A master oscillator power amplifier, high energy Q-switched 2-micron laser system has been recently demonstrated. The laser and amplifiers are all designed in side-pumped rod configuration, pumped by back-cooled conductive packaged GaAlAs diode laser arrays. This 2-micron laser system provides nearly transform limited beam quality.

  7. High energy radiation from neutron stars

    SciTech Connect

    Ruderman, M.

    1985-04-01

    Topics covered include young rapidly spinning pulsars; static gaps in outer magnetospheres; dynamic gaps in pulsar outer magnetospheres; pulse structure of energetic radiation sustained by outer gap pair production; outer gap radiation, Crab pulsar; outer gap radiation, the Vela pulsar; radioemission; and high energy radiation during the accretion spin-up of older neutron stars. 26 refs., 10 figs. (GHT)

  8. Energy Activities for Junior High Social Studies.

    ERIC Educational Resources Information Center

    Minnesota State Energy Agency, St. Paul.

    The document contains seven learning activities for junior high students on the energy situation. Objectives are to help students gain understanding and knowledge about the relationships between humans and their social and physical environments; solve problems and clarify issues; examine personal beliefs and values; and recognize the relationships…

  9. DOE is Funding Young High- Energy Physicists

    ERIC Educational Resources Information Center

    Waff, Craig B.

    1978-01-01

    Reports on some recommendations made by a subpanel on High Energy Physics Manpower for the purpose of employing additional physicists through the transfer of some postdoctoral monies to produce long-term positions, and the creation of a five-year national fellowship program. (GA)

  10. High precision Mg and Cr isotope measurements by MC-ICP-MS and their applications to date the first stage of planet formation in the early solar nebula.

    NASA Astrophysics Data System (ADS)

    Yin, Q.; Jacobsen, B.; Moynier, F.

    2008-05-01

    We developed high precision Mg and Cr isotope measurement techniques by MC-ICP-MS at UC Davis to probe physicochemical conditions in the early solar nebula and establish high-resolution chronology from dust to the earliest planet building processes. (1) We obtained stable isotopic composition of Mg (δ25Mg) together with δ26Mg*, the radiogenic in growth from the decay of the short-lived, now extinct 26Al (T1/2 ~0.7 Myr) in whole rock fragments and mineral separates from high temperature refractory Ca-Al-rich inclusions (CAIs) in primitive meteorite Allende, the oldest known (first) solid objects in our solar system. Enrichment of heavy Mg isotopes (up to +6 permil) in d25Mg suggest that the igneous Type B CAIs have lost 14-47 percent of original Mg by evaporation in the early solar nebular during high temperature. Compact and fluffy Type A CAIs, on the other hand, shows light isotope enrichment with d25Mg as low as -4 permil), suggesting condensation from a nebular gas already depleted in heavy Mg isotopes. All of these objects plot on a well-defined 26Al-26Mg isochron with 26Al/27Al=(5.17+/-0.10)x10-5, suggesting the total duration of CAI formation event is less than 20,000 years. U-Pb dating in the same material anchors the event at 4567.4+/-0.3 Myr ago [1]. (2) We have applied 53Mn-53Cr chronometer to date chondrule obtained from primitive chondrite, and establish that chondrules in ordinary chondrite postdate the CAI by ~2 Myr [2]. (3) We further apply 53Mn-53Cr chronometer to a suite of carbonaceous chondrites whole rock samples, which are "cosmic sediments" made of CAIs and chondrules that are "cemented" together by fine grained matrices rich in organics and presolar grains. All carbonaceous chondrites exhibit 53Cr* anomalies that are correlated with 55Mn/52Cr ratio, which in turn is governed by proportion of matrix/refractory components. Thus 53Mn-53Cr chronometer dates the accretion timescale ("sedimentation" or "compaction" time) of undifferentiated

  11. High-T C fully compensated ferrimagnetic semiconductors as spin-filter materials: the case of CrVXAl (X = Ti, Zr, Hf) Heusler compounds.

    PubMed

    Galanakis, I; Özdoğan, K; Şaşıoglu, E

    2014-02-26

    We extend our recent work on spin-filter materials (Galanakis et al 2013 Appl. Phys. Lett.103 142404) to the case of CrVXAl (X = Ti, Zr, Hf) compounds, for which, using ab initio electronic structure calculations, we show that p-d hybridization leads to the formation of a fully compensated ferrimagnetic semiconducting state with moderate exchange splitting. The magnetism is of covalent-type and the very strong antiferromagnetic Cr-V exchange interactions lead to extremely high Curie temperature, TC, values. Furthermore, all three compounds are thermodynamically and magnetically stable. The combination of very high TC values with a zero total net magnetization makes them promising materials for spintronics applications.

  12. Comparative High-Temperature Corrosion Behavior of Ni-20Cr Coatings on T22 Boiler Steel Produced by HVOF, D-Gun, and Cold Spraying

    NASA Astrophysics Data System (ADS)

    Kaushal, Gagandeep; Bala, Niraj; Kaur, Narinder; Singh, Harpreet; Prakash, Satya

    2014-01-01

    To protect materials from surface degradations such as wear, corrosion, and thermal flux, a wide variety of materials can be deposited on the materials by several spraying processes. This paper examines and compares the microstructure and high-temperature corrosion of Ni-20Cr coatings deposited on T22 boiler steel by high velocity oxy-fuel (HVOF), detonation gun spray, and cold spraying techniques. The coatings' microstructural features were characterized by means of XRD and FE-SEM/EDS analyses. Based upon the results of mass gain, XRD, and FE-SEM/EDS analyses it may be concluded that the Ni-20Cr coating sprayed by all the three techniques was effective in reducing the corrosion rate of the steel. Among the three coatings, D-gun spray coating proved to be better than HVOF-spray and cold-spray coatings.

  13. Impact of CrSiTi and NiSi on the Thermodynamics, Microstructure, and Properties of AlCoCuFe-Based High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Rong; Wang, Zhao-Qin; Lin, Tie-Song; He, Peng; Sekulic, Dusan P.

    2016-05-01

    Aiming to solve the problem of spontaneous combustion on titanium via electrospark deposition (ESD), two AlCoCuFe-based high-entropy alloys (HEAs), AlCoCuFe- x ( x = CrSiTi, NiSi), were produced by vacuum arc melting as electrodes in ESD process. The thermodynamic analysis of AlCoCuFe-based HEAs were carried out using the concept of mixing enthalpy matrix and a powerful thermodynamic calculation toolbox (HEA-Thermo-Calcu). The microstructure and mechanical properties of the two alloys were investigated. The AlCoCuFeCrSiTi alloy contains a body-centered cubic (BCC) phase and a face-centered cubic (FCC) phase. The AlCoCuFeNiSi alloy is composed of two BCC phases and an FCC phase. Addition of CrSiTi and NiSi to AlCoCuFe-based alloys makes the enthalpy of mixing to be sizably more negative than for the other AlCoCuFe-based HEAs. Notwithstanding the fact that the thermodynamic parameters do not agree with Yang's proposition, the two alloys form simple solid solutions. The electronegativity difference (Δ χ) favors a formation of the solid solution when Δχ ≤ 14.2. The hardness of AlCoCuFe- x ( x = CrSiTi, NiSi) alloys reaches 935 HV and 688 HV, respectively. The yield strength, fracture strength, and ultimate strain of AlCoCuFeNiSi are larger, i.e., 29, 30, and 45%, respectively, than those of the AlCoCuFeCrSiTi alloy.

  14. Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy

    DOE PAGESBeta

    Laplanche, G.; Gadaud, P.; Horst, O.; Otto, F.; Eggeler, G.; George, E.

    2014-11-15

    The equiatomic CoCrFeMnNi alloy is now regarded as a model face-centered cubic single-phase high-entropy alloy. Consequently, determination of its intrinsic properties such as the temperature dependencies of elastic moduli and thermal expansion coefficient are important to improve understanding of this new class of material. Lastly, these temperature dependencies were measured over a large temperature range (200–1270 K) in this study.

  15. High-temperature oxidation behavior and mechanism of a new type of wrought Ni-Fe-Cr-Al superalloy up to 1300 C

    SciTech Connect

    Huang, J.; Fang, H.; Fu, X.; Huang, F.; Wan, H.; Zhang, Q.; Deng, S.; Zu, J.

    2000-04-01

    The oxidation behavior of a new type of wrought Ni-Fe-Cr-Al superalloys has been investigated systematically in the temperature range of 1,100 to 1,300 C. Results are compared with those of alloy 214, Inconel 600, and GH 3030. It is shown that the oxidation resistance of the new superalloys is excellent and much better than that of the comparison alloys. Scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and X-ray diffraction (XRD) experiments reveal that the excellent oxidation resistance of the new superalloy is due to the formation of a dense, stable and continuous Al{sub 2}O{sub 3} and Cr{sub 2}O{sub 3} oxide layer at high temperatures. Differential thermal analysis (DTA) shows that the formation of Cr{sub 2}O{sub 3} and Al{sub 2}O{sub 3} oxide layers on the new superalloy reaches a maximum at 1,060 and 1,356 C, respectively. The Cr{sub 2}O{sub 3} layer peels off easily, and the single dense Al{sub 2}O{sub 3} layer remains, giving good oxidation resistance at temperatures higher than 1,150 C. In addition, the new superalloy possesses high mechanical strength at high temperatures. On-site tests showed that the new superalloy has ideal oxidation resistance and can be used at high temperatures up to 1,300 C in various oxidizing and corrosion atmospheres, such as those containing SO{sub 2}, CO{sub 2} etc., for long periods.

  16. High-field magnetization of heusler alloys Fe2 XY ( X = Ti, V, Cr, Mn, Fe, Co, Ni; Y = Al, Si)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Korolev, A. V.; Belozerova, K. A.; Weber, H. W.

    2015-10-01

    The magnetization curves of ferromagnetic Heusler alloys Fe2 XY (where X = Ti, V, Cr, Mn, Fe, Co, Ni are transition 3 d elements and Y = Al, Si are the s and p elements of the third period of the Periodic Table) have been measured at T = 4.2 K in the field range H ≤ 70 kOe. It has been shown that the high-field ( H ≥ 20 kOe) magnetization is described within the Stoner model.

  17. High-energy emission from transients.

    PubMed

    Hinton, J A; Starling, R L C

    2013-06-13

    Cosmic explosions dissipate energy into their surroundings on a very wide range of time scales: producing shock waves and associated particle acceleration. The historical culprits for the acceleration of the bulk of Galactic cosmic rays are supernova remnants: explosions on approximately 10(4) year time scales. Increasingly, however, time-variable emission points to rapid and efficient particle acceleration in a range of different astrophysical systems. Gamma-ray bursts have the shortest time scales, with inferred bulk Lorentz factors of approximately 1000 and photons emitted beyond 100 GeV, but active galaxies, pulsar wind nebulae and colliding stellar winds are all now associated with time-variable emission at approximately teraelectron volt energies. Cosmic photons and neutrinos at these energies offer a powerful probe of the underlying physical mechanisms of cosmic explosions, and a tool for exploring fundamental physics with these systems. Here, we discuss the motivations for high-energy observations of transients, the current experimental situation, and the prospects for the next decade, with particular reference to the major next-generation high-energy observatory, the Cherenkov Telescope Array. PMID:23630380

  18. High Energy Polarized e+e- Beams

    NASA Astrophysics Data System (ADS)

    Shatunov, Yu.; Koop, I.; Otboev, A.; Mane, S.

    2016-02-01

    Recently, the wide discussion about Higgs-factory design again returns to problem of high energy polarized electrons and positrons. It’s good known the radiative beam polarization at LEP-collider. It was obtained after spin resonance suppression at Z0 pick, but didn’t appear at energies above 70 GeV due to an enhancement of unavoidable depolarization effects. We examine in this paper various ideas for radiative polarization at TLEP/FCC-ee and formulate some estimates for the polarization buildup time and the asymptotic polarization. Using wigglers, a useful degree of polarization (for energy calibration), with a time constant of about 1 h, may be possible up to the threshold of W pair production. At higher energies such as the threshold of Higgs production, attaining a useful level of polarization may be difficult in a planar ring. With Siberian Snakes, wigglers and some imagination, polarization of reasonable magnitude, with a reasonable time constant (of not more than about 1 h), may be achievable at very high energies.

  19. Pulse switching for high energy lasers

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J. (Inventor)

    1981-01-01

    A saturable inductor switch for compressing the width and sharpening the rise time of high voltage pulses from a relatively slow rise time, high voltage generator to an electric discharge gas laser (EDGL) also provides a capability for efficient energy transfer from a high impedance primary source to an intermediate low impedance laser discharge network. The switch is positioned with respect to a capacitive storage device, such as a coaxial cable, so that when a charge build-up in the storage device reaches a predetermined level, saturation of the switch inductor releases or switches energy stored in the capactive storage device to the EDGL. Cascaded saturable inductor switches for providing output pulses having rise times of less than ten nanoseconds and a technique for magnetically biasing the saturable inductor switch are disclosed.

  20. Long-term exposure to [Cr3O(O2CCH2CH3)6(H2O)3]+ in Wistar rats fed normal or high-fat diets does not alter glucose metabolism

    PubMed Central

    Herring, Betty J.; Logsdon, Amanda L.; Lockard, Jarrett E.; Miller, Brittany M.; Kim, Hanna; Calderon, Eric A.; Vincent, John B.; Bailey, Melissa M.

    2013-01-01

    The essentiality of chromium(III) has been the subject of much debate, particularly in healthy subjects. Chromium(III)-containing supplements are widely used for body mass loss, building of lean muscle mass, and improving glucose and lipid metabolism. [Cr3O(O2CCH2CH3)6(H2O)3]+, Cr3, is one of the most-studied chromium nutritional supplements. The current study evaluates the effects of long-term (15 months) supplementation with Cr3 on body mass and glucose metabolism in Wistar rats on traditional and cafeteria-style (high fat, high carbohydrate) diets. Male Wistar rats were randomly assigned to one of four treatment groups: 1) control diet (milled Harlan Teklad LM-485 rodent diet), 2) control diet + 1 mg Cr3/kg body mass/day, 3) a cafeteria-style (CAF) diet (high fat, high carbohydrate), or 4) CAF diet + 1 mg Cr3/kg/day. Cr3 supplementation had no effect on fasting blood glucose levels or blood glucose levels in response to glucose and insulin challenges. Rats consuming the CAF + Cr3 diet tended to have a significantly higher body mass than rats consuming the CAF diet, but necropsy results showed no difference in visceral fat or body wall thickness between groups. These data suggest that long-term Cr3 supplementation does not significantly affect body mass in rats consuming a normal diet or glucose levels or metabolism in rats consuming either diet. PMID:23271681

  1. Mineralogy, geochemistry and geotectonic significance of mantle peridotites with high-Cr chromitites in the Neyriz ophiolite from the outer Zagros ophiolite belts, Iran

    NASA Astrophysics Data System (ADS)

    Rajabzadeh, Mohammad Ali; Nazari Dehkordi, Teimoor; Caran, Şemsettin

    2013-02-01

    The Neyriz ophiolite containing chromitite pods from the outer Zagros ophiolite belt was studied in the Abadeh Tashk area. It appears as four detached massifs in an area with 125 km2 in south of Iran and is comprised predominantly of peridotites. Harzburgites and dunites are the most ultramafics in the massifs with rare mafic and gabbroic rocks. Mineralogical composition of chromian spinel in chromitite and host peridotite of the Neyriz ophiolite in comparison with those of the Nain ophiolite, to tracing their geographical variations between outer and inner sectors of the Zagros ophiolite belt, shows that there are remarkable and striking compositional variations between these two ophiolites. Chromian spinels of the Neyriz mantle peridotite and chromitite pods are characterized by higher contents of Cr# (56-79; average, 71) in harzburgites and dunites, and higher Cr# (73-82), Mg# (62-71) and lower Al (9.1-13.9 wt% Al2O3) and Ti (up to 0.08 wt% TiO2) in chromitite pods with respect to available data on samples from the Nain ophiolite (Cr# 40-61 of spinels in mantle harzburgites; Cr#: 59-73, Mg#: 60-70, Al2O3: 13.6-22.37 wt%, TiO2: 0.13-0.40 wt% of spinels in chromitites). Based on geochemical affinities, we contend that the Neyriz mantle peridotites were largely affected by percolating hydrous boninitic melts, to produce high-Cr chromitites, whereas chromitites of the Nain mantle peridotites carry geochemical imprints of boninitic melts with MORB-like affinity, suggesting their distinct geotectonic setting. The presence of the high concentrations of wolfram (W: 275-1276 ppm) in the Neyriz mantle peridotites in comparison with those of the Nain mantle peridotites (W < 3 ppm), which is the one of the most striking geochemical features of these rocks, provides an additional evidence for the significant role of recycling of continental material such as subducted pelagic sediments into the sources of subduction zone magmas. Combining with the lithological variations of

  2. Automatic Energy Schemes for High Performance Applications

    SciTech Connect

    Sundriyal, Vaibhav

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  3. Proposal for a High Energy Nuclear Database

    SciTech Connect

    Brown, David A.; Vogt, Ramona

    2005-03-31

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews.

  4. Proposal for a High Energy Nuclear Database

    SciTech Connect

    Brown, D A; Vogt, R

    2005-03-31

    The authors propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, they propose periodically performing evaluations of the data and summarizing the results in topical reviews.

  5. A high-throughput investigation of Fe-Cr-Al as a novel high-temperature coating for nuclear cladding materials.

    PubMed

    Bunn, Jonathan Kenneth; Fang, Randy L; Albing, Mark R; Mehta, Apurva; Kramer, Matthew J; Besser, Matthew F; Hattrick-Simpers, Jason R

    2015-07-10

    High-temperature alloy coatings that can resist oxidation are urgently needed as nuclear cladding materials to mitigate the danger of hydrogen explosions during meltdown. Here we apply a combination of computationally guided materials synthesis, high-throughput structural characterization and data analysis tools to investigate the feasibility of coatings from the Fe–Cr–Al alloy system. Composition-spread samples were synthesized to cover the region of the phase diagram previous bulk studies have identified as forming protective oxides. The metallurgical and oxide phase evolution were studied via in situ synchrotron glancing incidence x-ray diffraction at temperatures up to 690 K. A composition region with an Al concentration greater than 3.08 at%, and between 20.0 at% and 32.9 at% Cr showed the least overall oxide growth. Subsequently, a series of samples were deposited on stubs and their oxidation behavior at 1373 K was observed. The continued presence of a passivating oxide was confirmed in this region over a period of 6 h. PMID:26086841

  6. Use of a High-flux Atomic Oxygen Source for MBE growth of the di- and tri- oxides of Cr, Mo, and W

    NASA Astrophysics Data System (ADS)

    Ingle, Nicholas; Hammond, Robert; Beasley, Malcolm

    2000-03-01

    The MBE growth of several of the highly oxidized phases of the Group IIB elements (Cr, Mo, and W) are of great current interest. In particular, CrO_2, a theorized half-metallic ferromagnet, has yet to be grown in a form that allows high quality tunneling measurements to be performed. Also, thin films of WO3 for controlled Na doping studies are of interest to help understand the recently published results on possible superconductivity in this material(S. Reich and Y. Tsabba, EUROPEAN PHYSICAL JOURNAL B v. 9(1) pp. 1-4 MAY 1999 and Shengelaya A, Reich S, Tsabba Y, and Muller KA EUROPEAN PHYSICAL JOURNAL B , v. 12(1) pp. 13-15 NOV 1999). Using a new high-flux atomic oxygen source and detection scheme, RHEED, and in-situ core-level photoemission we present the atomic oxygen-temperature phase diagrams indicating the conditions under which the di- and tri- oxide phases of Cr, Mo, and W can be grown.

  7. Diffuse fluxes of cosmic high energy neutrinos

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Production spectra of high-energy neutrinos from galactic cosmic ray interactions with interstellar gas and extragalactic ultrahigh energy cosmic-ray interactions with microwave black-body photons are presented and discussed. These production processes involve the decay of charged pions and are thus related to the production of cosmic gamma-rays from the decay of neutral pions. Estimates of the neutrino fluxes from various diffuse cosmic sources are then made and the reasons fro significant differences with previous estimates are discussed. Predicted event rates for a DUMAND type detection system are significantly lower than early estimates indicated.

  8. High energy H- ion transport and stripping

    SciTech Connect

    Chou, W.; /Fermilab

    2005-05-01

    During the Proton Driver design study based on an 8 GeV superconducting RF H{sup -} linac, a major concern is the feasibility of transport and injection of high energy H{sup -} ions because the energy of H{sup -} beam would be an order of magnitude higher than the existing ones. This paper will focus on two key technical issues: (1) stripping losses during transport (including stripping by blackbody radiation, magnetic field and residual gases); (2) stripping efficiency of carbon foil during injection.

  9. HIGH ENERGY POLARIZATION OF BLAZARS: DETECTION PROSPECTS

    SciTech Connect

    Chakraborty, N.; Pavlidou, V.; Fields, B. D.

    2015-01-01

    Emission from blazar jets in the ultraviolet, optical, and infrared is polarized. If these low-energy photons were inverse-Compton scattered, the upscattered high-energy photons retain a fraction of the polarization. Current and future X-ray and gamma-ray polarimeters such as INTEGRAL-SPI, PoGOLITE, X-Calibur, Gamma-Ray Burst Polarimeter, GEMS-like missions, ASTRO-H, and POLARIX have the potential to discover polarized X-rays and gamma-rays from blazar jets for the first time. Detection of such polarization will open a qualitatively new window into high-energy blazar emission; actual measurements of polarization degree and angle will quantitatively test theories of jet emission mechanisms. We examine the detection prospects of blazars by these polarimetry missions using examples of 3C 279, PKS 1510-089, and 3C 454.3, bright sources with relatively high degrees of low-energy polarization. We conclude that while balloon polarimeters will be challenged to detect blazars within reasonable observational times (with X-Calibur offering the most promising prospects), space-based missions should detect the brightest blazars for polarization fractions down to a few percent. Typical flaring activity of blazars could boost the overall number of polarimetric detections by nearly a factor of five to six purely accounting for flux increase of the brightest of the comprehensive, all-sky, Fermi-LAT blazar distribution. The instantaneous increase in the number of detections is approximately a factor of two, assuming a duty cycle of 20% for every source. The detectability of particular blazars may be reduced if variations in the flux and polarization fraction are anticorrelated. Simultaneous use of variability and polarization trends could guide the selection of blazars for high-energy polarimetric observations.

  10. Application of High Temperature Corrosion-Resistant Materials and Coatings Under Severe Corrosive Environment in Waste-to-Energy Boilers

    NASA Astrophysics Data System (ADS)

    Kawahara, Yuuzou

    2007-06-01

    Corrosion-resistant materials (CRMs) and coatings are key technologies to increase power generation efficiency and reduce maintenance in waste-to-energy (WTE) plants. Corrosion environment became severe as steam temperatures have increased. The steam condition of more than 400 °C/3.9 MPa became possible in WTE boilers by using highly durable corrosion-resistant coatings, such as thermal spray of Al/80Ni20Cr alloy, HVOF-sprayed NiCrSiB alloy, Alloy 625 weld overlay for waterwall tubes and also superheater tubes. Also, the use of 310S type stainless steels and high Cr-high Mo-Ni base and high Si-Cr-Ni-Fe alloys have progressed because of a better understanding of corrosion mechanisms. Furthermore, high durability coatings using cermet and ceramic materials were applied to high temperature superheaters. This paper describes the major developments and the application of CRMs and coating technologies in the last 30 years in WTE plants, the corrosion mechanisms of alloys, the deterioration mechanisms of spray coating layers, and future subjects for the development of corrosion-resistant materials and coatings.

  11. Current Perspectives in High Energy Astrophysics

    NASA Technical Reports Server (NTRS)

    Ormes, Jonathan F. (Editor)

    1996-01-01

    High energy astrophysics is a space-age discipline that has taken a quantum leap forward in the 1990s. The observables are photons and particles that are unable to penetrate the atmosphere and can only be observed from space or very high altitude balloons. The lectures presented as chapters of this book are based on the results from the Compton Gamma-Ray Observatory (CGRO) and Advanced Satellite for Cosmology and Astrophysics (ASCA) missions to which the Laboratory for High Energy Astrophysics at NASA's Goddard Space Flight Center made significant hardware contributions. These missions study emissions from very hot plasmas, nuclear processes, and high energy particle interactions in space. Results to be discussed include gamma-ray beaming from active galactic nuclei (AGN), gamma-ray emission from pulsars, radioactive elements in the interstellar medium, X-ray emission from clusters of galaxies, and the progress being made to unravel the gamma-ray burst mystery. The recently launched X-ray Timing Explorer (XTE) and prospects for upcoming Astro-E and Advanced X-ray Astronomy Satellite (AXAF) missions are also discussed.

  12. High-Q cross-plate phononic crystal resonator for enhanced acoustic wave localization and energy harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Aichao; Li, Ping; Wen, Yumei; Yang, Chao; Wang, Decai; Zhang, Feng; Zhang, Jiajia

    2015-05-01

    A high-Q cross-plate phononic crystal resonator (Cr-PCR) coupled with an electromechanical Helmholtz resonator (EMHR) is proposed to improve acoustic wave localization and energy harvesting. Owing to the strongly directional wave-scattering effect of the cross-plate corners, strong confinement of acoustic waves emerges. Consequently, the proposed Cr-PCR structure exhibits ∼353.5 times higher Q value and ∼6.1 times greater maximum pressure amplification than the phononic crystal resonator (Cy-PCR) (consisting of cylindrical scatterers) of the same size. Furthermore, the harvester using the proposed Cr-PCR and the EMHR has ∼22 times greater maximum output-power volume density than the previous harvester using Cy-PCR and EMHR structures.

  13. Low to high temperature energy conversion system

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1977-01-01

    A method for converting heat energy from low temperature heat sources to higher temperature was developed. It consists of a decomposition chamber in which ammonia is decomposed into hydrogen and nitrogen by absorbing heat of decomposition from a low temperature energy source. A recombination reaction then takes place which increases the temperature of a fluid significantly. The system is of use for the efficient operation of compact or low capital investment turbine driven electrical generators, or in other applications, to enable chemical reactions that have a critical lower temperature to be used. The system also recovers heat energy from low temperature heat sources, such as solar collectors or geothermal sources, and converts it to high temperatures.

  14. Energy harvesting in high voltage measuring techniques

    NASA Astrophysics Data System (ADS)

    Żyłka, Pawel; Doliński, Marcin

    2016-02-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed.

  15. The Extreme and Variable High Energy Sky

    NASA Astrophysics Data System (ADS)

    A critically important region of the astrophysical spectrum is the hard X-ray/gamma-ray band, from the keV to the GeV energy range. In this band, an unusually rich range of astrophysical processes occur: this is the energy domain where fundamental changes from thermal to non-thermal sources/phenomena are expected, where the effects of absorption are drastically reduced and a clearer picture of the Universe is possible. This is also the energy range where most of the extreme astrophysical behavior is taking place, e.g. cosmic acceleration, explosions and accretion onto black holes and neutron stars; where variability is more the rule than the exception and where a number of instruments are actively working (e.g. INTEGRAL, SWIFT, Suzaku, MAXI, AGILE, Fermi and HESS). These telescopes are providing an unprecedented view of the high energy sky. Combined with data obtained at lower energies from a number of satellites and ground based telescopes we have for the first time the possibility of studying this extreme and variable sky over a very broad energy band and with unprecedented sensitivity.The workshop is aimed at bringing together scientists active across the field of high energy astrophysics in order to focus on the opportunities offered by the high energy window both from the observational and theoretical viewpoints, while a dedicated section will also be devoted to discuss the current status of planned and future missions. The meeting will consist of invited talks and contributions which are welcome as either posters or as short presentations. There will be time for open discussions throughout.We intend to cover the most extreme phenomena associated with acceleration, explosions and accretion onto galactic and extragalactic objects as well as to study variability in all types of objects and environments. In view of the extension of INTEGRAL operational lifetime, the workshop will provide a unique opportunity to prepare for extra observational possibility and to

  16. CR4056, a new analgesic I2 ligand, is highly effective against bortezomib-induced painful neuropathy in rats

    PubMed Central

    Meregalli, Cristina; Ceresa, Cecilia; Canta, Annalisa; Carozzi, Valentina Alda; Chiorazzi, Alessia; Sala, Barbara; Oggioni, Norberto; Lanza, Marco; Letari, Ornella; Ferrari, Flora; Avezza, Federica; Marmiroli, Paola; Caselli, GianFranco; Cavaletti, Guido

    2012-01-01

    Although bortezomib (BTZ) is the frontline treatment for multiple myeloma, its clinical use is limited by the occurrence of painful peripheral neuropathy, whose treatment is still an unmet clinical need. Previous studies have shown chronic BTZ administration (0.20 mg/kg intravenously three times a week for 8 weeks) to female Wistar rats induced a peripheral neuropathy similar to that observed in humans. In this animal model of BTZ-induced neurotoxicity, the present authors evaluated the efficacy of CR4056, a novel I2 ligand endowed with a remarkable efficacy in several animal pain models. CR4056 was administered in a wide range of doses (0.6–60 mg/kg by gavage every day for 2–3 weeks) in comparison with buprenorphine (Bupre) (28.8 μg/kg subcutaneously every day for 2 weeks) and gabapentin (Gaba) (100 mg/kg by gavage every day for 3 weeks). Chronic administration of BTZ reduced nerve conduction velocity and induced allodynia. CR4056, Bupre, or Gaba did not affect the impaired nerve conduction velocity. Conversely, CR4056 dose-dependently reversed BTZ-induced allodynia (minimum effective dose 0.6 mg/kg). The optimal dose found, 6 mg/kg, provided a constant pain relief throughout the treatment period and without rebound after suspension, being effective when coadministered with BTZ, starting before or after allodynia was established, or when administered alone after BTZ cessation. A certain degree of tolerance was seen after 7 days of administration, but only at the highest doses (20 and 60 mg/kg). Bupre was effective only acutely, since tolerance was evident from the fourth day onwards. Gaba showed a significant activity only at the fourth day of treatment. CR4056, over the range of concentrations of 3–30 μM, was unable to hinder BTZ cytotoxicity on several tumor cell lines, which could indicate that this substance does not directly interfere with BTZ antitumor activity. Therefore, CR4056 could represent a new treatment option for BTZ-induced neuropathic pain

  17. The evolution of high energy accelerators

    SciTech Connect

    Courant, E.D.

    1994-08-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.

  18. High specific energy, high capacity nickel-hydrogen cell design

    NASA Technical Reports Server (NTRS)

    Wheeler, James R.

    1993-01-01

    A 3.5 inch rabbit-ear-terminal nickel-hydrogen cell has been designed and tested to deliver high capacity at a C/1.5 discharge rate. Its specific energy yield of 60.6 wh/kg is believed to be the highest yet achieved in a slurry-process nickel-hydrogen cell, and its 10 C capacity of 113.9 AH the highest capacity yet made at a discharge rate this high in the 3.5 inch diameter size. The cell also demonstrated a pulse capability of 180 amps for 20 seconds. Specific cell parameters, performance, and future test plans are described.

  19. Nucleon structure and the high energy interactions

    NASA Astrophysics Data System (ADS)

    Selyugin, O. V.

    2015-06-01

    On the basis of the representation of the generalized structure of nucleons a new model of the hadron interaction at high energies is presented. A new t dependence of the generalized parton distributions is obtained from the comparative analysis of different sets of the parton distribution functions, based on the description of the entire set of experimental data for the electromagnetic form factors of the proton and neutron. Taking into account the different moments of the generalized parton distributions of the hadron, quantitative descriptions of all existing experimental data of the proton-proton and proton-antiproton elastic scatterings from √{s }=9.8 GeV to 8 TeV, including the Coulomb range and large momentum transfers up to -t =15 GeV2 , are obtained with a few free high-energy fitting parameters. The real part of the hadronic elastic scattering amplitude is determined only through the complex s that satisfies the dispersion relations. The negligible contributions of the hard Pomeron and the presence of the non-small contributions of the maximal Odderon are obtained. The non-dying form of the spin-flip amplitude is examined as well. The structures of the Born term and unitarized scattering amplitude are analyzed. It is shown that the black disk limit for the elastic scattering amplitude is not reached at LHC energies. Predictions for LHC energies are made.

  20. FAST TRACK COMMUNICATION: Re-Cr-Ni high-temperature resistant coatings on Cu substrates prepared by thermionic vacuum arc (TVA) method

    NASA Astrophysics Data System (ADS)

    Surdu Bob, C. C.; Lungu, C. P.; Mustata, I.; Frunza, L.

    2008-07-01

    Re-Cr-Ni composite metallic films were prepared using an original plasma deposition method developed at INFLPR, Bucharest, called thermionic vacuum arc (TVA). The method is based on the evaporation of a metal followed by ignition of a plasma in the vapours. These three-component films/alloy films were deposited using three simultaneous TVA plasma sources in the same vacuum chamber. Surface corrosion at temperatures up to 1000 °C was found not to take place in these Re-Cr-Ni alloy films as shown by thermogravimetric analysis. The current results demonstrate that the TVA method is a promising candidate tool for the synthesis of multiple compound films. Films of uniform and controlled composition can be simultaneously obtained using this method. Moreover, high melting point metals can be involved in these superalloy films, thus leading to applications in extremely hot conditions such as turbine blades and aircraft parts.

  1. Anomalous phonon behavior in the high-temperature shape-memory alloy Ti{sub 50}Pd{sub 50-x}Cr{sub x}

    SciTech Connect

    Shapiro, S. M.; Xu Guangyong; Winn, B. L.; Schlagel, D. L.; Lograsso, T.; Erwin, R.

    2007-08-01

    Ti{sub 50}Pd{sub 50-x}Cr{sub x} is a high-temperature shape-memory alloy with a martensitic transformation temperature strongly dependent on the Cr composition. Prior to the transformation, a premartensitic phase is present with an incommensurate modulated cubic lattice with wave vector of q{sub 0}=(0.22,0.22,0). The temperature dependence of the diffuse scattering in the cubic phase is measured as a function temperature for x=6.5, 8.5, and 10 at. %. The lattice dynamics has been studied and reveals anomalous temperature and q dependences of the [110]-TA{sub 2} transverse phonon branch. The phonon linewidth is broad over the entire Brillouin zone and increases with decreasing temperature, contrary to the behavior expected for anharmonicity. No anomaly is observed at q{sub 0}. The results are compared with first principles calculation of the phonon structure.

  2. Effect of aluminizing of Cr-containing ferritic alloys on the seal strength of a novel high-temperature solid oxide fuel cell sealing glass

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2008-12-01

    A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two metallic coupons of Cr-containing ferritic stainless steel for seal strength evaluation. In previous work, SrCrO4 was found to form along the glass/steel interface, which led to severe strength degradation. In the present study, aluminization of the steel surface was investigated as a remedy to minimize or prevent the strontium chromate formation. Three different processes for aluminization were evaluated with Crofer22APU stainless steel: pack cementation, vapor phase deposition, and aerosol spraying. It was found that pack cementation resulted in a rough surface with occasional cracks in the Al-diffused region. Vapor phase deposition yielded a smoother surface, but the resulting high Al content increased the coefficient of thermal expansion (CTE), resulting in failure of joined coupons. Aerosol spraying of an Al-containing salt resulted in formation of a thin aluminum oxide layer without any surface damage. The room temperature seal strength was evaluated in the as-fired state and in environmentally aged conditions. In contrast to earlier results with uncoated Crofer22APU, the aluminized samples showed no strength degradation even for samples aged in air. Interfacial and chemical compatibility was also investigated. The results showed aluminization to be a viable candidate approach to minimize undesirable chromate formation between alkaline earth silicate sealing glass and Cr-containing interconnect alloys for SOFC applications.

  3. The Mechanical and Corrosion Behaviors of As-cast and Re-melted AlCrCuFeMnNi Multi-Component High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Soare, Vasile; Mitrica, Dumitru; Constantin, Ionut; Popescu, Gabriela; Csaki, Ioana; Tarcolea, Mihai; Carcea, Ioan

    2015-04-01

    A multi-component AlCrCuFeMnNi high-entropy alloy, prepared by vacuum induction melting, was investigated for structural, mechanical, and corrosion characteristics, before and after the re-melting process. Optical microscopy analysis revealed a dendritic solidification behavior. The interdendritic area contains two main phases and occasionally small hard phases. The re-melting process produced a finer dendritic structure, with rounded dendrites and reduced interdendritic hard phases. The SEM-EDAX analysis showed that the dendrite region contains a Widmanstatten type of structure and are composed of Cr-Fe rich phases, whereas the interdendrite region contains Cu and Mn rich phases. XRD analysis revealed two disordered BCC type A2 structures with high Cr and Fe content and an FCC A12 type of structure for the Cu and Mn rich interdendritic phase. The lattice constants, determined by X-ray diffraction, are 2.87 and 2.91 Å for the A2 phases and 3.67 Å for A1 phase. The Vickers micro hardness increased with the homogeneity of the alloy, having a maximum value of 4370 MPa for the re-melted sample. Corrosion tests carried out in 3.5 wt pct sodium chloride aerated solution indicated that the corrosion resistance improved with the re-melting process, being 1.5 to 2 times better than that of 304 stainless steel.

  4. A novel pyrophosphate BaCr2(P2O7)2 as green pigment with high NIR solar reflectance and durable chemical stability

    NASA Astrophysics Data System (ADS)

    Tao, Zhengxu; Zhang, Wanqi; Huang, Yanlin; Wei, Donglei; Seo, Hyo Jin

    2014-08-01

    A novel pyrophosphate BaCr2(P2O7)2 was synthesized by the conventional solid-state reaction. The X-ray diffraction (XRD), FTIR spectrum, scanning electron microscopy (SEM) and ultraviolet-visible (UV-Vis) near infrared (NIR) reflectance spectra were applied to characterize the powders. The refractive indexes and nature of the VB and CB were determined. The structure, color properties and application were investigated. The results reveal that the anomalist bodies with smooth surfaces were obtained at 1200 °C with a mean size of 3 μm. A high reflectance peak at 535 nm was observed in the visible region, which is associated with the brilliant and deep green color of this pigment. With all the acids, alkali and deionized water treatment, the polycrystalline pigment BaCr2(P2O7)2 was found to be durable in chemical stability. The significantly high NIR solar reflectance of BaCr2(P2O7)2 is 90.0%, a higher cooling ability, so it has been selected to be tested as cool green pigment in ceramics. Moreover, this novel pyrophosphate pigment has great potential as cool pigment for surface coating applications.

  5. Effect of Aluminum Content on Microstructure and Mechanical Properties of Al x CoCrFeMo0.5Ni High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Hsu, Chin-You; Juan, Chien-Chang; Sheu, Tsing-Shien; Chen, Swe-Kai; Yeh, Jien-Wei

    2013-12-01

    High-entropy alloys Al x CoCrFeMo0.5Ni with varied Al contents ( x = 0, 0.5, 1.0, 1.5, and 2.0) have been designed based on the Al x CoCrCuFeNi system to improve mechanical properties for room and elevated temperatures. They have been investigated for microstructure and mechanical properties. As the aluminum content increases, the as-cast structure evolves from face-centered cubic dendrite + minor σ-phase interdendrite at x = 0 to B2 dendrite with body-centered cubic (bcc) precipitates + bcc interdendrite with B2 precipitates at x = 2.0. This confirms the strong bcc-forming tendency of Al. The room-temperature Vickers hardness starts from the lowest, HV 220, at x = 0, attains to the maximum, HV 720, at x = 1.0, and then decreases to HV 615 at x = 2.0. Compared with the base alloy system, the current alloy system has a superior combination of hardness and fracture toughness. In addition, Al x CoCrFeMo0.5Ni alloys except x = 0 display a higher hot hardness level than those of Ni-based superalloys, including In 718 and In 718 H, up to 1273 K and show great potential in high-temperature applications.

  6. Prospects of High Energy Laboratory Astrophysics

    SciTech Connect

    Ng, J.S.T.; Chen, P.; /SLAC

    2006-09-21

    Ultra high energy cosmic rays (UHECR) have been observed but their sources and production mechanisms are yet to be understood. We envision a laboratory astrophysics program that will contribute to the understanding of cosmic accelerators with efforts to: (1) test and calibrate UHECR observational techniques, and (2) elucidate the underlying physics of cosmic acceleration through laboratory experiments and computer simulations. Innovative experiments belonging to the first category have already been done at the SLAC FFTB. Results on air fluorescence yields from the FLASH experiment are reviewed. Proposed future accelerator facilities can provided unprecedented high-energy-densities in a regime relevant to cosmic acceleration studies and accessible in a terrestrial environment for the first time. We review recent simulation studies of nonlinear plasma dynamics that could give rise to cosmic acceleration, and discuss prospects for experimental investigation of the underlying mechanisms.

  7. High energy density redox flow device

    SciTech Connect

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  8. Power Supplies for High Energy Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  9. New Prospects in High Energy Astrophysics

    SciTech Connect

    Blandford, Roger; /KIPAC, Menlo Park

    2011-11-15

    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  10. High energy physics at UC Riverside

    SciTech Connect

    1997-07-01

    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given.

  11. High-energy observations of novae

    NASA Astrophysics Data System (ADS)

    Osborne, J.

    2014-07-01

    I will review the lessons learned from the last few years of high-energy observations of classical and recurrent novae. Some observations have reinforced previous ideas (such as ejecta dispersion revealing the hot white dwarf, and ejecta shocks), while others have revealed new behaviours still in the process of being understood. XMM-Newton, Chandra, Swift and Fermi have led the way, MAXI and Suzaku have also contributed. Novae in our own Galaxy can be studied in great detail, and M31 provides a wonderful nova-rich laboratory. The mass of the white dwarf appears to dominate many aspects of nova outbursts, the density of a companion star wind is another significant variable. Even so, there remain very high energy gamma-rays, short period QPOs, and an early soft X-ray phase of huge variability with no obvious correlates or very convincing models.

  12. ANTARES: a high energy neutrino undersea telescope.

    NASA Astrophysics Data System (ADS)

    Hernandez, J. J.

    1999-07-01

    Neutrinos can reveal a brand new Universe at high energies. The ANTARES collaboration, formed in 1996, works towards the building and deployment of a neutrino telescope. This detector could observe and study high energy astrophysical sources such as X-ray binary systems, young supernova remnants or Active Galactic Nuclei and help to discover or set exclusion limits on some of the elementary particles and objects that have been put forward as candidates to fill the Universe (WIMPS, neutralinos, topological defects, Q-balls, etc.). A neutrino telescope will certainly open a new observational window and can shed light on the most energetic phenomena of the Universe. A review of the progress made by the ANTARES collaboration to achieve this goal is presented.

  13. Gamma Rays at Very High Energies

    NASA Astrophysics Data System (ADS)

    Aharonian, Felix

    This chapter presents the elaborated lecture notes on Gamma Rays at Very High Energies given by Felix Aharonian at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". Any coherent description and interpretation of phenomena related to gammarays requires deep knowledge of many disciplines of physics like nuclear and particle physics, quantum and classical electrodynamics, special and general relativity, plasma physics, magnetohydrodynamics, etc. After giving an introduction to gamma-ray astronomy the author discusses the astrophysical potential of ground-based detectors, radiation mechanisms, supernova remnants and origin of the galactic cosmic rays, TeV emission of young supernova remnants, gamma-emission from the Galactic center, pulsars, pulsar winds, pulsar wind nebulae, and gamma-ray loud binaries.

  14. Extremely high energy neutrinos from cosmic strings

    SciTech Connect

    Berezinsky, Veniamin; Sabancilar, Eray; Vilenkin, Alexander

    2011-10-15

    Superstring theory and other supersymmetric theories predict the existence of relatively light, weakly interacting scalar particles, called moduli, with a universal form of coupling to matter. Such particles can be emitted from cusps of cosmic strings, where extremely large Lorentz factors are achieved momentarily. Highly boosted modulus bursts emanating from cusps subsequently decay into gluons; they generate parton cascades which in turn produce large numbers of pions and then neutrinos. Because of very large Lorentz factors, extremely high energy neutrinos, up to the Planck scale and above, are produced. For some model parameters, the predicted flux of neutrinos with energies > or approx. 10{sup 21} eV is observable by JEM-EUSO and by the future large radio detectors LOFAR and SKA.

  15. Influence of Cr on the nanoclusters formation and superferromagnetic behavior of Fe-Cr-Nb-B glassy alloys

    NASA Astrophysics Data System (ADS)

    Chiriac, H.; Whitmore, L.; Grigoras, M.; Ababei, G.; Stoian, G.; Lupu, N.

    2015-05-01

    High resolution imaging and electron diffraction confirm that in the as-quenched state the structure of Fe79.7-xCrxNb0.3B20 (x = 11-13 at. %) melt-spun ribbons is completely amorphous, independent of the Cr content. Energy-dispersive X-ray spectroscopy mapping emphasizes clearly the presence of Fe and Cr clusters varying from approximately 1 to 2-3 nm in size with the increase of Cr content from 11 to 13 at. %. The Fe and Cr atoms segregate the atomic scale to form nanometer sized clusters, influencing strongly the macroscopic magnetic behavior. The Curie temperature of the system, TCsystem, confirmed by the magnetic susceptibility versus temperature measurements, gives the strength of the magnetic interactions between clusters. The inter-cluster interactions are much stronger for lower contents of Cr, the microstructure is less uniform, and TCsystem increases from 290 K for 13 at. % Cr to 330 K for 11.5 at. % Cr. The whole system transforms to a ferromagnetic state through interactions between the clusters. Zero-field cooling and field cooling curves confirm the cluster behavior with a blocking temperature, Tb, of about 250 K. Above Tb, the ribbons behave as a superferromagnetic system, whilst below the blocking temperature a classical ferromagnetic behavior is observed.

  16. Structural relaxation and crystal field stabilization in Cr3+-containing oxides and silicates

    NASA Astrophysics Data System (ADS)

    Urusov, Vadim S.; Taran, Michail N.

    2012-01-01

    The effect of crystal structure relaxation in oxygen-based Cr3+-containing minerals on the crystal field stabilization energy (CFSE) is considered. It is shown that the dependence of {{CFSE}}_{{{{Cr}}^{ 3+ } }} , which is found from optical absorption spectra, on the average interatomic distances is described by the power function with a negative exponent {c {/ {{bar{R}n }}} {bar{R}n }} , where n approaches 5, as predicted theoretically, for pure Cr3+ compounds, but decreases to 1.0-1.5 for Cr3+-containing oxide and silicate solid solutions. The deviation of the experimental dependence for solid solutions from the theoretical curve is due to structure relaxation, which tends to bring the local structure of Cr3+ ions closer to the structure in the pure Cr compound, thus producing changes in interatomic distances between the nearest neighbors with respect to those in the average structure determined by X-ray diffraction. As a consequence, the mixing enthalpy of Cr3+-bearing solid solutions can be represented by the sum of contributions from lattice strain and CFSE. The latter contribution is most often negative in sign and, therefore, brings the Al-Cr solid solutions close to an ideal solid solution. It is supposed that the increased Cr content in minerals from deep-seated mantle xenoliths and mineral inclusions in diamonds results from the effect of {{CFSE}}_{{{{Cr}}^{ 3+ } }} enhanced by high pressure.

  17. HIGH ENERGY RATE EXTRUSION OF URANIUM

    DOEpatents

    Lewis, L.

    1963-07-23

    A method of extruding uranium at a high energy rate is described. Conditions during the extrusion are such that the temperature of the metal during extrusion reaches a point above the normal alpha to beta transition, but the metal nevertheless remains in the alpha phase in accordance with the Clausius- Clapeyron equation. Upon exiting from the die, the metal automatically enters the beta phase, after which the metal is permitted to cool. (AEC)

  18. HIGH ENERGY GASEOUS PLASMA CONTAINMENT DEVICE

    DOEpatents

    Josephson, V.; Hammel, J.E.

    1959-01-13

    An apparatus is presenied for producing neutrons as a result of collisions between ions in high temperature plasmas. The invention resides in the particular arrangement of ihe device whereby ihe magneiic and electric fields are made to cross at substantially right angles in several places along a torus shaped containment vessel. A plasma of deuterium gas is generated in the vessel under the electric fields and is "trapped" in any one of the "crossed field" regions to produce a release of energy.

  19. Enhanced adhesion by high energy bombardment

    NASA Technical Reports Server (NTRS)

    Griffith, Joseph E. (Inventor); Qiu, Yuanxun (Inventor); Tombrello, Thomas A. (Inventor)

    1984-01-01

    Films (12) of gold, copper, silicon nitride, or other materials are firmly bonded to insulator substrates (12) such as silica, a ferrite, or Teflon (polytetrafluorethylene) by irradiating the interface with high energy ions. Apparently, track forming processes in the electronic stopping region cause intermixing in a thin surface layer resulting in improved adhesion without excessive doping. Thick layers can be bonded by depositing or doping the interfacial surfaces with fissionable elements or alpha emitters.

  20. MASS SEPARATION OF HIGH ENERGY PARTICLES

    DOEpatents

    Marshall, L.

    1962-09-25

    An apparatus and method are described for separating charged, high energy particles of equal momentum forming a beam where the particles differ slightly in masses. Magnetic lenses are utilized to focus the beam and maintain that condition while electrostatic fields located between magnetic lenses are utilized to cause transverse separation of the particles into two beams separated by a sufficient amount to permit an aperture to block one beam. (AEC)