Science.gov

Sample records for high energy fuel

  1. High energy fuel compositions

    SciTech Connect

    Fisher, D.H.

    1983-07-19

    A high density liquid hydrocarbon fuel composition is disclosed, singularly suited for propelling turbojet limited volume missile systems designed for shipborne deployment. The contemplated fuels are basically composed of the saturated analogues of dimers of methyl cyclopentadiene and of dicyclopentadiene and optionally include the saturated analogues of the co-trimers of said dienes or the trimers of cyclopentadiene. The various dimers and trimers are combined in a relative relationship to provide optimal performing fuels for the indicated purpose.

  2. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  3. HIGH ENERGY LIQUID FUELS FROM PLANTS

    SciTech Connect

    Nemethy, E. K.; Otvos, J. W.; Calvin, M.

    1980-10-01

    The heptane extract of Euphorbia lathyris has a low oxygen content and a heat valve of 42 MJ/kg which is comparable to that of crude oil (44 MJ/kg). These qualities indicate a potential for use as fuel or chemical feedstock material. Therefore we have investigated the chemical composition of this fraction in some detail. Since the amoun of the methanol fraction is quite substantial we have also identified the major components of this fraction.

  4. High Energy Absorption Top Nozzle For A Nuclaer Fuel Assembly

    DOEpatents

    Sparrow, James A.; Aleshin, Yuriy; Slyeptsov, Aleksey

    2004-05-18

    A high energy absorption top nozzle for a nuclear fuel assembly that employs an elongated upper tubular housing and an elongated lower tubular housing slidable within the upper tubular housing. The upper and lower housings are biased away from each other by a plurality of longitudinally extending springs that are restrained by a longitudinally moveable piston whose upward travel is limited within the upper housing. The energy imparted to the nozzle by a control rod scram is mostly absorbed by the springs and the hydraulic affect of the piston within the nozzle.

  5. Upgrading of biorenewables to high energy density fuels

    SciTech Connect

    Gordon, John C; Batista, Enrique R; Chen, Weizhong; Currier, Robert P; Dirmyer, Matthew R; John, Kevin D; Kim, Jin K; Keith, Jason; Martin, Richard L; Pierpont, Aaron W; Silks Ill, L. A. "" Pete; Smythe, Mathan C; Sutton, Andrew D; Taw, Felicia L; Trovitch, Ryan J; Vasudevan, Kalyan V; Waidmann, Christopher R; Wu, Ruilian; Baker, R. Thomas; Schlaf, Marcel

    2010-12-07

    According to a recent report, lignocellulose is the most abundant renewable biological resource on earth, with an annual production of {approx} 200 x 10{sup 9} tons. Conversion of lignocellulosics derived from wood, agricultural wastes, and woody grasses into liquid fuels and value-added chemical feedstocks is an active area of research that has seen an explosion of effort due to the need to replace petroleum based sources. The carbohydrates D-glucose (C{sub 6}), L-arabinose (C{sub 5}), and D-xylose (C{sub 5}) are readily obtained from the hydrolysis of lignocellulose and constitute the most abundant renewable organic carbon source on the planet. Because they are naturally produced on such a large scale, these sugars have the greatest potential to displace petrochemical derived transportation fuel. Recent efforts in our laboratories aimed towards the production of high energy density transportation fuels from carbohydrates have been structured around the parameters of selective carbohydrate carbon chain extension chemistries, low reaction temperatures, and the desired use of water or neat substrate as the solvent. Some of our efforts in this regard will be presented.

  6. High-Energy-Density Fuel Blending Strategies and Drop Dispersion for Fuel Cost Reduction and Soot Propensity Control

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Harstad, K.

    1998-01-01

    The idea that low soot propensity of high-energy-density (HED) liquid sooting fuels and cost reduction of a multicomponent energetic fuel can be achieved by doping a less expensive, less sooting liquid fuel with HED is tested through numerical simulations.

  7. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell (RFC) energy storage system based on high temperature solid oxide fuel cell (SOFC) technology is described. The reactants are stored as gases in lightweight insulated pressure vessels. The product water is stored as a liquid in saturated equilibrium with the fuel gas. The system functions as a secondary battery and is applicable to darkside energy storage for solar photovoltaics.

  8. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.

    PubMed

    Kolpak, Alexie M; Grossman, Jeffrey C

    2011-08-10

    Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.

  9. High energy-density liquid rocket fuel performance

    NASA Technical Reports Server (NTRS)

    Rapp, Douglas C.

    1990-01-01

    A fuel performance database of liquid hydrocarbons and aluminum-hydrocarbon fuels was compiled using engine parametrics from the Space Transportation Engine Program as a baseline. Propellant performance parameters are introduced. General hydrocarbon fuel performance trends are discussed with respect to hydrogen-to-carbon ratio and heat of formation. Aluminum-hydrocarbon fuel performance is discussed with respect to aluminum metal loading. Hydrocarbon and aluminum-hydrocarbon fuel performance is presented with respect to fuel density, specific impulse, and propellant density specific impulse.

  10. High energy-density liquid rocket fuel performance

    NASA Technical Reports Server (NTRS)

    Rapp, Douglas C.

    1990-01-01

    A fuel performance database of liquid hydrocarbons and aluminum-hydrocarbon fuels was compiled using engine parametrics from the Space Transportation Engine Program as a baseline. Propellant performance parameters are introduced. General hydrocarbon fuel performance trends are discussed with respect to hydrogen-to-carbon ratio and heat of formation. Aluminum-hydrocarbon fuel performance is discussed with respect to aluminum metal loading. Hydrocarbon and aluminum-hydrocarbon fuel performance is presented with respect to fuel density, specific impulse and propellant density specific impulse.

  11. High energy-density liquid rocket fuel performance

    NASA Technical Reports Server (NTRS)

    Rapp, Douglas C.

    1990-01-01

    A fuel performance database of liquid hydrocarbons and aluminum-hydrocarbon fuels was compiled using engine parametrics from the Space Transportation Engine Program as a baseline. Propellant performance parameters are introduced. General hydrocarbon fuel performance trends are discussed with respect to hydrogen-to-carbon ratio and heat of formation. Aluminum-hydrocarbon fuel performance is discussed with respect to aluminum metal loading. Hydrocarbon and aluminum-hydrocarbon fuel performance is presented with respect to fuel density, specific impulse and propellant density specific impulse.

  12. Energy storage using high pressure electrolysis and methods for reconversion. [in automobile fuel synthesis

    NASA Technical Reports Server (NTRS)

    Hughes, W. L.

    1973-01-01

    Theoretical and experimental studies on high pressure electrolysis producing hydrogen and oxygen for energy storage and reconversion are reported. Moderate temperature, high pressure hydrogen/oxygen fuel cells with nickel electrodes are investigated for effects of pressure, temperature, and membrane porosity. Test results from an aphodid burner turbine generator combination obtained 40 percent kilowatt hours out of the fuel cell divided by kilowatt hours into the electrolyzer. It is concluded that high pressure hydrogenation of organic materials can be used to synthesize hydrozenes and methanes for making synthetic vehicular fuels.

  13. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  14. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  15. TEST CELLS SE-5 - SE-8 - SE-10 IN THE ENGINE RESEARCH BUILDING ERB AND 117 HIGH ENERGY FUELS LABORAT

    NASA Technical Reports Server (NTRS)

    1963-01-01

    TEST CELLS SE-5 - SE-8 - SE-10 IN THE ENGINE RESEARCH BUILDING ERB AND 117 HIGH ENERGY FUELS LABORATORY HEFL - TRANSDUCER INSTRUMENTATION CONSOLE SE-10 - TEMPERATURE INSTRUMENTATION CONSOLE SE-10 - MODULE FUEL CELL EXPERIMENT SE-8 -

  16. TEST CELLS SE-5 - SE-8 - SE-10 IN THE ENGINE RESEARCH BUILDING ERB AND 117 HIGH ENERGY FUELS LABORAT

    NASA Technical Reports Server (NTRS)

    1963-01-01

    TEST CELLS SE-5 - SE-8 - SE-10 IN THE ENGINE RESEARCH BUILDING ERB AND 117 HIGH ENERGY FUELS LABORATORY HEFL - TRANSDUCER INSTRUMENTATION CONSOLE SE-10 - TEMPERATURE INSTRUMENTATION CONSOLE SE-10 - MODULE FUEL CELL EXPERIMENT SE-8

  17. TEST CELLS SE-5 - SE-8 - SE-10 IN THE ENGINE RESEARCH BUILDING ERB AND 117 HIGH ENERGY FUELS LABORAT

    NASA Technical Reports Server (NTRS)

    1963-01-01

    TEST CELLS SE-5 - SE-8 - SE-10 IN THE ENGINE RESEARCH BUILDING ERB AND 117 HIGH ENERGY FUELS LABORATORY HEFL - TRANSDUCER INSTRUMENTATION CONSOLE SE-10 - TEMPERATURE INSTRUMENTATION CONSOLE SE-10 - MODUEL FUEL CELL EXPERIMENT SE-8

  18. High rate copper and energy recovery in microbial fuel cells

    PubMed Central

    Rodenas Motos, Pau; ter Heijne, Annemiek; van der Weijden, Renata; Saakes, Michel; Buisman, Cees J. N.; Sleutels, Tom H. J. A.

    2015-01-01

    Bioelectrochemical systems (BESs) are a novel, promising technology for the recovery of metals. The prerequisite for upscaling from laboratory to industrial size is that high current and high power densities can be produced. In this study we report the recovery of copper from a copper sulfate stream (2 g L-1 Cu2+) using a laboratory scale BES at high rate. To achieve this, we used a novel cell configuration to reduce the internal voltage losses of the system. At the anode, electroactive microorganisms produce electrons at the surface of an electrode, which generates a stable cell voltage of 485 mV when combined with a cathode where copper is reduced. In this system, a maximum current density of 23 A m-2 in combination with a power density of 5.5 W m-2 was produced. XRD analysis confirmed 99% purity in copper of copper deposited onto cathode surface. Analysis of voltage losses showed that at the highest current, most voltage losses occurred at the cathode, and membrane, while anode losses had the lowest contribution to the total voltage loss. These results encourage further development of BESs for bioelectrochemical metal recovery. PMID:26150802

  19. High rate copper and energy recovery in microbial fuel cells.

    PubMed

    Rodenas Motos, Pau; Ter Heijne, Annemiek; van der Weijden, Renata; Saakes, Michel; Buisman, Cees J N; Sleutels, Tom H J A

    2015-01-01

    Bioelectrochemical systems (BESs) are a novel, promising technology for the recovery of metals. The prerequisite for upscaling from laboratory to industrial size is that high current and high power densities can be produced. In this study we report the recovery of copper from a copper sulfate stream (2 g L(-1) Cu(2+)) using a laboratory scale BES at high rate. To achieve this, we used a novel cell configuration to reduce the internal voltage losses of the system. At the anode, electroactive microorganisms produce electrons at the surface of an electrode, which generates a stable cell voltage of 485 mV when combined with a cathode where copper is reduced. In this system, a maximum current density of 23 A m(-2) in combination with a power density of 5.5 W m(-2) was produced. XRD analysis confirmed 99% purity in copper of copper deposited onto cathode surface. Analysis of voltage losses showed that at the highest current, most voltage losses occurred at the cathode, and membrane, while anode losses had the lowest contribution to the total voltage loss. These results encourage further development of BESs for bioelectrochemical metal recovery.

  20. Development of high energy density fuels from mild gasification of coal

    SciTech Connect

    Not Available

    1990-10-01

    The overall objective of the program is the determination of the minimal processing requirements to produce High Energy Density Fuels (HEDF), meeting a minimal energy density of 130,000 Btu/gal (conventional jet fuels have energy densities in the vicinity of 115,000--120,000 Btu/gal) and having acceptable advanced fuel specifications in accordance with the three defined categories of HEDF. The program encompasses assessing current technology capability; selecting acceptable processing and refining schemes; and generating samples of advanced test fuels. A task breakdown structure was developed containing eight key tasks. This report summarizes the work that Amoco Oil Company (AOC), as key subcontractor, performed in the execution of Task 4, Proposed Upgrading Schemes for Advanced Fuel. The intent of the Task 4 study was to represent all the candidate processing options, that were either studied in the experimental efforts of Task 3 or were available from the prior art in the open literature, in a linear program (LP) model. The LP model would allow scaling of the bench-scale Task 3 results to commercial scale and would perform economic evaluations on any combination of the processes which might be used to make HEDF. Section 2.0 of this report summarizes the process and economic bases used. Sections 3.0 and 4.0 details the economics and processing sensitivities for HEDF production. 1 ref., 15 figs., 9 tabs.

  1. Comparison of field and laboratory forest fuel ignition energies and extrapolation to high-yield weapons

    Treesearch

    F.M. Sauer

    1956-01-01

    Comparisons are made between Ignition energies of forest fuels, including newspaper, determined during Operations BUSTER, SNAPPER and UPSHOT-KNOTHOLE and laboratory exposures made utilizing the Forest Service thermal source. Agreement is excellent for fuels exposed normal to the radiant flux when fuel moisture content is considered. Ignition of fuels exposed at...

  2. LNG Vehicle High-Pressure Fuel System and ''Cold Energy'' Utilization

    SciTech Connect

    powers,Charles A.; Derbidge, T. Craig

    2001-03-27

    A high-pressure fuel system for LNG vehicles with direct-injection natural gas engines has been developed and demonstrated on a heavy-duty truck. A new concept for utilizing the ''cold energy'' associated with LNG vehicles to generate mechanical power to drive auxiliary equipment (such as high-pressure fuel pumps) has also been developed and demonstrated in the laboratory. The high-pressure LNG fuel system development included the design and testing of a new type of cryogenic pump utilizes multiple chambers and other features to condense moderate quantities of sucked vapor and discharge supercritical LNG at 3,000 to 4,000 psi. The pump was demonstrated on a Class 8 truck with a Westport high-pressure direct-injection Cummins ISX engine. A concept that utilizes LNG's ''cold energy'' to drive a high-pressure fuel pump without engine attachments or power consumption was developed. Ethylene is boiled and superheated by the engine coolant, and it is cooled and condensed by rejecting h eat to the LNG. Power is extracted in a full-admission blowdown process, and part of this power is applied to pump the ethylene liquid to the boiler pressure. Tests demonstrated a net power output of 1.1. hp at 1.9 Lbm/min of LNG flow, which is adequate to isentropically pump the LNG to approximately 3,400 psi..

  3. High Energy Density Additives for Hybrid Fuel Rockets to Improve Performance and Enhance Safety

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.

    2014-01-01

    We propose a conceptual study of prototype strained hydrocarbon molecules as high energy density additives for hybrid rocket fuels to boost the performance of these rockets without compromising safety and reliability. Use of these additives could extend the range of applications for which hybrid rockets become an attractive alternative to conventional solid or liquid fuel rockets. The objectives of the study were to confirm and quantify the high enthalpy of these strained molecules and to assess improvement in rocket performance that would be expected if these additives were blended with conventional fuels. We confirmed the chemical properties (including enthalpy) of these additives. However, the predicted improvement in rocket performance was too small to make this a useful strategy for boosting hybrid rocket performance.

  4. Fuel and energy

    NASA Astrophysics Data System (ADS)

    Harker, J. H.; Backhurst, J. R.

    Sources of energy for human use are reviewed, with consideration given to energy forms, conversion, efficiencies of conversion systems, identification of the sources and resources of energy, and the capabilities for various systems to meet enumerated estimates of energy demands. Primary fuels such as solids (coal), liquids (oil), and natural gas are examined for resource availability and methods of use. Processes to alter the form of primary fuels to form secondary fuels for specific applications are outlined, and methods of testing fuels for suitability are elaborated. Energy conversion with and without combustion is discussed for solar, wind, geothermal, nuclear, and chemical energy systems, and calculations of energy conversion efficiencies and economics are given, including energy conservation and recovery in industry.

  5. Energy: Reimagine Fuel Cells

    SciTech Connect

    Lemmon, John P.

    2015-09-24

    New types of fuel cell on the horizon could eliminate the need for such trade-offs and ease the integration of renewables into the grid. Currently, fuel cells are used to generate only electricity and heat. They can be modified to store energy and produce liquid fuels such as methanol, thanks to breakthroughs in materials and designs. Developing fuel cells with a battery mode is one focus of the programme I direct at the US Advanced Research Projects Agency–Energy (ARPA-E). I lead 13 projects across academia, industry and national laboratories.

  6. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    SciTech Connect

    Cappiello, C.C.; Butterfield, K.B.; Sanchez, R.G.

    1997-10-01

    The Solution High-Energy Burst Assembly (SHEBA) was originally constructed during 1980 and was designed to be a clean free-field geometry, right-circular, cylindrically symmetric critical assembly employing U(5%)O{sub 2}F{sub 2} solution as fuel. A second version of SHEBA, employing the same fuel but equipped with a fuel pump and shielding pit, was commissioned in 1993. This report includes data and operating experience for the 1993 SHEBA only. Solution-fueled benchmark work focused on the development of experimental measurements of the characterization of SHEBA; a summary of the results are given. A description of the system and the experimental results are given in some detail in the report. Experiments were designed to: (1) study the behavior of nuclear excursions in a low-enrichment solution, (2) evaluate accidental criticality alarm detectors for fuel-processing facilities, (3) provide radiation spectra and dose measurements to benchmark radiation transport calculations on a low-enrichment solution system similar to centrifuge enrichment plants, and (4) provide radiation fields to calibrate personnel dosimetry. 15 refs., 37 figs., 10 tabs.

  7. High-Energy Delayed Gamma Spectroscopy for Spent Nuclear Fuel Assay

    SciTech Connect

    Campbell, Luke W.; Smith, Leon E.; Misner, Alex C.; Ressler, Jennifer J.

    2009-10-07

    High-accuracy, direct, nondestructive measurement of fissile and fissionable isotopes in spent fuel, particularly the Pu isotopes, is a well-documented, but still unmet challenge in international safeguards. As nuclear fuel cycles propagate around the globe, the need for improved materials accountancy techniques for irradiated light-water reactor fuel will only increase (e.g. for shipper-receiver verification at interim or permanent storage, or at the head end of a reprocessing plant). This modeling study investigates the use of delayed gamma rays from fission-product nuclei to directly measure the relative concentrations of U-235, Pu-239, and Pu-241 in spent fuel assemblies. The method is based on the unique distribution of fission-product nuclei produced from fission in each of these fissile isotopes. Fission is stimulated in the assembly with a beam of interrogating neutrons and the measured distributions of the short-lived fission products from the unknown sample are then fit with a linear combination of the known fission-product yield curves from pure U-235, Pu-239, and Pu-241 to determine the original proportions of these fissile isotopes. Modeling approaches for the intense gamma-ray background promulgated by the long-lived fission-product inventory, and the high-energy gamma-ray signatures emitted by short-lived fission products from induced fission are described. Results for the simulated assay of simplified individual fuel elements ranging from fresh to 60 GWd/MTU burnup are used to demonstrate the utility of the modeling methods and provide preliminary viability data for the technique. A limited set of benchmarking measurements, and additional work needed to more realistically assess the potential of the High-Energy Delayed Gamma Spectroscopy (HEDGS) technique are described.

  8. High-Energy Delayed Gamma Spectroscopy for Spent Nuclear Fuel Assay

    SciTech Connect

    Campbell, Luke W.; Smith, Leon E.; Misner, Alex C.

    2011-02-01

    High-accuracy, direct, nondestructive measurement of fissile and fissionable isotopes in spent fuel, particularly the Pu isotopes, is a well-documented, but still unmet challenge in international safeguards. As nuclear fuel cycles propagate around the globe, the need for improved materials accountancy techniques for irradiated light-water reactor fuel will increase. This modeling study investigates the use of delayed gamma rays from fission-product nuclei to directly measure the relative concentrations of U-235, Pu-239, and Pu-241 in spent fuel assemblies. The method is based on the unique distribution of fission-product nuclei produced from fission in each of these fissile isotopes. Fission is stimulated in the assembly with a pulse-capable source of interrogating neutrons. The measured distributions of the short-lived fission products from the unknown sample are then fit with a linear combination of the known fission-product yield curves from pure U-235, Pu-239, and Pu-241 to determine the original proportions of these fissile isotopes. Modeling approaches for the intense gamma-ray background promulgated by the long-lived fission-product inventory and for the high-energy gamma-ray signatures emitted by short-lived fission products from induced fission are described. Benchmarking measurements are presented and compare favorably with the results of these models. Results for the simulated assay of simplified individual fuel elements ranging from fresh to 60 GWd/MTU burnup demonstrate the utility of the modeling methods for viability studies, although additional work is needed to more realistically assess the potential of High-Energy Delayed Gamma Spectroscopy (HEDGS).

  9. Electrostatic Dispersion and Evaporation of Dense and Dilute Clusters of Drops of High-Energy Fuel For Soot Control

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Harstad, K.

    1997-01-01

    The high-energy-density (HED) fuels developed under U.S. Navy sponsorship as a replacement for conventional liquid fuels, in its missile propulsion systems have the drawback of high soot propensity: this makes misiles visible and thus strategically unacceptabel.

  10. Electrostatic Dispersion and Evaporation of Dense and Dilute Clusters of Drops of High-Energy Fuel For Soot Control

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Harstad, K.

    1997-01-01

    The high-energy-density (HED) fuels developed under U.S. Navy sponsorship as a replacement for conventional liquid fuels, in its missile propulsion systems have the drawback of high soot propensity: this makes misiles visible and thus strategically unacceptabel.

  11. Progress on High Energy Delayed Gamma Spectroscopy for Direct Assay of Pu in Spent Fuel

    SciTech Connect

    Campbell, Luke W.; Smith, Leon E.

    2010-08-11

    The direct, nondestructive measurement of fissile and fissionable isotopes in spent fuel is not yet possible. Current methods which infer plutonium content through proxy measurements and confirmatory burnup calculations have relatively large uncertainty and do not satisfy the desire for a measurement that is independent of operator declarations. We are currently exploring the High Energy Delayed Gamma Spectroscopy (HEDGS) technique for direct, independent Pu measurement in light-water reactor fuels. HEDGS exploits the unique distribution of fission-product nuclei from each of the fissile isotopes. Fission is stimulated in the sample with a source of interrogating neutrons, and delayed gamma rays from the decay of the short-lived fission-product nuclei are measured. The measured gamma spectrum from the unknown sample is then fit with a linear combination of gamma spectra from pure U-235, Pu-239, and Pu-241, as deduced from the known fission-product yield curves and decay properties of the fission-product nuclei, to determine the original proportions of these fissile isotopes. In previous work, we performed preliminary modeling studies of HEDGS on idealized single fuel pins of various burnups. Here, we report progress on extending our GEANT-based modeling tools to efficiently model full pressurized water reactor (PWR) fuel assemblies using variance reduction techniques specific to the background emissions and induced signal, as appropriate. Predicted performance for a nominal HEDGS instrument design, is reported for the assay of U-235, Pu-239 and Pu-241 in spent fuel assemblies ranging from fresh to 60 GWd/MTU in burnup.

  12. Hydrogen fuel - Universal energy

    NASA Astrophysics Data System (ADS)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  13. High Performance Fuel Cell and Electrolyzer Membrane Electrode Assemblies (MEAs) for Space Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.

    2012-01-01

    Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.

  14. High Performance Fuel Cell and Electrolyzer Membrane Electrode Assemblies (MEAs) for Space Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.

    2012-01-01

    Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.

  15. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  16. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  17. US Department of Energy Storage of Spent Fuel and High Level Waste

    SciTech Connect

    Sandra M Birk

    2010-10-01

    ABSTRACT This paper provides an overview of the Department of Energy's (DOE) spent nuclear fuel (SNF) and high level waste (HLW) storage management. Like commercial reactor fuel, DOE's SNF and HLW were destined for the Yucca Mountain repository. In March 2010, the DOE filed a motion with the Nuclear Regulatory Commission (NRC) to withdraw the license application for the repository at Yucca Mountain. A new repository is now decades away. The default for the commercial and DOE research reactor fuel and HLW is on-site storage for the foreseeable future. Though the motion to withdraw the license application and delay opening of a repository signals extended storage, DOE's immediate plans for management of its SNF and HLW remain the same as before Yucca Mountain was designated as the repository, though it has expanded its research and development efforts to ensure safe extended storage. This paper outlines some of the proposed research that DOE is conducting and will use to enhance its storage systems and facilities.

  18. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    SciTech Connect

    Agrawal, Rakesh

    2014-02-21

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass

  19. Synthesis of potential high-energy fuels. Final report, 1 June 1992-31 May 1993

    SciTech Connect

    Dailey, W.P.

    1993-07-13

    The synthesis of multigram quantities of 1,3,3-trimethylcyclopropene was accomplished using a modified literature procedure. The stability of this material towards different conditions was studied. Oxygen reacts with the neat material to quickly form a thick polymeric gum which eventually solidifies to a white solid. In the presence of Lewis acids such as untreated glass or metals such as stainless steel or copper, neat cyclopropene will form a 2+2 dimeric product in high yield. Hydrocarbon solutions (e.g. RP-1) of the cyclopropene are much more stable to these mild Lewis acid conditions but will also produce the dimeric product. A multigram sample of the cyclopropene was sent for testing in the microthruster at Phillips Laboratory. A convenient large scale synthesis of 3-chloro-2-chloromethylpropene was developed starting with pentaerythritol. This compound serves as the starting material for a two step synthesis of 1.1.1 propellane. High-energy fuels, Synthesis, Hydrocarbons.

  20. Fuel cell generator energy dissipator

    DOEpatents

    Veyo, Stephen Emery; Dederer, Jeffrey Todd; Gordon, John Thomas; Shockling, Larry Anthony

    2000-01-01

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

  1. Chemical mechanistic approaches for the suppression of soot formation in the combustion of high energy density fuels. Final technical report

    SciTech Connect

    Santoro, R.J.

    1996-09-01

    Significant advantages can be gained by the use of high energy density fuels in volume limited applications. However, excessive soot formation that accompanies the combustion of these fuels presently limits their application. Fuel additive approaches prove attractive as they require minimal modifications to already existing equipment. In the present study, a variety of flame configurations were used to study the additive effects on soot formation. Through tests conducted on laminar diffusion flames carbon disulfide (CS2) and methanol (CH3OH) were found to be the most effective soot suppressants. Chemical interaction by either additive was found to far surpass the physical influences. However, the exact nature of the chemical action could not be established with the current set of experiments. Additionally, both of these additives were found to reduce soot formation in at least one high energy density fuel - quadricyclane (C7H8). To further validate this approach, studies were conducted using droplet flames and high-pressure spray flames.

  2. Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.

    PubMed

    Cho, Eugene N; Zhitomirsky, David; Han, Grace G D; Liu, Yun; Grossman, Jeffrey C

    2017-03-15

    Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.

  3. Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels

    SciTech Connect

    2012-01-09

    HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

  4. Influence of high-energy impact on the physical and technical characteristics of coal fuels

    NASA Astrophysics Data System (ADS)

    Mal'tsev, L. I.; Belogurova, T. P.; Kravchenko, I. V.

    2017-08-01

    Currently, in the world's large-scale coal-fired power industry, the combustion of pulverized coal is the most widely spread technology of combusting the coals. In recent years, the micropulverization technology for preparation and combustion of the coal has been developed in this field. As applied to the small-scale power industry, the method of combusting the coal in the form of a coal-water slurry has been explored for years. Fine coal powders are produced and used in the pulverized-coal gasification. Therefore, the coal preparation methods that involve high-dispersion disintegration of coals attract the greatest interest. The article deals with the problems of high-energy impact on the coal during the preparation of pulverized-coal fuels and coal-water slurries, in particular, during the milling of the coal in ball drum mills and the subsequent regrinding in disintegrators or the cavitation treatment of the coal-water slurries. The investigations were conducted using samples of anthracite and lignite from Belovskii open-pit mine (Kuznetsk Basin). It is shown that both the disintegration and the cavitation treatment are efficient methods for controlling the fuel characteristics. Both methods allow increasing the degree of dispersion of the coal. The content of the small-sized particles reground by cavitation considerably exceeds the similar figure obtained using the disintegrator. The specific surface area of the coal is increased by both cavitation and disintegration with the cavitation treatment producing a considerably greater effect. Being subjected to the cavitation treatment, most coal particles assume the form of a split characterized by the thermodynamically nonequilibrium state. Under external action, in particular, of temperature, the morphological structure of such pulverized materials changes faster and, consequently, the combustion of the treated coal should occur more efficiently. The obtained results are explained from the physical point of view.

  5. Combustion efficiency and altitude operational limits of three liquid hydrocarbon fuels having high volumetric energy content in a J33 single combustor

    NASA Technical Reports Server (NTRS)

    Stricker, Edward G

    1950-01-01

    Combustion efficiency and altitude operational limits were determined in a J33 single combustor for AN-F-58 fuel and three liquid hydrocarbon fuels having high volumetric energy content (decalin, tetralin, and monomethylnaphthalene) at simulated altitude and combustor inlet-air conditions. At the conditions investigated, the combustion efficiency for the four fuels generally decreased with an increase in volumetric energy content. The altitude operational limits for decalin and tetralin fuels were higher than for AN-F-58 fuel; monomethylnaphthalene fuel gave the lowest altitude operational limit.

  6. Fuel cells for commercial energy

    NASA Astrophysics Data System (ADS)

    Huppmann, Gerhard; Weisse, Eckart; Bischoff, Manfred

    1990-04-01

    The development of various types of fuel cells is described. Advantges and drawbacks are considered for alkaline fuel cells, phosphoric acid fuel cells, and molten carbonate fuel cells. It is shown that their modular construction is particularly adapted to power heat systems. A comparison which is largely in favor of fuel cells, is made between coal, oil, natural gas power stations, and fuel cells. Safety risks in operation are also compared with those of conventional power stations. Fuel cells are particularly suited for dwellings, shopping centers, swimming pools, other sporting installations, and research facilities, whose high current and heat requirements can be covered by power heat coupling.

  7. High Octane Fuel: Terminal Backgrounder

    SciTech Connect

    Moriarty, Kristi

    2016-02-11

    The Bioenergy Technologies Office of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy sponsored a scoping study to assess the potential of ethanol-based high octane fuel (HOF) to reduce energy consumption and greenhouse gas emissions. When the HOF blend is made with 25%-40% ethanol by volume, this energy efficiency improvement is potentially sufficient to offset the reduced vehicle range often associated with the decreased volumetric energy density of ethanol. The purpose of this study is to assess the ability of the fuel supply chain to accommodate more ethanol at fuel terminals. Fuel terminals are midstream in the transportation fuel supply chain and serve to store and distribute fuels to end users. While there are no technical issues to storing more ethanol at fuel terminals, there are several factors that could impact the ability to deploy more ethanol. The most significant of these issues include the availability of land to add more infrastructure and accommodate more truck traffic for ethanol deliveries as well as a lengthy permitting process to erect more tanks.

  8. High-energy synchrotron study of in-pile-irradiated U–Mo fuels

    DOE PAGES

    Miao, Yinbin; Mo, Kun; Ye, Bei; ...

    2015-12-30

    We report synchrotron scattering analysis results on U-7wt%Mo fuel samples irradiated in the Advanced Test Reactor to three different burnup levels. Mature fission gas bubble superlattice was observed to form at intermediate burnup. The superlattice constant was determined to be 11.7 nm and 12.1 nm by wide-angle and small-angle scattering respectively. Grain sub-division takes place throughout the irradiation and causes the collapse of the superlattice at high burnup. The bubble superlattice expands the lattice constant and acts as strong sinks of radiation induced defects. The evolution of dislocation loops was therefore suppressed until the bubble superlattice collapses.

  9. Energy 101: Fuel Cell Technology

    SciTech Connect

    2014-03-11

    Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

  10. Energy 101: Fuel Cell Technology

    ScienceCinema

    None

    2016-07-12

    Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

  11. High energy density proton exchange membrane fuel cell with dry reactant gases

    SciTech Connect

    Srinivasan, S.; Gamburzev, S.; Velev, O.A.

    1996-12-31

    Proton exchange membrane fuel cells (PEMFC) require careful control of humidity levels in the cell stack to achieve a high and stable level of performance. External humidification of the reactant gases, as in the state-of-the-art PEMFCs, increases the complexity, the weight, and the volume of the fuel cell power plant. A method for the operation of PEMFCs without external humidification (i.e., self-humidified PEMFCs) was first developed and tested by Dhar at BCS Technology. A project is underway in our Center to develop a PEMFC cell stack, which can work without external humidification and attain a performance level of a current density of 0.7 A/cm{sup 2} at a cell potential of 0.7 V, with hydrogen/air as reactants at 1 atm pressure. In this paper, the results of our efforts to design and develop a PEMFC stack requiring no external humidification will be presented. This paper focuses on determining the effects of type of electrodes, the methods of their preparation, as well as that of the membrane and electrode assembly (MEA), platinum loading and types of electrocatalyst on the performance of the PEMFC will be illustrated.

  12. Development of high energy density fuels from mild gasification of coal. Final report

    SciTech Connect

    Not Available

    1991-12-01

    METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily ``skimmed`` from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

  13. Development of high energy density fuels from mild gasification of coal

    SciTech Connect

    Greene, Marvin

    1991-12-01

    METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily skimmed'' from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

  14. Production of a high energy, low sulfur fuel with the Carbondry{trademark} process

    SciTech Connect

    Simmons, J.; Simmons, J.

    1995-12-31

    Carbontee`s Carbondry{trademark} coal drying process has been proven to be a versatile, cost effective technology, ideally suited for drying sub-bituminous and lignite coal. The ability to process a wide variety of low rank coals is a significant achievement. A typical sub-bituminous coal product is a high Btu, low sulfur fuel that contains from 11,000--11,800 Btu/lb, 7--10% moisture, and less than 0.5% sulfur (< 0.8 lbs. SO{sub 2}/MMBtu). Then enriched fuel is a 2 x 0 inch product which can be shipped in open top railroad cars. The capability of Carbontee`s patented technology has been well demonstrated at Carbontee Corporation`s coal drying pilot plant in Bismarck, ND, which has processed sub-bituminous coal from six Wyoming Powder River Basin Mines as well as from Montana and Indonesia. The Carbontee plant has also demonstrated the reliability of the system having operated at 95% of schedule time. The Carbondry Process involves two stages, a hot oil first stage drying unit and a hot flue gas second stage drying unit. The process provides a barrier on the surface and changes the chemistry within the interior of the coal to protect against moisture reabsorption and spontaneous heating. Two Carbondry plants are currently under consideration, a 1,000,000 TPY plant in Wyoming and a 500,000 to 1,000,000 TPY plant in Indonesia.

  15. High-Energy Synchrotron Study of In-Pile-Irradiated U-Mo Fuels

    SciTech Connect

    Miao, Yinbin; Mo, Kun; Ye, Bei; Jamison, Laura; Mei, Zhi-Gang; Gan, J; Miller, B; Madden, James; Park, Jun-Sang; Almer, Jonathan; Bhattacharya, Sumit; Kim, Yeon Soo; Hofman, Gerard L.; Yacout, Abdellatif M.

    2016-03-15

    Here synchrotron scattering analysis results on U–7wt.%Mo fuel specimens irradiated in the Advanced Test Reactor to three burnup levels (3.0, 5.2, and 6.3 × 1021 fission/cm3) are reported. Mature fission gas bubble superlattice was observed to form at intermediate burnup. The superlattice constant was determined to be 11.7 and 12.0 nm by wide-angle and small-angle scattering respectively. Grain sub-division takes place throughout the irradiation and causes the collapse of the superlattice at high burnup. The bubble superlattice expands the U–Mo lattice and acts as strong sink for radiation-induced defects. The evolution of dislocation loops was, therefore, suppressed until the bubble superlattice collapsed.

  16. Analysis of stationary fuel cell dynamic ramping capabilities and ultra capacitor energy storage using high resolution demand data

    NASA Astrophysics Data System (ADS)

    Meacham, James R.; Jabbari, Faryar; Brouwer, Jacob; Mauzey, Josh L.; Samuelsen, G. Scott

    Current high temperature fuel cell (HTFC) systems used for stationary power applications (in the 200-300 kW size range) have very limited dynamic load following capability or are simply base load devices. Considering the economics of existing electric utility rate structures, there is little incentive to increase HTFC ramping capability beyond 1 kWs -1 (0.4% s -1). However, in order to ease concerns about grid instabilities from utility companies and increase market adoption, HTFC systems will have to increase their ramping abilities, and will likely have to incorporate electrical energy storage (EES). Because batteries have low power densities and limited lifetimes in highly cyclic applications, ultra capacitors may be the EES medium of choice. The current analyses show that, because ultra capacitors have a very low energy storage density, their integration with HTFC systems may not be feasible unless the fuel cell has a ramp rate approaching 10 kWs -1 (4% s -1) when using a worst-case design analysis. This requirement for fast dynamic load response characteristics can be reduced to 1 kWs -1 by utilizing high resolution demand data to properly size ultra capacitor systems and through demand management techniques that reduce load volatility.

  17. A quantum chemistry study on thermochemical properties of high energy-density endothermic hydrocarbon fuel JP-10.

    PubMed

    Qin, Xiao-Mei; Xie, Hu-Jun; Yue, Lei; Lu, Xiao-Xing; Fang, Wen-Jun

    2014-04-01

    The density functional theory (DFT) calculations at the M06-2X/6-31++G(d,p) level have been performed to explore the molecular structure, electronic structure, C-H bond dissociation enthalpy, and reaction enthalpies for five isodesmic reactions of a high energy-density endothermic hydrocarbon fuel JP-10. On the basis of the calculations, it is found that the carbonium ion C-6 isomer formed from the catalytic cracking at the C₆ site of JP-10 has the lowest energy, and the R-5 radical generated from the thermal cracking at the C₅ site of JP-10 is the most stable isomer. Furthermore, a series of hypothetical and isodesmic work reactions containing similar bond environments are used to calculate the reaction enthalpies for target compounds. For the same isodesmic reaction, the reaction enthalpy of each carbon site radical has also been calculated. The present work is of fundamental significance and strategic importance to provide some valuable insights into the component design and energy utilization of advanced endothermic fuels.

  18. HIGH ENERGY DELAYED GAMMA SPECTROSCOPY FOR PLUTONIUM ASSAY OF SPENT REACTOR FUEL

    SciTech Connect

    Campbell, Luke W.; Smith, L. E.; Misner, Alex C.

    2011-07-18

    Nuclear safeguards requires accountancy of plutonium present in spent reactor fuels. Current non-destructive methods do not directly measure plutonium content but instead rely on indirect measurements that require operator declarations of the fuel history. Delayed gamma spectroscopy is one method being investigated which can overcome these limitations. Delayed gamma rays from fission depend on the isotopic fission yield of the fissile isotope, and thus can be used to fingerprint the isotopes undergoing fission. However, difficulties arise because of the intense background due to long lived fission radionuclides already present in the fuel. We report on progress on simulated measurements of the delayed gamma spectrum in the presence of this background, using neutrons from a D-T source thermalized in an interrogation chamber slipped over a fuel assembly. By focusing on delayed gammas in the 3 to 4 MeV range, the passive spectrum becomes negligible, while allowing the preferential attenuation of the passive background to acceptable levels.

  19. Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Nimje, Vanita Roshan; Chen, Chien-Yen; Chen, Chien-Cheng; Jean, Jiin-Shuh; Reddy, A. Satyanarayana; Fan, Cheng-Wei; Pan, Kuan-Yeu; Liu, Hung-Tsan; Chen, Jia-Lia

    In this study, the Gram-positive aerobic bacterium Bacillus subtilis has for the first time been employed in a microbial fuel cell (MFC). A glucose-fed MFC with M9 minimal medium in the anode chamber was operated for 3 months, establishing a highly active MFC using filtered M9 medium as the catholyte, carbon cloth as the anode and a 20% platinum electrode as the cathode. The bioelectrical responses of the MFC were characterized by the circuit potential, measured at an average value of 370 mV. A potential of 115 mV appeared to characterize the maximum power produced from a polarization test was 1.05 mW cm -2 at a resistance of 0.56 kΩ. In situ cyclic voltammograms with and without biofilm anodes were performed in the growth phase and showed that redox metabolites were produced, which varied with physiological status. Voltammograms obtained from a comparative study of broth, supernatant and resuspended bacterial cells revealed that the electrochemical activity in the anode chamber arose from the redox compounds in the supernatant. The results show that the microorganism B. subtilis is electrochemically active and that the electron transfer mechanism is mainly due to the excreted redox compounds (mediator) in the broth solution and not to the membrane-bound proteins.

  20. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    SciTech Connect

    Cappiello, C.C.; Butterfield, K.B.; Sanchez, R.G.; Bounds, J.A.; Kimpland, R.H.; Damjanovich, R.P.; Jaegers, P.J.

    1997-08-01

    Experiments were performed to measure a variety of parameters for SHEBA: behavior of the facility during transient and steady-state operation; characteristics of the SHEBA fuel; delayed-critical solution height vs solution temperature; initial reactor period and reactivity vs solution height; calibration of power level vs reactor power instrumentation readings; flux profile in SHEBA; radiation levels and neutron spectra outside the assembly for code verification and criticality alarm and dosimetry purposes; and effect on reactivity of voids in the fuel.

  1. Microfluidic fuel cells for energy generation.

    PubMed

    Safdar, M; Jänis, J; Sánchez, S

    2016-08-07

    Sustainable energy generation is of recent interest due to a growing energy demand across the globe and increasing environmental issues caused by conventional non-renewable means of power generation. In the context of microsystems, portable electronics and lab-on-a-chip based (bio)chemical sensors would essentially require fully integrated, reliable means of power generation. Microfluidic-based fuel cells can offer unique advantages compared to conventional fuel cells such as high surface area-to-volume ratio, ease of integration, cost effectiveness and portability. Here, we summarize recent developments which utilize the potential of microfluidic devices for energy generation.

  2. Theoretical Combustion Performance of Several High-Energy Fuels for Ramjet Engines

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K; Breitwieser, Roland; Gammon, Benson E

    1958-01-01

    An analytical evaluation of the air and fuel specific-impulse characteristics of magnesium, magnesium octene-1 slurries, aluminum, aluminum octene-1 slurries, boron, boron octene-1 slurries, carbon, hydrogen, alpha-methylnaphthalene, diborane, pentaborane, and octene-1 is presented. While chemical equilibrium was assumed in the combustion process, the expansion was assumed to occur at fixed composition.

  3. Development of Army High-Energy Fuel for Diesel/Turbine Powered Surface Equipment

    DTIC Science & Technology

    1979-10-01

    in Figure 12, is composed of a group of phosphatides, any of which are found in all plant and animal tissues. Its general composition is...of the JP-10 showed a consistent reduction in smoke emissions relative to the diesel fuel. This reduction was apparent throughout the speed and load...smoke emissions . * The relationship between combustion chamber turbulence and carbon utilization noted in the engine stiudteg should be better

  4. Irradiation behavior study of U-Mo/Al dispersion fuel with high energy Xe

    NASA Astrophysics Data System (ADS)

    Ye, B.; Bhattacharya, S.; Mo, K.; Yun, D.; Mohamed, W.; Pellin, M.; Fortner, J.; Kim, Y. S.; Hofman, G. L.; Yacout, A. M.; Wiencek, T.; Van den Berghe, S.; Leenaers, A.

    2015-09-01

    Irradiation responses of U-Mo/Al dispersion fuel have been investigated by irradiation with 84 MeV Xe26+ ions. Dispersion fuels fabricated with uncoated and ZrN-coated fuel particles were irradiated to various doses at ∼350 °C. The highest dose achieved was 2.9 × 1017 ions/cm2 (∼1200 displacement per atom (dpa)). Following the irradiation, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) experiments were carried out to characterize the microstructures of the irradiated samples. The post irradiation examinations (PIE) revealed that: (1) crystalline interdiffusion product (UMo)Alx developed at locations where no coating or compromised coating layer is present; (2) intact ZrN coating layers effectively blocked the interdiffusion between U-Mo and Al; (3) SEM-observable Xe bubbles distributed along grain/cell boundaries in U-Mo; and (4) gas bubble interlinkage was observed at a dose of 2.9 × 1017 ions/cm2.

  5. Fusion: an energy source for synthetic fuels

    SciTech Connect

    Fillo, J A; Powell, J; Steinberg, M

    1980-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  6. Bio-energy Alliance High-Tonnage Bio-energy Crop Production and Conversion into Conventional Fuels

    SciTech Connect

    Capareda, Sergio; El-Halwagi, Mahmoud; Hall, Kenneth R.; Holtzapple, Mark; Searcy, Royce; Thompson, Wayne H.; Baltensperger, David; Myatt, Robert; Blumenthal, Jurg

    2012-11-30

    Maintaining a predictable and sustainable supply of feedstock for bioenergy conversion is a major goal to facilitate the efficient transition to cellulosic biofuels. Our work provides insight into the complex interactions among agronomic, edaphic, and climatic factors that affect the sustainability of bioenergy crop yields. Our results provide science-based agronomic response measures that document how to better manage bioenergy sorghum production from planting to harvest. We show that harvest aids provide no significant benefit as a means to decrease harvest moisture or improve bioenergy yields. Our efforts to identify optimal seeding rates under varied edaphic and climatological conditions reinforce previous findings that sorghum is a resilient plant that can efficiently adapt to changing population pressures by decreasing or increasing the numbers of additional shoots or tillers – where optimal seeding rates for high biomass photoperiod sensitive sorghum is 60,000 to 70,000 seeds per acre and 100,000 to 120,000 seeds per acre for sweet varieties. Our varietal adaptability trials revealed that high biomass photoperiod sensitive energy sorghum consistently outperforms conventional photoperiod insensitive sweet sorghum and high biomass forage sorghum as the preferred bioenergy sorghum type, with combined theoretical yields of both cellulosic and fermentable water-soluble sugars producing an average yield of 1,035 gallons of EtOH per acre. Our nitrogen trials reveal that sweet sorghums produce ample amounts of water-soluble sugars with minimal increases in nitrogen inputs, and that excess nitrogen can affect minor increases in biomass yields and cellulosic sugars but decrease bioenergy quality by decreasing water-soluble sugar concentrations and increasing ash content, specifically when plant tissue nitrogen concentrations exceed 0.6 %, dry weight basis. Finally, through our growth and re-growth trials, we show that single-cut high biomass sorghum bioenergy yields

  7. Characterization of Cr poisoning in a solid oxide fuel cell cathode using a high-energy x-ray microbeam.

    SciTech Connect

    Liu, D. J.; Almer, J.; Cruse, T.

    2010-01-01

    A key feature of planar solid oxide fuel cells (SOFCs) is the feasibility of using metallic interconnects made of high temperature ferritic stainless steels, which reduce system cost while providing excellent electric conductivity. Such interconnects, however, contain high levels of chromium, which has been found to be associated with SOFC cathode performance degradation at SOFC operating temperatures; a phenomenon known as Cr poisoning. Here, we demonstrate an accurate measurement of the phase and concentration distributions of Cr species in a degraded SOFC, as well as related properties including deviatoric strain, integrated porosity, and lattice parameter variation, using high energy microbeam X-ray diffraction and radiography. We unambiguously identify (MnCr){sub 3}O{sub 4} and Cr{sub 2}O{sub 3} as the two main contaminant phases and find that their concentrations correlate strongly with the cathode layer composition. Cr{sub 2}O{sub 3} deposition within the active cathode region reduces porosity and produces compressive residual strains, which hinders the reactant gas percolation and can cause structural breakdown of the SOFC cathode. The information obtained through this study can be used to better understand the Cr-poisoning mechanism and improve SOFC design.

  8. International Atomic Energy Agency support of research reactor highly enriched uranium to low enriched uranium fuel conversion projects

    SciTech Connect

    Bradley, E.; Adelfang, P.; Goldman, I.N.

    2008-07-15

    The IAEA has been involved for more than twenty years in supporting international nuclear non- proliferation efforts associated with reducing the amount of highly enriched uranium (HEU) in international commerce. IAEA projects and activities have directly supported the Reduced Enrichment for Research and Test Reactors (RERTR) programme, as well as directly assisted efforts to convert research reactors from HEU to LEU fuel. HEU to LEU fuel conversion projects differ significantly depending on several factors including the design of the reactor and fuel, technical needs of the member state, local nuclear infrastructure, and available resources. To support such diverse endeavours, the IAEA tailors each project to address the relevant constraints. This paper presents the different approaches taken by the IAEA to address the diverse challenges involved in research reactor HEU to LEU fuel conversion projects. Examples of conversion related projects in different Member States are fully detailed. (author)

  9. The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    SciTech Connect

    Keating, Edward; Gough, Charles

    2015-07-07

    This report summarizes activities conducted in support of the project “The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability” under COOPERATIVE AGREEMENT NUMBER DE-EE0005654, as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated May 2012.

  10. Energy: Analysing fossil-fuel displacement

    NASA Astrophysics Data System (ADS)

    Jorgenson, Andrew K.

    2012-06-01

    It is commonly assumed that fossil fuels can be replaced by alternative forms of energy. Now research challenges this assumption, and highlights the role of non-technological solutions to reduce fossil-fuel consumption.

  11. Inertial Fusion Energy with Advanced Fuels

    NASA Astrophysics Data System (ADS)

    Perkins, L. John; Tabak, Max; Latkowski, Jeffrey; Logan, B. Grant

    2000-10-01

    Conventional inertial fusion energy targets utilize equimolar fractions of deuterium and tritium fuel. We are exploring targets based on mainly D-D or D-3He fuels. These require areal densities of 10g/cm2 for adequate gain, thus fast ignition techniques are required to keep (compression) driver energies in the 10 MJ range. Adequate performance may be achievable by depositing the fast ignition energy in a small, pre-compressed D-T ignitor region; overall tritium inventory in the capsule may be as low as 0.5% (S.Atzeni, M. Ciampi, Nucl Fusion, 37 1665 (1997)). With appropriate design, these targets can be self-sustaining in tritium through the D(d,p)T branch of the D-D reaction, thus obviating the need for external tritium breeding. A power plant utilizing such targets may exhibit improved safety, environmental and economic characteristics compared with a conventional D-T reactors. In particular, because of the high rho-R of such targets and the D-D or D-3He main fuels, most of the fusion energy escapes in the form of charged particles and not in fast neutrons. This suggests the potential of employing advanced, non-thermal energy conversion systems and the application to directed thrust for advanced space propulsion

  12. Fusion - An energy source for synthetic fuels

    NASA Astrophysics Data System (ADS)

    Fillo, J. A.; Powell, J.; Steinberg, M.

    1980-05-01

    An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  13. Alkaline regenerative fuel cell systems for energy storage

    SciTech Connect

    Schubert, F.H.; Reid, M.A.; Martin, R.E.

    1981-01-01

    This paper presents the results of a preliminary design study of a Regenerative Fuel Cell Energy Storage system for application to future low-earth orbit space missions. This high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. 11 refs.

  14. Tower Power: Producing Fuels from Solar Energy

    ERIC Educational Resources Information Center

    Antal, M. J., Jr.

    1976-01-01

    This article examines the use of power tower technologies for the production of synthetic fuels. This process overcomes the limitations of other processes by using a solar furnace to drive endothermic fuel producing reactions and the resulting fuels serve as a medium for storing solar energy. (BT)

  15. FUEL CELL ENERGY RECOVERY FROM LANDFILL GAS

    EPA Science Inventory

    International Fuel Cells Corporation is conducting a US Environmental Protection Agency (EPA) sponsored program to demonstrate energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The US EPA is interested in fuel cells for this application b...

  16. FUEL CELL ENERGY RECOVERY FROM LANDFILL GAS

    EPA Science Inventory

    International Fuel Cells Corporation is conducting a US Environmental Protection Agency (EPA) sponsored program to demonstrate energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The US EPA is interested in fuel cells for this application b...

  17. Tower Power: Producing Fuels from Solar Energy

    ERIC Educational Resources Information Center

    Antal, M. J., Jr.

    1976-01-01

    This article examines the use of power tower technologies for the production of synthetic fuels. This process overcomes the limitations of other processes by using a solar furnace to drive endothermic fuel producing reactions and the resulting fuels serve as a medium for storing solar energy. (BT)

  18. A comparison of high-speed flywheels, batteries, and ultracapacitors on the bases of cost and fuel economy as the energy storage system in a fuel cell based hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Doucette, Reed T.; McCulloch, Malcolm D.

    Fuel cells aboard hybrid electric vehicles (HEVs) are often hybridized with an energy storage system (ESS). Batteries and ultracapacitors are the most common technologies used in ESSs aboard HEVs. High-speed flywheels are an emerging technology with traits that have the potential to make them competitive with more established battery and ultracapacitor technologies in certain vehicular applications. This study compares high-speed flywheels, ultracapacitors, and batteries functioning as the ESS in a fuel cell based HEV on the bases of cost and fuel economy. In this study, computer models were built to simulate the powertrain of a fuel cell based HEV where high-speed flywheels, batteries, and ultracapacitors of a range of sizes were used as the ESS. A simulated vehicle with a powertrain using each of these technologies was run over two different drive cycles in order to see how the different ESSs performed under different driving patterns. The results showed that when cost and fuel economy were both considered, high-speed flywheels were competitive with batteries and ultracapacitors.

  19. Small Business Innovation Research Award Success Story: FuelCell Energy Inc.

    SciTech Connect

    2011-08-31

    This success story describes FuelCell Energy Inc., a small business that manufactures stationary fuel cells. In collaboration with Sustainable Innovations LLC, and with support from a Small Business Innovation Research (SBIR) Award from the U.S. Department of Energy's Fuel Cell Technologies Program, FuelCell Energy Inc. has developed a highly efficient solid state electrochemical hydrogen compressor.

  20. Energy accounting for eleven vegetable oil fuels

    SciTech Connect

    Goering, C.E.; Daugherty, M.J.

    1982-09-01

    Energy inputs and outputs were comparatively analyzed for 11 vegetable oil fuels. Three-year average prices and production quantities were also compared. All nonirrigated oil crops had favorable energy ratios. Soybean, peanut and sunflower oils were the most promising as domestic fuel sources. Rapeseed oil would also be promising if significant domestic production can be established.

  1. 21st Century Renewable Fuels, Energy, and Materials

    SciTech Connect

    Berry, K. Joel; Das, Susanta K.

    2012-11-29

    The objectives of this project were multi-fold: (i) conduct fundamental studies to develop a new class of high temperature PEM fuel cell material capable of conducting protons at elevated temperature (180°C), (ii) develop and fabricate a 5k We novel catalytic flat plate steam reforming process for extracting hydrogen from multi-fuels and integrate with high-temperature PEM fuel cell systems, (iii) research and develop improved oxygen permeable membranes for high power density lithium air battery with simple control systems and reduced cost, (iv) research on high energy yield agriculture bio-crop (Miscanthus) suitable for reformate fuel/alternative fuel with minimum impact on human food chain and develop a cost analysis and production model, and (v) develop math and science alternative energy educator program to include bio-energy and power.

  2. High performance, high density hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Frankenfeld, J. W.; Hastings, T. W.; Lieberman, M.; Taylor, W. F.

    1978-01-01

    The fuels were selected from 77 original candidates on the basis of estimated merit index and cost effectiveness. The ten candidates consisted of 3 pure compounds, 4 chemical plant streams and 3 refinery streams. Critical physical and chemical properties of the candidate fuels were measured including heat of combustion, density, and viscosity as a function of temperature, freezing points, vapor pressure, boiling point, thermal stability. The best all around candidate was found to be a chemical plant olefin stream rich in dicyclopentadiene. This material has a high merit index and is available at low cost. Possible problem areas were identified as low temperature flow properties and thermal stability. An economic analysis was carried out to determine the production costs of top candidates. The chemical plant and refinery streams were all less than 44 cent/kg while the pure compounds were greater than 44 cent/kg. A literature survey was conducted on the state of the art of advanced hydrocarbon fuel technology as applied to high energy propellents. Several areas for additional research were identified.

  3. Do alternative energy sources displace fossil fuels?

    NASA Astrophysics Data System (ADS)

    York, Richard

    2012-06-01

    A fundamental, generally implicit, assumption of the Intergovernmental Panel on Climate Change reports and many energy analysts is that each unit of energy supplied by non-fossil-fuel sources takes the place of a unit of energy supplied by fossil-fuel sources. However, owing to the complexity of economic systems and human behaviour, it is often the case that changes aimed at reducing one type of resource consumption, either through improvements in efficiency of use or by developing substitutes, do not lead to the intended outcome when net effects are considered. Here, I show that the average pattern across most nations of the world over the past fifty years is one where each unit of total national energy use from non-fossil-fuel sources displaced less than one-quarter of a unit of fossil-fuel energy use and, focusing specifically on electricity, each unit of electricity generated by non-fossil-fuel sources displaced less than one-tenth of a unit of fossil-fuel-generated electricity. These results challenge conventional thinking in that they indicate that suppressing the use of fossil fuel will require changes other than simply technical ones such as expanding non-fossil-fuel energy production.

  4. Global Energy Issues and Alternate Fueling

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  5. Lessons from an Energy Curriculum for the Senior High Grades. Unit VI - Fossil Fuels and Energy Alternatives (Solar, Coal). Energy Education Curriculum Project.

    ERIC Educational Resources Information Center

    Indiana State Dept. of Public Instruction, Indianapolis. Div. of Curriculum.

    Energy education units (consisting of a general teacher's guide and nine units containing a wide variety of energy lessons, resources, learning aids, and bibliography) were developed for the Indiana Energy Education Program from existing energy education materials. The units were designed to serve as an entire curriculum, resource document,…

  6. Energy Fuels Nuclear, Inc. Arizona Strip Operations

    SciTech Connect

    Pool, T.C.

    1993-05-01

    Founded in 1975 by uranium pioneer, Robert W. Adams, Energy Fuels Nuclear, Inc. (EFNI) emerged as the largest US uranium mining company by the mid-1980s. Confronting the challenges of declining uranium market prices and the development of high-grade ore bodies in Australia and Canada, EFNI aggressively pursued exploration and development of breccia-pipe ore bodies in Northwestern Arizona. As a result, EFNI's production for the Arizona Strip of 18.9 million pounds U[sub 3]O[sub 8] over the period 1980 through 1991, maintained the company's status as a leading US uranium producer.

  7. High loading uranium fuel plate

    DOEpatents

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  8. Converting solar energy into liquid fuels

    SciTech Connect

    Reeser, L.G. ); Acra, A.P.L. ); Lee, T. )

    1995-01-01

    As projections indicate, our energy needs will exceed our estimates of finite reserves of fossil fuels. It becomes imperative that we develop programs to produce fuel from renewable resources. Brazil's program demonstrates how today's technologies can be used to integrate farming systems, reduce dependence on imported oil and improve the environment. This paper presents the highlights of this program. 6 tabs.

  9. Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles

    SciTech Connect

    Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

    1998-12-31

    This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

  10. High energy X-ray diffraction measurement of residual stresses in a monolithic aluminum clad uranium–10 wt% molybdenum fuel plate assembly

    SciTech Connect

    D. W. Brown; M. A. Okuniewski; J. D. Almer; L. Balogh; B. Clausen; J. S. Okasinski; B. H. Rabin

    2013-10-01

    Residual stresses are expected in monolithic, aluminum clad uranium 10 wt% molybdenum (U–10Mo) nuclear fuel plates because of the large mismatch in thermal expansion between the two bonded materials. The full residual stress tensor of the U–10Mo foil in a fuel plate assembly was mapped with 0.1 mm resolution using high-energy (86 keV) X-ray diffraction. The in-plane stresses in the U–10Mo foil are strongly compressive, roughly -250 MPa in the longitudinal direction and -140 MPa in the transverse direction near the center of the fuel foil. The normal component of the stress is weakly compressive near the center of the foil and tensile near the corner. The disparity in the residual stress between the two in-plane directions far from the edges and the tensile normal stress suggest that plastic deformation in the aluminum cladding during fabrication by hot isostatic pressing also contributes to the residual stress field. A tensile in-plane residual stress is presumed to be present in the aluminum cladding to balance the large in-plane compressive stresses in the U–10Mo fuel foil, but cannot be directly measured with the current technique due to large grain size.

  11. Alkaline fuel cells for prime power and energy storage

    NASA Astrophysics Data System (ADS)

    Stedman, J. K.

    Alkaline fuel cell technology and its application to future space missions requiring high power and energy storage are discussed. Energy densities exceeding 100 watthours per pound and power densities approaching 0.5 pounds per kilowatt are calculated for advanced systems. Materials research to allow reversible operation of cells for energy storage and higher temperature operation for peaking power is warranted.

  12. State Clean Energy Practices: Renewable Fuel Standards

    SciTech Connect

    Mosey, G.; Kreycik, C.

    2008-07-01

    The State Clean Energy Policies Analysis (SCEPA) project is supported by the Weatherization and Intergovernmental Program within the Department of Energy's Office of Energy Efficiency and Renewable Energy. This project seeks to quantify the impacts of existing state policies, and to identify crucial policy attributes and their potential applicability to other states. The goal is to assist states in determining which clean energy policies or policy portfolios will best accomplish their environmental, economic, and security goals. For example, renewable fuel standards (RFS) policies are a mechanism for developing a market for renewable fuels in the transportation sector. This flexible market-based policy, when properly executed, can correct for market failures and promote growth of the renewable fuels industry better than a more command-oriented approach. The policy attempts to correct market failures such as embedded fossil fuel infrastructure and culture, risk associated with developing renewable fuels, consumer information gaps, and lack of quantification of the non-economic costs and benefits of both renewable and fossil-based fuels. This report focuses on renewable fuel standards policies, which are being analyzed as part of this project.

  13. The Quantum Energy Saver design and Fuel-saving application

    NASA Astrophysics Data System (ADS)

    Fang, Xiong; Mao, Wenwu; Shen, Xisheng; LI, Jianyu; Huang, Wenchao; Chen, Zhixin

    2016-11-01

    In order to reduce the high fuel consumption of the shipping industry, a new type of quantum energy saver device is studied and developed. According to a period of time to use the energy saving device and the users’ feedback, by recording the fuel consumption of diesel engine usage, and comparing the changes in fuel consumption before and after the installation of quantum economizer in the same ship, it can reflected the ability of the fuel consumption. After analyzing the data, it shows that the installation of quantum economizer can significantly reduce the fuel consumption of a diesel engine ship. The analysis and application of this paper can play an important role in saving energy and reducing consumption, and provide a reference for other related research.

  14. Towards operating direct methanol fuel cells with highly concentrated fuel

    NASA Astrophysics Data System (ADS)

    Zhao, T. S.; Yang, W. W.; Chen, R.; Wu, Q. X.

    A significant advantage of direct methanol fuel cells (DMFCs) is the high specific energy of the liquid fuel, making it particularly suitable for portable and mobile applications. Nevertheless, conventional DMFCs have to be operated with excessively diluted methanol solutions to limit methanol crossover and the detrimental consequences. Operation with diluted methanol solutions significantly reduces the specific energy of the power pack and thereby prevents it from competing with advanced batteries. In view of this fact, there exists a need to improve conventional DMFC system designs, including membrane electrode assemblies and the subsystems for supplying/removing reactants/products, so that both the cell performance and the specific energy can be simultaneously maximized. This article provides a comprehensive review of past efforts on the optimization of DMFC systems that operate with concentrated methanol. Based on the discussion of the key issues associated with transport of the reactants/products, the strategies to manage the supply/removal of the reactants/products in DMFC operating with highly concentrated methanol are identified. With these strategies, the possible approaches to achieving the goal of concentrated fuel operation are then proposed. Past efforts in the management of the reactants/products for implementing each of the approaches are also summarized and reviewed.

  15. Outlook for alternative energy sources. [aviation fuels

    NASA Technical Reports Server (NTRS)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  16. Solar energy for electricity and fuels.

    PubMed

    Inganäs, Olle; Sundström, Villy

    2016-01-01

    Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of light to produce a fuel. We discuss how this can be achieved in a direct process mimicking the photosynthetic processes, using synthetic organic, inorganic, or hybrid materials for light collection and catalysis. We also briefly discuss challenges and needs for large-scale implementation of direct solar fuel technologies.

  17. Biomass conversion processes for energy and fuels

    NASA Astrophysics Data System (ADS)

    Sofer, S. S.; Zaborsky, O. R.

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  18. Process Developed for Fabricating Engineered Pore Structures for High- Fuel-Utilization Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Sofie, Stephen W.; Cable, Thomas L.; Salamone, Sam M.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have tremendous commercial potential because of their high efficiency, high energy density, and flexible fuel capability (ability to use fossil fuels). The drive for high-power-utilizing, ultrathin electrolytes (less than 10 microns), has placed an increased demand on the anode to provide structural support, yet allow sufficient fuel entry for sustained power generation. Concentration polarization, a condition where the fuel demand exceeds the supply, is evident in all commercial-based anode-supported cells, and it presents a significant roadblock to SOFC commercialization.

  19. High-capacity carbon-coated titanium dioxide core-shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Tang, Jiahuan; Yuan, Yong; Liu, Ting; Zhou, Shungui

    2015-01-01

    Three-dimensional (3D) electrodes have been intensively investigated as alternatives to conventional plate electrodes in the development of high-performance microbial fuel cells (MFCs). However, the energy output of the MFCs with the 3D anodes is still limited for practical applications. In this study, a 3D anode modified with a nano-structured capacitive layer is prepared to improve the performance of an microbial fuel cell (MFC). The capacitive layer composes of titanium dioxide (TiO2) and egg white protein (EWP)-derived carbon assembled core-shell nanoparticles, which are integrated into loofah sponge carbon (LSC) to obtain a high-capacitive 3D electrode. The as-prepared 3D anode produces a power density of 2.59 ± 0.12 W m-2, which is 63% and 201% higher than that of the original LSC and graphite anodes, respectively. The increased energy output is contributed to the enhanced electrochemical capacitance of the 3D anodes as well as the synergetic effects between TiO2 and EWP-derived carbon due to their unique properties, such as relatively high surface area, good biocompatibility, and favorable surface functionalization for interfacial microbial electron transfer. The results obtained in this study will benefit the optimized design of new 3D materials to achieve enhanced performance in MFCs.

  20. Energy Storage Fuel Cell Vehicle Analysis

    SciTech Connect

    Pesaran, A; Markel, T; Zolot, M; Sprik, S; Tataria, H; Duong, T

    2005-08-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

  1. Energy modeling for aviation fuel efficiency

    SciTech Connect

    Collins, B.P.

    1981-01-01

    The fuel consumption and path profile description of an aircraft can be related by an energy balanced concept. Application of this concept has produced an equation set that can be utilized to analyze the energy efficiency of propeller and turbojet aircraft during various operating conditions. Analytical methods, results and aircraft specific constants are presented and discussed along with proposed extensions. 10 refs.

  2. Fuel-cycle energy and emissions impacts of tripled fuel-economy vehicles

    SciTech Connect

    Mintz, M. M.; Vyas, A. D.; Wang, M. Q.

    1997-12-18

    This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Market Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.

  3. Controlling Heat Release from a Close-Packed Bisazobenzene-Reduced-Graphene-Oxide Assembly Film for High-Energy Solid-State Photothermal Fuels.

    PubMed

    Zhao, Xiaoze; Feng, Yiyu; Qin, Chengqun; Yang, Weixiang; Si, Qianyu; Feng, Wei

    2017-04-10

    A closed-cycle system for light-harvesting, storage, and heat release is important for utilizing and managing renewable energy. However, combining a high-energy, stable photochromic material with a controllable trigger for solid-state heat release remains a great challenge for developing photothermal fuels (PTFs). This paper presents a uniform PTF film fabricated by the assembly of close-packed bisazobenzene (bisAzo) grafted onto reduced graphene oxide (rGO). The assembled rGO-bisAzo template exhibited a high energy density of 131 Wh kg(-1) and a long half-life of 37 days owing to inter- or intramolecular H-bonding and steric hindrance. The rGO-bisAzo PTF film released and accumulated heat to realize a maximum temperature difference (DT) of 15 °C and a DT of over 10 °C for 30 min when the temperature difference of the environment was greater than100 °C. Controlling heat release in the solid-state assembly paves the way to develop highly efficient and high-energy PTFs for a multitude of applications.

  4. Wood energy fuel cycle optimization in beech and spruce forests

    NASA Astrophysics Data System (ADS)

    Meyer, Nickolas K.; Mina, Marco

    2012-03-01

    A novel synergistic approach to reducing emissions from residential wood combustion (RWC) is presented. Wood energy fuel cycle optimization (FCO) aims to provide cleaner burning fuels through optimization of forestry and renewable energy management practices. In this work, beech and spruce forests of average and high quality were modelled and analysed to determine the volume of fuel wood and its associated bark fraction produced during typical forestry cycles. Two separate fuel wood bark production regimes were observed for beech trees, while only one production regime was observed for spruce. The single tree and stand models were combined with existing thinning parameters to replicate existing management practices. Utilizing estimates of initial seedling numbers and existing thinning patterns a dynamic model was formed that responded to changes in thinning practices. By varying the thinning parameters, this model enabled optimization of the forestry practices for the reduction of bark impurities in the fuel wood supply chain. Beech forestry cycles responded well to fuel cycle optimization with volume reductions of bark from fuel wood of between ˜10% and ˜20% for average and high quality forest stands. Spruce, on the other hand, was fairly insensitive to FCO with bark reductions of 0-5%. The responsiveness of beech to FCO further supports its status as the preferred RWC fuel in Switzerland. FCO could easily be extended beyond Switzerland and applied across continental Europe and North America.

  5. Alkaline regenerative fuel cell systems for energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Reid, M. A.; Martin, R. E.

    1981-01-01

    A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.

  6. Alkaline regenerative fuel cell systems for energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Reid, M. A.; Martin, R. E.

    1981-01-01

    A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.

  7. Energy at high altitude.

    PubMed

    Hill, N E; Stacey, M J; Woods, D R

    2011-03-01

    For the military doctor, an understanding of the metabolic effects of high altitude (HA) exposure is highly relevant. This review examines the acute metabolic challenge and subsequent changes in nutritional homeostasis that occur when troops deploy rapidly to HA. Key factors that impact on metabolism include the hypoxic-hypobaric environment, physical exercise and diet. Expected metabolic changes include augmentation of basal metabolic rate (BMR), decreased availability of oxygen in peripheral metabolic tissues, reduction in VO2 max, increased glucose dependency and lactate accumulation during exercise. The metabolic demands of exercise at HA are crucial. Equivalent activity requires greater effort and more energy than it does at sea level. Soldiers working at HA show high energy expenditure and this may exceed energy intake significantly. Energy intake at HA is affected adversely by reduced availability, reduced appetite and changes in endocrine parameters. Energy imbalance and loss of body water result in weight loss, which is extremely common at HA. Loss of fat predominates over loss of fat-free mass. This state resembles starvation and the preferential primary fuel source shifts from carbohydrate towards fat, reducing performance efficiency. However, these adverse effects can be mitigated by increasing energy intake in association with a high carbohydrate ration. Commanders must ensure that individuals are motivated, educated, strongly encouraged and empowered to meet their energy needs in order to maximise mission-effectiveness.

  8. High Energy Explosive Yield Enhancer Using Microencapsulation.

    DTIC Science & Technology

    The invention consists of a class of high energy explosive yield enhancers created through the use of microencapsulation techniques. The... microcapsules consist of combinations of highly reactive oxidizers that are encapsulated in either passivated inorganic fuels or inert materials and inorganic...fuels. Depending on the application, the availability of the various oxidizers and fuels within the microcapsules can be customized to increase the

  9. Thermal energy recycling fuel cell arrangement

    DOEpatents

    Hanrahan, Paul R.

    2017-04-11

    An example fuel cell arrangement includes a fuel cell stack configured to receive a supply fluid and to provide an exhaust fluid that has more thermal energy than the supply fluid. The arrangement also includes an ejector and a heat exchanger. The ejector is configured to direct at least some of the exhaust fluid into the supply fluid. The heat exchanger is configured to increase thermal energy in the supply fluid using at least some of the exhaust fluid that was not directed into the supply fluid.

  10. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    SciTech Connect

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-12-31

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''.

  11. High-burnup fuel and the impact on fuel management

    SciTech Connect

    Cacciapouti, R.J.; Weader, R.J.

    1996-12-31

    Competition in the electric utility industry has forced utilities to reduce cost. For a nuclear utility, this means a reduction of both the nuclear fuel cost and the operating and maintenance cost. To this extent, utilities are pursuing longer cycles. To reduce the nuclear fuel cost, utilities are trying to reduce batch size while increasing cycle length. Yankee Atomic Electric Company has performed a number of fuel cycle studies to optimize both batch size and cycle length; however, certain burnup-related constraints are encountered. As a result of these circumstances, longer fuel cycles make it increasingly difficult to simultaneously meet the burnup-related fuel design constraints and the technical specification limits. Longer cycles require fuel assemblies to operate for longer times at relatively high power. If utilities continue to pursue longer cycles to help reduce nuclear fuel cost, changes may need to be made to existing fuel burnup limits.

  12. ECAS Phase I fuel cell results. [Energy Conservation Alternatives Study

    NASA Technical Reports Server (NTRS)

    Warshay, M.

    1978-01-01

    This paper summarizes and discusses the fuel cell system results of Phase I of the Energy Conversion Alternatives Study (ECAS). Ten advanced electric powerplant systems for central-station baseload generation using coal were studied by NASA in ECAS. Three types of low-temperature fuel cells (solid polymer electrolyte, SPE, aqueous alkaline, and phosphoric acid) and two types of high-temperature fuel cells (molten carbonate, MC, and zirconia solid electrolyte, SE) were studied. The results indicate that (1) overall efficiency increases with fuel cell temperature, and (2) scale-up in powerplant size can produce a significant reduction in cost of electricity (COE) only when it is accompanied by utilization of waste fuel cell heat through a steam bottoming cycle and/or integration with a gasifier. For low-temperature fuel cell systems, the use of hydrogen results in the highest efficiency and lowest COE. In spite of higher efficiencies, because of higher fuel cell replacement costs integrated SE systems have higher projected COEs than do integrated MC systems. Present data indicate that life can be projected to over 30,000 hr for MC fuel cells, but data are not yet sufficient for similarly projecting SE fuel cell life expectancy.

  13. Energy Return on Investment - Fuel Recycle

    SciTech Connect

    Halsey, W; Simon, A J; Fratoni, M; Smith, C; Schwab, P; Murray, P

    2012-06-06

    This report provides a methodology and requisite data to assess the potential Energy Return On Investment (EROI) for nuclear fuel cycle alternatives, and applies that methodology to a limited set of used fuel recycle scenarios. This paper is based on a study by Lawrence Livermore National Laboratory and a parallel evaluation by AREVA Federal Services LLC, both of which were sponsored by the DOE Fuel Cycle Technologies (FCT) Program. The focus of the LLNL effort was to develop a methodology that can be used by the FCT program for such analysis that is consistent with the broader energy modeling community, and the focus of the AREVA effort was to bring industrial experience and operational data into the analysis. This cooperative effort successfully combined expertise from the energy modeling community with expertise from the nuclear industry. Energy Return on Investment is one of many figures of merit on which investment in a new energy facility or process may be judged. EROI is the ratio of the energy delivered by a facility divided by the energy used to construct, operate and decommission that facility. While EROI is not the only criterion used to make an investment decision, it has been shown that, in technologically advanced societies, energy supplies must exceed a minimum EROI. Furthermore, technological history shows a trend towards higher EROI energy supplies. EROI calculations have been performed for many components of energy technology: oil wells, wind turbines, photovoltaic modules, biofuels, and nuclear reactors. This report represents the first standalone EROI analysis of nuclear fuel reprocessing (or recycling) facilities.

  14. Renewable Energy: Solar Fuels GRC and GRS

    SciTech Connect

    Lewis, Nathan; Gray, Nancy Ryan

    2010-02-26

    This Gordon Research Conference seeks to bring together chemists, physicists, materials scientists and biologists to address perhaps the outstanding technical problem of the 21st Century - the efficient, and ultimately economical, storage of energy from carbon-neutral sources. Such an advance would deliver a renewable, environmentally benign energy source for the future. A great technological challenge facing our global future is energy. The generation of energy, the security of its supply, and the environmental consequences of its use are among the world's foremost geopolitical concerns. Fossil fuels - coal, natural gas, and petroleum - supply approximately 90% of the energy consumed today by industrialized nations. An increase in energy supply is vitally needed to bring electric power to the 25% of the world's population that lacks it, to support the industrialization of developing nations, and to sustain economic growth in developed countries. On the geopolitical front, insuring an adequate energy supply is a major security issue for the world, and its importance will grow in proportion to the singular dependence on oil as a primary energy source. Yet, the current approach to energy supply, that of increased fossil fuel exploration coupled with energy conservation, is not scaleable to meet future demands. Rising living standards of a growing world population will cause global energy consumption to increase significantly. Estimates indicate that energy consumption will increase at least two-fold, from our current burn rate of 12.8 TW to 28 - 35 TW by 2050. - U.N. projections indicate that meeting global energy demand in a sustainable fashion by the year 2050 will require a significant fraction of the energy supply to come carbon free sources to stabilize atmospheric carbon dioxide levels at twice the pre-anthropogenic levels. External factors of economy, environment, and security dictate that this global energy need be met by renewable and sustainable sources

  15. High power density carbonate fuel cell

    SciTech Connect

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J.

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  16. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    SciTech Connect

    Bahman Habibzadeh

    2010-01-31

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

  17. Fuel Cells and Electrochemical Energy Storage.

    ERIC Educational Resources Information Center

    Sammells, Anthony F.

    1983-01-01

    Discusses the nature of phosphoric acid, molten carbonate, and solid oxide fuel cells and major features and types of batteries used for electrical energy storage. Includes two tables presenting comparison of major battery features and summary of major material problems in the sodium-sulfur and lithium-alloy metal sulfide batteries. (JN)

  18. Hydrogen: The Ultimate Fuel and Energy Carrier.

    ERIC Educational Resources Information Center

    Dinga, Gustav P.

    1988-01-01

    Lists 24 frequently asked questions concerning hydrogen as a fuel with several responses given to each question. Emphasized are hydrogen production, storage, transmission, and application to various energy-consuming sectors. Summarizes current findings and research on hydrogen. An extensive bibliography is included. (ML)

  19. Hydrogen: The Ultimate Fuel and Energy Carrier.

    ERIC Educational Resources Information Center

    Dinga, Gustav P.

    1988-01-01

    Lists 24 frequently asked questions concerning hydrogen as a fuel with several responses given to each question. Emphasized are hydrogen production, storage, transmission, and application to various energy-consuming sectors. Summarizes current findings and research on hydrogen. An extensive bibliography is included. (ML)

  20. Fuel Cells and Electrochemical Energy Storage.

    ERIC Educational Resources Information Center

    Sammells, Anthony F.

    1983-01-01

    Discusses the nature of phosphoric acid, molten carbonate, and solid oxide fuel cells and major features and types of batteries used for electrical energy storage. Includes two tables presenting comparison of major battery features and summary of major material problems in the sodium-sulfur and lithium-alloy metal sulfide batteries. (JN)

  1. Imaging of High-Energy X-Ray Emission from Cryogenic Thermonuclear Fuel Implosions on the NIF

    SciTech Connect

    Ma, T

    2012-05-01

    Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide spectrally resolved time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered targets. Using bremsstrahlung assumptions, the measured absolute x-ray brightness allows for the inference of electron temperature, electron density, hot spot mass, mix mass, and pressure. Current inertial confinement fusion (ICF) experiments conducted on the National Ignition Facility (NIF) seek to indirectly drive a spherical implosion, compressing and igniting a deuterium-tritium fuel. This DT fuel capsule is cryogenically prepared as a solid ice layer surrounded by a low-Z ablator material. Ignition will occur when the hot spot approaches sufficient temperature ({approx}3-4 keV) and {rho}R ({approx}0.3 g/cm{sup 2}) such that alpha deposition can further heat the hot spot and generate a self-sustaining burn wave. During the implosion, the fuel mass becomes hot enough to emit large amounts of x-ray radiation, the spectra and spatial variation of which contains key information that can be used to evaluate the implosion performance. The Ross filter diagnostic employs differential filtering to provide spectrally resolved, time-integrated, absolute x-ray self-emission images of the imploded core of cryogenic layered targets.

  2. Impact of high-fat diet and obesity on energy balance and fuel utilization during the metabolic challenge of lactation.

    PubMed

    Wahlig, Jessica L; Bales, Elise S; Jackman, Matthew R; Johnson, Ginger C; McManaman, James L; Maclean, Paul S

    2012-01-01

    The effects of obesity and a high-fat (HF) diet on whole body and tissue-specific metabolism of lactating dams and their offspring were examined in C57/B6 mice. Female mice were fed low-fat (LF) or HF diets before and throughout pregnancy and lactation. HF-fed mice were segregated into lean (HF-Ln) and obese (HF-Ob) groups before pregnancy by their weight gain response. Compared to LF-Ln dams, HF-Ln, and HF-Ob dams exhibited a greater positive energy balance (EB) and increased dietary fat retention in peripheral tissues (P < 0.05). HF-Ob dams had greater dietary fat retention in liver and adipose compared to HF-Ln dams (P < 0.05). De novo synthesized fat was decreased in tissues and milk from HF-fed dams compared to LF-Ln dams (P < 0.05). However, less dietary and de novo synthesized fat was found in the HF-Ob mammary glands compared to HF-Ln (P < 0.05). Obesity was associated with reduced milk triglycerides relative to lean controls (P < 0.05). Compared to HF diet alone obesity has additional adverse affects, impairing both lipid metabolism as well as milk fat production. Growth rates of LF-Ln litters were lower than HF-Ln and HF-Ob litters (P < 0.05). Total energy expenditure (TEE) of HF-Ob litters was reduced relative to HF-Ln litters, whereas their respiratory exchange ratios (RERs) were increased (P < 0.05). Collectively these data show that consumption of a HF diet significantly affects maternal and neonatal metabolism and that maternal obesity can independently alter these responses.

  3. Impact of High-Fat Diet and Obesity on Energy Balance and Fuel Utilization During the Metabolic Challenge of Lactation

    PubMed Central

    Wahlig, Jessica L.; Bales, Elise S.; Jackman, Matthew R.; Johnson, Ginger C.; McManaman, James L.; MacLean, Paul S.

    2014-01-01

    The effects of obesity and a high-fat (HF) diet on whole body and tissue-specific metabolism of lactating dams and their offspring were examined in C57/B6 mice. Female mice were fed low-fat (LF) or HF diets before and throughout pregnancy and lactation. HF-fed mice were segregated into lean (HF-Ln) and obese (HF-Ob) groups before pregnancy by their weight gain response. Compared to LF-Ln dams, HF-Ln, and HF-Ob dams exhibited a greater positive energy balance (EB) and increased dietary fat retention in peripheral tissues (P < 0.05). HF-Ob dams had greater dietary fat retention in liver and adipose compared to HF-Ln dams (P < 0.05). De novo synthesized fat was decreased in tissues and milk from HF-fed dams compared to LF-Ln dams (P < 0.05). However, less dietary and de novo synthesized fat was found in the HF-Ob mammary glands compared to HF-Ln (P < 0.05). Obesity was associated with reduced milk triglycerides relative to lean controls (P < 0.05). Compared to HF diet alone obesity has additional adverse affects, impairing both lipid metabolism as well as milk fat production. Growth rates of LF-Ln litters were lower than HF-Ln and HF-Ob litters (P < 0.05). Total energy expenditure (TEE) of HF-Ob litters was reduced relative to HF-Ln litters, whereas their respiratory exchange ratios (RERs) were increased (P < 0.05). Collectively these data show that consumption of a HF diet significantly affects maternal and neonatal metabolism and that maternal obesity can independently alter these responses. PMID:21720435

  4. Fuel cell energy storage for Space Station enhancement

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  5. Fuel cell energy storage for Space Station enhancement

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  6. Environmental data energy technology characterizations: synthetic fuels

    SciTech Connect

    Not Available

    1980-04-01

    Environmental Data Energy Technology Characterizations are publications which are intended to provide policy analysts and technical analysts with basic environmental data associated with key energy technologies. This publication provides documentation on synthetic fuels (coal-derived and oil shale). The transformation of the energy in coal and oil shale into a more useful form is described in this publication in terms of major activity areas in the synthetic fuel cycles, that is, in terms of activities which produce either an energy product or a fuel leading to the production of an energy product in a different form. The activities discussed in this document are coal liquefaction, coal gasification, in-situ gasification, and oil shales. These activities represent both well-documented and advanced activity areas. The former activities are characterized in terms of actual operating data with allowance for future modification where appropriate. Emissions are assumed to conform to environmental standards. The advanced activity areas examined are those like coal liquefaction and in-situ retorting of oil shale. For these areas, data from pilot or demonstration plants were used where available; otherwise, engineering studies provided the data. The organization of the chapters in this volume is designed to support the tabular presentation in the summary volume. Each chapter begins with a brief description of the activity under consideration. The standard characteristics, size, availability, mode of functioning and place in the fuel cycle are presented. Next, major legislative and/or technological factors influencing the commercial operation of the activity are offered. Discussions of resources consumed, residuals produced, and economics follow. To aid in comparing and linking the different activity areas, data for each area are normalized to 10/sup 12/ Btu of energy output from the activity.

  7. a Fuel-Cell Distributed Energy Resource with Integrated Energy Storage

    NASA Astrophysics Data System (ADS)

    Nikkhajoei, Hassan

    2009-08-01

    This paper presents a fuel-cell distributed energy resource with integrated energy storage. A compatible power electronic interface to couple the fuel-cell with the grid and/or a local load is introduced. Details of the energy storage module, the power electronic interface and the corresponding controls are described. A control strategy for the power electronic interface is developed to manage the flow of power between the fuel-cell, the energy storage and the grid. A dynamic model for the fuel-cell distributed resource is developed and is used for the systematic design of the distributed resource control system. Performance of the fuel-cell distributed energy resource is evaluated based on digital time-domain simulations in the (Electromagnetic Transient Program) EMTP-RV software environment. Effectiveness of the energy storage module, the compatible interface and the corresponding controls in enhancing the fuel-cell distributed resource performance is verified. The results demonstrate the developed power electronic interface and control strategy provide the fuel-cell with the load-following capability, the plug-and-play feature and high qualities of voltage and power that are required for the microgrid application.

  8. Capital requirements and fuel-cycle energy and emissions impacts of potential PNGV fuels.

    SciTech Connect

    Johnson, L.; Mintz, M.; Singh, M.; Stork, K.; Vyas, A.; Wang, M.

    1999-03-11

    Our study reveals that supplying gasoline-equivalent demand for the low-market-share scenario requires a capital investment of less than $40 billion for all fuels except H{sub 2}, which will require a total cumulative investment of $150 billion. By contrast, cumulative capital investments under the high-market-share scenario are $50 billion for LNG, $90 billion for ethanol, $100 billion for methanol, $160 billion for CNG and DME, and $560 billion for H{sub 2}. Although these substantial capital requirements are spread over many years, their magnitude could pose a challenge to the widespread introduction of 3X vehicles. Fossil fuel use by US light-duty vehicles declines significantly with introduction of 3X vehicles because of fuel-efficiency improvements for 3X vehicles and because of fuel substitution (which applies to the nonpetroleum-fueled alternatives). Petroleum use for light-duty vehicles in 2030 is reduced by as much as 45% relative to the reference scenario. GHG emissions follow a similar pattern. Total GHG emissions decline by 25-30% with most of the propulsion system/fuel alternatives. For those using renewable fuels (i.e., ethanol and H{sub 2} from solar energy), GHG emissions drop by 33% (H{sub 2}) and 45% (ethanol). Among urban air pollutants, urban NOX emissions decline slightly for 3X vehicles using CIDI and SIDI engines and drop substantially for fuel-cell vehicles. Urban CO emissions decline for CIDI and FCV alternatives, while VOC emissions drop significantly for all alternatives except RFG-, methanol-, and ethanol-fueled SIDI engines. With the exception of CIDI engines fueled by RFD, FT50, or B20 (which increase urban PM{sub 10} emissions by over 30%), all propulsion system/fuel alternatives reduce urban PM{sub 10} emissions. Reductions are approximately 15-20% for fuel cells and for methanol-, ethanol-, CNG-, or LPG-fueled SIDI engines. Table 3 qualitatively summarizes impacts of the 13 alternatives on capital requirements and on energy use and

  9. Nuclear Energy and Synthetic Liquid Transportation Fuels

    NASA Astrophysics Data System (ADS)

    McDonald, Richard

    2012-10-01

    This talk will propose a plan to combine nuclear reactors with the Fischer-Tropsch (F-T) process to produce synthetic carbon-neutral liquid transportation fuels from sea water. These fuels can be formed from the hydrogen and carbon dioxide in sea water and will burn to water and carbon dioxide in a cycle powered by nuclear reactors. The F-T process was developed nearly 100 years ago as a method of synthesizing liquid fuels from coal. This process presently provides commercial liquid fuels in South Africa, Malaysia, and Qatar, mainly using natural gas as a feedstock. Nuclear energy can be used to separate water into hydrogen and oxygen as well as to extract carbon dioxide from sea water using ion exchange technology. The carbon dioxide and hydrogen react to form synthesis gas, the mixture needed at the beginning of the F-T process. Following further refining, the products, typically diesel and Jet-A, can use existing infrastructure and can power conventional engines with little or no modification. We can then use these carbon-neutral liquid fuels conveniently long into the future with few adverse environmental impacts.

  10. New instrumental technique for the analysis of high-energy-content fuels. Final report, Apr-Dec 86

    SciTech Connect

    Hutte, R.

    1990-07-01

    The technical effort described herein was directed at determining the feasibility of using the Redox Chemiluminescence Detector (RCD) for the selective detection of cycloalkanes and antioxidants in jet fuels. Three catalysts (gold, palladium, and platinum) were prepared and evaluated at several reaction temperatures. The gold catalyst at 300 deg C produced the best selectivity for cycloalkanes (40:1 for hexane and 3:1 for nonane). As temperature was increased, however, the selectivity for cycloalkanes decreased. The palladium and platinum catalysts did not demonstrate adequate selectivity under the examined test conditions. Overall, the metal catalysts examined in this study did not exhibit sufficient selectivity to permit detection of cycloalkanes versus acyclic alkanes. The selectivity of the RCD for easily oxidized compounds (eg. phenols) versus hexane was typically 104 to 106. (JS)

  11. Energy Storage: Batteries and Fuel Cells for Exploration

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Miller, Thomas B.; Hoberecht, Mark A.; Baumann, Eric D.

    2007-01-01

    NASA's Vision for Exploration requires safe, human-rated, energy storage technologies with high energy density, high specific energy and the ability to perform in a variety of unique environments. The Exploration Technology Development Program is currently supporting the development of battery and fuel cell systems that address these critical technology areas. Specific technology efforts that advance these systems and optimize their operation in various space environments are addressed in this overview of the Energy Storage Technology Development Project. These technologies will support a new generation of more affordable, more reliable, and more effective space systems.

  12. Alkaline fuel cells for the regenerative fuel cell energy storage system

    SciTech Connect

    Martin, R.E.

    1983-08-01

    United Technologies Corporation has been conducting a development program sponsored by Lewis Research Center of NASA directed toward advancing the state of the art of the alkaline fuel cell. The goal of the program is the development of an extended endurance, high-performance, high-efficiency fuel cell for use in a multi-hundred kilowatt regenerative fuel cell. This technology advancement program has identified a low-weight design and cell components with increased performance and extended endurance. Longterm endurance testing of full-size fuel cell modules has demonstrated the extended endurance capability of potassium titanate matrix cells, the long-term performance stability of the anode catalyst, and the suitability of a lightweight graphite structure for use at the anode in an alkaline fuel cell. In addition under the program, a full-size alkaline fuel cell module has completed 5,000 hours of a planned 20,000-hour test to a cyclical load profile. The continuous load profile consists of 60 minutes at open circuit followed by 30 minutes at 200 ASF which simulates the operation of a Regenerative Fuel Cell Energy Storage System in low earth orbit.

  13. High speed commercial transport fuels considerations and research needs

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Niedzwiecki, R. W.

    1989-01-01

    NASA is currently evaluating the potential of incorporating High Speed Civil Transport (HSCT) aircraft in the commercial fleet in the beginning of the 21st century. NASA sponsored HSCT enabling studies currently underway with airframers and engine manufacturers, are addressing a broad range of technical, environmental, economic, and related issues. Supersonic cruise speeds for these aircraft were originally focused in the Mach 2 to 5 range. At these flight speeds, both jet fuels and liquid methane were considered potential fuel candidates. For the year 2000 to 2010, cruise Mach numbers of 2 to 3+ are projected for aircraft fuel with thermally stable liquid jet fuels. For 2015 and beyond, liquid methane fueled aircraft cruising at Mach numbers of 4+ may be viable candidates. Operation at supersonic speeds will be much more severe than those encountered at subsonic flight. One of the most critical problems is the potential deterioration of the fuel due to the high temperature environment. HSCT fuels will not only be required to provide the energy necessary for flight, but will also be subject to aerodynamic heating and, will be required to serve as the primary heat sink for cooling the engine and airframe. To define fuel problems for high speed flight, a fuels workshop was conducted at NASA Lewis Research Center. The purpose of the workshop was to gather experts on aviation fuels, airframe fuel systems, airport infrastructure, and combustion systems to discuss high speed fuel alternatives, fuel supply scenarios, increased thermal stability approaches and measurements, safety considerations, and to provide directional guidance for future R and D efforts. Subsequent follow-up studies defined airport infrastructure impacts of high speed fuel candidates. The results of these activities are summarized. In addition, an initial case study using modified in-house refinery simulation model Gordian code (1) is briefly discussed. This code can be used to simulate different

  14. DEVELOPMENT OF HIGH TEMPERATURE HYDROCARBON JET FUELS

    DTIC Science & Technology

    AIRCRAFT ENGINE OILS, *AVIATION FUELS, *HYDROCARBONS, *JET ENGINE FUELS, *LUBRICANTS, *POLYCYCLIC COMPOUNDS, ALKYL RADICALS, BENZENE, CATALYSIS...CHEMICAL REACTIONS , COMBUSTION, CUMENES, DECOMPOSITION, ETHYLENES, FORMALDEHYDE, FRAGMENTATION, HIGH TEMPERATURE, HYDROGENATION, NAPHTHALENES, PHYSICAL

  15. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  16. Glucose as the Sole Metabolic Fuel: Overcoming a Misconception Using Conceptual Change to Teach the Energy-Yielding Metabolism to Brazilian High School Students

    ERIC Educational Resources Information Center

    Luz, Mauricio R. M. P.; Oliveira, Gabriel A.; Da Poian, Andrea T.

    2013-01-01

    A misconception regarding the human metabolism has been shown to be widespread among high school students. The students consider glucose as the sole metabolic fuel, disregarding that lipids and amino acids can be oxidized for ATP production by human cells. This misconception seems to be a consequence of formal teaching in grade and high schools.…

  17. Glucose as the Sole Metabolic Fuel: Overcoming a Misconception Using Conceptual Change to Teach the Energy-Yielding Metabolism to Brazilian High School Students

    ERIC Educational Resources Information Center

    Luz, Mauricio R. M. P.; Oliveira, Gabriel A.; Da Poian, Andrea T.

    2013-01-01

    A misconception regarding the human metabolism has been shown to be widespread among high school students. The students consider glucose as the sole metabolic fuel, disregarding that lipids and amino acids can be oxidized for ATP production by human cells. This misconception seems to be a consequence of formal teaching in grade and high schools.…

  18. The electrochemical fluorination of polymeric materials for high energy density aqueous and non-aqueous battery and fuel cell separators

    NASA Technical Reports Server (NTRS)

    Liu, C. C.

    1983-01-01

    A computerized system was established and the electrochemical fluorination of trichloroethylene, polyacrylic acid and polyvinyl alcohol in anhydrous hydrogen fluoride was attempted. Both solid substrates as well as membranes were used. Some difficulties were found in handling and analyzing the solid substrates and membranes. Further studies are needed in this area. A microprocessor aided electrochemical fluorination system capable of obtaining highly reproducible experimental results was established.

  19. High Density Fuel Development for Research Reactors

    SciTech Connect

    Daniel Wachs; Dennis Keiser; Mitchell Meyer; Douglas Burkes; Curtis Clark; Glenn Moore; Jan-Fong Jue; Totju Totev; Gerard Hofman; Tom Wiencek; Yeon So Kim; Jim Snelgrove

    2007-09-01

    An international effort to develop, qualify, and license high and very high density fuels has been underway for several years within the framework of multi-national RERTR programs. The current development status is the result of significant contributions from many laboratories, specifically CNEA in Argentina, AECL in Canada, CEA in France, TUM in Germany, KAERI in Korea, VNIIM, RDIPE, IPPE, NCCP and RIARR in Russia, INL, ANL and Y-12 in USA. These programs are mainly engaged with UMo dispersion fuels with densities from 6 to 8 gU/cm3 (high density fuel) and UMo monolithic fuel with density as high as 16 gU/cm3 (very high density fuel). This paper, mainly focused on the French & US programs, gives the status of high density UMo fuel development and perspectives on their qualification.

  20. Energy and fuels from electrochemical interfaces

    NASA Astrophysics Data System (ADS)

    Stamenkovic, Vojislav R.; Strmcnik, Dusan; Lopes, Pietro P.; Markovic, Nenad M.

    2017-01-01

    Advances in electrocatalysis at solid-liquid interfaces are vital for driving the technological innovations that are needed to deliver reliable, affordable and environmentally friendly energy. Here, we highlight the key achievements in the development of new materials for efficient hydrogen and oxygen production in electrolysers and, in reverse, their use in fuel cells. A key issue addressed here is the degree to which the fundamental understanding of the synergy between covalent and non-covalent interactions can form the basis for any predictive ability in tailor-making real-world catalysts. Common descriptors such as the substrate-hydroxide binding energy and the interactions in the double layer between hydroxide-oxides and H---OH are found to control individual parts of the hydrogen and oxygen electrochemistry that govern the efficiency of water-based energy conversion and storage systems. Links between aqueous- and organic-based environments are also established, encouraging the 'fuel cell' and 'battery' communities to move forward together.

  1. Energy and fuels from electrochemical interfaces

    DOE PAGES

    Stamenkovic, Vojislav R.; Strmcnik, Dusan; Lopes, Pietro P.; ...

    2016-12-20

    Advances in electrocatalysis at solid–liquid interfaces are vital for driving the technological innovations that are needed to deliver reliable, affordable and environmentally friendly energy. Here, in this paper, we highlight the key achievements in the development of new materials for efficient hydrogen and oxygen production in electrolysers and, in reverse, their use in fuel cells. A key issue addressed here is the degree to which the fundamental understanding of the synergy between covalent and non-covalent interactions can form the basis for any predictive ability in tailor-making real-world catalysts. Common descriptors such as the substrate–hydroxide binding energy and the interactions inmore » the double layer between hydroxide-oxides and H---OH are found to control individual parts of the hydrogen and oxygen electrochemistry that govern the efficiency of water-based energy conversion and storage systems. Lastly, links between aqueous- and organic-based environments are also established, encouraging the 'fuel cell' and 'battery' communities to move forward together.« less

  2. Energy and fuels from electrochemical interfaces

    SciTech Connect

    Stamenkovic, Vojislav R.; Strmcnik, Dusan; Lopes, Pietro P.; Markovic, Nenad M.

    2016-12-20

    Advances in electrocatalysis at solid–liquid interfaces are vital for driving the technological innovations that are needed to deliver reliable, affordable and environmentally friendly energy. Here, in this paper, we highlight the key achievements in the development of new materials for efficient hydrogen and oxygen production in electrolysers and, in reverse, their use in fuel cells. A key issue addressed here is the degree to which the fundamental understanding of the synergy between covalent and non-covalent interactions can form the basis for any predictive ability in tailor-making real-world catalysts. Common descriptors such as the substrate–hydroxide binding energy and the interactions in the double layer between hydroxide-oxides and H---OH are found to control individual parts of the hydrogen and oxygen electrochemistry that govern the efficiency of water-based energy conversion and storage systems. Lastly, links between aqueous- and organic-based environments are also established, encouraging the 'fuel cell' and 'battery' communities to move forward together.

  3. Energy and fuels from electrochemical interfaces.

    PubMed

    Stamenkovic, Vojislav R; Strmcnik, Dusan; Lopes, Pietro P; Markovic, Nenad M

    2016-12-20

    Advances in electrocatalysis at solid-liquid interfaces are vital for driving the technological innovations that are needed to deliver reliable, affordable and environmentally friendly energy. Here, we highlight the key achievements in the development of new materials for efficient hydrogen and oxygen production in electrolysers and, in reverse, their use in fuel cells. A key issue addressed here is the degree to which the fundamental understanding of the synergy between covalent and non-covalent interactions can form the basis for any predictive ability in tailor-making real-world catalysts. Common descriptors such as the substrate-hydroxide binding energy and the interactions in the double layer between hydroxide-oxides and H---OH are found to control individual parts of the hydrogen and oxygen electrochemistry that govern the efficiency of water-based energy conversion and storage systems. Links between aqueous- and organic-based environments are also established, encouraging the 'fuel cell' and 'battery' communities to move forward together.

  4. Fuel cell systems for a sustainable energy production

    SciTech Connect

    Kivisaari, T.

    1996-12-31

    When talking about fuel cell systems for stationary applications, two of the advantages are claimed to be a high inherent efficiency and environmentally favourable characteristics. It should, however, be obvious to everybody that in order to call an energy production route environmentally benign, it is not enough that just the energy production step itself has a low negative environmental impact, but that all steps involved (e.g. fuel pre-treatment, fuel processing etc.) should be subjected to the same constraints if the overall production process is to be considered environmentally friendly. In order to evaluate the technical possibilities of a biomass fuelled MCFC unit for stationary applications a system study of a 40 MWe biomass-fired MCFC system is currently carried out at The Royal Institute of Technology, as part of the international co-operation within the IEA Advanced Fuel Cell Programme Annex 1, Balance of Plant of MCFC Systems. In addition to the present work, other recent studies involving biomass and fuel cells can be found in literature.

  5. Fuel cells for chemicals and energy cogeneration

    NASA Astrophysics Data System (ADS)

    Alcaide, Francisco; Cabot, Pere-Lluís; Brillas, Enric

    Fuel cells (FCs) are mainly applied for electricity generation. This paper presents a review of specific FCs with ability to produce useful chemicals at the same time. The chemical cogeneration processes have been classified according to the different types of fuel cells. Thus, it is shown that a flow alkaline FC (AFC) is able to produce hydrogen peroxide. In aqueous acid or neutral FCs, hydrogenations, dehydrogenations, halogenations and oxidations, together with pollution abatement solutions, are reported. Hydrogen peroxide and valuable organic chemicals can also be obtained from polymer electrolyte FCs (PEFCs). A phosphoric acid FC (PAFC) allows the selective oxidation of hydrocarbons and aromatic compounds, and the production of industrial compounds such as cresols. Molten salt FCs (similar to molten carbonate or MCFCs) can be applied to obtain acetaldehyde with high product selectivity from ethanol oxidation at the anode. Solid oxide FCs (SOFCs) are able of chemical cogeneration of valuable industrial inorganic compounds such as nitric oxide with high yields. Although the number of related papers in the literature is small, the potential economic interest of this emergent field, related to the recent commercial development of fuel cells, is demonstrated in some cases, and the corresponding results encourage the development of FCs with electrocogeneration of useful chemicals with high added value and electricity.

  6. High burnup effects in WWER fuel rods

    SciTech Connect

    Smirnov, V.; Smirnov, A.

    1996-03-01

    Since 1987 at the Research Institute of Atomic Reactors, the examinations of the WWER spent fuel assemblies has been carried out. These investigations are aimed to gain information on WWER spent fuel conditions in order to validate the fuel assemblies use during the 3 and 4 year fuel cycle in the WWER-440 and WWER-1000 units. At present time, the aim is to reach an average fuel burnup of 55 MWd/kgU. According to this aim, a new investigation program on the WWER spent fuel elements is started. The main objectives of this program are to study the high burnup effects and their influence on the WWER fuel properties. This paper presented the main statistical values of the WWER-440 and WWER-1000 reactors` fuel assemblies and their fragment parameters. Average burnup of fuel in the investigated fuel assemblies was in the range of 13 to 49.7 MWd/kgU. In this case, the numer of fuel cycles was from 1 to 4 during operation of the fuel assemblies.

  7. Identification of Catalysts and Materials for a High-Energy Density Biochemical Fuel Cell: Cooperative Research and Development Final Report, CRADA Number CRD-09-345

    SciTech Connect

    Ghirardi, M.; Svedruzic, D.

    2013-07-01

    The proposed research attempted to identify novel biochemical catalysts, catalyst support materials, high-efficiency electron transfer agents between catalyst active sites and electrodes, and solid-phase electrolytes in order to maximize the current density of biochemical fuel cells that utilize various alcohols as substrates.

  8. The U.S. Department of Energy, Office of Fossil Energy Stationary Fuel Cell Program

    NASA Astrophysics Data System (ADS)

    Williams, Mark C.; Strakey, Joseph P.; Surdoval, Wayne A.

    The U.S. Department of Energy (DOE) Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), in partnership with private industries, is leading a program for the development and demonstration of high efficiency solid oxide fuel cells (SOFCs) and fuel cell/turbine hybrid power generation systems for near-term distributed generation markets, with emphasis on premium power and high reliability. NETL is partnering with Pacific Northwest National Laboratory (PNNL) in developing new directions for research under the Solid State Energy Conversion Alliance (SECA) initiative to develop and commercialize modular, low cost, and fuel flexible SOFC systems. Through advanced materials, processing and system integration research and development (R&D), the SECA initiative will reduce the fuel cell cost to $400 kW -1 for stationary and auxiliary power unit markets. The SECA industry teams and core program have made significant progress in scale-up and performance. Presidential initiatives are focusing research toward a new hydrogen economy. The movement to a hydrogen economy would accomplish several strategic goals, namely that SOFCs have no emissions, and hence figure significantly in DOE strategies. The SOFC hybrid is a key part of the FutureGen plant, a major new DOE FE initiative to produce hydrogen from coal. The highly efficient SOFC hybrid plant will produce electric power while other parts of the plant could produce hydrogen and sequester CO 2. The produced hydrogen can be used in fuel cell cars and for SOFC distributed generation applications.

  9. Advanced anodes for high-temperature fuel cells.

    PubMed

    Atkinson, A; Barnett, S; Gorte, R J; Irvine, J T S; McEvoy, A J; Mogensen, M; Singhal, S C; Vohs, J

    2004-01-01

    Fuel cells will undoubtedly find widespread use in this new millennium in the conversion of chemical to electrical energy, as they offer very high efficiencies and have unique scalability in electricity-generation applications. The solid-oxide fuel cell (SOFC) is one of the most exciting of these energy technologies; it is an all-ceramic device that operates at temperatures in the range 500-1,000 degrees C. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use carbon monoxide as a fuel rather than being poisoned by it, and the availability of high-grade exhaust heat for combined heat and power, or combined cycle gas-turbine applications. Although cost is clearly the most important barrier to widespread SOFC implementation, perhaps the most important technical barriers currently being addressed relate to the electrodes, particularly the fuel electrode or anode. In terms of mitigating global warming, the ability of the SOFC to use commonly available fuels at high efficiency, promises an effective and early reduction in carbon dioxide emissions, and hence is one of the lead new technologies for improving the environment. Here, we discuss recent developments of SOFC fuel electrodes that will enable the better use of readily available fuels.

  10. Multicomponent fuel vaporization at high pressures.

    SciTech Connect

    Torres, D. J.; O'Rourke, P. J.

    2002-01-01

    We extend our multicomponent fuel model to high pressures using a Peng-Robinson equation of state, and implement the model into KIVA-3V. Phase equilibrium is achieved by equating liquid and vapor fugacities. The latent heat of vaporization and fuel enthalpies are also corrected for at high pressures. Numerical simulations of multicomponent evaporation are performed for single droplets for a diesel fuel surrogate at different pressures.

  11. Study of coupled transport and its effect on different electrochemical systems: Implications in high temperature energy storage batteries and proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Preethy

    Coupled transport is studied on two electrochemical systems: Na-ZnCl 2 batteries and Proton Exchange Membrane Fuel Cells (PEMFC). The energy storage system of interest here is based on sodium β"-alumina solid electrolyte (BASE): Na/BASE/ZnCl2. BASE is an excellent Na+ conductor with a very high conductivity at 300°C. Its high Na+ ion conductivity and high stability are the principal reasons for its application in electrochemical storage systems. A novel vapor phase process was invented facilitating the fabrication of high strength and moisture/CO 2 resistant BASE. A two-phase composite of alumiNa+YSZ is formed by sintering and exposed to Na2O vapor, keeping the activity of Na2O lower than that in NaAlO2. This prevents the formation of hygroscopic NaAlO2 at the grain boundaries. A thin layer of β"-alumina is formed on the surface upon exposure. Further reaction occurs by transporting Na+ ions through the formed β"-alumina and a parallel transport of O2- ions through YSZ. This occurs by a coupled transport of Na+ through β"-alumina and O 2- ions through YSZ, thus expediting the process. The second electrochemical system of interest is PEMFC. The degradation mechanism of catalysts is studied using inexpensive copper particles. The mechanism of growth involves a coupled transport of Cu2+ through the aqueous medium and an electron transport through the direct particle-to-particle contact. Effect of applied stress on coarsening of platinum was also investigated. Two platinum wires/foils were immersed in a PtCl4+DMSO (Dimethyl sulfoxide) solution. A tensile load was applied to one wire/foil and the other one was left load-free. The wire/foil subjected to a tensile load became cathodic with respect to the unstressed wire/foil. Thus, under a tensile stress, the chemical potential of Pt decreases. This result suggests design strategies for core-shell catalysts used in PEMFCs: stable core-shell catalysts for PEMFC with Pt shell should be designed such that the shell is

  12. Fuel-rich catalytic combustion of a high density fuel

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Merritt, Sylvia A.

    1993-01-01

    Fuel-rich catalytic combustion (ER is greater than 4) of the high density fuel exo-tetrahydrocyclopentadiene (JP-10) was studied over the equivalence ratio range 5.0 to 7.6, which yielded combustion temperatures of 1220 to 1120 K. The process produced soot-free gaseous products similar to those obtained with iso-octane and jet-A in previous studies. The measured combustion temperature agreed well with that calculated assuming soot was not a combustion product. The process raised the effective hydrogen/carbon (H/C) ratio from 1.6 to over 2.0, thus significantly improving the combustion properties of the fuel. At an equivalence ratio near 5.0, about 80 percent of the initial fuel carbon was in light gaseous products and about 20 percent in larger condensable molecules. Fuel-rich catalytic combustion has now been studied for three fuels with H/C ratios of 2.25 (iso-octane), 1.92 (jet-A), and 1.6 (JP-10). A comparison of the product distribution of these fuels shows that, in general, the measured concentrations of the combustion products were monotonic functions of the H/C ratio with the exception of hydrogen and ethylene. In these cases, data for JP-10 fell between iso-octane and jet-A rather than beyond jet-A. It is suggested that the ring cross-linking structure of JP-10 may be responsible for this behavior. All the fuels studied showed that the largest amounts of small hydrocarbon molecules and the smallest amounts of large condensable molecules occurred at the lower equivalence ratios. This corresponds to the highest combustion temperatures used in these studies. Although higher temperatures may improve this mix, the temperature is limited. First, the life of the present catalyst would be greatly shortened when operated at temperatures of 1300 K or greater. Second, fuel-rich catalytic combustion does not produce soot because the combustion temperatures used in the experiments were well below the threshold temperature (1350 K) for the formation of soot. Increasing

  13. High Fidelity BWR Fuel Simulations

    SciTech Connect

    Yoon, Su Jong

    2016-08-01

    This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 milestone THM.CFD.P13.03: High Fidelity BWR Fuel Simulation. High fidelity computational fluid dynamics (CFD) simulation for Boiling Water Reactor (BWR) was conducted to investigate the applicability and robustness performance of BWR closures. As a preliminary study, a CFD model with simplified Ferrule spacer grid geometry of NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) benchmark has been implemented. Performance of multiphase segregated solver with baseline boiling closures has been evaluated. Although the mean values of void fraction and exit quality of CFD result for BFBT case 4101-61 agreed with experimental data, the local void distribution was not predicted accurately. The mesh quality was one of the critical factors to obtain converged result. The stability and robustness of the simulation was mainly affected by the mesh quality, combination of BWR closure models. In addition, the CFD modeling of fully-detailed spacer grid geometry with mixing vane is necessary for improving the accuracy of CFD simulation.

  14. Energy efficient engine program contributions to aircraft fuel conservation

    SciTech Connect

    Batterton, P.G.

    1984-01-01

    Significant advances in high bypass turbofan technologies that enhance fuel efficiency have been demonstrated in the NASA Energy Efficient Engine Program. This highly successful second propulsion element of the NASA Aircraft Energy Efficiency Program included major contract efforts with both General Electric and Pratt Whitney. Major results of these efforts will be presented including highlights from the NASA/General Electric E3 research turbofan engine test. Direct application of all the E3 technologies could result in fuel savings of over 18% compared to the CF6-50 and JT9D-7. Application of the E3 technologies to new and derivative engines such as the CF6-80C and PW 2037, as well as others, will be discussed. Significant portions of the fuel savings benefit for these new products can be directly related to the E3 technology program. Finally, results of a study looking at far term advanced turbofan engines will be briefly described. The study shows that substantial additional fuel savings over E3 are possible with additional turbofan technology programs.

  15. Energy efficient engine program contributions to aircraft fuel conservation

    NASA Technical Reports Server (NTRS)

    Batterton, P. G.

    1984-01-01

    Significant advances in high bypass turbofan technologies that enhance fuel efficiency have been demonstrated in the NASA Energy Efficient Engine Program. This highly successful second propulsion element of the NASA Aircraft Energy Efficiency Program included major contract efforts with both General Electric and Pratt & Whitney. Major results of these efforts will be presented including highlights from the NASA/General Electric E3 research turbofan engine test. Direct application of all the E3 technologies could result in fuel savings of over 18% compared to the CF6-50 and JT9D-7. Application of the E3 technologies to new and derivative engines such as the CF6-80C and PW 2037, as well as others, will be discussed. Significant portions of the fuel savings benefit for these new products can be directly related to the E3 technology program. Finally, results of a study looking at far term advanced turbofan engines will be briefly described. The study shows that substantial additional fuel savings over E3 are possible with additional turbofan technology programs.

  16. Decentralized conversion of biomass to energy, fuels and electricity with fuel cells

    SciTech Connect

    Grimes, P.

    1996-12-31

    Fuel cells, new processes, advanced equipment and total system approaches will allow biomass to become a larger source of energy to make electricity, fuel and chemicals. These innovative new approaches allow smaller scale operations and allow decentralization of biomass to energy. The pivotal role of biomass will change and expand. Biomass will become a significant near term and a long term energy source.

  17. Update to Assessment of Direct Disposal in Unsaturated Tuff of Spent Nuclear Fuel and High-Level Waste Owned by U.S. Department of Energy

    SciTech Connect

    P. D. Wheatley; R. P. Rechard

    1998-09-01

    The overall purpose of this study is to provide information and guidance to the Office of Environmental Management of the U.S. Department of Energy (DOE) about the level of characterization necessary to dispose of DOE-owned spent nuclear fuel (SNF). The disposal option modeled was codisposal of DOE SNF with defense high-level waste (DHLW). A specific goal was to demonstrate the influence of DOE SNF, expected to be minor, in a predominately commercial repository using modeling conditions similar to those currently assumed by the Yucca Mountain Project (YMP). A performance assessment (PA) was chosen as the method of analysis. The performance metric for this analysis (referred to as the 1997 PA) was dose to an individual; the time period of interest was 100,000 yr. Results indicated that cumulative releases of 99Tc and 237Np (primary contributors to human dose) from commercial SNF exceed those of DOE SNF both on a per MTHM and per package basis. Thus, if commercial SNF can meet regulatory performance criteria for dose to an individual, then the DOE SNF can also meet the criteria. This result is due in large part to lower burnup of the DOE SNF (less time for irradiation) and to the DOE SNF's small percentage of the total activity (1.5%) and mass (3.8%) of waste in the potential repository. Consistent with the analyses performed for the YMP, the 1997 PA assumed all cladding as failed, which also contributed to the relatively poor performance of commercial SNF compared to DOE SNF.

  18. Energy storage in ultrathin solid oxide fuel cells.

    PubMed

    Van Overmeere, Quentin; Kerman, Kian; Ramanathan, Shriram

    2012-07-11

    The power output of hydrogen fuel cells quickly decreases to zero if the fuel supply is interrupted. We demonstrate thin film solid oxide fuel cells with nanostructured vanadium oxide anodes that generate power for significantly longer time than reference porous platinum anode thin film solid oxide fuel cells when the fuel supply is interrupted. The charge storage mechanism was investigated quantitatively with likely identified contributions from the oxidation of the vanadium oxide anode, its hydrogen storage properties, and different oxygen concentration at the electrodes. Fuel cells capable of storing charge even for short periods of time could contribute to ultraminiaturization of power sources for mobile energy.

  19. Analysis of power and energy for fuel cell systems

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kim; R. Landgrebe, Albert

    The relationship between power and energy for a fuel cell system consisting of a fuel cell stack and reactant storage subsystem, and operating at constant power or variable power, was analyzed. The characteristic parameters of the fuel cell stack and the reactant subsystem are considered to be independent variables, which are functions of the power and energy of the fuel cell cystem, respectively. Mathematical expressions were derived for determining the minimum weight of the fuel cell system when the cells operate at constant power and the cell voltage varies linearly with the current density. The relationship between the weight of a fuel cell system and variable power levels was also determined. These mathematical models were used to analyze the experimental results reported in the literature for an alkaline fuel cell and a polymer electrolyte fuel cell.

  20. Fuel cell energy service Enron`s commerical program

    SciTech Connect

    Jacobson, M.W.

    1996-04-01

    Enron, the premier provider of clean fuels worldwide, has launched a unique energy service based on fuel cell technology. The goal of this program is to bring the benefits of fuel cell power to the broad commercial marketplace. Enron`s Energy Service is currently based on a 200 kilowatt phosphoric acid power plant manufactured by ONSI Corporation. This plant is fueled by natural gas or propane, and exhibits superior performance. Enron offers a `no hassle` package that provides customers with immediate benefits with no upfront capital or technical risks. This paper describes Enron`s fuel cell commercial program.

  1. Energy management strategy based on fuzzy logic for a fuel cell hybrid bus

    NASA Astrophysics Data System (ADS)

    Gao, Dawei; Jin, Zhenhua; Lu, Qingchun

    Fuel cell vehicles, as a substitute for internal-combustion-engine vehicles, have become a research hotspot for most automobile manufacturers all over the world. Fuel cell systems have disadvantages, such as high cost, slow response and no regenerative energy recovery during braking; hybridization can be a solution to these drawbacks. This paper presents a fuel cell hybrid bus which is equipped with a fuel cell system and two energy storage devices, i.e., a battery and an ultracapacitor. An energy management strategy based on fuzzy logic, which is employed to control the power flow of the vehicular power train, is described. This strategy is capable of determining the desired output power of the fuel cell system, battery and ultracapacitor according to the propulsion power and recuperated braking power. Some tests to verify the strategy were developed, and the results of the tests show the effectiveness of the proposed energy management strategy and the good performance of the fuel cell hybrid bus.

  2. Alternate Fuel Cell Membranes for Energy Independence

    SciTech Connect

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic performance

  3. HIGH DENSITY NUCLEAR FUEL COMPOSITION

    DOEpatents

    Litton, F.B.

    1962-07-17

    ABS>A nuclear fuel consisting essentially of uranium monocarbide and containing 2.2 to 4.6 wt% carbon, 0.1 to 2.3 wt% oxygen, 0.05 to 2.5 wt% nitrogen, and the balance uranium was developed. The maximum oxygen content was less than one-half the carbon content by weight and the carbon, oxygen, and nitrogen are present as a single phase substituted solid solution of UC, C, O, and N. A method of preparing the fuel composition is described. (AEC)

  4. Fuel cells for electrochemical energy conversion

    NASA Astrophysics Data System (ADS)

    O'Hayre, Ryan P.

    2017-07-01

    This short article provides an overview of fuel cell science and technology. This article is intended to act as a "primer" on fuel cells that one can use to begin a deeper investigation into this fascinating and promising technology. You will learn what fuel cell are, how they work, and what significant advantages and disadvantages they present.

  5. Fuel-rich catalytic combustion of a high density fuel

    SciTech Connect

    Brabbs, T.A.; Merritt, S.A.

    1993-07-01

    Fuel-rich catalytic combustion (ER is greater than 4) of the high density fuel exo-tetrahydrocyclopentadiene (JP-10) was studied over the equivalence ratio range 5.0 to 7.6, which yielded combustion temperatures of 1220 to 1120 K. The process produced soot-free gaseous products similar to those obtained with iso-octane and jet-A in previous studies. The measured combustion temperature agreed well with that calculated assuming soot was not a combustion product. The process raised the effective hydrogen/carbon (H/C) ratio from 1.6 to over 2.0, thus significantly improving the combustion properties of the fuel. At an equivalence ratio near 5.0, about 80 percent of the initial fuel carbon was in light gaseous products and about 20 percent in larger condensable molecules. Fuel-rich catalytic combustion has now been studied for three fuels with H/C ratios of 2.25 (iso-octane), 1.92 (jet-A), and 1.6 (JP-10). A comparison of the product distribution of these fuels shows that, in general, the measured concentrations of the combustion products were monotonic functions of the H/C ratio with the exception of hydrogen and ethylene. In these cases, data for JP-10 fell between iso-octane and jet-A rather than beyond jet-A. It is suggested that the ring cross-linking structure of JP-10 may be responsible for this behavior. All the fuels studied showed that the largest amounts of small hydrocarbon molecules and the smallest amounts of large condensable molecules occurred at the lower equivalence ratios. This corresponds to the highest combustion temperatures used in these studies. Although higher temperatures may improve this mix, the temperature is limited. First, the life of the present catalyst would be greatly shortened when operated at temperatures of 1300 K or greater. Second, fuel-rich catalytic combustion does not produce soot because the combustion temperatures used in the experiments were well below the threshold temperature (1350 K) for the formation of soot.

  6. Systematic analysis of advanced fusion fuel in inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Eliezer, S.; Henis, Z.; Piera, M.; Martinez-Val, J. M.

    1997-04-01

    Aneutronic fusion reactions can be considered as the cleanest way to exploit nuclear energy. However, these reactions present in general two main drawbacks.—very high temperatures are needed to reach relevant values of their cross sections—Moderate (and even low) energy yield per reaction. This value is still lower if measured in relation to the Z number of the reacting particles. It is already known that bremsstrahlung overruns the plasma reheating by fusion born charged-particles in most of the advanced fuels. This is for instance the case for proton-boron-11 fusion in a stoichiometric plasma and is also so in lithium isotopes fusion reactions. In this paper, the use of deuterium-tritium seeding is suggested to allow to reach higher burnup fractions of advanced fuels, starting at a lower ignition temperature. Of course, neutron production increases as DT contents does. Nevertheless, the ratio of neutron production to energy generation is much lower in DT-advanced fuel mixtures than in pure DT plasmas. One of the main findings of this work is that some natural resources (as D and Li-7) can be burned-up in a catalytic regime for tritium. In this case, neither external tritium breeding nor tritium storage are needed, because the tritium inventory after the fusion burst is the same as before it. The fusion reactor can thus operate on a pure recycling of a small tritium inventory.

  7. Potential production of energy cane for fuel in the Caribbean

    SciTech Connect

    Samuels, G.

    1984-08-01

    Sugarcane grown as energy cane presents a new potential to the Caribbean countries to provide their own energy needs and to reduce or eliminate fuel oil imports. The use of proper agronomic techniques can convert conventional sugarcane growing to a crop capable of giving energy feedstocks in the form of fiber for boiler fuel for electricity and fermentable solids for alcohol for motor fuel. Sugarcane can still be obtained from the energy cane for domestic consumption and export if desired. The aerable land now devoted to sugarcane can utilized for energy-cane production without causing any serious imbalance in food crop production.

  8. Time to face FACs: How fuel clauses undermine energy efficiency

    SciTech Connect

    Morgan, R.E.

    1993-10-01

    Fully reconciled fuel adjustment clauses remove incentives for energy efficiency on both sides of the meter. The Energy Policy Act of 1992 provides a logical opportunity to re-examine both their design and appropriteness.

  9. Energy from algae using microbial fuel cells.

    PubMed

    Velasquez-Orta, Sharon B; Curtis, Tom P; Logan, Bruce E

    2009-08-15

    Bioelectricity production from a phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73 +/- 1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m(2) (277 W/m(3)) using C. vulgaris, and 0.76 W/m(2) (215 W/m(3)) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs.

  10. Advanced proton-exchange materials for energy efficient fuel cells.

    SciTech Connect

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  11. Assessment of PNGV fuels infrastructure. Phase 1 report: Additional capital needs and fuel-cycle energy and emissions impacts

    SciTech Connect

    Wang, M.; Stork, K.; Vyas, A.; Mintz, M.; Singh, M.; Johnson, L.

    1997-01-01

    This report presents the methodologies and results of Argonne`s assessment of additional capital needs and the fuel-cycle energy and emissions impacts of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a New Generation of Vehicles is currently investigating. The six fuels included in this study are reformulated gasoline, low-sulfur diesel, methanol, ethanol, dimethyl ether, and hydrogen. Reformulated gasoline, methanol, and ethanol are assumed to be burned in spark-ignition, direct-injection engines. Diesel and dimethyl ether are assumed to be burned in compression-ignition, direct-injection engines. Hydrogen and methanol are assumed to be used in fuel-cell vehicles. The authors have analyzed fuels infrastructure impacts under a 3X vehicle low market share scenario and a high market share scenario. The assessment shows that if 3X vehicles are mass-introduced, a considerable amount of capital investment will be needed to build new fuel production plants and to establish distribution infrastructure for methanol, ethanol, dimethyl ether, and hydrogen. Capital needs for production facilities will far exceed those for distribution infrastructure. Among the four fuels, hydrogen will bear the largest capital needs. The fuel efficiency gain by 3X vehicles translates directly into reductions in total energy demand, fossil energy demand, and CO{sub 2} emissions. The combination of fuel substitution and fuel efficiency results in substantial petroleum displacement and large reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter of size smaller than 10 microns.

  12. US Department of Energy fuel cell program for transportation applications

    NASA Astrophysics Data System (ADS)

    Patil, Pandit G.

    1992-01-01

    Fuel cells of offer promise as the best future replacement for internal combustion engines in transportation applications. Fuel cells operate more efficiently than internal combustion engines, and are capable of running on non-petroleum fuels such as methanol, ethanol, natural gas or hydrogen. Fuel cells can also have a major impact on improving air quality. They virtually eliminate particulates, NO(x) and sulfur oxide emissions, and significantly reduce hydrocarbons and carbon monoxide. The U.S. Department of Energy program on fuel cells for transportation applications is structured to advance fuel cells technologies from the R&D phase, through engineering design and scale-tip, to demonstration in cars, trucks, buses and locomotives, in order to provide energy savings, fuel flexibility and air quality improvements. This paper describes the present status of the U.S. program.

  13. Challenges for fuel cells as stationary power resource in the evolving energy enterprise

    NASA Astrophysics Data System (ADS)

    Rastler, Dan

    The primary market challenges for fuel cells as stationary power resources in evolving energy markets are reviewed. Fuel cell power systems have significant barriers to overcome in their anticipated role as decentralized energy power systems. Market segments for fuel cells include combined heat and power; low-cost energy, premium power; peak shaving; and load management and grid support. Understanding the role and fit of fuel cell systems in evolving energy markets and the highest value applications are a major challenge for developers and government funding organizations. The most likely adopters of fuel cell systems and the challenges facing each adopter in the target market segment are reviewed. Adopters include generation companies, utility distribution companies, retail energy service providers and end-users. Key challenges include: overcoming technology risk; achieving retail competitiveness; understanding high value markets and end-user needs; distribution and service channels; regulatory policy issues; and the integration of these decentralized resources within the electrical distribution system.

  14. Energy harvesting by implantable abiotically catalyzed glucose fuel cells

    NASA Astrophysics Data System (ADS)

    Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.

    Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.

  15. Energy System and Thermoeconomic Analysis of Combined Heat and Power High Temperature Proton Exchange Membrane Fuel Cell Systems for Light Commercial Buildings

    SciTech Connect

    Colella, Whitney G.; Pilli, Siva Prasad

    2015-06-01

    The United States (U.S.) Department of Energy (DOE)’s Pacific Northwest National Laboratory (PNNL) is spearheading a program with industry to deploy and independently monitor five kilowatt-electric (kWe) combined heat and power (CHP) fuel cell systems (FCSs) in light commercial buildings. This publication discusses results from PNNL’s research efforts to independently evaluate manufacturer-stated engineering, economic, and environmental performance of these CHP FCSs at installation sites. The analysis was done by developing parameters for economic comparison of CHP installations. Key thermodynamic terms are first defined, followed by an economic analysis using both a standard accounting approach and a management accounting approach. Key economic and environmental performance parameters are evaluated, including (1) the average per unit cost of the CHP FCSs per unit of power, (2) the average per unit cost of the CHP FCSs per unit of energy, (3) the change in greenhouse gas (GHG) and air pollution emissions with a switch from conventional power plants and furnaces to CHP FCSs; (4) the change in GHG mitigation costs from the switch; and (5) the change in human health costs related to air pollution. From the power perspective, the average per unit cost per unit of electrical power is estimated to span a range from $15–19,000/ kilowatt-electric (kWe) (depending on site-specific changes in installation, fuel, and other costs), while the average per unit cost of electrical and heat recovery power varies between $7,000 and $9,000/kW. From the energy perspective, the average per unit cost per unit of electrical energy ranges from $0.38 to $0.46/kilowatt-hour-electric (kWhe), while the average per unit cost per unit of electrical and heat recovery energy varies from $0.18 to $0.23/kWh. These values are calculated from engineering and economic performance data provided by the manufacturer (not independently measured data). The GHG emissions were estimated to decrease by

  16. Energy Return on Investment from Recycling Nuclear Fuel

    SciTech Connect

    2011-08-17

    This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

  17. Low Energy Electron Scattering from Fuels

    NASA Astrophysics Data System (ADS)

    Lopes, M. Cristina A.

    2012-06-01

    We report an investigation of processes that occur during the ignition of the plasma and its consequences in post-discharge time for an internal combustion engine, in order to find the appropriate parameters to be used in cars that operate with lean mixtures air-fuel. The relevance of this theme has attracted much attention, and has been one of the subjects of collaboration between experimental and theoretical groups in the USA and Brazil. We have produced some basic information necessary to modeling spark ignition in alcohol- fuelled engines. Total cross sections of electron scattering by methanol and ethanol molecules were obtained, using the linear transmission method based on the Beer-Lambert law to first approximation. Measurements and calculations of differential cross sections for low-energy (rotationally unresolved) electron scattering were also obtained, for scattering angles of 5 --130 . The measurements were taken using the relative flow method with an aperture source, and calculations using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons. Additionally to these, computer simulation studies of electronic discharge in mixtures of ethanol were performed, using a Zero-Dimensional Plasma Kinetic solver. Previous reported models for combustion of ethanol and cross sections data for momentum transfer of electron collisions with ethanol were used. The time evolutions of the main species densities are reported and the ignition time delay discussed.

  18. Method for reducing comminution energy of a biomass fuel

    SciTech Connect

    Lincoln, J.F.L.; Buder, M.K.; Brown, C.A.; Golike, G.P.; Spurell, R.M.

    1986-05-20

    A process is described for reducing comminution energy required for preparation of a biomass fuel source containing a mixture of materials having differing friability into a particulate fuel capable of self-sustaining combustion in an air suspension fired burner which comprises: providing a principal fuel component from the fuel source in which at least about 90% by weight of the particles do not exceed about 10 mm in any dimension and the moisture content does not exceed about 25%; selecting a sufficient quantity of the more friable material from the fuel source and drying and comminuting this material to provide an ignition component having a particle size not exceeding about 100 ..mu..m diameter and a moisture content not exceeding about 15% in an amount equivalent to at least 10% of the total heat value of the combined principal and ignition fuel components; and adjusting the ratio of principal and ignition fuel components so that when both are fired in an air suspension-type burner the ignition component provides sufficient energy to the principal fuel component to maintain stable combustion, whereby during fuel preparation only a predetermined amount of the most friable material need be finely comminuted thereby reducing the overall energy required for fuel preparation.

  19. High energy neutron radiography

    SciTech Connect

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-06-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos.

  20. Overview of high-temperature fuel behaviour with relevance to CANDU fuel

    NASA Astrophysics Data System (ADS)

    Lewis, B. J.; Iglesias, F. C.; Dickson, R. S.; Williams, A.

    2009-10-01

    This paper provides an overview of high-temperature phenomena in nuclear fuel elements and bundles, with particular relevance to the CANDU fuel design. The paper describes heat generation, fuel thermal response, and thermophysical properties of the fuel and sheath that can affect the thermal and mechanical response of the fuel element. Sources of chemical heat that can arise during accident conditions in the fuel element are also detailed. Specific phenomena associated with fuel restructuring, fuel sheath deformation, fuel-to-sheath heat transfer, fuel sheath failure criteria, oxidation, hydriding and embrittlement of the Zircaloy sheath, gap transport processes in failed elements, fuel/sheath interaction and fuel dissolution by molten cladding are detailed as important phenomena that can impact reactor safety analysis. Fuel behaviour during a power pulse and fuel bundle behaviour that occurs during a severe reactor accident are further considered. The review also points out areas of further research that are needed for a more complete understanding.

  1. Advanced Combustion and Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Zigler, Brad

    2015-06-08

    Presented at the U.S. Department of Energy Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting, held June 8-12, 2015, in Arlington, Virginia. It addresses technical barriers of inadequate data and predictive tools for fuel and lubricant effects on advanced combustion engines, with the strategy being through collaboration, develop techniques, tools, and data to quantify critical fuel physico-chemical effects to enable development of advanced combustion engines that use alternative fuels.

  2. INL Site Executable Plan for Energy and Transportation Fuels Management

    SciTech Connect

    Ernest L. Fossum

    2008-11-01

    It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

  3. Evaluation of Electric Load Following Capability on Fuel Cell System Fueled by High-Purity Hydrogen

    NASA Astrophysics Data System (ADS)

    Doi, Yusuke; Park, Deaheum; Ishida, Masayoshi; Fujisawa, Akitoshi; Miura, Shinichi

    This paper describes the electrical response in load change concerning a fuel cell system fueled by high-purity hydrogen. The purpose of this study is that the fuel cell system is applied to make up for unstable electrical output of a photovoltaic system as a renewable energy. As an alternative method of secondary battery, the fuel cell system, which is able to continuously generate power as long as fuel is supplied, is expected to provide power with high reliability and stability. To evaluate the load-following capability of a polymer electrolyte fuel cell (PEFC) system, an experimental equipment was constructed with a 200W PEFC stack (number of cells: 20, cell area: 200cm2) which was supplied with hydrogen from a compressed hydrogen cylinder and a metal hydride canister. We measured the transient phenomenon of current and cell voltage when the PEFC stack was inputted step-up current loads that changed in the range of 0∼300mA/cm2. As a result, we have found that the PEFC system with both hydrogen supply sources is able to response at a time constant of 6.6∼11.6μsec under enough oxygen supply and a load below the PEFC rated power.

  4. Fuel Cell Electric Vehicle Evaluation; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Kurtz, Jennifer; Sprik, Sam; Ainscough, Chris; Saur, Genevieve

    2015-06-10

    This presentation provides a summary of NREL's FY15 fuel cell electric vehicle evaluation project activities and accomplishments. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Meeting on June 10, 2015, in Arlington, Virginia.

  5. SECA Coal-Based Systems - FuelCell Energy, Inc.

    SciTech Connect

    Ayagh, Hossein

    2014-01-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: • Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. • Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). • Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. • Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant system—including concept identification, system definition, and cost analysis—was conducted. Phase II efforts focused on development of a ≥25 kW SOFC stack tower incorporating

  6. Clean fuel from bioconversion of solar energy

    SciTech Connect

    Feighner, S.D.; Rosenberg, A.; Mason, L.; Sikka, H.C.; Saxena, J.; Howard, P.H.

    1981-12-01

    Investigating the use of unicellular algae to produce glycolic acid for subsequent conversion to methane by anaerobic digestion, SRC (1) evaluated a defined medium that supports rapid autotrophic algae growth, (2) estimated the glycolic acid production rates of four genera of algae, choosing Chlorella pyrenoidosa and Chlamydomonas reinhardtii for further study, (3) determined the effects of temperature, pH, light source and intensity, and atmospheric CO/sub 2/ concentration on glycolic acid excretion of C. pyrenoidosa, (4) demonstrated the influence of varing CO/sub 2/ concentrations on the growth and glycolic acid production of C. pyrenoidosa and C. reinhardtii, (5) developed a procedure for separating and quantitating gylcolic acid in a culture medium, and (6) introduced a method of screening and isolating mutants of C. reinhardtii that produce more glycolic acid. Test results recommend further study of isolated mutants of C. reinhardtii in order to optimize the physiological conditions that would result in high levels of glycolic acid, and also exploration of the abiotic formation of formaldehyde from glycolic acid as another route to a usable fuel.

  7. Fossil fuels in a sustainable energy future

    SciTech Connect

    Bechtel, T.F.

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute the air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.

  8. High-pressure fuel injection system for diesel engine

    SciTech Connect

    Hoshi, Y.

    1986-01-21

    This patent describes a high-pressure fuel injection system for a diesel engine. This system consists of: (a) main pumps for injecting fuel each located at one of cylinders of the engine and formed with a fuel injecting port, a discharge valve located in a path connecting the first injected fuel space with the fuel injecting port. The discharge valve is opened when the fuel to be injected reaches a predetermined pressure level. A first injection timing fuel space fluidly connected with the first injected fuel space through a movable shuttle is filled with injection timing fuel, and a plunger varies the volume of the first injection timing fuel space; (b) a metering and distributing pump formed with injection fuel outputs and injection timing fuel outlets corresponding in number to the cylinders of the engine for discharging fuel in timed relation to the rotation of the engine; (c) fuel metering valves for metering fuel flowing into the second injected fuel space and second injection timing fuel space respectively; (d) pipes for fluidly connecting the first injected fuel space and first injection timing fuel space of the main pump for injecting fuel with the injected fuel outlets and injection timing fuel outlets of the metering and distributing pump respectively; and (e) a rocker arm mechanism for driving the plunger of the main pump for injecting fuel in timed relation to the rotation of the engine.

  9. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    SciTech Connect

    Zhiwei Zhou

    2006-07-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  10. Energy properties of solid fossil fuels and solid biofuels

    SciTech Connect

    Holubcik, Michal Jandacka, Jozef

    2016-06-30

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  11. Energy properties of solid fossil fuels and solid biofuels

    NASA Astrophysics Data System (ADS)

    Holubcik, Michal; Kolkova, Zuzana; Jandacka, Jozef

    2016-06-01

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  12. Wavelength and energy dependent absorption of unconventional fuel mixtures

    NASA Astrophysics Data System (ADS)

    Khan, N.; Saleem, Z.; Mirza, A. A.

    2005-11-01

    Economic considerations of laser induced ignition over the normal electrical ignition of direct injected Compressed Natural Gas (CNG) engines has motivated automobile industry to go for extensive research on basic characteristics of leaner unconventional fuel mixtures to evaluate practical possibility of switching over to the emerging technologies. This paper briefly reviews the ongoing research activities on minimum ignition energy and power requirements of natural gas fuels and reports results of present laser air/CNG mixture absorption coefficient study. This study was arranged to determine the thermo-optical characteristics of high air/fuel ratio mixtures using laser techniques. We measured the absorption coefficient using four lasers of multiple wavelengths over a wide range of temperatures and pressures. The absorption coefficient of mixture was found to vary significantly over change of mixture temperature and probe laser wavelengths. The absorption coefficients of air/CNG mixtures were measured using 20 watts CW/pulsed CO2 laser at 10.6μm, Pulsed Nd:Yag laser at 1.06μm, 532 nm (2nd harmonic) and 4 mW CW HeNe laser at 645 nm and 580 nm for temperatures varying from 290 to 1000K using optical transmission loss technique.

  13. Regenerative Fuel Cell System As Alternative Energy Storage For Space

    NASA Astrophysics Data System (ADS)

    Lucas, J.; Bockstahler, K.; Funke, H.; Jehle, W.; Markgraf, S.; Henn, N.; Schautz, M.

    2011-10-01

    Next generation telecommunication satellites will demand more power. Power levels of 20 to 30kW are foreseen for the next 10 years. Battery technology that can sustain 30kW for eclipse lengths of up to 72 minutes (equals amount of stored energy of 36kWh) will represent a major impact on the total mass of the satellite, even with Li-ion battery technologies, which are estimated to reach an energy density of 250Wh/kg (begin of life) on cell level i.e. 150Wh/kg on subsystem level in 10 years. For the high power level another technology is needed to reach the next goal of 300 - 350Wh/kg on subsystem level. One candidate is the Regenerative Fuel Cell (RFC) technology which proves to be superior to batteries with increasing power demand and increasing discharge time. Such an RFC system based on hydrogen and oxygen technology consists of storage for the reactants (H2, O2 and H2O), a fuel cell (FC) and an electrolyser (ELY). In charge mode, the electrolyser splits water in hydrogen and oxygen using electrical power from solar cells. The gases are stored in appropriate tanks. In discharge mode, during time intervals of power demand, O2 and H2 are converted in the fuel cell to generate electricity under formation of water as by-product. The water is stored in tanks and during charge mode rerouted to the electrolyser thus creating a closed-loop process. Today Astrium is developing an RFCS as energy storage and supply unit for some future ESA missions. A complete RFCS breadboard has been established and the operational behaviour of the system is being tested. First test results, dedicated experience gained from system testing and a comparison with the analytical prediction will be discussed and presented.

  14. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    SciTech Connect

    Coughlin, Katie

    2013-01-01

    To accurately represent how conservation and efficiency policies affect energy demand, both direct and indirect impacts need to be included in the accounting. The indirect impacts are defined here as the resource savings that accrue over the fuel production chain, which when added to the energy consumed at the point of use, constitute the full-fuel- cycle (FFC) energy. This paper uses the accounting framework developed in (Coughlin 2012) to calculate FFC energy metrics as time series for the period 2010-2040. The approach is extended to define FFC metrics for the emissions of greenhouse gases (GHGs) and other air-borne pollutants. The primary focus is the types of energy used in buildings and industrial processes, mainly natural gas and electricity. The analysis includes a discussion of the fuel production chain for coal, which is used extensively for electric power generation, and for diesel and fuel oil, which are used in mining, oil and gas operations, and fuel distribution. Estimates of the energy intensity parameters make use of data and projections from the Energy Information Agency’s National Energy Modeling System, with calculations based on information from the Annual Energy Outlook 2012.

  15. High Energy Missile Project

    DTIC Science & Technology

    2004-12-01

    hypervelocity missile concept has been investigated. This research and development project called High Energy Missile (HEMi) technology...currently valid OMB control number. 1. REPORT DATE 00 DEC 2004 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE High Energy

  16. RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION

    SciTech Connect

    Bunting, Bruce G

    2012-01-01

    Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

  17. Masters Study in Advanced Energy and Fuels Management

    SciTech Connect

    Mondal, Kanchan

    2014-12-08

    There are currently three key drivers for the US energy sector a) increasing energy demand and b) environmental stewardship in energy production for sustainability and c) general public and governmental desire for domestic resources. These drivers are also true for energy nation globally. As a result, this sector is rapidly diversifying to alternate sources that would supplement or replace fossil fuels. These changes have created a need for a highly trained workforce with a the understanding of both conventional and emerging energy resources and technology to lead and facilitate the reinvention of the US energy production, rational deployment of alternate energy technologies based on scientific and business criteria while invigorating the overall economy. In addition, the current trends focus on the the need of Science, Technology, Engineering and Math (STEM) graduate education to move beyond academia and be more responsive to the workforce needs of businesses and the industry. The SIUC PSM in Advanced Energy and Fuels Management (AEFM) program was developed in response to the industries stated need for employees who combine technical competencies and workforce skills similar to all PSM degree programs. The SIUC AEFM program was designed to provide the STEM graduates with advanced technical training in energy resources and technology while simultaneously equipping them with the business management skills required by professional employers in the energy sector. Technical training include core skills in energy resources, technology and management for both conventional and emerging energy technologies. Business skills training include financial, personnel and project management. A capstone internship is also built into the program to train students such that they are acclimatized to the real world scenarios in research laboratories, in energy companies and in government agencies. The current curriculum in the SIUC AEFM will help fill the need for training both recent

  18. High-pressure coal fuel processor development

    SciTech Connect

    Greenhalgh, M.L. )

    1992-12-01

    Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

  19. Association of PM2.5 with diabetes, asthma, and high blood pressure incidence in Canada: A spatiotemporal analysis of the impacts of the energy generation and fuel sales.

    PubMed

    Requia, Weeberb J; Adams, Matthew D; Koutrakis, Petros

    2017-04-15

    Numerous studies have reported an association between fine particulate matter (PM2.5) and human health. Often these relationships are influenced by environmental factor that varies spatially and/or temporally. To our knowledge, there are no studies in Canada that have considered energy generation and fuel sales as PM2.5 effects modifiers. Determining exposure and disease-specific risk factors over space and time is crucial for disease prevention and control. In this study, we evaluated the association of PM2.5 with diabetes, asthma, and High Blood Pressure (HBP) incidence in Canada. Then we explored the impact of the energy generation and fuel sales on association changes. We fit an age-period-cohort as the study design, and we applied an over-dispersed Poisson regression model to estimate the risk. We conducted a sensitivity analysis to explore the impact of variation in clean energy rates and fuel sales on outcomes changes. The study included 117 health regions in Canada between 2007 and 2014. Our findings showed strong association of PM2.5 with diabetes, asthma, and HBP incidence. A two-year increase of 10μg/m(3) in PM2.5 was associated with an increased risk of 5.34% (95% CI: 2.28%; 12.53%) in diabetes incidence, 2.24% (95% CI: 0.93%; 5.38%) in asthma incidence, and 8.29% (95% CI: 3.44%; 19.98%) in HBP incidence. Our sensitivity analysis findings suggest higher risks of diabetes, asthma and HBP incidence when there is low clean energy generation. On the other hand, we found lower risk when we considered high rate of clean energy generation. For example, considering only diabetes incidence, we found that the risk in health regions with low rates of clean electricity is approximately 700% higher than the risk in health regions with high rates of clean electricity. Furthermore, our analysis suggested that the risk in regions with low fuel sales is 66% lower than the risk is health regions with low rates of clean electricity. Our study provides support for the

  20. Potential production of energy cane for fuel in the Caribbean

    SciTech Connect

    Samuels, G.

    1984-12-01

    Sugarcane presents a tremendous potential as a renewable energy source for the non-oil producing countries of the Caribbean. The energy cane concept is sugarcane managed for maximum dry matter (total fermentable solids for alcohol fuel and combustible solids for electricity) rather than sucrose. The use of sugarcane as a renewable energy source can provide a solution, either partial or total, to the Caribbean energy problem. Sugar cane production and the use of this crop as a renewable energy source are described.

  1. Reversible solid oxide cells for bidirectional energy conversion in spot electricity and fuel markets

    NASA Astrophysics Data System (ADS)

    Villarreal Singer, Diego

    The decarbonization of the energy system is one of the most complex and consequential challenges of the 21st century. Meeting this challenge will require the deployment of existing low carbon technologies at unprecedented scales and rates and will necessitate the development of new technologies that have the ability to transform variable renewable energy into high energy density products. Reversible Solid Oxide Cells (RSOCs) are electrochemical devices that can function both as fuel cells or electrolyzers: in fuel cell mode, RSOCs consume a chemical fuel (H2, CO, CH4, etc.) to produce electrical power, while in electrolysis mode they consume electric power and chemical inputs (H2O, CO2) to produce a chemical fuel (H2, CO, CH4, etc.). As such, RSOC systems can be thought of as flexible "energy hubs" that have unique potential to bridge the low power density renewable infrastructure with that of high energy density fuels in an efficient, dynamic, and bidirectional fashion. This dissertation explores the different operational sensitivities and design trade-offs of a methane based RSOC system, investigates the optimum operating strategies for a system that adapts to variations in the hourly spot electricity and fuel prices in Western Denmark, and provides an economic analysis of the system under a wide variety of design assumptions, operational strategies, and fuel and electricity market structures. (Abstract shortened by ProQuest.).

  2. Figuring on energy: fuel-switch mirage

    SciTech Connect

    Schaffer, P.

    1984-06-25

    DOE's Petroleum Supply Annual: 1983 does not support the idea that the 1981-83 drop in natural gas consumption was due to industrial users switching to oil. A consumption breakdown shows a pattern of reduced oil use during the same period. The American Gas Association estimates that gas utilities lost 0.325 quads in 1982 because of dual-fuel switching, but gas consumption continued to decline even after the fuel-switching trend reversed. The author traces the problem to state rate regulators whose policies subsidize residential users at the expense of industry rather than to interfuel competition.

  3. Energy substrates that fuel fast neuronal network oscillations.

    PubMed

    Galow, Lukas V; Schneider, Justus; Lewen, Andrea; Ta, Thuy-Truc; Papageorgiou, Ismini E; Kann, Oliver

    2014-01-01

    Fast neuronal network oscillations in the gamma-frequency band (30--100 Hz) provide a fundamental mechanism of complex neuronal information processing in the hippocampus and neocortex of mammals. Gamma oscillations have been implicated in higher brain functions such as sensory perception, motor activity, and memory formation. The oscillations emerge from precise synapse interactions between excitatory principal neurons such as pyramidal cells and inhibitory GABAergic interneurons, and they are associated with high energy expenditure. However, both energy substrates and metabolic pathways that are capable to power cortical gamma oscillations have been less defined. Here, we investigated the energy sources fueling persistent gamma oscillations in the CA3 subfield of organotypic hippocampal slice cultures of the rat. This preparation permits superior oxygen supply as well as fast application of glucose, glycolytic metabolites or drugs such as glycogen phosphorylase inhibitor during extracellular recordings of the local field potential. Our findings are: (i) gamma oscillations persist in the presence of glucose (10 mmol/L) for greater than 60 min in slice cultures while (ii) lowering glucose levels (2.5 mmol/L) significantly reduces the amplitude of the oscillation. (iii) Gamma oscillations are absent at low concentration of lactate (2 mmol/L). (iv) Gamma oscillations persist at high concentration (20 mmol/L) of either lactate or pyruvate, albeit showing significant reductions in the amplitude. (v) The breakdown of glycogen significantly delays the decay of gamma oscillations during glucose deprivation. However, when glucose is present, the turnover of glycogen is not essential to sustain gamma oscillations. Our study shows that fast neuronal network oscillations can be fueled by different energy-rich substrates, with glucose being most effective.

  4. Energy substrates that fuel fast neuronal network oscillations

    PubMed Central

    Galow, Lukas V.; Schneider, Justus; Lewen, Andrea; Ta, Thuy-Truc; Papageorgiou, Ismini E.; Kann, Oliver

    2014-01-01

    Fast neuronal network oscillations in the gamma-frequency band (30–−100 Hz) provide a fundamental mechanism of complex neuronal information processing in the hippocampus and neocortex of mammals. Gamma oscillations have been implicated in higher brain functions such as sensory perception, motor activity, and memory formation. The oscillations emerge from precise synapse interactions between excitatory principal neurons such as pyramidal cells and inhibitory GABAergic interneurons, and they are associated with high energy expenditure. However, both energy substrates and metabolic pathways that are capable to power cortical gamma oscillations have been less defined. Here, we investigated the energy sources fueling persistent gamma oscillations in the CA3 subfield of organotypic hippocampal slice cultures of the rat. This preparation permits superior oxygen supply as well as fast application of glucose, glycolytic metabolites or drugs such as glycogen phosphorylase inhibitor during extracellular recordings of the local field potential. Our findings are: (i) gamma oscillations persist in the presence of glucose (10 mmol/L) for greater than 60 min in slice cultures while (ii) lowering glucose levels (2.5 mmol/L) significantly reduces the amplitude of the oscillation. (iii) Gamma oscillations are absent at low concentration of lactate (2 mmol/L). (iv) Gamma oscillations persist at high concentration (20 mmol/L) of either lactate or pyruvate, albeit showing significant reductions in the amplitude. (v) The breakdown of glycogen significantly delays the decay of gamma oscillations during glucose deprivation. However, when glucose is present, the turnover of glycogen is not essential to sustain gamma oscillations. Our study shows that fast neuronal network oscillations can be fueled by different energy-rich substrates, with glucose being most effective. PMID:25538552

  5. High-pressure coal fuel processor development

    SciTech Connect

    Greenhalgh, M.L.

    1992-11-01

    The objective of Subtask 1.1 Engine Feasibility was to conduct research needed to establish the technical feasibility of ignition and stable combustion of directly injected, 3,000 psi, low-Btu gas with glow plug ignition assist at diesel engine compression ratios. This objective was accomplished by designing, fabricating, testing and analyzing the combustion performance of synthesized low-Btu coal gas in a single-cylinder test engine combustion rig located at the Caterpillar Technical Center engine lab in Mossville, Illinois. The objective of Subtask 1.2 Fuel Processor Feasibility was to conduct research needed to establish the technical feasibility of air-blown, fixed-bed, high-pressure coal fuel processing at up to 3,000 psi operating pressure, incorporating in-bed sulfur and particulate capture. This objective was accomplished by designing, fabricating, testing and analyzing the performance of bench-scale processors located at Coal Technology Corporation (subcontractor) facilities in Bristol, Virginia. These two subtasks were carried out at widely separated locations and will be discussed in separate sections of this report. They were, however, independent in that the composition of the synthetic coal gas used to fuel the combustion rig was adjusted to reflect the range of exit gas compositions being produced on the fuel processor rig. Two major conclusions resulted from this task. First, direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize these low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risks associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept.

  6. Solar energy powered microbial fuel cell with a reversible bioelectrode.

    PubMed

    Strik, David P B T B; Hamelers, Hubertus V M; Buisman, Cees J N

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.

  7. Glucose as the sole metabolic fuel: overcoming a misconception using conceptual change to teach the energy-yielding metabolism to Brazilian high school students.

    PubMed

    Luz, Mauricio R M P; Oliveira, Gabriel A; Da Poian, Andrea T

    2013-01-01

    A misconception regarding the human metabolism has been shown to be widespread among high school students. The students consider glucose as the sole metabolic fuel, disregarding that lipids and amino acids can be oxidized for ATP production by human cells. This misconception seems to be a consequence of formal teaching in grade and high schools. The present study reports the evaluation of a teaching strategy based on the use of a dialogic teaching methodology within a conceptual change approach to remediate that misconception. Students were stimulated to formulate hypotheses, outline experiments, and to discuss their outcomes. The results showed that students were able to reformulate their original concepts immediately after teaching. The majority of the students showed adequate learning of the topic eight months after the application of the teaching strategy, although some level of misconception recurrence was observed. The educational consequences of the teaching unit are discussed in the context of the possible reasons for its success as well as the need for similar initiatives at grade school to avoid the establishment of the misconception.

  8. High energy colliders

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p{anti p}), lepton (e{sup +}e{sup {minus}}, {mu}{sup +}{mu}{sup {minus}}) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed.

  9. Inorganic High Energy Oxidisers,

    DTIC Science & Technology

    properties may contribute significantly to the energy of the whole system. A book entitled ’Inorganic High - Energy Oxidisers’ by E.W. Lawless and I.C. Smith is the subject of this Essay Review by W.E. Batty.

  10. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  11. Nuclear Energy for a Low-Carbon-Dioxide-Emission Transportation System with Liquid Fuels

    SciTech Connect

    Forsberg, Charles W

    2007-01-01

    The two major energy challenges for the United States are to replace crude oil in our transportation system and reduce greenhouse gas emissions. A multilayer strategy to replace oil using nuclear energy and various carbon sources (fossil fuels, biomass, or air) is described that (a) allows the continued use of liquid fuels (ethanol, gasoline, diesel, and jet fuel) in the transport sector, (b) does not require major changes in lifestyle by the consumer, and (c) ultimately eliminates carbon dioxide emissions from the transport sector. Nuclear energy is used to provide electricity, heat, and ultimately hydrogen, with the hydrogen produced by either electrolysis or more advanced thermochemical production methods. In the near term, nuclear energy can provide low-temperature heat (steam) for ethanol production and electricity for transportation. Midterm options include low-temperature heat and limited quantities of hydrogen for processing cellulosic biomass into liquid fuels (ethanol and lignin-derived hydrocarbons) and providing high-temperature heat for (a) traditional refining and (b) underground oil production and refining. In the longer term, biomass becomes the feedstock for liquid-fuels production, with nuclear energy providing heat and large quantities of hydrogen for complete biomass conversion to hydrocarbon fuels. Nuclear energy could be used to provide over half the total energy required by the transportation system, and the use of oil in the transport sector could potentially be eliminated within several decades.

  12. New results from the NSRR experiments with high burnup fuel

    SciTech Connect

    Fuketa, Toyoshi; Ishijima, Kiyomi; Mori, Yukihide

    1996-03-01

    Results obtained in the NSRR power burst experiments with irradiated PWR fuel rods with fuel burnup up to 50 MWd/kgU are described and discussed in this paper. Data concerning test method, test fuel rod, pulse irradiation, transient records during the pulse and post irradiation examination are described, and interpretations and discussions on fission gas release and fuel pellet fragmentation are presented. During the pulse-irradiation experiment with 50 MWd/kgU PWR fuel rod, the fuel rod failed at considerably low energy deposition level, and large amount of fission gas release and fragmentation of fuel pellets were observed.

  13. An Innovative High Thermal Conductivity Fuel Design

    SciTech Connect

    PI: James S. Tulenko; Co-PI: Ronald H. Baney,

    2007-10-14

    Uranium dioxide (UO2) is the most common fuel material in commercial nuclear power reactors. UO2 has the advantages of a high melting point, good high-temperature stability, good chemical compatibility with cladding and coolant, and resistance to radiation. The main disadvantage of UO2 is its low thermal conductivity. During a reactor’s operation, because the thermal conductivity of UO2 is very low, for example, about 2.8 W/m-K at 1000 oC [1], there is a large temperature gradient in the UO2 fuel pellet, causing a very high centerline temperature, and introducing thermal stresses, which lead to extensive fuel pellet cracking. These cracks will add to the release of fission product gases after high burnup. The high fuel operating temperature also increases the rate of fission gas release and the fuel pellet swelling caused by fission gases bubbles. The amount of fission gas release and fuel swelling limits the life time of UO2 fuel in reactor. In addition, the high centerline temperature and large temperature gradient in the fuel pellet, leading to a large amount of stored heat, increase the Zircaloy cladding temperature in a lost of coolant accident (LOCA). The rate of Zircaloy-water reaction becomes significant at the temperature above 1200 oC [2]. The ZrO2 layer generated on the surface of the Zircaloy cladding will affect the heat conduction, and will cause a Zircaloy cladding rupture. The objective of this research is to increase the thermal conductivity of UO2, while not affecting the neutronic property of UO2 significantly. The concept to accomplish this goal is to incorporate another material with high thermal conductivity into the UO2 pellet. Silicon carbide (SiC) is a good candidate, because the thermal conductivity of single crystal SiC is 60 times higher than that of UO2 at room temperature and 30 times higher at 800 oC [3]. Silicon carbide also has the properties of low thermal neutron absorption cross section, high melting point, good chemical

  14. Fuel from Bacteria, CO2, Water, and Solar Energy: Engineering a Bacterial Reverse Fuel Cell

    SciTech Connect

    2010-07-01

    Electrofuels Project: Harvard is engineering a self-contained, scalable Electrofuels production system that can directly generate liquid fuels from bacteria, carbon dioxide (CO2), water, and sunlight. Harvard is genetically engineering bacteria called Shewanella, so the bacteria can sit directly on electrical conductors and absorb electrical current. This current, which is powered by solar panels, gives the bacteria the energy they need to process CO2 into liquid fuels. The Harvard team pumps this CO2 into the system, in addition to water and other nutrients needed to grow the bacteria. Harvard is also engineering the bacteria to produce fuel molecules that have properties similar to gasoline or diesel fuel—making them easier to incorporate into the existing fuel infrastructure. These molecules are designed to spontaneously separate from the water-based culture that the bacteria live in and to be used directly as fuel without further chemical processing once they’re pumped out of the tank.

  15. Comparing the Energy Content of Batteries, Fuels, and Materials

    ERIC Educational Resources Information Center

    Balsara, Nitash P.; Newman, John

    2013-01-01

    A methodology for calculating the theoretical and practical specific energies of rechargeable batteries, fuels, and materials is presented. The methodology enables comparison of the energy content of diverse systems such as the lithium-ion battery, hydrocarbons, and ammonia. The methodology is relevant for evaluating the possibility of using…

  16. Comparing the Energy Content of Batteries, Fuels, and Materials

    ERIC Educational Resources Information Center

    Balsara, Nitash P.; Newman, John

    2013-01-01

    A methodology for calculating the theoretical and practical specific energies of rechargeable batteries, fuels, and materials is presented. The methodology enables comparison of the energy content of diverse systems such as the lithium-ion battery, hydrocarbons, and ammonia. The methodology is relevant for evaluating the possibility of using…

  17. High-energy detector

    DOEpatents

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  18. Solar Energy for Transportation Fuel (LBNL Science at the Theater)

    ScienceCinema

    Lewis, Nate

    2016-07-12

    Nate Lewis' talk looks at the challenge of capturing solar energy and storing it as an affordable transportation fuel - all on a scale necessary to reduce global warming. Overcoming this challenge will require developing new materials that can use abundant and inexpensive elements rather than costly and rare materials. He discusses the promise of new materials in the development of carbon-free alternatives to fossil fuel.

  19. Solar Energy for Transportation Fuel (LBNL Science at the Theater)

    SciTech Connect

    Lewis, Nate

    2008-05-12

    Nate Lewis' talk looks at the challenge of capturing solar energy and storing it as an affordable transportation fuel - all on a scale necessary to reduce global warming. Overcoming this challenge will require developing new materials that can use abundant and inexpensive elements rather than costly and rare materials. He discusses the promise of new materials in the development of carbon-free alternatives to fossil fuel.

  20. Tactical Fuel and Energy Strategy for The Future Modular Force

    DTIC Science & Technology

    2009-05-18

    product of the anaerobic digestion (decomposition without oxygen) of organic matter such as animal manure , sewage, and municipal solid waste. It is...supplement petroleum-based fuels and thereby decrease petroleum-based fuel requirements. The Army can stage itself through additional and increased R&D...Energy situation and to begin to develop flexible options and recommend choices and investments that will yield a balanced strategy. At this stage

  1. Integrated fuel cell energy system for modern buildings

    SciTech Connect

    Moard, D.M.; Cuzens, J.E.

    1998-07-01

    Energy deregulation, building design efficiency standards and competitive pressures all encourage the incorporation of distributed fuel cell cogeneration packages into modern buildings. The building marketplace segments to which these systems apply include office buildings, retail stores, hospitals, hotels, food service and multifamily residences. These applications represent approximately 60% of the commercial building sector's energy use plus a portion of the residential sector's energy use. While there are several potential manufacturers of fuel cells on the verge of marketing equipment, most are currently using commercial hydrogen gas to fuel them. There are few suppliers of equipment, which convert conventional fuels into hydrogen. Hydrogen Burner Technology, Inc. (HBT) is one of the few companies with a proven under-oxidized-burner (UOB) technology, patented and already proven in commercial use for industrial applications. HBT is developing a subsystem based on the UOB technology that can produce a hydrogen rich product gas using natural gas, propane or liquid fuels as the feed stock, which may be directly useable by proton exchange membrane (PEM) fuel cells for conversion into electricity. The combined thermal output can also be used for space heating/cooling, water heating or steam generation applications. HBT is currently analyzing the commercial building market, integrated system designs and marketplace motivations which will allow the best overall subsystem to be designed, tested and introduced commercially in the shortest time possible. HBT is also actively involved in combined subsystem designs for use in automotive and small residential services.

  2. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels

    SciTech Connect

    Kucharski, TJ; Ferralis, N; Kolpak, AM; Zheng, JO; Nocera, DG; Grossman, JC

    2014-04-13

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  3. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.

    PubMed

    Kucharski, Timothy J; Ferralis, Nicola; Kolpak, Alexie M; Zheng, Jennie O; Nocera, Daniel G; Grossman, Jeffrey C

    2014-05-01

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  4. High energy beam lines

    NASA Astrophysics Data System (ADS)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  5. Neutron imaging methods for the investigation of energy related materials. Fuel cells, battery, hydrogen storage and nuclear fuel

    NASA Astrophysics Data System (ADS)

    Lehmann, Eberhard H.; Boillat, Pierre; Kaestner, Anders; Vontobel, Peter; Mannes, David

    2015-10-01

    After a short explanation of the state-of-the-art in the field of neutron imaging we give some examples how energy related materials can be studied successfully. These are in particular fuel cell studies, battery research approaches, the storage of hydrogen, but also some investigations with nuclear fuel components. The high contrast for light isotopes like H-1, Li-6 or B-10 are used to trace low amounts of material even within compact sealing of metals which are relatively transparent for neutrons at the same time.

  6. Military Fuel and Alternative Fuel Effects on a Modern Diesel Engine Employing a Fuel-Lubricated High Pressure Common Rail Fuel Injection System

    DTIC Science & Technology

    2011-08-09

    injected, turbo- charged, air- water intercooled engine which employs a fuel- lubricated high pressure common rail pump , and piezo- electric fuel injectors...military fuels. Many of these modern HPCR systems utilize fuel-lubricated high pressure pumps , and can generate upwards of 2000-bar fuel rail pressures...steps were allowed to meet their own steady state temperatures. In addition, engine oil sump temperature was dictated by an internal jacket water

  7. High Speed Imaging of Diesel Fuel Sprays

    NASA Astrophysics Data System (ADS)

    Jackson, Ja'kira; Bittle, Joshua

    2016-11-01

    Fuel sprays primarily serve as methods for fuel distribution, fuel/air mixing, and atomization. In this research, a constant pressure flow rig vessel is being tested at various pressures and temperatures using n-heptane. The experiment requires two imaging techniques: color Schlieren and Mie-scatter. Schlieren captures density gradients in a spray which includes both liquid and vapor phases while Mie-scatter is only sensitive to the liquid phase of the fuel spray. Essentially, studies are mainly focused on extracting the liquid boundary from the Schlieren to possibly eliminate the need for acquiring the Mie-Scatter technique. Four test conditions (combination of low and high pressure and temperatures) are used in the application to attempt to find the liquid boundary independent of the Mie-scatter technique. In this pursuit the following methods were used: a color threshold, a value threshold, and the time variation in color. All methods provided some indication of the liquid region but none were able to capture the full liquid boundary as obtained by the Mie-scatter results. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  8. The Status of Solar Energy as Fuel.

    ERIC Educational Resources Information Center

    Hall, D. O.

    1979-01-01

    Discused is the biological conversion of solar energy via photosynthesis into stored energy in the form of biomass. Detailed are the research and development programs on biomass of the United States, Canada, Australia, New Zealand, Europe, Brazil, Philippines, Sahel, India, and China. (BT)

  9. The Status of Solar Energy as Fuel.

    ERIC Educational Resources Information Center

    Hall, D. O.

    1979-01-01

    Discused is the biological conversion of solar energy via photosynthesis into stored energy in the form of biomass. Detailed are the research and development programs on biomass of the United States, Canada, Australia, New Zealand, Europe, Brazil, Philippines, Sahel, India, and China. (BT)

  10. Jet fuel based high pressure solid oxide fuel cell system

    NASA Technical Reports Server (NTRS)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2013-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  11. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    NASA Technical Reports Server (NTRS)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  12. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed by members of the USRA (Universities Space Research Association) contract team during the six months during the reporting period (10/95 - 3/96) and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science, Archive Research Center (HEASARC), and others.

  13. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed-by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, visiting the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA); X-ray Timing Experiment (XTE); X-ray Spectrometer (XRS); Astro-E; High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  14. High Density Jet Fuel Supply and Specifications

    DTIC Science & Technology

    1986-01-01

    same shortcomings. Perhaps different LAK blends using heavy reformate or heavy cat cracker naphtha (both high in aromatics and isoparaffins) could... catalytic cracking (FCC) process. Subsequent investigations funded by the U. S. Air Force concentrated on producing a similar fuel from the...cut (19% overhead) and adding heavy naphtha (320-440F) from a nearby paraffinic crude (40"API Wyoming Sweet) an excellent JP-8X can be created. Table 5

  15. Tactical Fuel and Energy Implementation Plan

    DTIC Science & Technology

    2010-09-24

    Technologies Corporation, in a briefing titled “ Software Modeling and Validation of a Microgrid ,” delivered to the Alternative Energy NOW Conference, Orlando...and Energy Implementation Plan 2 This plan is focused on the tactical environment, defined as maneuver brigade combat team (BCT) and below. The...Soldiers must clearly understand what is expected of them, and must know how to implement the new behaviors, once they have been defined

  16. Energy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand

    NASA Astrophysics Data System (ADS)

    Carignano, Mauro G.; Costa-Castelló, Ramon; Roda, Vicente; Nigro, Norberto M.; Junco, Sergio; Feroldi, Diego

    2017-08-01

    Offering high efficiency and producing zero emissions Fuel Cells (FCs) represent an excellent alternative to internal combustion engines for powering vehicles to alleviate the growing pollution in urban environments. Due to inherent limitations of FCs which lead to slow transient response, FC-based vehicles incorporate an energy storage system to cover the fast power variations. This paper considers a FC/supercapacitor platform that configures a hard constrained powertrain providing an adverse scenario for the energy management strategy (EMS) in terms of fuel economy and drivability. Focusing on palliating this problem, this paper presents a novel EMS based on the estimation of short-term future energy demand and aiming at maintaining the state of energy of the supercapacitor between two limits, which are computed online. Such limits are designed to prevent active constraint situations of both FC and supercapacitor, avoiding the use of friction brakes and situations of non-power compliance in a short future horizon. Simulation and experimentation in a case study corresponding to a hybrid electric bus show improvements on hydrogen consumption and power compliance compared to the widely reported Equivalent Consumption Minimization Strategy. Also, the comparison with the optimal strategy via Dynamic Programming shows a room for improvement to the real-time strategies.

  17. Economic competitiveness of fuel cell onsite integrated energy systems

    NASA Technical Reports Server (NTRS)

    Bollenbacher, G.

    1983-01-01

    The economic competitiveness of fuel cell onsite integrated energy systems (OS/IES) in residential and commercial buildings is examined. The analysis is carried out for three different buildings with each building assumed to be at three geographic locations spanning a range of climatic conditions. Numerous design options and operating strategies are evaluated and two economic criteria are used to measure economic performance. In general the results show that fuel cell OS/IES's are competitive in most regions of the country if the OS/IES is properly designed. The preferred design is grid connected, makes effective use of the fuel cell's thermal output, and has a fuel cell powerplant sized for the building's base electrical load.

  18. Three order state space modeling of proton exchange membrane fuel cell with energy function definition

    NASA Astrophysics Data System (ADS)

    Becherif, M.; Hissel, D.; Gaagat, S.; Wack, M.

    The fuel cell is a complex system which is the centre of a lot of multidisciplinary research activities since it involves intricate application of various fields of study. The operation of a fuel cell depends on a wide range of parameters. The effect of one cannot be studied in isolation without disturbing the system which makes it very difficult to comprehend, analyze and predict various phenomena occurring in the fuel cell. In the current work, we present an equivalent electrical circuit of the pneumatics and fluidics in a fuel cell stack. The proposed model is based on the physical phenomena occurring inside fuel cell stack where we define the fluidic-electrical and pneumatic-electrical analogy. The effect of variation in temperature and relative humidity on the cell are considered in this model. The proposed model, according to the considered hypothesis, is a simple three order state space model which is suitable for the control purpose where a desired control structure can be formulated for high-end applications of the fuel cell as a subpart of a larger system, for instance, in hybrid propulsion of vehicles coupled with batteries and supercapacitors. Another key point of our work is the definition of the natural fuel cell stack energy function. The circuit analysis equations are presented and the simulated model is validated using the experimental data obtained using the fuel cell test bench available in Fuel Cell Laboratory, France.

  19. Energy sustainability of Microbial Fuel Cell (MFC): A case study

    NASA Astrophysics Data System (ADS)

    Tommasi, Tonia; Lombardelli, Giorgia

    2017-07-01

    Energy sustainability analysis and durability of Microbial Fuel Cells (MFCs) as energy source are necessary in order to move from the laboratory scale to full-scale application. This paper focus on these two aspects by considering the energy performances of an original experimental test with MFC conducted for six months under an external load of 1000 Ω. Energy sustainability is quantified using Energy Payback Time, the time necessary to produce the energy already spent to construct the MFC device. The results of experiment reveal that the energy sustainability of this specific MFC is never reached due to energy expenditure (i.e. for pumping) and to the low amount of energy produced. Hence, different MFC materials and architectures were analysed to find guidelines for future MFC development. Among these, only sedimentary fuel cells (Benthic MFCs) seem sustainable from an energetic point of view, with a minimum duration of 2.7 years. An energy balance approach highlights the importance of energy calculation. However, this is very often not taken into account in literature. This study outlines promising methodology for the design of an alternative layout of energy sustainable MFC and wastewater management systems.

  20. High Energy Exoplanet Transits

    NASA Astrophysics Data System (ADS)

    Llama, Joe; Shkolnik, Evgenya L.

    2017-10-01

    X-ray and ultraviolet transits of exoplanets allow us to probe the atmospheres of these worlds. High energy transits have been shown to be deeper but also more variable than in the optical. By simulating exoplanet transits using high-energy observations of the Sun, we can test the limits of our ability to accurately measure the properties of these planets in the presence of stellar activity. We use both disk-resolved images of the Solar disk spanning soft X-rays, the ultraviolet, and the optical and also disk-integrated Sun-as-a-star observations of the Lyα irradiance to simulate transits over a wide wavelength range. We find that for stars with activity levels similar to the Sun, the planet-to-star radius ratio can be overestimated by up to 50% if the planet occults an active region at high energies. We also compare our simulations to high energy transits of WASP-12b, HD 189733, 55 Cnc b, and GJ 436b.

  1. High energy particle astronomy.

    NASA Technical Reports Server (NTRS)

    Buffington, A.; Muller, R. A.; Smith, L. H.; Smoot, G. F.

    1972-01-01

    Discussion of techniques currently used in high energy particle astronomy for measuring charged and neutral cosmic rays and their isotope and momentum distribution. Derived from methods developed for accelerator experiments in particle physics, these techniques help perform important particle astronomy experiments pertaining to nuclear cosmic ray and gamma ray research, electron and position probes, and antimatter searches.

  2. High energy particle astronomy.

    NASA Technical Reports Server (NTRS)

    Buffington, A.; Muller, R. A.; Smith, L. H.; Smoot, G. F.

    1972-01-01

    Discussion of techniques currently used in high energy particle astronomy for measuring charged and neutral cosmic rays and their isotope and momentum distribution. Derived from methods developed for accelerator experiments in particle physics, these techniques help perform important particle astronomy experiments pertaining to nuclear cosmic ray and gamma ray research, electron and position probes, and antimatter searches.

  3. High Energy Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An overview of the High Energy Astronomy Observatory 2 contributions to X-ray astronomy is presented along with a brief description of the satellite and onboard telescope. Observations relating to galaxies and galactic clusters, black holes, supernova remnants, quasars, and cosmology are discussed.

  4. Northwest home buyers' fuel and energy-efficiency preferences

    SciTech Connect

    Lee, A.D.; Harkreader, S.A.; Bruneau, C.L.; Volke, S.M.

    1990-11-01

    This study for the Bonneville Power Administration (Bonneville) investigated home buyers' heating fuel and energy-efficiency preferences, and the influence of incentives on their choices. The study was conducted in four regions of Washington State: Spokane and Pierce Counties, where the Model Conservation Standards (MCS) for new electrically heated homes have been adopted as local code, and King and Clark Counties, where the MCS has been implemented only through a voluntary marketing program. The results of this study provide useful information about energy-efficiency, space heating fuel type, and alternative incentive programs. They provide initial evidence that fuel-specific energy-efficiency standards may significantly affect the shares of different heating fuels in the new home market. They also suggest that cash rebates and utility rate incentives may have a modest effect on the shares for different heating fuels. Because these results are based on a technique relying on hypothetical choices and because they reflect only four metropolitan areas, further study must be conducted to determine whether the results apply to other locations and whether other analytic approaches produce similar findings. 3 refs.

  5. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions

    SciTech Connect

    C. Saricks; D. Santini; M. Wang

    1999-02-08

    We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O).

  6. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil

  7. Theoretical High Energy Physics

    SciTech Connect

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  8. Fuel-disruption experiments under high-ramp-rate heating conditions. [LMFBR

    SciTech Connect

    Wright, S.A.; Worledge, D.H.; Cano, G.L.; Mast, P.K.; Briscoe, F.

    1983-10-01

    This topical report presents the preliminary results and analysis of the High Ramp Rate fuel-disruption experiment series. These experiments were performed in the Annular Core Research Reactor at Sandia National Laboratories to investigate the timing and mode of fuel disruption during the prompt-burst phase of a loss-of-flow accident. High-speed cinematography was used to observe the timing and mode of the fuel disruption in a stack of five fuel pellets. Of the four experiments discussed, one used fresh mixed-oxide fuel, and three used irradiated mixed-oxide fuel. Analysis of the experiments indicates that in all cases, the observed disruption occurred well before fuel-vapor pressure was high enough to cause the disruption. The disruption appeared as a rapid spray-like expansion and occurred near the onset of fuel melting in the irradiated-fuel experiments and near the time of complete fuel melting in the fresh-fuel experiment. This early occurrence of fuel disruption is significant because it can potentially lower the work-energy release resulting from a prompt-burst disassembly accident.

  9. Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate

    SciTech Connect

    Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

    2010-08-05

    Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

  10. Fuel Cell/Turbine Ultra High Efficiency Power System

    SciTech Connect

    Hossein, Ghezel-Ayagh

    2001-11-06

    FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will

  11. Fuel cell-fuel cell hybrid system

    DOEpatents

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  12. High energy reactor neutrinos

    NASA Astrophysics Data System (ADS)

    Raper, Neill

    We present the first measurement of a nonzero reactor neutrino flux with energies above 8 MeV. Measurements are taken with the Daya Bay Reactor Neutrino Experiments detectors, using the Guangdong Nuclear Power Station as a source. Disagreement between data and theory regarding rate and shape of reactor neutrino spectra have made the need for direct measurement clear. Data are especially useful at high energies, where far fewer isotopes contribute. Neutrino candidates are correlated to reactor power and reactor power is extrapolated to zero in order to separate neutrino events from background. We find evidence of reactor neutrinos up to ˜12.5 MeV at 1.92 sigma above 0 and include a survey of isotopes likely to be contributing neutrinos in this energy range.

  13. An approach for evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Nakae, Nobuo; Ozawa, Takayuki; Ohta, Hirokazu; Ogata, Takanari; Sekimoto, Hiroshi

    2014-03-01

    One of the important issues in the study of Innovative Nuclear Energy Systems is evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems. An approach for evaluating the integrity of the fuel is discussed here based on the procedure currently used in the integrity evaluation of fast reactor fuel. The fuel failure modes determining fuel life time were reviewed and fuel integrity was analyzed and compared with the failure criteria.

  14. Fuels and chemicals from biomass using solar thermal energy

    NASA Technical Reports Server (NTRS)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-01-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  15. Energy return on investment of used nuclear fuel recycling

    SciTech Connect

    2011-08-31

    N-EROI calculates energy return on investment (EROI) for recycling of used nublear fuel in four scenarios: one-pass recycle in light water reactors; two-pass recycle in light water reactors; mulit-pass recycle in burner fast reactora; one-pass recycle in breeder fast reactors.

  16. Fuels and chemicals from biomass using solar thermal energy

    NASA Astrophysics Data System (ADS)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-05-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  17. Direct fuel cell - A high proficiency power generator for biofuels

    SciTech Connect

    Patel, P.S.; Steinfeld, G.; Baker, B.S.

    1994-12-31

    Conversion of renewable bio-based resources into energy offers significant benefits for our environment and domestic economic activity. It also improves national security by displacing fossil fuels. However, in the current economic environment, it is difficult for biofuel systems to compete with other fossil fuels. The biomass-fired power plants are typically smaller than 50 MW, lower in electrical efficiencies (<25%) and experience greater costs for handling and transporting the biomass. When combined with fuel cells such as the Direct Fuel Cell (DFC), biofuels can produce power more efficiently with negligible environmental impact. Agricultural and other waste biomass can be converted to ethanol or methane-rich biofuels for power generation use in the DFC. These DFC power plants are modular and factory assembled. Due to their electrochemical (non-combustion) conversion process, these plants are environmentally friendly, highly efficient and potentially cost effective, even in sizes as small as a few meagawatts. They can be sited closer to the source of the biomass to minimize handling and transportation costs. The high-grade waste heat available from DFC power plants makes them attractive in cogeneration applications for farming and rural communities. The DFC potentially opens up new markets for biofuels derived from wood, grains and other biomass waste products.

  18. Energy Conversion in Photosynthesis: A Paradigm for Solar Fuel Production

    NASA Astrophysics Data System (ADS)

    Moore, Gary F.; Brudvig, Gary W.

    2011-03-01

    Solar energy has the capacity to fulfill global human energy demands in an environmentally and socially responsible manner, provided efficient, low-cost systems can be developed for its capture, conversion, and storage. Toward these ends, a molecular-based understanding of the fundamental principles and mechanistic details of energy conversion in photosynthesis is indispensable. This review addresses aspects of photosynthesis that may prove auspicious to emerging technologies. Conversely, areas in which human ingenuity may offer innovative solutions, resulting in enhanced energy storage efficiencies in artificial photosynthetic constructs, are considered. Emphasis is placed on photoelectrochemical systems that utilize water as a source of electrons for the production of solar fuels.

  19. A Bio-Based Fuel Cell for Distributed Energy Generation

    SciTech Connect

    Anthony Terrinoni; Sean Gifford

    2008-06-30

    The technology we propose consists primarily of an improved design for increasing the energy density of a certain class of bio-fuel cell (BFC). The BFCs we consider are those which harvest electrons produced by microorganisms during their metabolism of organic substrates (e.g. glucose, acetate). We estimate that our technology will significantly enhance power production (per unit volume) of these BFCs, to the point where they could be employed as stand-alone systems for distributed energy generation.

  20. Tactical Fuel and Energy Implementation Plan

    DTIC Science & Technology

    2010-09-24

    Software Modeling and Validation of a Microgrid ,” delivered to the Alternative Energy NOW Conference, Orlando, FL, 9 February 2010. 34Ibid. 35...This plan is focused on the tactical environment, defined as maneuver brigade combat team (BCT) and below. The study team developed the objectives...what is expected of them, and must know how to implement the new behaviors, once they have been defined . Education is essential in establishing

  1. Low-energy gamma ray attenuation characteristics of aviation fuels

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Shen, Chih-Ping; Sprinkle, Danny R.

    1990-01-01

    Am241 (59.5 keV) gamma ray attenuation characteristics were investigated in 270 aviation fuel (Jet A and Jet A-1) samples from 76 airports around the world as a part of world wide study to measure the variability of aviation fuel properties as a function of season and geographical origin. All measurements were made at room temperature which varied from 20 to 27 C. Fuel densities (rho) were measured concurrently with their linear attenuation coefficients (mu), thus providing a measure of mass attenuation coefficient (mu/rho) for the test samples. In 43 fuel samples, rho and mu values were measured at more than one room temperature, thus providing mu/rho values for them at several temperatures. The results were found to be independent of the temperature at which mu and rho values were measured. It is noted that whereas the individual mu and rho values vary considerably from airport to airport as well as season to season, the mu/rho values for all samples are constant at 0.1843 + or - 0.0013 cu cm/gm. This constancy of mu/rho value for aviation fuels is significant since a nuclear fuel quantity gauging system based on low energy gamma ray attenuation will be viable throughout the world.

  2. Low Energy Electron Scattering from Fuels

    NASA Astrophysics Data System (ADS)

    Lopes, M. C. A.; Silva, D. G. M.; Bettega, M. H. F.; da Costa, R. F.; Lima, M. A. P.; Khakoo, M. A.; Winstead, C.; McKoy, V.

    2012-11-01

    In order to understand and optimize processes occurring during the ignition of plasma and its consequences in post-discharge for an internal combustion engine, especially considering the spark plug, we have produced in this work some basic information necessary to modeling spark ignition in alcohol- fuelled engines. Total cross sections of electron scattering by methanol and ethanol molecules in the energy range from 60 to 500 eV are reported, using the linear transmission method based on the Beer-Lambert law to first approximation. Aditionally to that, measurements and calculations of differential cross sections for elastic low-energy (rotationally unresolved) electron scattering were also discussed, for impact energies of 1, 2, 5, 10, 15, 20, 30, 50, and 100 eV and for scattering angles of 5°-130°. The measurements were obtained using the relative flow method with an aperture source, and calculations using two different implementations of the Schwinger multichannel method, one that takes all electrons into account and is adapted for parallel computers, and another that uses pseudopotentials and considers only the valence electrons.

  3. Energy management of fuel cell/solar cell/supercapacitor hybrid power source

    NASA Astrophysics Data System (ADS)

    Thounthong, Phatiphat; Chunkag, Viboon; Sethakul, Panarit; Sikkabut, Suwat; Pierfederici, Serge; Davat, Bernard

    This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles.

  4. High power density yeast catalyzed microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  5. High energy transients

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.

    1984-01-01

    A meeting was convened on the campus of the University of California at Santa Cruz during the two-week interval July 11 through July 22, 1983. Roughly 100 participants were chosen so as to give broad representation to all aspects of high energy transients. Ten morning review sessions were held in which invited speakers discussed the current status of observations and theory of the above subjects. Afternoon workshops were also held, usually more than one per day, to informally review various technical aspects of transients, confront shortcomings in theoretical models, and to propose productive courses for future research. Special attention was also given to the instrumentation used to study high energy transient and the characteristics and goals of a dedicated space mission to study transients in the next decade were determined. A listing of articles written by various members of the workshop is included.

  6. High energy from space

    NASA Technical Reports Server (NTRS)

    Margon, Bruce; Canizares, Claude; Catura, Richard C.; Clark, George W.; Fichtel, Carl E.; Friedman, Herbert; Giacconi, Riccardo; Grindlay, Jonathan E.; Helfand, David J.; Holt, Stephen S.

    1991-01-01

    The following subject areas are covered: (1) important scientific problems for high energy astrophysics (stellar activity, the interstellar medium in galaxies, supernovae and endpoints of stellar evolution, nucleosynthesis, relativistic plasmas and matter under extreme conditions, nature of gamma-bursts, identification of black holes, active nuclei, accretion physics, large-scale structures, intracluster medium, nature of dark matter, and the X- and gamma-ray background); (2) the existing experimental programs (Advanced X-Ray Astrophysics Facility (AXAF), Gamma Ray Observatory (GRO), X-Ray Timing Explorer (XTE), High Energy Transient Experiment (HETE), U.S. participation in foreign missions, and attached Shuttle and Space Station Freedom payloads); (3) major missions for the 1990's; (4) a new program of moderate missions; (5) new opportunities for small missions; (6) technology development issues; and (7) policy issues.

  7. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    SciTech Connect

    Not Available

    2014-12-01

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  8. National Bio-fuel Energy Laboratory

    SciTech Connect

    Jezierski, Kelly

    2010-12-27

    The National Biofuel Energy Laboratory or NBEL was a consortia consisting of non-profits, universities, industry, and OEM’s. NextEnergy Center (NEC) in Detroit, Michigan was the prime with Wayne State University as the primary subcontractor. Other partners included: Art Van Furniture; Biodiesel Industries Inc. (BDI); Bosch; Clean Emission Fluids (CEF); Delphi; Oakland University; U.S. TARDEC (The Army); and later Cummins Bridgeway. The program was awarded to NextEnergy by U.S. DOE-NREL on July 1, 2005. The period of performance was about five (5) years, ending June 30, 2010. This program was executed in two phases: 1.Phase I focused on bench-scale R&D and performance-property-relationships. 2.Phase II expanded those efforts into further engine testing, emissions testing, and on-road fleet testing of biodiesel using additional types of feedstock (i.e., corn, and choice white grease based). NextEnergy – a non-profit 501(c)(3) organization based in Detroit was originally awarded a $1.9 million grant from the U.S. Dept. of Energy for Phase I of the NBEL program. A few years later, NextEnergy and its partners received an additional $1.9MM in DOE funding to complete Phase II. The NBEL funding was completely exhausted by the program end date of June 30, 2010 and the cost share commitment of 20% minimum has been exceeded nearly two times over. As a result of the work performed by the NBEL consortia, the following successes were realized: 1.Over one hundred publications and presentations have been delivered by the NBEL consortia, including but not limited to: R&D efforts on algae-based biodiesel, novel heterogeneous catalysis, biodiesel properties from a vast array of feedstock blends, cold flow properties, engine testing results (several Society of Automotive Engineers [SAE] papers have been published on this research), emissions testing results, and market quality survey results. 2.One new spinoff company (NextCAT) was formed by two WSU Chemical Engineering professors

  9. High performance internal reforming unit for high temperature fuel cells

    DOEpatents

    Ma, Zhiwen [Sandy Hook, CT; Venkataraman, Ramakrishnan [New Milford, CT; Novacco, Lawrence J [Brookfield, CT

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  10. A High Integrity Can Design for Degraded Nuclear Fuel

    SciTech Connect

    Holmes, P.A.

    1999-08-01

    A high integrity can (HIC), designed to meet the ASME Boiler and Pressure Vessel Code (Section III, Div. 3, static conditions) is proposed for the interim storage and repository disposal of Department of Energy (DOE) spent nuclear fuel. The HIC will be approximately 5 3/8 inches (134.38mm) in outside diameter with 1/4 inch (6.35mm) thick walls, and have a removable lid with a metallic seal that is capable of being welded shut. The opening of the can is approximately 4 3/8 inches (111.13mm). The HIC is primarily designed to contain items in the DOE SNF inventory that do not meet acceptance standards for direct disposal in a geologic repository. This includes fuel in the form of particulate dusts, sectioned pieces of fuel, core rubble, melted or degraded (non-intact) fuel elements, unclad uranium alloys, metallurgical specimens, and chemically reactive fuel components. The HIC is intended to act as a substitute cladding for the spent nuclear fuel, further isolate problematic materials, provide a long-term corrosion barrier, and add an extra internal pressure barrier to the waste package. The HIC will also delay potential fission product release and maintain geometry control for extended periods of time. For the entire disposal package to be licensed by the Nuclear Regulatory Commission, a HIC must effectively eliminate the disposal problems associated with problem SNF including the release of radioactive and/or reactive material and over pressurization of the HIC due to chemical reactions within the can. Two HICs were analyzed to envelop a range of can lengths between 42 and 101 inches. Using Abacus software, the HIC's were analyzed for end, side, and corner drops. Hastelloy C-22 was chosen based upon structural integrity, corrosion resistance, and neutron adsorption properties.

  11. Preparation of high temperature gas-cooled reactor fuel element

    DOEpatents

    Bradley, Ronnie A.; Sease, John D.

    1976-01-01

    This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.

  12. Discharge characteristics of a high speed fuel injection system

    NASA Technical Reports Server (NTRS)

    Matthews, Robertson

    1925-01-01

    Discussed here are some discharge characteristics of a fuel injection system intended primarily for high speed service. The system consisted of a cam actuated fuel pump, a spring loaded automatic injection valve, and a connecting tube.

  13. EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION OF HIGH BAY ADDITION OF FUEL STORAGE BUILDING (CPP-603). INL DRAWING NUMBER 200-0603-00-706-051286. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  14. A novel thin film solid oxide fuel cell for microscale energy conversion

    SciTech Connect

    Jankowiski, A F; Morse, J D

    1999-05-01

    A novel approach for the fabrication and assembly of a solid oxide fuel cell system is described which enables effective scaling of the fuel delivery, mainfold, and fuel cell stack components for applications in miniature and microscale energy conversion. Electrode materials for solid oxide fuel cells are developed using sputter deposition techniques. A thin film anode is formed by codeposition of nickel and yttria-stabilized zirconia (YSZ). This approach provides a mixed conducting interfacial layer between the nickel electrode and electrolyte layer. Similarly, a thin film cathode is formed by co-deposition of silver and yttria-stabilized zirconia. Additionally, sputter deposition of yttria-stabilized zirconia thin film electrolyte enables high quality, continuous films to be formed having thickness on the order of 1-2 {micro}m. This will effectively lower the temperature of operation for the fuel cell stack significantly below the traditional ranges at which solid oxide electrolyte systems are operated (600--1000 C), thereby rendering this fuel cell system suitable for miniaturization. Scaling towards miniaturization is accomplished by utilizing novel micromaching approaches which allow manifold channels and fuel delivery system to be formed within the substrate which the thin film fuel cell stack is fabricated on, thereby circumventing the need for bulky manifold components which are not directly scalable.

  15. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    SciTech Connect

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  16. Modeling and energy management control design for a fuel cell hybrid passenger bus

    NASA Astrophysics Data System (ADS)

    Simmons, Kyle; Guezennec, Yann; Onori, Simona

    2014-01-01

    This paper presents the modeling and supervisory energy management design of a hybrid fuel cell/battery-powered passenger bus. With growing concerns about petroleum usage and greenhouse gas emissions in the transportation sector, finding alternative methods for vehicle propulsion is necessary. Proton Exchange Membrane (PEM) fuel cell systems are viable possibilities for energy converters due to their high efficiencies and zero emissions. It has been shown that the benefits of PEM fuel cell systems can be greatly improved through hybridization. In this work, the challenge of developing an on-board energy management strategy with near-optimal performance is addressed by a two-step process. First, an optimal control based on Pontryagin's Minimum Principle (PMP) is implemented to find the global optimal solution which minimizes fuel consumption, for different drive cycles, with and without grade. The optimal solutions are analyzed in order to aid in development of a practical controller suitable for on-board implementation, in the form of an Auto-Regressive Moving Average (ARMA) regulator. Simulation results show that the ARMA controller is capable of achieving fuel economy within 3% of the PMP controller while being able to limit the transient demand on the fuel cell system.

  17. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    SciTech Connect

    Mills, G

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H{sub 2} and CO, usually containing CO{sub 2}) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  18. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    SciTech Connect

    Mills, G. . Center for Catalytic Science and Technology)

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  19. Long-term global nuclear energy and fuel cycle strategies

    SciTech Connect

    Krakowski, R.A.

    1997-09-24

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

  20. Performance of fuel cell for energy supply of passive house

    SciTech Connect

    Badea, G.; Felseghi, R. A. Mureşan, D.; Naghiu, G.; Răboacă, S. M.; Aşchilean, I.

    2015-12-23

    Hydrogen technology and passive house represent two concepts with a remarkable role for the efficiency and decarbonisation of energy systems in the residential buildings area. Through design and functionality, the passive house can make maximum use of all available energy resources. One of the solutions to supply energy of these types of buildings is the fuel cell, using this technology integrated into a system for generating electricity from renewable primary sources, which take the function of backup power (energy reserve) to cover peak load and meteorological intermittents. In this paper is presented the results of the case study that provide an analysis of the energy, environmental and financial performances regarding energy supply of passive house by power generation systems with fuel cell fed with electrolytic hydrogen produced by harnessing renewable energy sources available. Hybrid systems have been configured and operate in various conditions of use for five differentiated locations according to the main areas of solar irradiation from the Romanian map. Global performance of hybrid systems is directly influenced by the availability of renewable primary energy sources - particular geo-climatic characteristics of the building emplacement.

  1. Performance of fuel cell for energy supply of passive house

    NASA Astrophysics Data System (ADS)

    Badea, G.; Felseghi, R. A.; Rǎboacǎ, S. M.; Aşchilean, I.; Mureşan, D.; Naghiu, G.

    2015-12-01

    Hydrogen technology and passive house represent two concepts with a remarkable role for the efficiency and decarbonisation of energy systems in the residential buildings area. Through design and functionality, the passive house can make maximum use of all available energy resources. One of the solutions to supply energy of these types of buildings is the fuel cell, using this technology integrated into a system for generating electricity from renewable primary sources, which take the function of backup power (energy reserve) to cover peak load and meteorological intermittents. In this paper is presented the results of the case study that provide an analysis of the energy, environmental and financial performances regarding energy supply of passive house by power generation systems with fuel cell fed with electrolytic hydrogen produced by harnessing renewable energy sources available. Hybrid systems have been configured and operate in various conditions of use for five differentiated locations according to the main areas of solar irradiation from the Romanian map. Global performance of hybrid systems is directly influenced by the availability of renewable primary energy sources - particular geo-climatic characteristics of the building emplacement.

  2. Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute

    SciTech Connect

    Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

    2008-01-18

    Today, carbon-rich fossil fuels, primarily oil, coal, and natural gas, provide 85% of the energy consumed in the U.S. As world demand increases, oil reserves may become rapidly depleted. Fossil fuel use increases CO{sub 2} emissions and raises the risk of global warming. The high energy content of liquid hydrocarbon fuels makes them the preferred energy source for all modes of transportation. In the U.S. alone, transportation consumes >13.8 million barrels of oil per day and generates 0.5 gigatons of carbon per year. This release of greenhouse gases has spurred research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric, wind, solar, and biomass), only biomass has the potential to provide a high-energy-content transportation fuel. Biomass is a renewable resource that can be converted into carbon-neutral transporation fuels. Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped resource (estimated at more than a billion tons per year) of plant biomass that could be utilized as a renewable, domestic source of liquid fuels. Well-established processes convert the starch content of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels is however not optimal, while plant cell walls (lignocellulose) represent a huge untapped source of energy. Plant-derived biomass contains cellulose, which is more difficult to convert to sugars; hemicellulose, which contains a diversity of carbohydrates that have to be efficiently degraded by microorganisms to fuels; and lignin, which is recalcitrant to degradation and prevents cost-effective fermentation. The development of cost-effective and energy-efficient processes to transform lignocellulosic biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, low

  3. Diesel fuel injection pump with electromagnetic fuel spilling valve having pilot valve providing high responsiveness

    SciTech Connect

    Kobayashi, F.; Ito, Y.; Miyagi, H.

    1986-04-01

    A fuel injection system for a diesel engine is described having a plurality of cylinders coupled to a crankshaft, the fuel injection system consisting of: a housing with a cylindrical bore formed therein; an input shaft mounted coaxially with the bore and rotatable in a predetermined phase relation with the crankshaft of the engine; a plunger slidably mounted in the bore, one end of the plunger defining with the bore a high pressure chamber, and another end of the plunger being rotationally engaged with the input shaft but being free to move axially with respect to the input shaft; means for axially reciprocating the plunger in the bore according to the rotational position of the plunger; means for communicating the high pressure chamber selectively with respective cylinders of the engine according to the rotational position of the plunger substantially only when the plunger is moving in a delivery stroke, axially in a direction to reduce the size of the high pressure chamber; a valve body having an internal chamber communicating with the high pressure chamber, with a vent passage leading from the internal chamber for venting the high pressure chamber; a valve element located in the internal chamber and having an orifice, one side of the orifice communicating with the high pressure chamber; and an electromagnetically operated pilot valve which is selectively electromagnetically driven when electrical energy is supplied thereto so as to close a normally open passage which vents a space on the other side of the orifice remote from the high pressure chamber.

  4. High energy electron cooling

    SciTech Connect

    Parkhomchuk, V.

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  5. Using oily wastewater emulsified fuel in boiler: energy saving and reduction of air pollutant emissions.

    PubMed

    Chen, Chun-Chi; Lee, Wen-Jhy

    2008-01-01

    The limited data for using emulsified oil have demonstrated its effectiveness in reducing flue gas pollutant emissions. The presence of a high concentration of toxic organic compounds in industrial wastewaters always presents significant problems. Therefore, this study was undertaken by using wastewater with COD of 9600 mg/L and total petroleum hydrocarbons-gasoline 440 mg/L for making an emulsified oil (wastewater content 20% with 0.1% surfactant) to evaluate the extent of reductions in both criteria pollutants and polycyclic aromatic hydrocarbons. For comparison, two other systems (heavy oil fuel and water-emulsified oil) were also conducted. The wastewater-emulsified oil fuel results in significant reductions in particulate matter (PM), NO(x), SO2, and CO as compared to heavy oil fuel and similar to those from water/oil emulsified fuel; for PM, it is better in wastewater-emulsified oil. The reductions of total PAH flue gas emissions are 38 and 30% for wastewater- and water-emulsified fuel, respectively; they are 63 and 44% for total BaP(eq), respectively. In addition to reducing flue gas pollutant emissions, the results also demonstrate that the use of wastewater-emulsified fuel in boiler operation provides several advantages: (1) safe disposal of industrial wastewater; and (2) energy savings of about 13%. Thus, wastewater/oil-emulsified fuel is highly suitable for use in boilers.

  6. Oxy-combustion of high water content fuels

    NASA Astrophysics Data System (ADS)

    Yi, Fei

    As the issues of global warming and the energy crisis arouse extensive concern, more and more research is focused on maximizing energy efficiency and capturing CO2 in power generation. To achieve this, in this research, we propose an unconventional concept of combustion - direct combustion of high water content fuels. Due to the high water content in the fuels, they may not burn under air-fired conditions. Therefore, oxy-combustion is applied. Three applications of this concept in power generation are proposed - direct steam generation for the turbine cycle, staged oxy-combustion with zero flue gas recycle, and oxy-combustion in a low speed diesel-type engine. The proposed processes could provide alternative approaches to directly utilize fuels which intrinsically have high water content. A large amount of energy to remove the water, when the fuels are utilized in a conventional approach, is saved. The properties and difficulty in dewatering high water content fuels (e.g. bioethanol, microalgae and fine coal) are summarized. These fuels include both renewable and fossil fuels. In addition, the technique can also allow for low-cost carbon capture due to oxy-combustion. When renewable fuel is utilized, the whole process can be carbon negative. To validate and evaluate this concept, the research focused on the investigation of the flame stability and characteristics for high water content fuels. My study has demonstrated the feasibility of burning fuels that have been heavily diluted with water in a swirl-stabilized burner. Ethanol and 1-propanol were first tested as the fuels and the flame stability maps were obtained. Flame stability, as characterized by the blow-off limit -- the lowest O2 concentration when a flame could exist under a given oxidizer flow rate, was determined as a function of total oxidizer flow rate, fuel concentration and nozzle type. Furthermore, both the gas temperature contour and the overall ethanol concentration in the droplets along the

  7. High power density proton exchange membrane fuel cells

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J.; Hitchens, G. Duncan; Manko, David J.

    1993-01-01

    Proton exchange membrane (PEM) fuel cells use a perfluorosulfonic acid solid polymer film as an electrolyte which simplifies water and electrolyte management. Their thin electrolyte layers give efficient systems of low weight, and their materials of construction show extremely long laboratory lifetimes. Their high reliability and their suitability for use in a microgravity environment makes them particularly attractive as a substitute for batteries in satellites utilizing high-power, high energy-density electrochemical energy storage systems. In this investigation, the Dow experimental PEM (XUS-13204.10) and unsupported high platinum loading electrodes yielded very high power densities, of the order of 2.5 W cm(exp -2). A platinum black loading of 5 mg per cm(exp 2) was found to be optimum. On extending the three-dimensional reaction zone of fuel cell electrodes by impregnating solid polymer electrolyte into the electrode structures, Nafion was found to give better performance than the Dow experimental PEM. The depth of penetration of the solid polymer electrolyte into electrode structures was 50-70 percent of the thickness of the platinum-catalyzed active layer. However, the degree of platinum utilization was only 16.6 percent and the roughness factor of a typical electrode was 274.

  8. Prospects at high energies

    SciTech Connect

    Quigg, C.

    1988-11-01

    I discuss some possibilities for neutrino experiments in the fixed-target environment of the SPS, Tevatron, and UNK, with their primary proton beams of 0.4, 0.9, and 3.0 TeV. The emphasis is on unfinished business: issues that have been recognized for some time, but not yet resolved. Then I turn to prospects for proton-proton colliders to explore the 1-TeV scale. I review the motivation for new physics in the neighborhood of 1 TeV and mention some discovery possibilities for high-energy, high-luminosity hadron colliders and the implications they would have for neutrino physics. I raise the possibility of the direct study of neutrino interactions in hadron colliders. I close with a report on the status of the SSC project. 38 refs., 17 figs.

  9. Biofuel: an alternative to fossil fuel for alleviating world energy and economic crises.

    PubMed

    Bhattarai, Keshav; Stalick, Wayne M; McKay, Scott; Geme, Gija; Bhattarai, Nimisha

    2011-01-01

    The time has come when it is desirable to look for alternative energy resources to confront the global energy crisis. Consideration of the increasing environmental problems and the possible crisis of fossil fuel availability at record high prices dictate that some changes will need to occur sooner rather than later. The recent oil spill in the Gulf of Mexico is just another example of the environmental threats that fossil fuels pose. This paper is an attempt to explore various bio-resources such as corn, barley, oat, rice, wheat, sorghum, sugar, safflower, and coniferous and non-coniferous species for the production of biofuels (ethanol and biodiesel). In order to assess the potential production of biofuel, in this paper, countries are organized into three groups based on: (a) geographic areas; (b) economic development; and(c) lending types, as classified by the World Bank. First, the total fossil fuel energy consumption and supply and possible carbon emission from burning fossil fuel is projected for these three groups of countries. Second, the possibility of production of biofuel from grains and vegetative product is projected. Third, a comparison of fossil fuel and biofuel is done to examine energy sustainability issues.

  10. Experimental assessment of energy-management strategies in fuel-cell propulsion systems

    NASA Astrophysics Data System (ADS)

    Corbo, P.; Corcione, F. E.; Migliardini, F.; Veneri, O.

    The limitations of electric vehicles equipped with electrochemical batteries justify strong research interest for new solutions, based on hydrogen fuel-cell technology that are able to improve vehicle range, and reduce battery recharging time, while maintaining the crucial advantages of high efficiency and local zero emissions. The best working of a fuel-cell propulsion system, in terms of optimum efficiency and performance, is based on specific strategies of energy management, that are designed to regulate the power flows between the fuel cells, electric energy-storage systems and electric drive during the vehicle mission. An experimental study has been carried out on a small-size electric propulsion system based on a 2.5-kW proton exchange membrane fuel cell stack and a 2.5-kW electric drive. The fuel-cell system has been integrated into a powertrain comprising a dc-dc converter, a lead-acid battery pack, and brushless electric drive. The experiments are conducted on a test bench that is able to simulate the vehicle behaviour and road characteristics on specific driving cycles. The experimental runs are carried out on the European R40 driving cycle using different energy-management procedures and both dynamic performance and energy consumption are evaluated.

  11. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model

  12. Dynamic modeling, experimental evaluation, optimal design and control of integrated fuel cell system and hybrid energy systems for building demands

    NASA Astrophysics Data System (ADS)

    Nguyen, Gia Luong Huu

    Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the

  13. Increased fuel standards among broad range of energy options

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    During simpler times, the mention of the word 'cafe' might have primarily conjured up images of sidewalk coffee and tea bars along Paris' Champs-Elysees. However, with today's concerns about energy needs, CAFE or Corporate Average Fuel Economy standards for automobile fuel efficiency is a hot topic.On August 2, the U.S. House of Representa tives passed an energy bill rejecting a proposal to substantially increase CAFE standards for increasingly popular sport utility vehicles (SUVs). The proposal, which would have required SUVs to increase their current fleet average of 20.5 miles per gallon (mpg) to 27.5 mpg by 2007, to equal the current passenger car fleet requirement, was shelved for a requirement to more modestly raise mpgs by cutting total SUV gasoline usage by 5 billion gallons over 6 years.

  14. Fuel and Food Are Not Made of Energy-- A Constructive View of Respiration and Combustion

    ERIC Educational Resources Information Center

    Ross, Keith

    2013-01-01

    We often say that food and fuels "contain" energy, whereas energy is stored in the fuel-oxygen system generated during photosynthesis. This article suggests revised approaches to teaching that make a clear distinction between matter (food, fuel, oxygen) and energy. (Contains 1 table, 5 boxes, and 6 figures.)

  15. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... Parts 433 and 435 RIN 1904-AB96 Fossil Fuel-Generated Energy Consumption Reduction for New Federal... proposed rulemaking (NOPR) regarding the fossil fuel- generated energy consumption ] requirements for new... regarding the fossil fuel-generated energy consumption requirements for new Federal buildings and major...

  16. Fuel and Food Are Not Made of Energy-- A Constructive View of Respiration and Combustion

    ERIC Educational Resources Information Center

    Ross, Keith

    2013-01-01

    We often say that food and fuels "contain" energy, whereas energy is stored in the fuel-oxygen system generated during photosynthesis. This article suggests revised approaches to teaching that make a clear distinction between matter (food, fuel, oxygen) and energy. (Contains 1 table, 5 boxes, and 6 figures.)

  17. High-temperature passive direct methanol fuel cells operating with concentrated fuels

    NASA Astrophysics Data System (ADS)

    Zhao, Xuxin; Yuan, Wenxiang; Wu, Qixing; Sun, Hongyuan; Luo, Zhongkuan; Fu, Huide

    2015-01-01

    Conventionally, passive direct methanol fuel cells (DMFC) are fed with diluted methanol solutions and can hardly be operated at elevated temperatures (>120 °C) because the ionic conductivity of Nafion-type proton exchange membranes depends strongly on water content. Such a system design would limit its energy density and power density in mobile applications. In this communication, a passive vapor feed DMFC capable of operating with concentrated fuels at high temperatures is reported. The passive DMFC proposed in this work consists of a fuel reservoir, a perforated silicone sheet, a vapor chamber, two current collectors and a membrane electrode assembly (MEA) based on a phosphoric acid doped polybenzimidazole (PBI) membrane. The experimental results reveal that the methanol crossover through a PBI membrane is substantially low when compared with the Nafion membranes and the PBI-based passive DMFC can yield a peak power density of 37.2 mW cm-2 and 22.1 mW cm-2 at 180 °C when 16 M methanol solutions and neat methanol are used respectively. In addition, the 132 h discharge test indicates that the performance of this new DMFC is quite stable and no obvious performance degradation is observed after activation, showing its promising applications in portable power sources.

  18. Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2005-01-01

    An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.

  19. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    SciTech Connect

    Thomas, Janice

    2010-08-27

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  20. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect

    Not Available

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  1. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect

    Not Available

    1990-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  2. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2013-02-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  3. HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS

    SciTech Connect

    Sara Ward; Michael A. Petrik

    2004-07-28

    Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the

  4. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    SciTech Connect

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report

  5. Final Technical Report for Alternative Fuel Source Study-An Energy Efficient and Environmentally Friendly Approach

    SciTech Connect

    Zee, Ralph; Schindler, Anton; Duke, Steve; Burch, Thom; Bransby, David; Stafford, Don

    2010-08-31

    The objective of this project is to conduct research to determine the feasibility of using alternate fuel sources for the production of cement. Successful completion of this project will also be beneficial to other commercial processes that are highly energy intensive. During this report period, we have completed all the subtasks in the preliminary survey. Literature searches focused on the types of alternative fuels currently used in the cement industry around the world. Information was obtained on the effects of particular alternative fuels on the clinker/cement product and on cement plant emissions. Federal regulations involving use of waste fuels were examined. Information was also obtained about the trace elements likely to be found in alternative fuels, coal, and raw feeds, as well as the effects of various trace elements introduced into system at the feed or fuel stage on the kiln process, the clinker/cement product, and concrete made from the cement. The experimental part of this project involves the feasibility of a variety of alternative materials mainly commercial wastes to substitute for coal in an industrial cement kiln in Lafarge NA and validation of the experimental results with energy conversion consideration.

  6. High Energy Astrophysics Mission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Ormes, Jonathan F. (Technical Monitor)

    2000-01-01

    The nature of gravity and its relationship to the other three forces and to quantum theory is one of the major challenges facing us as we begin the new century. In order to make progress we must challenge the current theories by observing the effects of gravity under the most extreme conditions possible. Black holes represent one extreme, where the laws of physics as we understand them break down. The Universe as whole is another extreme, where its evolution and fate is dominated by the gravitational influence of dark matter and the nature of the Cosmological constant. The early universe represents a third extreme, where it is thought that gravity may somehow be unified with the other forces. NASA's "Cosmic Journeys" program is part of a NASA/NSF/DoE tri-agency initiative designed to observe the extremes of gravity throughout the universe. This program will probe the nature of black holes, ultimately obtaining a direct image of the event horizon. It will investigate the large scale structure of the Universe to constrain the location and nature of dark matter and the nature of the cosmological constant. Finally it will search for and study the highest energy processes, that approach those found in the early universe. I will outline the High Energy Astrophysics part of this program.

  7. High Energy Astrophysics Mission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Ormes, Jonathan F. (Technical Monitor)

    2000-01-01

    The nature of gravity and its relationship to the other three forces and to quantum theory is one of the major challenges facing us as we begin the new century. In order to make progress we must challenge the current theories by observing the effects of gravity under the most extreme conditions possible. Black holes represent one extreme, where the laws of physics as we understand them break down. The Universe as whole is another extreme, where its evolution and fate is dominated by the gravitational influence of dark matter and the nature of the Cosmological constant. The early universe represents a third extreme, where it is thought that gravity may somehow be unified with the other forces. NASA's "Cosmic Journeys" program is part of a NASA/NSF/DoE tri-agency initiative designed to observe the extremes of gravity throughout the universe. This program will probe the nature of black holes, ultimately obtaining a direct image of the event horizon. It will investigate the large scale structure of the Universe to constrain the location and nature of dark matter and the nature of the cosmological constant. Finally it will search for and study the highest energy processes, that approach those found in the early universe. I will outline the High Energy Astrophysics part of this program.

  8. Optical Fuel Injector Patternation Measurements in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. For one injector, further comparison is also made with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  9. Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry.

    PubMed

    Harriman, Anthony

    2013-08-13

    There is, at present, no solar fuels industry anywhere in the world despite the well-publicized needs to replace our depleting stock of fossil fuels with renewable energy sources. Many obstacles have to be overcome in order to store sunlight in the form of chemical potential, and there are severe barriers to surmount in order to produce energy on a massive scale, at a modest price and in a convenient form. It is also essential to allow for the intermittent nature of sunlight, its diffusiveness and variability and to cope with the obvious need to use large surface areas for light collection. Nonetheless, we have no alternative but to devise viable strategies for storage of sunlight as biomass or chemical feedstock. Simple alternatives, such as solar heating, are attractive in terms of quick demonstrations but are not the answer. Photo-electrochemical devices might serve as the necessary machinery by which to generate electronic charge but the main problem is to couple these charges to the multi-electron catalysis needed to drive energy-storing chemical reactions. Several potential fuels (CO, H₂, HCOOH, NH₃, O₂, speciality organics, etc.) are possible, but the photochemical reduction of CO₂ deserves particular mention because of ever-growing concerns about overproduction of greenhouse gases. The prospects for achieving these reactions under ambient conditions are considered herein.

  10. High energy physics

    SciTech Connect

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  11. [Biomass energy utilization in microbial fuel cells: potentials and challenges].

    PubMed

    Huang, Liping; Cheng, Shaoan

    2010-07-01

    Microbial fuel cells (MFCs) that can harvest biomass energy from organic wastes through microbial catalysis have garnered more and more attention within the past decade due to its potential benefits to ecological environment. In this article, the updated progress in MFCs is reviewed, with a focus on frontier technologies such as chamber configurations, feedstock varieties and the integration of MFCs with microbial electrolysis cells for hydrogen production. And on the other hand, the challenges like development of cost-effective electrode materials, improvement of biomass energy recovery and power output, design and optimization of commercial MFC devices are presented.

  12. High Accuracy Fuel Flowmeter, Phase 1

    NASA Technical Reports Server (NTRS)

    Mayer, C.; Rose, L.; Chan, A.; Chin, B.; Gregory, W.

    1983-01-01

    Technology related to aircraft fuel mass - flowmeters was reviewed to determine what flowmeter types could provide 0.25%-of-point accuracy over a 50 to one range in flowrates. Three types were selected and were further analyzed to determine what problem areas prevented them from meeting the high accuracy requirement, and what the further development needs were for each. A dual-turbine volumetric flowmeter with densi-viscometer and microprocessor compensation was selected for its relative simplicity and fast response time. An angular momentum type with a motor-driven, spring-restrained turbine and viscosity shroud was selected for its direct mass-flow output. This concept also employed a turbine for fast response and a microcomputer for accurate viscosity compensation. The third concept employed a vortex precession volumetric flowmeter and was selected for its unobtrusive design. Like the turbine flowmeter, it uses a densi-viscometer and microprocessor for density correction and accurate viscosity compensation.

  13. High power density solid oxide fuel cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  14. The Synthesis and Testing of Highly Strained Cyclic and Polycyclic Molecules as Hypergolic Fuels. Chapter 1

    NASA Technical Reports Server (NTRS)

    Eccles, Wendy

    2005-01-01

    Increasing fuel efficiency has been a goal for chemists for several decades. Particularly, a more efficient fuel can increase the range of liquid-hydrocarbon-fueled ram-jets and cruise missiles. A storable high-energy fuel that spontaneously ignites upon addition of an oxidizer is defined as a hypergolic fuel. Hypergolic storable fuels provide an increase in energy per unit volume of fuel and eliminate the need for an external ignition system. Several classes of functionalized hydrocarbons such as amines, boranes, and phosphines are known to be hypergolic with nitric acid oxidizers, but only hydrazine and its simple derivatives5 have been found to exhibit true hypergolic behavior with H2O2. Hydrogen peroxide is a good candidate for an oxidizer due to its reduced toxicity and improved storage capability. Hydrazine-based fuels are expensive, highly corrosive, and toxic, thus providing the need for investigation of other fuels that may be hypergolic with H2O2. Strained hydrocarbons have been studied as high-density fuels. Some examples including benzvalene and cubane, exhibit an increase in heat of combustion as the density of the fuel increases. Many conventional hydrocarbon fuels, such as JP-5 and JP-10, show a decrease in heat of combustion as density of the fuel increases. Strained hydrocarbons can therefore increase the range of the missile by increasing the combustion efficiency per volume of fuel. The goal of this research is to investigate hypergolic behavior of strained hydrocarbons by adding an amine functional group which has been found to hypergolic with nitric acid oxidizers. N,N-Dimethyl-[3]-triangulane-7-methylamine (l), cyclopropylamines (2), cyclobutylamines (3), propylamines (4), and butylamines (5) were synthesized and investigated. The amino group should react with oxygen, providing the initiation step for ring decomposition. The highly exothermic reactions will accumulate energy and potentially lead to spontaneous ignition of the fuel

  15. A Method for Microscale Combustion of Near Stoichiometric Energy Dense Liquid Fuel Mixtures

    NASA Astrophysics Data System (ADS)

    Tolmachoff, E. D.; Allmon, W. R.; Waits, C. M.

    2013-12-01

    This paper reports on the potential of a heterogeneous/homogeneous (HH) reactor for use as a fuel-flexible heat source, meeting the needs of the next generation of high temperature thermal-to-electric (TEC) portable power converters. In this class of reactor, low activation energy catalytic reactions provide a means to stabilize high activation energy homogeneous reactions. Diffusion limited surface reactions play a critical role in HH reactor operation. Surface conversion must be sufficiently fast to generate the high temperatures (~1000 K) necessary to initiate gas phase reactions. Therefore, fuel diffusivity and the reactor dimension are important parameters in governing HH reactor operation. We examine the performance of an HH reactor fuelled by propane and n-dodecane, representing two extremes of liquid hydrocarbon diffusivity, as a function of confining reactor dimension. Unburned fuel/air mixtures are close to stoichiometric, which is an important factor in minimizing the amount of excess air and, therefore, balance of plant energy costs. At moderate levels of confinement, the reactor is capable producing high, uniform temperatures for both fuels.

  16. Alkaline regenerative fuel cell energy storage system for manned orbital satellites

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Gitlow, B.; Sheibley, D. W.

    1982-01-01

    It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.

  17. Alkaline regenerative fuel cell energy storage system for manned orbital satellites

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Gitlow, B.; Sheibley, D. W.

    1982-01-01

    It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.

  18. 10 CFR 205.375 - Guidelines defining inadequate fuel or energy supply.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Guidelines defining inadequate fuel or energy supply. 205.375 Section 205.375 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric... Electric Power § 205.375 Guidelines defining inadequate fuel or energy supply. An inadequate utility...

  19. 10 CFR 205.375 - Guidelines defining inadequate fuel or energy supply.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Guidelines defining inadequate fuel or energy supply. 205.375 Section 205.375 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric... Electric Power § 205.375 Guidelines defining inadequate fuel or energy supply. An inadequate utility...

  20. 10 CFR 205.375 - Guidelines defining inadequate fuel or energy supply.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Guidelines defining inadequate fuel or energy supply. 205.375 Section 205.375 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric... Electric Power § 205.375 Guidelines defining inadequate fuel or energy supply. An inadequate utility...

  1. 10 CFR 205.375 - Guidelines defining inadequate fuel or energy supply.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Guidelines defining inadequate fuel or energy supply. 205.375 Section 205.375 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric... Electric Power § 205.375 Guidelines defining inadequate fuel or energy supply. An inadequate utility...

  2. 10 CFR 205.375 - Guidelines defining inadequate fuel or energy supply.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Guidelines defining inadequate fuel or energy supply. 205.375 Section 205.375 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric... Electric Power § 205.375 Guidelines defining inadequate fuel or energy supply. An inadequate utility...

  3. Smart Energy Management and Control for Fuel Cell Based Micro-Grid Connected Neighborhoods

    SciTech Connect

    Dr. Mohammad S. Alam

    2006-03-15

    Fuel cell power generation promises to be an efficient, pollution-free, reliable power source in both large scale and small scale, remote applications. DOE formed the Solid State Energy Conversion Alliance with the intention of breaking one of the last barriers remaining for cost effective fuel cell power generation. The Alliance’s goal is to produce a core solid-state fuel cell module at a cost of no more than $400 per kilowatt and ready for commercial application by 2010. With their inherently high, 60-70% conversion efficiencies, significantly reduced carbon dioxide emissions, and negligible emissions of other pollutants, fuel cells will be the obvious choice for a broad variety of commercial and residential applications when their cost effectiveness is improved. In a research program funded by the Department of Energy, the research team has been investigating smart fuel cell-operated residential micro-grid communities. This research has focused on using smart control systems in conjunction with fuel cell power plants, with the goal to reduce energy consumption, reduce demand peaks and still meet the energy requirements of any household in a micro-grid community environment. In Phases I and II, a SEMaC was developed and extended to a micro-grid community. In addition, an optimal configuration was determined for a single fuel cell power plant supplying power to a ten-home micro-grid community. In Phase III, the plan is to expand this work to fuel cell based micro-grid connected neighborhoods (mini-grid). The economic implications of hydrogen cogeneration will be investigated. These efforts are consistent with DOE’s mission to decentralize domestic electric power generation and to accelerate the onset of the hydrogen economy. A major challenge facing the routine implementation and use of a fuel cell based mini-grid is the varying electrical demand of the individual micro-grids, and, therefore, analyzing these issues is vital. Efforts are needed to determine

  4. Life-cycle-assessment of fuel-cells-based landfill-gas energy conversion technologies

    NASA Astrophysics Data System (ADS)

    Lunghi, P.; Bove, R.; Desideri, U.

    Landfill-gas (LFG) is produced as result of the biological reaction of municipal solid waste (MSW). This gas contains about 50% of methane, therefore it cannot be released into the atmosphere as it is because of its greenhouse effect consequences. The high percentage of methane encouraged researchers to find solutions to recover the related energy content for electric energy production. The most common technologies used at the present time are internal combustion reciprocating engines and gas turbines. High conversion efficiency guaranteed by fuel cells (FCs) enable to enhance the energy recovery process and to reduce emissions to air, such as NO x and CO. In any case, in order to investigate the environmental advantages associated with the electric energy generation using fuel cells, it is imperative to consider the whole "life cycle" of the system, "from cradle-to-grave". In fact, fuel cells are considered to be zero-emission devices, but, for example, emissions associated with their manufacture or for hydrogen production must be considered in order to evaluate all impacts on the environment. In the present work a molten carbonate fuel cell (MCFC) system for LFG recovery is considered and a life cycle assessment (LCA) is conducted for an evaluation of environmental consequences and to provide a guide for further environmental impact reduction.

  5. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  6. Microbial fuel cells: novel biotechnology for energy generation.

    PubMed

    Rabaey, Korneel; Verstraete, Willy

    2005-06-01

    Microbial fuel cells (MFCs) provide new opportunities for the sustainable production of energy from biodegradable, reduced compounds. MFCs function on different carbohydrates but also on complex substrates present in wastewaters. As yet there is limited information available about the energy metabolism and nature of the bacteria using the anode as electron acceptor; few electron transfer mechanisms have been established unequivocally. To optimize and develop energy production by MFCs fully this knowledge is essential. Depending on the operational parameters of the MFC, different metabolic pathways are used by the bacteria. This determines the selection and performance of specific organisms. Here we discuss how bacteria use an anode as an electron acceptor and to what extent they generate electrical output. The MFC technology is evaluated relative to current alternatives for energy generation.

  7. High-freezing-point fuel studies

    NASA Technical Reports Server (NTRS)

    Tolle, F. F.

    1980-01-01

    Considerable progress in developing the experimental and analytical techniques needed to design airplanes to accommodate fuels with less stringent low temperature specifications is reported. A computer technique for calculating fuel temperature profiles in full tanks was developed. The computer program is being extended to include the case of partially empty tanks. Ultimately, the completed package is to be incorporated into an aircraft fuel tank thermal analyser code to permit the designer to fly various thermal exposure patterns, study fuel temperatures versus time, and determine holdup.

  8. High Energy Plasma Space Propulsion

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    In order to meet NASA's challenge on advanced concept activity in the propulsion area, we initiated a new program entitled "High Energy Plasma Space Propulsion Studies" within the current cooperative agreement in 1998. The goals of this work are to gain further understanding of the engine of the AIMStar spacecraft, a concept which was developed at Penn State University, and to develop a prototype concept for the engine. The AIMStar engine concept was developed at Penn State University several years ago as a hybrid between antimatter and fusion technologies. Because of limited amounts of antimatter available, and concurrently the demonstrated ability for antiprotons to efficiently ignite nuclear fusion reactions, it was felt that this was a very good match. Investigations have been made concerning the performance of the reaction trap. This is a small Penning-like electromagnetic trap, which is used to simultaneously confine antiprotons and fusion fuels. Small DHe3 or DT droplets, containing a few percent molar of a fissile material, are injected into the trap, filled with antiprotons. We have found that it is important to separate the antiprotons into two adjacent wells, to inject he droplet between them and to simultaneously bring the antiprotons to the center of the trap, surrounding the droplet. Our previous concept had the droplet falling onto one cloud of antiprotons. This proved to be inefficient, as the droplet tended to evaporate away from the cloud as it interacted on its surface.

  9. Fuel cell on-site integrated energy system parametric analysis of a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.

    1977-01-01

    A parametric energy-use analysis was performed for a large apartment complex served by a fuel cell on-site integrated energy system (OS/IES). The variables parameterized include operating characteristics for four phosphoric acid fuel cells, eight OS/IES energy recovery systems, and four climatic locations. The annual fuel consumption for selected parametric combinations are presented and a breakeven economic analysis is presented for one parametric combination. The results show fuel cell electrical efficiency and system component choice have the greatest effect on annual fuel consumption; fuel cell thermal efficiency and geographic location have less of an effect.

  10. On0Line Fuel Failure Monitor for Fuel Testing and Monitoring of Gas Cooled Very High Temperature Reactor

    SciTech Connect

    Ayman I. Hawari; Mohamed A. Bourham

    2010-04-22

    IVery High Temperature Reactors (VHTR) utilize the TRISO microsphere as the fundamental fuel unit in the core. The TRISO microsphere (~ 1- mm diameter) is composed of a UO2 kernel surrounded by a porous pyrolytic graphite buffer, an inner pyrolytic graphite layer, a silicon carbide (SiC) coating, and an outer pyrolytic graphite layer. The U-235 enrichment of the fuel is expected to range from 4% – 10% (higher enrichments are also being considered). The layer/coating system that surrounds the UO2 kernel acts as the containment and main barrier against the environmental release of radioactivity. To understand better the behavior of this fuel under in-core conditions (e.g., high temperature, intense fast neutron flux, etc.), the US Department of Energy (DOE) is launching a fuel testing program that will take place at the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL). During this project North Carolina State University (NCSU) researchers will collaborate with INL staff for establishing an optimized system for fuel monitoring for the ATR tests. In addition, it is expected that the developed system and methods will be of general use for fuel failure monitoring in gas cooled VHTRs.

  11. Fuel for Life: Aluminum Energy Technologies for Electricity Generation by Hydrogen

    NASA Astrophysics Data System (ADS)

    Rozenak, P.; Shani, E.

    The novel energy generation, by means of a unique hydrogen production method, creates an opportunity to tackle some important social and environmental factors that determine our sustainable development and personal health. Hydrogen can be produced from a spontaneous chemical reaction in an Al-water system, at a relatively low cost, by bringing aluminum and water into contact, with sodium hydroxide as the catalyst and using an energy source derived from aluminum waste. In our experiments, hydrogen of extremely high-purity was obtained and was used in commercial fuel cell facilities to produce electricity. The hydrogen was produced from recyclable material without supplementary energy and with almost no air pollution. We propose that aluminum technologies for fuel cells could become an integral part of the solution for an economical, clean, low-polluting source of energy. The process is lightweight and largely recyclable and offers opportunities for the commercialization of multiple technologies.

  12. FSU High Energy Physics

    SciTech Connect

    Prosper, Harrison B.; Adams, Todd; Askew, Andrew; Berg, Bernd; Blessing, Susan K.; Okui, Takemichi; Owens, Joseph F.; Reina, Laura; Wahl, Horst D.

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  13. Plasmon enhanced solar-to-fuel energy conversion.

    PubMed

    Thomann, Isabell; Pinaud, Blaise A; Chen, Zhebo; Clemens, Bruce M; Jaramillo, Thomas F; Brongersma, Mark L

    2011-08-10

    Future generations of photoelectrodes for solar fuel generation must employ inexpensive, earth-abundant absorber materials in order to provide a large-scale source of clean energy. These materials tend to have poor electrical transport properties and exhibit carrier diffusion lengths which are significantly shorter than the absorption depth of light. As a result, many photoexcited carriers are generated too far from a reactive surface and recombine instead of participating in solar-to-fuel conversion. We demonstrate that plasmonic resonances in metallic nanostructures and multilayer interference effects can be engineered to strongly concentrate sunlight close to the electrode/liquid interface, precisely where the relevant reactions take place. On comparison of spectral features in the enhanced photocurrent spectra to full-field electromagnetic simulations, the contribution of surface plasmon excitations is verified. These results open the door to the optimization of a wide variety of photochemical processes by leveraging the rapid advances in the field of plasmonics.

  14. Photocatalysis for renewable energy production using PhotoFuelCells.

    PubMed

    Michal, Robert; Sfaelou, Stavroula; Lianos, Panagiotis

    2014-11-27

    The present work is a short review of our recent studies on PhotoFuelCells, that is, photoelectrochemical cells which consume a fuel to produce electricity or hydrogen, and presents some unpublished data concerning both electricity and hydrogen production. PhotoFuelCells have been constructed using nanoparticulate titania photoanodes and various cathode electrodes bearing a few different types of electrocatalyst. In the case where the cell functioned with an aerated cathode, the cathode electrode was made of carbon cloth carrying a carbon paste made of carbon black and dispersed Pt nanoparticles. When the cell was operated in the absence of oxygen, the electrocatalyst was deposited on an FTO slide using a special commercial carbon paste, which was again enriched with Pt nanoparticles. Mixing of Pt with carbon paste decreased the quantity of Pt necessary to act as electrocatalyst. PhotoFuelCells can produce electricity without bias and with relatively high open-circuit voltage when they function in the presence of fuel and with an aerated cathode. In that case, titania can be sensitized in the visible region by CdS quantum dots. In the present work, CdS was deposited by the SILAR method. Other metal chalcogenides are not functional as sensitizers because the combined photoanode in their presence does not have enough oxidative power to oxidize the fuel. Concerning hydrogen production, it was found that it is difficult to produce hydrogen in an alkaline environment even under bias, however, this is still possible if losses are minimized. One way to limit losses is to short-circuit anode and cathode electrode and put them close together. This is achieved in the "photoelectrocatalytic leaf", which was presently demonstrated capable of producing hydrogen even in a strongly alkaline environment.

  15. On the flexibility of high temperature reactor cores for high-and low-enriched fuel

    SciTech Connect

    Bzandes, S.; Lonhert, G.

    1982-07-01

    The operational flexibility of a high temperature reactor (HTR) is not restricted to either a low- or a high-enriched fuel cycle. Both fuel cycles are possible for the same core design. The fuel cycle cost is, however, penalized for low-enriched fuel; in addition, higher uranium consumption is required. Hence, an HTR is most economical to operate in the high-enriched thorium-uranium fuel cycle.

  16. Spent Fuel and High-Level Radioactive Waste Transportation Report

    SciTech Connect

    Not Available

    1992-03-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  17. Fuel Economy Through Teamwork. Energy Savings in School Transportation Publication Series. 1. Pupil Transportation and Energy Conservation. 2. Purchasing for Fuel Economy. 3. Driving for Fuel Economy. 4. Operating for Fuel Economy. 5. The Science of Saving Fuel.

    ERIC Educational Resources Information Center

    BRI Systems, Inc., Phoenix, AZ.

    This publication series of five booklets presents a summary of tips for saving energy in pupil transportation. The first booklet offers guidelines and suggestions to assist school transportation administration in achieving better fuel economy and cost management goals. The second presents purchasing tips and shows ways to use benefit cost analysis…

  18. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    SciTech Connect

    Unknown

    2003-06-01

    This report summarizes the progress made during the September 2001-March 2002 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program''. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. The overall objective of the program is to demonstrate a modular SOFC system that can be configured to create highly efficient, cost-competitive, and environmentally benign power plants tailored to specific markets. When fully developed, the system will meet the efficiency, performance, life, and cost goals for future commercial power plants.

  19. Electrolyser and fuel cells, key elements for energy and life support

    NASA Astrophysics Data System (ADS)

    Bockstahler, Klaus; Funke, Helmut; Lucas, Joachim

    Both, Electrolyser and Fuel Cells are key elements for regenerative energy and life support systems. Electrolyser technology is originally intended for oxygen production in manned space habitats and in submarines, through splitting water into hydrogen and oxygen. Fuel cells serve for energy production through the reaction, triggered in the presence of an electrolyte, between a fuel and an oxidant. Now combining both technologies i.e. electrolyser and fuel cell makes it a Regenerative Fuel Cell System (RFCS). In charge mode, i.e. with energy supplied e.g. by solar cells, the electrolyser splits water into hydrogen and oxygen being stored in tanks. In discharge mode, when power is needed but no energy is available, the stored gases are converted in the fuel cell to generate electricity under the formation of water that is stored in tanks. Rerouting the water to the electrolyser makes it a closed-loop i.e. regenerative process. Different electrolyser and fuel cell technologies are being evolved. At Astrium emphasis is put on the development of an RFCS comprised of Fixed Alkaline Electrolyser (FAE) and Fuel Cell (AFC) as such technology offers a high electrical efficiency and thus reduced system weight, which is important in space applications. With increasing power demand and increasing discharge time an RFCS proves to be superior to batteries. Since the early technology development multiple design refinements were done at Astrium, funded by the European Space Agency ESA and the German National Agency DLR as well as based on company internal R and T funding. Today a complete RFCS energy system breadboard is established and the operational behavior of the system is being tested. In parallel the electrolyser itself is subject to design refinement and testing in terms of oxygen production in manned space habitats. In addition essential features and components for process monitoring and control are being developed. The present results and achievements and the dedicated

  20. High energy physics

    SciTech Connect

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics Program at the University of California, Riverside. In 1990, we will concentrate on analysis of LEP data from the OPAL detector. We expect to record 10{sup 5} Z`s by the end of 1989 and 10{sup 6} in 1990. This data will be used to measure the number of quark-lepton families in the universe. In the second half of 1990 we will also be occupied with the installation of the D-Zero detector in the Tevatron Collider and the preparation of software for the 1991 run. A new initiative made possible by generous university support is a laboratory for detector development at UCR. The focus will be on silicon strip tracking detectors both for the D-Zero upgrade and for SSC physics. The theory program will pursue further various mass-generating radiative mechanisms for understanding small quark and lepton masses as well as some novel phenomenological aspects of supersymmetry.

  1. Shock ignition of thermonuclear fuel with high areal density.

    PubMed

    Betti, R; Zhou, C D; Anderson, K S; Perkins, L J; Theobald, W; Solodov, A A

    2007-04-13

    A novel method by C. Zhou and R. Betti [Bull. Am. Phys. Soc. 50, 140 (2005)] to assemble and ignite thermonuclear fuel is presented. Massive cryogenic shells are first imploded by direct laser light with a low implosion velocity and on a low adiabat leading to fuel assemblies with large areal densities. The assembled fuel is ignited from a central hot spot heated by the collision of a spherically convergent ignitor shock and the return shock. The resulting fuel assembly features a hot-spot pressure greater than the surrounding dense fuel pressure. Such a nonisobaric assembly requires a lower energy threshold for ignition than the conventional isobaric one. The ignitor shock can be launched by a spike in the laser power or by particle beams. The thermonuclear gain can be significantly larger than in conventional isobaric ignition for equal driver energy.

  2. High Energy Density Capacitors

    SciTech Connect

    2010-07-01

    BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

  3. Premixed direct injection nozzle for highly reactive fuels

    DOEpatents

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

    2013-09-24

    A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  4. Solid-shape energy fuels from recyclable municipal solid waste and plastics

    NASA Astrophysics Data System (ADS)

    Gug, Jeongin

    Diversion of waste streams, such as plastics, wood and paper, from municipal landfills and extraction of useful materials from landfills is an area of increasing interest across the country, especially in densely populated areas. One promising technology for recycling MSW (municipal solid waste) is to burn the high energy content components in standard coal boilers. This research seeks to reform wastes into briquette that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, moisture resistance, and retain high fuel value. Household waste with high paper and fibers content was used as the base material for this study. It was combined with recyclable plastics such as PE, PP, PET and PS for enhanced binding and energy efficiency. Fuel pellets were processed using a compression molding technique. The resulting moisture absorption, proximate analysis from burning, and mechanical properties were investigated after sample production and then compared with reference data for commercial coals and biomass briquettes. The effects of moisture content, compression pressure and processing temperature were studied to identify the optimal processing conditions with water uptake tests for the durability of samples under humid conditions and burning tests to examine the composition of samples. Lastly, mechanical testing revealed the structural stability of solid fuels. The properties of fuel briquettes produced from waste and recycled plastics improved with higher processing temperature but without charring the material. Optimization of moisture content and removal of air bubbles increased the density, stability and mechanical strength. The sample composition was found to be more similar to biomass fuels than coals because the majority of the starting material was paper-based solid waste. According to the proximate analysis results, the waste fuels can be expected to have

  5. High-throughput search for photoabsorbers for solar fuels

    NASA Astrophysics Data System (ADS)

    Mitrovic, Slobodan; Cornell, Earl; Newhouse, Paul; Haber, Joel; Jones, Ryan; Gregoire, John

    2015-03-01

    We present the suite of instrumentation developed specifically to search for light absorber materials for solar hydrogen and carbon-based fuels. A pre-screening method utilizes colorimetric image analysis to search for positive and negative metrics for electronic bandgaps, isolate materials not suitable for further screening and identify phase clusters in the compositional space of combinatorial material libraries. Then, two highly-automatized instruments screen for photocurrent, by performing incident-photon conversion efficiency measurement in a redox couple, and absorption properties via UV-Vis-NIR spectroscopy. Finally, we present a new instrument for multispectral microscopic imaging of material libraries. We will discuss the challenges in automated data analysis from large datasets and multispectral data-cubes. This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC000499.

  6. Fabrication of high exposure nuclear fuel pellets

    DOEpatents

    Frederickson, James R.

    1987-01-01

    A method is disclosed for making a fuel pellet for a nuclear reactor. A mixture is prepared of PuO.sub.2 and UO.sub.2 powders, where the mixture contains at least about 30% PuO.sub.2, and where at least about 12% of the Pu is the Pu.sup.240 isotope. To this mixture is added about 0.3 to about 5% of a binder having a melting point of at least about 250.degree. F. The mixture is pressed to form a slug and the slug is granulated. Up to about 4.7% of a lubricant having a melting point of at least about 330.degree. F. is added to the granulated slug. Both the binder and the lubricant are selected from a group consisting of polyvinyl carboxylate, polyvinyl alcohol, naturally occurring high molecular weight cellulosic polymers, chemically modified high molecular weight cellulosic polymers, and mixtures thereof. The mixture is pressed to form a pellet and the pellet is sintered.

  7. Microbial fuel cell energy harvesting using synchronous flyback converter

    NASA Astrophysics Data System (ADS)

    Alaraj, Muhannad; Ren, Zhiyong Jason; Park, Jae-Do

    2014-02-01

    Microbial Fuel Cells (MFCs) use biodegradable substrates, such as wastewater and marine sediments to generate electrical energy. To harvest more energy from an MFC, power electronic converters have recently been used to replace resistors or charge pumps, because they have superior controllability on MFC's operating point and higher efficiency in energy storage for different applications. Conventional diode-based energy harvesters suffer from low efficiency because of the energy losses through the diode. Replacing the diode with a MOSFET can reduce the conduction loss, but it requires an isolated gate signal to control the floating secondary MOSFET, which makes the control circuitry complex. This study presents a new MFC energy harvesting regime using a synchronous flyback converter, which implements a transformer-based harvester with much simpler configuration and improves harvesting efficiency by 37.6% compared to a diode based boost converter, from 33.5% to 46.1%. The proposed harvester was able to store 2.27 J in the output capacitor out of 4.91 J generated energy from the MFC, while the boost converter can capture 1.67 J from 4.95 J.

  8. Krakow clean fossil fuels and energy efficiency project

    SciTech Connect

    Butcher, T.A.; Pierce, B.L.

    1995-12-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the {open_quotes}Krakow Clean Fossil Fuels and Energy Efficiency Project.{close_quotes} Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100, 000 home stoves. These are collectively referred to as the {open_quotes}low emission sources{close_quotes} and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  9. Krakow clean fossil fuels and energy efficiency project

    SciTech Connect

    Pierce, B.L.; Butcher, T.A.

    1994-06-01

    Almost half of the energy used for beating in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 boilerhouses with a total capacity of 1,071 MW, and about 100,000 home furnaces with a total capacity of about 300 MW. More than 600 boilerhouses and 60 percent of the home furnaces are situated near the city center. These facilities are referred to as ``low emission sources`` because they have low stacks. They are the primary sources of particulates and hydrocarbons in the city, and major contributors of sulfur dioxide and carbon monoxide. The Support for Eastern European Democracy (SEED) Act of 1989 directed the US Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in Krakow as the ``Krakow Clean Fossil Fuels and Energy Efficiency Project.`` Funding is provided through the US Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe.

  10. Krakow clean fossil fuels and energy efficiency project

    SciTech Connect

    Butcher, T.A.; Pierce, B.L.

    1995-11-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the `Krakow Clean Fossil Fuels and Energy Efficiency Project.` Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the `low emission sources` and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  11. Solid amine-boranes as high performance hypergolic hybrid rocket fuels

    NASA Astrophysics Data System (ADS)

    Pfeil, Mark A.

    Hypergolic hybrid rockets have the potential of providing systems that are simple, reliable, have high performance, and allow for energy management. Such a propulsion system can be applied to fields that need a single tactical motor with flexible mission requirements of either high speed to target or extended loitering. They also provide the possibility for alternative fast response dynamic altitude control systems if ignition delays are sufficiently short. Amines are the traditional fuel of choice when selecting a hypergolic combination as these tend to react readily with both nitric acid and dinitrogen tertroxide based oxidizers. It has been found that the addition of a borane adduct to an amine fuel tends to reduce the ignition delay by up to an order of magnitude with white fuming nitric acid (WFNA). The borane addition has resulted in fuels with very short ignition delays between 2-10 ms - the fastest times for an amine based fuel reacting with nitric acid based oxidizers. The incorporation of these amine-boranes, specifically ethylenediamine bisborane (EDBB), into various fuel binders has also been found to result in ignition delays between 3-10 ms - the fastest times again for amine based fuels. It was found that the addition of a borane to an amine increased theoretical performance of the amine resulting in high performance fuels. The amine-borane/fuel binder combinations also produced higher theoretical performance values than previously used hypergolic hybrid rockets. Some of the theoretical values are on par or higher than the current toxic liquid hypergolic fuels, making amine boranes an attractive replacement. The higher performing amine-borane/fuel binder combinations also have higher performance values than the traditional rocket fuels, excluding liquid hydrogen. Thus, amine-borane based fuels have the potential to influence various area in the rocket field. An EDBB/ferrocene/epoxy fuel was tested in a hypergolic hybrid with pure nitric acid as the

  12. Energy conversion and fuel production from electrochemical interfaces

    NASA Astrophysics Data System (ADS)

    Markovic, Nenad

    2012-02-01

    Design and synthesis of energy efficient and stable electrochemical interfaces (materials and double layer components) with tailor properties for accelerating and directing chemical transformations is the key to developing new alternative energy systems -- fuel cells, electrolizers and batteries. In aqueous electrolytes, depending on the nature of the reacting species, the supporting electrolyte, and the metal electrodes, two types of interactions have traditionally been considered: (i) direct -- covalent - bond formation between adsorbates and electrodes, involving chemisorption, electron transfer, and release of the ion hydration shell; and (ii) relatively weak non-covalent metal-ion forces that may affect the concentration of ions in the vicinity of the electrode but do not involve direct metal-adsorbate bonding. The range of physical phenomena associated with these two classes of bonds is unusually broad, and are of paramount importance to understand activity of both metal-electrolyte two phase interfaces and metal-Nafion-electrolyte three phase interfaces. Furthermore, in the past, researcher working in the field of fuel cells (converting hydrogen and oxygen into water) and electrolyzers (splitting water back to H2 and O2) ) seldom focused on understanding the electrochemical compliments of these reactions in battery systems, e.g., the lithium-air system. In this lecture, we address the importance of both covalent and non-covalent interactions in controlling catalytic activity at the two-phase and three-phase interfaces. Although the field is still in its infancy, a great deal has already been learned and trends are beginning to emerge that give new insight into the relationship between the nature of bonding interactions and catalytic activity/stability of electrochemical interfaces. In addition, to bridge the gap between the ``water battery'' (fuel cell <-> electrolyzer) and the Li-air battery systems we demonstrate that this would require fundamentally new

  13. High-density biosynthetic fuels: the intersection of heterogeneous catalysis and metabolic engineering.

    PubMed

    Harvey, Benjamin G; Meylemans, Heather A; Gough, Raina V; Quintana, Roxanne L; Garrison, Michael D; Bruno, Thomas J

    2014-05-28

    Biosynthetic valencene, premnaspirodiene, and natural caryophyllene were hydrogenated and evaluated as high performance fuels. The parent sesquiterpenes were then isomerized to complex mixtures of hydrocarbons with the heterogeneous acid catalyst Nafion SAC-13. High density fuels with net heats of combustion ranging from 133-141 000 Btu gal(-1), or up to 13% higher than commercial jet fuel could be generated by this approach. The products of caryophyllene isomerization were primarily tricyclic hydrocarbons which after hydrogenation increased the fuel density by 6%. The isomerization of valencene and premnaspirodiene also generated a variety of sesquiterpenes, but in both cases the dominant product was δ-selinene. Ab initio calculations were conducted to determine the total electronic energies for the reactants and products. In all cases the results were in excellent agreement with the experimental distribution of isomers. The cetane numbers for the sesquiterpane fuels ranged from 20-32 and were highly dependent on the isomer distribution. Specific distillation cuts may have the potential to act as high density diesel fuels, while use of these hydrocarbons as additives to jet fuel will increase the range and/or time of flight of aircraft. In addition to the ability to generate high performance renewable fuels, the powerful combination of metabolic engineering and heterogeneous catalysis will allow for the preparation of a variety of sesquiterpenes with potential for pharmaceutical, flavor, and fragrance applications.

  14. 78 FR 13661 - Energy Transfer Fuel, LP; Notice of Petition for Rate Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Energy Transfer Fuel, LP; Notice of Petition for Rate Approval Take notice that on February 15, 2013, Energy Transfer Fuel, LP filed for approval of rates for transportation...

  15. Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects

    SciTech Connect

    Fuel Cell Technologies Office

    2012-05-01

    This fact sheets highlights U.S. Department of Energy fuel cell projects funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act). More than 1,000 fuel cell systems have been deployed through Recovery Act funding.

  16. Fuel cycle analysis for fossil energy systems: Coal combustion

    NASA Astrophysics Data System (ADS)

    Greenstreet, W. L.; Carmichael, R. L.

    1981-02-01

    Elements of the fuel cycle for coal combustion in power generation are examined; and information on economics, technological status, energy efficiencies, and environmental issues is reviewed. Overall background information is provided for guidance in identifying issues and establishing needs and priorities for engineering research, development, and demonstration. The elements treated include mining, transportation, coal preparation, direct combustion, and environmental control technology. The treatment used differs from that of usual compendiums in its emphasis on integrated examination and presentation directed primarily toward providing bases for general assessment and for guidance in program development. Emphasis is on program identification as opposed to advocacy.

  17. Fuel switching and energy partitioning during the postprandial metabolic response in the ball python (Python regius).

    PubMed

    Waas, Stefan; Werner, Roland A; Starck, J Matthias

    2010-04-01

    Digestion, absorption and assimilation of the meal are active processes that require start-up energy before the energy contained in a meal can be utilized. The energetic costs associated with feeding (specific dynamic action, SDA) are high in sit-and-wait foraging snakes that tolerate long fasting periods. We used (13)C-labelled prey to partition between endogenous energy sources (i.e. snakes' own resources) and exogenous energy sources (i.e. prey). A linear mixing model was then applied to determine the portion of (13)C originating from the different sources. The snakes showed a normal and typical postprandial response. By four hours after feeding, the delta(13)C-values indicated fuel switching from endogenous to exogenous. From then on, fuel mixing continuously increased until, at 20 h after feeding, 75% of fuel was exogenous. Resource partitioning showed that throughout SDA, the amount of exogenous energy increased to approximately 60% of SDA, which was equivalent to approximately 4.5% of the energy contained in a meal.

  18. Energy expenditure, sex, and endogenous fuel availability in humans

    PubMed Central

    Nielsen, Søren; Guo, ZengKui; Albu, Jeanine B.; Klein, Samuel; O’Brien, Peter C.; Jensen, Michael D.

    2003-01-01

    Adipose tissue lipolysis supplies circulating FFAs, which largely meet lipid fuel needs; however, excess FFAs, can contribute to the adverse health consequences of obesity. Because “normal” FFA release has not been well defined, average (mean of 4 days) basal FFA release and its potential regulation factors were measured in 50 lean and obese adults (25 women). Resting energy expenditure (REE), but not body composition, predicted most of the interindividual variation in FFA release. There was a significant, positive linear relationship between palmitate release and REE; however, women released approximately 40% more FFA than men relative to REE. Neither plasma palmitate concentrations nor respiratory quotient by indirect calorimetry differed between men and women. Glucose release rates were not different in men and women whether related to REE or fat free mass. These findings indicate that nonoxidative FFA clearance is greater in women than in men. This could be an advantage at times of increased fuel needs. We conclude that “normal” adipose tissue lipolysis is different in men and women and that the fuel export role of adipose tissue in obesity will need to be reassessed. PMID:12671047

  19. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; John Noetzel; Larry Chick

    2003-12-08

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.

  20. High Energy Colliders

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.; Gallardo, J. C.

    INTRODUCTION PHYSICS CONSIDERATIONS GENERAL REQUIRED LUMINOSITY FOR LEPTON COLLIDERS THE EFFECTIVE PHYSICS ENERGIES OF HADRON COLLIDERS HADRON-HADRON MACHINES LUMINOSITY SIZE AND COST CIRCULAR e^{+}e^- MACHINES LUMINOSITY SIZE AND COST e^{+}e^- LINEAR COLLIDERS LUMINOSITY CONVENTIONAL RF SUPERCONDUCTING RF AT HIGHER ENERGIES γ - γ COLLIDERS μ ^{+} μ^- COLLIDERS ADVANTAGES AND DISADVANTAGES DESIGN STUDIES STATUS AND REQUIRED R AND D COMPARISION OF MACHINES CONCLUSIONS DISCUSSION

  1. A novel thin film solid oxide fuel cell for microscale energy conversion

    SciTech Connect

    Jankowiski, A; Morse, J

    1999-07-21

    A novel approach for the fabrication and assembly of a solid oxide fuel cell system is described which enables effective scaling of the fuel delivery, manifold, and fuel cell stack components for applications in miniature and microscale energy conversion. Electrode materials for solid oxide fuel cells are developed using sputter deposition techniques. A thin film anode is formed by co-deposition of nickel and yttria-stabilized zirconia (YSZ). This approach provides a mixed conducting inter-facial layer between the nickel electrode and electrolyte layer. Similarly, a thin film cathode is formed by co-deposition of silver and yttria-stabilized zirconia. Additionally, sputter deposition of yttria-stabilized zirconia thin film electrolyte enables high quality, continuous films to be formed having thicknesses on the order of 1-2 {micro}m. This will effectively lower the temperature of operation for the fuel cell stack significantly below the traditional ranges at which solid oxide electrolyte systems are operated (600-1000 C), thereby rendering this fuel cell system suitable for miniaturization, Scaling towards miniaturization is accomplished by utilizing novel micromachining approaches which allow manifold channels and fuel delivery system to be formed within the substrate which the thin film fuel cell stack is fabricated on, thereby circumventing the need for bulky manifold components which are not directly scalable. Methods to synthesize anodes for thin film solid-oxide fuel cells (TFSOFCs) from the electrolyte and a conductive material are developed using photolithographic patterning and physical vapor deposition. The anode layer must enable combination of the reactive gases, be conductive to pass the electric current, and provide mechanical support to the electrolyte and cathode layers. The microstructure and morphology desired for the anode layer should facilitate generation of maximum current density from the fuel cell. For these purposes, the parameters of the

  2. High performance zinc air fuel cell stack

    NASA Astrophysics Data System (ADS)

    Pei, Pucheng; Ma, Ze; Wang, Keliang; Wang, Xizhong; Song, Mancun; Xu, Huachi

    2014-03-01

    A zinc air fuel cell (ZAFC) stack with inexpensive manganese dioxide (MnO2) as the catalyst is designed, in which the circulation flowing potassium hydroxide (KOH) electrolyte carries the reaction product away and acts as a coolant. Experiments are carried out to investigate the characteristics of polarization, constant current discharge and dynamic response, as well as the factors affecting the performance and uniformity of individual cells in the stack. The results reveal that the peak power density can be as high as 435 mW cm-2 according to the area of the air cathode sheet, and the influence factors on cell performance and uniformity are cell locations, filled state of zinc pellets, contact resistance, flow rates of electrolyte and air. It is also shown that the time needed for voltages to reach steady state and that for current step-up or current step-down are both in milliseconds, indicating the ZAFC can be excellently applied to vehicles with rapid dynamic response demands.

  3. High performance direct methanol fuel cell with thin electrolyte membrane

    NASA Astrophysics Data System (ADS)

    Wan, Nianfang

    2017-06-01

    A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.

  4. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    SciTech Connect

    Paul A. Demkowicz; David V. Laug; Dawn M. Scates; Edward L. Reber; Lyle G. Roybal; John B. Walter; Jason M. Harp; Robert N. Morris

    2012-10-01

    The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 degrees C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated fission gas monitoring system, as well as preliminary system calibration results.

  5. Decision-maker's guide to wood fuel for small industrial energy users. Final report. [Includes glossary

    SciTech Connect

    Levi, M. P.; O'Grady, M. J.

    1980-02-01

    The technology and economics of various wood energy systems available to the small industrial and commercial energy user are considered. This book is designed to help a plant manager, engineer, or others in a decision-making role to become more familiar with wood fuel systems and make informed decisions about switching to wood as a fuel. The following subjects are discussed: wood combustion, pelletized wood, fuel storage, fuel handling and preparation, combustion equipment, retrofitting fossil-fueled boilers, cogeneration, pollution abatement, and economic considerations of wood fuel use. (MHR)

  6. Direct Reacting Anolyte-Catholyte Fuel Cell for Hybrid Energy Sources

    DTIC Science & Technology

    2005-07-11

    401-832-5293. 20050719 026 Attorney Docket No. 82872 Customer No. 23523 DIRECT REACTING ANOLYTE -CATHOLYTE FUEL CELL FOR HYBRID ENERGY SOURCES TO ALL...PAUL A. NASSER, Esq. Reg. No. 53372 1 Attorney Docket No. 82872 2 3 DIRECT REACTING ANOLYTE -CATHOLYTE FUEL CELL 4 FOR HYBRID ENERGY SOURCES 5 6...14 The present invention relates generally to a fuel cell, and 15 more particularly to a fuel cell wherein both the anolyte and 16 the catholyte are

  7. An Innovative High Thermal Conductivity Fuel Design

    SciTech Connect

    Jamil A. Khan

    2009-11-21

    Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 [97% TD]. This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.

  8. Polymer fuel cell as an energy storage component for space power applications

    NASA Astrophysics Data System (ADS)

    Spirio, Carmelo A.; Vanderborgh, Nicholas E.

    Fuel cells have already been proposed as energy storage candidates for space applications in the multimegawatt regime in a number of studies and the projected performance seems to satisfy the severe requirement of high power density. These chemical energy based systems are particularly important when the mission duration is in the 1000 second domain. Recent measured performance of experimental polymer membranes operating on pure gases has brought this technology into the candidate arena because of its potential near term availability as space traceable hardware. An energy storage system is described which furnishes the mission power for a number of applications, including its candidacy for the SDI. Contemporary fuel cell systems are a factor of nearly 50 below the power density needed for the platform requirements.

  9. High-throughput characterization for solar fuels materials discovery

    NASA Astrophysics Data System (ADS)

    Mitrovic, Slobodan; Becerra, Natalie; Cornell, Earl; Guevarra, Dan; Haber, Joel; Jin, Jian; Jones, Ryan; Kan, Kevin; Marcin, Martin; Newhouse, Paul; Soedarmadji, Edwin; Suram, Santosh; Xiang, Chengxiang; Gregoire, John; High-Throughput Experimentation Team

    2014-03-01

    In this talk I will present the status of the High-Throughput Experimentation (HTE) project of the Joint Center for Artificial Photosynthesis (JCAP). JCAP is an Energy Innovation Hub of the U.S. Department of Energy with a mandate to deliver a solar fuel generator based on an integrated photoelectrochemical cell (PEC). However, efficient and commercially viable catalysts or light absorbers for the PEC do not exist. The mission of HTE is to provide the accelerated discovery through combinatorial synthesis and rapid screening of material properties. The HTE pipeline also features high-throughput material characterization using x-ray diffraction and x-ray photoemission spectroscopy (XPS). In this talk I present the currently operating pipeline and focus on our combinatorial XPS efforts to build the largest free database of spectra from mixed-metal oxides, nitrides, sulfides and alloys. This work was performed at Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993.

  10. State and Alternative Fuel Provider Fleets Alternative Compliance; U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-08-01

    The final rule of the Energy Policy Act of 2005 and its associated regulations enable covered state and alternative fuel provider fleets to obtain waivers from the alternative fuel vehicle (AFV)-acquisition requirements of Standard Compliance. Under Alternative Compliance, covered fleets instead meet a petroleum-use reduction requirement. This guidance document is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.

  11. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    SciTech Connect

    Perez, Emmanuel; Keiser, Jr., Dennis D.; Forsmann, Bryan; Janney, Dawn E.; Henley, Jody; Woolstenhulme, Eric C.

    2016-02-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  12. Premixer Design for High Hydrogen Fuels

    SciTech Connect

    Benjamin P. Lacy; Keith R. McManus; Balachandar Varatharajan; Biswadip Shome

    2005-12-16

    This 21-month project translated DLN technology to the unique properties of high hydrogen content IGCC fuels, and yielded designs in preparation for a future testing and validation phase. Fundamental flame characterization, mixing, and flame property measurement experiments were conducted to tailor computational design tools and criteria to create a framework for predicting nozzle operability (e.g., flame stabilization, emissions, resistance to flashback/flame-holding and auto-ignition). This framework was then used to establish, rank, and evaluate potential solutions to the operability challenges of IGCC combustion. The leading contenders were studied and developed with the most promising concepts evaluated via computational fluid dynamics (CFD) modeling and using the design rules generated by the fundamental experiments, as well as using GE's combustion design tools and practices. Finally, the project scoped the necessary steps required to carry the design through mechanical and durability review, testing, and validation, towards full demonstration of this revolutionary technology. This project was carried out in three linked tasks with the following results. (1) Develop conceptual designs of premixer and down-select the promising options. This task defined the ''gap'' between existing design capabilities and the targeted range of IGCC fuel compositions and evaluated the current capability of DLN pre-mixer designs when operated at similar conditions. Two concepts (1) swirl based and (2) multiple point lean direct injection based premixers were selected via a QFD from 13 potential design concepts. (2) Carry out CFD on chosen options (1 or 2) to evaluate operability risks. This task developed the leading options down-selected in Task 1. Both a GE15 swozzle based premixer and a lean direct injection concept were examined by performing a detailed CFD study wherein the aerodynamics of the design, together with the chemical kinetics of the combustion process, were

  13. Combustion characteristics of high-energy/high-density hydrocarbon compounds

    SciTech Connect

    Segal, C.; Friedauer, M.J.; Udaykumar, H.S.; Shyy, W.

    1996-12-31

    The combustion characteristics of PCU Alkene Dimers (C{sub 22}H{sub 24}) are evaluated as solid fuels in high speed flows, at conditions typical for ramjet operation (i.e., Mach 0.25, stagnation temperature and pressure of 300 K and 150 kPa, respectively). Samples of the dimer are binded into a solid layer with a styrene-polybutadiene copolymer (8% w/w) on the test chamber wall and convectively ignited by a gaseous flame in air. The goals of this research are of both practical and fundamental relevance: (1) determine the ability of the high energy fuel to increase practical devices` performance, (2) quantify and improve the combustion characteristics of the alkene dimers (i.e., ignition, flame stability, particulate formation), (3) investigate the dynamics of the solid-gas interface combustion. To date, ignition times and rates of heat release were measured and the theoretical modelling was initiated. Preliminary results indicate that, in the present configuration, the dimer ignition times fall within the range reported in literature for other solid fuels. Large differences exist among different sets of data due primarily to nonsimilar geometrical configuration of the test. The dimer exhibits substantial rates of heat release in comparison with other solid fuels.

  14. Advances in Metallic Fuels for High Burnup and Actinide Transmutation

    SciTech Connect

    Hayes, S. L.; Harp, J. M.; Chichester, H. J. M.; Fielding, R. S.; Mariani, R. D.; Carmack, W. J.

    2016-10-01

    Research and development activities on metallic fuels in the US are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is a desire to demonstrate a multifold increase in burnup potential. A number of metallic fuel design innovations are under investigation with a view toward significantly increasing the burnup potential of metallic fuels, since higher discharge burnups equate to lower potential actinide losses during recycle. Promising innovations under investigation include: 1) lowering the fuel smeared density in order to accommodate the additional swelling expected as burnups increase, 2) utilizing an annular fuel geometry for better geometrical stability at low smeared densities, as well as the potential to eliminate the need for a sodium bond, and 3) minor alloy additions to immobilize lanthanide fission products inside the metallic fuel matrix and prevent their transport to the cladding resulting in fuel-cladding chemical interaction. This paper presents results from these efforts to advance metallic fuel technology in support of high burnup and actinide transmutation objectives. Highlights include examples of fabrication of low smeared density annular metallic fuels, experiments to identify alloy additions effective in immobilizing lanthanide fission products, and early postirradiation examinations of annular metallic fuels having low smeared densities and palladium additions for fission product immobilization.

  15. Fully Premixed Low Emission, High Pressure Multi-Fuel Burner

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor)

    2012-01-01

    A low-emissions high-pressure multi-fuel burner includes a fuel inlet, for receiving a fuel, an oxidizer inlet, for receiving an oxidizer gas, an injector plate, having a plurality of nozzles that are aligned with premix face of the injector plate, the plurality of nozzles in communication with the fuel and oxidizer inlets and each nozzle providing flow for one of the fuel and the oxidizer gas and an impingement-cooled face, parallel to the premix face of the injector plate and forming a micro-premix chamber between the impingement-cooled face and the in injector face. The fuel and the oxidizer gas are mixed in the micro-premix chamber through impingement-enhanced mixing of flows of the fuel and the oxidizer gas. The burner can be used for low-emissions fuel-lean fully-premixed, or fuel-rich fully-premixed hydrogen-air combustion, or for combustion with other gases such as methane or other hydrocarbons, or even liquid fuels.

  16. Fuel-rich catalytic combustion: A fuel processor for high-speed propulsion

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Rollbuhler, R. James; Lezberg, Erwin A.

    1990-01-01

    Fuel-rich catalytic combustion of Jet-A fuel was studied over the equivalence ratio range 4.7 to 7.8, which yielded combustion temperatures of 1250 to 1060 K. The process was soot-free and the gaseous products were similar to those obtained in the iso-octane study. A carbon atom balance across the catalyst bed calculated for the gaseous products accounted for about 70 to 90 percent of the fuel carbon; the balance was condensed as a liquid in the cold trap. It was shown that 52 to 77 percent of the fuel carbon was C1, C2, and C3 molecules. The viability of using fuel-rich catalytic combustion as a technique for preheating a practical fuel to very high temperatures was demonstrated. Preliminary results from the scaled up version of the catalytic combustor produced a high-temperature fuel containing large amounts of hydrogen and carbon monoxide. The balance of the fuel was completely vaporized and in various stages of pyrolysis and oxidation. Visual observations indicate that there was no soot present.

  17. Fuel cells are a commercially viable alternative for the production of "clean" energy.

    PubMed

    Niakolas, Dimitris K; Daletou, Maria; Neophytides, Stylianos G; Vayenas, Constantinos G

    2016-01-01

    Fuel cells present a highly efficient and environmentally friendly alternative technology for decentralized energy production. The scope of the present study is to provide an overview of the technological and commercialization readiness level of fuel cells. Specifically, there is a brief description of their general advantages and weaknesses in correlation with various technological actions and political strategies, which are adopted towards their proper positioning in the global market. Some of the most important key performance indicators are also discussed, alongside with a few examples of broad commercialization. It is concluded that the increasing number of companies which utilize and invest on this technology, in combination with the supply chain improvements and the concomitant technological maturity and recognition, reinforce the fuel cell industry so as to become well-aligned for global success.

  18. Energy Flowchart Scenarios of Future U.S. Energy Use Incorporating Hydrogen Fueled Vehicles

    SciTech Connect

    Berry, G; Daily III, W

    2004-06-03

    This project has adapted LLNL energy flowcharts of historical U.S. energy use drawn from the DOE Energy Information Administration (EIA) data to include scenarios involving hydrogen use. A flexible automated process for preparing and drawing these flowcharts has also been developed. These charts show the flows of energy between primary sectors of the economy so that a user can quickly understand the major implications of a proposed scenario. The software can rapidly generate a spectrum of U.S. energy use scenarios in the 2005-2050 timeframe, both with and without a transition to hydrogen-fueled transportation. These scenarios indicate that fueling 100% of the light duty fleet in 2050 (318 million 80 mpg-equivalent compressed hydrogen fuel cell vehicles) will require approximately 100 million tonnes (10.7 quads) of H2/year, reducing petroleum use by at least 7.3 million barrels of oil/day (15.5 quads/yr). Linear extrapolation of EIA's 2025 reference projection to 2050 indicates approximate U.S. primary energy use of 180 quads/yr (in 2050) relative to current use of 97 quads/yr (comprising 39 quads/yr of petroleum). Full deployment of 50% efficient electricity generation technologies for coal and nuclear power and improvements in gasoline lightduty vehicle fleet fuel economy to 50 mpg would reduce projected U.S. primary energy consumption to 143 quads/yr in 2050, comprising 58 quads/yr (27 million bbl/day) of petroleum. Full deployment of H2 automobiles by 2050 could further reduce U.S. petroleum dependence to 43 quads/yr. These projections indicate that substantial steps beyond a transition to H2 light-duty vehicles will be necessary to reduce future U.S. petroleum dependence (and related greenhouse gases) below present levels. A flowchart projecting future U.S. energy flows depicting a complete transition by 2050 to compressed hydrogen light-duty vehicles is attached on the following page (corresponding to scenario 7 in the Appendix). It indicates that producing

  19. Waste to Energy Potential - A High Concentration Anaerobic Bioreactor

    DTIC Science & Technology

    2012-05-23

    output • Uses the organic portion of solid waste (such as food waste , paper products, and agricultural waste ) to fuel an anaerobic digestion ...Sustainability Symposium & Exhibition Anaerobic Digestion • What does it do? • Offers sustainability by addressing renewable energy, waste ... Waste to Energy Potential – A High Concentration Anaerobic Bioreactor Presenter: Scott Murphy & Rebecca Robbennolt ARCADIS/Malcolm Pirnie Date

  20. Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems

    NASA Technical Reports Server (NTRS)

    Mougin, L. J.

    1983-01-01

    The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.

  1. Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems

    NASA Astrophysics Data System (ADS)

    Mougin, L. J.

    1983-07-01

    The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.

  2. Materials for electrochemical energy storage and conversion -- Batteries, capacitors and fuel cells

    SciTech Connect

    Doughty, D.H.; Vyas, B.; Takamura, Tsutomu; Huff, J.R.

    1995-12-31

    The papers contained in this volume were presented at Symposium W: Materials for Electrochemical Energy Storage and Conversion -- Batteries, Capacitors and Fuel Cells, that was held during the 1995 MRS Spring Meeting in San Francisco, California, April 17--20, 1995. The symposium was organized as a forum for uniting materials scientists with electrochemists and battery engineers, with the hope of increasing communication and understanding of electrochemical aspects of materials. It is believed that the development of high-performance power sources for applications ranging from portable electronics to electric and hybrid vehicles is intimately linked with availability of advanced materials. Designing batteries and capacitors with higher specific energy and power will require a deeper understanding of materials properties and performance. Fuel cells, which offer the potential for clean, efficient conversion of chemical energy to electrical energy, are hampered by high cost and performance problems, both of which could be resolved by new materials and processing techniques. Sessions were organized on oxides, hydrides, polymers and carbons as they relate to fuel cells, batteries and electrochemical double-layer capacitors. Moreover, reviews of the current status of materials performance and needs were presented in each of the application areas. Forty nine papers have been processed separately for inclusion on the data base.

  3. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION....51 Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent...

  4. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION....51 Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent...

  5. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent nuclear fuel and high-level radioactive waste stored under a specific license issued pursuant to part...

  6. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent nuclear fuel and high-level radioactive waste stored under a specific license issued pursuant to part...

  7. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent nuclear fuel and high-level radioactive waste stored under a specific license issued pursuant to part...

  8. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy

  9. Performance of HT9 clad metallic fuel at high temperature

    SciTech Connect

    Pahl, R.G.; Lahm, C.E.; Hayes, S.L.

    1992-12-01

    Steady-state testing of HT9 clad metallic fuel at high temperatures was initiated in EBR-II in November of 1987. At that time U-10 wt. % Zr fuel clad with the low-swelling ferritic/martensitic alloy HT9 was being considered as driver fuel options for both EBR-II and FFTF. The objective of the X447 test described here was to determine the lifetime of HT9 cladding when operated with metallic fuel at beginning of life inside wall temperatures approaching {approximately}660{degree}C. Though stress-temperature design limits for HT9 preclude its use for high burnup applications under these conditions due to excessive thermal creep, the X447 test was carried out to obtain data on high temperature breach phenomena involving metallic fuel since little data existed in that area.

  10. Performance of HT9 clad metallic fuel at high temperature

    SciTech Connect

    Pahl, R.G.; Lahm, C.E.; Hayes, S.L.

    1992-01-01

    Steady-state testing of HT9 clad metallic fuel at high temperatures was initiated in EBR-II in November of 1987. At that time U-10 wt. % Zr fuel clad with the low-swelling ferritic/martensitic alloy HT9 was being considered as driver fuel options for both EBR-II and FFTF. The objective of the X447 test described here was to determine the lifetime of HT9 cladding when operated with metallic fuel at beginning of life inside wall temperatures approaching [approximately]660[degree]C. Though stress-temperature design limits for HT9 preclude its use for high burnup applications under these conditions due to excessive thermal creep, the X447 test was carried out to obtain data on high temperature breach phenomena involving metallic fuel since little data existed in that area.

  11. Flare physics at high energies

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1990-01-01

    High-energy processes, involving a rich variety of accelerated particle phenomena, lie at the core of the solar flare problem. The most direct manifestation of these processes are high-energy radiations, gamma rays, hard X-rays and neutrons, as well as the accelerated particles themselves, which can be detected in interplanetary space. In the study of astrophysics from the moon, the understanding of these processes should have great importance. The inner solar system environment is strongly influenced by activity on the sun; the physics of solar flares is of great intrinsic interest; and much high-energy astrophysics can be learned from investigations of flare physics at high energies.

  12. Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications

    NASA Astrophysics Data System (ADS)

    Thounthong, Phatiphat; Raël, Stephane; Davat, Bernard

    This paper proposes a perfect energy source supplied by a polymer electrolyte membrane fuel cell (PEMFC) as a main power source and storage devices: battery and supercapacitor, for modern distributed generation system, particularly for future fuel cell vehicle applications. The energy in hybrid system is balanced by the dc bus voltage regulation. A supercapacitor module, as a high dynamic and high power density device, functions for supplying energy to regulate a dc bus voltage. A battery module, as a high energy density device, operates for supplying energy to a supercapacitor bank to keep it charged. A FC, as a slowest dynamic source in this system, functions to supply energy to a battery bank in order to keep it charged. Therefore, there are three voltage control loops: dc bus voltage regulated by a supercapacitor bank, supercapacitor voltage regulated by a battery bank, and battery voltage regulated by a FC. To authenticate the proposed control algorithm, a hardware system in our laboratory is realized by analog circuits and numerical calculation by dSPACE. Experimental results with small-scale devices (a PEMFC: 500-W, 50-A; a battery bank: 68-Ah, 24-V; and a supercapacitor bank: 292-F, 30-V, 500-A) corroborate the excellent control principle during motor drive cycle.

  13. Chemical-looping combustion -- Efficient conversion of chemical energy in fuels into work

    SciTech Connect

    Anheden, M.; Naesholm, A.S.; Svedberg, G.

    1995-12-31

    In thermal power plants, a large amount of the useful energy in the fuel is destroyed during the combustion process. This paper presents theoretical thermodynamic studies of a new system to increase the energy conversion efficiency of chemical energy in fuels into work. The system includes a gas turbine system with chemical-looping combustion where a metal oxide is used as an oxygen carrier. Instead of conventional combustion, the oxidation of the fuel is carried out in a two-step reaction. The first reaction step is an exothermic oxidation of a metal with air and the second reaction step an endothermic oxidation of the fuel with the metal oxide from the first step. The low grade heat in the exhaust gas is used to drive the endothermic reaction. This two-step reaction has proven to be one way to increase the energy utilization compared to conventional combustion. Results for a gas turbine reheat cycle with methane as a fuel and NiO as an oxygen carrier show that the gain in net power efficiency for the chemical-looping combustion system is as high as 5 percentage points compared to a similar conventional gas turbine system. An exergy analysis of the reactions shows that less irreversibilities are generated with chemical looping combustion than with conventional combustion. Another advantage with chemical-looping combustion is that the greenhouse gas CO{sub 2} is separated from the other exhaust gases without decreasing the overall-system thermal efficiency. This is an important feature since future regulations of CO{sub 2} emission are likely to be strict. Today, most of the suggested CO{sub 2} separation methods are considered to reduce the thermal efficiency at least 5--10 percentage points and to require expensive equipment.

  14. HIGH ENERGY RATE EXTRUSION.

    DTIC Science & Technology

    Thin structural shapes can now be produced by high velocity extrusion equipment. Tooling, dies, die coatings, lubricants and general processing...degrees was important in reducing the initial peak stresses to a controllable level and tooling failures were reduced by using high strength (Rc 55-60...the high inertial forces present) can be lessened and eliminated in many cases by the selection of low reduction ratios (15:1 or below) and low impact speeds. (Author)

  15. Energy spectra of high energy atmospheric neutrinos

    NASA Technical Reports Server (NTRS)

    Mitsui, K.; Minorikawa, Y.

    1985-01-01

    Focusing on high energy neutrinos ( or = 1 TeV), a new calculation of atmospheric neutrino intensities was carried out taking into account EMC effects observed in P-A collisions by accelerator, recent measurement of primary cosmic ray spectrum and results of cosmic ray muon spectrum and charge ratio. Other features of the present calculation are (1) taking into account kinematics of three body decays of kaons and charm particles in diffusion equations and (2) taking into account energy dependence of kaon production.

  16. Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program

    SciTech Connect

    Nguyen Minh

    2006-07-31

    This report summarizes the work performed for Phase I (October 2001 - August 2006) under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled 'Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program'. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. During Phase I of the program significant progress has been made in the area of SOFC technology. A high-efficiency low-cost system was designed and supporting technology developed such as fuel processing, controls, thermal management, and power electronics. Phase I culminated in the successful demonstration of a prototype system that achieved a peak efficiency of 41%, a high-volume cost of $724/kW, a peak power of 5.4 kW, and a degradation rate of 1.8% per 500 hours. . An improved prototype system was designed, assembled, and delivered to DOE/NETL at the end of the program. This prototype achieved an extraordinary peak efficiency of 49.6%.

  17. Conclusions and recommendations. [for problems in energy situation, air transportation, and hydrogen fuel

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Conclusions and recommendations are presented for an analysis of the total energy situation; the effect of the energy problem on air transportation; and hydrogen fuel for aircraft. Properties and production costs of fuels, future prediction for energy and transportation, and economic aspects of hydrogen production are appended.

  18. Federal Support for the Development, Production, and Use of Fuels and Energy Technologies

    DTIC Science & Technology

    2015-11-01

    CONGRESS OF THE UNITED STATES CONGRESSIONAL BUDGET OFFICE CBO Federal Support for the Development, Production, and Use of Fuels and Energy ...Development, Production, and Use of Fuels and Energy Technologies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...ContentsSummary 1 How Does the Federal Government Support the Development, Production, and Use of Fuels and Energy Technologies? 1 How Has Federal Support

  19. High energy forming facility

    NASA Technical Reports Server (NTRS)

    Ciurlionis, B.

    1967-01-01

    Watertight, high-explosive forming facility, 25 feet in diameter and 15 feet deep, withstands repeated explosions of 10 pounds of TNT equivalent. The shell is fabricated of high strength steel and allows various structural elements to deform or move elastically and independently while retaining structural integrity.

  20. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    SciTech Connect

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee; David Schumann; Gail Geiger; Kevin Keegan; Larry Chick

    2004-05-07

    The objective of this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burn internal combustion engine. This technical progress report covers work performed by Delphi from July 1, 2003 to December 31, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; Task 9 Stack Testing with Coal-Based Reformate; and Task 10 Technology Transfer from SECA CORE Technology Program. In this reporting period, unless otherwise noted Task 6--System Fabrication and Task 7--System Testing will be reported within Task 1 System Design and Integration. Task 8--Program Management, Task 9--Stack Testing with Coal Based Reformate, and Task 10--Technology Transfer from SECA CORE Technology Program will be reported on in the Executive Summary section of this report.

  1. Highly selective condensation of biomass-derived methyl ketones as a source of aviation fuel.

    PubMed

    Sacia, Eric R; Balakrishnan, Madhesan; Deaner, Matthew H; Goulas, Konstantinos A; Toste, F Dean; Bell, Alexis T

    2015-05-22

    Aviation fuel (i.e., jet fuel) requires a mixture of C9 -C16 hydrocarbons having both a high energy density and a low freezing point. While jet fuel is currently produced from petroleum, increasing concern with the release of CO2 into the atmosphere from the combustion of petroleum-based fuels has led to policy changes mandating the inclusion of biomass-based fuels into the fuel pool. Here we report a novel way to produce a mixture of branched cyclohexane derivatives in very high yield (>94 %) that match or exceed many required properties of jet fuel. As starting materials, we use a mixture of n-alkyl methyl ketones and their derivatives obtained from biomass. These synthons are condensed into trimers via base-catalyzed aldol condensation and Michael addition. Hydrodeoxygenation of these products yields mixtures of C12 -C21 branched, cyclic alkanes. Using models for predicting the carbon number distribution obtained from a mixture of n-alkyl methyl ketones and for predicting the boiling point distribution of the final mixture of cyclic alkanes, we show that it is possible to define the mixture of synthons that will closely reproduce the distillation curve of traditional jet fuel.

  2. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    SciTech Connect

    Ames, David E.

    2014-02-01

    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  3. High temperature electrolyzer/fuel cell power cycle: Preliminary design considerations

    NASA Technical Reports Server (NTRS)

    Morehouse, Jeffrey H.

    1987-01-01

    A model of a high temperature electrolyzer/fuel cell, hydrogen/oxygen, thermally regenerative power cycle is developed and used to simulate system performance for varying system parameters. Initial estimates of system efficiency, weight, and volume are provided for a one KWe module assuming specific electrolyzer and fuel cell characteristics, both current and future. Specific interest is placed on examining the system responses to changes in device voltage versus current density operating curves, and the associated optimum operating ranges. The performance of a solar-powered, space based system in low earth orbit is examined in terms of the light-dark periods requiring storage. The storage design tradeoffs between thermal energy, electrical energy, and hydrogen/oxygen mass storage are examined. The current technology module is based on the 1000 C solid oxide electrolyzer cell and the alkaline fuel cell. The Future Technology system examines benefits involved with developing a 1800K electrolyzer operating with an advanced fuel cell.

  4. High temperature electrolyzer/fuel cell power cycle: Preliminary design considerations

    NASA Astrophysics Data System (ADS)

    Morehouse, Jeffrey H.

    1987-06-01

    A model of a high temperature electrolyzer/fuel cell, hydrogen/oxygen, thermally regenerative power cycle is developed and used to simulate system performance for varying system parameters. Initial estimates of system efficiency, weight, and volume are provided for a one KWe module assuming specific electrolyzer and fuel cell characteristics, both current and future. Specific interest is placed on examining the system responses to changes in device voltage versus current density operating curves, and the associated optimum operating ranges. The performance of a solar-powered, space based system in low earth orbit is examined in terms of the light-dark periods requiring storage. The storage design tradeoffs between thermal energy, electrical energy, and hydrogen/oxygen mass storage are examined. The current technology module is based on the 1000 C solid oxide electrolyzer cell and the alkaline fuel cell. The Future Technology system examines benefits involved with developing a 1800K electrolyzer operating with an advanced fuel cell.

  5. Converting environmentally hazardous materials into clean energy using a novel nanostructured photoelectrochemical fuel cell

    SciTech Connect

    Gan, Yong X.; Gan, Bo J.; Clark, Evan; Su, Lusheng; Zhang, Lihua

    2012-09-15

    Highlights: ► A photoelectrochemical fuel cell has been made from TiO{sub 2} nanotubes. ► The fuel cell decomposes environmentally hazardous materials to produce electricity. ► Doping the anode with a transition metal oxide increases the visible light sensitivity. ► Loading the anode with a conducting polymer enhances the visible light absorption. -- Abstract: In this work, a novel photoelectrochemical fuel cell consisting of a titanium dioxide nanotube array photosensitive anode and a platinum cathode was made for decomposing environmentally hazardous materials to produce electricity and clean fuel. Titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of pure Ti in an ammonium fluoride and glycerol-containing solution. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were determined. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as proven by the decomposition tests on urea, ammonia, sodium sulfide and automobile engine coolant under ultraviolet (UV) radiation. To improve the efficiency of the fuel cell, doping the TiO{sub 2} NTs with a transition metal oxide, NiO, was performed and the photosensitivity of the doped anode was tested under visible light irradiation. It is found that the NiO-doped anode is sensitive to visible light. Also found is that polyaniline-doped photosensitive anode can harvest photon energy in the visible light spectrum range much more efficiently than the NiO-doped one. It is concluded that the nanostructured photoelectrochemical fuel cell can generate electricity and clean fuel by decomposing hazardous materials under sunlight.

  6. Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads

    SciTech Connect

    2013-07-01

    The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

  7. Regenerative fuel cell energy storage system for a low Earth orbit space station

    SciTech Connect

    Martin, R.E.; Garow, J.; Michaels, K.B.

    1984-08-01

    Results of a study to define the characteristics of a regenerative fuel cell energy storage system for a large space station operating in low earth orbit (LEO) are presented. The regenerative fuel cell system employs an alkaline electrolyte fuel cell with the option of employing either an alkaline or a solid polymer electrolyte electrolyzer.

  8. A fuel cell energy storage system for Space Station extravehicular activity

    NASA Technical Reports Server (NTRS)

    Rosso, Matthew J., Jr.; Adlhart, Otto J.; Marmolejo, Jose A.

    1988-01-01

    The development of a fuel cell energy storage system for the Space Station Extravehicular Mobility Unit (EMU) is discussed. The ion-exchange membrane fuel cell uses hydrogen stored as a metal hydride. Several features of the hydrogen-oxygen fuel cell are examined, including its construction, hydrogen storage, hydride recharge, water heat, water removal, and operational parameters.

  9. A fuel cell energy storage system for Space Station extravehicular activity

    NASA Technical Reports Server (NTRS)

    Rosso, Matthew J., Jr.; Adlhart, Otto J.; Marmolejo, Jose A.

    1988-01-01

    The development of a fuel cell energy storage system for the Space Station Extravehicular Mobility Unit (EMU) is discussed. The ion-exchange membrane fuel cell uses hydrogen stored as a metal hydride. Several features of the hydrogen-oxygen fuel cell are examined, including its construction, hydrogen storage, hydride recharge, water heat, water removal, and operational parameters.

  10. Assessment of reactivity transient experiments with high burnup fuel

    SciTech Connect

    Ozer, O.; Yang, R.L.; Rashid, Y.R.; Montgomery, R.O.

    1996-03-01

    A few recent experiments aimed at determining the response of high-burnup LWR fuel during a reactivity initiated accident (RIA) have raised concerns that existing failure criteria may be inappropriate for such fuel. In particular, three experiments (SPERT CDC-859, NSRR HBO-1 and CABRI REP Na-1) appear to have resulted in fuel failures at only a fraction of the anticipated enthalpy levels. In evaluating the results of such RIA simulation experiments, however, it is necessary that the following two key considerations be taken into account: (1) Are the experiments representative of conditions that LWR fuel would experience during an in-reactor RIA event? (2) Is the fuel that is being utilized in the tests representative of the present (or anticipated) population of LWR fuel? Conducting experiments under conditions that can not occur in-reactor can trigger response modes that could not take place during in-reactor operation. Similarly, using unrepresentative fuel samples for the tests will produce failure information that is of limited relevance to commercial LWR fuel. This is particularly important for high-burnup fuel since the manner under which the test samples are base-irradiated prior to the test will impact the mechanical properties of the cladding and will therefore affect the RIA response. A good example of this effect can be seen in the results of the SPERT CDC-859 test and in the NSRR JM-4 and JM-5 tests. The conditions under which the fuel used for these tests was fabricated and/or base-irradiated prior to the RIA pulse resulted in the formation of multiple cladding defects in the form of hydride blisters. When this fuel was subjected to the RIA power pulse, it failed by developing multiple cracks that were closely correlated with the locations of the pre-existing hydride blisters. In the case of the JM tests, many of the cracks formed within the blisters themselves and did not propagate beyond the heavily hydrided regions.

  11. Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach

    NASA Astrophysics Data System (ADS)

    Zhou, Daming; Al-Durra, Ahmed; Gao, Fei; Ravey, Alexandre; Matraji, Imad; Godoy Simões, Marcelo

    2017-10-01

    Energy management strategy plays a key role for Fuel Cell Hybrid Electric Vehicles (FCHEVs), it directly affects the efficiency and performance of energy storages in FCHEVs. For example, by using a suitable energy distribution controller, the fuel cell system can be maintained in a high efficiency region and thus saving hydrogen consumption. In this paper, an energy management strategy for online driving cycles is proposed based on a combination of the parameters from three offline optimized fuzzy logic controllers using data fusion approach. The fuzzy logic controllers are respectively optimized for three typical driving scenarios: highway, suburban and city in offline. To classify patterns of online driving cycles, a Probabilistic Support Vector Machine (PSVM) is used to provide probabilistic classification results. Based on the classification results of the online driving cycle, the parameters of each offline optimized fuzzy logic controllers are then fused using Dempster-Shafer (DS) evidence theory, in order to calculate the final parameters for the online fuzzy logic controller. Three experimental validations using Hardware-In-the-Loop (HIL) platform with different-sized FCHEVs have been performed. Experimental comparison results show that, the proposed PSVM-DS based online controller can achieve a relatively stable operation and a higher efficiency of fuel cell system in real driving cycles.

  12. Co-Optimization of Fuels & Engines for Tomorrow's Energy-Efficient Vehicles

    SciTech Connect

    2016-03-01

    A new U.S. Department of Energy (DOE) initiative is accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) is designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, nine national laboratories, and numerous industry and academic partners to more rapidly identify commercially viable solutions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions.

  13. Mass minimization of a discrete regenerative fuel cell (RFC) system for on-board energy storage

    NASA Astrophysics Data System (ADS)

    Li, Xiaojin; Xiao, Yu; Shao, Zhigang; Yi, Baolian

    RFC combined with solar photovoltaic (PV) array is the advanced technologic solution for on-board energy storage, e.g. land, sky, stratosphere and aerospace applications, due to its potential of achieving high specific energy. This paper focuses on mass modeling and calculation for a RFC system consisting of discrete electrochemical cell stacks (fuel cell and electrolyzer), together with fuel storage, a PV array, and a radiator. A nonlinear constrained optimization procedure is used to minimize the entire system mass, as well as to study the effect of operating conditions (e.g. current densities of fuel cell and electrolyzer) on the system mass. According to the state-of-the-art specific power of both electrochemical stacks, an energy storage system has been designed for the conditions of stratosphere applications and a rated power output of 12 kW. The calculation results show that the optimization of the current density of both stacks is of importance in designing the light weight on-board energy system.

  14. Fuel conversion efficiency and energy balance of a 400 kW{sub t} fluidized bed straw gasifier

    SciTech Connect

    Erguedenler, A.; Ghaly, A.E.; Hamdullahpur, F.

    1993-12-31

    A 400 kW (thermal) dual-distributor type fluidized bed gasifier developed for the energy recovery from cereal straw was used to investigate the effects of equivalence ratio (actual air-fuel ratio: stoichiometric air-fuel ratio), fluidization velocity and bed height on the fuel conversion efficiency from wheat straw. The energy balance was also performed on the system under those operating conditions. The results indicated that the equivalence ratio was the most significant parameter affecting the fuel conversion efficiency and the energy recovered from the straw in the form of gas. Both the fuel conversion efficiency and the energy recovery increased with increases in the equivalence ratio. The fluidization velocity and bed height had minimal effects on these parameters. A fuel conversion efficiency as high as 98% was obtained at the equivalence ratio of 0.35. The energy recovered in the form of gas and the sensible heat of the produced gas were in the ranges of 40--70% and 9--17%, respectively. Unaccounted losses showed a dramatic increase at lower equivalence ratios and were in the range of 6--53% depending on the operating condition.

  15. Transient High-Pressure Fuel Injection

    NASA Astrophysics Data System (ADS)

    Jarrahbashi, Dorrin

    Break-up and atomization of liquid fuel jet during transient injection process has a significant effect on the Diesel engine combustion efficiency and pollution. The mechanisms responsible for liquid jet instability and break-up at high pressure, during the transient start-up and steady mass flux periods, has been investigated using Navier-Stokes and level-set computations. Via post-processing, the role of vorticity dynamics is examined and shown to reveal crucial new insights. An unsteady, axisymmetric full-jet case is solved. Then, a less computationally intensive case is studied with a segment of the jet core undergoing temporal instability; agreement with the full-jet calculation is satisfactory justifying the segment analysis for three-dimensional computation. The results for surface-shape development are in agreement with experimental observations and other three-dimensional computations; the initial, axisymmetric waves at the jet surface created by Kelvin-Helmholtz instability distort to cone shapes; next, three-dimensional character develops through an azimuthal instability that leads to the creation of streamwise vorticity, lobe shapes on the cones, and formation of liquid ligaments which extend from lobes on the cones. The cause of this azimuthal instability has been widely described as a Rayleigh-Taylor instability. However, additional and sometimes more important causes are identified here. Counter-rotating, streamwise vortices within and around the ligaments show a relationship in the instability behavior for jets flowing into like-density fluid; thus, density difference cannot explain fully the three-dimensional instability as previously suggested. Furthermore, the formation of ligaments that eventually break into droplets and the formation of streamwise vorticity are caused by the same vortical dynamics. Waviness is identified on the ligaments which should result in droplet formation. The nonlinear development of the shorter azimuthal waves and

  16. Development of high performance hybrid rocket fuels

    NASA Astrophysics Data System (ADS)

    Zaseck, Christopher R.

    In this document I discuss paraffin fuel combustion and investigate the effects of additives on paraffin entrainment and regression. In general, hybrid rockets offer an economical and safe alternative to standard liquid and solid rockets. However, slow polymeric fuel regression and low combustion efficiency have limited the commercial use of hybrid rockets. Paraffin is a fast burning fuel that has received significant attention in the 2000's and 2010's as a replacement for standard fuels. Paraffin regresses three to four times faster than polymeric fuels due to the entrainment of a surface melt layer. However, further regression rate enhancement over the base paraffin fuel is necessary for widespread hybrid rocket adoption. I use a small scale opposed flow burner to investigate the effect of additives on the combustion of paraffin. Standard additives such as aluminum combust above the flame zone where sufficient oxidizer levels are present. As a result no heat is generated below the flame itself. In small scale opposed burner experiments the effect of limited heat feedback is apparent. Aluminum in particular does not improve the regression of paraffin in the opposed burner. The lack of heat feedback from additive combustion limits the applicability of the opposed burner. In turn, the results obtained in the opposed burner with metal additive loaded hybrid fuels do not match results from hybrid rocket experiments. In addition, nano-scale aluminum increases melt layer viscosity and greatly slows the regression of paraffin in the opposed flow burner. However, the reactive additives improve the regression rate of paraffin in the opposed burner where standard metals do not. At 5 wt.% mechanically activated titanium and carbon (Ti-C) improves the regression rate of paraffin by 47% in the opposed burner. The mechanically activated Ti C likely reacts in or near the melt layer and provides heat feedback below the flame region that results in faster opposed burner regression

  17. An Electrical Energy Storage System Based on Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Luo, T.; Shao, L.; Qian, J. Q.; Wang, S. R.; Zhan, Z. L.

    2013-07-01

    This work studies a proof-of-concept integrated electrical energy storage system of solid oxide fuel cell (SOFC) by using Fe as original fuel and Ca(OH)2 as additive. The design and operation of this cell are based on a conventional anode-supported tubular SOFC, with Ni-SSZ, SSZ, and SSZ-LSM as anode, electrolyte and cathode, respectively. In this design, Fe reacts with H2O generated from the decomposition of Ca(OH)2 at high temperature, as a result, H2 is produced in situ as SOFC fuel. The charging process is realized by electrolysis of water in the SOEC mode along with the reduction of Fe3O4 by the generated H2. It is demonstrated that the open circuit voltage (OCV) for the Fe-Fe3O4 system is above 1.0V at 1073K. By using such fuel, the maximum power density of 124 mW cm-2 has been achieved. Two stable charge/discharge cycles have been tested. Combined with the advantages of environmental friendliness, sustainability promise and excellent performance, the novel SOFC system will be a new choice of grid-scale energy storage.

  18. Recent advances in high-performance direct methanol fuel cells

    SciTech Connect

    Narayanan, S.R.; Chun, W.; Valdez, T.I.

    1996-12-31

    Direct methanol fuel cells for portable power applications have been advanced significantly under DARPA- and ARO-sponsored programs over the last five years. A liquid-feed direct methanol fuel cell developed under these programs, employs a proton exchange membrane as electrolyte and operates on aqueous solutions of methanol with air or oxygen as the oxidant. Power densities as high as 320 mW/cm{sup 2} have been demonstrated. Demonstration of five-cell stack based on the liquid-feed concept have been successfully performed by Giner Inc. and the Jet Propulsion Laboratory. Over 2000 hours of life-testing have been completed on these stacks. These fuel cells have been also been demonstrated by USC to operate on alternate fuels such as trimethoxymethane, dimethoxymethane and trioxane. Reduction in the parasitic loss of fuel across the fuel cell, a phenomenon termed as {open_quotes}fuel crossover{close_quotes} has been achieved using polymer membranes developed at USC. As a result efficiencies as high as 40% is considered attainable with this type of fuel cell. The state-of-development has reached a point where it is now been actively considered for stationary, portable and transportation applications. The research and development issues have been the subject of several previous articles and the present article is an attempt to summarize the key advances in this technology.

  19. High performance, high durability non-precious metal fuel cell catalysts

    DOEpatents

    Wood, Thomas E.; Atanasoski, Radoslav; Schmoeckel, Alison K.

    2016-03-15

    This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.

  20. Krakow Clean Fossil Fuels and Energy Efficiency Program

    SciTech Connect

    Butcher, T.; Pierce, B.; Krishna, C.R.

    1992-09-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the US Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. The project is being conducted in three phases. In Phase I, testing and analytical activities will establish the current level of emissions from existing equipment and operating practices, and will provide estimates of the costs and emission reductions of various options. Phase II consists of a series of public meetings in both Poland and the United States to present the results of Phase I activities. In Phase III, DOE will issue a solicitation for Polish/US joint ventures to perform commercial feasibility studies for the use of US technology in one or more of the areas under consideration. This report provides interim results from Phase 1.

  1. Krakow Clean Fossil Fuels and Energy Efficiency Program

    SciTech Connect

    Butcher, T.; Pierce, B.; Krishna, C.R.

    1992-09-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the US Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. The project is being conducted in three phases. In Phase I, testing and analytical activities will establish the current level of emissions from existing equipment and operating practices, and will provide estimates of the costs and emission reductions of various options. Phase II consists of a series of public meetings in both Poland and the United States to present the results of Phase I activities. In Phase III, DOE will issue a solicitation for Polish/US joint ventures to perform commercial feasibility studies for the use of US technology in one or more of the areas under consideration. This report provides interim results from Phase 1.

  2. Performance comparison of two fuel cell hybrid buses with different powertrain and energy management strategies

    NASA Astrophysics Data System (ADS)

    Ouyang, Minggao; Xu, Liangfei; Li, Jianqiu; Lu, Languang; Gao, Dawei; Xie, Qicheng

    In order to assess the influences of different powertrain structures and energy management strategies on the performance of hybrid fuel cell buses (FCB), two buses (FCB A and FCB B) were constructed with a "energy hybrid structure" and "power hybrid structure", respectively. Different energy management strategies were investigated based on analysis of the two systems. And the two buses were compared with each other in a bus cycle and constant speed testing. The Polymer Electrolyte Membrane Fuel Cell (PEMFC) in FCB A showed an advantage in fuel economy for it worked usually in the high efficient range of the PEMFC engine. The hydrogen consumption rate in the cycle testing was 7.9 kg/100 km and 9.8 kg/100 km for FCB A and FCB B, and in the 40 kmph constant speed testing it was 3.3 kg/100 km and 4.0 kg/100 km, respectively. The fuel economy could be improved when the hydrogen and air supply subsystems are optimized and controlled with an advanced algorithm. It could also benefit from a braking energy regeneration system. Compared with FCB A, the PEMFC in FCB B worked under unfavorable operation conditions because its working range was comparatively wide, and the power changing rate was relatively large from a statistical point of view, which resulted in performance recession of the PEMFC in FCB B. After a mileage of 7000 km, the output power of the PEMFC in FCB B was reduced by 10%, compared with 2.4% in FCB A. An advanced energy management strategy is necessary to split the power between the PEMFC and a battery suitable for long durability of a PEMFC.

  3. High flux research reactors based on particulate fuel

    SciTech Connect

    Powell, J.R.; Takahashi, H.; Horn, F.L.

    1986-02-01

    High Flux Particle Bed Reactor (HFPBR) designs based on High Temperature Gas Reactors (HTGR) particular fuel are described. The coated fuel particles, approx.500 microns in diameter, are packed between porous metal frits, and directly cooled by flowing D/sub 2/O. The large heat transfer surface area in the packed bed, approx.100 cm/sup 2//cm/sup 3/ of volume, allows high power densities, typically 10 MW/liter. Peak thermal fluxes in the HFPBR are 1 to 2 x 1/sup 16/ n/c/sup 2/ sec., depending on configuration and moderator choice with beryllium and D/sub 2/O Moderators yielding the best flux performance. Spent fuel particles can be hydraulically unloaded every day or two and fresh fuel reloaded. The short fuel cycle allows HFPBR fuel loading to be very low, approx.2 kg of /sup 235/U, with a fission product inventory one-tenth of that in present high flux research reactors. The HFPBR can use partially enriched fuel, 20% /sup 235/U, without degradation in flux reactivity. 8 refs., 12 figs., 2 tabs.

  4. Energy metabolism, fuel selection and body weight regulation.

    PubMed

    Galgani, J; Ravussin, E

    2008-12-01

    Energy homeostasis is critical for the survival of species. Therefore, multiple and complex mechanisms have evolved to regulate energy intake and expenditure to maintain body weight. For weight maintenance, not only does energy intake have to match energy expenditure, but also macronutrient intake must balance macronutrient oxidation. However, this equilibrium seems to be particularly difficult to achieve in individuals with low fat oxidation, low energy expenditure, low sympathetic activity or low levels of spontaneous physical activity, as in addition to excess energy intake, all of these factors explain the tendency of some people to gain weight. Additionally, large variability in weight change is observed when energy surplus is imposed experimentally or spontaneously. Clearly, the data suggest a strong genetic influence on body weight regulation implying a normal physiology in an 'obesogenic' environment. In this study, we also review evidence that carbohydrate balance may represent the potential signal that regulates energy homeostasis by impacting energy intake and body weight. Because of the small storage capacity for carbohydrate and its importance for metabolism in many tissues and organs, carbohydrate balance must be maintained at a given level. This drive for balance may in turn cause increased energy intake when consuming a diet high in fat and low in carbohydrate. If sustained over time, such an increase in energy intake cannot be detected by available methods, but may cause meaningful increases in body weight. The concept of metabolic flexibility and its impact on body weight regulation is also presented.

  5. Energy metabolism, fuel selection and body weight regulation

    PubMed Central

    Galgani, J; Ravussin, E

    2010-01-01

    Energy homeostasis is critical for the survival of species. Therefore, multiple and complex mechanisms have evolved to regulate energy intake and expenditure to maintain body weight. For weight maintenance, not only does energy intake have to match energy expenditure, but also macronutrient intake must balance macronutrient oxidation. However, this equilibrium seems to be particularly difficult to achieve in individuals with low fat oxidation, low energy expenditure, low sympathetic activity or low levels of spontaneous physical activity, as in addition to excess energy intake, all of these factors explain the tendency of some people to gain weight. Additionally, large variability in weight change is observed when energy surplus is imposed experimentally or spontaneously. Clearly, the data suggest a strong genetic influence on body weight regulation implying a normal physiology in an ‘obesogenic’ environment. In this study, we also review evidence that carbohydrate balance may represent the potential signal that regulates energy homeostasis by impacting energy intake and body weight. Because of the small storage capacity for carbohydrate and its importance for metabolism in many tissues and organs, carbohydrate balance must be maintained at a given level. This drive for balance may in turn cause increased energy intake when consuming a diet high in fat and low in carbohydrate. If sustained over time, such an increase in energy intake cannot be detected by available methods, but may cause meaningful increases in body weight. The concept of metabolic flexibility and its impact on body weight regulation is also presented. PMID:19136979

  6. Final Technical Report, Oct 2004 - Nov. 2006, High Performance Flexible Reversible Solid Oxide Fuel Cell

    SciTech Connect

    Guan, Jie; Minh, Nguyen

    2007-02-21

    This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuel cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.

  7. Krakow Clean Fossil Fuels and Energy Efficiency Project

    SciTech Connect

    Butcher, T.A.; Pierce, B.; Krajewski, R.; LaMontagne, J.; Kirchstetter, T.

    1992-05-01

    In Karkow, Poland almost half of the energy used for heating is supplied by local, solid-fuel-fired boilerhouses and home stoves. These facilities are referred to as the ``low emission sources`` and are primary contributors of particulates and hydrocarbon air pollution in the city and secondary contributors of sulfur dioxide and carbon monoxide. The Support of Eastern European Democracy Act of 1989 directed the US Department of Energy to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. The Project is being conducted in a manner that can be generalized to all of Poland and uito the rest of Eastern Europe. The project plan includes three phases which have been developed around five specific subprojects. In Phase 1, technical and economic assessments will be made of pollution reduction options for the five subprojects. Phase 2 plans call for public meetings in the US and Poland for companies interested in forming joint ventures. Information will be available in these meetings to enable companies to identify markets and select potential partners that meet with their capabilities and interests. In Phase 3, DOE will issue a solicitation for Polish/American joint ventures to perform commercial feasibility studies for the supply of US technology applicable to one or more of the five subprojects. The selected joint venture companies would receive assistance in the form of cooperative agreements requiring at least 50% cost-sharing to perform those activities necessary to permit them to conduct business in Poland.

  8. Krakow Clean Fossil Fuels and Energy Efficiency Project

    SciTech Connect

    Butcher, T.A.; Pierce, B.; Krajewski, R.; LaMontagne, J.; Kirchstetter, T.

    1992-05-01

    In Karkow, Poland almost half of the energy used for heating is supplied by local, solid-fuel-fired boilerhouses and home stoves. These facilities are referred to as the low emission sources'' and are primary contributors of particulates and hydrocarbon air pollution in the city and secondary contributors of sulfur dioxide and carbon monoxide. The Support of Eastern European Democracy Act of 1989 directed the US Department of Energy to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. The Project is being conducted in a manner that can be generalized to all of Poland and uito the rest of Eastern Europe. The project plan includes three phases which have been developed around five specific subprojects. In Phase 1, technical and economic assessments will be made of pollution reduction options for the five subprojects. Phase 2 plans call for public meetings in the US and Poland for companies interested in forming joint ventures. Information will be available in these meetings to enable companies to identify markets and select potential partners that meet with their capabilities and interests. In Phase 3, DOE will issue a solicitation for Polish/American joint ventures to perform commercial feasibility studies for the supply of US technology applicable to one or more of the five subprojects. The selected joint venture companies would receive assistance in the form of cooperative agreements requiring at least 50% cost-sharing to perform those activities necessary to permit them to conduct business in Poland.

  9. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Melaina, Marc; Saur, Genevieve; Ramsden, Todd; Eichman, Joshua

    2015-05-28

    This presentation summarizes NREL's hydrogen and fuel cell analysis work in three areas: resource potential, greenhouse gas emissions and cost of delivered energy, and influence of auxiliary revenue streams. NREL's hydrogen and fuel cell analysis projects focus on low-­carbon and economic transportation and stationary fuel cell applications. Analysis tools developed by the lab provide insight into the degree to which bridging markets can strengthen the business case for fuel cell applications.

  10. Fuel cells for future transportation: The Department of Energy OTT/OUT partnership

    SciTech Connect

    Patil, P.G.; Milliken, J.; Gronich, S.; Rossmeissl, N.; Ohi, J.

    1997-12-31

    The DOE Office of Transportation Technologies (OTT) is currently engaged in the development and integration R and D activities which will make it possible to reduce oil imports, and move toward a sustainable transportation future. Within OTT, the Office of Advanced Automotive Technologies is supporting development of highly efficient, low or zero emission fuel cell power systems as an alternative to internal combustion engines. The objectives of the program are: By 2000, develop and validate fuel cell stack system technologies that are greater than 51% energy efficient at 40 kW (maximum net power); more than 100 times cleaner than EPA Tier II emissions; and capable of operating on gasoline, methanol, ethanol, natural gas, and hydrogen gas or liquid. By 2004, develop and validate fuel cell power system technologies that meet vehicle requirements in terms of: cost--competitive with internal combustion engines; and performance, range, safety and reliability. The research, development, and validation of fuel cell technology is integrally linked to the Energy Policy Act (EPACT) and other major US policy objectives, such as the Partnership for a New Generation of Vehicles (PNGV). Established in 1993, PNGV is a research and development initiative involving seven Federal agencies and the three US automobile manufacturers to strengthen US competitiveness. The PNGV will develop technologies for vehicles with a fuel efficiency of 80 miles per gallon, while maintaining such attributes as size, performance, safety, and cost. To help address the critical issue of fuel and fuel infrastructure development for advanced vehicles, the DOE Office of Utility Technologies (OUT) has directed the Hydrogen Program to provide national leadership in the research, development, and validation of advanced technologies to produce, store, and use hydrogen. An objective of the Program is to work in partnership with industry to advance hydrogen systems to the point where they are cost effective and

  11. Report of the DOD-DOE Workshop on Converting Waste to Energy Using Fuel Cells

    DTIC Science & Technology

    2011-10-01

    Summary on Converting Waste to Energy Using Fuel Cells million metric tons of carbon dioxide equivalent.7 DOD’s high energy dependence and reliance on...as te Animal W as te L andfill Methane (Vol%) 80–100 ~50–60 ~50–70 45–60 40–55 Carbon Dioxide (Vol%) < 3 30–40 25–45 35–50 35–50 Nitrogen (Vol...transitioning to a low- carbon economy. A key focus area of the MOU is DOD-DOE collaboration on a broad range of innovative, technology-driven solutions

  12. Understanding energy loss in parallelly connected microbial fuel cells: Non-Faradaic current.

    PubMed

    An, Junyeong; Sim, Junyoung; Feng, Yujie; Lee, Hyung-Sool

    2016-03-01

    In this work, the mechanisms of energy loss in parallel connection of microbial fuel cells (MFCs) is explored using two MFC units producing different open circuit voltage (OCV) and current. In open circuit mode, non-Faradaic current flows in low OCV unit, implying energy loss caused by different OCVs in parallelly stacked MFCs. In a stacked MFC in parallel under close circuit mode, it is confirmed that energy loss occurs until the working voltage in high OCV unit becomes identical to the other unit having low OCV. This result indicates that different voltage between individual MFC units can cause energy loss due to both non-Faradic and Faradaic current that flow from high voltage unit to low voltage unit even in parallelly stacked MFCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. High temperature solid electrolyte fuel cell configurations and interconnections

    DOEpatents

    Isenberg, Arnold O.

    1984-01-01

    High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

  14. Highly efficient heat recovery system for phosphoric acid fuel cells used for cooling telecommunication equipment

    NASA Astrophysics Data System (ADS)

    Ishizawa, Maki; Okada, Shigeru; Yamashita, Takashi

    To protect the global environment by using energy more efficiently, NTT is developing a phosphoric acid fuel cell (PAFC) energy system for telecommunication cogeneration systems. Fuel cells are used to provide electrical power to telecommunication equipment and the heat energy is used by absorption refrigerators to cool the telecommunication rooms throughout the year. We have recently developed a highly efficient system for recovering heat and water from the exhaust gases of a 200-kW (rated power) fuel cell. It is composed of a shell-and-tube type heat exchanger to recover high-temperature heat and a direct-contact cooler to recover the water efficiently and simply. The reformer and cathode exhaust gases from the fuel cell are first supplied to the heat exchanger and then to the cooler. The high-temperature (85-60°C) heat can be recovered, and the total efficiency including the heat recovered from the fuel-cell stack coolant can be improved by supplying the recovered heat to the dual-heat-input absorption refrigerator. The water needed for operating the fuel cell is also recovered from the exhaust gases. We are currently applying this heat and water recovery system to the PC25C-type fuel cell. Maximum total efficiency including electrical power efficiency is estimated to be 78% at the rated power of 200 kW: composed of 17% heat recovery for the fuel-cell stack coolant, 21% from the exhaust gas by improving the heat exchanger, and 40% from electrical conversion. Next, we plan to evaluate the usefulness of this heat recovery system for cooling telecommunication equipment.

  15. High energy cosmic ray composition

    NASA Astrophysics Data System (ADS)

    Seo, E. S.

    Cosmic rays are understood to result from energetic processes in the galaxy, probably from supernova explosions. However, cosmic ray energies extend several orders of magnitude beyond the limit thought possible for supernova blast waves. Over the past decade several ground-based and space-based investigations were initiated to look for evidence of a limit to supernova acceleration in the cosmic-ray chemical composition at high energies. These high-energy measurements are difficult because of the very low particle fluxes in the most interesting regions. The space-based detectors must be large enough to collect adequate statistics, yet stay within the weight limit for space flight. Innovative approaches now promise high quality measurements over an energy range that was not previously possible. The current status of high energy cosmic-ray composition measurements and planned future missions are discussed in this paper.

  16. Thermodynamic Modeling and Dispatch of Distributed Energy Technologies including Fuel Cell -- Gas Turbine Hybrids

    NASA Astrophysics Data System (ADS)

    McLarty, Dustin Fogle

    Distributed energy systems are a promising means by which to reduce both emissions and costs. Continuous generators must be responsive and highly efficiency to support building dynamics and intermittent on-site renewable power. Fuel cell -- gas turbine hybrids (FC/GT) are fuel-flexible generators capable of ultra-high efficiency, ultra-low emissions, and rapid power response. This work undertakes a detailed study of the electrochemistry, chemistry and mechanical dynamics governing the complex interaction between the individual systems in such a highly coupled hybrid arrangement. The mechanisms leading to the compressor stall/surge phenomena are studied for the increased risk posed to particular hybrid configurations. A novel fuel cell modeling method introduced captures various spatial resolutions, flow geometries, stack configurations and novel heat transfer pathways. Several promising hybrid configurations are analyzed throughout the work and a sensitivity analysis of seven design parameters is conducted. A simple estimating method is introduced for the combined system efficiency of a fuel cell and a turbine using component performance specifications. Existing solid oxide fuel cell technology is capable of hybrid efficiencies greater than 75% (LHV) operating on natural gas, and existing molten carbonate systems greater than 70% (LHV). A dynamic model is calibrated to accurately capture the physical coupling of a FC/GT demonstrator tested at UC Irvine. The 2900 hour experiment highlighted the sensitivity to small perturbations and a need for additional control development. Further sensitivity studies outlined the responsiveness and limits of different control approaches. The capability for substantial turn-down and load following through speed control and flow bypass with minimal impact on internal fuel cell thermal distribution is particularly promising to meet local demands or provide dispatchable support for renewable power. Advanced control and dispatch

  17. Study on High Conversion BWR with Island Type Fuel

    SciTech Connect

    Takao Kondo; Takaaki Mochida; Junichi Yamashita

    2002-07-01

    High Conversion Boiling Water Reactor (HCBWR) has been studied as one of the next generation BWRs. HCBWR can be improved by the use of Island Type Fuel to have inherently negative void coefficient. The proposed reactor concept also has the sustainability to extend LWR's period by about 180 years, and the compatibility with conventional BWR system that only substitution of fuel bundles and control rods are required. As an example case, High Conversion ABWR-II was evaluated here. (authors)

  18. High energy physics

    SciTech Connect

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R&D on silicon microstrip tracking devices for the SSC. High statistics studies of Z{sup 0} decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPF will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka`s program includes a detailed investigation of the magnetic-flip approach to the solar neutrino.

  19. Analysis of a fuel cell on-site integrated energy system for a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; Maag, W. L.

    1979-01-01

    The energy use and costs of the on-site integrated energy system (OS/IES) which provides electric power from an on-site power plant and recovers heat that would normally be rejected to the environment is compared to a conventional system purchasing electricity from a utility and a phosphoric acid fuel cell powered system. The analysis showed that for a 500-unit apartment complex a fuel OS/IES would be about 10% more energy conservative in terms of total coal consumption than a diesel OS/IES system or a conventional system. The fuel cell OS/IES capital costs could be 30 to 55% greater than the diesel OS/IES capital costs for the same life cycle costs. The life cycle cost of a fuel cell OS/IES would be lower than that for a conventional system as long as the cost of electricity is greater than $0.05 to $0.065/kWh. An analysis of several parametric combinations of fuel cell power plant and state-of-art energy recovery systems and annual fuel requirement calculations for four locations were made. It was shown that OS/IES component choices are a major factor in fuel consumption, with the least efficient system using 25% more fuel than the most efficient. Central air conditioning and heat pumps result in minimum fuel consumption while individual air conditioning units increase it, and in general the fuel cell of highest electrical efficiency has the lowest fuel consumption.

  20. Analysis of a fuel cell on-site integrated energy system for a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; Maag, W. L.

    1979-01-01

    The energy use and costs of the on-site integrated energy system (OS/IES) which provides electric power from an on-site power plant and recovers heat that would normally be rejected to the environment is compared to a conventional system purchasing electricity from a utility and a phosphoric acid fuel cell powered system. The analysis showed that for a 500-unit apartment complex a fuel OS/IES would be about 10% more energy conservative in terms of total coal consumption than a diesel OS/IES system or a conventional system. The fuel cell OS/IES capital costs could be 30 to 55% greater than the diesel OS/IES capital costs for the same life cycle costs. The life cycle cost of a fuel cell OS/IES would be lower than that for a conventional system as long as the cost of electricity is greater than $0.05 to $0.065/kWh. An analysis of several parametric combinations of fuel cell power plant and state-of-art energy recovery systems and annual fuel requirement calculations for four locations were made. It was shown that OS/IES component choices are a major factor in fuel consumption, with the least efficient system using 25% more fuel than the most efficient. Central air conditioning and heat pumps result in minimum fuel consumption while individual air conditioning units increase it, and in general the fuel cell of highest electrical efficiency has the lowest fuel consumption.

  1. Basic laws of the processes and the principle of minimum energy consumption during pneumatic transport and distribution of pulverized fuel in direct pulverized fuel preparation systems

    NASA Astrophysics Data System (ADS)

    Leykin, V. Z.

    2015-08-01

    The paper presents analysis of the basic laws and a calculation-based investigation of processes related to the low-concentration pneumatic transport and the distribution of finely dispersed pulverized fuel in direct pulverized fuel preparation systems of boiler units. Based on the principle of the minimum energy consumption, it is shown that, at high (standard) velocities of the turbulent gas flow—of 25-30 m/s, which is by 1.5-2 times higher than the critical speeds—the finely dispersed pulverized fuel can be transported simultaneously in the form of a low-concentration flow in pipelines and a concentrated, to 30% of the flow rate, thin layer on the pipeline walls with the height of the layer equal to 0.02-0.04 of the pipe radius. Consideration of this phenomenon is of great significance in terms of securing the efficient operation of pulverized fuel distribution units. The basic characteristics of the process have been determined and validated by test bench investigations using both model systems and pulverized fuel distribution systems of a number of power-generating units. The obtained results underlie a methodological approach to developing high-efficiency adjustable pulverized fuel distribution units. Also, results of industrial testing are presented that confirm the results of the analysis and of experimental studies.

  2. The use of low-energy SIMS (LE-SIMS) for nanoscale fuel cell material development

    SciTech Connect

    Morris, R. J. H.; Fearn, Sarah; Perkins, James; Kilner, John; Dowsett, M. G.; Biegalski, Michael D; Rouleau, Christopher M

    2011-01-01

    Low-energy secondary ion mass spectrometry has been used to investigate the matrix structure and interface attributes of a novel Ce0.85Sm0.15O2/CeO2 multilayer fuel cell material. Nanoscale oxide systems have shown enhanced ionic conductivities when produced to form highly oriented epitaxial structures. The Sm-doped CeO2 material system is of particular interest for fuel cell technology because of its inherently high ionic conductivity at low operating temperatures (600-800 C). For this study, a nanometer-scale Ce0.85Sm0.15O2/CeO2 multilayer was grown by pulsed laser deposition. The sample was annealed at 700 C in an oxygen ambience. High-resolution, low-energy depth profiling using Cs revealed some diffusion of the multilayer structure after annealing, along with a possible volume change for the Sm-doped layers. Changes in layer volume will lead to an increase in the mechanical strain and may cause the material to crack. The findings presented here suggest that the Ce0.85Sm0.15O2/CeO2 multilayer structure in its current form may not possess the level of thermal stability required for use within a fuel cell environment.

  3. Flexible and Lightweight Fuel Cell with High Specific Power Density.

    PubMed

    Ning, Fandi; He, Xudong; Shen, Yangbin; Jin, Hehua; Li, Qingwen; Li, Da; Li, Shuping; Zhan, Yulu; Du, Ying; Jiang, Jingjing; Yang, Hui; Zhou, Xiaochun

    2017-06-27

    Flexible devices have been attracting great attention recently due to their numerous advantages. But the energy densities of current energy sources are still not high enough to support flexible devices for a satisfactory length of time. Although proton exchange membrane fuel cells (PEMFCs) do have a high-energy density, traditional PEMFCs are usually too heavy, rigid, and bulky to be used in flexible devices. In this research, we successfully invented a light and flexible air-breathing PEMFC by using a new design of PEMFC and a flexible composite electrode. The flexible air-breathing PEMFC with 1 × 1 cm(2) working area can be as light as 0.065 g and as thin as 0.22 mm. This new PEMFC exhibits an amazing specific volume power density as high as 5190 W L(-1), which is much higher than traditional (air-breathing) PEMFCs. Also outstanding is that the flexible PEMFC retains 89.1% of its original performance after being bent 600 times, and it retains its original performance after being dropped five times from a height of 30 m. Moreover, the research has demonstrated that when stacked, the flexible PEMFCs are also useful in mobile applications such as mobile phones. Therefore, our research shows that PEMFCs can be made light, flexible, and suitable for applications in flexible devices. These innovative flexible PEMFCs may also notably advance the progress in the PEMFC field, because flexible PEMFCs can achieve high specific power density with small size, small volume, low weight, and much lower cost; they are also much easier to mass produce.

  4. Measuring the distribution of equity in terms of energy, environmental, and economic costs in the fuel cycles of alternative fuel vehicles with hydrogen pathway scenarios

    NASA Astrophysics Data System (ADS)

    Meyer, Patrick E.

    Numerous analyses exist which examine the energy, environmental, and economic tradeoffs between conventional gasoline vehicles and hydrogen fuel cell vehicles powered by hydrogen produced from a variety of sources. These analyses are commonly referred to as "E3" analyses because of their inclusion of Energy, Environmental, and Economic indicators. Recent research as sought a means to incorporate social Equity into E3 analyses, thus producing an "E4" analysis. However, E4 analyses in the realm of energy policy are uncommon, and in the realm of alternative transportation fuels, E4 analyses are extremely rare. This dissertation discusses the creation of a novel E4 simulation tool usable to weigh energy, environmental, economic, and equity trade-offs between conventional gasoline vehicles and alternative fuel vehicles, with specific application to hydrogen fuel cell vehicles. The model, dubbed the F uel Life-cycle Analysis of Solar Hydrogen -- Energy, Environment, Economic & Equity model, or FLASH-E4, is a total fuel-cycle model that combines energy, environmental, and economic analysis methodologies with the addition of an equity analysis component. The model is capable of providing results regarding total fuel-cycle energy consumption, emissions production, energy and environmental cost, and level of social equity within a population in which low-income drivers use CGV technology and high-income drivers use a number of advanced hydrogen FCV technologies. Using theories of equity and social indicators conceptually embodied in the Lorenz Curve and Gini Index, the equity of the distribution of societal energy and environmental costs are measured for a population in which some drivers use CGVs and other drivers use FCVs. It is found, based on baseline input data representative of the United States (US), that the distribution of energy and environmental costs in a population in which some drivers use CGVs and other drivers use natural gas-based hydrogen FCVs can be

  5. High energy physics

    SciTech Connect

    Not Available

    1992-04-10

    The Counter Group continues to work on data analysis for Fermilab Experiment E653. Altogether, they expect several thousand reconstructed charm events and approximately 25 B pair events of which 12 have been observed thus far. Preparation continue for Fermilab Experiment E781, a high statistics study of charm baryon production. In the Theory Group, Cutkosky and collaborators study hadron phenomenology and non-perturbative QCD calculations. Levine has a long standing program in computational QED to obtain improved theoretical values for g-2 of the electron. Wolfenstein, Li, and their collaborators have worked on areas of weak interaction phenomenology that may yield insights beyond the standard model, e.g. CP violation and non-zero neutrino masses. Holman has been concerned with phase transitions in gauge theories relevant to cosmological problems. During 1991 most of the group effort was concentrated on the L3 experiment at CERN. Highlights of the results from the analysis of the Z[degrees] resonance include (a) a measurement of the strong coupling constant [alpha][sub s] for b quarks (b) a precision measurement of the average time of B hadrons and (c) a direct determination of the number of light neutrino faculties from the reaction e[sup +]e[sup [minus

  6. Joint Center for Artificial Photosynthesis (JCAP): DOE's Solar Fuels Energy Innovation Hub (2011 EFRC Summit)

    ScienceCinema

    Lewis, Nate (Director, Joint Center for Artificial Photosynthesis and Professor at Caltech)

    2016-07-12

    The Joint Center for Artificial Photosynthesis (JCAP) is a DOE Energy Innovation Hub focused on fuels from sunlight. JCAP's Director, Nate Lewis, spoke at the 2011 EFRC Summit about what JCAP is and how it is partnering with the EFRC community to accelerate the progress towards new solar fuels. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  7. High energy density aluminum-oxygen cell

    NASA Astrophysics Data System (ADS)

    Rudd, E. J.; Gibbons, D. W.

    1993-11-01

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell. An example of this is the metal-air fuel cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, having high energy and power densities, being environmentally acceptable, and having a large, established industrial base for production and distribution. An aluminum-oxygen system is currently under development for a UUV test vehicle, and recent work has focussed upon low corrosion aluminum alloys and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from S to 150 mA/sq cm have been identified. These materials are essential to realizing an acceptable mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 hours in a large scale, half-cell system.

  8. High energy density aluminum-oxygen cell

    NASA Technical Reports Server (NTRS)

    Rudd, E. J.; Gibbons, D. W.

    1993-01-01

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell. An example of this is the metal-air fuel cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, having high energy and power densities, being environmentally acceptable, and having a large, established industrial base for production and distribution. An aluminum-oxygen system is currently under development for a UUV test vehicle, and recent work has focussed upon low corrosion aluminum alloys and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from S to 150 mA/sq cm have been identified. These materials are essential to realizing an acceptable mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 hours in a large scale, half-cell system.

  9. High-energy spectroscopic astrophysics

    NASA Astrophysics Data System (ADS)

    Güdel, Manuel; Walter, Roland

    After three decades of intense research in X-ray and gamma-ray astronomy, the time was ripe to summarize basic knowledge on X-ray and gamma-ray spectroscopy for interested students and researchers ready to become involved in new high-energy missions. This volume exposes both the scientific basics and modern methods of high-energy spectroscopic astrophysics. The emphasis is on physical principles and observing methods rather than a discussion of particular classes of high-energy objects, but many examples and new results are included in the three chapters as well.

  10. Experimental High Energy Neutrino Astrophysics

    SciTech Connect

    Distefano, Carla

    2005-10-12

    Neutrinos are considered promising probes for high energy astrophysics. More than four decades after deep water Cerenkov technique was proposed to detect high energy neutrinos. Two detectors of this type are successfully taking data: BAIKAL and AMANDA. They have demonstrated the feasibility of the high energy neutrino detection and have set first constraints on TeV neutrino production astrophysical models. The quest for the construction of km3 size detectors have already started: in the South Pole, the IceCube neutrino telescope is under construction; the ANTARES, NEMO and NESTOR Collaborations are working towards the installation of a neutrino telescope in the Mediterranean Sea.

  11. High energy physics

    SciTech Connect

    Not Available

    1992-04-10

    The Counter Group continues to work on data analysis for Fermilab Experiment E653. Altogether, they expect several thousand reconstructed charm events and approximately 25 B pair events of which 12 have been observed thus far. Preparation continue for Fermilab Experiment E781, a high statistics study of charm baryon production. In the Theory Group, Cutkosky and collaborators study hadron phenomenology and non-perturbative QCD calculations. Levine has a long standing program in computational QED to obtain improved theoretical values for g-2 of the electron. Wolfenstein, Li, and their collaborators have worked on areas of weak interaction phenomenology that may yield insights beyond the standard model, e.g. CP violation and non-zero neutrino masses. Holman has been concerned with phase transitions in gauge theories relevant to cosmological problems. During 1991 most of the group effort was concentrated on the L3 experiment at CERN. Highlights of the results from the analysis of the Z{degrees} resonance include (a) a measurement of the strong coupling constant {alpha}{sub s} for b quarks (b) a precision measurement of the average time of B hadrons and (c) a direct determination of the number of light neutrino faculties from the reaction e{sup +}e{sup {minus}} {yields} {nu}{bar {nu}}{gamma}. We also began a major upgrade of the L3 luminosity monitor by replacing PWC chamber by a Si strip system in front of the BGO calorimeters. Finally we have continued our SSC R&D work on BaF{sub 2} by joining the GEM collaboration.

  12. The Advanced High-Temperature Reactor (AHTR) for Producing Hydrogen to Manufacture Liquid Fuels

    SciTech Connect

    Forsberg, C.W.; Peterson, P.F.; Ott, L.

    2004-10-06

    Conventional world oil production is expected to peak within a decade. Shortfalls in production of liquid fuels (gasoline, diesel, and jet fuel) from conventional oil sources are expected to be offset by increased production of fuels from heavy oils and tar sands that are primarily located in the Western Hemisphere (Canada, Venezuela, the United States, and Mexico). Simultaneously, there is a renewed interest in liquid fuels from biomass, such as alcohol; but, biomass production requires fertilizer. Massive quantities of hydrogen (H2) are required (1) to convert heavy oils and tar sands to liquid fuels and (2) to produce fertilizer for production of biomass that can be converted to liquid fuels. If these liquid fuels are to be used while simultaneously minimizing greenhouse emissions, nonfossil methods for the production of H2 are required. Nuclear energy can be used to produce H2. The most efficient methods to produce H2 from nuclear energy involve thermochemical cycles in which high-temperature heat (700 to 850 C) and water are converted to H2 and oxygen. The peak nuclear reactor fuel and coolant temperatures must be significantly higher than the chemical process temperatures to transport heat from the reactor core to an intermediate heat transfer loop and from the intermediate heat transfer loop to the chemical plant. The reactor temperatures required for H2 production are at the limits of practical engineering materials. A new high-temperature reactor concept is being developed for H2 and electricity production: the Advanced High-Temperature Reactor (AHTR). The fuel is a graphite-matrix, coated-particle fuel, the same type that is used in modular high-temperature gas-cooled reactors (MHTGRs). The coolant is a clean molten fluoride salt with a boiling point near 1400 C. The use of a liquid coolant, rather than helium, reduces peak reactor fuel and coolant temperatures 100 to 200 C relative to those of a MHTGR. Liquids are better heat transfer fluids than gases

  13. Future of high energy physics

    SciTech Connect

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e/sup -/ colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place.

  14. Materials, Proton Conductivity and Electrocatalysis in High-Temperature PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Daletou, Maria K.; Kallitsis, Joannis; Neophytides, Stylianos G.

    Fuel cells (FCs) are interesting alternatives to existing power conversion systems since they combine high efficiency with the usage of renewable fuels. Fuel cells can generate power from a fraction of a watt to hundreds of kilowatts and can be used in automotive, stationary or portable applications.1,2,3,4,5,6 A FC is an electrochemical device that converts in a continuous manner the free energy of a chemical reaction into electrical energy (via an electrical current). This galvanic cell consists of an electrolyte (liquid or solid) sandwiched between two porous electrodes. In order to reach desirable amounts of energy power, single cell assemblies can be mechanically compressed across electrically conductive separators to fabricate stacks.

  15. Effects of chemical fuel composition on energy generation from thermopower waves

    NASA Astrophysics Data System (ADS)

    Yeo, Taehan; Hwang, Hayoung; Jeong, Dong-Cheol; Lee, Kang Yeol; Hong, Jongsup; Song, Changsik; Choi, Wonjoon

    2014-11-01

    Thermopower waves, which occur during combustion within hybrid structures formed from nanomaterials and chemical fuels, result in a self-propagating thermal reaction and concomitantly generate electrical energy from the acceleration of charge carriers along the nanostructures. The hybrid structures for thermopower waves are composed of two primary components: the core thermoelectric material and the combustible fuel. So far, most studies have focused on investigating various nanomaterials for improving energy generation. Herein, we report that the composition of the chemical fuel used has a significant effect on the power generated by thermopower waves. Hybrid nanostructures consisting of mixtures of picric acid and picramide with sodium azide were synthesized and used to generate thermopower waves. A maximum voltage of ˜2 V and an average peak specific power as high as 15 kW kg-1 were obtained using the picric acid/sodium azide/multiwalled carbon nanotubes (MWCNTs) array composite. The average reaction velocity and the output voltage in the case of the picric acid/sodium azide were 25 cm s-1 and 157 mV, while they were 2 cm s-1 and 3 mV, in the case of the picramide/sodium azide. These marked differences are attributable to the chemical and structural differences of the mixtures. Mixing picric acid and sodium azide in deionized water resulted in the formation of 2,4,6-trinitro sodium phenoxide and hydrogen azide (H-N3), owing to the exchange of H+ and Na+ ions, as well as the formation of fiber-like structures, because of benzene π stacking. The negative enthalpy of formation of the new compounds and the fiber-like structures accelerate the reaction and increase the output voltage. Elucidating the effects of the composition of the chemical fuel used in the hybrid nanostructures will allow for the control of the combustion process and help optimize the energy generated from thermopower waves, furthering the development of thermopower waves as an energy source.

  16. Effects of chemical fuel composition on energy generation from thermopower waves.

    PubMed

    Yeo, Taehan; Hwang, Hayoung; Jeong, Dong-Cheol; Lee, Kang Yeol; Hong, Jongsup; Song, Changsik; Choi, Wonjoon

    2014-11-07

    Thermopower waves, which occur during combustion within hybrid structures formed from nanomaterials and chemical fuels, result in a self-propagating thermal reaction and concomitantly generate electrical energy from the acceleration of charge carriers along the nanostructures. The hybrid structures for thermopower waves are composed of two primary components: the core thermoelectric material and the combustible fuel. So far, most studies have focused on investigating various nanomaterials for improving energy generation. Herein, we report that the composition of the chemical fuel used has a significant effect on the power generated by thermopower waves. Hybrid nanostructures consisting of mixtures of picric acid and picramide with sodium azide were synthesized and used to generate thermopower waves. A maximum voltage of ∼2 V and an average peak specific power as high as 15 kW kg(-1) were obtained using the picric acid/sodium azide/multiwalled carbon nanotubes (MWCNTs) array composite. The average reaction velocity and the output voltage in the case of the picric acid/sodium azide were 25 cm s(-1) and 157 mV, while they were 2 cm s(-1) and 3 mV, in the case of the picramide/sodium azide. These marked differences are attributable to the chemical and structural differences of the mixtures. Mixing picric acid and sodium azide in deionized water resulted in the formation of 2,4,6-trinitro sodium phenoxide and hydrogen azide (H-N3), owing to the exchange of H(+) and Na(+) ions, as well as the formation of fiber-like structures, because of benzene π stacking. The negative enthalpy of formation of the new compounds and the fiber-like structures accelerate the reaction and increase the output voltage. Elucidating the effects of the composition of the chemical fuel used in the hybrid nanostructures will allow for the control of the combustion process and help optimize the energy generated from thermopower waves, furthering the development of thermopower waves as an energy

  17. HIGH ENERGY CRYSTALLINE LASER MATERIALS.

    DTIC Science & Technology

    The object of this research is to obtain improved laser materials for high energy lasers. During the third quarter of this contract, the study of... energy transfer from Cr to Nd in GdAlO3 and YAlG continued. In order to study the Nd fluorescence arising via transfer from Cr, the material was excited

  18. Reducing fuel usage through applications of conservation and solar energy

    SciTech Connect

    May, E. K.; Hooker, D. W.

    1980-04-01

    Solar thermal technology, coupled with aggressive conservation measures, offers the prospect of greatly reducing the dependence of industry on oil and natural gas. The near-term market for solar technology is largely in industrial processes operating at temperatures below 288/sup 0/C (550/sup 0/F). Such process heat can be supplied by the relatively unsophisticated solar equipment available today. The number and diversity of industrial plants using process heat at this temperature allows favorable matches between solar technologies and industrial processes. The problems involved with the installation and maintenance of conservation and solar equipment are similar. Both compete for scarce investment capital, and each complicates industrial operations and increases maintenance requirements. Technological innovations requiring new types of equipment and reducing the temperature requirements of industrial processes favor the introduction of solar hardware. The industrial case studies program at the Solar Energy Research Institute has examined technical, economic, and other problems facing the near-term application of solar thermal technology to provide industrial process heat. The plant engineer is in the front line of any measure to reduce energy consumption or to supplement existing fuel supplies. The conditions most favorable to the integration of solar technology are presented and illustrated with examples from actual industrial plants.

  19. Circadian clocks in fuel harvesting and energy homeostasis.

    PubMed

    Ramsey, K M; Bass, J

    2011-01-01

    Circadian systems have evolved in plants, eubacteria, neurospora, and the metazoa as a mechanism to optimize energy acquisition and storage in synchrony with the rotation of the Earth on its axis. In plants, circadian clocks drive the expression of genes involved in oxygenic photosynthesis during the light and nitrogen fixation during the dark, repeating this cycle each day. In mammals, the core clock in the suprachiasmatic nucleus (SCN) functions to entrain extra-SCN and peripheral clocks to the light cycle, including regions central to energy homeostasis and sleep, as well as peripheral tissues involved in glucose and lipid metabolism. Tissue-specific gene targeting has shown a primary role of clock genes in endocrine pancreas insulin secretion, indicating that local clocks play a cell-autonomous role in organismal homeostasis. A present focus is to dissect the consequences of clock disruption on modulation of nuclear hormone receptor signaling and on posttranscriptional regulation of intermediary metabolism. Experimental genetic studies have pointed toward extensive interplay between circadian and metabolic systems and offer a means to dissect the impact of local tissue molecular clocks on fuel utilization across the sleep-wake cycle.

  20. Circadian Clocks in Fuel Harvesting and Energy Homeostasis

    PubMed Central

    RAMSEY, K.M.; BASS, J.

    2014-01-01

    Circadian systems have evolved in plants, eubacteria, neurospora, and the metazoa as a mechanism to optimize energy acquisition and storage in synchrony with the rotation of the Earth on its axis. In plants, circadian clocks drive the expression of genes involved in oxygenic photosynthesis during the light and nitrogen fixation during the dark, repeating this cycle each day. In mammals, the core clock in the suprachiasmatic nucleus (SCN) functions to entrain extra-SCN and peripheral clocks to the light cycle, including regions central to energy homeostasis and sleep, as well as peripheral tissues involved in glucose and lipid metabolism. Tissue-specific gene targeting has shown a primary role of clock genes in endocrine pancreas insulin secretion, indicating that local clocks play a cell-autonomous role in organismal homeostasis. A present focus is to dissect the consequences of clock disruption on modulation of nuclear hormone receptor signaling and on posttranscriptional regulation of intermediary metabolism. Experimental genetic studies have pointed toward extensive interplay between circadian and metabolic systems and offer a means to dissect the impact of local tissue molecular clocks on fuel utilization across the sleep–wake cycle. PMID:21890641

  1. Energy analysis and break-even distance for transportation for biofuels in comparison to fossil fuels

    USDA-ARS?s Scientific Manuscript database

    In the present analysis various forms fuel from biomass and fossil sources, their mass and energy densities, and their break-even transportation distances to transport them effectively were analyzed. This study gives an insight on how many times more energy spent on transporting the fuels to differe...

  2. Solar Fuels and Next Generation Photovoltaics. The UNC-CH Energy Frontier Research Center

    SciTech Connect

    Meyer, Thomas J.; Papanikolas, John M.; Heyer, Catherine M.

    2010-11-24

    The UNC Energy Frontier Research Center: “Solar Fuels and Next Generation Photovoltaics” is funded by a $17.5 M grant from the US Department of Energy. Its mission is to conduct basic research that will enable a revolution in the collection and conversion of sunlight into storable solar fuels and electricity.

  3. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS - PHASE I FINAL REPORT: CONCEPTUAL STUDY

    EPA Science Inventory

    The report discusses results of a conceptual design, cost, and evaluation study of energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The conceptual design of the fuel cell energy recovery system is described, and its economic and environm...

  4. Measurements relating fire radiative energy density and surface fuel consumption - RxCADRE 2011 and 2012

    Treesearch

    Andrew T. Hudak; Matthew B. Dickinson; Benjamin C. Bright; Robert L. Kremens; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Roger D. Ottmar

    2016-01-01

    Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux density (FRFD),...

  5. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS - PHASE I FINAL REPORT: CONCEPTUAL STUDY

    EPA Science Inventory

    The report discusses results of a conceptual design, cost, and evaluation study of energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The conceptual design of the fuel cell energy recovery system is described, and its economic and environm...

  6. Coal-fueled high-speed diesel engine development

    SciTech Connect

    Kakwani, R. M.; Winsor, R. E.; Ryan, III, T. W.; Schwalb, J. A.; Wahiduzzaman, S.; Wilson, Jr., R. P.

    1991-11-01

    The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

  7. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    Managed by the Marshall Space Flight Center and built by TRW, the third High Energy Astronomy Observatory was launched September 20, 1979. HEAO-3 was designed to study gamma-rays and cosmic ray particles.

  8. Microbial fuel cells with highly active aerobic biocathodes

    NASA Astrophysics Data System (ADS)

    Milner, Edward M.; Popescu, Dorin; Curtis, Tom; Head, Ian M.; Scott, Keith; Yu, Eileen H.

    2016-08-01

    Microbial fuel cells (MFCs), which convert organic waste to electricity, could be used to make the wastewater infrastructure more energy efficient and sustainable. However, platinum and other non-platinum chemical catalysts used for the oxygen reduction reaction (ORR) at the cathode of MFCs are unsustainable due to their high cost and long-term degradation. Aerobic biocathodes, which use microorganisms as the biocatalysts for cathode ORR, are a good alternative to chemical catalysts. In the current work, high-performing aerobic biocathodes with an onset potential for the ORR of +0.4 V vs. Ag/AgCl were enriched from activated sludge in electrochemical half-cells poised at -0.1 and + 0.2 V vs. Ag/AgCl. Gammaproteobacteria, distantly related to any known cultivated gammaproteobacterial lineage, were identified as dominant in these working electrode biofilms (23.3-44.3% of reads in 16S rRNA gene Ion Torrent libraries), and were in very low abundance in non-polarised control working electrode biofilms (0.5-0.7%). These Gammaproteobacteria were therefore most likely responsible for the high activity of biologically catalysed ORR. In MFC tests, a high-performing aerobic biocathode increased peak power 9-fold from 7 to 62 μW cm-2 in comparison to an unmodified carbon cathode, which was similar to peak power with a platinum-doped cathode at 70 μW cm-2.

  9. International safeguards relevant to geologic disposal of high-level wastes and spent fuels

    SciTech Connect

    Pillay, K.K.S.; Picard, R.R.

    1989-01-01

    Spent fuels from once-through fuel cycles placed in underground repositories have the potential to become attractive targets for diversion and/or theft because of their valuable material content and decreasing radioactivity. The first geologic repository in the US, as currently designed, will contain approximately 500 Mt of plutonium, 60,000 Mt of uranium and a host of other fissile and strategically important elements. This paper identifies some of the international safeguards issues relevant to the various proposed scenarios for disposing of the spent fuel. In the context of the US program for geologic disposal of spent fuels, this paper highlights several issues that should be addressed in the near term by US industries, the Department of Energy, and the Nuclear Regulatory Commission before the geologic repositories for spent fuels become a reality. Based on US spent fuel discharges, an example is presented to illustrate the enormity of the problem of verifying spent fuel inventories. The geologic disposal scenario for high-level wastes originating from defense facilities produced a practicably irrecoverable'' waste form. Therefore, safeguards issues for geologic disposal of high-level waste now in the US are less pressing. 56 refs. , 2 figs.

  10. High performance fuel element with end seal

    DOEpatents

    Lee, Gary E.; Zogg, Gordon J.

    1987-01-01

    A nuclear fuel element comprising an elongate block of refractory material having a generally regular polygonal cross section. The block includes parallel, spaced, first and second end surfaces. The first end surface has a peripheral sealing flange formed thereon while the second end surface has a peripheral sealing recess sized to receive the flange. A plurality of longitudinal first coolant passages are positioned inwardly of the flange and recess. Elongate fuel holes are separate from the coolant passages and disposed inwardly of the flange and the recess. The block is further provided with a plurality of peripheral second coolant passages in general alignment with the flange and the recess for flowing coolant. The block also includes two bypasses for each second passage. One bypass intersects the second passage adjacent to but spaced from the first end surface and intersects a first passage, while the other bypass intersects the second passage adjacent to but spaced from the second end surface and intersects a first passage so that coolant flowing through the second passages enters and exits the block through the associated first passages.

  11. Biomass production and bioconversion to both fuel and food employing solar energy technology - An alternative to conventional farming and the conversion of food to fuel

    NASA Astrophysics Data System (ADS)

    Wise, D. L.

    1981-01-01

    A process for the bioconversion of high-yield biomass to both fuel and food, judged more efficient than the conventional production of soybean meal and methanol, is described. Attention is given the diversion of farm land for the production of a conventional food/energy crop, such as corn, that will be subsequently converted to a liquid fuel. The technique presented involves growing biomass at optimum crop yield, then converting it to synthesis gas and finally, through bioconversion, to single-cell protein and methanol. Background for the various aspects of the system and its preliminary engineering economics are provided.

  12. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    SciTech Connect

    Schroeder, Alex

    2015-08-26

    Motor fuel taxes were established to finance our nation’s transportation infrastructure, yet evolving economic, political, and technological influences are constraining this ability. At the federal level, the Highway Trust Fund (HTF), which is primarily funded by motor fuel taxes, has become increasingly dependent on general fund contributions and short-term reauthorizations to prevent insolvency. As a result, there are discussions at both the federal and state levels in which stakeholders are examining the future of motor fuel excise taxes as well as the role of electric and alternative fuel vehicles in that future. On July 1, 2015, six states increased their motor fuel tax rates.

  13. Alkaline fuel cells for the regenerative fuel cell energy storage system

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1983-01-01

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  14. Alkaline fuel cells for the regenerative fuel cell energy storage system

    NASA Astrophysics Data System (ADS)

    Martin, R. E.

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  15. Alkaline fuel cells for the regenerative fuel cell energy storage system

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1983-01-01

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  16. High volumetric power density, non-enzymatic, glucose fuel cells.

    PubMed

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.

  17. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    SciTech Connect

    Primm, Trent; Guida, Tracey

    2010-02-01

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration /Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  18. Fueling the Car of Tomorrow: An Alternative Fuels Curriculum for High School Science Classes

    ERIC Educational Resources Information Center

    Schumack, Mark; Baker, Stokes; Benvenuto, Mark; Graves, James; Haman, Arthur; Maggio, Daniel

    2010-01-01

    It is no secret that many high school students are fascinated with automobiles. The activities in "Fueling the Car of Tomorrow"--a free high school science curriculum, available online--(see "On the web")--capitalize on this heightened awareness and provide relevant learning opportunities designed to reinforce basic physics, chemistry, biology,…

  19. Fueling the Car of Tomorrow: An Alternative Fuels Curriculum for High School Science Classes

    ERIC Educational Resources Information Center

    Schumack, Mark; Baker, Stokes; Benvenuto, Mark; Graves, James; Haman, Arthur; Maggio, Daniel

    2010-01-01

    It is no secret that many high school students are fascinated with automobiles. The activities in "Fueling the Car of Tomorrow"--a free high school science curriculum, available online--(see "On the web")--capitalize on this heightened awareness and provide relevant learning opportunities designed to reinforce basic physics, chemistry, biology,…

  20. Fuel-rich, catalytic reaction experimental results. [fuel development for high-speed civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Rollbuhler, Jim

    1991-01-01

    Future aeropropulsion gas turbine combustion requirements call for operating at very high inlet temperatures, pressures, and large temperature rises. At the same time, the combustion process is to have minimum pollution effects on the environment. Aircraft gas turbine engines utilize liquid hydrocarbon fuels which are difficult to uniformly atomize and mix with combustion air. An approach for minimizing fuel related problems is to transform the liquid fuel into gaseous form prior to the completion of the combustion process. Experimentally obtained results are presented for vaporizing and partially oxidizing a liquid hydrocarbon fuel into burnable gaseous components. The presented experimental data show that 1200 to 1300 K reaction product gas, rich in hydrogen, carbon monoxide, and light-end hydrocarbons, is formed when flowing 0.3 to 0.6 fuel to air mixes through a catalyst reactor. The reaction temperatures are kept low enough that nitrogen oxides and carbon particles (soot) do not form. Results are reported for tests using different catalyst types and configurations, mass flowrates, input temperatures, and fuel to air ratios.

  1. Fuel-rich, catalytic reaction experimental results. [fuel development for high-speed civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Rollbuhler, Jim

    1991-01-01

    Future aeropropulsion gas turbine combustion requirements call for operating at very high inlet temperatures, pressures, and large temperature rises. At the same time, the combustion process is to have minimum pollution effects on the environment. Aircraft gas turbine engines utilize liquid hydrocarbon fuels which are difficult to uniformly atomize and mix with combustion air. An approach for minimizing fuel related problems is to transform the liquid fuel into gaseous form prior to the completion of the combustion process. Experimentally obtained results are presented for vaporizing and partially oxidizing a liquid hydrocarbon fuel into burnable gaseous components. The presented experimental data show that 1200 to 1300 K reaction product gas, rich in hydrogen, carbon monoxide, and light-end hydrocarbons, is formed when flowing 0.3 to 0.6 fuel to air mixes through a catalyst reactor. The reaction temperatures are kept low enough that nitrogen oxides and carbon particles (soot) do not form. Results are reported for tests using different catalyst types and configurations, mass flowrates, input temperatures, and fuel to air ratios.

  2. Energy and climate impacts of producing synthetic hydrocarbon fuels from CO(2).

    PubMed

    van der Giesen, Coen; Kleijn, René; Kramer, Gert Jan

    2014-06-17

    Within the context of carbon dioxide (CO2) utilization there is an increasing interest in using CO2 as a resource to produce sustainable liquid hydrocarbon fuels. When these fuels are produced by solely using solar energy they are labeled as solar fuels. In the recent discourse on solar fuels intuitive arguments are used to support the prospects of these fuels. This paper takes a quantitative approach to investigate some of the claims made in this discussion. We analyze the life cycle performance of various classes of solar fuel processes using different primary energy and CO2 sources. We compare their efficacy with respect to carbon mitigation with ubiquitous fossil-based fuels and conclude that producing liquid hydrocarbon fuels starting from CO2 by using existing technologies requires much more energy than existing fuels. An improvement in life cycle CO2 emissions is only found when solar energy and atmospheric CO2 are used. Producing fuels from CO2 is a very long-term niche at best, not the panacea suggested in the recent public discourse.

  3. Perspectives on the closed fuel cycle Implications for high-level waste matrices

    NASA Astrophysics Data System (ADS)

    Gras, Jean-Marie; Quang, Richard Do; Masson, Hervé; Lieven, Thierry; Ferry, Cécile; Poinssot, Christophe; Debes, Michel; Delbecq, Jean-Michel

    2007-05-01

    Nuclear energy accounts for 80% of electricity production in France, generating approximately 1150 t of spent fuel for an electrical output of 420 TWh. Based on a reprocessing-conditioning-recycling strategy, the orientations taken by Électricité de France (EDF) for the mid-term and the far-future are to keep the fleet performances at the highest level, and to maintain the nuclear option fully open by the replacement of present pressurized water reactor (PWR) by new light water reactor (LWR), such as the evolutionary pressurized reactor (EPR) and future Generation IV designs. Adaptations of waste materials to new requirements will come with these orientations in order to meet long-term energy sustainability. In particular, waste materials and spent fuels are expected to meet increased requirements in comparison with the present situation. So the treatment of higher burn-up UO2 spent fuel and MOX fuel requires determining the performances of glass and other matrices according to several criteria: chemical 'digestibility' (i.e. capacity of glass to incorporate fission products and minor actinides without loss of quality), resistance to alpha self-irradiation, residual power in view of disposal. Considering the long-term evolution of spent MOX fuel in storage, the helium production, the influence of irradiation damages accumulation and the evolution of the microstructure of the fuel pellet need to be known, as well as for the future fuels. Further, the eventual transmutation of minor actinides in fast neutron reactors (FR) of Generation IV, if its interest in optimising high-level waste management is proven, may also raise new challenges about the materials and fuel design. Some major questions in terms of waste materials and spent fuel are discussed in this paper.

  4. Neutronics Design of a Thorium-Fueled Fission Blanket for LIFE (Laser Inertial Fusion-based Energy)

    SciTech Connect

    Powers, J; Abbott, R; Fratoni, M; Kramer, K; Latkowski, J; Seifried, J; Taylor, J

    2010-03-08

    The Laser Inertial Fusion-based Energy (LIFE) project at LLNL includes development of hybrid fusion-fission systems for energy generation. These hybrid LIFE engines use high-energy neutrons from laser-based inertial confinement fusion to drive a subcritical blanket of fission fuel that surrounds the fusion chamber. The fission blanket contains TRISO fuel particles packed into pebbles in a flowing bed geometry cooled by a molten salt (flibe). LIFE engines using a thorium fuel cycle provide potential improvements in overall fuel cycle performance and resource utilization compared to using depleted uranium (DU) and may minimize waste repository and proliferation concerns. A preliminary engine design with an initial loading of 40 metric tons of thorium can maintain a power level of 2000 MW{sub th} for about 55 years, at which point the fuel reaches an average burnup level of about 75% FIMA. Acceptable performance was achieved without using any zero-flux environment 'cooling periods' to allow {sup 233}Pa to decay to {sup 233}U; thorium undergoes constant irradiation in this LIFE engine design to minimize proliferation risks and fuel inventory. Vast reductions in end-of-life (EOL) transuranic (TRU) inventories compared to those produced by a similar uranium system suggest reduced proliferation risks. Decay heat generation in discharge fuel appears lower for a thorium LIFE engine than a DU engine but differences in radioactive ingestion hazard are less conclusive. Future efforts on development of thorium-fueled LIFE fission blankets engine development will include design optimization, fuel performance analysis work, and further waste disposal and nonproliferation analyses.

  5. Development and demonstration of direct carbonate fuel cell systems at Energy Research Corporation

    SciTech Connect

    Leo, A.J.; Kush, A.K.; Farooque, M.

    1996-12-31

    Energy Research Corporation (ERC) has been pursuing the development of the direct carbonate fuel cell (DFC) for commercialization near the end of this decade. The DFC produces power directly from hydrocarbon fuels electrochemically, without the need for external reforming or intermediate mechanical conversion steps. As a result, the DFC has the potential to achieve very high efficiency with very low levels of environmental emissions. Modular DFC power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed generation, industrial, cogeneration, and defense applications. ERC has selected a 2.85 MW power plant unit for initial market entry. Significant advances have been made at ERC in the areas of cell and stack technology and system optimization. Development activities have progressed to the point where 130 kW stacks have been tested in ERC`s subscale power plant, and subscale stacks have been tested in utility and industrial sites around the world. In addition, the world`s first multi-megawatt scale DFC power plant was recently started. Two ERC subsidiaries have been formed to advance the commercialization effort: the Fuel Cell Manufacturing Corporation (FCMC) and the Fuel Cell Engineering Corporation (FCE). FCMC manufacturers carbonate stacks and multi-stack modules, currently from its manufacturing facility in Torrington, CT. FCE is responsible for power plant design, integration of all subsystems, sales/marketing, and client services. This paper describes the results of ERC`s ongoing development and commercialization efforts.

  6. High quality fuel gas from biomass pyrolysis with calcium oxide.

    PubMed

    Zhao, Baofeng; Zhang, Xiaodong; Chen, Lei; Sun, Laizhi; Si, Hongyu; Chen, Guanyi

    2014-03-01

    The removal of CO2 and tar in fuel gas produced by biomass thermal conversion has aroused more attention due to their adverse effects on the subsequent fuel gas application. High quality fuel gas production from sawdust pyrolysis with CaO was studied in this paper. The results of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments indicate that the mass ratio of CaO to sawdust (Ca/S) remarkably affects the behavior of sawdust pyrolysis. On the basis of Py-GC/MS results, one system of a moving bed pyrolyzer coupled with a fluid bed combustor has been developed to produce high quality fuel gas. The lower heating value (LHV) of the fuel gas was above 16MJ/Nm(3) and the content of tar was under 50mg/Nm(3), which is suitable for gas turbine application to generate electricity and heat. Therefore, this technology may be a promising route to achieve high quality fuel gas for biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. High temperature fuel cell research and development

    NASA Astrophysics Data System (ADS)

    Lessing, P. A.

    1980-05-01

    Eleven powdered candidate materials were selected based on previous physical and chemical stability tests at elevated temperatures on solid materials and/or their thermodynamic stability with respect to proposed degradation reactions. The eleven candidate materials, plus gamma lithium aluminate, were characterized prior to corrosion testing utilizing (1) Chemical Analysis, (2) X-ray Diffraction for Phase Identification, (3) Scanning Electron Microscopy (SEM), and (4) Surface Area Analysis. The powders were corrosion tested initially for 200 hours by heating to 700 C in a mixture of 62% Li2CO3-38% K2CO3 under a fuel gas atmosphere. The gas composition was based on reformed Naphtha at 700 C and consisted of 50.2% H2, 10.8% CO, 9.5% CO2, and 29.5% H2O. The samples were tested in an inert container made by coating the interior of alumina crucibles with a layer of 0.0002 inch gold.

  8. PAH emissions and energy efficiency of palm-biodiesel blends fueled on diesel generator

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Chung; Lee, Wen-Jhy; Hou, Hsiao-Chung

    This study investigated the emissions of polycyclic aromatic hydrocarbons (PAHs), carcinogenic potencies (BaP eq) and particulate matter (PM), fuel consumption and energy efficiency from the generator under steady state for seven test fuels: P0 (Premium Diesel Fuel), P10 (10% palm biodiesel+90% P0), P20, P30, P50, P75 and P100. Experimental results indicated that PAH emission decreased with increasing palm-biodiesel blends due to small PAH content in biodiesel. The mean reduction fraction of total PAHs emission factor (P0=1110 μg L -1) from the exhaust of diesel generator were 13.2%, 28.0%, 40.6%, 54.4%, 61.89% and 98.8% for P10, P20, P30, P50, P75 and P100, respectively, compared with P0. The mean reduction fraction of total BaP eq (P0=1.65 μg L -1) from the exhaust of diesel generator were 15.2%, 29.1%, 43.3%, 56.4%, 58.2% and 97.6% for P10, P20, P30, P50, P75 and P100, respectively, compared with P0. PM emission decreased as the palm-biodiesel blends increased from 0% to 10%, and increased as the palm-biodiesel blends increased from 10% to 100% because the soluble organic fraction of PM emission was high in blends with high palm-biodiesel content. The brake specific fuel consumption rose with rising palm-biodiesel blends due to the low gross heat value of palm-biodiesel. The increasing fraction of BSFC of palm-biodiesel was lower than those of soy-, soapstock-, brassica-carinate and rapeseed-biodiesel. Palm-biodiesel seems to be the most feasible biodiesel. The best energy efficiency occurred between P10 and P20, close to P15. The curve dropped as the palm-biodiesel content rose above P20. Above results revealed that palm-biodiesel was an oxygenated fuel appropriate for use in diesel engines to promote combustion efficiency and decrease PAH emission. However, adding an excess of palm-biodiesel to P0 leaded to incomplete combustion in the diesel-engine generator and inhibited the release of energy in the fuel.

  9. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.

    PubMed

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J

    2015-01-01

    Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette

  10. Direct high-resolution alpha spectrometry from nuclear fuel particles in an outdoor air sample.

    PubMed

    Pöllänen, R; Siiskonen, T

    2008-01-01

    The potential use of direct high-resolution alpha spectrometry to identify the presence of transactinium elements in air samples is illustrated in the case when alpha-particle-emitting radionuclides are incorporated in nuclear fuel particles. Alpha particle energy spectra are generated through Monte Carlo simulations assuming a nuclide composition similar to RBMK (Chernobyl) nuclear fuel. The major alpha-particle-emitting radionuclides, in terms of activity, are 242Cm, 239Pu and 240Pu. The characteristics of the alpha peaks are determined by fuel particle properties as well as the type of the air filter. It is shown that direct alpha spectrometry can be readily applied to membrane filter samples containing nuclear fuel particles when rapid nuclide identification is of relevance. However, the development of a novel spectrum analysis code is a prerequisite for unfolding complex alpha spectra.

  11. High efficiency carbonate fuel cell/turbine hybrid power cycles

    SciTech Connect

    Steinfeld, G.

    1995-10-19

    Carbonate fuel cells developed by Energy Research Corporation, in commercial 2.85 MW size, have an efficiency of 57.9 percent. Studies of higher efficiency hybrid power cycles were conducted in cooperation with METC to identify an economically competitive system with an efficiency in excess of 65 percent. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine and a steam cycle, which generates power at a LHV efficiency in excess of 70 percent. This new system is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95 percent of the fuel is mixed with recycled fuel cell anode exhaust, providing water for the reforming of the fuel, and flows to a direct carbonate fuel cell system which generates 72 percent of the power. The portion of the fuel cell anode exhaust which is not recycled, is burned and heat is transferred to the compressed air from a gas turbine, raising its temperature to 1800{degrees}F. The stream is then heated to 2000{degrees}F in the gas turbine burner and expands through the turbine generating 13 percent of the power. Half the exhaust from the gas turbine flows to the anode exhaust burner, and the remainder flows to the fuel cell cathodes providing the O{sub 2} and CO{sub 2} needed in the electrochemical reaction. Exhaust from the fuel cells flows to a steam system which includes a heat recovery steam generator and stages steam turbine which generates 15 percent of the TTC system power. Studies of the TTC for 200-MW and 20-MW size plants quantified performance, emissions and cost-of-electricity, and compared the characteristics of the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6 percent, and is relatively insensitive to ambient temperature, but requires a heat exchanger capable of 2000{degrees}F. The estimated cost of electricity is 45.8 mills/kWhr which is not competitive with a combined cycle in installations where fuel cost is under $5.8/MMBtu.

  12. A MEMS-Based Fuel Cell for Microscale Energy Conversion

    SciTech Connect

    Morse, J; Jankowski, A

    2002-02-01

    A novel approach to realize a miniature fuel cell power source by combining thin film solid-oxide or proton exchange membrane electrolyte-electrode materials with MEMS techniques to integrate a fuel cell stack monolithically on a manifolded host structure is described. This architecture enable a scalable, portable fuel cell power source system for a broad range of applications having power requirements in the < 1 W to > 10 W regime. The MEMS approach offers a direct means to integrate the fuel cell stack with required manifolding and fuel delivery system, while providing the means to control the performance of the power source for specific applications. Results describing the fabrication, integration, and testing of MEMS-based fuel cells are presented below.

  13. Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes

    SciTech Connect

    Link, D.; Kail, B.; Curtis, W.; Tuerk,A.

    2011-01-01

    The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuels production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal species in

  14. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    SciTech Connect

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E., II; Rochau, Gary Eugene

    2009-09-01

    The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink{reg_sign}, an extension of MATLAB{reg_sign}, is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub

  15. Annual Report: Advanced Energy Systems Fuel Cells (30 September 2013)

    SciTech Connect

    Gerdes, Kirk; Richards, George

    2014-04-16

    The comprehensive research plan for Fuel Cells focused on Solid State Energy Conversion Alliance (SECA) programmatic targets and included objectives in two primary and focused areas: (1) investigation of degradation modes exhibited by the anode/electrolyte/cathode (AEC), development of computational models describing the associated degradation rates, and generation of a modeling tool predicting long term AEC degradation response; and (2) generation of novel electrode materials and microstructures and implementation of the improved electrode technology to enhance performance. In these areas, the National Energy Technology Laboratory (NETL) Regional University Alliance (RUA) team has completed and reported research that is significant to the SECA program, and SECA continued to engage all SECA core and SECA industry teams. Examination of degradation in an operational solid oxide fuel cell (SOFC) requires a logical organization of research effort into activities such as fundamental data gathering, tool development, theoretical framework construction, computational modeling, and experimental data collection and validation. Discrete research activity in each of these categories was completed throughout the year and documented in quarterly reports, and researchers established a framework to assemble component research activities into a single operational modeling tool. The modeling framework describes a scheme for categorizing the component processes affecting the temporal evolution of cell performance, and provides a taxonomical structure of known degradation processes. The framework is an organizational tool that can be populated by existing studies, new research completed in conjunction with SECA, or independently obtained. The Fuel Cell Team also leveraged multiple tools to create cell performance and degradation predictions that illustrate the combined utility of the discrete modeling activity. Researchers first generated 800 continuous hours of SOFC experimental

  16. Proposed high throughput electrorefining treatment for spent N- Reactor fuel

    SciTech Connect

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1996-05-01

    A high-throughput electrorefining process is being adapted to treat spent N-Reactor fuel for ultimate disposal in a geologic repository. Anodic dissolution tests were made with unirradiated N-Reactor fuel to determine the type of fragmentation necessary to provide fuel segments suitable for this process. Based on these tests, a conceptual design was produced of a plant-scale electrorefiner. In this design, the diameter of an electrode assembly is about 1.07 m (42 in.). Three of these assemblies in an electrorefiner would accommodate a 3-metric-ton batch of N-Reactor fuel that would be processed at a rate of 42 kg of uranium per hour.

  17. Full-length high-temperature severe fuel damage test No. 5

    SciTech Connect

    Lanning, D.D.; Lombardo, N.J.; Hensley, W.K.; Fitzsimmons, D.E.; Panisko, F.E.; Hartwell, J.K.

    1993-09-01

    This report describes and presents data from a severe fuel damage test that was conducted in the National Research Universal (NRU) reactor at Chalk River Nuclear Laboratories (CRNL), Ontario, Canada. The test, designated FLHT-5, was the fourth in a series of full-length high-temperature (FLHT) tests on light-water reactor fuel. The tests were designed and performed by staff from the US Department of Energy`s Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute. The test operation and test results are described in this report. The fuel bundle in the FLHT-5 experiment included 10 unirradiated full-length pressurized-water reactor (PWR) rods, 1 irradiated PWR rod and 1 dummy gamma thermometer. The fuel rods were subjected to a very low coolant flow while operating at low fission power. This caused coolant boilaway, rod dryout and overheating to temperatures above 2600 K, severe fuel rod damage, hydrogen generation, and fission product release. The test assembly and its effluent path were extensively instrumented to record temperatures, pressures, flow rates, hydrogen evolution, and fission product release during the boilaway/heatup transient. Post-test gamma scanning of the upper plenum indicated significant iodine and cesium release and deposition. Both stack gas activity and on-line gamma spectrometer data indicated significant ({approximately}50%) release of noble fission gases. Post-test visual examination of one side of the fuel bundle revealed no massive relocation and flow blockage; however, rundown of molten cladding was evident.

  18. A fuel cycle assessment guide for utility and state energy planners

    SciTech Connect

    Not Available

    1994-07-01

    This guide, one in a series of documents designed to help assess fuel cycles, is a framework for setting parameters, collecting data, and analyzing fuel cycles for supply-side and demand-side management. It provides an automated tool for entering comparative fuel cycle data that are meaningful to state and utility integrated resource planning, collaborative, and regional energy planning activities. It outlines an extensive range of energy technology characteristics and environmental, social, and economic considerations within each stage of a fuel cycle. The guide permits users to focus on specific stages or effects that are relevant to the technology being evaluated and that meet the user`s planning requirements.

  19. Driving the Nation Toward a Clean Energy Future: Fuels Utilization Program Fact Sheet

    SciTech Connect

    Thomas, J.

    2000-12-12

    The transportation market in the United States is evolving. As the number of vehicles and miles traveled on American roadways continues to grow, the nation is looking toward advanced vehicles and fuels to meet the increasing demand for more energy efficient, environmentally friendly modes of transport. At the National Renewable Energy Laboratory, the Center for Transportation Technologies and Systems' Fuel Utilization Program is doing its part. We're developing and demonstrating engine and fuel technologies that allow alternative and advanced petroleum fuels to compete with their conventional counterparts.

  20. Multiplicities in high energy interactions

    SciTech Connect

    Derrick, M.

    1985-05-13

    This paper reviews the data on multiplicities in high energy interactions. Results from e/sup +/e/sup -/ annihilation, from neutrino interactions, and from hadronic collisions, both diffractive and nondiffractive, are compared and contrasted. The energy dependence of the mean charged multiplicity, , as well as the rapidity density at Y = 0 are presented. For hadronic collisions, the data on neutral pion production shows a strong correlation with . The heavy particle fractions increase with ..sqrt..s up to the highest energies. The charged particle multiplicity distributions for each type of reaction show a scaling behavior when expressed in terms of the mean. Attempts to understand this behavior, which was first predicted by Koba, Nielsen, and Olesen, are discussed. The multiplicity correlations and the energy variation of the shape of the KNO scaling distribution provide important constraints on models. Some extrapolations to the energies of the Superconducting Super Collider are made. 51 refs., 27 figs.