Study of Complex Plasmas with Magnetic Dipoles
2017-10-10
variety of collective behavior manifested in a plasma, especially oscillations or waves characterized by high frequency accompanied by the motion of...behavior manifested in a plasma, especially oscillations or waves characterized by high frequency accompanied by the motion of electrons and/or ions...particles characterized by extremely low frequency modes and the collection of plasma particles characterized by high frequency modes. The interaction of
THE CRAB PULSAR AT CENTIMETER WAVELENGTHS. II. SINGLE PULSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hankins, T. H.; Eilek, J. A.; Jones, G., E-mail: thankins@aoc.nrao.edu
2016-12-10
We have carried out new, high-frequency, high-time-resolution observations of the Crab pulsar. Combining these with our previous data, we characterize bright single pulses associated with the Main Pulse, both the Low-Frequency and High-Frequency Interpulses, and the two High-Frequency Components. Our data include observations at frequencies ranging from 1 to 43 GHz with time resolutions down to a fraction of a nanosecond. We find that at least two types of emission physics are operating in this pulsar. Both Main Pulses and Low-Frequency Interpulses, up to ∼10 GHz, are characterized by nanoshot emission—overlapping clumps of narrowband nanoshots, each with its own polarization signature.more » High-Frequency Interpulses, between 5 and 30 GHz, are characterized by spectral band emission—linearly polarized emission containing ∼30 proportionately spaced spectral bands. We cannot say whether the longer-duration High-Frequency Components pulses are due to a scattering process, or if they come from yet another type of emission physics.« less
1999-12-01
frequency data (to 10 kHz) in the AGS test. 3.2 High-Frequency Damping Determination by Wavelet Transform. The continuous wavelet transform (CWT...ARMY RESEARCH LABORATORY MmOSm Hi Advanced Gun System ( AGS ) Dynamic Characterization: Modal Test and Analysis, High-Frequency Analysis by Morris...this report when it is no longer needed. Do not return it to the originator. ERRATA SHEET re: ARL-TR-2138 "Advanced Gun System ( AGS ) Dynamic
Real-Time, High-Frequency QRS Electrocardiograph
NASA Technical Reports Server (NTRS)
Schlegel, Todd T.; DePalma, Jude L.; Moradi, Saeed
2003-01-01
An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarction
Curing the Epilepsies: The Promise of Research
... Using microelectrodes, researchers are able to better characterize high-frequency oscillations (HFOs). Abnormal HFOs have been linked to ... Using microelectrodes, researchers are able to better characterize high-frequency oscillations. Top Develop New Animal Models for Studying ...
High-frequency energy in singing and speech
NASA Astrophysics Data System (ADS)
Monson, Brian Bruce
While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.
Mahnke, Peter
2018-01-01
A commercial software defined radio based on a Rafael Micro R820T2 tuner is characterized for the use as a high-frequency lock-in amplifier for frequency modulation spectroscopy. The sensitivity limit of the receiver is 1.6 nV/Hz. Frequency modulation spectroscopy is demonstrated on the 6406.69 cm -1 absorption line of carbon monoxide.
NASA Astrophysics Data System (ADS)
Mahnke, Peter
2018-01-01
A commercial software defined radio based on a Rafael Micro R820T2 tuner is characterized for the use as a high-frequency lock-in amplifier for frequency modulation spectroscopy. The sensitivity limit of the receiver is 1.6 nV/√{Hz }. Frequency modulation spectroscopy is demonstrated on the 6406.69 cm-1 absorption line of carbon monoxide.
Characteristics of different frequency ranges in scanning electron microscope images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sim, K. S., E-mail: kssim@mmu.edu.my; Nia, M. E.; Tan, T. L.
2015-07-22
We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement.
Characteristics of sound radiation from turbulent premixed flames
NASA Astrophysics Data System (ADS)
Rajaram, Rajesh
Turbulent combustion processes are inherently unsteady and, thus, a source of acoustic radiation, which occurs due to the unsteady expansion of reacting gases. While prior studies have extensively characterized the total sound power radiated by turbulent flames, their spectral characteristics are not well understood. The objective of this research work is to measure the flow and acoustic properties of an open turbulent premixed jet flame and explain the spectral trends of combustion noise. The flame dynamics were characterized using high speed chemiluminescence images of the flame. A model based on the solution of the wave equation with unsteady heat release as the source was developed and was used to relate the measured chemiluminescence fluctuations to its acoustic emission. Acoustic measurements were performed in an anechoic environment for several burner diameters, flow velocities, turbulence intensities, fuels, and equivalence ratios. The acoustic emissions are shown to be characterized by four parameters: peak frequency (Fpeak), low frequency slope (beta), high frequency slope (alpha) and Overall Sound Pressure Level (OASPL). The peak frequency (Fpeak) is characterized by a Strouhal number based on the mean velocity and a flame length. The transfer function between the acoustic spectrum and the spectrum of heat release fluctuations has an f2 dependence at low frequencies, while it converged to a constant value at high frequencies. Furthermore, the OASPL was found to be characterized by (Fpeak mfH)2, which resembles the source term in the wave equation.
Design, Fabrication and Characterization of A Bi-Frequency Co-Linear Array
Wang, Zhuochen; Li, Sibo; Czernuszewicz, Tomasz J; Gallippi, Caterina M.; Liu, Ruibin; Geng, Xuecang
2016-01-01
Ultrasound imaging with high resolution and large penetration depth has been increasingly adopted in medical diagnosis, surgery guidance, and treatment assessment. Conventional ultrasound works at a particular frequency, with a −6 dB fractional bandwidth of ~70 %, limiting the imaging resolution or depth of field. In this paper, a bi-frequency co-linear array with resonant frequencies of 8 MHz and 20 MHz was investigated to meet the requirements of resolution and penetration depth for a broad range of ultrasound imaging applications. Specifically, a 32-element bi-frequency co-linear array was designed and fabricated, followed by element characterization and real-time sectorial scan (S-scan) phantom imaging using a Verasonics system. The bi-frequency co-linear array was tested in four different modes by switching between low and high frequencies on transmit and receive. The four modes included the following: (1) transmit low, receive low, (2) transmit low, receive high, (3) transmit high, receive low, (4) transmit high, receive high. After testing, the axial and lateral resolutions of all modes were calculated and compared. The results of this study suggest that bi-frequency co-linear arrays are potential aids for wideband fundamental imaging and harmonic/sub-harmonic imaging. PMID:26661069
Beck, Tove K; Jensen, Sidsel; Simmelsgaard, Sonni Hansen; Kjeldsen, Chris; Kidmose, Ulla
2015-08-01
Vegetable intake seems to play a protective role against major lifestyle diseases. Despite this, the Danish population usually eats far less than the recommended daily intake. The present study focused on the intake of 17 coarse vegetables and the potential barriers limiting their intake. The present study drew upon a large Danish survey (n = 1079) to study the intake of coarse vegetables among Danish consumers. Four population clusters were identified based on their intake of 17 different coarse vegetables, and profiled according to hedonics, socio-demographic, health, and food lifestyle factors. The four clusters were characterized by a very low intake frequency of coarse vegetables ('low frequency'), a low intake frequency of coarse vegetables; but high intake frequency of carrots ('carrot eaters'), a moderate coarse vegetable intake frequency and high intake frequency of beetroot ('beetroot eaters'), and a high intake frequency of all coarse vegetables ('high frequency'). There was a relationship between reported liking and reported intake frequency for all tested vegetables. Preference for foods with a sweet, salty or bitter taste, in general, was also identified to be decisive for the reported vegetable intake, as these differed across the clusters. Each cluster had distinct socio-demographic, health and food lifestyle profiles. 'Low frequency' was characterized by uninvolved consumers with lack of interest in food, 'carrot eaters' vegetable intake was driven by health aspects, 'beetroot eaters' were characterized as traditional food consumers, and 'high frequency' were individuals with a strong food engagement and high vegetable liking. 'Low frequency' identified more barriers than other consumer clusters and specifically regarded low availability of pre-cut/prepared coarse vegetables on the market as a barrier. Across all clusters a low culinary knowledge was identified as the main barrier. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Auditory processing and high frequency audiometry in students of São Paulo].
Ramos, Cristina Silveira; Pereira, Liliane Desgualdo
2005-01-01
Auditory processing and auditory sensibility to high Frequency sounds. To characterize the localization processes, temporal ordering, hearing patterns and detection of high frequency sounds, looking for possible relations between these factors. 32 hearing fourth grade students, born in city of São Paulo, were submitted to: a simplified evaluation of the auditory processing; duration pattern test; high frequency audiometry. Three (9,4%) individuals presented auditory processing disorder (APD) and in one of them there was the coexistence of lower hearing thresholds in high frequency audiometry. APD associated to an auditory sensibility loss in high frequencies should be further investigated.
On-clip high frequency reliability and failure test structures
Snyder, Eric S.; Campbell, David V.
1997-01-01
Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer.
Preliminary performance measurements of bolometers for the planck high frequency instrument
NASA Technical Reports Server (NTRS)
Holmes, W.; Bock, J.; Ganga, K.; Hristov, V. V.; Hustead, L.; Koch, T.; Lange, A. E.; Paine, C.; Yun, M.
2002-01-01
We report on the characterization of bolometers fabricated at the Jet Propulsion Laboratory for the High Frequency Instrument (HFI) of the joint ESA/NASA Herschel/Planck mission to be launched in 2007.
Andriolo, Artur; Reis, Sarah S; Amorim, Thiago O S; Sucunza, Federico; de Castro, Franciele R; Maia, Ygor Geyer; Zerbini, Alexandre N; Bortolotto, Guilherme A; Dalla Rosa, Luciano
2015-09-01
Acoustic parameters of killer whale (Orcinus orca) whistles were described for the western South Atlantic Ocean and highlight the occurrence of high frequency whistles. Killer whale signals were recorded on December of 2012, when a pod of four individuals was observed harassing a group of sperm whales. The high frequency whistles were highly stereotyped and were modulated mostly at ultrasonic frequencies. Compared to other contour types, the high frequency whistles are characterized by higher bandwidths, shorter durations, fewer harmonics, and higher sweep rates. The results add to the knowledge of vocal behavior of this species.
On-clip high frequency reliability and failure test structures
Snyder, E.S.; Campbell, D.V.
1997-04-29
Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer. 22 figs.
Le Floch, Jean-Michel; Fan, Y; Humbert, Georges; Shan, Qingxiao; Férachou, Denis; Bara-Maillet, Romain; Aubourg, Michel; Hartnett, John G; Madrangeas, Valerie; Cros, Dominique; Blondy, Jean-Marc; Krupka, Jerzy; Tobar, Michael E
2014-03-01
Dielectric resonators are key elements in many applications in micro to millimeter wave circuits, including ultra-narrow band filters and frequency-determining components for precision frequency synthesis. Distributed-layered and bulk low-loss crystalline and polycrystalline dielectric structures have become very important for building these devices. Proper design requires careful electromagnetic characterization of low-loss material properties. This includes exact simulation with precision numerical software and precise measurements of resonant modes. For example, we have developed the Whispering Gallery mode technique for microwave applications, which has now become the standard for characterizing low-loss structures. This paper will give some of the most common characterization techniques used in the micro to millimeter wave regime at room and cryogenic temperatures for designing high-Q dielectric loaded cavities.
2017-04-01
complementary fusion: Fourth-order Butterworth filter was used to high -pass ocelli and low-pass optic flow. The normalized cutoff frequency had to be kept...information introduced by luminance change. The high - frequency cutoff was added to reject the flickering noise for indoor usage. The filtered signals from the...function of the low- pass filter is to attenuate high - frequency noise. The final band-pass filter transfer function is in Eq. 2. (()
Excess noise in Pb(1-x)Sn(x)Se semiconductor lasers
NASA Technical Reports Server (NTRS)
Harward, C. N.; Sidney, B. D.
1980-01-01
The noise characteristics of the TDL were studied for frequencies less than 20 kHz. For heterodyne applications, the high frequency ( 1 MHz) characteristics are also important. Therefore, the high frequency noise characteristics of the TDL were studied as a part of a full TDL characterization program which has been implemented for the improvement of the TDL as a local oscillator in the LHS system. It was observed that all the devices showed similar high frequency noise characteristics even though they were all constructed using different techniques. These common high frequency noise characteristics are reported.
Magnetic Field Generation and B-Dot Sensor Characterization in the High Frequency Band
2012-03-01
date Dr. Andrew J, Terzuoli, PhD (Member) date Dr. Michael J. Havrilla, PhD (Member) date AFIT/GE/ENG/12-20 Abstract Designing a high frequency ( HF ...large wavelengths in the HF range make it difficult to accurately estimate from which direction a magnetic field is emitting. Accurate DF estimates are...necessary for search and rescue operations and geolocating RF emitters of interest. The primary goal of this research is to characterize the
NASA Astrophysics Data System (ADS)
Kuppers, J. D.; Gouverneur, I. M.; Rodgers, M. T.; Wenger, J.; Furlong, C.
2006-08-01
In atomic probe microscopy, micro-probes of various sizes, geometries, and materials are used to define the interface between the samples under investigation and the measuring detectors and instrumentation. Therefore, measuring resolution in atomic probe microscopy is highly dependent on the transfer function characterizing the micro-probes used. In this paper, characterization of the dynamic transfer function of specific micro-cantilever probes used in an Atomic Force Microscope (AFM) operating in the tapping mode is presented. Characterization is based on the combined application of laser Doppler vibrometry (LDV) and real-time stroboscopic optoelectronic holographic microscopy (OEHM) methodologies. LDV is used for the rapid measurement of the frequency response of the probes due to an excitation function containing multiple frequency components. Data obtained from the measured frequency response is used to identify the principal harmonics. In order to identify mode shapes corresponding to the harmonics, full-field of view OEHM is applied. This is accomplished by measurements of motion at various points on the excitation curve surrounding the identified harmonics. It is shown that the combined application of LDV and OEHM enables the high-resolution characterization of mode shapes of vibration, damping characteristics, as well as transient response of the micro-cantilever probes. Such characterization is necessary in high-resolution AFM measurements.
Fabrication and characterization of active nanostructures
NASA Astrophysics Data System (ADS)
Opondo, Noah F.
Three different nanostructure active devices have been designed, fabricated and characterized. Junctionless transistors based on highly-doped silicon nanowires fabricated using a bottom-up fabrication approach are first discussed. The fabrication avoids the ion implantation step since silicon nanowires are doped in-situ during growth. Germanium junctionless transistors fabricated with a top down approach starting from a germanium on insulator substrate and using a gate stack of high-k dielectrics and GeO2 are also presented. The levels and origin of low-frequency noise in junctionless transistor devices fabricated from silicon nanowires and also from GeOI devices are reported. Low-frequency noise is an indicator of the quality of the material, hence its characterization can reveal the quality and perhaps reliability of fabricated transistors. A novel method based on low-frequency noise measurement to envisage trap density in the semiconductor bandgap near the semiconductor/oxide interface of nanoscale silicon junctionless transistors (JLTs) is presented. Low-frequency noise characterization of JLTs biased in saturation is conducted at different gate biases. The noise spectrum indicates either a Lorentzian or 1/f. A simple analysis of the low-frequency noise data leads to the density of traps and their energy within the semiconductor bandgap. The level of noise in silicon JLT devices is lower than reported values on transistors fabricated using a top-down approach. This noise level can be significantly improved by improving the quality of dielectric and the channel interface. A micro-vacuum electron device based on silicon field emitters for cold cathode emission is also presented. The presented work utilizes vertical Si nanowires fabricated by means of self-assembly, standard lithography and etching techniques as field emitters in this dissertation. To obtain a high nanowire density, hence a high current density, a simple and inexpensive Langmuir Blodgett technique to deposit silica nanoparticles as a mask to etch Si is adopted. Fabrication and characterization of a metal-gated microtriode with a high current density and low operating voltage are presented.
NASA Astrophysics Data System (ADS)
Weber, Martin; Wilkens, Volker
2017-08-01
A high-frequency vibrometer was used with ultrasonic pulse excitation in order to perform a primary hydrophone calibration. This approach enables the simultaneous characterization of the amplitude and phase transfer characteristic of ultrasonic hydrophones. The method allows a high frequency resolution in a considerably short time for the measurement. Furthermore, the uncertainty contributions of this approach were investigated and quantified. A membrane hydrophone was calibrated and the uncertainty budget for this measurement was determined. The calibration results are presented up to 70~\\text{MHz} . The measurement results show good agreement with the results obtained by sinusoidal burst excitation through the use of the vibrometer and by a homodyne laser interferometer, with RMS deviation of approximately 3% -4% in the frequency range from 1 to 60~\\text{MHz} . Further hydrophones were characterized up to 100~\\text{MHz} with this procedure to demonstrate the suitability for very high frequency calibration.
The neural correlates of dreaming
Siclari, F.; Baird, B.; Perogamvros, L.; Bernardi, G.; LaRocque, J. J.; Riedner, B.; Boly, M.; Postle, B. R.; Tononi, G.
2017-01-01
Consciousness never fades during wake. However, if awakened from sleep, sometimes we report dreams and sometimes no experiences. Traditionally, dreaming has been identified with REM sleep, characterized by a wake-like, globally ‘activated’, high-frequency EEG. However, dreaming also occurs in NREM sleep, characterized by prominent low-frequency activity. This challenges our understanding of the neural correlates of conscious experiences in sleep. Using high-density EEG, we contrasted the presence and absence of dreaming within NREM and REM sleep. In both NREM and REM sleep, reports of dream experience were associated with a local decrease in low-frequency activity in posterior cortical regions. High-frequency activity within these regions correlated with specific dream contents. Monitoring this posterior ‘hot zone’ predicted whether an individual reported dreaming or the absence of experiences during NREM sleep in real time, suggesting that it may constitute a core correlate of conscious experiences in sleep. PMID:28394322
The neural correlates of dreaming.
Siclari, Francesca; Baird, Benjamin; Perogamvros, Lampros; Bernardi, Giulio; LaRocque, Joshua J; Riedner, Brady; Boly, Melanie; Postle, Bradley R; Tononi, Giulio
2017-06-01
Consciousness never fades during waking. However, when awakened from sleep, we sometimes recall dreams and sometimes recall no experiences. Traditionally, dreaming has been identified with rapid eye-movement (REM) sleep, characterized by wake-like, globally 'activated', high-frequency electroencephalographic activity. However, dreaming also occurs in non-REM (NREM) sleep, characterized by prominent low-frequency activity. This challenges our understanding of the neural correlates of conscious experiences in sleep. Using high-density electroencephalography, we contrasted the presence and absence of dreaming in NREM and REM sleep. In both NREM and REM sleep, reports of dream experience were associated with local decreases in low-frequency activity in posterior cortical regions. High-frequency activity in these regions correlated with specific dream contents. Monitoring this posterior 'hot zone' in real time predicted whether an individual reported dreaming or the absence of dream experiences during NREM sleep, suggesting that it may constitute a core correlate of conscious experiences in sleep.
NMR Relaxometry to Characterize the Drug Structural Phase in a Porous Construct.
Thrane, Linn W; Berglund, Emily A; Wilking, James N; Vodak, David; Seymour, Joseph D
2018-06-14
Nuclear magnetic resonance (NMR) frequency spectra and T 2 relaxation time measurements, using a high-power radio frequency probe, are shown to characterize the presence of an amorphous drug in a porous silica construct. The results indicate the ability of non-solid-state NMR methods to characterize crystalline and amorphous solid structural phases in drugs. Two-dimensional T 1 - T 2 magnetic relaxation time correlation experiments are shown to monitor the impact of relative humidity on the drug in a porous silica tablet.
NASA Astrophysics Data System (ADS)
Koopman, B. J.; Cothard, N. F.; Choi, S. K.; Crowley, K. T.; Duff, S. M.; Henderson, S. W.; Ho, S. P.; Hubmayr, J.; Gallardo, P. A.; Nati, F.; Niemack, M. D.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Wollack, E. J.
2018-05-01
Advanced ACTPol (AdvACT) is a third-generation polarization upgrade to the Atacama Cosmology Telescope, designed to observe the cosmic microwave background (CMB). AdvACT expands on the 90 and 150 GHz transition edge sensor (TES) bolometer arrays of the ACT Polarimeter (ACTPol), adding both high-frequency (HF, 150/230 GHz) and low-frequency (LF, 27/39 GHz) multichroic arrays. The addition of the high- and low-frequency detectors allows for the characterization of synchrotron and spinning dust emission at the low frequencies and foreground emission from galactic dust and dusty star-forming galaxies at the high frequencies. The increased spectral coverage of AdvACT will enable a wide range of CMB science, such as improving constraints on dark energy, the sum of the neutrino masses, and the existence of primordial gravitational waves. The LF array will be the final AdvACT array, replacing one of the MF arrays for a single season. Prior to the fabrication of the final LF detector array, we designed and characterized prototype TES bolometers. Detector geometries in these prototypes are varied in order to inform and optimize the bolometer designs for the LF array, which requires significantly lower noise levels and saturation powers (as low as {˜ } 1 pW) than the higher-frequency detectors. Here we present results from tests of the first LF prototype TES detectors for AdvACT, including measurements of the saturation power, critical temperature, thermal conductance, and time constants. We also describe the modifications to the time-division SQUID readout architecture compared to the MF and HF arrays.
Voice characteristics in the progression of Parkinson's disease.
Holmes, R J; Oates, J M; Phyland, D J; Hughes, A J
2000-01-01
This study examined the acoustic and perceptual voice characteristics of patients with Parkinson's disease according to disease severity. The perceptual and acoustic voice characteristics of 30 patients with early stage PD and 30 patients with later stage PD were compared with data from 30 normal control subjects. Voice recordings consisted of prolongation of the vowel /a/, scale singing, and a 1-min monologue. In comparison with controls and previously published normative data, both early and later stage PD patients' voices were characterized perceptually by limited pitch and loudness variability, breathiness, harshness and reduced loudness. High modal pitch levels also characterized the voices of males in both early and later stages of PD. Acoustically, the voices of both groups of PD patients demonstrated lower mean intensity levels and reduced maximum phonational frequency ranges in comparison with normative data. Although less clear, the present data also suggested that the PD patients' voices were characterized by excess jitter, a high-speaking fundamental frequency for males and a reduced fundamental frequency variability for females. While several of these voice features did not appear to deteriorate with disease progression (i.e. harshness, high modal pitch and speaking fundamental frequency in males, fundamental frequency variability in females, low intensity and jitter), breathiness, monopitch and monoloudness, low loudness and reduced maximum phonational frequency range were all worse in the later stages of PD. Tremor was the sole voice feature which was associated only with later stage PD.
The Subharmonic Behavior and Thresholds of High Frequency Ultrasound Contrast Agents
NASA Astrophysics Data System (ADS)
Allen, John
2016-11-01
Ultrasound contrast agents are encapsulated micro-bubbles used for diagnostic and therapeutic biomedical ultrasound. The agents oscillate nonlinearly about their equilibrium radii upon sufficient acoustic forcing and produce unique acoustic signatures that allow them to be distinguished from scattering from the surrounding tissue. The subharmonic response occurs below the fundamental and is associated with an acoustic pressure threshold. Subharmonic imaging using ultrasound contrast agents has been established for clinical applications at standard diagnostic frequencies typically below 20 MHz. However, for emerging applications of high frequency applications (above 20 MHz) subharmonic imaging is an area of on-going research. The effects of attenuation from tissue are more significant and the characterization of agents is not as well understood. Due to specificity and control production, polymer agents are useful for high frequency applications. In this study, we highlight novel measurement techniques to measure and characterize the mechanical properties of the shell of polymer contrast agents. The definition of the subharmonic threshold is investigated with respect to mono-frequency and chirp forcing waveforms which have been used to achieve optimal subharmonic content in the backscattered signal. Time frequency analysis using the Empirical Mode Decomposition (EMD) and the Hilbert-Huang transform facilitates a more sensitive and robust methodology for characterization of subharmonic content with respect to non-stationary forcing. A new definition of the subharmonic threshold is proposed with respect to the energy content of the associated adaptive basis decomposition. Additional studies with respect to targeted agent behavior and cardiovascular disease are discussed. NIH, ONR.
Chip-Scale Architectures for Precise Optical Frequency Synthesis
NASA Astrophysics Data System (ADS)
Yang, Jinghui
Scientists and engineers have investigated various types of stable and accurate optical synthesizers, where mode-locked laser based optical frequency comb synthesizers have been widely investigated. These frequency combs bridge the frequencies from optical domain to microwave domain with orders of magnitude difference, providing a metrological tool for various platforms. The demand for highly robust, scalable, compact and cost-effective femtosecond-laser synthesizers, however, are of great importance for applications in air- or space-borne platforms, where low cost and rugged packaging are particularly required. This has been afforded in the past several years due to breakthroughs in chip-scale nanofabrication, bringing advances in optical frequency combs down to semiconductor chips. These platforms, with significantly enhanced light-matter interaction, provide a fertile sandbox for research rich in nonlinear dynamics, and offer a reliable route towards low-phase noise photonic oscillators, broadband optical frequency synthesizers, miniaturized optical clockwork, and coherent terabit communications. The dissertation explores various types of optical frequency comb synthesizers based on nonlinear microresonators. Firstly, the fundamental mechanism of mode-locking in a high-quality factor microresonator is examined, supported by ultrafast optical characterizations, analytical closed-form solutions and numerical modeling. In the evolution of these frequency microcombs, the key nonlinear dynamical effect governing the comb state coherence is rigorously analyzed. Secondly, a prototype of chip-scale optical frequency synthesizer is demonstrated, with the laser frequency comb stabilized down to instrument-limited 50-mHz RF frequency inaccuracies and 10-16 fractional frequency inaccuracies, near the fundamental limits. Thirdly, a globally stable Turing pattern is achieved and characterized in these nonlinear resonators with high-efficiency conversion, subsequently generating coherent high-power terahertz radiation via plasmonic photomixers. Finally, a new universal modality of frequency combs is discussed, including satellite states, dynamical tunability, and high efficiency conversion towards direct chip-scale optical frequency synthesis at the precision metrology frontiers.
Two AFC Loops For Low CNR And High Dynamics
NASA Technical Reports Server (NTRS)
Hinedi, Sami M.; Aguirre, Sergio
1992-01-01
Two alternative digital automatic-frequency-control (AFC) loops proposed to acquire (or reacquire) and track frequency of received carrier radio signal. Intended for use where carrier-to-noise ratios (CNR's) low and carrier frequency characterized by high Doppler shift and Doppler rate because of high relative speed and acceleration, respectively, between transmitter and receiver. Either AFC loops used in place of phase-locked loop. New loop concepts integrate ideas from classical spectrum-estimation, digital-phase-locked-loop, and Kalman-Filter theories.
NASA Technical Reports Server (NTRS)
Finkelstein, N.; Gambogi, J.; Lempert, Walter R.; Miles, Richard B.; Rines, G. A.; Finch, A.; Schwarz, R. A.
1995-01-01
We present the development of a flexible, high power, narrow line width, tunable ultraviolet source for diagnostic application. By frequency tripling the output of a pulsed titanium-sapphire laser, we achieve broadly tunable (227-360 nm) ultraviolet light with high quality spatial and spectral resolution. We also present the characterization of a mercury vapor cell which provides a narrow band, sharp edge absorption filter at 253.7 nm. These two components form the basis for the extension of the Filtered Rayleigh Scattering technique into the ultraviolet. The UV-FRS system is comprised of four pieces: a single frequency, cw tunable Ti:Sapphire seeding source; a high-powered pulsed Ti:Sapphire oscillator; a third harmonic generator system; and an atomic mercury vapor filter. In this paper we discuss the development and characterization of each of these elements.
High spectral purity Kerr frequency comb radio frequency photonic oscillator
Liang, W.; Eliyahu, D.; Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Seidel, D.; Maleki, L.
2015-01-01
Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than −60 dBc Hz−1 at 10 Hz, −90 dBc Hz−1 at 100 Hz and −170 dBc Hz−1 at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10−10 at 1–100 s integration time—orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption. PMID:26260955
Inflight Characterization of the Cassini Spacecraft Propellant Slosh and Structural Frequencies
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Stupik, Joan
2015-01-01
While there has been extensive theoretical and analytical research regarding the characterization of spacecraft propellant slosh and structural frequencies, there have been limited studies to compare the analytical predictions with measured flight data. This paper uses flight telemetry from the Cassini spacecraft to get estimates of high-g propellant slosh frequencies and the magnetometer boom frequency characteristics, and compares these values with those predicted by theoretical works. Most Cassini attitude control data are available at a telemetry frequency of 0.5 Hz. Moreover, liquid sloshing is attenuated by propellant management device and attitude controllers. Identification of slosh and structural frequency are made on a best-effort basis. This paper reviews the analytical approaches that were used to predict the Cassini propellant slosh frequencies. The predicted frequencies are then compared with those estimated using telemetry from selected Cassini burns where propellant sloshing was observed (such as the Saturn Orbit Insertion burn).
NASA Technical Reports Server (NTRS)
Mendenhall, J. A.
2001-01-01
The dark current and noise characteristics of the Earth Observing-1 Advanced Land Imager measured during ground calibration at MIT Lincoln Laboratory are presented. Data were collected for the nominal focal plane operating temperature of 220 K as well as supplemental operating temperatures (215 and 225 K). Dark current baseline values are provided, and noise characterization includes the evaluation of white, coherent, low frequency, and high frequency components. Finally, anomalous detectors, characterized by unusual dark current, noise, gain, or cross-talk properties are investigated.
Properties of barium strontium titanate at millimeter wave frequencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osman, Nurul; Free, Charles
2015-04-24
The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangentmore » for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, VFG; Xie, HK
2014-07-01
This paper presents the fabrication and characterization of a high-density multilayer stacked metal-insulator-metal (MIM) capacitor based on a novel process of depositing the MIM multilayer on pillars followed by polishing and selective etching steps to form a stacked capacitor with merely three photolithography steps. In this paper, the pillars were made of glass to prevent substrate loss, whereas an oxide-nitride-oxide dielectric was employed for lower leakage, better voltage/frequency linearity, and better stress compensation. MIM capacitors with six dielectric layers were successfully fabricated, yielding capacitance density of 3.8 fF/mu m(2), maximum capacitance of 2.47 nF, and linear and quadratic voltage coefficientsmore » of capacitance below 21.2 ppm/V and 2.31 ppm/V-2. The impedance was measured from 40 Hz to 3 GHz, and characterized by an analytically derived equivalent circuit model to verify the radio frequency applicability. The multilayer stacking-induced plate resistance mismatch and its effect on the equivalent series resistance (ESR) and effective capacitance was also investigated, which can be counteracted by a corrected metal thickness design. A low ESR of 800 m Omega was achieved, whereas the self-resonance frequency was >760 MHz, successfully demonstrating the feasibility of this method to scale up capacitance densities for high-quality-factor, high-frequency, and large-value MIM capacitors.« less
NASA Astrophysics Data System (ADS)
Mercado, Karla Patricia E.
Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.
NASA Astrophysics Data System (ADS)
O'Toole, A.; Peña Arellano, F. E.; Rodionov, A. V.; Shaner, M.; Sobacchi, E.; Dergachev, V.; DeSalvo, R.; Asadoor, M.; Bhawal, A.; Gong, P.; Kim, C.; Lottarini, A.; Minenkov, Y.; Murphy, C.
2014-07-01
A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems.
First On-Wafer Power Characterization of MMIC Amplifiers at Sub-Millimeter Wave Frequencies
NASA Technical Reports Server (NTRS)
Fung, A. K.; Gaier, T.; Samoska, L.; Deal, W. R.; Radisic, V.; Mei, X. B.; Yoshida, W.; Liu, P. S.; Uyeda, J.; Barsky, M.;
2008-01-01
Recent developments in semiconductor technology have enabled advanced submillimeter wave (300 GHz) transistors and circuits. These new high speed components have required new test methods to be developed for characterizing performance, and to provide data for device modeling to improve designs. Current efforts in progressing high frequency testing have resulted in on-wafer-parameter measurements up to approximately 340 GHz and swept frequency vector network analyzer waveguide measurements to 508 GHz. On-wafer noise figure measurements in the 270-340 GHz band have been demonstrated. In this letter we report on on-wafer power measurements at 330 GHz of a three stage amplifier that resulted in a maximum measured output power of 1.78mW and maximum gain of 7.1 dB. The method utilized demonstrates the extension of traditional power measurement techniques to submillimeter wave frequencies, and is suitable for automated testing without packaging for production screening of submillimeter wave circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Toole, A., E-mail: amandajotoole@gmail.com, E-mail: riccardo.desalvo@gmail.com; Peña Arellano, F. E.; Rodionov, A. V.
2014-07-15
A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organizedmore » Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems.« less
NASA Astrophysics Data System (ADS)
Yuan, Wuhan; Mohabir, Amar; Tutuncuoglu, Gozde; Filler, Michael; Feldman, Leonard; Shan, Jerry
2017-11-01
Solution-based, contactless methods for determining the electrical conductivity of nanowires and nanotubes have unique advantages over conventional techniques in terms of high throughput and compatibility with further solution-based processing and assembly methods. Here, we describe the solution-based electro-orientation spectroscopy (EOS) method, in which nanowire conductivity is measured from the AC-electric-field-induced alignment rate of the nanowire in a suspending fluid. The particle conductivity is determined from the measured crossover frequency between conductivity-dominated, low-frequency alignment to the permittivity-dominated, high-frequency regime. We discuss the extension of the EOS measurement range by an order-of-magnitude, taking advantage of the high dielectric constant of deionized water. With water and other fluids, we demonstrate that EOS can quantitatively characterize the electrical conductivities of nanowires over a 7-order-of-magnitude range, 10-5 to 102 S/m. We highlight the efficiency and utility of EOS for nanomaterial characterization by statistically characterizing the variability of semiconductor nanowires of the same nominal composition, and studying the connection between synthesis parameters and properties. NSF CBET-1604931.
Robles, Guillermo; Fresno, José Manuel; Martínez-Tarifa, Juan Manuel; Ardila-Rey, Jorge Alfredo; Parrado-Hernández, Emilio
2018-03-01
The measurement of partial discharge (PD) signals in the radio frequency (RF) range has gained popularity among utilities and specialized monitoring companies in recent years. Unfortunately, in most of the occasions the data are hidden by noise and coupled interferences that hinder their interpretation and renders them useless especially in acquisition systems in the ultra high frequency (UHF) band where the signals of interest are weak. This paper is focused on a method that uses a selective spectral signal characterization to feature each signal, type of partial discharge or interferences/noise, with the power contained in the most representative frequency bands. The technique can be considered as a dimensionality reduction problem where all the energy information contained in the frequency components is condensed in a reduced number of UHF or high frequency (HF) and very high frequency (VHF) bands. In general, dimensionality reduction methods make the interpretation of results a difficult task because the inherent physical nature of the signal is lost in the process. The proposed selective spectral characterization is a preprocessing tool that facilitates further main processing. The starting point is a clustering of signals that could form the core of a PD monitoring system. Therefore, the dimensionality reduction technique should discover the best frequency bands to enhance the affinity between signals in the same cluster and the differences between signals in different clusters. This is done maximizing the minimum Mahalanobis distance between clusters using particle swarm optimization (PSO). The tool is tested with three sets of experimental signals to demonstrate its capabilities in separating noise and PDs with low signal-to-noise ratio and separating different types of partial discharges measured in the UHF and HF/VHF bands.
Zi, Fei; Wu, Xuejian; Zhong, Weicheng; Parker, Richard H; Yu, Chenghui; Budker, Simon; Lu, Xuanhui; Müller, Holger
2017-04-01
We present a hybrid laser frequency stabilization method combining modulation transfer spectroscopy (MTS) and frequency modulation spectroscopy (FMS) for the cesium D2 transition. In a typical pump-probe setup, the error signal is a combination of the DC-coupled MTS error signal and the AC-coupled FMS error signal. This combines the long-term stability of the former with the high signal-to-noise ratio of the latter. In addition, we enhance the long-term frequency stability with laser intensity stabilization. By measuring the frequency difference between two independent hybrid spectroscopies, we investigate the short-and long-term stability. We find a long-term stability of 7.8 kHz characterized by a standard deviation of the beating frequency drift over the course of 10 h and a short-term stability of 1.9 kHz characterized by an Allan deviation of that at 2 s of integration time.
NASA Astrophysics Data System (ADS)
Berneking, Arne; Trinchero, Riccardo; Ha, YongHyun; Finster, Felix; Cerello, Piergiorgio; Lerche, Christoph; Shah, Nadim Jon
2017-05-01
This paper focuses on the design and the characterization of a frequency-selective shield for positron emission tomography (PET) detector modules of hybrid magnetic resonance-PET scanners, where the shielding of the PET cassettes is located close to the observed object. The proposed shielding configuration is designed and optimized to guarantee a high shielding effectiveness (SE) of up to 60 dB for B1-fields at the Larmor frequency of 64 MHz, thus preventing interactions between the radio-frequency (RF) coil and PET electronics. On the other hand, the shield is transparent to the gradient fields with the consequence that eddy-current artifacts in the acquired EPI images are significantly reduced with respect to the standard solid-shield configuration. The frequency-selective behavior of the shield is characterized and validated via simulation studies with CST MICROWAVE STUDIO in the megahertz and kilohertz range. Bench measurements with an RF coil built in-house demonstrated the high SE at the Larmor frequency. Moreover, measurements on a 4-T human scanner confirmed the abolishment of eddy current artifact and also provided an understanding of where the eddy currents occur with respect to the sequence parameters. Simulations and measurements for the proposed shielding concept were compared with a solid copper shielding configuration.
A monitoring approach combining wet chemistry and high frequency (HF) water quality sensors has been employed to improve our understanding of the ecology of an inland reservoir with a history of cyanoHAB events. Lake Harsha is a multi-use reservoir managed by the USACE in southwe...
Dielectric relaxation of high-k oxides
2013-01-01
Frequency dispersion of high-k dielectrics was observed and classified into two parts: extrinsic cause and intrinsic cause. Frequency dependence of dielectric constant (dielectric relaxation), that is the intrinsic frequency dispersion, could not be characterized before considering the effects of extrinsic frequency dispersion. Several mathematical models were discussed to describe the dielectric relaxation of high-k dielectrics. For the physical mechanism, dielectric relaxation was found to be related to the degree of polarization, which depended on the structure of the high-k material. It was attributed to the enhancement of the correlations among polar nanodomain. The effect of grain size for the high-k materials' structure mainly originated from higher surface stress in smaller grain due to its higher concentration of grain boundary. PMID:24180696
Inflight Characterization of the Cassini Spacecraft Propellant Slosh and Structural Frequencies
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Stupik, Joan
2015-01-01
While there has been extensive theoretical and analytical research regarding the characterization of spacecraft propellant slosh and structural frequencies, there have been limited studies to compare the analytical predictions with measured flight data. This paper uses flight telemetry from the Cassini spacecraft to get estimates of high-g propellant slosh frequencies and the magnetometer boom frequency characteristics, and compares these values with those predicted by theoretical works. Most Cassini attitude control data are available at a telemetry frequency of 0.5 Hz. Moreover, liquid sloshing is attenuated by propellant management device and attitude controllers. Identification of slosh and structural frequency are made on a best-effort basis. This paper reviews the analytical approaches that were used to predict the Cassini propellant slosh frequencies. The predicted frequencies are then compared with those estimated using telemetry from selected Cassini burns where propellant sloshing was observed (such as the Saturn Orbit Insertion burn). Determination of the magnetometer boom structural frequency is also discussed.
Smith, G Troy
2006-01-01
The neural circuit that controls the electric organ discharge (EOD) of the brown ghost knifefish (Apteronotus leptorhynchus) contains two spontaneous oscillators. Both pacemaker neurons in the medulla and electromotor neurons (EMNs) in the spinal cord fire spontaneously at frequencies of 500-1,000 Hz to control the EOD. These neurons continue to fire in vitro at frequencies that are highly correlated with in vivo EOD frequency. Previous studies used channel blocking drugs to pharmacologically characterize ionic currents that control high-frequency firing in pacemaker neurons. The goal of the present study was to use similar techniques to investigate ionic currents in EMNs, the other type of spontaneously active neuron in the electromotor circuit. As in pacemaker neurons, high-frequency firing of EMNs was regulated primarily by tetrodotoxin-sensitive sodium currents and by potassium currents that were sensitive to 4-aminopyridine and kappaA-conotoxin SIVA, but resistant to tetraethylammonium. EMNs, however, differed from pacemaker neurons in their sensitivity to some channel blocking drugs. Alpha-dendrotoxin, which blocks a subset of Kv1 potassium channels, increased firing rates in EMNs, but not pacemaker neurons; and the sodium channel blocker muO-conotoxin MrVIA, which reduced firing rates of pacemaker neurons, had no effect on EMNs. These results suggest that similar, but not identical, ionic currents regulate high-frequency firing in EMNs and pacemaker neurons. The differences in the ionic currents expressed in pacemaker neurons and EMNs might be related to differences in the morphology, connectivity, or function of these two cell types.
Characteristics of enhanced-mode AlGaN/GaN MIS HEMTs for millimeter wave applications
NASA Astrophysics Data System (ADS)
Lee, Jong-Min; Ahn, Ho-Kyun; Jung, Hyun-Wook; Shin, Min Jeong; Lim, Jong-Won
2017-09-01
In this paper, an enhanced-mode (E-mode) AlGaN/GaN high electron mobility transistor (HEMT) was developed by using 4-inch GaN HEMT process. We designed and fabricated Emode HEMTs and characterized device performance. To estimate the possibility of application for millimeter wave applications, we focused on the high frequency performance and power characteristics. To shift the threshold voltage of HEMTs we applied the Al2O3 insulator to the gate structure and adopted the gate recess technique. To increase the frequency performance the e-beam lithography technique was used to define the 0.15 um gate length. To evaluate the dc and high frequency performance, electrical characterization was performed. The threshold voltage was measured to be positive value by linear extrapolation from the transfer curve. The device leakage current is comparable to that of the depletion mode device. The current gain cut-off frequency and the maximum oscillation frequency of the E-mode device with a total gate width of 150 um were 55 GHz and 168 GHz, respectively. To confirm the power performance for mm-wave applications the load-pull test was performed. The measured power density of 2.32 W/mm was achieved at frequencies of 28 and 30 GHz.
NASA Astrophysics Data System (ADS)
Strobel, C.; Chavarin, C. A.; Kitzmann, J.; Lupina, G.; Wenger, Ch.; Albert, M.; Bartha, J. W.
2017-06-01
N-type doped amorphous hydrogenated silicon (a-Si:H) is deposited on top of graphene (Gr) by means of very high frequency (VHF) and radio frequency plasma-enhanced chemical vapor deposition (PECVD). In order to preserve the structural integrity of the monolayer graphene, a plasma excitation frequency of 140 MHz was successfully applied during the a-Si:H VHF-deposition. Raman spectroscopy results indicate the absence of a defect peak in the graphene spectrum after the VHF-PECVD of (n)-a-Si:H. The diode junction between (n)-a-Si:H and graphene was characterized using temperature dependent current-voltage (IV) and capacitance-voltage measurements, respectively. We demonstrate that the current at the (n)-a-Si:H-graphene interface is dominated by thermionic emission and recombination in the space charge region. The Schottky barrier height (qΦB), derived by temperature dependent IV-characteristics, is about 0.49 eV. The junction properties strongly depend on the applied deposition method of (n)-a-Si:H with a clear advantage of the VHF(140 MHz)-technology. We have demonstrated that (n)-a-Si:H-graphene junctions are a promising technology approach for high frequency heterojunction transistors.
Reflexion measurements for inverse characterization of steel diffusion bond mechanical properties
NASA Astrophysics Data System (ADS)
Le Bourdais, Florian; Cachon, Lionel; Rigal, Emmanuel
2017-02-01
The present work describes a non-destructive testing method aimed at securing high manufacturing quality of the innovative compact heat exchanger developed under the framework of the CEA R&D program dedicated to the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID). The heat exchanger assembly procedure currently proposed involves high temperature and high pressure diffusion welding of stainless steel plates. The aim of the non-destructive method presented herein is to characterize the quality of the welds obtained through this assembly process. Based on a low-frequency model developed by Baik and Thompson [1], pulse-echo normal incidence measurements are calibrated according to a specific procedure and allow the determination of the welding interface stiffness using a nonlinear fitting procedure in the frequency domain. Performing the characterization of plates after diffusion welding using this method allows a useful assessment of the material state as a function of the diffusion bonding process.
2007-08-01
zooplankton scatterer types, perhaps dominated by copepods and gas- bearing siphonophores (Lawson et al., 2004). Similar analyses of multi-frequency...in this Gulf of Maine study region, gas-bearing siphonophores dominated scattering at all four BIOMAPER-II frequencies (Lavery et al., in press...with multi-frequency acoustics. 2. Away from these locations, other zooplankton dominated scattering, especially copepods and gas-bearing siphonophores
Chien, Jun-Chau; Ameri, Ali; Yeh, Erh-Chia; Killilea, Alison N; Anwar, Mekhail; Niknejad, Ali M
2018-06-06
This work presents a microfluidics-integrated label-free flow cytometry-on-a-CMOS platform for the characterization of the cytoplasm dielectric properties at microwave frequencies. Compared with MHz impedance cytometers, operating at GHz frequencies offers direct intracellular permittivity probing due to electric fields penetrating through the cellular membrane. To overcome the detection challenges at high frequencies, the spectrometer employs on-chip oscillator-based sensors, which embeds simultaneous frequency generation, electrode excitation, and signal detection capabilities. By employing an injection-locking phase-detection technique, the spectrometer offers state-of-the-art sensitivity, achieving a less than 1 aFrms capacitance detection limit (or 5 ppm in frequency-shift) at a 100 kHz noise filtering bandwidth, enabling high throughput (>1k cells per s), with a measured cellular SNR of more than 28 dB. With CMOS/microfluidics co-design, we distribute four sensing channels at 6.5, 11, 17.5, and 30 GHz in an arrayed format whereas the frequencies are selected to center around the water relaxation frequency at 18 GHz. An issue in the integration of CMOS and microfluidics due to size mismatch is also addressed through introducing a cost-efficient epoxy-molding technique. With 3-D hydrodynamic focusing microfluidics, we perform characterization on four different cell lines including two breast cell lines (MCF-10A and MDA-MB-231) and two leukocyte cell lines (K-562 and THP-1). After normalizing the higher frequency signals to the 6.5 GHz ones, the size-independent dielectric opacity shows a differentiable distribution at 17.5 GHz between normal (0.905 ± 0.160, mean ± std.) and highly metastatic (1.033 ± 0.107) breast cells with p ≪ 0.001.
Characterization of High-Frequency Excitation of a Wake by Simulation
NASA Technical Reports Server (NTRS)
Cain, Alan B.; Rogers, Michael M.; Kibens, Valdis; Mansour, Nagi (Technical Monitor)
2003-01-01
Insights into the effects of high-frequency forcing on free shear layer evolution are gained through analysis of several direct numerical simulations. High-frequency forcing of a fully turbulent plane wake results in only a weak transient effect. On the other hand, significant changes in the developed turbulent state may result when high-frequency forcing is applied to a transitional wake. The impacts of varying the characteristics of the high-frequency forcing are examined, particularly, the streamwise wavenumber band in which forcing is applied and the initial amplitude of the forcing. The high-frequency excitation is found to increase the dissipation rate of turbulent kinetic energy, to reduce the turbulent kinetic energy production rate, and to reduce the turbulent kinetic energy suppression increases with forcing amplitude once a threshold level has been reached. For a given initial forcing energy, the largest reduction in turbulent kinetic energy density was achieved by forcing wavenumbers that are about two to three times the neutral wavenumber determined from linear stability theory.
High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars
Giroletti, M.; Massaro, F.; D’Abrusco, R.; ...
2016-04-01
Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg 2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detectedmore » by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α low) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.« less
High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giroletti, M.; Massaro, F.; D’Abrusco, R.
Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg 2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detectedmore » by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α low) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.« less
Long distance measurement with a femtosecond laser based frequency comb
NASA Astrophysics Data System (ADS)
Bhattacharya, N.; Cui, M.; Zeitouny, M. G.; Urbach, H. P.; van den Berg, S. A.
2017-11-01
Recent advances in the field of ultra-short pulse lasers have led to the development of reliable sources of carrier envelope phase stabilized femtosecond pulses. The pulse train generated by such a source has a frequency spectrum that consists of discrete, regularly spaced lines known as a frequency comb. In this case both the frequency repetition and the carrier-envelope-offset frequency are referenced to a frequency standard, like an atomic clock. As a result the accuracy of the frequency standard is transferred to the optical domain, with the frequency comb as transfer oscillator. These unique properties allow the frequency comb to be applied as a versatile tool, not only for time and frequency metrology, but also in fundamental physics, high-precision spectroscopy, and laser noise characterization. The pulse-to-pulse phase relationship of the light emitted by the frequency comb has opened up new directions for long range highly accurate distance measurement.
Mutational jackpot events generate effective frequency-dependent selection in adapting populations
NASA Astrophysics Data System (ADS)
Hallatschek, Oskar
The site-frequency spectrum is one the most easily measurable quantities that characterize the genetic diversity of a population. While most neutral models predict that site frequency spectra should decay with increasing frequency, a high-frequency uptick has been reported in many populations. Anomalies in the high-frequency tail are particularly unsettling because the highest frequencies can be measured with greatest accuracy. Here, we show that an uptick in the spectrum of neutral mutations generally arises when mutant frequencies are dominated by rare jackpot events, mutational events with large descendant numbers. This leads to an effective pattern of frequency-dependent selection (or unstable internal equilibrium at one half frequency) that causes an accumulation of high-frequency polymorphic sites. We reproduce the known uptick occurring for recurrent hitchhiking (genetic draft) as well as rapid adaptation, and (in the future) generalize the shape of the high-frequency tail to other scenarios that are dominated by jackpot events, such as frequent range expansions. We also tackle (in the future) the inverse approach to use the high-frequency uptick for learning about the tail of the offspring number distribution. Positively selected alleles need to surpass, typically, an u NSF Career Award (PoLS), NIH NIGMS R01, Simons Foundation.
Rohani, Ali; Varhue, Walter; Su, Yi-Hsuan; Swami, Nathan S
2014-07-01
Electrorotation (ROT) is a powerful tool for characterizing the dielectric properties of cells and bioparticles. However, its application has been somewhat limited by the need to mitigate disruptions to particle rotation by translation under positive DEP and by frictional interactions with the substrate. While these disruptions may be overcome by implementing particle positioning schemes or field cages, these methods restrict the frequency bandwidth to the negative DEP range and permit only single particle measurements within a limited spatial extent of the device geometry away from field nonuniformities. Herein, we present an electrical tweezer methodology based on a sequence of electrical signals, composed of negative DEP using 180-degree phase-shifted fields for trapping and levitation of the particles, followed by 90-degree phase-shifted fields over a wide frequency bandwidth for highly parallelized electrorotation measurements. Through field simulations of the rotating electrical field under this wave-sequence, we illustrate the enhanced spatial extent for electrorotation measurements, with no limitations to frequency bandwidth. We apply this methodology to characterize subtle modifications in morphology and electrophysiology of Cryptosporidium parvum with varying degrees of heat treatment, in terms of shifts in the electrorotation spectra over the 0.05-40 MHz region. Given the single particle sensitivity and the ability for highly parallelized electrorotation measurements, we envision its application toward characterizing heterogeneous subpopulations of microbial and stem cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of the MEMS Directional Sound Sensor in the High Frequency (15-20 kHz) Range
2011-12-01
frequency response that is almost flat from 50 Hz to 20 kHz [9]. The sound source is a Selenium loudspeaker type DH200E attached to the internal...University Science Books, 2005. [12] W. Zhang and K. Turner, “Frequency dependent fluid damping of micro/ nano flexural resonators: Experiment, model and
Liu, Changgeng; Zhou, Qifa; Djuth, Frank T.; Shung, K. Kirk
2012-01-01
This paper describes the development and characterization of a high-frequency (65-MHz) ultrasound transducer linear array. The array was built from bulk PZT which was etched using an optimized chlorine-based plasma dry-etching process. The median etch rate of 8 μm/h yielded a good profile (wall) angle (>83°) and a reasonable processing time for etch depths up to 40 μm (which corresponds to a 50-MHz transducer). A backing layer with an acoustic impedance of 6 MRayl and a front-end polymer matching layer yielded a transducer bandwidth of 40%. The major parameters of the transducer have been characterized. The two-way insertion loss and crosstalk between adjacent channels at the center frequency are 26.5 and −25 dB, respectively. PMID:24626041
Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papp, Scott B.; Diddams, Scott A.
2011-11-15
We report on the fabrication of high-Q, fused-quartz microresonators and the parametric generation of a frequency comb with 36-GHz line spacing using them. We have characterized the intrinsic stability of the comb in both the time and frequency domains to assess its suitability for future precision metrology applications. Intensity autocorrelation measurements and line-by-line comb control reveal near-transform-limited picosecond pulse trains that are associated with good relative phase and amplitude stability of the comb lines. The comb's 36-GHz line spacing can be readily photodetected, which enables measurements of its intrinsic and absolute phase fluctuations.
NASA Technical Reports Server (NTRS)
Zoladz, T.; Earhart, E.; Fiorucci, T.
1995-01-01
Utilizing high-frequency data from a highly instrumented rotor assembly, seeded bearing defect signatures are characterized using both conventional linear approaches, such as power spectral density analysis, and recently developed nonlinear techniques such as bicoherence analysis. Traditional low-frequency (less than 20 kHz) analysis and high-frequency envelope analysis of both accelerometer and acoustic emission data are used to recover characteristic bearing distress information buried deeply in acquired data. The successful coupling of newly developed nonlinear signal analysis with recovered wideband envelope data from accelerometers and acoustic emission sensors is the innovative focus of this research.
Dynamic characterization of high damping viscoelastic materials from vibration test data
NASA Astrophysics Data System (ADS)
Martinez-Agirre, Manex; Elejabarrieta, María Jesús
2011-08-01
The numerical analysis and design of structural systems involving viscoelastic damping materials require knowledge of material properties and proper mathematical models. A new inverse method for the dynamic characterization of high damping and strong frequency-dependent viscoelastic materials from vibration test data measured by forced vibration tests with resonance is presented. Classical material parameter extraction methods are reviewed; their accuracy for characterizing high damping materials is discussed; and the bases of the new analysis method are detailed. The proposed inverse method minimizes the residue between the experimental and theoretical dynamic response at certain discrete frequencies selected by the user in order to identify the parameters of the material constitutive model. Thus, the material properties are identified in the whole bandwidth under study and not just at resonances. Moreover, the use of control frequencies makes the method insensitive to experimental noise and the efficiency is notably enhanced. Therefore, the number of tests required is drastically reduced and the overall process is carried out faster and more accurately. The effectiveness of the proposed method is demonstrated with the characterization of a CLD (constrained layer damping) cantilever beam. First, the elastic properties of the constraining layers are identified from the dynamic response of a metallic cantilever beam. Then, the viscoelastic properties of the core, represented by a four-parameter fractional derivative model, are identified from the dynamic response of a CLD cantilever beam.
A unified framework for physical print quality
NASA Astrophysics Data System (ADS)
Eid, Ahmed; Cooper, Brian; Rippetoe, Ed
2007-01-01
In this paper we present a unified framework for physical print quality. This framework includes a design for a testbed, testing methodologies and quality measures of physical print characteristics. An automatic belt-fed flatbed scanning system is calibrated to acquire L* data for a wide range of flat field imagery. Testing methodologies based on wavelet pre-processing and spectral/statistical analysis are designed. We apply the proposed framework to three common printing artifacts: banding, jitter, and streaking. Since these artifacts are directional, wavelet based approaches are used to extract one artifact at a time and filter out other artifacts. Banding is characterized as a medium-to-low frequency, vertical periodic variation down the page. The same definition is applied to the jitter artifact, except that the jitter signal is characterized as a high-frequency signal above the banding frequency range. However, streaking is characterized as a horizontal aperiodic variation in the high-to-medium frequency range. Wavelets at different levels are applied to the input images in different directions to extract each artifact within specified frequency bands. Following wavelet reconstruction, images are converted into 1-D signals describing the artifact under concern. Accurate spectral analysis using a DFT with Blackman-Harris windowing technique is used to extract the power (strength) of periodic signals (banding and jitter). Since streaking is an aperiodic signal, a statistical measure is used to quantify the streaking strength. Experiments on 100 print samples scanned at 600 dpi from 10 different printers show high correlation (75% to 88%) between the ranking of these samples by the proposed metrologies and experts' visual ranking.
Elimination of Intermediate-Frequency Combustion Instability in the Fastrac Engine Thrust Chamber
NASA Technical Reports Server (NTRS)
Rocker, Marvin; Nesman, Tomas E.; Turner, Jim E. (Technical Monitor)
2001-01-01
A series of tests were conducted to measure the combustion performance of the Fastrac engine thrust chamber. The thrust chamber exhibited benign, yet marginally unstable combustion. The marginally unstable combustion was characterized by chamber pressure oscillations with large amplitudes and a frequency that was too low to be identified as acoustic or high-frequency combustion instability and too high to be identified as chug or low-frequency combustion instability. The source of the buzz or intermediate-frequency combustion instability was traced to the fuel venturi whose violently noisy cavitation caused resonance in the feedline downstream. Combustion was stabilized by increasing the throat diameter of the fuel venturi such that the cavitation would occur more quietly.
Homodyne detection of ferromagnetic resonance by a non-uniform radio-frequency excitation current
NASA Astrophysics Data System (ADS)
Ikebuchi, Tetsuya; Moriyama, Takahiro; Shiota, Yoichi; Ono, Teruo
2018-05-01
Ferromagnetic resonance (FMR) is one of the most popular techniques to characterize dynamic properties of ferromagnetic materials. Among various FMR measurement techniques, the homodyne FMR detection has been frequently used to characterize thin-film ferromagnetic multilayers owing to its high sensitivity. However, a drawback of this technique was considered to be the requirement for a structural inversion asymmetry, which makes it unsuitable to characterize a single layer of ferromagnet. In this study, we demonstrate a homodyne FMR detection of the Kittel’s mode FMR dynamics of a single layer of FeNi by creating a non-uniform radio-frequency excitation current.
Measuring and characterizing beat phenomena with a smartphone
NASA Astrophysics Data System (ADS)
Osorio, M.; Pereyra, C. J.; Gau, D. L.; Laguarda, A.
2018-03-01
Nowadays, smartphones are in everyone’s life. Apart from being excellent tools for work and communication, they can also be used to perform several measurements of simple physical magnitudes, serving as a mobile and inexpensive laboratory, ideal for use physics lectures in high schools or universities. In this article, we use a smartphone to analyse the acoustic beat phenomena by using a simple experimental setup, which can complement lessons in the classroom. The beats were created by the superposition of the waves generated by two tuning forks, with their natural frequencies previously characterized using different applications. After the characterization, we recorded the beats and analysed the oscillations in time and frequency.
Direct magnetocaloric characterization and simulation of thermomagnetic cycles
NASA Astrophysics Data System (ADS)
Porcari, G.; Buzzi, M.; Cugini, F.; Pellicelli, R.; Pernechele, C.; Caron, L.; Brück, E.; Solzi, M.
2013-07-01
An experimental setup for the direct measurement of the magnetocaloric effect capable of simulating high frequency magnetothermal cycles on laboratory-scale samples is described. The study of the magnetocaloric properties of working materials under operative conditions is fundamental for the development of innovative devices. Frequency and time dependent characterization can provide essential information on intrinsic features such as magnetic field induced fatigue in materials undergoing first order magnetic phase transitions. A full characterization of the adiabatic temperature change performed for a sample of Gadolinium across its Curie transition shows the good agreement between our results and literature data and in-field differential scanning calorimetry.
A new method for finding and characterizing galaxy groups via low-frequency radio surveys
NASA Astrophysics Data System (ADS)
Croston, J. H.; Ineson, J.; Hardcastle, M. J.; Mingo, B.
2017-09-01
We describe a new method for identifying and characterizing the thermodynamic state of large samples of evolved galaxy groups at high redshifts using high-resolution, low-frequency radio surveys, such as those that will be carried out with LOFAR and the Square Kilometre Array. We identify a sub-population of morphologically regular powerful [Fanaroff-Riley type II (FR II)] radio galaxies and demonstrate that, for this sub-population, the internal pressure of the radio lobes is a reliable tracer of the external intragroup/intracluster medium (ICM) pressure, and that the assumption of a universal pressure profile for relaxed groups enables the total mass and X-ray luminosity to be estimated. Using a sample of well-studied FR II radio galaxies, we demonstrate that our method enables the estimation of group/cluster X-ray luminosities over three orders of magnitude in luminosity to within a factor of ˜2 from low-frequency radio properties alone. Our method could provide a powerful new tool for building samples of thousands of evolved galaxy groups at z > 1 and characterizing their ICM.
Korsak, A; Chaikovsky, Yu; Sokurenko, L; Likhodiievskyi, V; Neverovskyi, A
2016-02-01
A new experimental model for tissues connection at peripheral nerve injury site in form of tissues welding was designed. In current study we investigated motoneuron state 1, 3, 6 and 12 weeks after peripheral nerve injury and surgical repair with high-frequency electrosurgical technology. Spinal cord sections was stained by Nissl method and observed with light microscopy. We found that postoperative period in animals from experimental groups characterized by qualitative changes in neurons from spinal motor centers that can be interpreted as compensatory processes as response to alteration. In animals from group with high-frequency electrosurgical technology usage stabilization processes passes more quickly comparatively to animals with epineural sutures. High-frequency electrosurgical technology usage provides less harmful effects on motoneurons than epineural suturing.
NASA Astrophysics Data System (ADS)
Zamuraev, V. P.; Kalinina, A. P.
2017-10-01
Forced high-frequency vibrations of the airfoil surface part with the amplitude almost equal to the sound velocity can change significantly the lift force of the symmetric profile streamlined at zero angle of attack. The oscillation consists of two harmonics. The ratio of harmonics frequencies values is equal to 2. The present work shows that the aerodynamic properties depend significantly on the specific energy contribution of each frequency.
Optical air-coupled NDT system with ultra-broad frequency bandwidth (Conference Presentation)
NASA Astrophysics Data System (ADS)
Fischer, Balthasar; Rohringer, Wolfgang; Heine, Thomas
2017-05-01
We present a novel, optical ultrasound airborne acoustic testing setup exhibiting a frequency bandwidth of 1MHz in air. The sound waves are detected by a miniaturized Fabry-Pérot interferometer (2mm cavity) whilst the sender consists of a thermoacoustic emitter or a short laser pulse We discuss characterization measurements and C-scans of a selected set of samples, including Carbon fiber reinforced polymer (CFRP). The high detector sensitivity allows for an increased penetration depth. The high frequency and the small transducer dimensions lead to a compelling image resolution.
Rapid determination of nanowires electrical properties using a dielectrophoresis-well based system
NASA Astrophysics Data System (ADS)
Constantinou, Marios; Hoettges, Kai F.; Krylyuk, Sergiy; Katz, Michael B.; Davydov, Albert; Rigas, Grigorios-Panagiotis; Stolojan, Vlad; Hughes, Michael P.; Shkunov, Maxim
2017-03-01
The use of high quality semiconducting nanomaterials for advanced device applications has been hampered by the unavoidable growth variability of electrical properties of one-dimensional nanomaterials, such as nanowires and nanotubes, thus highlighting the need for the characterization of efficient semiconducting nanomaterials. In this study, we demonstrate a low-cost, industrially scalable dielectrophoretic (DEP) nanowire assembly method for the rapid analysis of the electrical properties of inorganic single crystalline nanowires, by identifying key features in the DEP frequency response spectrum from 1 kHz to 20 MHz in just 60 s. Nanowires dispersed in anisole were characterized using a three-dimensional DEP chip (3DEP), and the resultant spectrum demonstrated a sharp change in nanowire response to DEP signal in 1-20 MHz frequency range. The 3DEP analysis, directly confirmed by field-effect transistor data, indicates that nanowires of higher quality are collected at high DEP signal frequency range above 10 MHz, whereas lower quality nanowires, with two orders of magnitude lower current per nanowire, are collected at lower DEP signal frequencies. These results show that the 3DEP platform can be used as a very efficient characterization tool of the electrical properties of rod-shaped nanoparticles to enable dielectrophoretic selective deposition of nanomaterials with superior conductivity properties.
Frequency comb generation in a silicon ring resonator modulator.
Demirtzioglou, Iosif; Lacava, Cosimo; Bottrill, Kyle R H; Thomson, David J; Reed, Graham T; Richardson, David J; Petropoulos, Periklis
2018-01-22
We report on the generation of an optical comb of highly uniform in power frequency lines (variation less than 0.7 dB) using a silicon ring resonator modulator. A characterization involving the measurement of the complex transfer function of the ring is presented and five frequency tones with a 10-GHz spacing are produced using a dual-frequency electrical input at 10 and 20 GHz. A comb shape comparison is conducted for different modulator bias voltages, indicating optimum operation at a small forward-bias voltage. A time-domain measurement confirmed that the comb signal was highly coherent, forming 20.3-ps-long pulses.
Fei, Chunlong; Chiu, Chi Tat; Chen, Xiaoyang; Chen, Zeyu; Ma, Jianguo; Zhu, Benpeng; Shung, K. Kirk; Zhou, Qifa
2016-01-01
High resolution ultrasonic imaging requires high frequency wide band ultrasonic transducers, which produce short pulses and highly focused beam. However, currently the frequency of ultrasonic transducers is limited to below 100 MHz, mainly because of the challenge in precise control of fabrication parameters. This paper reports the design, fabrication, and characterization of sensitive broadband lithium niobate (LiNbO3) single element ultrasonic transducers in the range of 100–300 MHz, as well as their applications in high resolution imaging. All transducers were built for an f-number close to 1.0, which was achieved by press-focusing the piezoelectric layer into a spherical curvature. Characterization results demonstrated their high sensitivity and a −6 dB bandwidth greater than 40%. Resolutions better than 6.4 μm in the lateral direction and 6.2 μm in the axial direction were achieved by scanning a 4 μm tungsten wire target. Ultrasonic biomicroscopy images of zebrafish eyes were obtained with these transducers which demonstrate the feasibility of high resolution imaging with a performance comparable to optical resolution. PMID:27329379
A compact nanosecond pulse generator for DBD tube characterization.
Rai, S K; Dhakar, A K; Pal, U N
2018-03-01
High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.
A compact nanosecond pulse generator for DBD tube characterization
NASA Astrophysics Data System (ADS)
Rai, S. K.; Dhakar, A. K.; Pal, U. N.
2018-03-01
High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.
Moderate pressure massage elicits a parasympathetic nervous system response.
Diego, Miguel A; Field, Tiffany
2009-01-01
Twenty healthy adults were randomly assigned to a moderate pressure or a light pressure massage therapy group, and EKGs were recorded during a 3-min baseline, during the 15-min massage period and during a 3-min postmassage period. EKG data were then used to derive the high frequency (HF), low frequency (LF) components of heart rate variability and the low to high frequency ratio (LF/HF) as noninvasive markers of autonomic nervous system activity. The participants who received the moderate pressure massage exhibited a parasympathetic nervous system response characterized by an increase in HF, suggesting increased vagal efferent activity and a decrease in the LF/HF ratio, suggesting a shift from sympathetic to parasympathetic activity that peaked during the first half of the massage period. On the other hand, those who received the light pressure massage exhibited a sympathetic nervous system response characterized by decreased HF and increased LF/HF.
High-frequency electromagnetic properties of soft magnetic metal-polyimide hybrid thin films
NASA Astrophysics Data System (ADS)
Kim, Sang Woo; Yoon, Chong S.
2007-09-01
Although there are a lot of demands for suppression of unwanted high-frequency electromagnetic noise in highly integrated electronic devices such as mobile phones and notebook computers, electromagnetic thin films that effectively work in the high-frequency range have still been underdeveloped. Soft magnetic metal-polyimide (PI) hybrid films with high electrical resistivity were prepared by thermal imidization and selective oxidation between the metal alloy layer and polyamic acid (PAA) layer. Electromagnetic properties of the hybrid thin films in the radio-frequency range were characterized by using the microstrip line method and were correlated with their material parameters. Although anisotropy field of the CoFe/NiFe hybrid film was two times lower than that of the NiFe hybrid film, the saturation magnetization of the CoFe/NiFe hybrid film was three times higher than that of the NiFe hybrid film. The CoFe/NiFe hybrid film showed higher power loss in the frequency range of 3-6 GHz compared to the NiFe hybrid film. The high power loss of the CoFe/NiFe hybrid film was caused by high relative permeability and high ferromagnetic resonance (FMR) frequency due to high saturation magnetization.
Internally resonating lattices for bandgap generation and low-frequency vibration control
NASA Astrophysics Data System (ADS)
Baravelli, Emanuele; Ruzzene, Massimo
2013-12-01
The paper reports on a structural concept for high stiffness and high damping performance. A stiff external frame and an internal resonating lattice are combined in a beam-like assembly which is characterized by high frequency bandgaps and tuned vibration attenuation at low frequencies. The resonating lattice consists of an elastomeric material arranged according to a chiral topology which is designed to resonate at selected frequencies. The concept achieves high damping performance by combining the frequency-selective properties of internally resonating structures, with the energy dissipation characteristics of their constituent material. The flexible ligaments, the circular nodes and the non-central interactions of the chiral topology lead to dynamic deformation patterns which are beneficial to energy dissipation. Furthermore, tuning and grading of the elements of the lattice allows for tailoring of the resonating properties so that vibration attenuation is obtained over desired frequency ranges. Numerical and experimental results demonstrate the tuning flexibility of this concept and suggest its potential application for load-carrying structural members parts of vibration and shock prone systems.
Scanning capacitance microscope as a tool for the characterization of integrated circuits
NASA Astrophysics Data System (ADS)
Born, A.; Wiesendanger, R.
With the decreasing size of integrated circuits (ICs), there is an increasing demand for the measurement of doping profiles with high spatial resolution. The scanning capacitance microscope (SCM) offers the possibility of measuring 2D dopant profiles with spatial resolution of less than 20 nm. A great problem of the SCM technique is the influence of previous measurements on subsequent ones. We have observed hysteresis in the SCM images and measured low-frequency C-V curves with high-frequency equipment. A theoretical model was developed to understand this phenomenon. We are now undertaking the first steps using the SCM as a standard device for the characterization of ICs.
Synthesis and Characterization of High-Dielectric-Constant Nanographite-Polyurethane Composite
NASA Astrophysics Data System (ADS)
Mishra, Praveen; Bhat, Badekai Ramachandra; Bhattacharya, B.; Mehra, R. M.
2018-05-01
In the face of ever-growing demand for capacitors and energy storage devices, development of high-dielectric-constant materials is of paramount importance. Among various dielectric materials available, polymer dielectrics are preferred for their good processability. We report herein synthesis and characterization of nanographite-polyurethane composite with high dielectric constant. Nanographite showed good dispersibility in the polyurethane matrix. The thermosetting nature of polyurethane gives the composite the ability to withstand higher temperature without melting. The resultant composite was studied for its dielectric constant (ɛ) as a function of frequency. The composite exhibited logarithmic variation of ɛ from 3000 at 100 Hz to 225 at 60 kHz. The material also exhibited stable dissipation factor (tan δ) across the applied frequencies, suggesting its ability to resist current leakage.
NASA Astrophysics Data System (ADS)
Badrinezhad, Lida; Bilkan, Çigdem; Azizian-Kalandaragh, Yashar; Nematollahzadeh, Ali; Orak, Ikram; Altindal, Şemsettin
2018-01-01
Cross-linked polyvinyl alcohol (PVA) graphene oxide (GO) nanocomposites were prepared by simple solution-mixing route and characterized by Raman, UV-visible and fourier transform infrared (FT-IR) spectroscopy analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The XRD pattern and SEM analysis showed significant changes in the nanocomposite structures, and the FT-IR spectroscopy results confirmed the chemical interaction between the GO filler and the PVA matrix. After these morphological characterizations, PVA-GO-based diodes were fabricated and their electrical properties were characterized using current-voltage (I-V) and impedance-voltage-frequency (Z-V-f) measurements at room temperature. Semilogarithmic I-V characteristics of diode showed a good rectifier behavior. The values of C and G/ω increased with decreasing frequency due to the surface/interface states (Nss) which depend on the relaxation time and the frequency of the signal. The voltage, dependent profiles of Nss and series resistance (Rs) were obtained from the methods of high-low frequency capacitance and Nicollian and Brews, respectively. The obtained values of Nss and Rs were attributed to the use of cross-linked PVA-GO interlayer at the Au/n-Si interface.
Characterization of modulated time-of-flight range image sensors
NASA Astrophysics Data System (ADS)
Payne, Andrew D.; Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.
2009-01-01
A number of full field image sensors have been developed that are capable of simultaneously measuring intensity and distance (range) for every pixel in a given scene using an indirect time-of-flight measurement technique. A light source is intensity modulated at a frequency between 10-100 MHz, and an image sensor is modulated at the same frequency, synchronously sampling light reflected from objects in the scene (homodyne detection). The time of flight is manifested as a phase shift in the illumination modulation envelope, which can be determined from the sampled data simultaneously for each pixel in the scene. This paper presents a method of characterizing the high frequency modulation response of these image sensors, using a pico-second laser pulser. The characterization results allow the optimal operating parameters, such as the modulation frequency, to be identified in order to maximize the range measurement precision for a given sensor. A number of potential sources of error exist when using these sensors, including deficiencies in the modulation waveform shape, duty cycle, or phase, resulting in contamination of the resultant range data. From the characterization data these parameters can be identified and compensated for by modifying the sensor hardware or through post processing of the acquired range measurements.
Josephson frequency meter for millimeter and submillimeter wavelengths
NASA Technical Reports Server (NTRS)
Anischenko, S. E.; Larkin, S. Y.; Chaikovsky, V. I.; Kabayev, P. V.; Kamyshin, V. V.
1995-01-01
Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoffs for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decrease with the increase of wavelength due to diffraction losses. That requires a priori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is one based on frequency conversion, resonance and interferometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain a panoramic display of the results as well as full automation of the measuring process.
NASA Astrophysics Data System (ADS)
Li, Sizhe; Carlier, Julien; Toubal, Malika; Liu, Huiqin; Campistron, Pierre; Callens, Dorothée; Nassar, Georges; Nongaillard, Bertrand; Guo, Shishang
2017-10-01
This letter presents a microfluidic device that integrates high frequency (650 MHz) bulk acoustic waves for the realization of particle handling on-chip. The core structure of the microfluidic chip is made up of a confocal lens, a vertical reflection wall, and a ZnO film transducer coupled with a silicon substrate for exciting acoustic beams. The excited acoustic waves propagate in bulk silicon and are then guided by a 45° silicon mirror into the suspensions in the microchannel; afterwards, the acoustic energy is focused on particles by the confocal lens and reflected by a reflection wall. Parts of the reflected acoustic energy backtrack into the transducer, and acoustic attenuation measurements are characterized for particle detection. Meanwhile, a strong acoustic streaming phenomenon can be seen around the reflection wall, which is used to implement particle manipulation. This platform opens a frontier for on-chip integration of high sensitivity acoustic characterization and localized acoustic manipulation in microfluidics.
Characterization of Axial Inducer Cavitation Instabilities via High Speed Video Recordings
NASA Technical Reports Server (NTRS)
Arellano, Patrick; Peneda, Marinelle; Ferguson, Thomas; Zoladz, Thomas
2011-01-01
Sub-scale water tests were undertaken to assess the viability of utilizing high resolution, high frame-rate digital video recordings of a liquid rocket engine turbopump axial inducer to characterize cavitation instabilities. These high speed video (HSV) images of various cavitation phenomena, including higher order cavitation, rotating cavitation, alternating blade cavitation, and asymmetric cavitation, as well as non-cavitating flows for comparison, were recorded from various orientations through an acrylic tunnel using one and two cameras at digital recording rates ranging from 6,000 to 15,700 frames per second. The physical characteristics of these cavitation forms, including the mechanisms that define the cavitation frequency, were identified. Additionally, these images showed how the cavitation forms changed and transitioned from one type (tip vortex) to another (sheet cavitation) as the inducer boundary conditions (inlet pressures) were changed. Image processing techniques were developed which tracked the formation and collapse of cavitating fluid in a specified target area, both in the temporal and frequency domains, in order to characterize the cavitation instability frequency. The accuracy of the analysis techniques was found to be very dependent on target size for higher order cavitation, but much less so for the other phenomena. Tunnel-mounted piezoelectric, dynamic pressure transducers were present throughout these tests and were used as references in correlating the results obtained by image processing. Results showed good agreement between image processing and dynamic pressure spectral data. The test set-up, test program, and test results including H-Q and suction performance, dynamic environment and cavitation characterization, and image processing techniques and results will be discussed.
Characterization of Early Partial Seizure Onset: Frequency, Complexity and Entropy
Jouny, Christophe C.; Bergey, Gregory K.
2011-01-01
Objective A clear classification of partial seizures onset features is not yet established. Complexity and entropy have been very widely used to describe dynamical systems, but a systematic evaluation of these measures to characterize partial seizures has never been performed. Methods Eighteen different measures including power in frequency bands up to 300Hz, Gabor atom density (GAD), Higuchi fractal dimension (HFD), Lempel-Ziv complexity, Shannon entropy, sample entropy, and permutation entropy, were selected to test sensitivity to partial seizure onset. Intracranial recordings from forty-five patients with mesial temporal, neocortical temporal and neocortical extratemporal seizure foci were included (331 partial seizures). Results GAD, Lempel-Ziv complexity, HFD, high frequency activity, and sample entropy were the most reliable measures to assess early seizure onset. Conclusions Increases in complexity and occurrence of high-frequency components appear to be commonly associated with early stages of partial seizure evolution from all regions. The type of measure (frequency-based, complexity or entropy) does not predict the efficiency of the method to detect seizure onset. Significance Differences between measures such as GAD and HFD highlight the multimodal nature of partial seizure onsets. Improved methods for early seizure detection may be achieved from a better understanding of these underlying dynamics. PMID:21872526
Broadband Characterization of a 100 to 180 GHz Amplifier
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka; Deal, W. R.; Mei, X. B.; Lai, R.
2007-01-01
Atmospheric science and weather forecasting require measurements of the temperature and humidity vs. altitude. These sounding measurements are obtained at frequencies close to the resonance frequencies of oxygen (118 GHz) and water (183 GHz) molecules. We have characterized a broadband amplifier that will increase the sensitivity of sounding and other instruments at these frequencies. This study demonstrated for the first t1me continuous low noise amplification from 100 to 180 GHz. The measured InP monolithic millimeter-wave Integrated circuit (MMIC) amplifier had more than 18 dB of gain from 100 to 180 GHz and 15 dB of gain up to 220 GHz. This is the widest bandwidth low noise amplifier result at these frequencies to date. The circuit was fabricated in Northrop Grumman Corporation 35 nm InP high electron mobility transistor (HEMT).
Combinational light emitting diode-high frequency focused ultrasound treatment for HeLa cell.
Choe, Se-Woon; Park, Kitae; Park, Chulwoo; Ryu, Jaemyung; Choi, Hojong
2017-12-01
Light sources such as laser and light emitting diode or ultrasound devices have been widely used for cancer therapy and regenerative medicines, since they are more cost-effective and less harmful than radiation therapy, chemotherapy or magnetic treatment. Compared to laser and low intensity ultrasound techniques, light emitting diode and high frequency focused ultrasound shows enhanced therapeutic effects, especially for small tumors. We propose combinational light emitting diode-high frequency focused ultrasound treatment for human cervical cancer HeLa cells. Individual red, green, and blue light emitting diode light only, high frequency focused ultrasound only, or light emitting diode light combined with high frequency focused ultrasound treatments were applied in order to characterize the responses of HeLa cells. Cell density exposed by blue light emitting diode light combined with high frequency focused ultrasound (2.19 ± 0.58%) was much lower than that of cells exposed by red and green light emitting diode lights (81.71 ± 9.92% and 61.81 ± 4.09%), blue light emitting diode light (11.19 ± 2.51%) or high frequency focused ultrasound only (9.72 ± 1.04%). We believe that the proposed combinational blue light emitting diode-high frequency focused ultrasound treatment could have therapeutic benefits to alleviate cancer cell proliferation.
Performance of the NASA Digitizing Core-Loss Instrumentation
NASA Technical Reports Server (NTRS)
Schwarze, Gene E. (Technical Monitor); Niedra, Janis M.
2003-01-01
The standard method of magnetic core loss measurement was implemented on a high frequency digitizing oscilloscope in order to explore the limits to accuracy when characterizing high Q cores at frequencies up to 1 MHz. This method computes core loss from the cycle mean of the product of the exciting current in a primary winding and induced voltage in a separate flux sensing winding. It is pointed out that just 20 percent accuracy for a Q of 100 core material requires a phase angle accuracy of 0.1 between the voltage and current measurements. Experiment shows that at 1 MHz, even high quality, high frequency current sensing transformers can introduce phase errors of a degree or more. Due to the fact that the Q of some quasilinear core materials can exceed 300 at frequencies below 100 kHz, phase angle errors can be a problem even at 50 kHz. Hence great care is necessary with current sensing and ground loops when measuring high Q cores. Best high frequency current sensing accuracy was obtained from a fabricated 0.1-ohm coaxial resistor, differentially sensed. Sample high frequency core loss data taken with the setup for a permeability-14 MPP core is presented.
Antenna servo control system characterization: Rate loop analysis for 34-m antenna at DSS 15
NASA Technical Reports Server (NTRS)
Nickerson, J. A.; Cox, D. G.; Smith, H. K.; Engel, J. H.; Ahlstrom, H. G.
1986-01-01
The elevation and azimuth servo rate loops at the 34-m High Efficiency Deep Space Station 15 (DSS 15) are described. Time and frequency response performance criteria were measured. The results are compared to theoretically deduced performance criteria. Unexpected anomalies in the frequency response are observed and identified.
2005-09-30
zooplankton prey, and an examination of the genetic composition of krill patches. One manuscript based on a comparison of whale distribution to zooplankton... siphonophores . Similar analyses of multi-frequency volume backscattering data collected in the Gulf of Maine during the falls of 1997-1999 have
2006-09-30
seabirds, seals, and whales) in relation to their zooplankton prey, and an examination of the genetic composition of krill patches. One paper based...gas-bearing siphonophores . Similar analyses of multi-frequency volume backscattering data collected in the Gulf of Maine during the falls of 1997
NASA Technical Reports Server (NTRS)
Grimm, R. E.
2003-01-01
Two orbital, ground-penetrating radars, MARSIS and SHARAD, are scheduled for Mars flight, with detection of groundwater a high priority. While these radars will doubtlessly provide significant new information on the subsurface of Mars, thin films of adsorbed water in the cryosphere will strongly attenuate radar signals and prevent characterization of any true aquifers, if present. Scattering from 10-m scale layering or wavelength-size regolith heterogeneities will also degrade radar performance. Dielectric contrasts are sufficiently small for low-porosity, deep aquifers that groundwater cannot be reliably identified. In contrast, low-frequency (mHz-kHz) soundings are ideally suited to groundwater detection due to their great depths of penetration and the high electrical conductivity (compared to cold, dry rock) of groundwater. A variety of low-frequency methods span likely ranges of mass, volume, and power resources, but all require acquisition at or near the planetary surface. Therefore the current generation of orbital radars will provide useful global reconnaissance for subsequent targeted exploration at low frequency. Introduction: Electromagnetic (EM) methods
High-frequency microrheology reveals cytoskeleton dynamics in living cells
NASA Astrophysics Data System (ADS)
Rigato, Annafrancesca; Miyagi, Atsushi; Scheuring, Simon; Rico, Felix
2017-08-01
Living cells are viscoelastic materials, dominated by an elastic response on timescales longer than a millisecond. On shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce. Here, we develop high-frequency microrheology experiments to probe the viscoelastic response of living cells from 1 Hz to 100 kHz. We report the viscoelasticity of different cell types under cytoskeletal drug treatments. On previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequencies, providing a unique mechanical fingerprint. Microrheology over a wide dynamic range--up to the frequency characterizing the molecular components--provides a mechanistic understanding of cell mechanics.
Gender and vocal production mode discrimination using the high frequencies for speech and singing
Monson, Brian B.; Lotto, Andrew J.; Story, Brad H.
2014-01-01
Humans routinely produce acoustical energy at frequencies above 6 kHz during vocalization, but this frequency range is often not represented in communication devices and speech perception research. Recent advancements toward high-definition (HD) voice and extended bandwidth hearing aids have increased the interest in the high frequencies. The potential perceptual information provided by high-frequency energy (HFE) is not well characterized. We found that humans can accomplish tasks of gender discrimination and vocal production mode discrimination (speech vs. singing) when presented with acoustic stimuli containing only HFE at both amplified and normal levels. Performance in these tasks was robust in the presence of low-frequency masking noise. No substantial learning effect was observed. Listeners also were able to identify the sung and spoken text (excerpts from “The Star-Spangled Banner”) with very few exposures. These results add to the increasing evidence that the high frequencies provide at least redundant information about the vocal signal, suggesting that its representation in communication devices (e.g., cell phones, hearing aids, and cochlear implants) and speech/voice synthesizers could improve these devices and benefit normal-hearing and hearing-impaired listeners. PMID:25400613
USDA-ARS?s Scientific Manuscript database
Next generation fungal amplicon sequencing is being used with increasing frequency to study fungal diversity in various ecosystems; however, the influence of sample preparation on the characterization of fungal community is poorly understood. We investigated the effects of four procedural modificati...
Modelling switching-time effects in high-frequency power conditioning networks
NASA Technical Reports Server (NTRS)
Owen, H. A.; Sloane, T. H.; Rimer, B. H.; Wilson, T. G.
1979-01-01
Power transistor networks which switch large currents in highly inductive environments are beginning to find application in the hundred kilohertz switching frequency range. Recent developments in the fabrication of metal-oxide-semiconductor field-effect transistors in the power device category have enhanced the movement toward higher switching frequencies. Models for switching devices and of the circuits in which they are imbedded are required to properly characterize the mechanisms responsible for turning on and turning off effects. Easily interpreted results in the form of oscilloscope-like plots assist in understanding the effects of parametric studies using topology oriented computer-aided analysis methods.
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Romanofsky, R. R.; Ponchak, G. E.; Liu, D. C.
1984-01-01
Etched metallic conductor lines on metal clad polymeric substrates are used for electronic component interconnections. Significant signal losses are observed for microstrip conductor lines used for interconnecting high frequency devices. At these frequencies, the electronic signal travels closer to the metal-polymer interface due to the skin effect. Copper-teflon interfaces were characterized by scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to determine the interfacial properties. Data relating roughness of the copper film to signal losses was compared to theory. Films used to enhance adhesion are found, to contribute to these losses.
NASA Astrophysics Data System (ADS)
Kuroda, Kazuaki; LCGT Collaboration
Piezoelectric materials are just now, within the last decade, coming into their own as a commercial material. Capable of converting energy from the mechanical domain to the electrical domain; piezos are ideal sensors, vibration dampers, energy harvesters, and actuators. Frequency rectification, or the conversion of small, high frequency piezoelectric vibrations into useful low frequency actuation, is required to obtain widespread industrial use of piezoelectric devices. This work examines three manifestations of piezoelectric frequency rectification: energy harvesting, a hydraulic motor, and friction based commercial-off-the-shelf motors. An energy harvesting device is developed, manufactured, and tested in this work, resulting in the development of a high Energy Density (J/m 3), high Power Density (W/m3) energy harvester. The device is shown to have an Energy Density nearly twice that of a similar conventional energy harvesting device. The result of this work is the development of an energy harvesting system that generates more energy in a given volume of piezoelectric material, opening the possibility of miniaturization of energy harvesting devices. Also presented is an effort to integrate a high frequency, high flow rate micromachined valve array into a PiezoHydraulic Pump (PHP), enabling resonant operation of the PHP. Currently, the device is limited by the resonant frequency of the proprietary passive check valves. The PHP is fully characterized, and the microvalve array is tested to determine its resonant frequency in a fluid medium. The valve testing resulted in a resonant frequency of 6.9 kHz, slightly lower than the target operating frequency of 10 kHz. Finally, the results of an examination of frequency rectification as applied to COTS piezoelectric motors are presented. Currently, motors are almost universally characterized based upon their available mechanical power. A better comparison is one based upon the actual Energy Density of the piezoelectric material utilized in the motor compared to the theoretical maximum Energy Density under the motor operating conditions (i.e., frequency, applied electric field). The result of this work is a more descriptive metric to evaluate piezoelectric motors that provides information on the effectiveness of the motor drive train; that is, how effectively the motion of the piezoelectric is transferred to the outside world.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGee, Mike; Harms, Elvin; Klebaner, Arkadiy
Two TESLA-style 8-cavity cryomodules have been operated at Fermilab Accelerator Science and Technology (FAST), formerly the Superconducting Radio Frequency (SRF) Accelerator Test Facility. Operational instabilities were revealed during Radio Frequency (RF) power studies. These observations were complemented by the characterization of thermal acoustic effects on cavity microphonics manifested by apparent noisy boiling of helium involving vapor bubble and liquid vibration. The thermal acoustic measurements also consider pressure and temperature spikes which drive the phenomenon at low and high frequencies.
High-Speed Printing Process Characterization using the Lissajous Trajectory Method
NASA Astrophysics Data System (ADS)
Lee, Sangwon; Kim, Daekeun
2018-04-01
We present a novel stereolithographic three-dimensional (3D) printing process that uses Lissajous trajectories. By using Lissajous trajectories, this 3D printing process allows two laser-scanning mirrors to operate at similar high-speed frequencies simultaneously, and the printing speed can be faster than that of raster scanning used in conventional stereolithography. In this paper, we first propose the basic theoretical background for this printing process based on Lissajous trajectories. We also characterize its printing conditions, such as printing size, laser spot size, and minimum printing resolution, with respect to the operating frequencies of the scanning mirrors and the capability of the laser modulation. Finally, we demonstrate simulation results for printing basic 2D shapes by using a noble printing process algorithm.
High-frequency characterization and modeling of single metallic nanowires
NASA Astrophysics Data System (ADS)
Hsu, Chuan-Lun; Ardila, Gustavo; Benech, Philippe
2013-07-01
The transmission line characteristics of an individual aluminum metallic nanowire up to 100 GHz are presented in this paper. We have built a reliable framework for characterizing such nanowires using a specially designed coplanar waveguide platform. We systematically estimate the pad parasitics, contact impedance and transmission line parameters based on an equivalent circuit model and cascade-based de-embedding theory. This is the first time that such external parasitic elements have been successfully removed from a nanoscale transmission line. The extracted frequency-dependent electrical responses show good signal levels and a high degree of reproducibility. Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble - ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.
Soufli, Regina; Baker, Sherry L; Windt, David L; Gullikson, Eric M; Robinson, Jeff C; Podgorski, William A; Golub, Leon
2007-06-01
The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV) wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement with EUV reflectance measurements of the mirrors after multilayer coating.
Global high-frequency source imaging accounting for complexity in Green's functions
NASA Astrophysics Data System (ADS)
Lambert, V.; Zhan, Z.
2017-12-01
The general characterization of earthquake source processes at long periods has seen great success via seismic finite fault inversion/modeling. Complementary techniques, such as seismic back-projection, extend the capabilities of source imaging to higher frequencies and reveal finer details of the rupture process. However, such high frequency methods are limited by the implicit assumption of simple Green's functions, which restricts the use of global arrays and introduces artifacts (e.g., sweeping effects, depth/water phases) that require careful attention. This motivates the implementation of an imaging technique that considers the potential complexity of Green's functions at high frequencies. We propose an alternative inversion approach based on the modest assumption that the path effects contributing to signals within high-coherency subarrays share a similar form. Under this assumption, we develop a method that can combine multiple high-coherency subarrays to invert for a sparse set of subevents. By accounting for potential variability in the Green's functions among subarrays, our method allows for the utilization of heterogeneous global networks for robust high resolution imaging of the complex rupture process. The approach also provides a consistent framework for examining frequency-dependent radiation across a broad frequency spectrum.
Generation and Coherent Control of Pulsed Quantum Frequency Combs.
MacLellan, Benjamin; Roztocki, Piotr; Kues, Michael; Reimer, Christian; Romero Cortés, Luis; Zhang, Yanbing; Sciara, Stefania; Wetzel, Benjamin; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto
2018-06-08
We present a method for the generation and coherent manipulation of pulsed quantum frequency combs. Until now, methods of preparing high-dimensional states on-chip in a practical way have remained elusive due to the increasing complexity of the quantum circuitry needed to prepare and process such states. Here, we outline how high-dimensional, frequency-bin entangled, two-photon states can be generated at a stable, high generation rate by using a nested-cavity, actively mode-locked excitation of a nonlinear micro-cavity. This technique is used to produce pulsed quantum frequency combs. Moreover, we present how the quantum states can be coherently manipulated using standard telecommunications components such as programmable filters and electro-optic modulators. In particular, we show in detail how to accomplish state characterization measurements such as density matrix reconstruction, coincidence detection, and single photon spectrum determination. The presented methods form an accessible, reconfigurable, and scalable foundation for complex high-dimensional state preparation and manipulation protocols in the frequency domain.
Effect of Impedance Relaxation in Conductance Mechanisms in TiO2/ITO/ZnO:Al/p-Si Heterostructure
NASA Astrophysics Data System (ADS)
Nouiri, M.; El Mir, L.
2018-03-01
The electrical conduction of a TiO2/ITO/ZnO:Al/p-Si structure under alternating-current excitation was investigated in the temperature range of 80 K to 300 K. The frequency dependence of the capacitance and conductance revealed the response of a thermally activated trap characterized by activation energy of about 140 meV. The frequency dependence of the conductance obeyed the universal dynamic response according to the common relation G = Aωs . The temperature dependence of the frequency exponent s illustrates that, in the low frequency range, conduction is governed by the correlated barrier hopping (CBH) mechanism involving two distinct energy levels for all investigated temperatures. For the high frequency region, conduction takes place according to the overlapping large-polaron tunneling mechanism at low temperatures but the CBH mechanism becomes dominant in the high temperature region. This difference in electrical behavior between low and high temperatures can be attributed to the dominance of dielectric relaxation at low compared with high temperatures.
NASA Technical Reports Server (NTRS)
Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.
1992-01-01
The design of power magnetic components such as transformers, inductors, motors, and generators, requires specific knowledge about the magnetic and electrical characteristics of the magnetic materials used in these components. Limited experimental data exists that characterizes the performance of soft magnetic materials for the combined conditions of high temperature and high frequency over a wide flux density range. An experimental investigation of a 2V-49-Fe-49Co (Supermendur) and a grain oriented 3 Si-Fe (Magnesil) alloy was conducted over the temperature range of 23 to 300 C and frequency range of 0.1 to 10 kHz. The effects of temperature, frequency, and maximum flux density on the core loss and dynamic B-H loops for sinusoidal voltage excitation conditions are examined for each of these materials. A comparison of the core loss of these two materials is also made over the temperature and frequency range investigated.
Characterization of InGaAs/AlGaAs pseudomorphic modulation-doped field-effect transistors
NASA Technical Reports Server (NTRS)
Ketterson, Andrew A.; Masselink, William T.; Gedymin, Jon S.; Klem, John; Peng, Chin-Kun
1986-01-01
High-performance pseudomorphic In(y)Ga(1-y)As/Al0.15-Ga0.85As y = 0.05-0.2 MODFET's grown by MBE have been characterized at dc (300 and 77 K) and RF frequencies. Transconductances as high 310 and 380 mS/mm and drain currents as high as 290 and 310 mA/mm were obtained at 300 and 77 K, respectively, for 1-micron gate lengths and 3-micron source-drain spacing devices. Lack of persistent trapping effects, I-V collapse, and threshold voltage shifts observed with these devices are attributed to the use of low mole fraction Al(x)Ga(1-x)As while still maintaining two-dimensional electron gas concentrations of about 1.3 x to the 12th per sq cm. Detailed microwave S-parameter measurements indicate a current gain cut-off frequency of 24.5 GHz when y = 0.20, which is as much as 100 percent better than similar GaAs/AlGaAs MODFET structures, and a maximum frequency of oscillation of 40 GHz.
High-frequency noise characterization of graphene field effect transistors on SiC substrates
NASA Astrophysics Data System (ADS)
Yu, C.; He, Z. Z.; Song, X. B.; Liu, Q. B.; Dun, S. B.; Han, T. T.; Wang, J. J.; Zhou, C. J.; Guo, J. C.; Lv, Y. J.; Cai, S. J.; Feng, Z. H.
2017-07-01
Considering its high carrier mobility and high saturation velocity, a low-noise amplifier is thought of as being the most attractive analogue application of graphene field-effect transistors. The noise performance of graphene field-effect transistors at frequencies in the K-band remains unknown. In this work, the noise parameters of a graphene transistor are measured from 10 to 26 GHz and noise models are built with the data. The extrinsic minimum noise figure for a graphene transistor reached 1.5 dB, and the intrinsic minimum noise figure was as low as 0.8 dB at a frequency of 10 GHz, which were comparable with the results from tests on Si CMOS and started to approach those for GaAs and InP transistors. Considering the short development time, the current results are a significant step forward for graphene transistors and show their application potential in high-frequency electronics.
[Evolution of nodular scleritis with ultrasound biomicroscopy: case report].
Martinez, Andrea Alejandra Gonzalez; Matos, Kimble Teixeira Fonseca; Trevisani, Virgínia; Hirai, Alcides; Allemann, Norma
2013-01-01
To establish evolutionary pattern of a case of nodular scleritis with high frequency ultrasound during treatment. Twenty-seven year old female, initial manifestation of intermediate uveitis, bilateral macular edema after clinical treatment with topical and oral steroids. After four months, we observed the formation of a scleral nodule in the right eye when patient underwent high frequency ultrasound (Paradigm, 50 MHz transducer, immersion technique). The lesion in right eye was characterized at high frequency ultrasound as a nodular lesion located at the anterior inferior temporal wall associated with localized reduction of scleral thickness. After intravitreal injection of triamcinolone for treatment of macular edema, clinical regression of the scleral nodule was observed in right eye, maintaining reduced scleral thickness. High frequency ultrasound assisted in the diagnosis of nodular scleritis during the phases of treatment and in the identify its characteristic sequel feature, the scleral thinning.
NASA Astrophysics Data System (ADS)
Boisvert, J.-S.; Stafford, L.; Naudé, N.; Margot, J.; Massines, F.
2018-03-01
Diffuse dielectric barrier discharges are generated over a very wide range of frequencies. According to the targeted frequency, the glow, Townsend-like, hybrid, Ω and RF-α modes are sustained. In this paper, the electrical characterization of the discharge cell together with an electrical model are used to estimate the electron density from current and voltage measurements for excitation frequencies ranging from 50 kHz to 15 MHz. The electron density is found to vary from 1014 to 1017 m-3 over this frequency range. In addition, a collisional-radiative model coupled with optical emission spectroscopy is used to evaluate the electron temperature (assuming Maxwellian electron energy distribution function) in the same conditions. The time and space-averaged electron temperature is found to be about 0.3 eV in both the low-frequency and high-frequency ranges. However, in the medium-frequency range, it reaches almost twice this value as the discharge is in the hybrid mode. The hybrid mode is similar to the atmospheric-pressure glow discharge usually observed in helium DBDs at low frequency with the major difference being that the plasma is continuously sustained and is characterized by a higher power density.
Josephson frequency meter for millimeter and submillimeter wavelengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anischenko, S.E.; Larkin, S.Y.; Chaikovsky, V.I.
1994-12-31
Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoff for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decreases with the increase of wavelengthmore » due to diffraction losses. That requires the apriori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is the one based on frequency conversion, resonance and interferrometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain panoramic display of the results as well as full automation of the measuring process.« less
NASA Astrophysics Data System (ADS)
Töyräs, J.; Rieppo, J.; Nieminen, M. T.; Helminen, H. J.; Jurvelin, J. S.
1999-11-01
Ultrasound may provide a quantitative technique for the characterization of cartilage changes typical of early osteoarthrosis. In this study, specific changes in bovine articular cartilage were induced using collagenase and chondroitinase ABC, enzymes that selectively degrade collagen fibril network and digest proteoglycans, respectively. Changes in cartilage structure and properties were quantified using high frequency ultrasound, microscopic analyses and mechanical indentation tests. The ultrasound reflection coefficient of the physiological saline-cartilage interface (R1) decreased significantly (-96.4%, p<0.01) in the collagenase digested cartilage compared to controls. Also a significantly lower ultrasound velocity (-6.2%, p<0.01) was revealed after collagenase digestion. After chondroitinase ABC digestion, a new acoustic interface at the depth of the enzyme penetration front was detected. Cartilage thickness, as determined with ultrasound, showed a high, linear correlation (R = 0.943, n = 60, average difference 0.073 mm (4.0%)) with the thickness measured by the needle-probe method. Both enzymes induced a significant decrease in the Young's modulus of cartilage (p<0.01). Our results indicate that high frequency ultrasound provides a sensitive technique for the analysis of cartilage structure and properties. Possibly ultrasound may be utilized in vivo as a quantitative probe during arthroscopy.
Characterization of Acoustic Streaming Beyond 100 MHz
NASA Astrophysics Data System (ADS)
Eisener, J.; Lippert, A.; Nowak, T.; Cairós, C.; Reuter, F.; Mettin, R.
The aim of this study is to investigate acoustic streaming in water at very high ultrasonic frequencies, namely beyond 100 MHz. At such high frequencies, the dissipation length of acoustic waves shrinks considerably, and the acoustic streaming transforms from the well-known Eckart type into a Stuart-Lighthill type: While Eckart streaming is driven by a small momentum transfer along the path of a weakly damped travelling sound wave, Stuart-Lighthill streaming is generated by rather local and strong momentum transfer of a highly damped and therefore rapidly decaying wave. Then the inertia of the induced flow cannot be neglected anymore, and a potentially turbulent jet flow emerges. Here we report on streaming velocity measurements for the case where the sound is completely absorbed within a region much smaller than the generated jet. In contrast to previous work in this frequency range, where mainly surface acoustic wave transducers have been employed, we use piston-type transducers that emit vertically to the transducer surface. The acoustic streaming effects are characterized by ink front tracking and particle tracking velocimetry, and by numerical studies. The results show narrow high-speed jet flows that extend much farther into the liquid than the acoustic field. Velocities of several m/s are observed.
ERIC Educational Resources Information Center
Stamoulis, Catherine; Vogel-Farley, Vanessa; Degregorio, Geneva; Jeste, Shafali S.; Nelson, Charles A.
2015-01-01
The electrophysiological correlates of cognitive deficits in tuberous sclerosis complex (TSC) are not well understood, and modulations of neural dynamics by neuroanatomical abnormalities that characterize the disorder remain elusive. Neural oscillations (rhythms) are a fundamental aspect of brain function, and have dominant frequencies in a wide…
The Cosmology Large Angular Scale Surveyor
NASA Technical Reports Server (NTRS)
Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John; Bennett, Charles; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe;
2016-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).
NASA Astrophysics Data System (ADS)
Jian, Zhongping
This thesis describes the study of two-dimensional photonic crystals slabs with terahertz time domain spectroscopy. In our study we first demonstrate the realization of planar photonic components to manipulate terahertz waves, and then characterize photonic crystals using terahertz pulses. Photonic crystal slabs at the scale of micrometers are first designed and fabricated free of defects. Terahertz time domain spectrometer generates and detects the electric fields of single-cycle terahertz pulses. By putting photonic crystals into waveguide geometry, we successfully demonstrate planar photonic components such as transmission filters, reflection frequency-selective filters, defects modes as well as superprisms. In the characterization study of out-of-plane properties of photonic crystal slabs, we observe very strong dispersion at low frequencies, guided resonance modes at middle frequencies, and a group velocity anomaly at high frequencies. We employ Finite Element Method and Finite-Difference Time-Domain method to simulate the photonic crystals, and excellent agreement is achieved between simulation results and experimental results.
Characterization of chaotic electroconvection near flat electrodes under oscillatory voltages
NASA Astrophysics Data System (ADS)
Kim, Jeonglae; Davidson, Scott; Mani, Ali
2017-11-01
Onset of hydrodynamic instability and chaotic electroconvection in aqueous systems are studied by directly solving the two-dimensional coupled Poisson-Nernst-Planck and Navier-Stokes equations. An aqueous binary electrolyte is bounded by two planar electrodes where time-harmonic voltage is applied at a constant oscillation frequency. The governing equations are solved using a fully-conservative second-order-accurate finite volume discretization and a second-order implicit Euler time advancement. At a sufficiently high amplitude of applied voltage, the system exhibits chaotic behaviors involving strong hydrodynamic mixing and enhanced electroconvection. The system responses are characterized as a function of oscillation frequency, voltage magnitude, and the ratio of diffusivities of two ion species. Our results indicate that electroconvection is most enhanced for frequencies on the order of inverse system RC time scale. We will discuss the dependence of this optimal frequency on the asymmetry of the diffusion coefficients of ionic species. Supported by the Stanford's Precourt Institute.
NASA Astrophysics Data System (ADS)
Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.
2018-02-01
A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.
Dynamic response of a piezoelectric flapping wing
NASA Astrophysics Data System (ADS)
Kumar, Alok; Khandwekar, Gaurang; Venkatesh, S.; Mahapatra, D. R.; Dutta, S.
2015-03-01
Piezo-composite membranes have advantages over motorized flapping where frequencies are high and certain coupling between bending and twisting is useful to generate lift and forward flight. We draw examples of fruit fly and bumble bee. Wings with Piezo ceramic PZT coating are realized. The passive mechanical response of the wing is characterized experimentally and validated using finite element simulation. Piezoelectric actuation with uniform electrode coating is characterized and optimal frequencies for flapping are identified. The experimental data are used in an empirical model and advanced ratio for a flapping insect like condition for various angular orientations is estimated.
Millimeter-wave generation and characterization of a GaAs FET by optical mixing
NASA Technical Reports Server (NTRS)
Ni, David C.; Fetterman, Harold R.; Chew, Wilbert
1990-01-01
Coherent mixing of optical radiation from a tunable continuous-wave dye laser and a stabilized He-Ne laser was used to generate millimeter-wave signals in GaAs FETs attached to printed-circuit millimeter-wave antennas. The generated signal was further down-converted to a 2-GHz IF by an antenna-coupled millimeter-wave local oscillator at 62 GHz. Detailed characterizations of power and S/N under different bias conditions have been performed. This technique is expected to allow signal generation and frequency-response evaluation of millimeter-wave devices at frequencies as high as 100 GHz.
Active Control of High-Speed Free Jets Using High-Frequency Excitation
NASA Astrophysics Data System (ADS)
Upadhyay, Puja
Control of aerodynamic noise generated by high-performance jet engines continues to remain a serious problem for the aviation community. Intense low frequency noise produced by large-scale coherent structures is known to dominate acoustic radiation in the aft angles. A tremendous amount of research effort has been dedicated towards the investigation of many passive and active flow control strategies to attenuate jet noise, while keeping performance penalties to a minimum. Unsteady excitation, an active control technique, seeks to modify acoustic sources in the jet by leveraging the naturally-occurring flow instabilities in the shear layer. While excitation at a lower range of frequencies that scale with the dynamics of large-scale structures, has been attempted by a number of studies, effects at higher excitation frequencies remain severely unexplored. One of the major limitations stems from the lack of appropriate flow control devices that have sufficient dynamic response and/or control authority to be useful in turbulent flows, especially at higher speeds. To this end, the current study seeks to fulfill two main objectives. First, the design and characterization of two high-frequency fluidic actuators (25 and 60 kHz) are undertaken, where the target frequencies are guided by the dynamics of high-speed free jets. Second, the influence of high-frequency forcing on the aeroacoustics of high-speed jets is explored in some detail by implementing the nominally 25 kHz actuator on a Mach 0.9 (Re D = 5 x 105) free jet flow field. Subsequently, these findings are directly compared to the results of steady microjet injection experiments performed in the same rig and to prior jet noise control studies, where available. Finally, limited acoustic measurements were also performed by implementing the nominally 25 kHz actuators on jets at higher Mach numbers, including shock containing jets, and elevated temperatures. Using lumped element modeling as an initial guide, the current work expands on the previous development of low-frequency (2-8 kHz) Resonance Enhanced Micro-actuators (REM) to design actuators that are capable of producing high amplitude pulses at much higher frequencies. Extensive benchtop characterization, using acoustic measurements as well as optical diagnostics using a high resolution micro-schlieren setup, is employed to characterize the flow properties and dynamic response of these actuators. The actuators produced high-amplitude output a range of frequencies, 20.3-27.8 kHz and 54.8-78.2 kHz, respectively. In addition to providing information on the actuator flow physics and performances at various operating conditions, the benchtop study serves to develop relatively easy-to-integrate, high-frequency actuators for active control of high-speed jets for noise reduction. Following actuator characterization studies, the nominally 25 kHz ( StDF ≈ 2.2) actuators are implemented on a Mach 0.9 free jet flow field. Eight actuators are azimuthally distributed at the nozzle exit to excite the initial shear layer at frequencies that are approximately an order of magnitude higher compared to the jet preferred frequency, StP ≈ 0.2-0.3. The influence of control on the mean and turbulent characteristics of the jet, especially the developing shear layer, is examined in great detail using planar and stereoscopic Particle Image Velocimetry (PIV). Examination of cross-stream velocity profiles revealed that actuation leads to strong, spatially coherent streamwise vortex pairs which in turn significantly modify the mean flow field, resulting in a prominently undulated shear layer. These vortices grow as they convect downstream, enhancing local entrainment and significantly thickening the initial shear layer. Azimuthal inhomogeneity introduced in the jet shear layer is also evident in the simultaneous redistribution and reduction of peak turbulent fluctuations in the cross-plane near the nozzle exit. Further downstream, control results in a global suppression of turbulence intensities for all axial locations, also evidenced by a longer potential core and overall reduced jet spreading. The resulting impact on the noise signature is estimated via far-field acoustic measurements. Noise reduction was observed at low to moderate frequencies for all observation angles. Direct comparison of these results with that of steady microjet injection revealed some notable differences in the initial development of streamwise vorticity and the redistribution of peak turbulence in the azimuthal direction. However, despite significant differences in the near nozzle aerodynamics, the downstream evolution of the jet appeared to approach near similar conditions with both high-frequency and steady microjet injection. Moreover, the impact on far-field noise was also comparable between the two injection methods as well as with others reported in the literature. Finally, for jets at higher Mach numbers and elevated temperatures, the effect of control was observed to vary with jet conditions. While the impact of the two control mechanisms were fairly comparable on non-shock containing jets, high-frequency forcing was observed to produce significantly larger reductions in screech and broadband shock-associated noise (BBSN) at select under-expanded jet conditions. The observed variations in control effects at different jet conditions call for further investigation.
Ion acoustic turbulence in a 100-A LaB6 hollow cathode
NASA Astrophysics Data System (ADS)
Jorns, Benjamin A.; Mikellides, Ioannis G.; Goebel, Dan M.
2014-12-01
The temporal fluctuations in the near plume of a 100-A LaB6 hollow cathode are experimentally investigated. A probe array is employed to measure the amplitude and dispersion of axial modes in the plume, and these properties are examined parametrically as a function of cathode operating conditions. The onset of ion acoustic turbulence is observed at high current and is characterized by a power spectrum that exhibits a cutoff at low frequency and an inverse dependence on frequency at high values. The amplitude of the turbulence is found to decrease with flow rate but to depend nonmonotonically on discharge current. Estimates of the anomalous collision frequency based on experimental measurements indicate that the ion acoustic turbulence collision frequency can exceed the classical rate at high discharge current densities by nearly two orders of magnitude.
6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors.
Li, Hua; Wan, Wen-Jian; Tan, Zhi-Yong; Fu, Zhang-Long; Wang, Hai-Xia; Zhou, Tao; Li, Zi-Ping; Wang, Chang; Guo, Xu-Guang; Cao, Jun-Cheng
2017-06-14
The fast detection of terahertz radiation is of great importance for various applications such as fast imaging, high speed communications, and spectroscopy. Most commercial products capable of sensitively responding the terahertz radiation are thermal detectors, i.e., pyroelectric sensors and bolometers. This class of terahertz detectors is normally characterized by low modulation frequency (dozens or hundreds of Hz). Here we demonstrate the first fast semiconductor-based terahertz quantum well photodetectors by carefully designing the device structure and microwave transmission line for high frequency signal extraction. Modulation response bandwidth of gigahertz level is obtained. As an example, the 6.2-GHz modulated terahertz light emitted from a Fabry-Pérot terahertz quantum cascade laser is successfully detected using the fast terahertz quantum well photodetector. In addition to the fast terahertz detection, the technique presented in this work can also be used for optically characterizing the frequency stability of terahertz quantum cascade lasers, heterodyne detections and photomixing applications.
Stability characterization of two multi-channel GPS receivers for accurate frequency transfer.
NASA Astrophysics Data System (ADS)
Taris, F.; Uhrich, P.; Thomas, C.; Petit, G.; Jiang, Z.
In recent years, wide-spread use of the GPS common-view technique has led to major improvements, making it possible to compare remote clocks at their full level of performance. For integration times of 1 to 3 days, their frequency differences are consistently measured to about one part in 1014. Recent developments in atomic frequency standards suggest, however, that this performance may no longer be sufficient. The caesium fountain LPTF FO1, built at the BNM-LPTF, Paris, France, shows a short-term white frequency noise characterized by an Allen deviation σy(τ = 1 s) = 5×10-14 and a type B uncertainty of 2×10-15. To compare the frequencies of such highly stable standards would call for GPS common-view results to be averaged over times far exceeding the intervals of their optimal performance. Previous studies have shown the potential of carrier-phase and code measurements from geodetic GPS receivers for clock frequency comparisons. The experiment related here is an attempt to see the stability limit that could be reached using this technique.
On the Performance of the Martin Digital Filter for High- and Low-pass Applications
NASA Technical Reports Server (NTRS)
Mcclain, C. R.
1979-01-01
A nonrecursive numerical filter is described in which the weighting sequence is optimized by minimizing the excursion from the ideal rectangular filter in a least squares sense over the entire domain of normalized frequency. Additional corrections to the weights in order to reduce overshoot oscillations (Gibbs phenomenon) and to insure unity gain at zero frequency for the low pass filter are incorporated. The filter is characterized by a zero phase shift for all frequencies (due to a symmetric weighting sequence), a finite memory and stability, and it may readily be transformed to a high pass filter. Equations for the filter weights and the frequency response function are presented, and applications to high and low pass filtering are examined. A discussion of optimization of high pass filter parameters for a rather stringent response requirement is given in an application to the removal of aircraft low frequency oscillations superimposed on remotely sensed ocean surface profiles. Several frequency response functions are displayed, both in normalized frequency space and in period space. A comparison of the performance of the Martin filter with some other commonly used low pass digital filters is provided in an application to oceanographic data.
NASA Astrophysics Data System (ADS)
Geltner, I.; Hashimshony, D.; Zigler, A.
2002-07-01
We use a time-domain analysis method to characterize the outer layer of a multilayer structure regardless of the inner ones, thus simplifying the characterization of all the layers. We combine this method with THz reflection spectroscopy to detect nondestructively a hidden aluminum oxide layer under opaque paint and to measure its conductivity and high-frequency dielectric constant in the THz range.
NASA Astrophysics Data System (ADS)
Wagle, Sanat; Decharat, Adit; Habib, Anowarul; Ahluwalia, Balpreet S.; Melandsø, Frank
2016-07-01
High frequency crossed-electrode transducers have been investigated, both as single and dual layer transducers. Prototypes of these transducers were developed for 4 crossed lines (yielding 16 square elements) on a polymer substrate, using a layer-by-layer deposition method for poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] with intermediate sputtered electrodes. The transducer was characterized using various methods [LCR analyzer, a pulse-echo experimental setup, and a numerical Finite element method (FEM) model] and evaluated in terms of uniformity of bandwidth and acoustical energy output. All 16 transducer elements produced broad-banded ultrasonic spectra with small variation in central frequency and -6 dB bandwidth. The frequency responses obtained experimentally were verified using a numerical model.
NASA Technical Reports Server (NTRS)
Neudeck, P.; Kang, S.; Petit, J.; Tabib-Azar, M.
1994-01-01
Dry-oxidized n-type 6H-SiC metal-oxide-semiconductor capacitors are investigated using quasistatic capacitance versus voltage (C-V), high-frequency C-V, and pulsed high-frequency capacitance transient (C-t) analysis over the temperature range from 297 to 573 K. The quasistatic C - V characteristics presented are the first reported for 6H-SiC MOS capacitors, and exhibit startling nonidealities due to nonequilibrium conditions that arise from the fact that the recombination/generation process in 6H-SiC is extraordinarily slow even at the highest measurement temperature employed. The high-frequency dark C-V characteristics all showed deep depletion with no observable hysteresis. The recovery of the high-frequency capacitance from deep depletion to inversion was used to characterize the minority-carrier generation process as a function of temperature. Zerbst analysis conducted on the resulting C-t transients, which were longer than 1000 s at 573 K, showed a generation lifetime thermal activation energy of 0.49 eV.
NASA Astrophysics Data System (ADS)
Wang, Chong; Wen, Na; Zhou, Guoyun; Wang, Shouxu; He, Wei; Su, Xinhong; Hu, Yongsuan
2017-11-01
A novel method of improving the adhesion between copper and prepreg in high frequency PCB was proposed and studied in this work. This process which aimed to decrease the IEP (isoelectric point) of the copper to obtain higher adhesion, was achieved by depositing a thin tin layer with lower IEP on copper. It was characterized by scanning electron microscopy (SEM), 3D microscope, peel strength test, X-Ray thickness test, grazing incidence X-ray diffraction (GXRD), X-ray photoelectron spectroscopy (XPS), Agilent vector network analyzer (VNA), which confirmed its excellent adhesion performance and outstanding electrical properties in high-frequency signal transmission compared with traditional brown oxide method. Moreover, the mechanism of achieving high adhesion for this method was also investigated.
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Moreno Zarate, Pedro; Mansurova, Svetlana; Il'in, Yurij V.; Tarasov, Il'ya S.
2010-06-01
We discuss specifically elaborated approach for characterizing the train-average parameters of low-power picosecond optical pulses with the frequency chirp, arranged in high-repetition-frequency trains, in both time and frequency domains. This approach had been previously applied to rather important case of pulse generation when a single-mode semiconductor heterolaser operates in a multi-pulse regime of the active mode-locking with an external single-mode fiber cavity. In fact, the trains of optical dissipative solitary pulses, which appear under a double balance between mutually compensating actions of dispersion and nonlinearity as well as gain and optical losses, are under characterization. However, in the contrast with the previous studies, now we touch an opportunity of describing two chirped optical pulses together. The main reason of involving just a pair of pulses is caused by the simplest opportunity for simulating the properties of just a sequence of pulses rather then an isolated pulse. However, this step leads to a set of specific difficulty inherent generally in applying joint time-frequency distributions to groups of signals and consisting in manifestation of various false signals or artefacts. This is why the joint Chio-Williams time-frequency distribution and the technique of smoothing are under preliminary consideration here.
Electrically tunable transport and high-frequency dynamics in antiferromagnetic S r3I r2O7
NASA Astrophysics Data System (ADS)
Seinige, Heidi; Williamson, Morgan; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John B.; Tsoi, Maxim
2016-12-01
We report dc and high-frequency transport properties of antiferromagnetic S r3I r2O7 . Temperature-dependent resistivity measurements show that the activation energy of this material can be tuned by an applied dc electrical bias. The latter allows for continuous variations in the sample resistivity of as much as 50% followed by a reversible resistive switching at higher biases. Such a switching is of high interest for antiferromagnetic applications in high-speed memory devices. Interestingly, we found the switching behavior to be strongly affected by a high-frequency (microwave) current applied to the sample. The microwaves at 3-7 GHz suppress the dc switching and produce resonancelike features that we tentatively associated with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. We have characterized the effects of microwave irradiation on electronic transport in S r3I r2O7 as a function of microwave frequency and power, strength and direction of external magnetic field, strength and polarity of applied dc bias, and temperature. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications.
Van De Vijver, Ellen; Van Meirvenne, Marc; Vandenhaute, Laura; Delefortrie, Samuël; De Smedt, Philippe; Saey, Timothy; Seuntjens, Piet
2015-07-01
In environmental assessments, the characterization of urban soils relies heavily on invasive investigation, which is often insufficient to capture their full spatial heterogeneity. Non-invasive geophysical techniques enable rapid collection of high-resolution data and provide a cost-effective alternative to investigate soil in a spatially comprehensive way. This paper presents the results of combining multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar to characterize a former garage site contaminated with petroleum hydrocarbons. The sensor combination showed the ability to identify and accurately locate building remains and a high-density soil layer, thus demonstrating the high potential to investigate anthropogenic disturbances of physical nature. In addition, a correspondence was found between an area of lower electrical conductivity and elevated concentrations of petroleum hydrocarbons, suggesting the potential to detect specific chemical disturbances. We conclude that the sensor combination provides valuable information for preliminary assessment of urban soils.
Saleh, Khaldoun; Millo, Jacques; Marechal, Baptiste; Dubois, Benoît; Bakir, Ahmed; Didier, Alexandre; Lacroûte, Clément; Kersalé, Yann
2018-01-31
Optical frequency division of an ultrastable laser to the microwave frequency range by an optical frequency comb has allowed the generation of microwave signals with unprecedently high spectral purity and stability. However, the generated microwave signal will suffer from a very low power level if no external optical frequency comb repetition rate multiplication device is used. This paper reports theoretical and experimental studies on the beneficial use of the Vernier effect together with the spectral selective filtering in a double directional coupler add-drop optical fibre ring resonator to increase the comb repetition rate and generate high power microwaves. The studies are focused on two selective filtering aspects: the high rejection of undesirable optical modes of the frequency comb and the transmission of the desirable modes with the lowest possible loss. Moreover, the conservation of the frequency comb stability and linewidth at the resonator output is particularly considered. Accordingly, a fibre ring resonator is designed, fabricated, and characterized, and a technique to stabilize the resonator's resonance comb is proposed. A significant power gain is achieved for the photonically generated beat note at 10 GHz. Routes to highly improve the performances of such proof-of-concept device are also discussed.
Design and characterization of very high frequency pulse tube prototypes
NASA Astrophysics Data System (ADS)
Lopes, Diogo; Duval, Jean-Marc; Charles, Ivan; Butterworth, James; Trollier, Thierry; Tanchon, Julien; Ravex, Alain; Daniel, Christophe
2012-06-01
Weight and size are important features of a cryocooler when it comes to space applications. Given their reliability and low level of exported vibrations (due to the absence of moving cold parts), pulse tubes are good candidates for spatial purposes and their miniaturization has been the focus of many studies. We report on the design and performance of a small-scale very high frequency pulse tube prototype, modeled after two previous prototypes which were optimized with a numerical code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufli, Regina; Baker, Sherry L.; Windt, David L.
2007-06-01
The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV)wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement withmore » EUV reflectance measurements of the mirrors after multilayer coating.« less
Woodhead, Zoe Victoria Joan; Wise, Richard James Surtees; Sereno, Marty; Leech, Robert
2011-10-01
Different cortical regions within the ventral occipitotemporal junction have been reported to show preferential responses to particular objects. Thus, it is argued that there is evidence for a left-lateralized visual word form area and a right-lateralized fusiform face area, but the unique specialization of these areas remains controversial. Words are characterized by greater power in the high spatial frequency (SF) range, whereas faces comprise a broader range of high and low frequencies. We investigated how these high-order visual association areas respond to simple sine-wave gratings that varied in SF. Using functional magnetic resonance imaging, we demonstrated lateralization of activity that was concordant with the low-level visual property of words and faces; left occipitotemporal cortex is more strongly activated by high than by low SF gratings, whereas the right occipitotemporal cortex responded more to low than high spatial frequencies. Therefore, the SF of a visual stimulus may bias the lateralization of processing irrespective of its higher order properties.
NASA Astrophysics Data System (ADS)
James, S.; Screaton, E.; Russo, R. M.; Panning, M. P.; Bremner, P. M.; Stanciu, A. C.; Torpey, M. E.; Hongsresawat, S.; Farrell, M. E.
2014-12-01
Defining zones of high and low hydraulic conductivity within aquifers is vital to hydrogeologic research and groundwater management. Carbonate aquifers are particularly difficult to characterize due to dissolution and dolomitization. We investigated a new imaging technique for aquifer characterization that uses cross-correlation of ambient seismic noise to determine seismic velocity structure. Differences in densities between confining units and high permeability flow zones can produce distinct seismic velocities in the correlated signals. We deployed an array of 9 short period geophones from 11/2013 to 3/2014 in Indian Lake State Forest, Florida, to determine if the high frequency diffusive seismic wavefield can be used for imaging hydrostratigraphy. Here, a thin surficial layer of siliciclastic deposits overlie a ~ 0.6 km sequence of Cenozoic limestone and dolomite units that comprise the Floridan Aquifer System (FAS). A low permeability dolomite unit vertically divides the FAS throughout most of Florida. Deep boreholes surrounding the site constrain hydrostratigraphy, however the horizontal continuity of the middle dolomite unit as well as its effectiveness as a confining unit in the study area are not well known. The stations were spaced at distances ranging from 0.18 to 2.6 km, and yielded 72 cross-correlation Green's functions for Rayleigh wave propagation at frequencies between 0.2 and 40 Hz, with dominant peaks around 0.8 Hz, 3 Hz and 13 Hz. Local vehicle traffic did interfere to a degree with the correlation of the diffuse waves, but was minimized by using only nighttime data. At the lowest frequencies (greatest depths) investigated, velocities increase with depth; however, correlations become less coherent at higher frequencies, perhaps due to shallow complex scattering. Comparison of cross-correlations for all station pairs also indicates spatial variations in velocity. Thus, the method shows promise for characterization of the heterogeneity of the Floridan Aquifer System.
A Millimeter-Wave Cavity-Backed Suspended Substrate Stripline Antenna
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
1999-01-01
Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency bands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency, and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz), cavity backed, circular aperture antenna with suspended substrate stripline (SSS) feed is presented.
Characterization of Transducers and Resonators under High Drive Levels
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Bao, X.; Sigel, D. A.; Gradziel, M. J.; Askins, S. A.; Dolgin, B. P.; Bar-Cohen, Y.
2001-01-01
In many applications, piezoelectric transducers are driven at AC voltage levels well beyond the level for which the material was nominally characterized. In this paper we describe an experimental setup that allows for the determination of the main transducer or resonator properties under large AC drive. A sinusoidal voltage from a waveform generator is amplified and applied across the transducer/resonator in series with a known high power resistor. The amplitude of applied voltage and the amplitude and the relative phase of the current through the resistor are monitored on a digital scope. The frequency of the applied signal is swept through resonance and the voltage/current signals are recorded. After corrections for the series resistance and parasitic elements the technique allows for the determination of the complex impedance spectra of the sample as a function of frequency. In addition, access to the current signal allows for the direct investigation of non-linear effects through the application of Fourier transform techniques on the current signal. Our results indicate that care is required when interpreting impedance data at high drive level due to the frequency dependence of the dissipated power. Although the transducer/resonator at a single frequency and after many cycles may reach thermal equilibrium, the spectra as a whole cannot be considered an isothermal measurement due to the temperature change with frequency. Methods to correct for this effect will be discussed. Results determined from resonators of both soft and hard PZT and a ultrasonic horn transducer are presented.
NASA Technical Reports Server (NTRS)
Chen, Songsheng; Yu, Jirong; Bai, Yingsin; Koch, Grady; Petros, Mulugeta; Trieu, Bo; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey
2010-01-01
A carbon dioxide (CO2) Differential Absorption Lidar (DIAL) for accurate CO2 concentration measurement requires a frequency locking system to achieve high frequency locking precision and stability. We describe the frequency locking system utilizing Frequency Modulation (FM), Phase Sensitive Detection (PSD), and Proportional Integration Derivative (PID) feedback servo loop, and report the optimization of the sensitivity of the system for the feed back loop based on the characteristics of a variable path-length CO2 gas cell. The CO2 gas cell is characterized with HITRAN database (2004). The method can be applied for any other frequency locking systems referring to gas absorption line.
2014-06-01
Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013) by Andrew Drysdale...Proving Ground, MD 21005-5068 ARL-TR-6977 June 2014 Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results...4. TITLE AND SUBTITLE Low-Frequency Foam Insulator (LOFFI) Accelerometer Mount Characterization Results and Analysis for Phase I (FY2013) 5a
Modal Characterization of a Piezoelectric Shaker Table
2015-06-01
actuated shaker tables are often used for high frequency fatigue testing. Since natural frequencies can appear in the operating range of these...course of this thesis effort. I would also like to thank Dr. Tommy George and all of the helpful people in the Turbine Engine Fatigue Facility at the...4 Figure 2. Perovskite Crystal Structure of PZT Ceramics ................................................... 5 Figure 3
Bounded diffusion impedance characterization of battery electrodes using fractional modeling
NASA Astrophysics Data System (ADS)
Gabano, Jean-Denis; Poinot, Thierry; Huard, Benoît
2017-06-01
This article deals with the ability of fractional modeling to describe the bounded diffusion behavior encountered in modern thin film and nanoparticles lithium battery electrodes. Indeed, the diffusion impedance of such batteries behaves as a half order integrator characterized by the Warburg impedance at high frequencies and becomes a classical integrator described by a capacitor at low frequencies. The transition between these two behaviors depends on the particles geometry. Three of them will be considered in this paper: planar, cylindrical and spherical ones. The fractional representation proposed is a gray box model able to perfectly fit the low and high frequency diffusive impedance behaviors while optimizing the frequency response transition. Identification results are provided using frequential simulation data considering the three electrochemical diffusion models based on the particles geometry. Furthermore, knowing this geometry allows to estimate the diffusion ionic resistance and time constant using the relationships linking these physical parameters to the structural fractional model parameters. Finally, other simulations using Randles impedance models including the charge transfer impedance and the external resistance demonstrate the interest of fractional modeling in order to identify properly not only the charge transfer impedance but also the diffusion physical parameters whatever the particles geometry.
Direct Measurement of Pyroelectric and Electrocaloric Effects in Thin Films
NASA Astrophysics Data System (ADS)
Pandya, Shishir; Wilbur, Joshua D.; Bhatia, Bikram; Damodaran, Anoop R.; Monachon, Christian; Dasgupta, Arvind; King, William P.; Dames, Chris; Martin, Lane W.
2017-03-01
An understanding of polarization-heat interactions in pyroelectric and electrocaloric thin-film materials requires that the electrothermal response is reliably characterized. While most work, particularly in electrocalorics, has relied on indirect measurement protocols, here we report a direct technique for measuring both pyroelectric and electrocaloric effects in epitaxial ferroelectric thin films. We demonstrate an electrothermal test platform where localized high-frequency (approximately 1 kHz) periodic heating and highly sensitive thin-film resistance thermometry allow the direct measurement of pyrocurrents (<10 pA ) and electrocaloric temperature changes (<2 mK ) using the "2-omega" and an adapted "3-omega" technique, respectively. Frequency-domain, phase-sensitive detection permits the extraction of the pyrocurrent from the total current, which is often convoluted by thermally-stimulated currents. The wide-frequency-range measurements employed in this study further show the effect of secondary contributions to pyroelectricity due to the mechanical constraints of the substrate. Similarly, measurement of the electrocaloric effect on the same device in the frequency domain (at approximately 100 kHz) allows for the decoupling of Joule heating from the electrocaloric effect. Using one-dimensional, analytical heat-transport models, the transient temperature profile of the heterostructure is characterized to extract pyroelectric and electrocaloric coefficients.
Eddy current imaging with an atomic radio-frequency magnetometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wickenbrock, Arne, E-mail: wickenbr@uni-mainz.de; Leefer, Nathan; Blanchard, John W.
2016-05-02
We use a radio-frequency {sup 85}Rb alkali-vapor cell magnetometer based on a paraffin-coated cell with long spin-coherence time and a small, low-inductance driving coil to create highly resolved conductivity maps of different objects. We resolve sub-mm features in conductive objects, we characterize the frequency response of our technique, and by operating at frequencies up to 250 kHz we are able to discriminate between differently conductive materials based on the induced response. The method is suited to cover a wide range of driving frequencies and can potentially be used for detecting non-metallic objects with low DC conductivity.
Plasma characterization studies for materials processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfender, E.; Heberlein, J.
New applications for plasma processing of materials require a more detailed understanding of the fundamental processes occurring in the processing reactors. We have developed reactors offering specific advantages for materials processing, and we are using modeling and diagnostic techniques for the characterization of these reactors. The emphasis is in part set by the interest shown by industry pursuing specific plasma processing applications. In this paper we report on the modeling of radio frequency plasma reactors for use in materials synthesis, and on the characterization of the high rate diamond deposition process using liquid precursors. In the radio frequency plasma torchmore » model, the influence of specific design changes such as the location of the excitation coil on the enthalpy flow distribution is investigated for oxygen and air as plasma gases. The diamond deposition with liquid precursors has identified the efficient mass transport in form of liquid droplets into the boundary layer as responsible for high growth, and the chemical properties of the liquid for the film morphology.« less
Rajaure, S.; Asimaki, Domniki; Thompson, Eric M.; Hough, Susan E.; Martin, Stacey; Ampuero, J.P.; Dhital, M.R.; Inbal, A; Takai, N; Shigefuji, M.; Bijukchhen, S; Ichiyanagi, M; Sasatani, T; Paudel, L
2017-01-01
We analyze strong motion records and high-rate GPS measurements of the M 7.8 Gorkha mainshock, M 7.3 Dolakha, and two moderate aftershock events recorded at four stations on the Kathmandu basin sediments, and one on rock-outcrop. Recordings on soil from all four events show systematic amplification relative to the rock site at multiple frequencies in the 0.1–2.5 Hz frequency range, and de-amplification of higher frequencies ( >2.5–10 Hz). The soil-to-rock amplification ratios for the M 7.8 and M 7.3 events have lower amplitude and frequency peaks relative to the ratios of the two moderate events, effects that could be suggestive of nonlinear site response. Further, comparisons to ground motion prediction equations show that 1) both soil and rock mainshock recordings were severely depleted of high frequencies, and 2) the depletion at high frequencies is not present in the aftershocks. These observations indicate that the high frequency deamplification is additionally related to characteristics of the source that are not captured by simplified ground motion prediction equations, and allude to seismic hazard analysis models being revised – possibly by treating isolated high frequency radiation sources separately from long period components to capture large magnitude near-source events such as the 2015 Gorkha mainshock.
Dielectric properties characterization of saline solutions by near-field microwave microscopy
NASA Astrophysics Data System (ADS)
Gu, Sijia; Lin, Tianjun; Lasri, Tuami
2017-01-01
Saline solutions are of a great interest when characterizations of biological fluids are targeted. In this work a near-field microwave microscope is proposed for the characterization of liquids. An interferometric technique is suggested to enhance measurement sensitivity and accuracy. The validation of the setup and the measurement technique is conducted through the characterization of a large range of saline concentrations (0-160 mg ml-1). Based on the measured resonance frequency shift and quality factor, the complex permittivity is successfully extracted as exhibited by the good agreement found when comparing the results to data obtained from Cole-Cole model. We demonstrate that the near field microwave microscope (NFMM) brings a great advantage by offering the possibility to select a resonance frequency and a quality factor for a given concentration level. This method provides a very effective way to largely enhance the measurement sensitivity in high loss materials.
Characteristics and instabilities of mode-locked quantum-dot diode lasers.
Li, Yan; Lester, Luke F; Chang, Derek; Langrock, Carsten; Fejer, M M; Kane, Daniel J
2013-04-08
Current pulse measurement methods have proven inadequate to fully understand the characteristics of passively mode-locked quantum-dot diode lasers. These devices are very difficult to characterize because of their low peak powers, high bandwidth, large time-bandwidth product, and large timing jitter. In this paper, we discuss the origin for the inadequacies of current pulse measurement techniques while presenting new ways of examining frequency-resolved optical gating (FROG) data to provide insight into the operation of these devices. Under the assumptions of a partial coherence model for the pulsed laser, it is shown that simultaneous time-frequency characterization is a necessary and sufficient condition for characterization of mode-locking. Full pulse characterization of quantum dot passively mode-locked lasers (QD MLLs) was done using FROG in a collinear configuration using an aperiodically poled lithium niobate waveguide-based FROG pulse measurement system.
Moisture distributions in western hemlock lumber from trees harvested near Sitka, Alaska.
David L. Nicholls; Allen M. Brackley; Travis. Allen
2003-01-01
Western hemlock (Tsuga heterophylla) can be characterized by localized regions of high-moisture-content wood, often referred to as wet pockets, and uneven drying conditions may occur when lumber of higher and lower moisture content is mixed together in a dry kiln. The primary objective of this preliminary study was to characterize the frequency and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, He; Lv, Hongliang; Guo, Hui, E-mail: hguan@stu.xidian.edu.cn
2015-11-21
Impact ionization affects the radio-frequency (RF) behavior of high-electron-mobility transistors (HEMTs), which have narrow-bandgap semiconductor channels, and this necessitates complex parameter extraction procedures for HEMT modeling. In this paper, an enhanced small-signal equivalent circuit model is developed to investigate the impact ionization, and an improved method is presented in detail for direct extraction of intrinsic parameters using two-step measurements in low-frequency and high-frequency regimes. The practicability of the enhanced model and the proposed direct parameter extraction method are verified by comparing the simulated S-parameters with published experimental data from an InAs/AlSb HEMT operating over a wide frequency range. The resultsmore » demonstrate that the enhanced model with optimal intrinsic parameter values that were obtained by the direct extraction approach can effectively characterize the effects of impact ionization on the RF performance of HEMTs.« less
Eswaran, Hari; Govindan, Rathinaswamy B; Furdea, Adrian; Murphy, Pam; Lowery, Curtis L; Preissl, Hubert T
2009-05-01
The objective was to extract, quantify and characterize the uterine magnetomyographic (MMG) signals that correspond to the electrophysiological activity of the uterus. Transabdominal MMG recordings with high spatial-temporal resolution were performed with the use of the 151 non-invasive magnetic sensor system. The extraction, quantification and characterization procedures were developed and applied to representative MMG signals that were recorded from a pregnant woman at regular intervals starting at 37 weeks of gestation until the subject reached active labor. Multiple MMG recordings were successfully performed on the subject before she went into active labor. The extracted MMG burst activity showed a statistically significant correlation (r=0.2; p<0.001) with the contractile events perceived by mothers. The time-frequency analysis of the burst activity showed a power shift towards higher-frequency at 48 h before the subject went into active labor as compared to earlier recordings. Further there was a gradual increase in the synchrony in the higher-frequency band as the subject reached close to active labor. The non-invasive recording of the magnetic signals of pregnant uterus with high spatial-temporal resolution can provide an insight into the preparatory phase of labor and has the potential of predicting term and preterm labor.
Influence of Reduced Graphene Oxide on Effective Absorption Bandwidth Shift of Hybrid Absorbers.
Ameer, Shahid; Gul, Iftikhar Hussain
2016-01-01
The magnetic nanoparticle composite NiFe2O4 has traditionally been studied for high-frequency microwave absorption with marginal performance towards low-frequency radar bands (particularly L and S bands). Here, NiFe2O4 nanoparticles and nanohybrids using large-diameter graphene oxide (GO) sheets are prepared via solvothermal synthesis for low-frequency wide bandwidth shielding (L and S radar bands). The synthesized materials were characterized using XRD, SEM, FTIR and microwave magneto dielectric spectroscopy. The dimension of these solvothermally synthesized pristine particles and hybrids lies within 30-58 nm. Microwave magneto-dielectric spectroscopy was performed in the low-frequency region in the 1 MHz-3 GHz spectrum. The as-synthesized pristine nanoparticles and hybrids were found to be highly absorbing for microwaves throughout the L and S radar bands (< -10 dB from 1 MHz to 3 GHz). This excellent microwave absorbing property induced by graphene sheet coupling shows application of these materials with absorption bandwidth which is tailored such that these could be used for low frequency. Previously, these were used for high frequency absorptions (typically > 4 GHz) with limited selective bandwidth.
Spectral characterization of dielectric materials using terahertz measurement systems
NASA Astrophysics Data System (ADS)
Seligman, Jeffrey M.
The performance of modern high frequency components and electronic systems are often limited by the properties of the materials from which they are made. Over the past decade, there has been an increased emphasis on the development of new, high performance dielectrics for use in high frequency systems. The development of these materials requires novel broadband characterization, instrumentation, and extraction techniques, from which models can be formulated. For this project several types of dielectric sheets were characterized at terahertz (THz) frequencies using quasi-optical (free-space) techniques. These measurement systems included a Fourier Transform Spectrometer (FTS, scalar), a Time Domain Spectrometer (TDS, vector), a Scalar Network Analyzer (SNA), and a THz Vector Network Analyzer (VNA). Using these instruments the THz spectral characteristics of dielectric samples were obtained. Polarization based anisotropy was observed in many of the materials measured using vector systems. The TDS was the most informative and flexible instrument for dielectric characterization at THz frequencies. To our knowledge, this is the first such comprehensive study to be performed. Anisotropy effects within materials that do not come into play at microwave frequencies (e.g. ~10 GHz) were found, in many cases, to increase measured losses at THz frequencies by up to an order of magnitude. The frequency dependent properties obtained during the course of this study included loss tangent, permittivity (index of refraction), and dielectric constant. The results were largely consistent between all the different systems and correlated closely to manufacturer specifications over a wide frequency range (325 GHz-1.5 THz). Anisotropic behavior was observed for some of the materials. Non-destructive evaluation and testing (NDE/NDT) techniques were used throughout. A precision test fixture was developed to accomplish these measurements. Time delay, insertion loss, and S-parameters were measured directly, from which loss tangent, index of refraction, and permittivity was extracted. The test materials were low-loss dielectric slabs ranging in thickness from 1-60 mils. The substrate sheets were PTFE, fiberglass, and epoxy-ceramic composite substrates. The other group was polyethylene plastic sheets (LDPE/HDPE/UMHW) and 3D printer Photopolymers. The results were verified by using several online THz spectral databases and compared to manufacturer data sheets. Permittivity and loss of some of the test samples varied as a function of polarization angle. 0 - 90 degrees of rotation were tested (i.e., H-V, and 45 degrees polarization). Inter-molecular scattering in the composite materials raised the loss considerably. This effect was verified. Standard, well documented, material types were selected for the project for best comparison. These techniques can also be applied to analyze newer substances such as nanodielectrics.
Revil, A
2013-01-01
A model combining low-frequency complex conductivity and high-frequency permittivity is developed in the frequency range from 1 mHz to 1 GHz. The low-frequency conductivity depends on pore water and surface conductivities. Surface conductivity is controlled by the electrical diffuse layer, the outer component of the electrical double layer coating the surface of the minerals. The frequency dependence of the effective quadrature conductivity shows three domains. Below a critical frequency fp, which depends on the dynamic pore throat size Λ, the quadrature conductivity is frequency dependent. Between fp and a second critical frequency fd, the quadrature conductivity is generally well described by a plateau when clay minerals are present in the material. Clay-free porous materials with a narrow grain size distribution are described by a Cole-Cole model. The characteristic frequency fd controls the transition between double layer polarization and the effect of the high-frequency permittivity of the material. The Maxwell-Wagner polarization is found to be relatively negligible. For a broad range of frequencies below 1 MHz, the effective permittivity exhibits a strong dependence with the cation exchange capacity and the specific surface area. At high frequency, above the critical frequency fd, the effective permittivity reaches a high-frequency asymptotic limit that is controlled by the two Archie's exponents m and n like the low-frequency electrical conductivity. The unified model is compared with various data sets from the literature and is able to explain fairly well a broad number of observations with a very small number of textural and electrochemical parameters. It could be therefore used to interpret induced polarization, induction-based electromagnetic methods, and ground penetrating radar data to characterize the vadose zone. PMID:23576823
NASA Astrophysics Data System (ADS)
Wagle, Sanat; Habib, Anowarul; Melandsø, Frank
2017-07-01
High-frequency transducers made from a layer-by-layer deposition method are investigated as transducers for ultrasonic imaging. Prototypes of adhesive-free transducers with four active elements were made on a high-performance poly(ether imide) substrate with precision milled spherical cavities used to produce focused ultrasonic beams. The transducer prototypes were characterized using a pulse-echo experimental setup in a water tank using a glass plate as a reflector. Then, transducer was used in a three-dimensional ultrasonic scanning tank, to produce high-resolution ultrasonic images of flexible electronic circuits with the aim to detect defects in the outermost cover layer.
The Cosmology Large Angular Scale Surveyor
NASA Astrophysics Data System (ADS)
Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Dahal, Sumit; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Fluxa, Pedro; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F.; Hubmayr, Johannes; Iuliano, Jeffrey; Karakla, John; McMahon, Jeff; Miller, Nathan T.; Moseley, Samuel H.; Palma, Gonzalo; Parker, Lucas; Petroff, Matthew; Pradenas, Bastián.; Rostem, Karwan; Sagliocca, Marco; Valle, Deniz; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen
2016-07-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).
The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars
NASA Astrophysics Data System (ADS)
Arzoumanian, Zaven; Brazier, Adam; Burke-Spolaor, Sarah; Chamberlin, Sydney; Chatterjee, Shami; Christy, Brian; Cordes, James M.; Cornish, Neil J.; Crawford, Fronefield; Thankful Cromartie, H.; Crowter, Kathryn; DeCesar, Megan E.; Demorest, Paul B.; Dolch, Timothy; Ellis, Justin A.; Ferdman, Robert D.; Ferrara, Elizabeth C.; Fonseca, Emmanuel; Garver-Daniels, Nathan; Gentile, Peter A.; Halmrast, Daniel; Huerta, E. A.; Jenet, Fredrick A.; Jessup, Cody; Jones, Glenn; Jones, Megan L.; Kaplan, David L.; Lam, Michael T.; Lazio, T. Joseph W.; Levin, Lina; Lommen, Andrea; Lorimer, Duncan R.; Luo, Jing; Lynch, Ryan S.; Madison, Dustin; Matthews, Allison M.; McLaughlin, Maura A.; McWilliams, Sean T.; Mingarelli, Chiara; Ng, Cherry; Nice, David J.; Pennucci, Timothy T.; Ransom, Scott M.; Ray, Paul S.; Siemens, Xavier; Simon, Joseph; Spiewak, Renée; Stairs, Ingrid H.; Stinebring, Daniel R.; Stovall, Kevin; Swiggum, Joseph K.; Taylor, Stephen R.; Vallisneri, Michele; van Haasteren, Rutger; Vigeland, Sarah J.; Zhu, Weiwei; The NANOGrav Collaboration
2018-04-01
We present high-precision timing data over time spans of up to 11 years for 45 millisecond pulsars observed as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project, aimed at detecting and characterizing low-frequency gravitational waves. The pulsars were observed with the Arecibo Observatory and/or the Green Bank Telescope at frequencies ranging from 327 MHz to 2.3 GHz. Most pulsars were observed with approximately monthly cadence, and six high-timing-precision pulsars were observed weekly. All were observed at widely separated frequencies at each observing epoch in order to fit for time-variable dispersion delays. We describe our methods for data processing, time-of-arrival (TOA) calculation, and the implementation of a new, automated method for removing outlier TOAs. We fit a timing model for each pulsar that includes spin, astrometric, and (for binary pulsars) orbital parameters; time-variable dispersion delays; and parameters that quantify pulse-profile evolution with frequency. The timing solutions provide three new parallax measurements, two new Shapiro delay measurements, and two new measurements of significant orbital-period variations. We fit models that characterize sources of noise for each pulsar. We find that 11 pulsars show significant red noise, with generally smaller spectral indices than typically measured for non-recycled pulsars, possibly suggesting a different origin. A companion paper uses these data to constrain the strength of the gravitational-wave background.
Current Modulation of a Heterojunction Structure by an Ultra-Thin Graphene Base Electrode.
Alvarado Chavarin, Carlos; Strobel, Carsten; Kitzmann, Julia; Di Bartolomeo, Antonio; Lukosius, Mindaugas; Albert, Matthias; Bartha, Johann Wolfgang; Wenger, Christian
2018-02-27
Graphene has been proposed as the current controlling element of vertical transport in heterojunction transistors, as it could potentially achieve high operation frequencies due to its metallic character and 2D nature. Simulations of graphene acting as a thermionic barrier between the transport of two semiconductor layers have shown cut-off frequencies larger than 1 THz. Furthermore, the use of n-doped amorphous silicon, (n)-a-Si:H, as the semiconductor for this approach could enable flexible electronics with high cutoff frequencies. In this work, we fabricated a vertical structure on a rigid substrate where graphene is embedded between two differently doped (n)-a-Si:H layers deposited by very high frequency (140 MHz) plasma-enhanced chemical vapor deposition. The operation of this heterojunction structure is investigated by the two diode-like interfaces by means of temperature dependent current-voltage characterization, followed by the electrical characterization in a three-terminal configuration. We demonstrate that the vertical current between the (n)-a-Si:H layers is successfully controlled by the ultra-thin graphene base voltage. While current saturation is yet to be achieved, a transconductance of ~230 μ S was obtained, demonstrating a moderate modulation of the collector-emitter current by the ultra-thin graphene base voltage. These results show promising progress towards the application of graphene base heterojunction transistors.
The Cosmology Large Angular Scale Surveyor (CLASS)
NASA Technical Reports Server (NTRS)
Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe;
2016-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).
Tromberg, B.J.; Tsay, T.T.; Berns, M.W.; Svaasand, L.O.; Haskell, R.C.
1995-06-13
Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid. 14 figs.
Tromberg, Bruce J.; Tsay, Tsong T.; Berns, Michael W.; Svaasand, Lara O.; Haskell, Richard C.
1995-01-01
Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid.
Characterization of compressed earth blocks using low frequency guided acoustic waves.
Ben Mansour, Mohamed; Ogam, Erick; Fellah, Z E A; Soukaina Cherif, Amel; Jelidi, Ahmed; Ben Jabrallah, Sadok
2016-05-01
The objective of this work was to analyze the influence of compaction pressure on the intrinsic acoustic parameters (porosity, tortuosity, air-flow resistivity, viscous, and thermal characteristic lengths) of compressed earth blocks through their identification by solving an inverse acoustic wave transmission problem. A low frequency acoustic pipe (60-6000 Hz of length 22 m, internal diameter 3.4 cm) was used for the experimental characterization of the samples. The parameters were identified by the minimization of the difference between the transmissions coefficients data obtained in the pipe with that from an analytical interaction model in which the compressed earth blocks were considered as having rigid frames. The viscous and thermal effects in the pores were accounted for by employing the Johnson-Champoux-Allard-Lafarge model. The results obtained by inversion for high-density compressed earth blocks showed some discordance between the model and experiment especially for the high frequency limit of the acoustic characteristics studied. This was as a consequence of applying high compaction pressure rendering them very highly resistive therefore degrading the signal-to-noise ratios of the transmitted waves. The results showed that the airflow resistivity was very sensitive to the degree of the applied compaction pressure used to form the blocks.
NASA Astrophysics Data System (ADS)
Doerr, H.-P.; Kentischer, T. J.; Steinmetz, T.; Probst, R. A.; Franz, M.; Holzwarth, R.; Udem, Th.; Hänsch, T. W.; Schmidt, W.
2012-09-01
Laser frequency combs (LFC) provide a direct link between the radio frequency (RF) and the optical frequency regime. The comb-like spectrum of an LFC is formed by exact equidistant laser modes, whose absolute optical frequencies are controlled by RF-references such as atomic clocks or GPS receivers. While nowadays LFCs are routinely used in metrological and spectroscopic fields, their application in astronomy was delayed until recently when systems became available with a mode spacing and wavelength coverage suitable for calibration of astronomical spectrographs. We developed a LFC based calibration system for the high-resolution echelle spectrograph at the German Vacuum Tower Telescope (VTT), located at the Teide observatory, Tenerife, Canary Islands. To characterize the calibration performance of the instrument, we use an all-fiber setup where sunlight and calibration light are fed to the spectrograph by the same single-mode fiber, eliminating systematic effects related to variable grating illumination.
Characterization of site conditions for selected seismic stations in eastern part of Romania
NASA Astrophysics Data System (ADS)
Grecu, B.; Zaharia, B.; Diaconescu, M.; Bala, A.; Nastase, E.; Constantinescu, E.; Tataru, D.
2018-02-01
Strong motion data are essential for seismic hazard assessment. To correctly understand and use this kind of data is necessary to have a good knowledge of local site conditions. Romania has one of the largest strong motion networks in Europe with 134 real-time stations. In this work, we aim to do a comprehensive site characterization for eight of these stations located in the eastern part of Romania. We make use of a various seismological dataset and we perform ambient noise and earthquake-based investigations to estimate the background noise level, the resonance frequencies and amplification of each site. We also derive the Vs30 parameter from the surface shear-wave velocity profiles obtained through the inversion of the Rayleigh waves recorded in active seismic measurements. Our analyses indicate similar results for seven stations: high noise levels for frequencies larger than 1 Hz, well defined fundamental resonance at low frequencies (0.15-0.29 Hz), moderate amplification levels (up to 4 units) for frequencies between 0.15 and 5-7 Hz and same soil class (type C) according to the estimated Vs30 and Eurocode 8. In contrast, the eighth station for which the soil class is evaluated of type B exhibits a very good noise level for a wide range of frequencies (0.01-20 Hz), a broader fundamental resonance at high frequencies ( 8 Hz) and a flat amplification curve between 0.1 and 3-4 Hz.
A Millimeter-wave Cavity-backed Suspended Substrate Stripline Antenna
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
1999-01-01
Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency hands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz) 4 x 4 planar array of cavity backed circular aperture antennas with suspended substrate stripline (SSS) corporate feed is presented.
O’Brien, Maria; McEvoy, Niall; Hanlon, Damien; Hallam, Toby; Coleman, Jonathan N.; Duesberg, Georg S.
2016-01-01
Layered inorganic materials, such as the transition metal dichalcogenides (TMDs), have attracted much attention due to their exceptional electronic and optical properties. Reliable synthesis and characterization of these materials must be developed if these properties are to be exploited. Herein, we present low-frequency Raman analysis of MoS2, MoSe2, WSe2 and WS2 grown by chemical vapour deposition (CVD). Raman spectra are acquired over large areas allowing changes in the position and intensity of the shear and layer-breathing modes to be visualized in maps. This allows detailed characterization of mono- and few-layered TMDs which is complementary to well-established (high-frequency) Raman and photoluminescence spectroscopy. This study presents a major stepping stone in fundamental understanding of layered materials as mapping the low-frequency modes allows the quality, symmetry, stacking configuration and layer number of 2D materials to be probed over large areas. In addition, we report on anomalous resonance effects in the low-frequency region of the WS2 Raman spectrum. PMID:26766208
Liao, Ruolin; Wu, Zhichao; Fu, Songnian; Zhu, Shengnan; Yu, Zhe; Tang, Ming; Liu, Deming
2018-02-01
Although the linear optical sampling (LOS) technique is powerful enough to characterize various advanced modulation formats with high symbol rates, the central wavelength of a pulsed local oscillator (LO) needs to be carefully set according to that of the signal under test, due to the coherent mixing operation. Here, we experimentally demonstrate wideband LOS enabled by a fiber optics frequency comb (FOFC). Meanwhile, when the broadband FOFC acts as the pulsed LO, we propose a scheme to mitigate the enhanced sampling error arising in the non-ideal response of a balanced photodetector. Finally, precise characterizations of arbitrary 128 Gbps PDM-QPSK wavelength channels from 1550 to 1570 nm are successfully achieved, when a 101.3 MHz frequency spaced comb with a 3 dB spectral power ripple of 20 nm is used.
Improved modeling on the RF behavior of InAs/AlSb HEMTs
NASA Astrophysics Data System (ADS)
Guan, He; Lv, Hongliang; Zhang, Yuming; Zhang, Yimen
2015-12-01
The leakage current and the impact ionization effect causes a drawback for the performance of InAs/AlSb HEMTs due to the InAs channel with a very narrow band gap of 0.35 eV. In this paper, the conventional HEMT small-signal model was enhanced to characterize the RF behavior for InAs/AlSb HEMTs. The additional gate leakage current induced by the impact ionization was modeled by adding two resistances RGh1 and RGh2 shunting the Cgs-Ri and Cgd-Rj branches, respectively, and the ionized-drain current was characterized by an additional resistance Rmi parallel with the output resistance Rds, meanwhile the influence of the impact ionization on the transconductance was modeled by an additional current source gmi controlled by Vgs. The additional inductance, evaluated as a function of f(ω, R), was introduced to characterize the frequency dependency of impact ionization by using the impact ionization effective rate 1/τi and a new frequency response rate factor n, which guaranteed the enhanced model reliable for a wide frequency range. As a result, the enhanced model achieved good agreement with the measurements of the S-parameters and Y-parameters for a wide frequency range, moreover, the simulated results of the stability factor K, the cutoff frequency fT, the maximum frequency of oscillation fmax, and the unilateral Mason's gain U were estimated to approach the experimental results with a high degree.
Analysis and Correction of Diffraction Effect on the B/A Measurement at High Frequencies
NASA Astrophysics Data System (ADS)
Zhang, Dong; Gong, Xiu-Fen; Liu, Xiao-Zhou; Kushibiki, Jun-ichi; Nishino, Hideo
2004-01-01
A numerical method is developed to analyse and to correct the diffraction effect in the measurement of acoustic nonlinearity parameter B/A at high frequencies. By using the KZK nonlinear equation and the superposition approach of Gaussian beams, an analytical model is derived to describe the second harmonic generation through multi-layer medium SiO2/liquid specimen/SiO2. Frequency dependence of the nonlinear characterization curve for water in 110-155 MHz is numerically and experimentally investigated. With the measured dip position and the new model, values of B/A for water are evaluated. The results show that the present method can effectively correct the diffraction effect in the measurement.
NASA Astrophysics Data System (ADS)
Huang, Liang; Ni, Xuan; Ditto, William L.; Spano, Mark; Carney, Paul R.; Lai, Ying-Cheng
2017-01-01
We develop a framework to uncover and analyse dynamical anomalies from massive, nonlinear and non-stationary time series data. The framework consists of three steps: preprocessing of massive datasets to eliminate erroneous data segments, application of the empirical mode decomposition and Hilbert transform paradigm to obtain the fundamental components embedded in the time series at distinct time scales, and statistical/scaling analysis of the components. As a case study, we apply our framework to detecting and characterizing high-frequency oscillations (HFOs) from a big database of rat electroencephalogram recordings. We find a striking phenomenon: HFOs exhibit on-off intermittency that can be quantified by algebraic scaling laws. Our framework can be generalized to big data-related problems in other fields such as large-scale sensor data and seismic data analysis.
Sun, Chao; Pye, Stephen D.; Browne, Jacinta E.; Janeczko, Anna; Ellis, Bill; Butler, Mairead B.; Sboros, Vassilis; Thomson, Adrian J.W.; Brewin, Mark P.; Earnshaw, Charles H.; Moran, Carmel M.
2012-01-01
This study characterized the acoustic properties of an International Electromechanical Commission (IEC) agar-based tissue mimicking material (TMM) at ultrasound frequencies in the range 10–47 MHz. A broadband reflection substitution technique was employed using two independent systems at 21°C ± 1°C. Using a commercially available preclinical ultrasound scanner and a scanning acoustic macroscope, the measured speeds of sound were 1547.4 ± 1.4 m∙s−1 and 1548.0 ± 6.1 m∙s−1, respectively, and were approximately constant over the frequency range. The measured attenuation (dB∙cm−1) was found to vary with frequency f (MHz) as 0.40f + 0.0076f2. Using this polynomial equation and extrapolating to lower frequencies give values comparable to those published at lower frequencies and can estimate the attenuation of this TMM in the frequency range up to 47 MHz. This characterisation enhances understanding in the use of this TMM as a tissue equivalent material for high frequency ultrasound applications. PMID:22502881
Rock physics model-based prediction of shear wave velocity in the Barnett Shale formation
NASA Astrophysics Data System (ADS)
Guo, Zhiqi; Li, Xiang-Yang
2015-06-01
Predicting S-wave velocity is important for reservoir characterization and fluid identification in unconventional resources. A rock physics model-based method is developed for estimating pore aspect ratio and predicting shear wave velocity Vs from the information of P-wave velocity, porosity and mineralogy in a borehole. Statistical distribution of pore geometry is considered in the rock physics models. In the application to the Barnett formation, we compare the high frequency self-consistent approximation (SCA) method that corresponds to isolated pore spaces, and the low frequency SCA-Gassmann method that describes well-connected pore spaces. Inversion results indicate that compared to the surroundings, the Barnett Shale shows less fluctuation in the pore aspect ratio in spite of complex constituents in the shale. The high frequency method provides a more robust and accurate prediction of Vs for all the three intervals in the Barnett formation, while the low frequency method collapses for the Barnett Shale interval. Possible causes for this discrepancy can be explained by the fact that poor in situ pore connectivity and low permeability make well-log sonic frequencies act as high frequencies and thus invalidate the low frequency assumption of the Gassmann theory. In comparison, for the overlying Marble Falls and underlying Ellenburger carbonates, both the high and low frequency methods predict Vs with reasonable accuracy, which may reveal that sonic frequencies are within the transition frequencies zone due to higher pore connectivity in the surroundings.
Aeolus high energy UV Laser wavelength measurement and frequency stability analysis
NASA Astrophysics Data System (ADS)
Mondin, Linda; Bravetti, Paolo
2017-11-01
The Aeolus mission is part of ESA's Earth Explorer program. The goal of the mission is to determine the first global wind data set in near real time to improve numerical weather prediction models. The only instrument on board Aeolus, Aladin, is a backscatter wind LIDAR in the ultraviolet (UV) frequency domain. Aeolus is a frequency limited mission, inasmuch as it relies on the measure of the backscattered signal frequency shift in order to deduce the wind velocity. As such the frequency stability of the LIDAR laser source is a key parameter for this mission. In the following, the characterization of the laser frequency stability, reproducibility and agility in vacuum shall be reported and compared to the mission requirements.
Radio frequency and capacitive sensors for dielectric characterization of low-conductivity media
NASA Astrophysics Data System (ADS)
Sheldon, Robert T.
Low-conductivity media are found in a vast number of applications, for example as electrical insulation or as the matrix polymer in high strength-to-weight ratio structural composites. In some applications, these materials are subjected to extreme environmental, thermal, and mechanical conditions that can affect the material's desired performance. In a more general sense, a medium may be comprised of one or more layers with unknown material properties that may affect the desired performance of the entire structure. It is often, therefore, of great import to be able to characterize the material properties of these media for the purpose of estimating their future performance in a certain application. Low-conductivity media, or dielectrics, are poor electrical conductors and permit electromagnetic waves and static electric fields to pass through with minimal attenuation. The amount of electrical energy that may be stored (and lost) in these fields depends directly upon the material property, permittivity, which is generally complex, frequency-dependent and has a measurable effect on sensors designed to characterize dielectric media. In this work, two different types of dielectric sensors: radio frequency resonant antennas and lower-frequency (<1 MHz) capacitive sensors, are designed for permittivity characterization in their respective frequency regimes. In the first part of this work, the capability of characterizing multilayer dielectric structures is studied using a patch antenna, a type of antenna that is primarily designed for data communications in the microwave bands but has application in the field of nondestructive evaluation as well. Each configuration of a patch antenna has a single lowest resonant (dominant mode) frequency that is dependent upon the antenna's substrate material and geometry as well as the permittivity and geometry of exterior materials. Here, an extant forward model is validated using well-characterized microwave samples and a new method of resonant frequency and quality factor determination from measured data is presented. Excellent agreement between calculated and measured values of sensor resonant frequency was obtained for the samples studied. Agreement between calculated and measured quality factor was good in some cases but incurred the particular challenge of accurately quantifying multiple contributions to loss from the sensor structure itself, which at times dominates the contribution due to the sample material. Two later chapters describe the development of capacitive sensors to quantify the low-frequency changes in material permittivity due to environmental aging mechanisms. One embodiment involves the application of coplanar concentric interdigital electrode sensors for the purpose of investigating polymer-matrix degradation in glass-fiber composites due to isothermal aging. Samples of bismaleimide-matrix glass-fiber composites were aged at several high temperatures to induce thermal degradation and capacitive sensors were used to measure the sensor capacitance and dissipation factor, parameters that are directly proportional to the real and imaginary components of complex permittivity, respectively. It was shown that real permittivity and dissipation factor decreased with increasing aging temperature, a trend that was common to both interdigital sensor measurements and standard parallel plate electrode measurements. The second piece of work involves the development of cylindrical interdigital electrode sensors to characterize complex permittivity changes in wire insulation due to aging-related degradation. The sensor was proven effective in detecting changes in irradiated nuclear power plant wiring insulation and in aircraft wiring insulation due to liquid chemical immersion. In all three cases, the results indicate a clear correlation of measured capacitance and dissipation factor with increased degradation.
NASA Astrophysics Data System (ADS)
Yoshihara, M.; Work, R. N.
1981-05-01
The shape of the principal dielectric relaxation process that occurs just above the glass transition temperature Tg in well annealed, atactic, undiluted poly (4-chlorostyrene) exhibits a small tail at the high frequency end of the spectrum of relaxation times. This high frequency tail (HFT) has been characterized at temperatures varying from 351 to 413 K by using the Havriliak-Negami equation. The glass transition temperature Tg of P4CS is about 400 K. It is suggested that the HFT is distinct from the β relaxation process which occurs in polystyrene at temperatures just below Tg; and that the HFT is experimental evidence of the existence of localized, fast conformational changes. This fast process is presumed to be slowed and broadened by interactions with the surroundings.
Internal noise sources limiting contrast sensitivity.
Silvestre, Daphné; Arleo, Angelo; Allard, Rémy
2018-02-07
Contrast sensitivity varies substantially as a function of spatial frequency and luminance intensity. The variation as a function of luminance intensity is well known and characterized by three laws that can be attributed to the impact of three internal noise sources: early spontaneous neural activity limiting contrast sensitivity at low luminance intensities (i.e. early noise responsible for the linear law), probabilistic photon absorption at intermediate luminance intensities (i.e. photon noise responsible for de Vries-Rose law) and late spontaneous neural activity at high luminance intensities (i.e. late noise responsible for Weber's law). The aim of this study was to characterize how the impact of these three internal noise sources vary with spatial frequency and determine which one is limiting contrast sensitivity as a function of luminance intensity and spatial frequency. To estimate the impact of the different internal noise sources, the current study used an external noise paradigm to factorize contrast sensitivity into equivalent input noise and calculation efficiency over a wide range of luminance intensities and spatial frequencies. The impact of early and late noise was found to drop linearly with spatial frequency, whereas the impact of photon noise rose with spatial frequency due to ocular factors.
Wideband quad optical sensor for high-speed sub-nanometer interferometry.
Riobo, L M; Veiras, F E; Sorichetti, P A; Garea, M T
2017-01-20
This paper describes the design and performance of a low-noise and high-speed optical sensor that provides two output signals in quadrature from the simultaneous detection of four phase-shifted interferograms. The sensor employs four high-speed photodiodes and high-speed, low-noise transimpedance amplifiers. The optical and electronic design was optimized for high-speed displacement measurement interferometry, over a broad range of operating frequencies. Compared to other experimental schemes, the sensor is simpler and of lower cost. The performance of the sensor is demonstrated by characterizing a piezoelectric transducer for ultrasonic applications. We measured displacements between 38 pm and 32 nm with 6% relative uncertainty, in the frequency range from 1 to 2 MHz.
Hongyi Mi; Chien-Hao Liu; Tzu-Husan Chang; Jung-Hun Seo; Huilong Zhang; Sang June Cho; Nader Behdad; Zhenqiang Ma; Chunhua Yao; Zhiyong Cai; Shaoqin Gong
2016-01-01
Wood pulp cellulose nanofibrils (CNF) thin film is a novel recyclable and biodegradable material. We investigated the microwave dielectric properties of the epoxy coated-CNF thin film for potential broad applications in flexible high speed electronics. The characterizations of dielectric properties were carried out in a frequency range of 1â10 GHz. The dielectric...
Developments of Highly Multiplexed, Multi-chroic Pixels for Balloon-Borne Platforms
NASA Astrophysics Data System (ADS)
Aubin, F.; Hanany, S.; Johnson, B. R.; Lee, A.; Suzuki, A.; Westbrook, B.; Young, K.
2018-02-01
We present our work to develop and characterize low thermal conductance bolometers that are part of sinuous antenna multi-chroic pixels (SAMP). We use longer, thinner and meandered bolometer legs to achieve 9 pW/K thermal conductance bolometers. We also discuss the development of inductor-capacitor chips operated at 4 K to extend the multiplexing factor of the frequency domain multiplexing to 105, an increase of 60% compared to the factor currently demonstrated for this readout system. This technology development is motivated by EBEX-IDS, a balloon-borne polarimeter designed to characterize the polarization of foregrounds and to detect the primordial gravity waves through their B-mode signature on the polarization of the cosmic microwave background. EBEX-IDS will operate 20,562 transition edge sensor bolometers spread over 7 frequency bands between 150 and 360 GHz. Balloon and satellite platforms enable observations at frequencies inaccessible from the ground and with higher instantaneous sensitivity. This development improves the readiness of the SAMP and frequency domain readout technologies for future satellite applications.
Reategui, Camille; Costa, Bruna Karen de Sousa; da Fonseca, Caio Queiroz; da Silva, Luana; Morya, Edgard
2017-01-01
Autism spectrum disorder (ASD) is a neuropsychiatric disorder characterized by the impairment in the social reciprocity, interaction/language, and behavior, with stereotypes and signs of sensory function deficits. Electroencephalography (EEG) is a well-established and noninvasive tool for neurophysiological characterization and monitoring of the brain electrical activity, able to identify abnormalities related to frequency range, connectivity, and lateralization of brain functions. This research aims to evidence quantitative differences in the frequency spectrum pattern between EEG signals of children with and without ASD during visualization of human faces in three different expressions: neutral, happy, and angry. Quantitative clinical evaluations, neuropsychological evaluation, and EEG of children with and without ASD were analyzed paired by age and gender. The results showed stronger activation in higher frequencies (above 30 Hz) in frontal, central, parietal, and occipital regions in the ASD group. This pattern of activation may correlate with developmental characteristics in the children with ASD. PMID:29018811
Cordes, Dietmar; Nandy, Rajesh R.; Schafer, Scott; Wager, Tor D.
2014-01-01
It has recently been shown that both high-frequency and low-frequency cardiac and respiratory noise sources exist throughout the entire brain and can cause significant signal changes in fMRI data. It is also known that the brainstem, basal forebrain and spinal cord area are problematic for fMRI because of the magnitude of cardiac-induced pulsations at these locations. In this study, the physiological noise contributions in the lower brain areas (covering the brainstem and adjacent regions) are investigated and a novel method is presented for computing both low-frequency and high-frequency physiological regressors accurately for each subject. In particular, using a novel optimization algorithm that penalizes curvature (i.e. the second derivative) of the physiological hemodynamic response functions, the cardiac -and respiratory-related response functions are computed. The physiological noise variance is determined for each voxel and the frequency-aliasing property of the high-frequency cardiac waveform as a function of the repetition time (TR) is investigated. It is shown that for the brainstem and other brain areas associated with large pulsations of the cardiac rate, the temporal SNR associated with the low-frequency range of the BOLD response has maxima at subject-specific TRs. At these values, the high-frequency aliased cardiac rate can be eliminated by digital filtering without affecting the BOLD-related signal. PMID:24355483
High frequency drift instabilities in a dusty plasma
NASA Technical Reports Server (NTRS)
Rosenberg, M.; Krall, N. A.
1994-01-01
High frequency drift instabilities with omega(sub ce) much greater than omega which is greater than omega(sub ci) are investigated in a dusty magnetized plasma in which locally there is an electron density gradient which is opposite in sign to a dust density gradient. Two different equilibria are considered, characterized by rho(sub d) greater than L(sub d) and less than L(sub d), where rho(sub d) is the dust gyroradius and L(sub nd) is the dust density scale length. Possible application to Saturn's F-ring is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, J.; Nicodemus, T.; Zhuang, Y., E-mail: yan.zhuang@wright.edu
2014-05-07
Grain boundary electrical conductivity of ferrite materials has been characterized using scanning microwave microscope. Structural, electrical, and magnetic properties of Fe{sub 3}O{sub 4} spin-sprayed thin films onto glass substrates for different length of growth times were investigated using a scanning microwave microscope, an atomic force microscope, a four-point probe measurement, and a made in house transmission line based magnetic permeameter. The real part of the magnetic permeability shows almost constant between 10 and 300 MHz. As the Fe{sub 3}O{sub 4} film thickness increases, the grain size becomes larger, leading to a higher DC conductivity. However, the loss in the Fe{sub 3}O{submore » 4} films at high frequency does not increase correspondingly. By measuring the reflection coefficient s{sub 11} from the scanning microwave microscope, it turns out that the grain boundaries of the Fe{sub 3}O{sub 4} films exhibit higher electric conductivity than the grains, which contributes loss at radio frequencies. This result will provide guidance for further improvement of low loss ferrite materials for high frequency applications.« less
Pérez-Cota, Fernando; Smith, Richard J; Moradi, Emilia; Marques, Leonel; Webb, Kevin F; Clark, Matt
2015-10-01
At low frequencies ultrasound is a valuable tool to mechanically characterize and image biological tissues. There is much interest in using high-frequency ultrasound to investigate single cells. Mechanical characterization of vegetal and biological cells by measurement of Brillouin oscillations has been demonstrated using ultrasound in the GHz range. This paper presents a method to extend this technique from the previously reported single-point measurements and line scans into a high-resolution acoustic imaging tool. Our technique uses a three-layered metal-dielectric-metal film as a transducer to launch acoustic waves into the cell we want to study. The design of this transducer and measuring system is optimized to overcome the vulnerability of a cell to the exposure of laser light and heat without sacrificing the signal-to-noise ratio. The transducer substrate shields the cell from the laser radiation, efficiently generates acoustic waves, facilitates optical detection in transmission, and aids with heat dissipation away from the cell. This paper discusses the design of the transducers and instrumentation and presents Brillouin frequency images on phantom, fixed, and living cells.
NASA Technical Reports Server (NTRS)
1994-01-01
A Small Business Innovation Research (SBIR) contract resulted in a series of commercially available lasers, which have application in fiber optic communications, difference frequency generation, fiber optic sensing and general laboratory use. Developed under a Small Business Innovation Research (SBIR) contract, the Phase Doppler Particles Analyzer is a non-disruptive, highly accurate laser-based method of determining particle size, number density, trajectory, turbulence and other information about particles passing through a measurement probe volume. The system consists of an optical transmitter and receiver, signal processor and computer with data acquisition and analysis software. A variety of systems are offered for applications including spray characterization for paint, and agricultural and other sprays. The Microsizer, a related product, is used in medical equipment manufacturing and analysis of contained flows. High frequency components and subsystems produced by Millitech Corporation are marketed for both research and commercial use. These systems, which operate in the upper portion of the millimeter wave, resulted from a number of Small Business Innovation Research (SBIR) projects. By developing very high performance mixers and multipliers, the company has advanced the state of the art in sensitive receiver technology. Components are used in receivers and transceivers for monitoring chlorine monoxides, ozone, in plasma characterization and in material properties characterization.
High frequency sonar variability in littoral environments: Irregular particles and bubbles
NASA Astrophysics Data System (ADS)
Richards, Simon D.; Leighton, Timothy G.; White, Paul R.
2002-11-01
Littoral environments may be characterized by high concentrations of suspended particles. Such suspensions contribute to attenuation through visco-inertial absorption and scattering and may therefore be partially responsible for the observed variability in high frequency sonar performance in littoral environments. Microbubbles which are prevalent in littoral waters also contribute to volume attenuation through radiation, viscous and thermal damping and cause dispersion. The attenuation due to a polydisperse suspension of particles with depth-dependent concentration has been included in a sonar model. The effects of a depth-dependent, polydisperse population of microbubbles on attenuation, sound speed and volume reverberation are also included. Marine suspensions are characterized by nonspherical particles, often plate-like clay particles. Measurements of absorption in dilute suspensions of nonspherical particles have shown disagreement with predictions of spherical particle models. These measurements have been reanalyzed using three techniques for particle sizing: laser diffraction, gravitational sedimentation, and centrifugal sedimentation, highlighting the difficulty of characterizing polydisperse suspensions of irregular particles. The measurements have been compared with predictions of a model for suspensions of oblate spheroids. Excellent agreement is obtained between this model and the measurements for kaolin particles, without requiring any a priori knowledge of the measurements.
Momota, Yukihiro; Takano, Hideyuki; Kani, Koichi; Matsumoto, Fumihiro; Motegi, Katsumi; Aota, Keiko; Yamamura, Yoshiko; Omori, Mayuko; Tomioka, Shigemasa; Azuma, Masayuki
2013-03-01
Burning mouth syndrome (BMS) is characterized by the following subjective complaints without distinct organic changes: burning sensation in mouth or chronic pain of tongue. BMS is also known as glossodynia; both terms are used equivalently in Japan. Although the real cause of BMS is still unknown, it has been pointed out that BMS is related to some autonomic abnormality, and that stellate ganglion near-infrared irradiation (SGR) corrects the autonomic abnormality. Frequency analysis of heart rate variability (HRV) is expected to be useful for assessing autonomic abnormality. This study investigated whether frequency analysis of HRV could reveal autonomic abnormality associated with BMS, and whether autonomic changes were corrected after SGR. Eight subjects received SGR; the response to SGR was assessed by frequency analysis of HRV. No significant difference of autonomic activity concerning low-frequency (LF) norm, high-frequency (HF) norm, and low-frequency/high-frequency (LF/HF) was found between SGR effective and ineffective groups. Therefore, we proposed new parameters: differential normalized low frequency (D LF norm), differential normalized high frequency (D HF norm), and differential low-frequency/high-frequency (D LF/HF), which were defined as differentials between original parameters just before and after SGR. These parameters as indexes of responsiveness of autonomic nervous system (ANS) revealed autonomic changes in BMS, and BMS seems to be related to autonomic instability rather than autonomic imbalance. Frequency analysis of HRV revealed the autonomic instability associated with BMS and enabled tracing of autonomic changes corrected with SGR. It is suggested that frequency analysis of HRV is very useful in follow up of BMS and for determination of the therapeutic efficacy of SGR. Wiley Periodicals, Inc.
Al-Samman, A. M.; Rahman, T. A.; Azmi, M. H.; Hindia, M. N.; Khan, I.; Hanafi, E.
2016-01-01
This paper presents an experimental characterization of millimeter-wave (mm-wave) channels in the 6.5 GHz, 10.5 GHz, 15 GHz, 19 GHz, 28 GHz and 38 GHz frequency bands in an indoor corridor environment. More than 4,000 power delay profiles were measured across the bands using an omnidirectional transmitter antenna and a highly directional horn receiver antenna for both co- and cross-polarized antenna configurations. This paper develops a new path-loss model to account for the frequency attenuation with distance, which we term the frequency attenuation (FA) path-loss model and introduce a frequency-dependent attenuation factor. The large-scale path loss was characterized based on both new and well-known path-loss models. A general and less complex method is also proposed to estimate the cross-polarization discrimination (XPD) factor of close-in reference distance with the XPD (CIX) and ABG with the XPD (ABGX) path-loss models to avoid the computational complexity of minimum mean square error (MMSE) approach. Moreover, small-scale parameters such as root mean square (RMS) delay spread, mean excess (MN-EX) delay, dispersion factors and maximum excess (MAX-EX) delay parameters were used to characterize the multipath channel dispersion. Multiple statistical distributions for RMS delay spread were also investigated. The results show that our proposed models are simpler and more physically-based than other well-known models. The path-loss exponents for all studied models are smaller than that of the free-space model by values in the range of 0.1 to 1.4 for all measured frequencies. The RMS delay spread values varied between 0.2 ns and 13.8 ns, and the dispersion factor values were less than 1 for all measured frequencies. The exponential and Weibull probability distribution models best fit the RMS delay spread empirical distribution for all of the measured frequencies in all scenarios. PMID:27654703
Al-Samman, A M; Rahman, T A; Azmi, M H; Hindia, M N; Khan, I; Hanafi, E
This paper presents an experimental characterization of millimeter-wave (mm-wave) channels in the 6.5 GHz, 10.5 GHz, 15 GHz, 19 GHz, 28 GHz and 38 GHz frequency bands in an indoor corridor environment. More than 4,000 power delay profiles were measured across the bands using an omnidirectional transmitter antenna and a highly directional horn receiver antenna for both co- and cross-polarized antenna configurations. This paper develops a new path-loss model to account for the frequency attenuation with distance, which we term the frequency attenuation (FA) path-loss model and introduce a frequency-dependent attenuation factor. The large-scale path loss was characterized based on both new and well-known path-loss models. A general and less complex method is also proposed to estimate the cross-polarization discrimination (XPD) factor of close-in reference distance with the XPD (CIX) and ABG with the XPD (ABGX) path-loss models to avoid the computational complexity of minimum mean square error (MMSE) approach. Moreover, small-scale parameters such as root mean square (RMS) delay spread, mean excess (MN-EX) delay, dispersion factors and maximum excess (MAX-EX) delay parameters were used to characterize the multipath channel dispersion. Multiple statistical distributions for RMS delay spread were also investigated. The results show that our proposed models are simpler and more physically-based than other well-known models. The path-loss exponents for all studied models are smaller than that of the free-space model by values in the range of 0.1 to 1.4 for all measured frequencies. The RMS delay spread values varied between 0.2 ns and 13.8 ns, and the dispersion factor values were less than 1 for all measured frequencies. The exponential and Weibull probability distribution models best fit the RMS delay spread empirical distribution for all of the measured frequencies in all scenarios.
Ma, Jianguo; Martin, K. Heath; Dayton, Paul A.; Jiang, Xiaoning
2014-01-01
Current intravascular ultrasound (IVUS) probes are not optimized for contrast detection because of their design for high-frequency fundamental-mode imaging. However, data from transcutaneous contrast imaging suggests the possibility of utilizing contrast ultrasound for molecular imaging or vasa vasorum assessment to further elucidate atherosclerotic plaque deposition. This paper presents the design, fabrication, and characterization of a small-aperture (0.6 × 3 mm) IVUS probe optimized for high-frequency contrast imaging. The design utilizes a dual-frequency (6.5 MHz/30 MHz) transducer arrangement for exciting microbubbles at low frequencies (near their resonance) and detecting their broadband harmonics at high frequencies, minimizing detected tissue backscatter. The prototype probe is able to generate nonlinear microbubble response with more than 1.2 MPa of rarefractional pressure (mechanical index: 0.48) at 6.5 MHz, and is also able to detect microbubble response with a broadband receiving element (center frequency: 30 MHz, −6-dB fractional bandwidth: 58.6%). Nonlinear super-harmonics from microbubbles flowing through a 200-μm-diameter micro-tube were clearly detected with a signal-to-noise ratio higher than 12 dB. Preliminary phantom imaging at the fundamental frequency (30 MHz) and dual-frequency super-harmonic imaging results suggest the promise of small aperture, dual-frequency IVUS transducers for contrast-enhanced IVUS imaging. PMID:24801226
High-resolution vascular tissue characterization in mice using 55 MHz ultrasound hybrid imaging
Mahmoud, Ahmed M.; Sandoval, Cesar; Teng, Bunyen; Schnermann, Jurgen B.; Martin, Karen H.; Mustafa, S. Jamal; Mukdadi, Osama M.
2012-01-01
Ultrasound and Duplex ultrasonography in particular are routinely used to diagnose cardiovascular disease (CVD), which is the leading cause of morbidity and mortality worldwide. However, these techniques may not be able to characterize vascular tissue compositional changes due to CVD. This work describes an ultrasound-based hybrid imaging technique that can be used for vascular tissue characterization and the diagnosis of atherosclerosis. Ultrasound radiofrequency (RF) data were acquired and processed in time, frequency, and wavelet domains to extract six parameters including time integrated backscatter (TIB), time variance (Tvar), time entropy (TE), frequency integrated backscatter (FIB), wavelet root mean square value (Wrms), and wavelet integrated backscatter (WIB). Each parameter was used to reconstruct an image co-registered to morphological B-scan. The combined set of hybrid images were used to characterize vascular tissue in vitro and in vivo using three mouse models including control (C57BL/6), and atherosclerotic apolipoprotein E-knockout (APOE-KO) and APOE/A1 adenosine receptor double knockout (DKO) mice. The technique was tested using high-frequency ultrasound including single-element (center frequency = 55 MHz) and commercial array (center frequency = 40 MHz) systems providing superior spatial resolutions of 24 μm and 40 μm, respectively. Atherosclerotic vascular lesions in the APOE-KO mouse exhibited the highest values (contrast) of −10.11 ± 1.92 dB, −12.13 ± 2.13 dB, −7.54 ± 1.45 dB, −5.10 ± 1.06 dB, −5.25 ± 0.94 dB, and −10.23 ± 2.12 dB in TIB, Tvar, TE, FIB, Wrms, WIB hybrid images (n = 10, p < 0.05), respectively. Control segments of normal vascular tissue showed the lowest values of −20.20 ± 2.71 dB, −22.54 ± 4.54 dB, −14.94 ± 2.05 dB, −9.64 ± 1.34 dB, −10.20 ± 1.27 dB, and −19.36 ± 3.24 dB in same hybrid images (n = 6, p < 0.05). Results from both histology and optical images showed good agreement with ultrasound findings within a maximum error of 3.6% in lesion estimation. This study demonstrated the feasibility of a high-resolution hybrid imaging technique to diagnose atherosclerosis and characterize plaque components in mouse. In the future, it can be easily implemented on commercial ultrasound systems and eventually translated into clinics as a screening tool for atherosclerosis and the assessment of vulnerable plaques. PMID:23218908
Flexibility of space structures makes design shaky
NASA Technical Reports Server (NTRS)
Hearth, D. P.; Boyer, W. J.
1985-01-01
An evaluation is made of the development status of high stiffness space structures suitable for orbital construction or deployment of large diameter reflector antennas, with attention to the control system capabilities required by prospective space structure system types. The very low structural frequencies typical of very large, radio frequency antenna structures would be especially difficult for a control system to counteract. Vibration control difficulties extend across the frequency spectrum, even to optical and IR reflector systems. Current research and development efforts are characterized with respect to goals and prospects for success.
Space Theory and Strategy: War From the High Ground Down
2016-06-01
offset to the American Vietnam experience culminating in the American Apollo 11 moon- landing mission in 1969. The Space Race to the Moon paved a...satellite would indicate a clear escalation in violence based on contextual tensions. A blinding laser or radio frequency jamming attack on a...Down 51 characterize, geolocate, and report radio frequency interference is another version of prepositioning space forces.10 Show of force
Crone, Eveline A; Bunge, Silvia A; Latenstein, Heleen; van der Molen, Maurits W
2005-06-01
On a gambling task that models real-life decision making, children between ages 7 and 12 perform like patients with bilateral lesions of the ventromedial prefrontal cortex (VMPFC), opting for choices that yield high immediate gains in spite of higher future losses (Crone & Van der Molen, 2004). The current study set out to characterize developmental changes in decision making by varying task complexity and punishment frequency. Three age groups (7-9 years, 10-12 years, 13-15 years) performed two versions of a computerized variant of the original Iowa gambling task. Task complexity was manipulated by varying the number of choices participants could make. Punishment frequency was manipulated by varying the frequency of delayed punishment. Results showed a developmental increase in the sensitivity to future consequences, which was present only when the punishment was presented infrequently. These results could not be explained by differential sensitivity to task complexity, hypersensitivity to reward, or failure to switch response set after receiving punishment. There was a general pattern of boys outperforming girls by making more advantageous choices over the course of the task. In conclusion, 7-12-year-old children--like VMPFC patients--appear myopic about the future except when the potential for future punishment is high.
The Design and Characterization of a Prototype Wideband Voltage Sensor Based on a Resistive Divider
Garnacho, Fernando; Khamlichi, Abderrahim; Rovira, Jorge
2017-01-01
The most important advantage of voltage dividers over traditional voltage transformers is that voltage dividers do not have an iron core with non-linear hysteresis characteristics. The voltage dividers have a linear behavior with respect to over-voltages and a flat frequency response larger frequency range. The weak point of a voltage divider is the influence of external high-voltage (HV) and earth parts in its vicinity. Electrical fields arising from high voltages in neighboring phases and from ground conductors and structures are one of their main sources for systematic measurement errors. This paper describes a shielding voltage divider for a 24 kV medium voltage network insulated in SF6 composed of two resistive-capacitive dividers, one integrated within the other, achieving a flat frequency response up to 10 kHz for ratio error and up to 5 kHz for phase displacement error. The metal shielding improves its immunity against electric and magnetic fields. The characterization performed on the built-in voltage sensor shows an accuracy class of 0.2 for a frequency range from 20 Hz to 5 kHz and a class of 0.5 for 1 Hz up to 20 Hz. A low temperature effect is also achieved for operation conditions of MV power grids. PMID:29149085
The Design and Characterization of a Prototype Wideband Voltage Sensor Based on a Resistive Divider.
Garnacho, Fernando; Khamlichi, Abderrahim; Rovira, Jorge
2017-11-17
The most important advantage of voltage dividers over traditional voltage transformers is that voltage dividers do not have an iron core with non-linear hysteresis characteristics. The voltage dividers have a linear behavior with respect to over-voltages and a flat frequency response larger frequency range. The weak point of a voltage divider is the influence of external high-voltage (HV) and earth parts in its vicinity. Electrical fields arising from high voltages in neighboring phases and from ground conductors and structures are one of their main sources for systematic measurement errors. This paper describes a shielding voltage divider for a 24 kV medium voltage network insulated in SF6 composed of two resistive-capacitive dividers, one integrated within the other, achieving a flat frequency response up to 10 kHz for ratio error and up to 5 kHz for phase displacement error. The metal shielding improves its immunity against electric and magnetic fields. The characterization performed on the built-in voltage sensor shows an accuracy class of 0.2 for a frequency range from 20 Hz to 5 kHz and a class of 0.5 for 1 Hz up to 20 Hz. A low temperature effect is also achieved for operation conditions of MV power grids.
2001-03-15
order to characterize the auroral electrojet and the ambient and modified D-region directly above and near the HAARP (High Frequency Active Auroral...near the HAARP facility and along the west coast of Alaska. In addition in order to characterize the auroral electrojet on a continental scale and to...United States and Canada. Data from the complete array of D-region diagnostic systems was acquired during a number of Fall and Spring HAARP campaigns
Plasma Oscillation Characterization of NASA's HERMeS Hall Thruster via High Speed Imaging
NASA Technical Reports Server (NTRS)
Huang, Wensheng; Kamhawi, Hani; Haag, Thomas W.
2016-01-01
The performance and facility effect characterization tests of NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding had been completed. As a part of these tests, three plasma oscillation characterization studies were performed to help determine operation settings and quantify margins. The studies included the magnetic field strength variation study, background pressure effect study, and cathode flow fraction study. Separate high-speed videos of the thruster including the cathode and of only the cathode were recorded. Breathing mode at 10-15 kHz and cathode gradient-driven mode at 60-75 kHz were observed. An additional high frequency (40-70 kHz) global oscillation mode with sinusoidal probability distribution function was identified.
Low-frequency vocalizations in the Florida manatee (Trichechus manatus latirostris)
NASA Astrophysics Data System (ADS)
Frisch, Katherine; Frisch, Stefan
2003-10-01
Vocalizations produced by Florida manatees (Trichechus manatus latirostris) have been characterized as being of relatively high frequency, with fundamental tones ranging from 2500-5000 Hz. These sounds have been variously described as squeaks, squeals, and chirps. Vocalizations below 500 Hz have not been previously reported. Two captive-born Florida manatees were recorded at Mote Marine Laboratory in Sarasota, Florida. The analysis of these vocalizations provides evidence of a new category of low-frequency sounds produced by manatees. These sounds are often heard in conjunction with higher-frequency vocalizations. The low-frequency vocalizations are relatively brief and of low amplitude. These vocalizations are perceived as a series of impulses rather than a low-frequency periodic tone. Knowledge of these low-frequency vocalizations could be useful to those developing future management strategies. Interest has recently increased in the development of acoustic detection and deterrence devices to reduce the number of manatee watercraft interactions. The design of appropriate devices must take into account the apparent ability of manatees to perceive and produce sounds of both high and low frequency. It is also important to consider the possibility that acoustic deterrence devices may disrupt the potentially communicative frequencies of manatee vocalizations.
High-throughput electrical measurement and microfluidic sorting of semiconductor nanowires.
Akin, Cevat; Feldman, Leonard C; Durand, Corentin; Hus, Saban M; Li, An-Ping; Hui, Ho Yee; Filler, Michael A; Yi, Jingang; Shan, Jerry W
2016-05-24
Existing nanowire electrical characterization tools not only are expensive and require sophisticated facilities, but are far too slow to enable statistical characterization of highly variable samples. They are also generally not compatible with further sorting and processing of nanowires. Here, we demonstrate a high-throughput, solution-based electro-orientation-spectroscopy (EOS) method, which is capable of automated electrical characterization of individual nanowires by direct optical visualization of their alignment behavior under spatially uniform electric fields of different frequencies. We demonstrate that EOS can quantitatively characterize the electrical conductivities of nanowires over a 6-order-of-magnitude range (10(-5) to 10 S m(-1), corresponding to typical carrier densities of 10(10)-10(16) cm(-3)), with different fluids used to suspend the nanowires. By implementing EOS in a simple microfluidic device, continuous electrical characterization is achieved, and the sorting of nanowires is demonstrated as a proof-of-concept. With measurement speeds two orders of magnitude faster than direct-contact methods, the automated EOS instrument enables for the first time the statistical characterization of highly variable 1D nanomaterials.
A novel frequency analysis method for assessing K(ir)2.1 and Na (v)1.5 currents.
Rigby, J R; Poelzing, S
2012-04-01
Voltage clamping is an important tool for measuring individual currents from an electrically active cell. However, it is difficult to isolate individual currents without pharmacological or voltage inhibition. Herein, we present a technique that involves inserting a noise function into a standard voltage step protocol, which allows one to characterize the unique frequency response of an ion channel at different step potentials. Specifically, we compute the fast Fourier transform for a family of current traces at different step potentials for the inward rectifying potassium channel, K(ir)2.1, and the channel encoding the cardiac fast sodium current, Na(v)1.5. Each individual frequency magnitude, as a function of voltage step, is correlated to the peak current produced by each channel. The correlation coefficient vs. frequency relationship reveals that these two channels are associated with some unique frequencies with high absolute correlation. The individual IV relationship can then be recreated using only the unique frequencies with magnitudes of high absolute correlation. Thus, this study demonstrates that ion channels may exhibit unique frequency responses.
NASA Astrophysics Data System (ADS)
Ghazavi, Atefeh; Cogan, Stuart F.
2018-06-01
Objective. With recent interest in kilohertz frequency electrical stimulation for nerve conduction block, understanding the electrochemistry and role of electrode material is important for assessing the safety of these stimulus protocols. Here we describe an approach to determining electrode polarization in response to continuous kilohertz frequency sinusoidal current waveforms. We have also investigated platinum, iridium oxide, and titanium nitride as coatings for high frequency electrodes. The current density distribution at 50 kHz at the electrode–electrolyte interface was also modeled to demonstrate the importance of the primary current distribution in supporting charge injection at high frequencies. Approach. We determined electrode polarization in response to sinusoidal currents with frequencies in the 1–50 kHz range and current amplitudes from 100 to 500 µA and 1–5 mA, depending on the electrode area. The current density distribution at the interface was modeled using the finite element method (FEM). Main results. At low frequencies, 1–5 kHz, polarization on the platinum electrode was significant, exceeding the water oxidation potential for high amplitude (5 mA) waveforms. At frequencies of 20 kHz or higher, the polarization was less than 300 mV from the electrode open circuit potential. The choice of electrode material did not play a significant role in electrode polarization at frequencies higher than 10 kHz. The current density distribution modeled at 50 kHz is non-uniform and this non-uniformity persists throughout charge delivery. Significance. At high frequencies (>10 kHz) electrode double-layer charging is the principal mechanism of charge-injection and selection of the electrode material has little effect on polarization, with platinum, iridium oxide, and titanium nitride exhibiting similar behavior. High frequency stimulation is dominated by a highly nonuniform primary current distribution.
Raytheon Advanced Miniature Cryocooler Characterization Testing
NASA Astrophysics Data System (ADS)
Conrad, T.; Yates, R.; Schaefer, B.; Bellis, L.; Pillar, M.; Barr, M.
2015-12-01
The Raytheon Advanced Miniature (RAM) cryocooler is a flight packaged, high frequency pulse tube cooler with an integrated surge volume and inertance tube. Its design has been fully optimized to make use of the Raytheon Advanced Regenerator, resulting in improved efficiency relative to previous Raytheon pulse tube coolers. In this paper, thermodynamic characterization data for the RAM cryocooler is presented along with details of its design specifications.
Weitemier, Kevin; Straub, Shannon C K; Fishbein, Mark; Liston, Aaron
2015-01-01
Despite knowledge that concerted evolution of high-copy loci is often imperfect, studies that investigate the extent of intragenomic polymorphisms and comparisons across a large number of species are rarely made. We present a bioinformatic pipeline for characterizing polymorphisms within an individual among copies of a high-copy locus. Results are presented for nuclear ribosomal DNA (nrDNA) across the milkweed genus, Asclepias. The 18S-26S portion of the nrDNA cistron of Asclepias syriaca served as a reference for assembly of the region from 124 samples representing 90 species of Asclepias. Reads were mapped back to each individual's consensus and at each position reads differing from the consensus were tallied using a custom perl script. Low frequency polymorphisms existed in all individuals (mean = 5.8%). Most nrDNA positions (91%) were polymorphic in at least one individual, with polymorphic sites being less frequent in subunit regions and loops. Highly polymorphic sites existed in each individual, with highest abundance in the "noncoding" ITS regions. Phylogenetic signal was present in the distribution of intragenomic polymorphisms across the genus. Intragenomic polymorphisms in nrDNA are common in Asclepias, being found at higher frequency than any other study to date. The high and variable frequency of polymorphisms across species highlights concerns that phylogenetic applications of nrDNA may be error-prone. The new analytical approach provided here is applicable to other taxa and other high-copy regions characterized by low coverage genome sequencing (genome skimming).
NASA Astrophysics Data System (ADS)
Villa, Enrique; Cano, Juan L.; Aja, Beatriz; Terán, J. Vicente; de la Fuente, Luisa; Mediavilla, Ángel; Artal, Eduardo
2018-03-01
This paper describes the analysis, design and characterization of a polarimetric receiver developed for covering the 35 to 47 GHz frequency band in the new instrument aimed at completing the ground-based Q-U-I Joint Tenerife Experiment. This experiment is designed to measure polarization in the Cosmic Microwave Background. The described high frequency instrument is a HEMT-based array composed of 29 pixels. A thorough analysis of the behaviour of the proposed receiver, based on electronic phase switching, is presented for a noise-like linearly polarized input signal, obtaining simultaneously I, Q and U Stokes parameters of the input signal. Wideband subsystems are designed, assembled and characterized for the polarimeter. Their performances are described showing appropriate results within the 35-to-47 GHz frequency band. Functionality tests are performed at room and cryogenic temperatures with adequate results for both temperature conditions, which validate the receiver concept and performance.
Characterizing Hypervelocity Impact Plasma Through Experiments and Simulations
NASA Astrophysics Data System (ADS)
Close, Sigrid; Lee, Nicolas; Fletcher, Alex; Nuttall, Andrew; Hew, Monica; Tarantino, Paul
2017-10-01
Hypervelocity micro particles, including meteoroids and space debris with masses <1 ng, routinely impact spacecraft and create dense plasma that expands at the isothermal sound speed. This plasma, with a charge separation commensurate with different species mobilities, can produce a strong electromagnetic pulse (EMP) with a broad frequency spectrum. Subsequent plasma oscillations resulting from instabilities can also emit significant power and may be responsible for many reported satellite anomalies. We present theory and recent results from ground-based impact tests aimed at characterizing hypervelocity impact plasma. We also show results from particle-in-cell (PIC) and computational fluid dynamics (CFD) simulations that allow us to extend to regimes not currently possible with ground-based technology. We show that significant impact-produced radio frequency (RF) emissions occurred in frequencies ranging from VHF through L-band and that these emissions were highly correlated with fast (>20 km/s) impacts that produced a fully ionized plasma.
Audiological manifestations in HIV-positive adults.
Matas, Carla Gentile; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluisio Augusto Cotrim
2014-07-01
To characterize the findings of behavioral hearing assessment in HIV-positive individuals who received and did not receive antiretroviral treatment. This research was a cross-sectional study. The participants were 45 HIV-positive individuals (18 not exposed and 27 exposed to antiretroviral treatment) and 30 control-group individuals. All subjects completed an audiological evaluation through pure-tone audiometry, speech audiometry, and high-frequency audiometry. The hearing thresholds obtained by pure-tone audiometry were different between groups. The group that had received antiretroviral treatment had higher thresholds for the frequencies ranging from 250 to 3000 Hz compared with the control group and the group not exposed to treatment. In the range of frequencies from 4000 through 8000 Hz, the HIV-positive groups presented with higher thresholds than did the control group. The hearing thresholds determined by high-frequency audiometry were different between groups, with higher thresholds in the HIV-positive groups. HIV-positive individuals presented poorer results in pure-tone and high-frequency audiometry, suggesting impairment of the peripheral auditory pathway. Individuals who received antiretroviral treatment presented poorer results on both tests compared with individuals not exposed to antiretroviral treatment.
High temperature dielectric studies of indium-substituted NiCuZn nanoferrites
NASA Astrophysics Data System (ADS)
Hashim, Mohd.; Raghasudha, M.; Shah, Jyoti; Shirsath, Sagar E.; Ravinder, D.; Kumar, Shalendra; Meena, Sher Singh; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.
2018-01-01
In this study, indium (In3+)-substituted NiCuZn nanostructured ceramic ferrites with a chemical composition of Ni0.5Cu0.25Zn0.25Fe2-xInxO4 (0.0 ≤ x ≤ 0.5) were prepared by chemical synthesis involving sol-gel chemistry. Single phased cubic spinel structure materials were prepared successfully according to X-ray diffraction and transmission electron microscopy analyses. The dielectric properties of the prepared ferrites were measured using an LCR HiTester at temperatures ranging from room temperature to 300 °C at different frequencies from 102 Hz to 5 × 106 Hz. The variations in the dielectric parameters ε‧ and (tanδ) with temperature demonstrated the frequency- and temperature-dependent characteristics due to electron hopping between the ions. The materials had low dielectric loss values in the high frequency range at all temperatures, which makes them suitable for high frequency microwave applications. A qualitative explanation is provided for the dependences of the dielectric constant and dielectric loss tangent on the frequency, temperature, and composition. Mӧssbauer spectroscopy was employed at room temperature to characterize the magnetic behavior.
Synchronous characterization of semiconductor microcavity laser beam.
Wang, T; Lippi, G L
2015-06-01
We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.
Viruses in diarrhoeic dogs include novel kobuviruses and sapoviruses.
Li, Linlin; Pesavento, Patricia A; Shan, Tongling; Leutenegger, Christian M; Wang, Chunlin; Delwart, Eric
2011-11-01
The close interactions of dogs with humans and surrounding wildlife provide frequent opportunities for cross-species virus transmissions. In order to initiate an unbiased characterization of the eukaryotic viruses in the gut of dogs, this study used deep sequencing of partially purified viral capsid-protected nucleic acids from the faeces of 18 diarrhoeic dogs. Known canine parvoviruses, coronaviruses and rotaviruses were identified, and the genomes of the first reported canine kobuvirus and sapovirus were characterized. Canine kobuvirus, the first sequenced canine picornavirus and the closest genetic relative of the diarrhoea-causing human Aichi virus, was detected at high frequency in the faeces of both healthy and diarrhoeic dogs. Canine sapovirus constituted a novel genogroup within the genus Sapovirus, a group of viruses also associated with human and animal diarrhoea. These results highlight the high frequency of new virus detection possible even in extensively studied animal species using metagenomics approaches, and provide viral genomes for further disease-association studies.
PROPERTIES OF PHANTOM TISSUE-LIKE POLYMETHYLPENTENE IN THE FREQUENCY RANGE 20–70 MHZ
Madsen, Ernest L; Deaner, Meagan E; Mehi, James
2011-01-01
Quantitative ultrasound (QUS) has been employed to characterize soft tissues at ordinary abdominal ultrasound frequencies (2–15 MHz) and is beginning application at high frequencies (20–70 MHz). For example, backscatter and attenuation coefficients can be estimated in vivo using a reference phantom. At high frequencies it is crucial that reverberations do not compromise the measurements. Such reverberations can occur between the phantom's scanning window and transducer components as well as within the scanning window between its surfaces. Transducers are designed to minimize reverberations between the transducer and soft tissue. Thus, the acoustic impedance of a phantom scanning window should be tissue-like; polymethylpentene (TPX) is commonly used because of its tissue-like acoustic impedance. For QUS it is also crucial to correct for the transmission coefficient of the scanning window. Computation of the latter requires knowledge of the ultrasonic properties, viz, density, speed and attenuation coefficients. This work reports values for the ultrasonic properties of two versions of TPX over the high frequency range. One form (TPX film) is used as a scanning window on high frequency phantoms, and at 40 MHz and 22°C was found to have an attenuation coefficient of 120 dB/cm and a propagation speed of 2093 m/s. PMID:21723451
The morphology and electromagnetic properties of MnO 2 obtained in 8 T high magnetic field
NASA Astrophysics Data System (ADS)
Jia, Zhang; Yuping, Duan; Hui, Jing; Xiaogang, Li; Shunhua, Liu
2010-09-01
MnO 2 powder was synthesized in a high magnetic field (8 T) via a simple route, and the formation mechanism for the grain shape was discussed. The synthesized samples were characterized by XRD, SEM, TEM, and vector network analysis. The morphology of synthesized MnO 2 was sea urchin-like ball chain with a low density center, just like "hollow-like". Throughout the whole frequency range, the dielectric constant and the loss tangent clearly decreased in 8 T high magnetic field. Moreover, the magnetic permeability and the loss tangent increased slightly in the frequency range 2-13 GHz. Furthermore, the theoretically calculated values of reflection loss showed that when the magnetic field strength 8 T was adopted, the absorption peak became smoother and shifted to a higher frequency.
Month-to-month and year-to-year reproducibility of high frequency QRS ECG signals
NASA Technical Reports Server (NTRS)
Batdorf, Niles J.; Feiveson, Alan H.; Schlegel, Todd T.
2004-01-01
High frequency electrocardiography analyzing the entire QRS complex in the frequency range of 150 to 250 Hz may prove useful in the detection of coronary artery disease, yet the long-term stability of these waveforms has not been fully characterized. Therefore, we prospectively investigated the reproducibility of the root mean squared voltage, kurtosis, and the presence versus absence of reduced amplitude zones in signal averaged 12-lead high frequency QRS recordings acquired in the supine position one month apart in 16 subjects and one year apart in 27 subjects. Reproducibility of root mean squared voltage and kurtosis was excellent over these time intervals in the limb leads, and acceptable in the precordial leads using both the V-lead and CR-lead derivations. The relative error of root mean squared voltage was 12% month-to-month and 16% year-to-year in the serial recordings when averaged over all 12 leads. Reduced amplitude zones were also reproducible up to a rate of 87% and 81%, respectively, for the month-to-month and year-to-year recordings. We conclude that 12-lead high frequency QRS electrocardiograms are sufficiently reproducible for clinical use.
Low-stress PECVD amorphous silicon carbide (α-SiC) layers for biomedical application
NASA Astrophysics Data System (ADS)
Wei, Jiashen; Chen, Bangtao; Poenar, Daniel P.; Lee, Yong Yeow; Iliescu, Ciprian
2008-12-01
A detailed characterization of PECVD to produce low stress amorphous silicon carbide (α-SiC) layers at high deposition rate has been done and the biomedical applications of α-SiC layers are reported in this paper. By investigating different working principles in high-frequency mode (13.56MHz) and in low frequency mode (380KHz), it is found that deposition in high-frequency mode can achieve low stress layers at high deposition rates due to the structural rearrangement from high HF power, rather than the ion bombardment effect from high LF power which results in high compressive stress for α-SiC layers. Furthermore, the effects of deposition temperature, pressure and reactant gas ratios are also investigated and then an optimal process is achieved to produce low stress α-SiC layers with high deposition rates. To characterize the PECVD α-SiC layers from optimized process, a series of wet etching experiments in KOH and HF solutions have been completed. The very low etching rates of PECVD α-SiC layers in these two solutions show the good chemical inertness and suitability for masking layers in micromachining. Moreover, cell culture tests by seeding fibroblast NIH3T3 cells on the monocrystalline SiC, low-stress PECVD α-SiC released membranes and non-released PECVD α-SiC films on silicon substrates have been done to check the feasibility of PECVD α-SiC layers as substrate materials for biomedical applications. The results indicate that PECVD α-SiC layers are good for cell culturing, especially after treated in NH4F.
High-temperature, high-frequency fretting fatigue of a single crystal nickel alloy
NASA Astrophysics Data System (ADS)
Matlik, John Frederick
Fretting is a structural damage mechanism arising from a combination of wear, corrosion, and fatigue between two nominally clamped surfaces subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact that could potentially foster crack growth leading to component failure. These contact stresses drive crack nucleation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting fatigue cracks pose to damage tolerance and the ensuing structural integrity of aerospace components, a strong motivation exists to develop a quantitative mechanics based understanding of fretting crack nucleation in advanced aerospace alloys. In response to this need, the objective of this work is to characterize the fretting behavior exhibited by a polycrystalline/single crystal nickel contact subjected to elevated frequency and temperature. The effort to meet this objective is two fold: (1) to develop a well-characterized experimental fretting rig to investigate fretting behavior of advanced aerospace alloys at high frequency and high temperature, and (2) to develop the associated contact modeling tools for calculating contact stresses given in-situ experimentally measured remote contact loads. By coupling the experimental results and stress analysis, this effort aims to correlate the fretting crack nucleation behavior with the local contact stresses calculated from the devised three dimensional, anisotropic, dissimilar material contact model. The experimental effort is first motivated by a survey of recent fretting issues and investigations of aerospace components. A detailed description of the high-frequency, high-temperature fretting rig to be used in this investigation follows. Finally, development of a numerical submodeling technique for calculating the experimental contact traction and near-surface stresses is presented and correlated to the experimental fretting crack nucleation observations.
Turbulence-induced anomalous electron diffusion in the plume of the VASIMR VX-200
NASA Astrophysics Data System (ADS)
Olsen, Christopher; Ballenger, Maxwell; Squire, Jared; Longmier, Benjamin; Carter, Mark; Glover, Tim
2012-10-01
The separation of electrons from magnetic nozzles is critical to the function of the VASIMR engine and is of general importance to the field of electric propulsion. Separation of electrons by means of anomalous cross field diffusion is considered. Plume measurements using spectral analysis of custom high frequency probes characterizes the nature of oscillating electric fields in the expanding magnetic nozzle. The oscillating electric field results in frequency dependent density variations that can lead to anomalously high transport in the absence of collisions mimicking collisional transport. The spatial structure of the fluctuating fields is consistent with turbulence caused by separation of energetic (> 100 eV) non-magnetized ions and low energy magnetized electrons via the modified two-stream instability (MTSI) and generalized lower hybrid drift instability (GLHDI). Electric fields as high as 300 V/m are observed at frequencies up to an order of magnitude above the lower hybrid frequency. The electric field fluctuations dissipate with increasing axial distance consistent with changes in ion flux streamlines as plasma detachment occurs.
Sub-kilohertz excitation lasers for quantum information processing with Rydberg atoms
NASA Astrophysics Data System (ADS)
Legaie, Remy; Picken, Craig J.; Pritchard, Jonathan D.
2018-04-01
Quantum information processing using atomic qubits requires narrow linewidth lasers with long-term stability for high fidelity coherent manipulation of Rydberg states. In this paper, we report on the construction and characterization of three continuous-wave (CW) narrow linewidth lasers stabilized simultaneously to an ultra-high finesse Fabry-Perot cavity made of ultra-low expansion (ULE) glass, with a tunable offset-lock frequency. One laser operates at 852~nm while the two locked lasers at 1018~nm are frequency doubled to 509~nm for excitation of $^{133}$Cs atoms to Rydberg states. The optical beatnote at 509~nm is measured to be 260(5)~Hz. We present measurements of the offset between the atomic and cavity resonant frequencies using electromagnetically induced transparency (EIT) for high-resolution spectroscopy on a cold atom cloud. The long-term stability is determined from repeated spectra over a period of 20 days yielding a linear frequency drift of $\\sim1$~Hz/s.
Experimental characterization of the effects of pneumatic tubing on unsteady pressure measurements
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Lindsey, William T.; Curry, Robert E.; Gilyard, Glenn B.
1990-01-01
Advances in aircraft control system designs have, with increasing frequency, required that air data be used as flight control feedback. This condition requires that these data be measured with accuracy and high fidelity. Most air data information is provided by pneumatic pressure measuring sensors. Typically unsteady pressure data provided by pneumatic sensing systems are distorted at high frequencies. The distortion is a result of the pressure being transmitted to the pressure sensor through a length of connective tubing. The pressure is distorted by frictional damping and wave reflection. As a result, air data provided all-flush, pneumatically sensed air data systems may not meet the frequency response requirements necessary for flight control augmentation. Both lab and flight test were performed at NASA-Ames to investigate the effects of this high frequency distortion in remotely located pressure measurement systems. Good qualitative agreement between lab and flight data are demonstrated. Results from these tests are used to describe the effects of pneumatic distortion in terms of a simple parametric model.
Tohmyoh, Hironori; Sakamoto, Yuhei
2015-11-01
This paper reports on a technique to measure the acoustic properties of a thin polymer film utilizing the frequency dependence of the reflection coefficient of ultrasound reflected back from a system comprising a reflection plate, the film, and a material that covers the film. The frequency components of the echo reflected from the back of the plate, where the film is attached, take their minimum values at the resonant frequency, and from these frequency characteristics, the acoustic impedance, sound velocity, and the density of the film can be determined. We applied this technique to characterize an ion exchange membrane, which has high water absorbability, and successfully determined the acoustic properties of the membrane without getting it wet.
Chen, Qun-Feng; Troshyn, Andrei; Ernsting, Ingo; Kayser, Steffen; Vasilyev, Sergey; Nevsky, Alexander; Schiller, Stephan
2011-11-25
Using an ultrastable continuous-wave laser at 580 nm we performed spectral hole burning of Eu(3+):Y(2)SiO(5) at a very high spectral resolution. The essential parameters determining the usefulness as a macroscopic frequency reference, linewidth, temperature sensitivity, and long-term stability, were characterized using a H-maser stabilized frequency comb. Spectral holes with a linewidth as low as 6 kHz were observed and the upper limit of the drift of the hole frequency was determined to be 5±3 mHz/s. We discuss the necessary requirements for achieving ultrahigh stability in laser frequency stabilization to these spectral holes.
Sub-micron materials characterization using near-field optics
NASA Astrophysics Data System (ADS)
Blodgett, David Wesley
1998-12-01
High-resolution sub-surface materials characterization and inspection are critical in the microelectronics and thin films industries. To this end, a technique is described that couples the bulk property measurement capabilities of high-frequency ultrasound with the high-resolution surface imaging capabilities of the near-field optical microscope. Sensing bulk microstructure variations in the material, such as grain boundaries, requires a detection footprint smaller than the variation itself. The near-field optical microscope, with the ability to exceed the diffraction limit in optical resolution, meets this requirement. Two apertureless near-field optical microscopes, on-axis and off-axis illumination, have been designed and built. Near-field and far-field approach curves for both microscopes are presented. The sensitivity of the near-field approach curve was 8.3 muV/nm. Resolution studies for the near-field microscope indicate optical resolutions on the order of 50 nm, which exceeds the diffraction limit. The near-field microscope has been adapted to detect both contact-transducer-generated and laser-generated ultrasound. The successful detection of high-frequency ultrasound with the near-field optical microscope demonstrates the potential of this technique.
Preface to the special issue on "Integrated Microwave Photonic Signal Processing"
NASA Astrophysics Data System (ADS)
Azaña, José; Yao, Jianping
2016-08-01
As Guest Editors, we are pleased to introduce this special issue on ;Integrated Microwave Photonic Signal Processing; published by the Elsevier journal Optics Communications. Microwave photonics is a field of growing importance from both scientific and practical application perspectives. The field of microwave photonics is devoted to the study, development and application of optics-based techniques and technologies aimed to the generation, processing, control, characterization and/or distribution of microwave signals, including signals well into the millimeter-wave frequency range. The use of photonic technologies for these microwave applications translates into a number of key advantages, such as the possibility of dealing with high-frequency, wide bandwidth signals with minimal losses and reduced electromagnetic interferences, and the potential for enhanced reconfigurability. The central purpose of this special issue is to provide an overview of the state of the art of generation, processing and characterization technologies for high-frequency microwave signals. It is now widely accepted that the practical success of microwave photonics at a large scale will essentially depend on the realization of high-performance microwave-photonic signal-processing engines in compact and integrated formats, preferably on a chip. Thus, the focus of the issue is on techniques implemented using integrated photonic technologies, with the goal of providing an update of the most recent advances toward realization of this vision.
Multi-year high-frequency hydrothermal monitoring of selected high-threat Cascade Range volcanoes
NASA Astrophysics Data System (ADS)
Crankshaw, I. M.; Archfield, S. A.; Newman, A. C.; Bergfeld, D.; Clor, L. E.; Spicer, K. R.; Kelly, P. J.; Evans, W. C.; Ingebritsen, S. E.
2018-05-01
From 2009 to 2015 the U.S. Geological Survey (USGS) systematically monitored hydrothermal behavior at selected Cascade Range volcanoes in order to define baseline hydrothermal and geochemical conditions. Gas and water data were collected regularly at 25 sites on 10 of the highest-risk volcanoes in the Cascade Range. These sites include near-summit fumarole groups and springs/streams that show clear evidence of magmatic influence (high 3He/4He ratios and/or large fluxes of magmatic CO2 or heat). Site records consist mainly of hourly temperature and hydrothermal-flux data. Having established baseline conditions during a multiyear quiescent period, the USGS reduced monitoring frequency from 2015 to present. The archived monitoring data are housed at (doi:10.5066/F72N5088). These data (1) are suitable for retrospective comparison with other continuous geophysical monitoring data and (2) will provide context during future episodes of volcanic unrest, such that unrest-related variations at these thoroughly characterized sites will be more clearly recognizable. Relatively high-frequency year-round data are essential to achieve these objectives, because many of the time series reveal significant diurnal, seasonal, and inter-annual variability that would tend to mask unrest signals in the absence of baseline data. Here we characterize normal variability for each site, suggest strategies to detect future volcanic unrest, and explore deviations from background associated with recent unrest.
Characterizing riverbed sediment using high-frequency acoustics 1: spectral properties of scattering
Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.
2014-01-01
Bed-sediment classification using high-frequency hydro-acoustic instruments is challenging when sediments are spatially heterogeneous, which is often the case in rivers. The use of acoustic backscatter to classify sediments is an attractive alternative to analysis of topography because it is potentially sensitive to grain-scale roughness. Here, a new method is presented which uses high-frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed sediments by type (sand, gravel,rock) continuously in space and at small spatial resolution. In this, the first of a pair of papers that examine the scattering signatures from a heterogeneous riverbed, methods are presented to construct spatially explicit maps of spectral properties from geo-referenced point clouds of geometrically and radiometrically corrected echoes. Backscatter power spectra are computed to produce scale and amplitude metrics that collectively characterize the length scales of stochastic measures of riverbed scattering, termed ‘stochastic geometries’. Backscatter aggregated over small spatial scales have spectra that obey a power-law. This apparently self-affine behavior could instead arise from morphological- and grain-scale roughnesses over multiple overlapping scales, or riverbed scattering being transitional between Rayleigh and geometric regimes. Relationships exist between stochastic geometries of backscatter and areas of rough and smooth sediments. However, no one parameter can uniquely characterize a particular substrate, nor definitively separate the relative contributions of roughness and acoustic impedance (hardness). Combinations of spectral quantities do, however, have the potential to delineate riverbed sediment patchiness, in a data-driven approach comparing backscatter with bed-sediment observations (which is the subject of part two of this manuscript).
NASA Astrophysics Data System (ADS)
Vieira, Lucas Valadares; Scherer, Claiton Marlon dos Santos
2017-07-01
The Pennsylvanian Piauí Formation records the deposition of aeolian, fluvial and shallow marine systems accumulated in the cratonic sag Parnaíba basin. Characterization of the facies associations and sequence stratigraphic framework was done by detailed description and logging of outcrops. Six facies associations were recognized: aeolian dunes and interdunes, aeolian sandsheets, fluvial channels, tidally-influenced fluvial channels, shoreface and shoreface-shelf transition. Through correlation of stratigraphic surfaces, the facies associations were organized in system tracts, which formed eight high frequency depositional sequences, bounded by subaerial unconformities. These sequences are composed of a lowstand system tract (LST), that is aeolian-dominated or fluvial-dominated, a transgressive system tract (TST) that is formed by tidally-influenced fluvial channels and/or shoreface and shoreface-shelf transition deposits with retrogradational stacking, and a highstand system tract (HST), which is formed by shoreface-shelf transition and shoreface deposits with progradational stacking. Two low frequency cycles were determined by observing the stacking of the high frequency cycles. The Lower Sequence is characterized by aeolian deposits of the LST and an aggradational base followed by a progressive transgression, defining a general TST. The Upper Sequence is characterized by fluvial deposits and interfluve pedogenesis concurring with the aeolian deposits of the LST and records a subtle regression followed by transgression. The main control on sedimentation in the Piauí Formation was glacioeustasy, which was responsible for the changes in relative sea level. Even though, climate changes were associated with glacioeustatic phases and influenced the aeolian and fluvial deposition.
NASA Astrophysics Data System (ADS)
Hedlund, Brock E.; Houpt, Alec W.; Gordeyev, Stanislav V.; Leonov, Sergey B.
2017-10-01
This study was performed to characterize the dominant frequencies present in the boundary layer uptsream of and in the corner separation zone of a compression surface in Mach 4.5 flow and to determine a control effect of transient plasma actuation on the boundary layer. Schlieren imaging was used to distinguish the corner separation zone for 20°, 25°, and 30° compression ramps mounted on flat plates. Spectra of the natural disturbances present in the boundary layer and separation zone were gathered using a high-speed Shack-Hartmann wavefront sensor and surface mounted PCBTM pressure sensors while varying flow parameters by adjusting total pressure, temperature, and ramp angle. Shallow cavity discharge plasma actuators were used as a high-frequency localized thermal forcing mechanism of the boundary layer. The plasma effect was negligible for forcing frequencies (50 kHz) below the natural dominant frequency (~55-80 kHz). High frequency perturbations that can promote the transition to turbulence were amplified when the plasma forcing frequency (100 kHz) was higher than the natural dominant frequency (~55-80 kHz). This technique can potentially be used for active control of hypersonic boundary layer transition and the supersonic flow structure on the compression surface.
Synthesis and Characterization of Superconducting Electronic Materials.
1984-11-15
T.P. Orlando, A. Zieba , A. Zaleski, S. Sekine, E.J. McNiff,Jr., and B. B. Schwartz. Proceedings of the 1983 International Cryogenic Materials...Frequency Losses at High Fields in Multifilamentary Superconductors, A.J. Zaleski, T.P. Orlando, A. Zieba , B.B. Schwartz, and S. Foner. Accepted for...publication by J. Applied Physics. DOE Support. Low Frequency AC Losses in Multifilimentary Superconductors up to 15 Tesla, T.P. Orlando, A. Zieba , C.B
Location, Characterization and Quantification of Hydroacoustic Signals in the Indian Ocean
2004-10-01
and P-F Piserchia, Long range detection of hydroacoustic signals from large Icebergs in the Ross Sea, Antarctica, Ear. and Plan. Sci. Let., 203:519...Bohnenstiehl, and E. Chapp, Long Range Acoustic Propagation of High Frequency Energy in the Indian Ocean from Icebergs and Earthquakes, 26* Seismic...calculated for each hydrophone site in the Indian Ocean, which assists in understanding detection thresholds for each station at a range of frequencies
2010-09-30
proposal include: 1) complete the development of second-generation sonar boards, 2) complete the integration of new transducers with the second... sonar board and transducer. APPROACH Over the last 40 years, there has been significant research effort directed towards the use of high...narrowband frequency, and some AUVs carry single-frequency sidescan sonars (and this technology has been adapted for gliders), the lack of suitable
Dinesan, H; Fasci, E; D'Addio, A; Castrillo, A; Gianfrani, L
2015-01-26
Frequency fluctuations of an optical frequency standard at 1.39 µm have been measured by means of a highly-sensitive optical frequency discriminator based on the fringe-side transmission of a high finesse optical resonator. Built on a Zerodur spacer, the optical resonator exhibits a finesse of 5500 and a cavity-mode width of about 120 kHz. The optical frequency standard consists of an extended-cavity diode laser that is tightly stabilized against the center of a sub-Doppler H(2) (18)O line, this latter being detected by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. The emission linewidth has been carefully determined from the frequency-noise power spectral density by using a rather simple approximation, known as β-line approach, as well as the exact method based on the autocorrelation function of the laser light field. It turns out that the linewidth of the optical frequency standard amounts to about 7 kHz (full width at half maximum) for an observation time of 1 ms. Compared to the free-running laser, the measured width corresponds to a line narrowing by a factor of ~220.
Characterization of ultrafast devices using novel optical techniques
NASA Astrophysics Data System (ADS)
Ali, Md Ershad
Optical techniques have been extensively used to examine the high frequency performance of a number of devices including High Electron Mobility Transistors (HEMTs), Heterojunction Bipolar Phototransistors (HPTs) and Low Temperature GaAs (LT-GaAs) Photoconductive Switches. To characterize devices, frequency and time domain techniques, namely optical heterodyning and electro-optic sampling, having measurement bandwidths in excess of 200 GHz, were employed. Optical mixing in three-terminal devices has been extended for the first time to submillimeter wave frequencies. Using a new generation of 50-nm gate pseudomorphic InP-based HEMTs, optically mixed signals were detected to 552 GHz with a signal-to-noise ratio of approximately 5 dB. To the best of our knowledge, this is the highest frequency optical mixing obtained in three- terminal devices to date. A novel harmonic three-wave detection scheme was used for the detection of the optically generated signals. The technique involved downconversion of the signal in the device by the second harmonic of a gate-injected millimeter wave local oscillator. Measurements were also conducted up to 212 GHz using direct optical mixing and up to 382 GHz using a fundamental three-wave detection scheme. New interesting features in the bias dependence of the optically mixed signals have been reported. An exciting novel development from this work is the successful integration of near-field optics with optical heterodyning. The technique, called near-field optical heterodyning (NFOH), allows for extremely localized injection of high-frequency stimulus to any arbitrary point of an ultrafast device or circuit. Scanning the point of injection across the sample provides details of the high frequency operation of the device with high spatial resolution. For the implementation of the technique, fiber-optic probes with 100 nm apertures were fabricated. A feedback controlled positioning system was built for accurate placement and scanning of the fiber probe with nanometric precision. The applicability of the NFOH technique was first confirmed by measurements on heterojunction phototransistors at 100 GHz. Later NFOH scans were performed at 63 GHz on two other important devices, HEMTs and LT-GaAs Photoconductive Switches. Spatially resolved response characteristics of these devices revealed interesting details of their operation.
Frequency analysis of a step dynamic pressure calibrator.
Choi, In-Mook; Yang, Inseok; Yang, Tae-Heon
2012-09-01
A dynamic high pressure standard is becoming more essential in the fields of mobile engines, space science, and especially the area of defense such as long-range missile development. However, a complication arises when a dynamic high pressure sensor is compared with a reference dynamic pressure gauge calibrated in static mode. Also, it is difficult to determine a reference dynamic pressure signal from the calibrator because a dynamic high pressure calibrator generates unnecessary oscillations in a positive-going pressure step method. A dynamic high pressure calibrator, using a quick-opening ball valve, generates a fast step pressure change within 1 ms; however, the calibrator also generates a big impulse force that can lead to a short life-time of the system and to oscillating characteristics in response to the dynamic sensor to be calibrated. In this paper, unnecessary additional resonant frequencies besides those of the step function are characterized using frequency analysis. Accordingly, the main sources of resonance are described. In order to remove unnecessary frequencies, the post processing results, obtained by a filter, are given; also, a method for the modification of the dynamic calibration system is proposed.
Frequency analysis of a step dynamic pressure calibrator
NASA Astrophysics Data System (ADS)
Choi, In-Mook; Yang, Inseok; Yang, Tae-Heon
2012-09-01
A dynamic high pressure standard is becoming more essential in the fields of mobile engines, space science, and especially the area of defense such as long-range missile development. However, a complication arises when a dynamic high pressure sensor is compared with a reference dynamic pressure gauge calibrated in static mode. Also, it is difficult to determine a reference dynamic pressure signal from the calibrator because a dynamic high pressure calibrator generates unnecessary oscillations in a positive-going pressure step method. A dynamic high pressure calibrator, using a quick-opening ball valve, generates a fast step pressure change within 1 ms; however, the calibrator also generates a big impulse force that can lead to a short life-time of the system and to oscillating characteristics in response to the dynamic sensor to be calibrated. In this paper, unnecessary additional resonant frequencies besides those of the step function are characterized using frequency analysis. Accordingly, the main sources of resonance are described. In order to remove unnecessary frequencies, the post processing results, obtained by a filter, are given; also, a method for the modification of the dynamic calibration system is proposed.
Frequency Mapping of Rat Spinal Cord at 7T
NASA Astrophysics Data System (ADS)
Chen, Evan; Rauscher, Alexander; Kozlowski, Piotr; Yung, Andrew
2012-10-01
The spinal cord is an integral part of the nervous system responsible for sensory, motor, and reflex control crucial to all bodily function. Due to its non-invasive nature, MRI is well matched for characterizing and imaging of spinal cord, and is used extensively for clinical applications. Recent developments in magnetic resonance imaging (MRI) at high field (7T) using phase represents a new approach of characterizing spinal cord myelin. Theory suggests that microstructure differences in myelinated white matter (WM) and non-myelinated gray matter (GM) affect MR phase, measurable frequency shifts. Data from pilot experiments using a multi-gradient echo (MGE) sequence to image rat spinal cords placed parallel to main magnetic field B0 has shown frequency shifts between not only between WM and GM, but also between specific WM tracts of the dorsal column, including the fasciculus gracilis, fasciculus cuneatus, and corticospinal tract. Using MGE, frequency maps at multiple echo times (TE) between 4ms and 22ms show a non-linear relationship between WM frequency, contrary to what was previously expected. These results demonstrate the effectiveness of MGE in revealing new information about spinal cord tissue microstructure, and lays important groundwork for in-vivo and human studies.
Characterization of the Iberian Y chromosome haplogroup R-DF27 in Northern Spain.
Villaescusa, Patricia; Illescas, María José; Valverde, Laura; Baeta, Miriam; Nuñez, Carolina; Martínez-Jarreta, Begoña; Zarrabeitia, Maria Teresa; Calafell, Francesc; de Pancorbo, Marian M
2017-03-01
The European paternal lineage R-DF27 has been proposed as a haplogroup of Iberian origin due to its maximum frequencies in the Iberian Peninsula. In this study, the distribution and structure of DF27 were characterized in 591 unrelated male individuals from four key populations of the north area of the Iberian Peninsula through the analysis of 12 Y-SNPs that define DF27 main sublineages. Additionally, Y-SNP allele frequencies were also gathered from the reference populations in the 1000 Genomes Project to compare and obtain a better landscape of the distribution of DF27. Our results reveal frequencies over 35% of DF27 haplogroup in the four North Iberian populations analyzed and high frequencies for its subhaplogroups. Considering the low frequency of DF27 and its sublineages in most populations outside of the Iberian Peninsula, this haplogroup seems to have geographical significance; thus, indicating a possible Iberian patrilineal origin of vestiges bearing this haplogroup. The dataset presented here contributes with new data to better understand the complex genetic variability of the Y chromosome in the Iberian Peninsula, that can be applied in Forensic Genetics. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bowman, K.; Worden, H.; Beer, R.
1999-01-01
Spectra measured by off-axis detectors in a high-resolution Fourier transform spectrometer (FTS) are characterized by frequency scaling, asymmetry and broadening of their line shape, and self-apodization in the corresponding interferogram.
High-temperature material characterization for multispectral window
NASA Astrophysics Data System (ADS)
Park, James; Arida, Marvin-Ray; Ku, Zahyun; Jang, Woo-Yong; Urbas, Augustine M.
2017-05-01
A microwave cylindrical cavity combined with a laser has been investigated to characterize the temperature dependence of widow materials in the Air Force Research Laboratory (AFRL). This paper discusses the requirements of high temperature RF material characterizations for transparent ceramic materials, such as ALON, that can potentially be used for multispectral windows. The RF cylindrical resonator was designed and the numerical model was studied to characterize the dielectric constant of materials. The dielectric constant can be extracted from the resonant frequency shift based on the cavity perturbation method (CPM), which is sensitive to the sample size and shape. Laser heating was applied to the material under test (MUT), which could easily be heated above 1000°C by the laser irradiation, in order to conduct CPM at high temperature. The temperature distribution in a material was also analyzed to investigate the impact of the thermal properties and the sample shape.
NASA Astrophysics Data System (ADS)
Fucugauchi, J. U.; Perez-Cruz, L. L.; Rebolledo-Vieyra, M.; Tikoo, S.; Zylberman, W.; Lofi, J.
2017-12-01
Drilling at Site M0077 sampled post-impact sediments overlying a peak ring consisting of impact breccias, melt rock and granitoids. Here we focus on characterizing the peak ring using magnetic properties, which vary widely and depend on mineralogy, depositional and emplacement conditions and secondary alterations. Rock magnetic properties are integrated with Multi-Sensor Core Logger (MSCL) data, vertical seismic profile, physical properties, petrographic and chemical analyses and geophysical models. We measure low-field magnetic susceptibility at low- and high-frequencies, intensity and direction of natural remanent magnetization (NRM) and laboratory-induced isothermal (IRM) and anhysteretic (ARM) magnetizations, alternating-field demagnetization of NRM, IRM and NRM, susceptibility variation with temperature, anisotropy of magnetic susceptibility, hysteresis and IRM back-field demagnetization. Post-impact carbonates show low susceptibilities and NRM intensities, variable frequency-dependent susceptibilities and multivectorial remanences residing in low and high coercivity minerals. Hysteresis loops show low coercivity saturation magnetizations and variable paramagnetic mineral contents. Impact breccias (suevites) and melt rock show higher susceptibilities, low frequency-dependent susceptibilities, high NRM, ARM and IRM intensities and moderate ARM intensity/susceptibility ratios. Magnetic signal is dominated by fine-grained magnetite and titanomagnetites with PSD domain states. Melt rocks at the base of impactite section show the highest susceptibilities and remanence intensities. Basement section is characterized by low susceptibilities in the granites and higher values in the dikes, with NRM and ARM intensities increasing towards the base. The high susceptibilities and remanence intensities correlate with high seismic velocities, density and decreased porosity and electrical resistivity. Fracturing and alteration account for the reduced seismic velocities, density and magnetic properties in the basement section. Site M0077 is in a horizontal gradient high within the semi-circular gravity low in the crater central zone. Correlation with MSCL logs and petrographic and chemical data will allow further detailed characterization of peak ring units.
Joos, Kathleen; De Ridder, Dirk; Boey, Ronny A.; Vanneste, Sven
2014-01-01
Introduction: Stuttering is defined as speech characterized by verbal dysfluencies, but should not be seen as an isolated speech disorder, but as a generalized sensorimotor timing deficit due to impaired communication between speech related brain areas. Therefore we focused on resting state brain activity and functional connectivity. Method: We included 11 patients with developmental stuttering and 11 age matched controls. To objectify stuttering severity and the impact on quality of life (QoL), we used the Dutch validated Test for Stuttering Severity-Readers (TSS-R) and the Overall Assessment of the Speaker’s Experience of Stuttering (OASES), respectively. Furthermore, we used standardized low resolution brain electromagnetic tomography (sLORETA) analyses to look at resting state activity and functional connectivity differences and their correlations with the TSS-R and OASES. Results: No significant results could be obtained when looking at neural activity, however significant alterations in resting state functional connectivity could be demonstrated between persons who stutter (PWS) and fluently speaking controls, predominantly interhemispheric, i.e., a decreased functional connectivity for high frequency oscillations (beta and gamma) between motor speech areas (BA44 and 45) and the contralateral premotor (BA6) and motor (BA4) areas. Moreover, a positive correlation was found between functional connectivity at low frequency oscillations (theta and alpha) and stuttering severity, while a mixed increased and decreased functional connectivity at low and high frequency oscillations correlated with QoL. Discussion: PWS are characterized by decreased high frequency interhemispheric functional connectivity between motor speech, premotor and motor areas in the resting state, while higher functional connectivity in the low frequency bands indicates more severe speech disturbances, suggesting that increased interhemispheric and right sided functional connectivity is maladaptive. PMID:25352797
Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy.
Kuse, Naoya; Ozawa, Akira; Kobayashi, Yohei
2013-05-06
We demonstrate a fiber Bragg grating (FBG) strain sensor with optical frequency combs. To precisely characterize the optical response of the FBG when strain is applied, dual-comb spectroscopy is used. Highly sensitive dual-comb spectroscopy of the FBG enabled strain measurements with a resolution of 34 nε. The optical spectral bandwidth of the measurement exceeds 1 THz. Compared with conventional FBG strain sensor using a continuous-wave laser that requires rather slow frequency scanning with a limited range, the dynamic range and multiplexing capability are significantly improved by using broadband dual-comb spectroscopy.
Preliminary study of the interactions caused by crossing shock waves and a turbulent boundary layer
NASA Technical Reports Server (NTRS)
Ketchum, A. C.; Bogdonoff, S. M.; Fernando, E. M.; Batcho, P. F.
1989-01-01
The subject research, the first phase of an extended study of the interaction of crossing shock waves with a turbulent boundary layer, has revealed the complexity of the resulting flow. Detailed surface visualization and mean wall static pressure distributions show little resemblance to the inviscid flow approximation, and the exploratory high frequency measurements show that the flow downstream of the theoretical inviscid shock crossing position has a significant unsteady characteristic. Further developments of the (unsteady) high frequency measurements are required to fully characterize the unsteadiness and the requirements to include this component in flowfield modeling.
Laser dye DCM: CW, synchronously pumped, cavity pumped and single-frequency performance
NASA Astrophysics Data System (ADS)
Marason, E. G.
1981-04-01
Laser dye DCM exhibits a tuning range of 605 to 725 nm with a lasing efficiency as high as 34% when pumped by the 488 nm line of the argon ion laser, placing it among the most efficient and broadly tunable dyes known. Performance of the dye is characterized for four laser systems: 1) continuous wave, 2) synchronously pumped (SP), 3) cavity dumped synchrompously pumped (SPCD) and 4) single-frequency ring dye laser. Pulse peak powers were as high as 520 W and 2.8 kW for SP and SPCD systems respectively.
Development and Application of Wide Bandwidth Magneto-Resistive Sensor Based Eddy Current Probe
NASA Technical Reports Server (NTRS)
Wincheski, Russell A.; Simpson, John
2010-01-01
The integration of magneto-resistive sensors into eddy current probes can significantly expand the capabilities of conventional eddy current nondestructive evaluation techniques. The room temperature solid-state sensors have typical bandwidths in the megahertz range and resolutions of tens of microgauss. The low frequency sensitivity of magneto-resistive sensors has been capitalized upon in previous research to fabricate very low frequency eddy current sensors for deep flaw detection in multilayer conductors. In this work a modified probe design is presented to expand the capabilities of the device. The new probe design incorporates a dual induction source enabling operation from low frequency deep flaw detection to high frequency high resolution near surface material characterization. Applications of the probe for the detection of localized near surface conductivity anomalies are presented. Finite element modeling of the probe is shown to be in good agreement with experimental measurements.
NASA Astrophysics Data System (ADS)
Kycia, Jan Bronislaw
An ultra-high-vacuum crystal growth facility using the electron beam float zone refining method was designed and built. High quality single crystals of UPtsb3 were grown. Material quality was characterized by mass spectrometry and x-ray scattering techniques. Low temperature resistivity, AC susceptibility and specific heat measurements were also conducted. We find that the transition temperature of the material can be varied systematically by annealing. The suppression of the superconducting transition from defects is consistent with a modified Abrikosov-Gorkov formula that includes anisotropic pairing, Fermi surface anisotropy and anisotropic scattering by defects. High resolution nuclear magnetic resonance (NMR) measurements of bulk superfluid sp3He-B were performed at temperatures above 0.5 mK and at pressures from 0.3 to 28.8 bar. The resonance frequency of the bulk superfluid sp3He-B is shifted from the Larmor frequency of the normal fluid. According to the theory of Greaves the frequency shift at the superfluid transition determines a specific combination, betasb{345}, of the five fourth-order coefficients of the order parameter invariants used in the Ginzburg-Landau description of superfluid sp3He. NMR measurements were performed to determine the coefficient betasb{345} and its dependence on pressure. The results are in agreement with the theoretical calculations of Sauls and Serene that are based on strong coupling contributions which are enhanced at higher pressures.
NASA Astrophysics Data System (ADS)
Zhao, Mingkang; Wi, Hun; Lee, Eun Jung; Woo, Eung Je; In Oh, Tong
2014-10-01
Electrical impedance imaging has the potential to detect an early stage of breast cancer due to higher admittivity values compared with those of normal breast tissues. The tumor size and extent of axillary lymph node involvement are important parameters to evaluate the breast cancer survival rate. Additionally, the anomaly characterization is required to distinguish a malignant tumor from a benign tumor. In order to overcome the limitation of breast cancer detection using impedance measurement probes, we developed the high density trans-admittance mammography (TAM) system with 60 × 60 electrode array and produced trans-admittance maps obtained at several frequency pairs. We applied the anomaly detection algorithm to the high density TAM system for estimating the volume and position of breast tumor. We tested four different sizes of anomaly with three different conductivity contrasts at four different depths. From multifrequency trans-admittance maps, we can readily observe the transversal position and estimate its volume and depth. Specially, the depth estimated values were obtained accurately, which were independent to the size and conductivity contrast when applying the new formula using Laplacian of trans-admittance map. The volume estimation was dependent on the conductivity contrast between anomaly and background in the breast phantom. We characterized two testing anomalies using frequency difference trans-admittance data to eliminate the dependency of anomaly position and size. We confirmed the anomaly detection and characterization algorithm with the high density TAM system on bovine breast tissue. Both results showed the feasibility of detecting the size and position of anomaly and tissue characterization for screening the breast cancer.
Development of a Transient Thrust Stand with Sub-Millisecond Resolution
NASA Astrophysics Data System (ADS)
Spells, Corbin Fraser
The transient thrust stand has been developed to offer 0.1 ms time resolved thrust measurements for the characterization of mono-propellant thrusters for spacecraft applications. Results demonstrated that the system was capable of obtaining dynamic thrust profiles within 5 % and 0.1 ms. Measuring and improving the thrust performance of mono-propellant thrusters will require 1 ms time resolved forces to observe shot-to-shot variations, oscillations, and minimum impulse bits. To date, no thrust stand is capable of measuring up to 22 N forces with a time response of up to 10 kHz. Calibration forces up to 22 N with a frequency response greater than 0.1 ms were obtained using voice coil actuators. Steady state and low frequency measurements were obtained using displacement and velocity sensors and were combined with high frequency vibration modes measured using several accelerometers along the thrust stand arm. The system uses a predictor-based subspace algorithm to obtain a high order state space model of the thrust stand capable of defining the high frequency vibration modes. The high frequency vibration modes are necessary to provide the time response of 0.1 ms. Thruster forces are estimated using an augmented Kalman filter to combine sensor traces from four accelerometers, a velocity sensor, and displacement transducer. Combining low frequency displacement data with high frequency acceleration measurements provides accurate force data across a broad time domain. The transient thrust stand uses a torsional pendulum configuration to minimize influence from external vibration and achieve high force resolution independent of thruster weight.
Instrumental and Calibration Advancements for the Dark Ages Radio Explorer (DARE)
NASA Astrophysics Data System (ADS)
Monsalve, Raul A.; Burns, Jack O.; Bradley, Richard F.; Tauscher, Keith; Nhan, Bang; Bowman, Judd D.; Purcell, William R.; Newell, David; Draper, David
2017-01-01
The Dark Ages Radio Explorer (DARE) is a space mission concept proposed to NASA to measure with high precision the monopole component of the redshifted 21-cm signal from neutral hydrogen originated during cosmic dawn at redshifts 35 > z > 11. For the 21-cm line, these high redshifts correspond to the frequency range 40-120 MHz. Through its spectral features, this signal will provide a wealth of information about the large-scale physics of the first stars, galaxies and black holes. The signal is expected to have an absolute amplitude below 200 mK, which is five orders of magnitude smaller than the diffuse foregrounds dominated by Galactic synchrotron radiation. In order to avoid the impact of the Earth’s ionosphere, which corrupts low-frequency radio waves through refraction, absorption, and emission, this measurement is conducted from orbit above the far side of the Moon. This location is ideal because it enables the Moon to shield the spacecraft from Solar radiation and terrestrial radio-frequency interference. The DARE instrument is designed around a dual-polarization, widefield, wideband, biconical antenna, which provides full-Stokes capabilities in order to measure and remove the low-level polarized component of the foregrounds. The spacecraft is rotated about its boresight axis at 1 RPM to modulate the foregrounds and separate them from the spatially uniform cosmological signal. The instrument requires exquisite calibration to reach a sensitivity of a few mK in the presence of strong foregrounds. For this purpose, the frequency-dependent antenna beam is characterized to 20 ppm. This is accomplished through a combination of electromagnetic simulations, anechoic chamber measurements, and on-orbit mapping using a calibrated high-power ground-based source. The DARE front-end receiver is characterized on the ground in terms of its input impedance, gain, noise properties, and stability. Its performance is verified when operating on-orbit at a fixed temperature, through bidirectional injection of pilot frequency tones that also allow to verify the stability of the antenna. All these instrumental and calibration advancements allow to precisely measure and characterize a wide range cosmological models.
Resonant ultrasound spectroscopy
Migliori, Albert
1991-01-01
A resonant ultrasound spectroscopy method provides a unique characterization of an object for use in distinguishing similar objects having physical differences greater than a predetermined tolerance. A resonant response spectrum is obtained for a reference object by placing excitation and detection transducers at any accessible location on the object. The spectrum is analyzed to determine the number of resonant response peaks in a predetermined frequency interval. The distribution of the resonance frequencies is then characterized in a manner effective to form a unique signature of the object. In one characterization, a small frequency interval is defined and stepped though the spectrum frequency range. Subsequent objects are similarly characterized where the characterizations serve as signatures effective to distinguish objects that differ from the reference object by more than the predetermined tolerance.
Photonic microwave signals with zeptosecond-level absolute timing noise
NASA Astrophysics Data System (ADS)
Xie, Xiaopeng; Bouchand, Romain; Nicolodi, Daniele; Giunta, Michele; Hänsel, Wolfgang; Lezius, Matthias; Joshi, Abhay; Datta, Shubhashish; Alexandre, Christophe; Lours, Michel; Tremblin, Pierre-Alain; Santarelli, Giorgio; Holzwarth, Ronald; Le Coq, Yann
2017-01-01
Photonic synthesis of radiofrequency (RF) waveforms revived the quest for unrivalled microwave purity because of its ability to convey the benefits of optics to the microwave world. In this work, we perform a high-fidelity transfer of frequency stability between an optical reference and a microwave signal via a low-noise fibre-based frequency comb and cutting-edge photodetection techniques. We demonstrate the generation of the purest microwave signal with a fractional frequency stability below 6.5 × 10-16 at 1 s and a timing noise floor below 41 zs Hz-1/2 (phase noise below -173 dBc Hz-1 for a 12 GHz carrier). This outperforms existing sources and promises a new era for state-of-the-art microwave generation. The characterization is achieved through a heterodyne cross-correlation scheme with the lowermost detection noise. This unprecedented level of purity can impact domains such as radar systems, telecommunications and time-frequency metrology. The measurement methods developed here can benefit the characterization of a broad range of signals.
NASA Astrophysics Data System (ADS)
Olwendo, J. O.
2016-12-01
Through a linear combination of GPS satellite range and phase measurement observed on two carrier frequencies by terrestrial based GPS receivers, the ionospheric total electron content (TEC) along oblique GPS signal path can be quantified. Using Adjusted Spherical Harmonic (ASHA) expansion, regional TEC maps over the East Africa sector has been achieved. The observed TEC has been used to evaluate the performance of IRI2007 and NeQuick 2 models over the region. Ionospheric irregularities have been measured and the plasma drift velocity and the East-West extent of the irregularities have also been analyzed by using a Very High Frequency (VHF) receiver system that is closely spaced. The hourly TEC images developed have shown that the Southern Equatorial Ionization Anomaly (EIA) crest over the East African sector lies within the Kenyan region, and the occurrence of scintillation is dependent on how well the anomaly crest forms. Scintillation occurrences are intense at and around the edges of EIA crest due to the presence of high ambient electron densities and sharp TEC depletions. Simultaneous recording of amplitude scintillations at VHF and L-band frequencies reveal two distinct types of scintillation namely; the Plasma Bubble Induced (PBI) and the Bottom Side Sinusoidal (BSS). The PBI scintillations are characterized by high intensity during the post-sunset hours of the equinoctial months and appear at both VHF and L-band frequencies. The BSS type are associated with VHF scintillation and are characterized by long duration patches and often exhibit Fresnel oscillation on the roll portion of the power spectrum, which suggest a weak scattering from thin screen irregularities. The occurrence of post-midnight L-band scintillation events which are not linked to pre-midnight scintillation observations raises fundamental question on the mechanism and source of electric fields driving the plasma depletion under conditions of very low background electron density.
Costa, Gabriel Cerqueira Alves; Soares, Adriana Coelho; Pereira, Marcos Horácio; Gontijo, Nelder Figueiredo; Sant'Anna, Maurício Roberto Viana; Araujo, Ricardo Nascimento
2016-11-15
Ornithodoros rostratus is an argasid tick and its importance is based on its hematophagy and the resulting transmission of pathogens such as Rickettsia rickettsii and Coxiella burnetii to its vertebrate hosts. In the face of a lack of physiological studies related to hematophagy in argasid ticks, this paper aims to identify and characterize the events that occur throughout the feeding by O. rostratus on live hosts. Electrical signals and alterations on the feeding site were monitored using intravital microscopy and electromyography. The analyses allowed for the characterization of four distinct events: suction, salivation, chelicerae movements and inactivity. Feeding was divided into two distinct phases: (1) penetration of mouthparts (when only salivation and chelicerae movements occurred) and the formation of the feeding pool (salivation and chelicerae movements with the first signs of suction) and (2) engorgement, during which chelicerae movements ceased and blood intake took place in feeding complexes (salivation followed by suction). Variations in patterns of the electrical signals, suction frequency and salivation showed four distinct sub-phases: (2a) suction with electrical signals of irregular shape, increased suction frequency and decreased salivation frequency throughout blood feeding; (2b) suction with electrical signals of symmetrical shape, high suction rates (3.8 Hz on average) and feeding complexes lasting for 7.7 s; (2c) suction with electrical signals of irregular shape, high suction frequency and feeding complex lasting 11.5 s; and (2d) electrical signals with no profile and the longest feeding complexes (14.5 s). Blood feeding ended with the withdrawal of the mouthparts from the host's skin. © 2016. Published by The Company of Biologists Ltd.
High-Frequency Fe-H Vibrations in a Bridging Hydride Complex Characterized by NRVS and DFT.
Pelmenschikov, Vladimir; Gee, Leland B; Wang, Hongxin; MacLeod, K Cory; McWilliams, Sean F; Skubi, Kazimer L; Cramer, Stephen P; Holland, Patrick L
2018-05-30
High-spin iron species with bridging hydrides have been detected in species trapped during nitrogenase catalysis, but there are few general methods of evaluating Fe-H bonds in high-spin multinuclear iron systems. An 57 Fe nuclear resonance vibrational spectroscopy (NRVS) study on an Fe(μ-H) 2 Fe model complex reveals Fe-H stretching vibrations for bridging hydrides at frequencies greater than 1200 cm -1 . These isotope-sensitive vibrational bands are not evident in infrared (IR) spectra, showing the power of NRVS for identifying hydrides in this high-spin iron system. Complementary density functional theory (DFT) calculations elucidate the normal modes of the rhomboidal iron hydride core. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
High frequency copolymer ultrasonic transducer array of size-effective elements
NASA Astrophysics Data System (ADS)
Decharat, Adit; Wagle, Sanat; Habib, Anowarul; Jacobsen, Svein; Melandsø, Frank
2018-02-01
A layer-by-layer deposition method for producing dual-layer ultrasonic transducers from piezoelectric copolymers has been developed. The method uses a combination of customized and standard processing to obtain 2D array transducers with electrical connection of the individual elements routed directly to the rear of the substrate. A numerical model was implemented to study basic parameters effecting the transducer characteristics. Key elements of the array were characterized and evaluated, demonstrating its viability of 2D imaging. Signal reproducibility of the prototype array was studied by characterizing the variations of the center frequency (≈42 MHz) and bandwidth (≈25 MHz) of the acoustic. Object identification was also tested and parameterized by acoustic-field beamwidth as well as proper scan step size. Simple tests to illustrate a benefit of multi-element scan on lowering the inspection time were conducted. Structural imaging of the test structure underneath multi-layered wave media (glass plate and distilled water) was also performed. The prototype presented in this work is an important step towards realizing an inexpensive, compact array of individually operated copolymer transducers that can serve in a fast/volumetric high frequency (HF) ultrasonic scanning platform.
Active noise control technique for diesel train locomotor exhaust noise abatement
NASA Astrophysics Data System (ADS)
Cotana, Franco; Rossi, Federico
2002-11-01
An original prototype for train locomotor exhaust gas pipe noise reduction (electronic muffler) is proposed: the system is based on an active noise control technique. An acoustical measurement campaign has shown that locomotor exhaust noise is characterized by very low frequency components (less than 80 Hz) and very high acoustic power (up to 110 dB). A peculiar electronic muffler characterized by high acoustical efficiency at very low frequencies has been designed and realized at Perugia University Acoustic Laboratory; it has been installed on an Italian D.245 train locomotor, equipped with a 500-kW diesel engine. The electronic muffler has been added to the traditional passive muffler. Very low transmission losses are introduced by the electronic muffler because of its particular shape; thus, engine efficiency does not further decrease. Canceling noise is generated by means of DSP-based numerical algorithm. Disturbing noise and canceling noise destructively interfere at the exhaust duct outlet section; outgoing noise is thus reduced. The control system reduces exhaust noise both in the steady and unsteady engine regime. Measurement results have shown that electronic muffler introduces up to 15 dB noise abatement in the low-frequency components.
Radio Monitoring of K2 Flare Star Wolf 359
NASA Astrophysics Data System (ADS)
Villadsen, Jacqueline; Wofford, Alia; Quintana, Elisa; Barclay, Thomas; Thackeray, Beverly
2018-01-01
Understanding M dwarf activity, including flares and eruptions, is important for characterizing exoplanet habitability. Active M dwarf Wolf 359, a well-known flare star, was in the Kepler K2 Campaign 14 field, with continuous high-cadence optical photometry throughout summer 2017. We have conducted a multi-wavelength observing campaign of this star to characterize the magnetic activity that would impact planets around such a star. I will present multi-band radio observations of this star, covering 250-500 MHz, 1-2 GHz, and 8-12 GHz, during a period with simultaneous optical photometry from K2. The higher frequency observations are sensitive to the population of non-thermal electrons in the stellar magnetosphere, and the low-frequency observations offer the potential to detect stellar ejecta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, R.; Lu, R.; Gong, S.
We demonstrate a room-temperature semiconductor-based photodetector where readout is achieved using a resonant radio-frequency (RF) circuit consisting of a microstrip split-ring resonator coupled to a microstrip busline, fabricated on a semiconductor substrate. The RF resonant circuits are characterized at RF frequencies as function of resonator geometry, as well as for their response to incident IR radiation. The detectors are modeled analytically and using commercial simulation software, with good agreement to our experimental results. Though the detector sensitivity is weak, the detector architecture offers the potential for multiplexing arrays of detectors on a single read-out line, in addition to high speedmore » response for either direct coupling of optical signals to RF circuitry, or alternatively, carrier dynamics characterization of semiconductor, or other, material systems.« less
Fast scanning probe for ophthalmic echography using an ultrasound motor.
Carotenuto, Riccardo; Caliano, Giosuè; Caronti, Alessandro; Savoia, Alessandro; Pappalardo, Massimo
2005-11-01
High-frequency transducers, up to 35-50 MHz, are widely used in ophthalmic echography to image fine eye structures. Phased-array techniques are not practically applicable at such a high frequency, due to the too small size required for the single transducer element, and mechanical scanning is the only practical alternative. At present, all ophthalmic ultrasound systems use focused single-element, mechanically scanned probes. A good probe positioning and image evaluation feedback requires an image refresh-rate of about 15-30 frames per second, which is achieved in commercial mechanical scanning probes by using electromagnetic motors. In this work, we report the design, construction, and experimental characterization of the first mechanical scanning probe for ophthalmic echography based on a small piezoelectric ultrasound motor. The prototype probe reaches a scanning rate of 15 sectors per second, with very silent operation and little weight. The first high-frequency echographic images obtained with the prototype probe are presented.
Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization
Hoff, Daniel E.M.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Mardini, Michael; Barnes, Alexander B.
2015-01-01
Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198 GHz MAS DNP probe. Our calculations show that a microwave power input of 17 W is required to generate an average EPR nutation frequency of 0.84 MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5 kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. PMID:26482131
Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization.
Hoff, Daniel E M; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Mardini, Michael; Barnes, Alexander B
2015-11-01
Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. Copyright © 2015 Elsevier Inc. All rights reserved.
Alahnomi, Rammah A; Zakaria, Z; Ruslan, E; Ab Rashid, S R; Mohd Bahar, Amyrul Azuan; Shaaban, Azizah
2017-01-01
A novel symmetrical split ring resonator (SSRR) based microwave sensor with spurline filters for detecting and characterizing the properties of solid materials has been developed. Due to the weak perturbation in the interaction of material under test (MUT) and planar microwave sensor, spurline filters were embedded to the SSRR microwave sensor which effectively enhanced Q-factor with suppressing the undesired harmonic frequency. The spurline filter structures force the presented sensor to resonate at a fundamental frequency of 2.2 GHz with the capabilities of suppressing rejected harmonic frequency and miniaturization in circuit size. A wide bandwidth rejection is achieved by using double spurlines filters with high Q-factor achievement (up to 652.94) compared to single spurline filter. The new SSRR sensor with spurline filters displayed desired properties such as high sensitivity, accuracy, and performance with a 1.3% typical percentage error in the measurement results. Furthermore, the sensor has been successfully applied for detecting and characterizing solid materials (such as Roger 5880, Roger 4350, and FR4) and evidently demonstrated that it can suppress the harmonic frequency effectively. This novel design with harmonic suppression is useful for various applications such as food industry (meat, fruit, vegetables), biological medicine (derived from proteins and other substances produced by the body), and Therapeutic goods (antiseptics, vitamins, anti-psychotics, and other medicines).
Ruslan, E.; Ab Rashid, S. R.; Mohd Bahar, Amyrul Azuan; Shaaban, Azizah
2017-01-01
A novel symmetrical split ring resonator (SSRR) based microwave sensor with spurline filters for detecting and characterizing the properties of solid materials has been developed. Due to the weak perturbation in the interaction of material under test (MUT) and planar microwave sensor, spurline filters were embedded to the SSRR microwave sensor which effectively enhanced Q-factor with suppressing the undesired harmonic frequency. The spurline filter structures force the presented sensor to resonate at a fundamental frequency of 2.2 GHz with the capabilities of suppressing rejected harmonic frequency and miniaturization in circuit size. A wide bandwidth rejection is achieved by using double spurlines filters with high Q-factor achievement (up to 652.94) compared to single spurline filter. The new SSRR sensor with spurline filters displayed desired properties such as high sensitivity, accuracy, and performance with a 1.3% typical percentage error in the measurement results. Furthermore, the sensor has been successfully applied for detecting and characterizing solid materials (such as Roger 5880, Roger 4350, and FR4) and evidently demonstrated that it can suppress the harmonic frequency effectively. This novel design with harmonic suppression is useful for various applications such as food industry (meat, fruit, vegetables), biological medicine (derived from proteins and other substances produced by the body), and Therapeutic goods (antiseptics, vitamins, anti-psychotics, and other medicines). PMID:28934301
Frequency Measurements of Superradiance from the Strontium Clock Transition
NASA Astrophysics Data System (ADS)
Norcia, Matthew A.; Cline, Julia R. K.; Muniz, Juan A.; Robinson, John M.; Hutson, Ross B.; Goban, Akihisa; Marti, G. Edward; Ye, Jun; Thompson, James K.
2018-04-01
We present the first characterization of the spectral properties of superradiant light emitted from the ultranarrow, 1-mHz-linewidth optical clock transition in an ensemble of cold
Straub, Shannon C.K.; Fishbein, Mark; Liston, Aaron
2015-01-01
Despite knowledge that concerted evolution of high-copy loci is often imperfect, studies that investigate the extent of intragenomic polymorphisms and comparisons across a large number of species are rarely made. We present a bioinformatic pipeline for characterizing polymorphisms within an individual among copies of a high-copy locus. Results are presented for nuclear ribosomal DNA (nrDNA) across the milkweed genus, Asclepias. The 18S-26S portion of the nrDNA cistron of Asclepias syriaca served as a reference for assembly of the region from 124 samples representing 90 species of Asclepias. Reads were mapped back to each individual’s consensus and at each position reads differing from the consensus were tallied using a custom perl script. Low frequency polymorphisms existed in all individuals (mean = 5.8%). Most nrDNA positions (91%) were polymorphic in at least one individual, with polymorphic sites being less frequent in subunit regions and loops. Highly polymorphic sites existed in each individual, with highest abundance in the “noncoding” ITS regions. Phylogenetic signal was present in the distribution of intragenomic polymorphisms across the genus. Intragenomic polymorphisms in nrDNA are common in Asclepias, being found at higher frequency than any other study to date. The high and variable frequency of polymorphisms across species highlights concerns that phylogenetic applications of nrDNA may be error-prone. The new analytical approach provided here is applicable to other taxa and other high-copy regions characterized by low coverage genome sequencing (genome skimming). PMID:25653903
High-resolution vascular tissue characterization in mice using 55MHz ultrasound hybrid imaging.
Mahmoud, Ahmed M; Sandoval, Cesar; Teng, Bunyen; Schnermann, Jurgen B; Martin, Karen H; Mustafa, S Jamal; Mukdadi, Osama M
2013-03-01
Ultrasound and Duplex ultrasonography in particular are routinely used to diagnose cardiovascular disease (CVD), which is the leading cause of morbidity and mortality worldwide. However, these techniques may not be able to characterize vascular tissue compositional changes due to CVD. This work describes an ultrasound-based hybrid imaging technique that can be used for vascular tissue characterization and the diagnosis of atherosclerosis. Ultrasound radiofrequency (RF) data were acquired and processed in time, frequency, and wavelet domains to extract six parameters including time integrated backscatter (T(IB)), time variance (T(var)), time entropy (T(E)), frequency integrated backscatter (F(IB)), wavelet root mean square value (W(rms)), and wavelet integrated backscatter (W(IB)). Each parameter was used to reconstruct an image co-registered to morphological B-scan. The combined set of hybrid images were used to characterize vascular tissue in vitro and in vivo using three mouse models including control (C57BL/6), and atherosclerotic apolipoprotein E-knockout (APOE-KO) and APOE/A(1) adenosine receptor double knockout (DKO) mice. The technique was tested using high-frequency ultrasound including single-element (center frequency=55 MHz) and commercial array (center frequency=40 MHz) systems providing superior spatial resolutions of 24 μm and 40 μm, respectively. Atherosclerotic vascular lesions in the APOE-KO mouse exhibited the highest values (contrast) of -10.11±1.92 dB, -12.13±2.13 dB, -7.54±1.45 dB, -5.10±1.06 dB, -5.25±0.94 dB, and -10.23±2.12 dB in T(IB), T(var), T(E), F(IB), W(rms), W(IB) hybrid images (n=10, p<0.05), respectively. Control segments of normal vascular tissue showed the lowest values of -20.20±2.71 dB, -22.54±4.54 dB, -14.94±2.05 dB, -9.64±1.34 dB, -10.20±1.27 dB, and -19.36±3.24 dB in same hybrid images (n=6, p<0.05). Results from both histology and optical images showed good agreement with ultrasound findings within a maximum error of 3.6% in lesion estimation. This study demonstrated the feasibility of a high-resolution hybrid imaging technique to diagnose atherosclerosis and characterize plaque components in mouse. In the future, it can be easily implemented on commercial ultrasound systems and eventually translated into clinics as a screening tool for atherosclerosis and the assessment of vulnerable plaques. Copyright © 2012 Elsevier B.V. All rights reserved.
Dynamic characterization of Galfenol
NASA Astrophysics Data System (ADS)
Scheidler, Justin J.; Asnani, Vivake M.; Deng, Zhangxian; Dapino, Marcelo J.
2015-04-01
A novel and precise characterization of the constitutive behavior of solid and laminated research-grade, polycrystalline Galfenol (Fe81:6Ga18:4) under under quasi-static (1 Hz) and dynamic (4 to 1000 Hz) stress loadings was recently conducted by the authors. This paper summarizes the characterization by focusing on the experimental design and the dynamic sensing response of the solid Galfenol specimen. Mechanical loads are applied using a high frequency load frame. The dynamic stress amplitude for minor and major loops is 2.88 and 31.4 MPa, respectively. Dynamic minor and major loops are measured for the bias condition resulting in maximum, quasi-static sensitivity. Three key sources of error in the dynamic measurements are accounted for: (1) electromagnetic noise in strain signals due to Galfenol's magnetic response, (2) error in load signals due to the inertial force of fixturing, and (3) time delays imposed by conditioning electronics. For dynamic characterization, strain error is kept below 1.2 % of full scale by wiring two collocated gauges in series (noise cancellation) and through lead wire weaving. Inertial force error is kept below 0.41 % by measuring the dynamic force in the specimen using a nearly collocated piezoelectric load washer. The phase response of all conditioning electronics is explicitly measured and corrected for. In general, as frequency increases, the sensing response becomes more linear due to an increase in eddy currents. The location of positive and negative saturation is the same at all frequencies. As frequency increases above about 100 Hz, the elbow in the strain versus stress response disappears as the active (soft) regime stiffens toward the passive (hard) regime.
Dynamic Characterization of Galfenol
NASA Technical Reports Server (NTRS)
Scheidler, Justin; Asnani, Vivake M.; Deng, Zhangxian; Dapino, Marcelo J.
2015-01-01
A novel and precise characterization of the constitutive behavior of solid and laminated research-grade, polycrystalline Galfenol (Fe81:6Ga18:4) under under quasi-static (1 Hz) and dynamic (4 to 1000 Hz) stress loadings was recently conducted by the authors. This paper summarizes the characterization by focusing on the experimental design and the dynamic sensing response of the solid Galfenol specimen. Mechanical loads are applied using a high frequency load frame. The dynamic stress amplitude for minor and major loops is 2.88 and 31.4 MPa, respectively. Dynamic minor and major loops are measured for the bias condition resulting in maximum, quasi-static sensitivity. Three key sources of error in the dynamic measurements are accounted for: (1) electromagnetic noise in strain signals due to Galfenol's magnetic response, (2) error in load signals due to the inertial force of fixturing, and (3) time delays imposed by conditioning electronics. For dynamic characterization, strain error is kept below 1.2 % of full scale by wiring two collocated gauges in series (noise cancellation) and through lead wire weaving. Inertial force error is kept below 0.41 % by measuring the dynamic force in the specimen using a nearly collocated piezoelectric load washer. The phase response of all conditioning electronics is explicitly measured and corrected for. In general, as frequency increases, the sensing response becomes more linear due to an increase in eddy currents. The location of positive and negative saturation is the same at all frequencies. As frequency increases above about 100 Hz, the elbow in the strain versus stress response disappears as the active (soft) regime stiffens toward the passive (hard) regime.
Field camera measurements of gradient and shim impulse responses using frequency sweeps.
Vannesjo, S Johanna; Dietrich, Benjamin E; Pavan, Matteo; Brunner, David O; Wilm, Bertram J; Barmet, Christoph; Pruessmann, Klaas P
2014-08-01
Applications of dynamic shimming require high field fidelity, and characterizing the shim field dynamics is therefore necessary. Modeling the system as linear and time-invariant, the purpose of this work was to measure the impulse response function with optimal sensitivity. Frequency-swept pulses as inputs are analyzed theoretically, showing that the sweep speed is a key factor for the measurement sensitivity. By adjusting the sweep speed it is possible to achieve any prescribed noise profile in the measured system response. Impulse response functions were obtained for the third-order shim system of a 7 Tesla whole-body MR scanner. Measurements of the shim fields were done with a dynamic field camera, yielding also cross-term responses. The measured shim impulse response functions revealed system characteristics such as response bandwidth, eddy currents and specific resonances, possibly of mechanical origin. Field predictions based on the shim characterization were shown to agree well with directly measured fields, also in the cross-terms. Frequency sweeps provide a flexible tool for shim or gradient system characterization. This may prove useful for applications involving dynamic shimming by yielding accurate estimates of the shim fields and a basis for setting shim pre-emphasis. Copyright © 2013 Wiley Periodicals, Inc.
Design of a CMOS integrated on-chip oscilloscope for spin wave characterization
NASA Astrophysics Data System (ADS)
Egel, Eugen; Meier, Christian; Csaba, György; Breitkreutz-von Gamm, Stephan
2017-05-01
Spin waves can perform some optically-inspired computing algorithms, e.g. the Fourier transform, directly than it is done with the CMOS logic. This article describes a new approach for on-chip characterization of spin wave based devices. The readout circuitry for the spin waves is simulated with 65-nm CMOS technology models. Commonly used circuits for Radio Frequency (RF) receivers are implemented to detect a sinusoidal ultra-wideband (5-50 GHz) signal with an amplitude of at least 15 μV picked up by a loop antenna. First, the RF signal is amplified by a Low Noise Amplifier (LNA). Then, it is down-converted by a mixer to Intermediate Frequency (IF). Finally, an Operational Amplifier (OpAmp) brings the IF signal to higher voltages (50-300 mV). The estimated power consumption and the required area of the readout circuit is approximately 55.5 mW and 0.168 mm2, respectively. The proposed On-Chip Oscilloscope (OCO) is highly suitable for on-chip spin wave characterization regarding the frequency, amplitude change and phase information. It offers an integrated low power alternative to current spin wave detecting systems.
Characterization of an Outdoor Ambient Radio Frequency Environment
2016-02-16
radio frequency noise ”) prior to testing of a specific system under test (SUT). With this characterization, locations can be selected to avoid RF...spectrum analyzer, ambient RF noise floor, RF interference 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...environment (sometimes referred to as “radio frequency noise ”) prior to testing of a specific system under test (SUT). With this characterization
NASA Astrophysics Data System (ADS)
Anderson, David T.; Davis, Scott; Nesbitt, David J.
1996-04-01
High resolution near infrared spectra of the two lowest frequency intermolecular modes in HF-stretch excited states of (HF)2 have been characterized using a slit-jet infrared spectrometer. In the spectral region surveyed, ten vibration-rotation-tunneling (VRT) bands are observed and assigned to the low frequency ``van der Waals stretch'' (ν4) and ``geared bend'' (ν5) intermolecular modes, in combination with either the hydrogen bond acceptor (ν1) or donor (ν2) high-frequency intramolecular HF stretches. Analysis of the rotationally resolved spectra provide intermolecular frequencies, rotational constants, tunneling splittings, and predissociation rates for the ν4/ν5 intermolecular excited states. The intermolecular vibrational frequencies in the combination states display a systematic dependence on intramolecular redshift that allows far-IR intermolecular frequencies to be reliably extrapolated from the near-IR data. Approximately tenfold increases in the hydrogen bond interconversion tunneling splittings with either ν4 or ν5 excitation indicate that both intermolecular modes correlate strongly to the tunneling coordinate. The high resolution VRT line shapes reveal mode specific predissociation broadening sensitive predominantly to intramolecular excitation, with weaker but significant additional effects due to low frequency intermolecular excitation. Analysis of the high resolution spectroscopic data for these ν4 and ν5 combination bands suggests strong state mixing between what has previously been considered van der Waals stretch and geared bend degrees of freedom.
NASA Astrophysics Data System (ADS)
Hung, Le Thanh; Phuoc, Nguyen N.; Wang, Xuan-Cong; Ong, C. K.
2011-08-01
A temperature dependence characterization system of microwave permeability of magnetic thin film up to 5 GHz in the temperature range from room temperature up to 423 K is designed and fabricated as a prototype measurement fixture. It is based on the near field microwave microscopy technique (NFMM). The scaling coefficient of the fixture can be determined by (i) calibrating the NFMM with a standard sample whose permeability is known; (ii) by calibrating the NFMM with an established dynamic permeability measurement technique such as shorted microstrip transmission line perturbation method; (iii) adjusting the real part of the complex permeability at low frequency to fit the value of initial permeability. The algorithms for calculating the complex permeability of magnetic thin films are analyzed. A 100 nm thick FeTaN thin film deposited on Si substrate by sputtering method is characterized using the fixture. The room temperature permeability results of the FeTaN film agree well with results obtained from the established short-circuited microstrip perturbation method. Temperature dependence permeability results fit well with the Landau-Lifshitz-Gilbert equation. The temperature dependence of the static magnetic anisotropy H_K^{sta}, the dynamic magnetic anisotropy H_K^{dyn}, the rotational anisotropy Hrot, together with the effective damping coefficient αeff, ferromagnetic resonance fFMR, and frequency linewidth Δf of the thin film are investigated. These temperature dependent magnetic properties of the magnetic thin film are important to the high frequency applications of magnetic devices at high temperatures.
Waldman, Zachary J.; Shimamoto, Shoichi; Song, Inkyung; Orosz, Iren; Bragin, Anatol; Fried, Itzhak; Engel, Jerome; Staba, Richard; Sperling, Michael R.; Weiss, Shennan A.
2018-01-01
Objective To develop a reliable software method using a topographic analysis of time-frequency plots to distinguish ripple (80–200 Hz) oscillations that are often associated with EEG sharp waves or spikes (RonS) from sinusoid-like waveforms that appear as ripples but correspond with digital filtering of sharp transients contained in the wide bandwidth EEG. Methods A custom algorithm distinguished true from false ripples in one second intracranial EEG (iEEG) recordings using wavelet convolution, identifying contours of isopower, and categorizing these contours into sets of open or closed loop groups. The spectral and temporal features of candidate groups were used to classify the ripple, and determine its duration, frequency, and power. Verification of detector accuracy was performed on the basis of simulations, and visual inspection of the original and band-pass filtered signals. Results The detector could distinguish simulated true from false ripple on spikes (RonS). Among 2934 visually verified trials of iEEG recordings and spectrograms exhibiting RonS the accuracy of the detector was 88.5% with a sensitivity of 81.8% and a specificity of 95.2%. The precision was 94.5% and the negative predictive value was 84.0% (N = 12). Among, 1,370 trials of iEEG recording exhibiting RonS that were reviewed blindly without spectrograms the accuracy of the detector was 68.0%, with kappa equal to 0.01 ± 0.03. The detector successfully distinguished ripple from high spectral frequency ‘fast ripple’ oscillations (200–600 Hz), and characterize ripple duration and spectral frequency and power. The detector was confounded by brief bursts of gamma (30–80 Hz) activity in 7.31 ± 6.09% of trials, and in 30.2 ± 14.4% of the true RonS detections ripple duration was underestimated. Conclusions Characterizing the topographic features of a time-frequency plot generated by wavelet convolution is useful for distinguishing true oscillations from false oscillations generated by filter ringing. Significance Categorizing ripple oscillations and characterizing their properties can improve the clinical utility of the biomarker. PMID:29122445
Characterization of Lasers for Use in Analog Photonic Links
2011-11-22
measurements. Trade-offs for each of the lasers characterized are discussed as well as their impact on analog photonic link performance. 22-11-2011... impact on the performance of a photonic link when it occurs with high intensity at radio and microwave frequencies such as decreased sensitivity and...from being straightforward. The first subtlety is the fact that the noise of the lasers will typically be below the noise floor of the electrical
High-Temperature RF Probe Station For Device Characterization Through 500 deg C and 50 GHz
NASA Technical Reports Server (NTRS)
Schwartz, Zachary D.; Downey, Alan N.; Alterovitz, Samuel A.; Ponchak, George E.; Williams, W. D. (Technical Monitor)
2003-01-01
A high-temperature measurement system capable of performing on-wafer microwave testing of semiconductor devices has been developed. This high temperature probe station can characterize active and passive devices and circuits at temperatures ranging from room temperature to above 500 C. The heating system uses a ceramic heater mounted on an insulating block of NASA shuttle tile material. The temperature is adjusted by a graphical computer interface and is controlled by the software-based feedback loop. The system is used with a Hewlett-Packard 8510C Network Analyzer to measure scattering parameters over a frequency range of 1 to 50 GHz. The microwave probes, cables, and inspection microscope are all shielded to protect from heat damage. The high temperature probe station has been successfully used to characterize gold transmission lines on silicon carbide at temperatures up to 540 C.
Hippocampal Sharp Wave Bursts Coincide with Neocortical "Up-State" Transitions
ERIC Educational Resources Information Center
Battaglia, Francesco P.; Sutherland, Gary R.; McNaughton, Bruce L.
2004-01-01
The sleeping neocortex shows nested oscillatory activity in different frequency ranges, characterized by fluctuations between "up-states" and "down-states." High-density neuronal ensemble recordings in rats now reveal the interaction between synchronized activity in the hippocampus and neocortex: Electroencephalographic sharp…
Active Control of High Frequency Combustion Instability in Aircraft Gas-Turbine Engines
NASA Technical Reports Server (NTRS)
Corrigan, Bob (Technical Monitor); DeLaat, John C.; Chang, Clarence T.
2003-01-01
Active control of high-frequency (greater than 500 Hz) combustion instability has been demonstrated in the NASA single-nozzle combustor rig at United Technologies Research Center. The combustor rig emulates an actual engine instability and has many of the complexities of a real engine combustor (i.e. actual fuel nozzle and swirler, dilution cooling, etc.) In order to demonstrate control, a high-frequency fuel valve capable of modulating the fuel flow at up to 1kHz was developed. Characterization of the fuel delivery system was accomplished in a custom dynamic flow rig developed for that purpose. Two instability control methods, one model-based and one based on adaptive phase-shifting, were developed and evaluated against reduced order models and a Sectored-1-dimensional model of the combustor rig. Open-loop fuel modulation testing in the rig demonstrated sufficient fuel modulation authority to proceed with closed-loop testing. During closed-loop testing, both control methods were able to identify the instability from the background noise and were shown to reduce the pressure oscillations at the instability frequency by 30%. This is the first known successful demonstration of high-frequency combustion instability suppression in a realistic aero-engine environment. Future plans are to carry these technologies forward to demonstration on an advanced low-emission combustor.
Nagle, Samuel M; Sundar, Guru; Schafer, Mark E; Harris, Gerald R; Vaezy, Shahram; Gessert, James M; Howard, Samuel M; Moore, Mary K; Eaton, Richard M
2013-11-01
This article examines the challenges associated with making acoustic output measurements at high ultrasound frequencies (>20 MHz) in the context of regulatory considerations contained in the US Food and Drug Administration industry guidance document for diagnostic ultrasound devices. Error sources in the acoustic measurement, including hydrophone calibration and spatial averaging, nonlinear distortion, and mechanical alignment, are evaluated, and the limitations of currently available acoustic measurement instruments are discussed. An uncertainty analysis of acoustic intensity and power measurements is presented, and an example uncertainty calculation is done on a hypothetical 30-MHz high-frequency ultrasound system. This analysis concludes that the estimated measurement uncertainty of the acoustic intensity is +73%/-86%, and the uncertainty in the mechanical index is +37%/-43%. These values exceed the respective levels in the Food and Drug Administration guidance document of 30% and 15%, respectively, which are more representative of the measurement uncertainty associated with characterizing lower-frequency ultrasound systems. Recommendations made for minimizing the measurement uncertainty include implementing a mechanical positioning system that has sufficient repeatability and precision, reconstructing the time-pressure waveform via deconvolution using the hydrophone frequency response, and correcting for hydrophone spatial averaging.
NASA Astrophysics Data System (ADS)
Tian, Ye; Zetterling, Carl-Mikael
2017-09-01
This paper presents a comprehensive investigation of the frequency response of a monolithic OpAmp-RC integrator implemented in a 4H-SiC bipolar IC technology. The circuits and devices have been measured and characterized from 27 to 500 °C. The devices have been modelled to identify that the substrate capacitance is a dominant factor affecting the OpAmp's high-frequency response. Large Miller compensation capacitors of more than 540 pF are required to ensure stability of the internal OpAmp. The measured unit-gain-bandwidth product of the OpAmp is ∼1.1 MHz at 27 °C, and decreases to ∼0.5 MHz at 500 °C mainly due to the reduction of the transistor's current gain. On the other hand, it is not necessary to compensate the integrator in a relatively wide bandwidth ∼0.7 MHz over the investigated temperature range. At higher frequencies, the integrator's frequency response has been identified to be significantly affected by that of the OpAmp and load impedance. This work demonstrates the potential of this technology for high temperature applications requiring bandwidths of several megahertz.
Exploiting LF/MF signals of opportunity for lower ionospheric remote sensing
NASA Astrophysics Data System (ADS)
Higginson-Rollins, Marc A.; Cohen, Morris B.
2017-08-01
We introduce a method to diagnose and track the D region ionosphere (60-100 km). This region is important for long-distance terrestrial communication and is impacted by a variety of geophysical phenomena, but it is traditionally very difficult to detect. Modern remote sensing methods used to study the D region are predominately near the very low frequency (VLF, 3-30 kHz) band, with some work also done in the high-frequency and very high frequency bands (HF/VHF, 3-300 MHz). However, the frequency band between VLF and HF has been largely ignored as a diagnostic tool for the ionosphere. In this paper, we evaluate the use of 300 kHz radio reflections as a diagnostic tool for characterizing the D region of the ionosphere. We present radio receiver data, analyze diurnal trends in the signal from these transmitters, and identify ionospheric disturbances impacting LF/MF propagation. We find that 300 kHz remote sensing may allow a unique method for D region diagnostics compared to both the VLF and HF/VHF frequency bands, due to a more direct ionospheric reflection coefficient calculation method with high temporal resolution without the use of forward modeling.
NASA Technical Reports Server (NTRS)
Tornabene, Robert
2005-01-01
In pulse detonation engines, the potential exists for gas pulses from the combustor to travel upstream and adversely affect the inlet performance of the engine. In order to determine the effect of these high frequency pulses on the inlet performance, an air pulsation valve was developed to provide air pulses downstream of a supersonic parametric inlet test section. The purpose of this report is to document the design and characterization tests that were performed on a pulsation valve that was tested at the NASA Glenn Research Center 1x1 Supersonic Wind Tunnel (SWT) test facility. The high air flow pulsation valve design philosophy and analyses performed are discussed and characterization test results are presented. The pulsation valve model was devised based on the concept of using a free spinning ball valve driven from a variable speed electric motor to generate air flow pulses at preset frequencies. In order to deliver the proper flow rate, the flow port was contoured to maximize flow rate and minimize pressure drop. To obtain sharp pressure spikes the valve flow port was designed to be as narrow as possible to minimize port dwell time.
Experimental dynamic characterizations and modelling of disk vibrations for HDDs.
Pang, Chee Khiang; Ong, Eng Hong; Guo, Guoxiao; Qian, Hua
2008-01-01
Currently, the rotational speed of spindle motors in HDDs (Hard-Disk Drives) are increasing to improve high data throughput and decrease rotational latency for ultra-high data transfer rates. However, the disk platters are excited to vibrate at their natural frequencies due to higher air-flow excitation as well as eccentricities and imbalances in the disk-spindle assembly. These factors contribute directly to TMR (Track Mis-Registration) which limits achievable high recording density essential for future mobile HDDs. In this paper, the natural mode shapes of an annular disk mounted on a spindle motor used in current HDDs are characterized using FEM (Finite Element Methods) analysis and verified with SLDV (Scanning Laser Doppler Vibrometer) measurements. The identified vibration frequencies and amplitudes of the disk ODS (Operating Deflection Shapes) at corresponding disk mode shapes are modelled as repeatable disturbance components for servo compensation in HDDs. Our experimental results show that the SLDV measurements are accurate in capturing static disk mode shapes without the need for intricate air-flow aero-elastic models, and the proposed disk ODS vibration model correlates well with experimental measurements from a LDV.
NASA Astrophysics Data System (ADS)
Abu-Nabah, Bassam A.
Recent research results indicated that eddy current conductivity measurements can be exploited for nondestructive evaluation of near-surface residual stresses in surface-treated nickel-base superalloy components. Most of the previous experimental studies were conducted on highly peened (Almen 10-16A) specimens that exhibit harmful cold work in excess of 30% plastic strain. Such high level of cold work causes thermo-mechanical relaxation at relatively modest operational temperatures; therefore the obtained results were not directly relevant to engine manufacturers and end users. The main reason for choosing peening intensities in excess of recommended normal levels was that in low-conductivity engine alloys the eddy current penetration depth could not be forced below 0.2 mm without expanding the measurements above 10 MHz which is beyond the operational range of most commercial eddy current instruments. As for shot-peened components, it was initially felt that the residual stress effect was more difficult to separate from cold work, texture, and inhomogeneity effects in titanium alloys than in nickel-base superalloys. In addition, titanium alloys have almost 50% lower electric conductivity than nickel-base superalloys; therefore require proportionally higher inspection frequencies, which was not feasible until our recent breakthrough in instrument development. Our work has been focused on six main aspects of this continuing research, namely, (i) the development of an iterative inversion technique to better retrieve the depth-dependent conductivity profile from the measured frequency-dependent apparent eddy current conductivity (AECC), (ii) the extension of the frequency range up to 80 MHz to better capture the peak compressive residual stress in nickel-base superalloys using a new eddy current conductivity measuring system, which offers better reproducibility, accuracy and measurement speed than the previously used conventional systems, (iii) the lift-off effect on high frequency eddy current spectroscopy, (iv) the development of custom-made spiral coils to allow eddy current conductivity characterization over the whole frequency range of interest with reduced coil sensitivity to lift off, (v) the benefits of implementing a semi-quadratic system calibration in reducing the coil sensitivity to lift-off, and (vi) the feasibility of adapting high-frequency eddy current residual stress characterization for shot-peened titanium alloys.
Articular cartilage degeneration classification by means of high-frequency ultrasound.
Männicke, N; Schöne, M; Oelze, M; Raum, K
2014-10-01
To date only single ultrasound parameters were regarded in statistical analyses to characterize osteoarthritic changes in articular cartilage and the potential benefit of using parameter combinations for characterization remains unclear. Therefore, the aim of this work was to utilize feature selection and classification of a Mankin subset score (i.e., cartilage surface and cell sub-scores) using ultrasound-based parameter pairs and investigate both classification accuracy and the sensitivity towards different degeneration stages. 40 punch biopsies of human cartilage were previously scanned ex vivo with a 40-MHz transducer. Ultrasound-based surface parameters, as well as backscatter and envelope statistics parameters were available. Logistic regression was performed with each unique US parameter pair as predictor and different degeneration stages as response variables. The best ultrasound-based parameter pair for each Mankin subset score value was assessed by highest classification accuracy and utilized in receiver operating characteristics (ROC) analysis. The classifications discriminating between early degenerations yielded area under the ROC curve (AUC) values of 0.94-0.99 (mean ± SD: 0.97 ± 0.03). In contrast, classifications among higher Mankin subset scores resulted in lower AUC values: 0.75-0.91 (mean ± SD: 0.84 ± 0.08). Variable sensitivities of the different ultrasound features were observed with respect to different degeneration stages. Our results strongly suggest that combinations of high-frequency ultrasound-based parameters exhibit potential to characterize different, particularly very early, degeneration stages of hyaline cartilage. Variable sensitivities towards different degeneration stages suggest that a concurrent estimation of multiple ultrasound-based parameters is diagnostically valuable. In-vivo application of the present findings is conceivable in both minimally invasive arthroscopic ultrasound and high-frequency transcutaneous ultrasound. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Characterization of Hearing Thresholds from 500 to 16,000 Hz in Dentists: A Comparative Study
Gonçalves, Claudia Giglio de Oliveira; Santos, Luciana; Lobato, Diolen; Ribas, Angela; Lacerda, Adriana Bender Moreira; Marques, Jair
2014-01-01
Introduction High-level noise exposure in dentists' workplaces may cause damages to the auditory systems. High-frequency audiometry is an important tool in the investigation in the early diagnosis of hearing loss. Objectives To analyze the auditory thresholds at frequencies from 500 to 16,000 Hz of dentists in the city of Curitiba. Methods This historic cohort study retrospectively tested hearing thresholds from 500 to 16,000 Hz with a group of dentists from Curitiba, in the state of Paraná, Brazil. Eighty subjects participated in the study, separated into a dentist group and a control group, with the same age range and gender across groups but with no history of occupational exposure to high levels of sound pressure in the control group. Subjects were tested with conventional audiometry and high-frequency audiometry and answered a questionnaire about exposure to noise. Results Results showed that 81% of dentists did not receive any information regarding noise at university; 6 (15%) dentists had sensorineural hearing impairment; significant differences were observed between the groups only at frequencies of 500 Hz and 1,000, 6,000 and 8,000 Hz in the right ear. There was no significant difference between the groups after analysis of mean hearing thresholds of high frequencies with the average hearing thresholds in conventional frequencies; subjects who had been working as dentists for longer than 10 years had worse tonal hearing thresholds at high frequencies. Conclusions In this study, we observed that dentists are at risk for the development of sensorineural hearing loss especially after 10 years of service. PMID:25992172
Zhang, R.R.; Ma, S.; Hartzell, S.
2003-01-01
In this article we use empirical mode decomposition (EMD) to characterize the 1994 Northridge, California, earthquake records and investigate the signatures carried over from the source rupture process. Comparison of the current study results with existing source inverse solutions that use traditional data processing suggests that the EMD-based characterization contains information that sheds light on aspects of the earthquake rupture process. We first summarize the fundamentals of the EMD and illustrate its features through the analysis of a hypothetical and a real record. Typically, the Northridge strong-motion records are decomposed into eight or nine intrinsic mode functions (IMF's), each of which emphasizes a different oscillation mode with different amplitude and frequency content. The first IMF has the highest-frequency content; frequency content decreases with an increase in IMF component. With the aid of a finite-fault inversion method, we then examine aspects of the source of the 1994 Northridge earthquake that are reflected in the second to fifth IMF components. This study shows that the second IMF is predominantly wave motion generated near the hypocenter, with high-frequency content that might be related to a large stress drop associated with the initiation of the earthquake. As one progresses from the second to the fifth IMF component, there is a general migration of the source region away from the hypocenter with associated longer-period signals as the rupture propagates. This study suggests that the different IMF components carry information on the earthquake rupture process that is expressed in their different frequency bands.
Zero-lag synchronization and bubbling in delay-coupled lasers.
Tiana-Alsina, J; Hicke, K; Porte, X; Soriano, M C; Torrent, M C; Garcia-Ojalvo, J; Fischer, I
2012-02-01
We show experimentally that two semiconductor lasers mutually coupled via a passive relay fiber loop exhibit chaos synchronization at zero lag, and study how this synchronized regime is lost as the lasers' pump currents are increased. We characterize the synchronization properties of the system with high temporal resolution in two different chaotic regimes, namely, low-frequency fluctuations and coherence collapse, identifying significant differences between them. In particular, a marked decrease in synchronization quality develops as the lasers enter the coherence collapse regime. Our high-resolution measurements allow us to establish that synchronization loss is associated with bubbling events, the frequency of which increases with increasing pump current.
NASA Astrophysics Data System (ADS)
Nowak, S.; Orefice, A.
1994-05-01
In today's high frequency systems employed for plasma diagnostics, power heating, and current drive the behavior of the wave beams is appreciably affected by the self-diffraction phenomena due to their narrow collimation. In the present article the three-dimensional propagation of Gaussian beams in inhomogeneous and anisotropic media is analyzed, starting from a properly formulated dispersion relation. Particular attention is paid, in the case of electromagnetic electron cyclotron (EC) waves, to the toroidal geometry characterizing tokamak plasmas, to the power density evolution on the advancing wave fronts, and to the absorption features occurring when a beam crosses an EC resonant layer.
NASA Technical Reports Server (NTRS)
Decrossas, Emmanuel; Glover, Michael D.; Porter, Kaoru; Cannon, Tom; Mantooth, H. Alan; Hamilton, M. C.
2013-01-01
Various stripline structures and flip chip interconnect designs for high-speed digital communication systems implemented in low temperature co-fired ceramic (LTCC) substrates are studied in this paper. Specifically, two different transition designs from edge launch 2.4 millimeter connectors to stripline transmission lines embedded in LTCC are discussed. After characterizing the DuPont (sup trademark) 9K7 green tape, different designs are proposed to improve signal integrity for high-speed digital data. The full-wave simulations and experimental data validate the presented designs over a broad frequency band from Direct Current to 50 gigahertz and beyond.
NASA Astrophysics Data System (ADS)
Bonnet, M.; Collino, F.; Demaldent, E.; Imperiale, A.; Pesudo, L.
2018-05-01
Ultrasonic Non-Destructive Testing (US NDT) has become widely used in various fields of applications to probe media. Exploiting the surface measurements of the ultrasonic incident waves echoes after their propagation through the medium, it allows to detect potential defects (cracks and inhomogeneities) and characterize the medium. The understanding and interpretation of those experimental measurements is performed with the help of numerical modeling and simulations. However, classical numerical methods can become computationally very expensive for the simulation of wave propagation in the high frequency regime. On the other hand, asymptotic techniques are better suited to model high frequency scattering over large distances but nevertheless do not allow accurate simulation of complex diffraction phenomena. Thus, neither numerical nor asymptotic methods can individually solve high frequency diffraction problems in large media, as those involved in UNDT controls, both quickly and accurately, but their advantages and limitations are complementary. Here we propose a hybrid strategy coupling the surface integral equation method and the ray tracing method to simulate high frequency diffraction under speed and accuracy constraints. This strategy is general and applicable to simulate diffraction phenomena in acoustic or elastodynamic media. We provide its implementation and investigate its performances for the 2D acoustic diffraction problem. The main features of this hybrid method are described and results of 2D computational experiments discussed.
Modal Analysis with the Mobile Modal Testing Unit
NASA Technical Reports Server (NTRS)
Wilder, Andrew J.
2013-01-01
Recently, National Aeronautics and Space Administration's (NASA's) White Sands Test Facility (WSTF) has tested rocket engines with high pulse frequencies. This has resulted in the use of some of WSTF's existing thrust stands, which were designed for static loading, in tests with large dynamic forces. In order to ensure that the thrust stands can withstand the dynamic loading of high pulse frequency engines while still accurately reporting the test data, their vibrational modes must be characterized. If it is found that they have vibrational modes with frequencies near the pulsing frequency of the test, then they must be modified to withstand the dynamic forces from the pulsing rocket engines. To make this determination the Mobile Modal Testing Unit (MMTU), a system capable of determining the resonant frequencies and mode shapes of a structure, was used on the test stands at WSTF. Once the resonant frequency has been determined for a test stand, it can be compared to the pulse frequency of a test engine to determine whether or not that stand can avoid resonance and reliably test that engine. After analysis of test stand 406 at White Sands Test Facility, it was determined that natural frequencies for the structure are located around 75, 125, and 240 Hz, and thus should be avoided during testing.
Toulabi, Mohammadreza; Bahrami, Shahab; Ranjbar, Ali Mohammad
2018-03-01
In most of the existing studies, the frequency response in the variable speed wind turbines (VSWTs) is simply realized by changing the torque set-point via appropriate inputs such as frequency deviations signal. However, effective dynamics and systematic process design have not been comprehensively discussed yet. Accordingly, this paper proposes a proportional-derivative frequency controller and investigates its performance in a wind farm consisting of several VSWTs. A band-pass filter is deployed before the proposed controller to avoid responding to either steady state frequency deviations or high rate of change of frequency. To design the controller, the frequency model of the wind farm is first characterized. The proposed controller is then designed based on the obtained open loop system. The stability region associated with the controller parameters is analytically determined by decomposing the closed-loop system's characteristic polynomial into the odd and even parts. The performance of the proposed controller is evaluated through extensive simulations in MATLAB/Simulink environment in a power system comprising a high penetration of VSWTs equipped with the proposed controller. Finally, based on the obtained feasible area and appropriate objective function, the optimal values associated with the controller parameters are determined using the genetic algorithm (GA). Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Wave Field Characterization Using Dual-Polarized Pulse-Doppler X-Band Radar
2012-06-01
spectrum (frequencies higher than that associated with the wind wave peak) are similar for the buoy and Doppler, and likewise for the ultrasound array and...values of the RCS and ultrasound array relative to the buoy and Doppler are due to the formers’ larger energy levels at high frequencies. NSWCCD-50-TR...pp. 199- 203, 2008. [II] W. J. Plant, W. C. Keller, A. B. Reeves, E. A. Uliana, and J. W. Johnson, " Airborne microwave Doppler measurements of
Identification and Characterization of uvrA, a DNA Repair Gene of Deinococcus radiodurans
1996-01-01
and Classificalion I 2 . TheCellWall 4 3. Intracellular Molecules 7 4. Genetics _ _ _ _ _.. 8 a. DNA COntent. 8 b. Chromosomes 8 c. Plasmids 10 d...Summary 11 B. DNA Damaging Agenls 12 I. Visible Light and Low-Frequency UV Radiation 12 2 . High-frequency UV Radiation 13 a. Pyrimidine DiIners 13 b. The...23 a. Photoreactivation Repair 23 b. Repair of Spore Pholoproducts 27 2 . Repair by Methods Involving Single Proteins 27 a. Repair of
NASA Astrophysics Data System (ADS)
García, R. A.; Salabert, D.; Ballot, J.; Sato, K.; Mathur, S.; Jiménez, A.
2011-01-01
The helioseismic Global Oscillation at Low Frequency (GOLF) and the Variability of solar Irradiance and Gravity Oscillations (VIRGO) instruments onboard SoHO, have been observing the Sun continuously for the last 14 years. In this preliminary work, we characterize the acoustic modes over the entire p-mode range in both, Doppler velocity and luminosity, with a special care for the low-frequency modes taking advantage of the stability and the high duty cycle of space observations.
Testing Fixture For Microwave Integrated Circuits
NASA Technical Reports Server (NTRS)
Romanofsky, Robert; Shalkhauser, Kurt
1989-01-01
Testing fixture facilitates radio-frequency characterization of microwave and millimeter-wave integrated circuits. Includes base onto which two cosine-tapered ridge waveguide-to-microstrip transitions fastened. Length and profile of taper determined analytically to provide maximum bandwidth and minimum insertion loss. Each cosine taper provides transformation from high impedance of waveguide to characteristic impedance of microstrip. Used in conjunction with automatic network analyzer to provide user with deembedded scattering parameters of device under test. Operates from 26.5 to 40.0 GHz, but operation extends to much higher frequencies.
NASA Astrophysics Data System (ADS)
Ohmichi, Eiji; Miki, Toshihiro; Horie, Hidekazu; Okamoto, Tsubasa; Takahashi, Hideyuki; Higashi, Yoshinori; Itoh, Shoichi; Ohta, Hitoshi
2018-02-01
We developed piezoresistive microcantilevers for mechanically detected electron spin resonance (ESR) in the millimeter-wave region. In this article, fabrication process and device characterization of our self-sensing microcantilevers are presented. High-frequency ESR measurements of a microcrystal of paramagnetic sample is also demonstrated at multiple frequencies up to 160 GHz at liquid helium temperature. Our fabrication is based on relatively simplified processes with silicon-on-insulator (SOI) wafers and spin-on diffusion doping, thus enabling cost-effective and time-saving cantilever fabrication.
Modulation characteristics of a high-power semiconductor Master Oscillator Power Amplifier (MOPA)
NASA Technical Reports Server (NTRS)
Cornwell, Donald Mitchell, Jr.
1992-01-01
A semiconductor master oscillator-power amplifier was demonstrated using an anti-reflection (AR) coated broad area laser as the amplifier. Under CW operation, diffraction-limited single-longitudinal-mode powers up to 340 mW were demonstrated. The characteristics of the far-field pattern were measured and compared to a two-dimensional reflective Fabry-Perot amplifier model of the device. The MOPA configuration was modulated by the master oscillator. Prior to injection into the amplifier, the amplitude and frequency modulation properties of the master oscillator were characterized. The frequency response of the MOPA configuration was characterized for an AM/FM modulated injection beam, and was found to be a function of the frequency detuning between the master oscillator and the resonant amplifier. A shift in the phase was also observed as a function of frequency detuning; this phase shift is attributed to the optical phase shift imparted to a wave reflected from a Fabry-Perot cavity. Square-wave optical pulses were generated at 10 MHz and 250 MHz with diffraction-limited peak powers of 200 mW and 250 mW. The peak power for a given modulation frequency is found to be limited by the injected power and the FM modulation at that frequency. The modulation results make the MOPA attractive for use as a transmitter source in applications such as free-space communications and ranging/altimetry.
Reid, David G.; Mason, Matthew J.; Chan, Benny K. K.; Duer, Melinda J.
2012-01-01
Ibliform barnacles are among the few invertebrate animals harnessing calcium phosphate to construct hard tissue. The 31P solid-state NMR (SSNMR) signal from the shell plates of Ibla cumingi (Iblidae) is broader than that of bone, and shifted by ca 1 ppm to low frequency. 1H–31P heteronuclear correlation (HETCOR) experiments show a continuum of different phosphorus/phosphate atomic environments, close to hydrogen populations with resonance frequencies between ca 10 and 20 ppm. Associated 1H and 31P chemical shifts argue the coexistence of weakly (high 31P frequency, low 1H frequency) to more strongly (lower 31P frequency, higher 1H frequency) hydrogen-bonded hydrogen phosphate-like molecular/ionic species. There is no resolved signal from discrete OH− ions. 13C SSNMR shows chitin, protein and other organic biomolecules but, unlike bone, there are no significant atomic scale organic matrix–mineral contacts. The poorly ordered hydrogen phosphate-like iblid mineral is strikingly different, structurally and compositionally, from both vertebrate bone mineral and the more crystalline fluoroapatite of the linguliform brachiopods. It probably represents a previously poorly characterized calcium phosphate biomineral, the evolution of which may have reflected either the chemical conditions of ancestral seas or the mechanical advantages of phosphatic biomineralization over a calcium carbonate equivalent. PMID:22298816
NASA Astrophysics Data System (ADS)
Floch, Jean-Michel Le; Bara, Romain; Hartnett, John G.; Tobar, Michael E.; Mouneyrac, David; Passerieux, Damien; Cros, Dominique; Krupka, Jerzy; Goy, Philippe; Caroopen, Sylvain
2011-05-01
Dielectric resonators are key components for many microwave and millimeter wave applications, including high-Q filters and frequency-determining elements for precision frequency synthesis. These often depend on the quality of the dielectric material. The commonly used material for building the best cryogenic microwave oscillators is sapphire. However, sapphire is becoming a limiting factor for higher frequency designs. It is, then, important to find new candidates that can fulfill the requirements for millimeter wave low noise oscillators at room and cryogenic temperatures. These clocks are used as a reference in many fields, such as modern telecommunication systems, radio astronomy (very-long-baseline interferometry), and precision measurements at the quantum limit. High resolution measurements were taken of the temperature-dependence of the electromagnetic properties of a polycrystalline diamond disk at temperatures between 35 and 330 K at microwave to submillimeter wave frequencies. The cryogenic measurements were made using a TE01δ dielectric mode resonator placed inside a vacuum chamber connected to a single-stage pulse-tube cryocooler. The high frequency characterization was performed at room temperature using a combination of a quasi-optical two-lens transmission setup, a Fabry-Perot cavity, and a whispering gallery mode resonator excited with waveguides. Our CVD diamond sample exhibits a decreasing loss tangent with increasing frequencies. We compare the results with well known crystals. This comparison makes it clear that polycrystalline diamond could be an important material for generating stable frequencies at millimeter waves.
Primitives for Active Internet Topology Mapping: Toward High-Frequency Characterization
2010-11-03
that a tension exists between the two conflict- ing goals of reducing probing traffic and capturing dynamic forwarding paths. Many networks deploy...perform alias resolution to future work. Acknowledgments The authors would like to thank Young Hyun, k. claffy and CAIDA for measurement
Terahertz Josephson spectral analysis and its applications
NASA Astrophysics Data System (ADS)
Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.
2017-04-01
Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.
Dielectric characterization of CuxS-NiySz/FNBR and CuS-NiySz/FNBR nanocomposites
NASA Astrophysics Data System (ADS)
Balayeva, Ofeliya O.; Azizov, Abdulsaid A.; Muradov, Mustafa B.; Eyvazova, Goncha M.
2017-06-01
CuxS-NiySz/FNBR and CuS-NiySz/FNBR nanocomposites (NCs) were prepared from β-NiS/FNBR by ion exchange method and dielectric characterized. Dielectric properties of NCs were investigated at the temperature of 26 °C-120 °C in 120-106 Hz frequency range. With measuring electric capacity and resistance of the samples at different frequency we have studied the dielectric permittivity, dielectric loss tangent, dielectric modulus, conductivity, relaxation times and Cole-Cole plots were obtained. At 120 °C measurement temperature, some of the destruction processes in polymers affect to interfacial interaction between the polymer and particles surface. After high temperature measurement all three samples were cooled to room temperature and their dielectric measurements were carried out at room temperature. It is observed that at high measurement temperature some of carriers transfer from one energy level to another and the dipole orientation did not return completely to the previous situation.
Characteristics of HPV infection in women at risk in Western Algeria.
Masdoua, N; Boublenza, L; Hassaine, H; Ngou, J; Nahet, A; Segondy, M; Razik, F; Regagba, D; Sadouki, N; Mouhammedi, D
2017-02-01
We aimed to characterize HPV infections and cervical lesions in Western Algeria. A total of 96 cervical samples obtained from women at risk of HPV infection (HIV-1-infected or presenting with a gynecological disease) were analyzed to characterize this infection and search for cytological abnormalities. A total of 60% of women at risk had an HPV infection. The rate of high-risk HPV (HR-HPV) infection among these women was 84.5% and that of intraepithelial lesions was 29.3%. The frequency of HPV infection was significantly higher among HIV-1-infected patients. An association between the presence of HR-HPV and the polygamy of the partner was observed. An association between cytological abnormalities and the use of oral contraceptives was observed among HIV-1-infected women. Given the high frequency of HPV infection in this at risk population, close monitoring and regular gynecological screening are essential. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Giusi, G; Giordano, O; Scandurra, G; Rapisarda, M; Calvi, S; Ciofi, C
2016-04-01
Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz(1/2), while DC performances are limited only by the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.
Synthesis and characterization of Al & SiCp nano particles by non-contact ultrasonic assisted method
NASA Astrophysics Data System (ADS)
Swain, Pradyut Kumar; Das, Ratnakar; Sahoo, Ashok Kumar; Naik, Bikash; Padhi, Payodhar
2018-05-01
The present study deals with proper mixing of SiCp nano particle in the aluminum metal matrix in two stages of processing i.e. primary and secondary. During primary processing, the breaking of agglomeration of nano particles take place and these are mixed with liquid aluminum powder using high frequency(35kHz) mechanical vibration. But, during secondary processing, mixing of nano particles along with subsequent cooling take place using high frequency non contact ultrasonic method. The study also reveals that in the liquid metal nano particle were uniformly dispersed and the segregation of the particles near the grain boundaries is due to pushing of the nano particle during grain growth. The study was performed by taking aluminum as matrix and SiCp as reinforcement with weight fraction of 2% and 3% and SiCp particles sizes of 30nm each. Scanning electron microscopy(SEM) and X-ray diffraction(XRD) were conducted for characterization of nano composite material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giusi, G.; Giordano, O.; Scandurra, G.
Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz{sup 1/2}, while DC performances are limited only bymore » the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulsson, Bjorn N.P.; Thornburg, Jon A.; He, Ruiqing
2015-04-21
Seismic techniques are the dominant geophysical techniques for the characterization of subsurface structures and stratigraphy. The seismic techniques also dominate the monitoring and mapping of reservoir injection and production processes. Borehole seismology, of all the seismic techniques, despite its current shortcomings, has been shown to provide the highest resolution characterization and most precise monitoring results because it generates higher signal to noise ratio and higher frequency data than surface seismic techniques. The operational environments for borehole seismic instruments are however much more demanding than for surface seismic instruments making both the instruments and the installation much more expensive. The currentmore » state-of-the-art borehole seismic instruments have not been robust enough for long term monitoring compounding the problems with expensive instruments and installations. Furthermore, they have also not been able to record the large bandwidth data available in boreholes or having the sensitivity allowing them to record small high frequency micro seismic events with high vector fidelity. To reliably achieve high resolution characterization and long term monitoring of Enhanced Geothermal Systems (EGS) sites a new generation of borehole seismic instruments must therefore be developed and deployed. To address the critical site characterization and monitoring needs for EGS programs, US Department of Energy (DOE) funded Paulsson, Inc. in 2010 to develop a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into ultra-high temperature and high pressure boreholes. Tests of the fiber optic seismic vector sensors developed on the DOE funding have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.6 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). Simultaneously with the fiber optic based seismic 3C vector sensors we are using the lead-in fiber to acquire Distributed Acoustic Sensor (DAS) data from the surface to the bottom of the vector array. While the DAS data is of much lower quality than the vector sensor data it provides a 1 m spatial sampling of the downgoing wavefield which will be used to build the high resolution velocity model which is an essential component in high resolution imaging and monitoring.« less
High resolution T2(*)-weighted Magnetic Resonance Imaging at 3 Tesla using PROPELLER-EPI.
Krämer, Martin; Reichenbach, Jürgen R
2014-05-01
We report the application of PROPELLER-EPI for high resolution T2(*)-weighted imaging with sub-millimeter in-plane resolution on a clinical 3 Tesla scanner. Periodically rotated blades of a long-axis PROPELLER-EPI sequence were acquired with fast gradient echo readout and acquisition matrix of 320 × 50 per blade. Images were reconstructed by using 2D-gridding, phase and geometric distortion correction and compensation of resonance frequency drifts that occurred during extended measurements. To characterize these resonance frequency offsets, short FID calibration measurements were added to the PROPELLER-EPI sequence. Functional PROPELLER-EPI was performed with volunteers using a simple block design of right handed finger tapping. Results indicate that PROPELLER-EPI can be employed for fast, high resolution T2(*)-weighted imaging provided geometric distortions and possible resonance frequency drifts are properly corrected. Even small resonance frequency drifts below 10 Hz as well as non-corrected geometric distortions degraded image quality substantially. In the initial fMRI experiment image quality and signal-to-noise ratio was sufficient for obtaining high resolution functional activation maps. Copyright © 2014. Published by Elsevier GmbH.
NASA Astrophysics Data System (ADS)
Zhong, Xiaoxi; Liu, Ying; Li, Jun; Wang, Yiwei
2012-08-01
FeSiAl is widely used in switching power supply, filter inductors and pulse transformers. But when used under higher frequencies in some particular condition, it is required to reduce its high-frequency loss. Preparing a homogeneous insulating coating with good heat resistance and high resistivity, such as AlN and Al2O3, is supposed to be an effective way to reduce eddy current loss, which is less focused on. In this project, mixed AlN and Al2O3 insulating layers were prepared on the surface of FeSiAl powders after 30 min exposure at 1100 °C in high purity nitrogen atmosphere, by means of surface nitridation and oxidation. The results revealed that the insulating layers increase the electrical resistivity, and hence decrease the loss factor, improve the frequency stability and increase the quality factor, especially in the high-frequency range. The morphologies, microstructure and compositions of the oxidized and nitrided products on the surface were characterized by Scanning Electron Microscopy/Energy Disperse Spectroscopy, X-Ray Diffraction, Transmission Electron Microscopy, Selected Area Electron Diffraction and X-ray Photoelectron Spectroscopy.
Yadav, Rana Pratap; Kumar, Sunil; Kulkarni, S V
2014-04-01
Design and development of a high power ultra-wideband, 3 dB tandem hybrid coupler is presented and its application in ICRF heating of the tokamak is discussed. In order to achieve the desired frequency band of 38-112 MHz and 200 kW power handling capability, the 3 dB hybrid coupler is developed using two 3-element 8.34 ± 0.2 dB coupled lines sections in tandem. In multi-element coupled lines, junctions are employed for the joining of coupled elements that produce the undesirable reactance called junction discontinuity effect. The effect becomes prominent in the high power multi-element coupled lines for high frequency (HF) and very high frequency(VHF) applications because of larger structural dimensions. Junction discontinuity effect significantly deteriorates coupling and output performance from the theoretical predictions. For the analysis of junction discontinuity effect and its compensation, a theoretical approach has been developed and generalized for n-element coupled lines section. The theory has been applied in the development of the 3 dB hybrid coupler. The fabricated hybrid coupler has been experimentally characterized using vector network analyzer and obtained results are found in good agreement with developed theory.
Sjöblom-Widfeldt, N
1990-01-01
For many years noradrenaline was considered to be the exclusive transmitter released from sympathetic nerves. However, during recent years both ATP and NPY have been suggested to be co-transmitters to noradrenaline in these nerves. The present study aimed to investigate the functional relationship between these suggested transmitters during nerve stimulation with different frequencies and in different extracellular calcium concentrations. Also the importance of the pattern of nerve stimulation and the potentiation of the neurogenic response after a period of high-frequency nerve stimulation were investigated. Contractions caused by nerve stimulation and applied agonists were investigated in segments of small mesenteric arteries from rat. The biophysical, electrophysiological, and pharmacological properties of these vessels are well characterized in previous studies. The rapid contraction caused by a single nerve stimulus, the "single twitch", and the initial, phasic contraction caused by high-frequency nerve stimulation were only slightly affected by alpha-adrenoceptor blockade with prazosin, whereas the tonic response to high-frequency stimulation was markedly reduced. The phasic responses and those to low-frequency nerve stimulation thus appear to be due mainly to a non-adrenergic transmitter. After inhibiting the response to exogenous ATP by alpha beta-methylene ATP, the response to single impulses and to low-frequency nerve stimulation were markedly reduced, while those to high-frequency stimulation were unaffected. This suggests that ATP acts as a true transmitter in sympathetic nerves, being responsible mainly for rapid responses to low-frequency stimulation, and for the initial part of responses to high-frequency stimulation. When alpha beta-methylene ATP and prazosin were given in combination, no contraction was obtained during nerve stimulation at any frequency. However, if in this situation a contraction was induced by e.g. exogenous vasopressin, field stimulation caused a further, slow contraction. This additional response was undoubtedly neurogenic, but required high-frequency nerve stimulation. The response to nerve stimulation was found to be calcium-dependent, the calcium-dependency being more pronounced at low than at high stimulation frequencies. A continuous, high-frequency (8-16 Hz) nerve stimulation could greatly (5-15 fold) enhance the response to subsequent low-frequency nerve stimulation. This potentiation increased with the frequency of the conditioning stimulation and, within limits, with the number of impulses delivered. Also the extracellular calcium concentration during the conditioning stimulation determined the magnitude of the potentiation. This post-tetanic potentiation has many characteristics in common with the post-tetanic potentiation studied in the central and somatomotor nervous system.(ABSTRACT TRUNCATED AT 400 WORDS)
Characterization of Defects in Scaled Mis Dielectrics with Variable Frequency Charge Pumping
NASA Astrophysics Data System (ADS)
Paulsen, Ronald Eugene
1995-01-01
Historically, the interface trap has been extensively investigated to determine the effects on device performance. Recently, much attention has been paid to trapping in near-interface oxide traps. Performance of high precision analog circuitry is affected by charge trapping in near-interface oxide traps which produces hysteresis, charge redistribution errors, and dielectric relaxation effects. In addition, the performance of low power digital circuitry, with reduced noise margins, may be drastically affected by the threshold voltage shifts associated with charge trapping in near -interface oxide traps. Since near-interface oxide traps may substantially alter the performance of devices, complete characterization of these defects is necessary. In this dissertation a new characterization technique, variable frequency charge pumping, is introduced which allows charge trapped at the interface to be distinguished from the charge trapped within the oxide. The new experimental technique is an extension of the charge pumping technique to low frequencies such that tunneling may occur from interface traps to near-interface oxide traps. A generalized charge pumping model, based on Shockley-Read-Hall statistics and trap-to-trap tunneling theory, has been developed which allows a more complete characterization of near-interface oxide traps. A pair of coupled differential equations governing the rate of change of occupied interface and near-interface oxide traps have been developed. Due to the experimental conditions in the charge pumping technique the equations may be decoupled, leading to an equation governing the rate of change of occupied interface traps and an equation governing the rate of change of occcupied near-interface oxide traps. Solving the interface trap equation and applying non-steady state charge dynamics leads to an interface trap component of the charge pumping current. In addition, solution to the near-interface oxide trap equation leads to an additional oxide trap component to the charge pumping current. Numerical simulations have been performed to support the analytical development of the generalized charge pumping model. By varying the frequency of the applied charge pumping waveform and monitoring the charge recombined per cycle, the contributions from interface traps may be separated from the contributions of the near-interface oxide traps. The generalized charge pumping model allows characterization of the density and spatial distribution of near-interface oxide traps from this variable frequency charge pumping technique. Characterization of interface and near-interface oxide trap generation has been performed on devices exposed to ionizing radiation, hot electron injection, and high -field/Fowler-Nordheim stressing. Finally, using SONOS nonvolatile memory devices, a framework has been established for experimentally determining not only the spatial distribution of near-interface oxide traps, but also the energetic distribution. An experimental approach, based on tri-level charge pumping, is discussed which allows the energetic distribution of near-interface oxide traps to be determined.
Significant Features of Warm Season Water Vapor Flux Related to Heavy Rainfall and Draught in Japan
NASA Astrophysics Data System (ADS)
Nishiyama, Koji; Iseri, Yoshihiko; Jinno, Kenji
2009-11-01
In this study, our objective is to reveal complicated relationships between spatial water vapor inflow patterns and heavy rainfall activities in Kyushu located in the western part of Japan, using the outcomes of pattern recognition of water vapor inflow, based on the Self-Organizing Map. Consequently, it could be confirmed that water vapor inflow patterns control the distribution and the frequency of heavy rainfall depending on the direction of their fluxes and the intensity of Precipitable water. Historically serious flood disasters in South Kyushu in 1993 were characterized by high frequency of the water vapor inflow patterns linking to heavy rainfall. On the other hand, severe draught in 1994 was characterized by inactive frontal activity that do not related to heavy rainfall.
Characterization of conductive Al-doped ZnO thin films for plasmonic applications
NASA Astrophysics Data System (ADS)
Masouleh, F. F.; Sinno, I.; Buckley, R. G.; Gouws, G.; Moore, C. P.
2018-02-01
Highly conductive and transparent Al-doped zinc oxide films were produced by RF magnetron sputtering for plasmonic applications in the infrared region of the spectrum. These films were characterized using Fourier transform infrared spectroscopy, the Hall effect, Rutherford backscattering spectroscopy and spectral data analysis. Analysis of the results shows a carrier concentration of up to 2.6 × 1020 cm-3, as well as transmission over 80% near the plasma frequency where plasmonic properties are expected. The plasma frequency was calculated from the spectroscopy measurements and subsequent data analysis, and was in agreement with the results from the Hall effect measurements and the free electron gas (Drude) model. Based on these results, the Al-doped zinc oxide thin films are well-suited for plasmonic applications in the infrared region.
Li, R K; To, H; Andonian, G; Feng, J; Polyakov, A; Scoby, C M; Thompson, K; Wan, W; Padmore, H A; Musumeci, P
2013-02-15
We experimentally investigate surface-plasmon assisted photoemission to enhance the efficiency of metallic photocathodes for high-brightness electron sources. A nanohole array-based copper surface was designed to exhibit a plasmonic response at 800 nm, fabricated using the focused ion beam milling technique, optically characterized and tested as a photocathode in a high power radio frequency photoinjector. Because of the larger absorption and localization of the optical field intensity, the charge yield observed under ultrashort laser pulse illumination is increased by more than 100 times compared to a flat surface. We also present the first beam characterization results (intrinsic emittance and bunch length) from a nanostructured photocathode.
High Efficiency Carbon Nanotube Thread Antennas
NASA Astrophysics Data System (ADS)
Bengio, Elie; Senic, Damir; Taylor, Lauren; Tsentalovich, Dmitri; Chen, Peiyu; Holloway, Christopher; Novotny, David; Babakhani, Aydin; Long, Christopher; Booth, James; Orloff, Nathan; Pasquali, Matteo
Although previous research has explored the underlying theory of high-frequency behavior of carbon nanotubes (CNTs) and CNT bundles for antennas, there is a gap in the literature for direct experimental measurements of radiation efficiency. Here we report a novel measurement technique to accurately characterize the radiation efficiency of quarter-wavelength monopole antennas made from CNT thread. At medical device (1 GHz) and Wi-Fi (2.4 GHz) frequencies, we measured the highest absolute values of radiation efficiency in the literature for CNT antennas, matching that of copper wire. We also report the first direct experimental observation that, contrary to metals, the radiation efficiency of the CNT thread improves significantly at higher frequencies. These results pave the way for practical applications of CNT thread antennas, particularly in the aerospace and wearable electronics industries where weight saving is a priority.
NASA Astrophysics Data System (ADS)
Gu, Hongan; Dai, Ye; Wang, Haodong; Yan, Xiaona; Ma, Guohong
2017-12-01
In this paper, a femtosecond laser line-scanning irradiation was used to induce the periodic surface microstructure on HgCdTe crystal. Low spatial frequency laser induced periodic surface structures of 650-770 nm and high spatial frequency laser induced periodic surface structures of 152-246 nm were respectively found with different scanning speeds. The evolution process from low spatial frequency laser induced periodic surface structures to high spatial frequency laser induced periodic surface structures is characterized by scanning electron microscope. Their spatial periods deduced by using a two-dimensional Fourier transformation partly agree with the predictions of the Sipe-Drude theory. Confocal micro-Raman spectral show that the atomic arrangement of induced low spatial frequency laser-induced structures are basically consistent with the crystal in the central area of laser-scanning line, however a new peak at 164 cm-1 for the CdTe-like mode becomes evident due to the Hg vaporization when strong laser ablation happens. The obtained surface periodic ripples may have applications in fabricating advanced infrared detector.
Nonlinear dynamics of the human lumbar intervertebral disc.
Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J
2015-02-05
Systems with a quasi-static response similar to the axial response of the intervertebral disc (i.e. progressive stiffening) often present complex dynamics, characterized by peculiar nonlinearities in the frequency response. However, such characteristics have not been reported for the dynamic response of the disc. The accurate understanding of disc dynamics is essential to investigate the unclear correlation between whole body vibration and low back pain. The present study investigated the dynamic response of the disc, including its potential nonlinear response, over a range of loading conditions. Human lumbar discs were tested by applying a static preload to the top and a sinusoidal displacement at the bottom of the disc. The frequency of the stimuli was set to increase linearly from a low frequency to a high frequency limit and back down. In general, the response showed nonlinear and asymmetric characteristics. For each test, the disc had different response in the frequency-increasing compared to the frequency-decreasing sweep. In particular, the system presented abrupt changes of the oscillation amplitude at specific frequencies, which differed between the two sweeps. This behaviour indicates that the system oscillation has a different equilibrium condition depending on the path followed by the stimuli. Preload and amplitude of the oscillation directly influenced the disc response by changing the nonlinear dynamics and frequency of the jump-phenomenon. These results show that the characterization of the dynamic response of physiological systems should be readdressed to determine potential nonlinearities. Their direct effect on the system function should be further investigated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Aeroacoustic Measurements of a Wing-Flap Configuration
NASA Technical Reports Server (NTRS)
Meadows, Kristine R.; Brooks, Thomas F.; Humphreys, William M.; Hunter, William H.; Gerhold, Carl H.
1997-01-01
Aeroacoustic measurements are being conducted to investigate the mechanisms of sound generation in high-lift wing configurations, and initial results are presented. The model is approximately 6 percent of a full scale configuration, and consists of a main element NACA 63(sub 2) - 215 wing section and a 30 percent chord half-span flap. Flow speeds up to Mach 0.17 are tested at Reynolds number up to approximately 1.7 million. Results are presented for a main element at a 16 degree angle of attack, and flap deflection angles of 29 and 39 degrees. The measurement systems developed for this test include two directional arrays used to localize and characterize the noise sources, and an array of unsteady surface pressure transducers used to characterize wave number spectra and correlate with acoustic measurements. Sound source localization maps show that locally dominant noise sources exist on the flap-side edge. The spectral distribution of the noise sources along the flap-side edge shows a decrease in frequency of the locally dominant noise source with increasing distance downstream of the flap leading edge. Spectra are presented which show general spectral characteristics of Strouhal dependent flow-surface interaction noise. However, the appearance of multiple broadband tonal features at high frequency indicates the presence of aeroacoustic phenomenon following different scaling characteristics. The scaling of the high frequency aeroacoustic phenomenon is found to be different for the two flap deflection angles tested. Unsteady surface pressure measurements in the vicinity of the flap edge show high coherence levels between adjacent sensors on the flap-side edge and on the flap edge upper surface in a region which corresponds closely to where the flap-side edge vortex begins to spill over to the flap upper surface. The frequency ranges where these high levels of coherence occur on the flap surface are consistent with the frequency ranges in which dominant features appear in far field acoustic spectra. The consistency of strongly correlated unsteady surface pressures and far field pressure fluctuations suggests the importance of regions on the flap edge in generating sound.
Jiang, Tianxiao; Liu, Su; Pellizzer, Giuseppe; Aydoseli, Aydin; Karamursel, Sacit; Sabanci, Pulat A.; Sencer, Altay; Gurses, Candan; Ince, Nuri F.
2018-01-01
Functional mapping of eloquent cortex before the resection of a tumor is a critical procedure for optimizing survival and quality of life. In order to locate the hand area of the motor cortex in two patients with low-grade gliomas (LGG), we recorded electrocorticogram (ECoG) from a 113 channel hybrid high-density grid (64 large contacts with diameter of 2.7 mm and 49 small contacts with diameter of 1 mm) while they executed hand clenching movements. We investigated the spatio-spectral characteristics of the neural oscillatory activity and observed that, in both patients, the hand movements were consistently associated with a wide spread power decrease in the low frequency band (LFB: 8–32 Hz) and a more localized power increase in the high frequency band (HFB: 60–280 Hz) within the sensorimotor region. Importantly, we observed significant power increase in the ultra-high frequency band (UFB: 300–800 Hz) during hand movements of both patients within a restricted cortical region close to the central sulcus, and the motor cortical “hand knob.” Among all frequency bands we studied, the UFB modulations were closest to the central sulcus and direct cortical stimulation (DCS) positive site. Both HFB and UFB modulations exhibited different timing characteristics at different locations. Power increase in HFB and UFB starting before movement onset was observed mostly at the anterior part of the activated cortical region. In addition, the spatial patterns in HFB and UFB indicated a probable postcentral shift of the hand motor function in one of the patients. We also compared the task related subband modulations captured by the small and large contacts in our hybrid grid. We did not find any significant difference in terms of band power changes. This study shows initial evidence that event-driven neural oscillatory activity recorded from ECoG can reach up to 800 Hz. The spatial distribution of UFB oscillations was found to be more focalized and closer to the central sulcus compared to LFB and HFB. More studies are needed to characterize further the functional significance of UFB relative to LFB and HFB. PMID:29535603
Jiang, Tianxiao; Liu, Su; Pellizzer, Giuseppe; Aydoseli, Aydin; Karamursel, Sacit; Sabanci, Pulat A; Sencer, Altay; Gurses, Candan; Ince, Nuri F
2018-01-01
Functional mapping of eloquent cortex before the resection of a tumor is a critical procedure for optimizing survival and quality of life. In order to locate the hand area of the motor cortex in two patients with low-grade gliomas (LGG), we recorded electrocorticogram (ECoG) from a 113 channel hybrid high-density grid (64 large contacts with diameter of 2.7 mm and 49 small contacts with diameter of 1 mm) while they executed hand clenching movements. We investigated the spatio-spectral characteristics of the neural oscillatory activity and observed that, in both patients, the hand movements were consistently associated with a wide spread power decrease in the low frequency band (LFB: 8-32 Hz) and a more localized power increase in the high frequency band (HFB: 60-280 Hz) within the sensorimotor region. Importantly, we observed significant power increase in the ultra-high frequency band (UFB: 300-800 Hz) during hand movements of both patients within a restricted cortical region close to the central sulcus, and the motor cortical "hand knob." Among all frequency bands we studied, the UFB modulations were closest to the central sulcus and direct cortical stimulation (DCS) positive site. Both HFB and UFB modulations exhibited different timing characteristics at different locations. Power increase in HFB and UFB starting before movement onset was observed mostly at the anterior part of the activated cortical region. In addition, the spatial patterns in HFB and UFB indicated a probable postcentral shift of the hand motor function in one of the patients. We also compared the task related subband modulations captured by the small and large contacts in our hybrid grid. We did not find any significant difference in terms of band power changes. This study shows initial evidence that event-driven neural oscillatory activity recorded from ECoG can reach up to 800 Hz. The spatial distribution of UFB oscillations was found to be more focalized and closer to the central sulcus compared to LFB and HFB. More studies are needed to characterize further the functional significance of UFB relative to LFB and HFB.
NASA Astrophysics Data System (ADS)
Samanta, T.; Singh, J.; Sindhuja, G.; Banerjee, D.
2016-01-01
During the total solar eclipse of 11 July 2010, multi-slit spectroscopic observations of the solar corona were performed from Easter Island, Chile. To search for high-frequency waves, observations were taken at a high cadence in the green line at 5303 Å that is due to [Fe xiv] and the red line at 6374 Å that is due to [Fe x]. The data were analyzed to study the periodic variations in intensity, Doppler velocity, and line width using wavelet analysis. The data with high spectral and temporal resolution enabled us to study the rapid dynamical changes within coronal structures. We find that at certain locations, each parameter shows significant oscillation with periods ranging from 6 - 25 s. For the first time, we were able to detect damping of high-frequency oscillations with periods of about 10 s. If the observed damped oscillations are due to magnetohydrodynamic waves, then they can contribute significantly to the heating of the corona. From a statistical study we try to characterize the nature of the observed oscillations while considering the distribution of power in different line parameters.
Experimental Study on an Unsteady Pressure Gain Combustion Hypergolic Rocket Engine Concept
NASA Astrophysics Data System (ADS)
Kan, Brandon K.
An experimental study is conducted to investigate pulsed combustion in a lab-scale bipropellant rocket engine using hypergolic propellants. The propellant combination is high concentration hydrogen peroxide and a catalyst-laced triglyme fuel. A total of 50 short duration firings have been conducted; the vast majority in an open-chamber configuration. High amplitude pulsations were evident in nearly all cases and have been assessed with high frequency pressure measurements. Both pintle and unlike impinging quadlet injector types have been evaluated although the bulk of the testing was with the latter configuration. Several firings were conducted with a transparent chamber in an attempt to gain understanding using a high-speed camera in the visible spectrum. Peak chamber pressures in excess of 5000 psi have been recorded with surface mounted high frequency gages with pulsation frequencies exceeding 600 Hz. A characterization of time-averaged performance is made for the unsteady system, where time-resolved thrust and pressure measurements were attempted. While prior literature describes this system as a pulse detonation rocket engine, the combustion appears to be more "constant volume" in nature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Framgos, William
1999-06-01
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2002-11-20
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex
2000-06-01
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach (Song et al., 1997). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2001-06-10
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
PMN-PT Single-Crystal High-Frequency Kerfless Phased Array
Chen, Ruimin; Cabrera-Munoz, Nestor E.; Lam, Kwok Ho; Hsu, Hsiu-sheng; Zheng, Fan; Zhou, Qifa; Shung, K. Kirk
2015-01-01
This paper reports the design, fabrication, and characterization of a miniature high-frequency kerfless phased array prepared from a PMN-PT single crystal for forward-looking intravascular or endoscopic imaging applications. After lapping down to around 40 μm, the PMN-PT material was utilized to fabricate 32-element kerfless phased arrays using micromachining techniques. The aperture size of the active area was only 1.0 × 1.0 mm. The measured results showed that the array had a center frequency of 40 MHz, a bandwidth of 34% at −6 dB with a polymer matching layer, and an insertion loss of 20 dB at the center frequency. Phantom images were acquired and compared with simulated images. The results suggest that the feasibility of developing a phased array mounted at the tip of a forward-looking intravascular catheter or endoscope. The fabricated array exhibits much higher sensitivity than PZT ceramic-based arrays and demonstrates that PMN-PT is well suited for this application. PMID:24859667
Plasma oscillations in a 6-kW magnetically shielded Hall thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorns, Benjamin A., E-mail: benjamin.a.jorns@jpl.nasa.gov; Hofer, Richard R.
2014-05-15
Plasma oscillations from 0–100 kHz in a 6-kW magnetically shielded Hall thruster are experimentally characterized with a high-speed, optical camera. Two modes are identified at 7–12 kHz and 70–90 kHz. The low frequency mode is found to be azimuthally uniform across the thruster face, while the high frequency oscillation is peaked close to the centerline-mounted cathode with an m = 1 azimuthal dependence. An analysis of these results in the context of wave-based theory suggests that the low frequency wave is the breathing mode oscillation, while the higher frequency mode is gradient-driven. The effect of these oscillations on thruster operation is examined through an analysismore » of thruster discharge current and a comparison with published observations from an unshielded variant of the thruster. Most notably, it is found that although the oscillation spectra of the two thrusters are different, they exhibit nearly identical steady-state behavior.« less
NASA Astrophysics Data System (ADS)
Tang, Panpan; Chen, Fulong; Jiang, Aihui; Zhou, Wei; Wang, Hongchao; Leucci, Giovanni; de Giorgi, Lara; Sileo, Maria; Luo, Rupeng; Lasaponara, Rosa; Masini, Nicola
2018-04-01
This study presents the potential of multi-frequency electromagnetic induction (EMI) in archaeology. EMI is currently less employed for archaeological prospection with respect to other geophysical techniques. It is capable of identifying shallow subsurface relics by simultaneously measuring the apparent electrical conductivity (ECa) and apparent magnetic susceptibility (MSa). Moreover, frequency sounding is able to quantify the depths and vertical shapes of buried structures. In this study, EMI surveys with five frequencies were performed at two heritage sites with different geological conditions: Han Hangu Pass characterized by cinnamon soil and Xishan Yang by sandy loams. In the first site, high ECa values were observed with variations in depth correlated to archaeological remains. Moreover, electromagnetic anomalies related to an ancient road and five kiln caves were identified. In the second site, an ancient tomb, indicating extremely low ECa and high MSa, was discovered. Its electromagnetic properties are attributed to the cavity and ferroferric oxides.
Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths.
Ledermann, Alexandra; Cademartiri, Ludovico; Hermatschweiler, Martin; Toninelli, Costanza; Ozin, Geoffrey A; Wiersma, Diederik S; Wegener, Martin; von Freymann, Georg
2006-12-01
Quasicrystals are a class of lattices characterized by a lack of translational symmetry. Nevertheless, the points of the lattice are deterministically arranged, obeying rotational symmetry. Thus, we expect properties that are different from both crystals and glasses. Indeed, naturally occurring electronic quasicrystals (for example, AlPdMn metal alloys) show peculiar electronic, vibrational and physico-chemical properties. Regarding artificial quasicrystals for electromagnetic waves, three-dimensional (3D) structures have recently been realized at GHz frequencies and 2D structures have been reported for the near-infrared region. Here, we report on the first fabrication and characterization of 3D quasicrystals for infrared frequencies. Using direct laser writing combined with a silicon inversion procedure, we achieve high-quality silicon inverse icosahedral structures. Both polymeric and silicon quasicrystals are characterized by means of electron microscopy and visible-light Laue diffraction. The diffraction patterns of structures with a local five-fold real-space symmetry axis reveal a ten-fold symmetry as required by theory for 3D structures.
NASA Astrophysics Data System (ADS)
Zhou, Ping; Barkhaus, Paul E.; Zhang, Xu; Zev Rymer, William
2011-10-01
This paper presents a novel application of the approximate entropy (ApEn) measurement for characterizing spontaneous motor unit activity of amyotrophic lateral sclerosis (ALS) patients. High-density surface electromyography (EMG) was used to record spontaneous motor unit activity bilaterally from the thenar muscles of nine ALS subjects. Three distinct patterns of spontaneous motor unit activity (sporadic spikes, tonic spikes and high-frequency repetitive spikes) were observed. For each pattern, complexity was characterized by calculating the ApEn values of the representative signal segments. A sliding window over each segment was also introduced to quantify the dynamic changes in complexity for the different spontaneous motor unit patterns. We found that the ApEn values for the sporadic spikes were the highest, while those of the high-frequency repetitive spikes were the lowest. There is a significant difference in mean ApEn values between two arbitrary groups of the three spontaneous motor unit patterns (P < 0.001). The dynamic ApEn curve from the sliding window analysis is capable of tracking variations in EMG activity, thus providing a vivid, distinctive description for different patterns of spontaneous motor unit action potentials in terms of their complexity. These findings expand the existing knowledge of spontaneous motor unit activity in ALS beyond what was previously obtained using conventional linear methods such as firing rate or inter-spike interval statistics.
NASA Astrophysics Data System (ADS)
Sesnic, S.; Holland, A.; Kaita, R.; Kaye, S. M.; Okabayashi, M.; Takahashi, H.; Asakura, N.; Bell, R. E.; Bernabei, S.; Chance, M. S.; Duperrex, P.-A.; Fonck, R. J.; Gammel, G. M.; Greene, G. J.; Hatcher, R. E.; Jardin, S. C.; Jiang, T.; Kessel, C. E.; Kugel, H. W.; Leblanc, B.; Levinton, F. M.; Manickam, J.; Ono, M.; Paul, S. F.; Powell, E. T.; Qin, Y.; Roberts, D. W.; Sauthoff, N. R.
1993-12-01
High frequency pressure driven modes have been observed in high poloidal beta discharges in the Princeton Beta Experiment Modification (PBX-M). These modes are excited in a non-axisymmetric equilibrium characterized by a large, low frequency mt = 1/nt = 1 island, and they are capable of expelling fast ions. The modes reside on or very close to the q = 1 surface and have mode numbers with either mh = nh or (less probably) mh/nh = mh/(mh-1), with mh varying between 3 and 10. Occasionally these modes are simultaneously localized in the vicinity of the ml = 2/nl = 1 island. The high frequency modes near the q = 1 surface also exhibit a ballooning character, being significantly stronger on the large major radius side of the plasma. When a large mt = 1/nt = 1 island is present, the mode is poloidally localized in the immediate vicinity of the X point of the island. The modes occur exclusively in high beta beam heated discharges and are likely to be driven by the beam ions. They can thus be a manifestation of either a toroidicity induced shear Alfven eigenmode (TAE) at q = (2mh+1)/2nh, a kinetic ballooning mode, or some other type of pressure driven (high β) mode. Most of the data are consistent with the theoretical predictions for the TAE gap mode. Since the high frequency modes in PBX-M, however, are found exclusively on or in the immediate neighbourhood of magnetic surfaces with low rational numbers (q = 1, 2,...), other possibilities are not excluded
Characterization of Fault Size in Bearings
2014-12-23
suggests to use the ratio between the horizontal and the vertical RMS as an indicator of the fault location is not applicable for small faults. Since...Vibration Monitoring of rolling element bearing by the high- frequency resonance technique - a review, Tribology international, Vol. 17, pp 3-10. M
Porter, Marianne E; Ewoldt, Randy H; Long, John H
2016-09-15
During swimming in dogfish sharks, Squalus acanthias, both the intervertebral joints and the vertebral centra undergo significant strain. To investigate this system, unique among vertebrates, we cyclically bent isolated segments of 10 vertebrae and nine joints. For the first time in the biomechanics of fish vertebral columns, we simultaneously characterized non-linear elasticity and viscosity throughout the bending oscillation, extending recently proposed techniques for large-amplitude oscillatory shear (LAOS) characterization to large-amplitude oscillatory bending (LAOB). The vertebral column segments behave as non-linear viscoelastic springs. Elastic properties dominate for all frequencies and curvatures tested, increasing as either variable increases. Non-linearities within a bending cycle are most in evidence at the highest frequency, 2.0 Hz, and curvature, 5 m -1 Viscous bending properties are greatest at low frequencies and high curvatures, with non-linear effects occurring at all frequencies and curvatures. The range of mechanical behaviors includes that of springs and brakes, with smooth transitions between them that allow for continuously variable power transmission by the vertebral column to assist in the mechanics of undulatory propulsion. © 2016. Published by The Company of Biologists Ltd.
Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santavicca, Daniel F., E-mail: daniel.santavicca@unf.edu; Adams, Jesse K.; Grant, Lierd E.
2016-06-21
We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires asmore » inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.« less
High-frequency ultrasound-responsive block copolymer micelle.
Wang, Jie; Pelletier, Maxime; Zhang, Hongji; Xia, Hesheng; Zhao, Yue
2009-11-17
Micelles of a diblock copolymer composed of poly(ethylene oxide) and poly(2-tetrahydropyranyl methacrylate) (PEO-b-PTHPMA) in aqueous solution could be disrupted by high-frequency ultrasound (1.1 MHz). It was found that, upon exposure to a high-intensity focused ultrasound (HIFU) beam at room temperature, the pH value of the micellar solution decreased over irradiation time. The infrared spectroscopic analysis of solid block copolymer samples collected from the ultrasound irradiated micellar solution revealed the formation of carboxylic acid dimers and hydroxyl groups. These characterization results suggest that the high-frequency HIFU beam could induce the hydrolysis reaction of THPMA at room temperature resulting in the cleavage of THP groups. The disruption of PEO-b-PTHPMA micelles by ultrasound was investigated by using dynamic light scattering, atomic force microscopy, and fluorescence spectroscopy. On the basis of the pH change, it was found that the disruption process was determined by a number of factors such as the ultrasound power, the micellar solution volume and the location of the focal spot of the ultrasound beam. This study shows the potential to develop ultrasound-sensitive block copolymer micelles by having labile chemical bonds in the polymer structure, and to use the high-frequency HIFU to trigger a chemical reaction for the disruption of micelles.
NASA Astrophysics Data System (ADS)
Soligo, Riccardo
In this work, the insight provided by our sophisticated Full Band Monte Carlo simulator is used to analyze the behavior of state-of-art devices like GaN High Electron Mobility Transistors and Hot Electron Transistors. Chapter 1 is dedicated to the description of the simulation tool used to obtain the results shown in this work. Moreover, a separate section is dedicated the set up of a procedure to validate to the tunneling algorithm recently implemented in the simulator. Chapter 2 introduces High Electron Mobility Transistors (HEMTs), state-of-art devices characterized by highly non linear transport phenomena that require the use of advanced simulation methods. The techniques for device modeling are described applied to a recent GaN-HEMT, and they are validated with experimental measurements. The main techniques characterization techniques are also described, including the original contribution provided by this work. Chapter 3 focuses on a popular technique to enhance HEMTs performance: the down-scaling of the device dimensions. In particular, this chapter is dedicated to lateral scaling and the calculation of a limiting cutoff frequency for a device of vanishing length. Finally, Chapter 4 and Chapter 5 describe the modeling of Hot Electron Transistors (HETs). The simulation approach is validated by matching the current characteristics with the experimental one before variations of the layouts are proposed to increase the current gain to values suitable for amplification. The frequency response of these layouts is calculated, and modeled by a small signal circuit. For this purpose, a method to directly calculate the capacitance is developed which provides a graphical picture of the capacitative phenomena that limit the frequency response in devices. In Chapter 5 the properties of the hot electrons are investigated for different injection energies, which are obtained by changing the layout of the emitter barrier. Moreover, the large signal characterization of the HET is shown for different layouts, where the collector barrier was scaled.
O' Connell bridge inspection by means of Ground Penetrating Radar
NASA Astrophysics Data System (ADS)
Santos Assuncao, Sonia, ,, Dr
2016-04-01
Ground Penetrating Radar (GPR) is a well-known technique successfully applied in different areas. In structural inspection the methodology may expose information about structural arrangement and pathologies. GPR emits high frequency electromagnetic impulses allowing to detect changes on the electromagnetic properties: electrical conductivity, dielectric constant and magnetic permeability. The central frequency of the each antenna is characterized by a specific resolution and penetration depth. Therefore, different scales of structures can be analysed. High frequency antennas output high resolution images/signals about the shallowest elements such as rebar and the thickness of the first layer. On the other hand, intermediate or lower frequency antennas locate deeper structures, such as the thickness of the arch. The compilation of distinct frequencies gives a better understanding and a more accurate detection of elements in the inner structure. O'Connell Bridge (1877) is one of 24 bridges along River Liffey and one the most famous historical structures in Dublin. It is composed by sandstones and granite and covered by asphalt which represents a suitable structure to evaluate by means of GPR. The lack of inner structural information, especially the thickness of the layer, presence of reinforcement or other metallic elements of support required, at least, a dual frequency analysis of the bridge. In this case, it was applied the (200 MHz and 600 MHz) Multi-Channel Stream EM combined with 1.6 GHz GSSI high frequency antenna. The inspection of bridges by means of GPR may provide not exclusively interesting structural data but historical information and the state of conservation.
NASA Astrophysics Data System (ADS)
Trenikhina, Yulia
Nano-scale investigation of intrinsic properties of niobium near-surface is a key to control performance of niobium superconducting radio-frequency cavities. Mechanisms responsible for the performance limitations and their empirical remedies needs to be justified in order to reproducibly control fabrication of SRF cavities with desired characteristics. The high field Q-slope and mechanism behind its cure (120°C mild bake) were investigated by comparison of the samples cut out of the cavities with high and low dissipation regions. Material evolution during mild field Q-slope nitrogen treatment was characterized using the coupon samples as well as samples cut out of nitrogen treated cavity. Evaluation of niobium near-surface state after some typical and novel cavity treatments was accomplished. Various TEM techniques, SEM, XPS, AES, XRD were used for the structural and chemical characterization of niobium near-surface. Combination of thermometry and structural temperature-dependent comparison of the cavity cutouts with different dissipation characteristics revealed precipitation of niobium hydrides to be the reason for medium and high field Q-slopes. Step-by-step effect of the nitrogen treatment processing on niobium surface was studied by analytical and structural characterization of the cavity cutout and niobium samples, which were subject to the treatment. Low concentration nitrogen doping is proposed to explain the benefit of nitrogen treatment. Chemical characterization of niobium samples before and after various surface processing (Electropolishing (EP), 800°C bake, hydrofluoric acid (HF) rinsing) showed the differences that can help to reveal the microscopic effects behind these treatments as well as possible sources of surface contamination.
Characterization of Aeromechanics Response and Instability in Fans, Compressors, and Turbine Blades
NASA Technical Reports Server (NTRS)
Tan, Choon S.
2003-01-01
This study investigated the effect of interaction between tip clearance flow, steady and unsteady upstream wakes in rotor and stator blade rows in terms of blade forced response. In a stator blade row, the interaction of steady wakes in the upstream rotor frame with the stator imply a blade forced response whose spectrum contains the Blade passing frequency (BPF) and its harmonics, with a decaying amplitude as the frequency increases. When the incoming wakes are unsteady, however, the spectrum of blade excitation exhibits unexpectedly amplified high frequencies due to the modulation of BPF with the fluctuation frequency. In a rotor blade row, a tip flow instability has been demonstrated with a frequency (TVF) equal to 0.45 times the Blade Passing frequency corresponding to a reduced frequency (F(sub c) (sup +)) of 0.7. Under uniform inlet flow conditions, the frequency and spatial content of the tip flow region have been characterized. The disturbance TVF was the dominant disturbance in the flow field and was found to imply variations of the pressure coefficient of more than 30% on the blade tip (between 35% to 90% chord) and in the rotor-generated wake (from 75% to 100% hub-to-tip position). In an attempt to better understand the origin of the instability, the structure of the tip flow has also been analyzed. The interface between the tip flow region and the core flow has been found to have periodical wave-like flow patterns which proceed downstream at a speed of approximately 0.42 times the core flow speed at a frequency corresponding to TVF. A list of conclusions derived from these interactions is presented.
Robust diffraction correction method for high-frequency ultrasonic tissue characterization
NASA Astrophysics Data System (ADS)
Raju, Balasundar
2004-05-01
The computation of quantitative ultrasonic parameters such as the attenuation or backscatter coefficient requires compensation for diffraction effects. In this work a simple and accurate diffraction correction method for skin characterization requiring only a single focal zone is developed. The advantage of this method is that the transducer need not be mechanically repositioned to collect data from several focal zones, thereby reducing the time of imaging and preventing motion artifacts. Data were first collected under controlled conditions from skin of volunteers using a high-frequency system (center frequency=33 MHz, BW=28 MHz) at 19 focal zones through axial translation. Using these data, mean backscatter power spectra were computed as a function of the distance between the transducer and the tissue, which then served as empirical diffraction correction curves for subsequent data. The method was demonstrated on patients patch-tested for contact dermatitis. The computed attenuation coefficient slope was significantly (p<0.05) lower at the affected site (0.13+/-0.02 dB/mm/MHz) compared to nearby normal skin (0.2+/-0.05 dB/mm/MHz). The mean backscatter level was also significantly lower at the affected site (6.7+/-2.1 in arbitrary units) compared to normal skin (11.3+/-3.2). These results show diffraction corrected ultrasonic parameters can differentiate normal from affected skin tissues.
Characterizing Oscillatory Bursts in Single-Trial EEG Data
NASA Technical Reports Server (NTRS)
Knuth, K. H.; Shah, A. S.; Lakatos, P.; Schroeder, C. E.
2004-01-01
Oscillatory bursts in numerous bands ranging from low (theta) to high frequencies (e.g., gamma) undoubtedly play an important role in cortical dynamics. Largely because of the inadequacy of existing analytic techniques. however, oscillatory bursts and their role in cortical processing remains poorly understood. To study oscillatory bursts effectively one must be able to isolate them and characterize them in the single trial. We describe a series of straightforward analysis techniques that produce useful indices of burst characteristics. First, stimulus-evoked responses are estimated using Differentially Variable Component Analysis (dVCA), and are subtracted from the single-trial. The single-trial characteristics of the evoked responses are stored to identify possible correlations with burst activity. Time-frequency (T-F), or wavelet, analyses are then applied to the single trial residuals. While T-F plots have been used in recent studies to identify and isolate bursts, we go further by fitting each burst in the T-F plot with a two-dimensional Gaussian. This provides a set of burst characteristics, such as, center time. burst duration, center frequency. frequency dispersion. and amplitude, all of which contribute to the accurate characterization of the individual burst. The burst phase can also be estimated. Burst characteristics can be quantified with several standard techniques (e.g.. histogramming and clustering), as well as Bayesian techniques (e.g., blocking) to allow a more parametric description analysis of the characteristics of oscillatory bursts, and the relationships of specific parameters to cortical excitability and stimulus integration.
Chen, Xiaoyang; Lam, Kwok Ho; Chen, Ruimin; Chen, Zeyu; Yu, Ping; Chen, Zhongping; Shung, K Kirk; Zhou, Qifa
2017-11-01
This paper reports the fabrication, characterization, and microparticle manipulation capability of an adjustable multi-scale single beam acoustic tweezers (SBAT) that is capable of flexibly changing the size of "tweezers" like ordinary metal tweezers with a single-element ultrahigh frequency (UHF) ultrasonic transducer. The measured resonant frequency of the developed transducer at 526 MHz is the highest frequency of piezoelectric single crystal based ultrasonic transducers ever reported. This focused UHF ultrasonic transducer exhibits a wide bandwidth (95.5% at -10 dB) due to high attenuation of high-frequency ultrasound wave, which allows the SBAT effectively excite with a wide range of excitation frequency from 150 to 400 MHz by using the "piezoelectric actuator" model. Through controlling the excitation frequency, the wavelength of ultrasound emitted from the SBAT can be changed to selectively manipulate a single microparticle of different sizes (3-100 μm) by using only one transducer. This concept of flexibly changing "tweezers" size is firstly introduced into the study of SBAT. At the same time, it was found that this incident ultrasound wavelength play an important role in lateral trapping and manipulation for microparticle of different sizes. Biotechnol. Bioeng. 2017;114: 2637-2647. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs.
Durán, Vicente; Schnébelin, Cȏme; Guillet de Chatellus, Hugues
2018-05-28
We propose and characterize experimentally a new source of optical frequency combs for performing multi-heterodyne spectrometry. This comb modality is based on a frequency-shifting loop seeded with a continuous-wave (CW) monochromatic laser. The comb lines are generated by successive passes of the CW laser through an acousto-optic frequency shifter. We report the generation of frequency combs with more than 1500 mutually coherent lines, without resorting to non-linear broadening phenomena or external electronic modulation. The comb line spacing is easily reconfigurable from tens of MHz down to the kHz region. We first use a single acousto-optic frequency comb to conduct self-heterodyne interferometry with a high frequency resolution (500 kHz). By increasing the line spacing to 80 MHz, we demonstrate molecular spectroscopy on the sub-millisecond time scale. In order to reduce the detection bandwidth, we subsequently implement an acousto-optic dual-comb spectrometer with the aid of two mutually coherent frequency shifting loops. In each architecture, the potentiality of acousto-optic frequency combs for spectroscopy is validated by spectral measurements of hydrogen cyanide in the near-infrared region.
Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs
NASA Astrophysics Data System (ADS)
Durán, Vicente; Schnébelin, Cȏme; Guillet de Chatellus, Hugues
2018-05-01
We propose and characterize experimentally a new source of optical frequency combs for performing multi-heterodyne spectrometry. This comb modality is based on a frequency shifting loop seeded with a CW monochromatic laser. The comb lines are generated by successive passes of the CW laser through an acousto-optic frequency shifter. We report the generation of frequency combs with more than 1500 mutually coherent lines, without resorting to non-linear broadening phenomena or external electronic modulation. The comb line spacing is easily reconfigurable from tens of MHz down to the kHz region. We first use a single acousto-optic frequency comb to conduct self-heterodyne interferometry with a high frequency resolution (500 kHz). By increasing the line spacing to 80 MHz, we demonstrate molecular spectroscopy on the sub-millisecond time scale. In order to reduce the detection bandwidth, we subsequently implement an acousto-optic dual-comb spectrometer with the aid of two mutually coherent frequency shifting loops. In each architecture, the potentiality of acousto-optic frequency combs for spectroscopy is validated by spectral measurements of hydrogen cyanide in the near-infrared region.
Improved frequency/voltage converters for fast quartz crystal microbalance applications.
Torres, R; García, J V; Arnau, A; Perrot, H; Kim, L To Thi; Gabrielli, C
2008-04-01
The monitoring of frequency changes in fast quartz crystal microbalance (QCM) applications is a real challenge in today's instrumentation. In these applications, such as ac electrogravimetry, small frequency shifts, in the order of tens of hertz, around the resonance of the sensor can occur up to a frequency modulation of 1 kHz. These frequency changes have to be monitored very accurately both in magnitude and phase. Phase-locked loop techniques can be used for obtaining a high performance frequency/voltage converter which can provide reliable measurements. Sensitivity higher than 10 mVHz, for a frequency shift resolution of 0.1 Hz, with very low distortion in tracking both the magnitude and phase of the frequency variations around the resonance frequency of the sensor are required specifications. Moreover, the resonance frequency can vary in a broad frequency range from 5 to 10 MHz in typical QCM sensors, which introduces an additional difficulty. A new frequency-voltage conversion system based on a double tuning analog-digital phase-locked loop is proposed. The reported electronic characterization and experimental results obtained with conducting polymers prove its reliability for ac-electrogravimetry measurements and, in general, for fast QCM applications.
Improved frequency/voltage converters for fast quartz crystal microbalance applications
NASA Astrophysics Data System (ADS)
Torres, R.; García, J. V.; Arnau, A.; Perrot, H.; Kim, L. To Thi; Gabrielli, C.
2008-04-01
The monitoring of frequency changes in fast quartz crystal microbalance (QCM) applications is a real challenge in today's instrumentation. In these applications, such as ac electrogravimetry, small frequency shifts, in the order of tens of hertz, around the resonance of the sensor can occur up to a frequency modulation of 1kHz. These frequency changes have to be monitored very accurately both in magnitude and phase. Phase-locked loop techniques can be used for obtaining a high performance frequency/voltage converter which can provide reliable measurements. Sensitivity higher than 10mV/Hz, for a frequency shift resolution of 0.1Hz, with very low distortion in tracking both the magnitude and phase of the frequency variations around the resonance frequency of the sensor are required specifications. Moreover, the resonance frequency can vary in a broad frequency range from 5to10MHz in typical QCM sensors, which introduces an additional difficulty. A new frequency-voltage conversion system based on a double tuning analog-digital phase-locked loop is proposed. The reported electronic characterization and experimental results obtained with conducting polymers prove its reliability for ac-electrogravimetry measurements and, in general, for fast QCM applications.
Characterization of beam-driven instabilities and current redistribution in MST plasmas
NASA Astrophysics Data System (ADS)
Parke, E.
2015-11-01
A unique, high-rep-rate (>10 kHz) Thomson scattering diagnostic and a high-bandwidth FIR interferometer-polarimeter on MST have enabled characterization of beam-driven instabilities and magnetic equilibrium changes observed during high power (1 MW) neutral beam injection (NBI). While NBI leads to negligible net current drive, an increase in on-axis current density observed through Faraday rotation is offset by a reduction in mid-radius current. Identification of the phase flip in temperature fluctuations associated with tearing modes provides a sensitive measure of rational surface locations. This technique strongly constrains the safety factor for equilibrium reconstruction and provides a powerful new tool for measuring the equilibrium magnetic field. For example, the n = 6 temperature structure is observed to shift inward 1.1 +/- 0.6 cm, with an estimated reduction of q0 by 5%. This is consistent with a mid-radius reduction in current, and together the Faraday rotation and Thomson scattering measurements corroborate an inductive redistribution of current that compares well with TRANSP/MSTFit predictions. Interpreting tearing mode temperature structures in the RFP remains challenging; the effects of multiple, closely-spaced tearing modes on the mode phase measurement require further verification. In addition to equilibrium changes, previous work has shown that the large fast ion population drives instabilities at higher frequencies near the Alfvén continuum. Recent observations reveal a new instability at much lower frequency (~7 kHz) with strongly chirping behavior. It participates in extensive avalanches of the higher frequency energetic particle and Alfvénic modes to drive enhanced fast ion transport. Internal structures measured from Te and ne fluctuations, their dependence on the safety factor, as well as frequency scaling motivate speculation about mode identity. Work supported by U.S. DOE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.
2016-02-10
Low-frequency observations of pulsars provide a powerful means for probing the microstructure in the turbulent interstellar medium (ISM). Here we report on high-resolution dynamic spectral analysis of our observations of the timing-array millisecond pulsar PSR J0437–4715 with the Murchison Widefield Array (MWA), enabled by our recently commissioned tied-array beam processing pipeline for voltage data recorded from the high time resolution mode of the MWA. A secondary spectral analysis reveals faint parabolic arcs akin to those seen in high-frequency observations of pulsars with the Green Bank and Arecibo telescopes. Data from Parkes observations at a higher frequency of 732 MHz revealmore » a similar parabolic feature with a curvature that scales approximately as the square of the observing wavelength (λ{sup 2}) to the MWA's frequency of 192 MHz. Our analysis suggests that scattering toward PSR J0437–4715 predominantly arises from a compact region about 115 pc from the Earth, which matches well with the expected location of the edge of the Local Bubble that envelopes the local Solar neighborhood. As well as demonstrating new and improved pulsar science capabilities of the MWA, our analysis underscores the potential of low-frequency pulsar observations for gaining valuable insights into the local ISM and for characterizing the ISM toward timing-array pulsars.« less
Characterization of perpendicular STT-MRAM by spin torque ferromagnetic resonance
NASA Astrophysics Data System (ADS)
Sha, Chengcen; Yang, Liu; Lee, Han Kyu; Barsukov, Igor; Zhang, Jieyi; Krivorotov, Ilya
We describe a method for simple quantitative measurement of magnetic anisotropy and Gilbert damping of the MTJ free layer in individual perpendicular STT-MRAM devices by spin torque ferromagnetic resonance (ST-FMR) with magnetic field modulation. We first show the dependence of ST-FMR spectra of an STT-MRAM element on out-of-plane magnetic field. In these spectra, resonances arising from excitation of the quasi-uniform and higher order spin wave eigenmodes of the free layer as well as acoustic mode of the synthetic antiferromagnet (SAF) are clearly seen. The quasi-uniform mode frequency at zero field gives magnetic anisotropy field of the free layer. Then we show dependence of the quasi-uniform mode linewidth on frequency is linear over a range of frequencies but deviatesfrom linearity in the low and high frequency regimes. Comparison to ST-FMR spectrareveals that the high frequency line broadening is linked to the SAF mode softening near the SAF spin flop transition at 5 kG. In the low field regime, the SAF mode frequency approaches that of the quasi-uniform mode, and resonant coupling of the modes leads to the line broadening. A linear fit to the linewidth data outside of the high and low field regimes gives the Gilbert damping parameter of the free layer. This work was supported by the Samsung Global MRAM Innovation Program.
Hajjar, Hani Al; Montero, David S; Lallana, Pedro C; Vázquez, Carmen; Fracasso, Bruno
2015-02-10
In this paper, the characterization of a perfluorinated graded-index polymer optical fiber (PF-GIPOF) for a high-bitrate indoor optical wireless system is reported. PF-GIPOF is used here to interconnect different optical wireless access points that distribute optical free-space high-bitrate wireless communication cells. The PF-GIPOF channel is first studied in terms of transmission attenuation and frequency response and, in a second step, the spatial power profile distribution at the fiber output is analyzed. Both characterizations are performed under varying restricted mode launch conditions, enabling us to assess the transmission channel performance subject to potential connectorization errors within an environment where the end users may intervene by themselves on the home network infrastructure.
Characterization of the relationship of the cure cycle chemistry to cure cycle processing properties
NASA Technical Reports Server (NTRS)
Kranbuehl, D. E.
1986-01-01
Dynamic Dielectric measurements made over a wide range of frequency provide a sensitive and convenient means for monitoring the cure process in thermosets and thermoplastics. The measurement of dielectric relaxation is one of only a few instrumental techniques available for studying molecular properties in both the liquid and solid states. Furthermore, it is probably the only convenient experimental technique for studying the polymerization process of going from a monomeric liquid of varying viscosity to a crosslinked, insoluble, high temperature solid. The objective of the research is to develop on-line dielectric instrumentation for quantitative nondestructive material evaluation and closed loop smart cure cycle control. The key is to relate the chemistry of the cure cycle process to the dielectric properties of the polymer system by correlating the time, temperature, and frequency dependent dielectric measurements with chemical characterization measurements. Measurement of the wide variation in magnitude of the complex permittivity with both frequency and state of cure, coupled with chemical characterization work, have been shown in the laboratory to have the potential to determine: resin quality, composition and age; cure cycle window boundaries; onset of flow and point of maximum flow; extent of and completion of reaction; evolution of volatiles; T sub g; and, crosslinking and molecular weight buildup.
Park, Gewnhi; Moon, Eunok; Kim, Do-Won; Lee, Seung-Hwan
2012-12-01
A previous study has shown that greater cardiac vagal tone, reflecting effective self-regulatory capacity, was correlated with superior visual discrimination of fearful faces at high spatial frequency Park et al. (Biological Psychology 90:171-178, 2012b). The present study investigated whether individual differences in cardiac vagal tone (indexed by heart rate variability) were associated with different event-related brain potentials (ERPs) in response to fearful and neutral faces. Thirty-six healthy participants discriminated the emotion of fearful and neutral faces at broad, high, and low spatial frequencies, while ERPs were recorded. Participants with low resting heart rate variability-characterized by poor functioning of regulatory systems-exhibited significantly greater N200 activity in response to fearful faces at low spatial frequency and greater LPP responses to neutral faces at high spatial frequency. Source analyses-estimated by standardized low-resolution brain electromagnetic tomography (sLORETA)-tended to show that participants with low resting heart rate variability exhibited increased source activity in visual areas, such as the cuneus and the middle occipital gyrus, as compared with participants with high resting heart rate variability. The hyperactive neural activity associated with low cardiac vagal tone may account for hypervigilant response patterns and emotional dysregulation, which heightens the risk of developing physical and emotional problems.
Houle, Timothy T.; Turner, Dana P.; Houle, Thomas A.; Smitherman, Todd A.; Martin, Vincent; Penzien, Donald B.; Lipton, Richard B.
2013-01-01
Objectives To characterize the extent of measurement error arising from rounding in headache frequency reporting (days per month) in a population sample of headache sufferers. Background When reporting numerical health information, individuals tend to round their estimates. The tendency to round to the nearest 5 days when reporting headache frequency can distort distributions and engender unreliability in frequency estimates in both clinical and research contexts. Methods This secondary analysis of the 2005 American Migraine Prevalence and Prevention study (AMPP) survey characterized the population distribution of 30-day headache frequency among community headache sufferers and determined the extent of numerical rounding (“heaping”) in self-reported data. Headache frequency distributions (days per month) were examined using a simplified version of Wang and Heitjan’s (2008) approach to heaping to estimate the probability that headache sufferers round to a multiple of 5 when providing frequency reports. Multiple imputation was used to estimate a theoretical “true” headache frequency. Results Of the 24,000 surveys, headache frequency data were available for 15,976 respondents diagnosed with migraine (68.6%), probable migraine (8.3%), or episodic tension-type headache (10.0%); the remainder had other headache types. The mean number of headaches days/month was 3.7 (SD = 5.6). Examination of the distribution of headache frequency reports revealed a disproportionate number of responses centered on multiples of 5 days. The odds that headache frequency was rounded to 5 increased by 24% with each one-day increase in headache frequency (OR: 1.24, 95% CI: 1.23 to 1.25), indicating that heaping occurs most commonly at higher headache frequencies. Women were more likely to round than men, and rounding decreased with increasing age and increased with symptoms of depression. Conclusions Because of the coarsening induced by rounding, caution should be used when distinguishing between episodic and chronic headache sufferers using self-reported estimates of headache frequency. Unreliability in frequency estimates is of particular concern among individuals with high-frequency (chronic) headache. Employing shorter recall intervals when assessing headache frequency, preferably using daily diaries, may improve accuracy and allow more precise estimation of chronic migraine onset and remission. PMID:23721238
High-speed digital fiber optic links for satellite traffic
NASA Technical Reports Server (NTRS)
Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.
1989-01-01
Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.
High Temperature Superconductor/Semiconductor Hybrid Microwave Devices and Circuits
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.; Miranda, Felix A.
1999-01-01
Contents include following: film deposition technique; laser ablation; magnetron sputtering; sequential evaporation; microwave substrates; film characterization at microwave frequencies; complex conductivity; magnetic penetration depth; surface impedance; planar single-mode filters; small antennas; antenna arrays phase noise; tunable oscillations; hybrid superconductor/semiconductor receiver front ends; and noise modeling.
Learning a Novel Pattern through Balanced and Skewed Input
ERIC Educational Resources Information Center
McDonough, Kim; Trofimovich, Pavel
2013-01-01
This study compared the effectiveness of balanced and skewed input at facilitating the acquisition of the transitive construction in Esperanto, characterized by the accusative suffix "-n" and variable word order (SVO, OVS). Thai university students (N = 98) listened to 24 sentences under skewed (one noun with high token frequency) or…
Signal processing for the profoundly deaf.
Boothyroyd, A
1990-01-01
Profound deafness, defined here as a hearing loss in excess of 90 dB, is characterized by high thresholds, reduced hearing range in the intensity and frequency domains, and poor resolution in the frequency and time domains. The high thresholds call for hearing aids with unusually high gains or remote microphones that can be placed close to the signal source. The former option creates acoustic feedback problems for which digital signal processing may yet offer solutions. The latter option calls for carrier wave technology that is already available. The reduced frequency and intensity ranges would appear to call for frequency and/or amplitude compression. It might also be argued, however, that any attempts to compress the acoustic signal into the limited hearing range of the profoundly deaf will be counterproductive because of poor frequency and time resolution, especially when the signal is present in noise. In experiments with a 2-channel compression system, only 1 of 9 subjects showed an improvement of perception with the introduction of fast-release (20 ms) compression. The other 8 experienced no benefit or a slight deterioration of performance. These results support the concept of providing the profoundly deaf with simpler, rather than more complex, patterns, perhaps through the use of feature extraction hearing aids. Data from users of cochlear implants already employing feature extraction techniques also support this concept.
Hearing diversity in moths confronting a neotropical bat assemblage.
Cobo-Cuan, Ariadna; Kössl, Manfred; Mora, Emanuel C
2017-09-01
The tympanal ear is an evolutionary acquisition which helps moths survive predation from bats. The greater diversity of bats and echolocation strategies in the Neotropics compared with temperate zones would be expected to impose different sensory requirements on the neotropical moths. However, even given some variability among moth assemblages, the frequencies of best hearing of moths from different climate zones studied to date have been roughly the same: between 20 and 60 kHz. We have analyzed the auditory characteristics of tympanate moths from Cuba, a neotropical island with high levels of bat diversity and a high incidence of echolocation frequencies above those commonly at the upper limit of moths' hearing sensitivity. Moths of the superfamilies Noctuoidea, Geometroidea and Pyraloidea were examined. Audiograms were determined by non-invasively measuring distortion-product otoacoustic emissions. We also quantified the frequency spectrum of the echolocation sounds to which this moth community is exposed. The hearing ranges of moths in our study showed best frequencies between 36 and 94 kHz. High sensitivity to frequencies above 50 kHz suggests that the auditory sensitivity of moths is suited to the sounds used by sympatric echolocating bat fauna. Biodiversity characterizes predators and prey in the Neotropics, but the bat-moth acoustic interaction keeps spectrally matched.
NASA Technical Reports Server (NTRS)
Fernandes, David Neil
1992-01-01
Doppler shift measurements of the Na D(sub 1) absorption line have revealed solar oscillations in a new regime of frequency and wavenumber. Oscillations of vertical velocities in the temperature minimum and low chromosphere of the Sun are observed with frequencies ranging up to 9.5 mHz. There is no evidence for chromospheric modes of 3 minute period. This indicates that the chromosphere does not form a good cavity for acoustic waves. The fundamental-modes appear with wavenumbers up to 5.57 M per m (equivalent spherical harmonic degree, 3877). The frequencies lie below the predicted values at wavenumbers above 1 M per m. The values are in agreement with previous measurements that exist for wavenumbers up to 2.67 M per m. Spatial maps of velocity power show that high wavenumber oscillations are suppressed in active regions. The shape of the power depression indicates that wave motion is affected in the layer of atmosphere where the measurement is made. The f-modes are suppressed in the same way as p-modes, indicating that the mechanism for wave suppression affects velocity fluctuations. Mode frequencies are not affected by the magnetic fields by more than 50 micro Hz, the precision of the measurement.
High-frequency polarization dynamics in spin-lasers: pushing the limits
NASA Astrophysics Data System (ADS)
Gerhardt, Nils C.; Lindemann, Markus; Pusch, Tobias; Michalzik, Rainer; Hofmann, Martin R.
2017-09-01
While the high-frequency performance of conventional lasers is limited by the coupled carrier-photon dynamics, spin-polarized lasers have a high potential to overcome this limitation and to push the direct modulation bandwidth beyond 100 GHz. The key is to utilize the ultrafast polarization dynamics in spin-polarized vertical cavity surface-emitting lasers (spin-VCSELs) which is decoupled from the intensity dynamics and its fundamental limitations. The polarization dynamics in such devices, characterized by the polarization oscillation resonance frequency, is mainly determined by the amount of birefringence in the cavity. Using an approach for manipulating the birefringence via mechanical strain we were able to increase the polarization dynamics to resonance frequencies of more than 40 GHz. Up to now these values are only limited by the setup to induce birefringence and do not reflect any fundamental limitations. Taking our record results for the birefringence-induced mode splitting of more than 250 GHz into account, the concept has the potential to provide polarization modulation in spin-VCSELs with modulation frequencies far beyond 100 GHz. This makes them ideal devices for next-generation fast optical interconnects. In this paper we present experimental results for ultrafast polarization dynamics up to 50 GHz and compare them to numerical simulations.
The Vestibular System Implements a Linear–Nonlinear Transformation In Order to Encode Self-Motion
Massot, Corentin; Schneider, Adam D.; Chacron, Maurice J.; Cullen, Kathleen E.
2012-01-01
Although it is well established that the neural code representing the world changes at each stage of a sensory pathway, the transformations that mediate these changes are not well understood. Here we show that self-motion (i.e. vestibular) sensory information encoded by VIIIth nerve afferents is integrated nonlinearly by post-synaptic central vestibular neurons. This response nonlinearity was characterized by a strong (∼50%) attenuation in neuronal sensitivity to low frequency stimuli when presented concurrently with high frequency stimuli. Using computational methods, we further demonstrate that a static boosting nonlinearity in the input-output relationship of central vestibular neurons accounts for this unexpected result. Specifically, when low and high frequency stimuli are presented concurrently, this boosting nonlinearity causes an intensity-dependent bias in the output firing rate, thereby attenuating neuronal sensitivities. We suggest that nonlinear integration of afferent input extends the coding range of central vestibular neurons and enables them to better extract the high frequency features of self-motion when embedded with low frequency motion during natural movements. These findings challenge the traditional notion that the vestibular system uses a linear rate code to transmit information and have important consequences for understanding how the representation of sensory information changes across sensory pathways. PMID:22911113
Classical and low-light-level detection and pulse characterization using optical-frequency mixers
NASA Astrophysics Data System (ADS)
Langrock, Carsten
2007-12-01
Classical all-optical signal processing for telecommunication applications greatly benefits from the availability of highly efficient optical frequency (OF) mixers, the optical analogue of radio-frequency mixers used in RF signal processing. The OF mixers presented in this dissertation are based on reverse-proton-exchange (RPE) periodically-poled lithium niobate (PPLN) waveguides, one of the most efficient and versatile material systems in the field of nonlinear optics to date. Taking advantage of fabrication technologies developed in Prof. Martin Fejer's group over the past two decades, we expand the range of applications for these OF mixers to low-light-level signal detection and pulse characterization. We demonstrate high-speed high-efficiency single-photon counting at telecommunication wavelengths, used for the implementation of record-breaking quantum-key distribution systems, which allow unconditionally secure data transfer. In collaboration with researchers at the MIT Lincoln Laboratory, we also show that the very same technology can be used to achieve an order of magnitude improvement in the sensitivity of classical few-photon free-space communication links based on pulse-position modulation. These extremely sensitive receivers (1 photon/bit) are being developed to facilitate deep-space communication over several hundred million kilometers between Mars and Earth. OF mixers can also be used to fully characterize, potentially weak, ultrashort pulses, as well as time-magnify segments of ultra-high-speed data streams to be detected in real time by conventional streak cameras and oscilloscopes. We will present a novel implementation of both collinear autocorrelation as well as parametric temporal imaging (in collaboration with the Lawrence Livermore National Laboratory) based on mode-multiplexing in integrated asymmetric Y-junctions in combination with linearly-chirped apodized quasi-phasematching gratings. For the first time, background-free autocorrelation, frequency-resolved optical gating, and temporal imaging can be realized in single-polarization-guiding collinear waveguide structures at sub-60-aJ (400 photons/pulse) levels. Recently, guided-wave OF mixers have also become important for precision metrology applications based on frequency-comb generation (FCG) (i.e. optical ruler) using ultrashort pulses. The most compact and energy efficient FCG systems use fiber lasers. In collaboration with IMRA America, Inc., we demonstrate that RPE PPLN waveguides can be used to implement fully integrated fiber-laser-based FCG systems taking advantage of unprecedented octave-spanning spectral broadening of the input pulses in combination with simultaneous phase sensing inside the same waveguide.
VHF Scintillation in an Artificially Heated Ionosphere
NASA Astrophysics Data System (ADS)
Suszcynsky, D. M.; Layne, J.; Light, M. E.; Pigue, M. J.; Rivera, L.
2017-12-01
As part of an ongoing project to characterize very-high-frequency (VHF) radio wave propagation through structured ionospheres, Los Alamos National Laboratory has been conducting a set of experiments to measure the scintillation effects of VHF transmissions under a variety of ionospheric conditions. Previous work (see 2015 Fall AGU poster by D. Suszcynsky et al.) measured the S4 index and ionospheric coherence bandwidth in the 32 - 44 MHz frequency range under naturally scintillated conditions in the equatorial region at Kwajalein Atoll during three separate campaigns centered on the 2014 and 2015 equinoxes. In this paper, we will present preliminary results from the February and September, 2017 High Altitude Auroral Research Project (HAARP) Experimental Campaigns where we are attempting to make these measurements under more controlled conditions using the HAARP ionospheric heater in a twisted-beam mode. Two types of measurements are made by transmitting VHF signals through the heated ionospheric volume to the Radio Frequency Propagation (RFProp) satellite experiment. The S4 scintillation index is determined by measuring the power fluctuations of a 135-MHz continuous wave signal and the ionospheric coherence bandwidth is simultaneously determined by measuring the delay spread of a frequency-modulated continuous wave (FMCW) signal in the 130 - 140 MHz frequency range. Additionally, a spatial Fourier transform of the CW time series is used to calculate the irregularity spectral density function. Finally, the temporal evolution of the time series is used to characterize spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities. All results are compared to theory and scaled for comparison to the 32 - 44 MHz Kwajalein measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yi-Hao; Chou, Yi; Hu, Chin-Ping
We present time-frequency analysis results based on the Hilbert–Huang transform (HHT) for the evolution of a 4-Hz low-frequency quasi-periodic oscillation (LFQPO) around the black hole X-ray binary XTE J1550–564. The origin of LFQPOs is still debated. To understand the cause of the peak broadening, we utilized a recently developed time-frequency analysis, HHT, for tracking the evolution of the 4-Hz LFQPO from XTE J1550–564. By adaptively decomposing the ∼4-Hz oscillatory component from the light curve and acquiring its instantaneous frequency, the Hilbert spectrum illustrates that the LFQPO is composed of a series of intermittent oscillations appearing occasionally between 3 and 5more » Hz. We further characterized this intermittency by computing the confidence limits of the instantaneous amplitudes of the intermittent oscillations, and constructed both the distributions of the QPO’s high- and low-amplitude durations, which are the time intervals with and without significant ∼4-Hz oscillations, respectively. The mean high-amplitude duration is 1.45 s and 90% of the oscillation segments have lifetimes below 3.1 s. The mean low-amplitude duration is 0.42 s and 90% of these segments are shorter than 0.73 s. In addition, these intermittent oscillations exhibit a correlation between the oscillation’s rms amplitude and mean count rate. This correlation could be analogous to the linear rms-flux relation found in the 4-Hz LFQPO through Fourier analysis. We conclude that the LFQPO peak in the power spectrum is broadened owing to intermittent oscillations with varying frequencies, which could be explained by using the Lense–Thirring precession model.« less
NASA Astrophysics Data System (ADS)
Bore, Thierry; Bhuyan, Habibullah; Bittner, Tilman; Murgan, Vignesh; Wagner, Norman; Scheuermann, Alexander
2018-01-01
Knowledge of the frequency-dependent electromagnetic properties of coarse-grained materials is imperative for the successful application of high frequency electromagnetic measurement techniques for near and subsurface monitoring. This paper reports the design, calibration and application of a novel one-port large coaxial cell for broadband complex permittivity measurements of civil engineering materials. It was designed to allow the characterization of heterogeneous material with large aggregate dimensions (up to 28 mm) over a frequency range from 1 MHz-860 MHz. In the first step, the system parameters were calibrated using the measured scattering function in a perfectly known dielectric material in an optimization scheme. In the second step, the method was validated with measurements made on standard liquids. Then the performance of the cell was evaluated on a compacted coarse-grained soil. The dielectric spectra were obtained by means of fitting the measured scattering function using a transverse electromagnetic mode propagation model considering the frequency-dependent complex permittivity. Two scenarios were systematically analyzed and compared. The first scenario consisted of a broadband generalized dielectric relaxation model with two Cole-Cole type relaxation processes related to the interaction of the aqueous phase and the solid phase, a constant high frequency contribution as well as an apparent direct current conductivity term. The second scenario relied on a three-phase theoretical mixture equation which was used in a forward approach in order to calibrate the model. Both scenarios provide almost identical results for the broadband effective complex relative permittivity. The combination of both scenarios suggests the simultaneous estimation of water content, density, bulk and pore water conductivity for road base materials for in situ applications.
Knabe, Kevin; Williams, Paul A; Giorgetta, Fabrizio R; Armacost, Chris M; Crivello, Sam; Radunsky, Michael B; Newbury, Nathan R
2012-05-21
The instantaneous optical frequency of an external-cavity quantum cascade laser (QCL) is characterized by comparison to a near-infrared frequency comb. Fluctuations in the instantaneous optical frequency are analyzed to determine the frequency-noise power spectral density for the external-cavity QCL both during fixed-wavelength and swept-wavelength operation. The noise performance of a near-infrared external-cavity diode laser is measured for comparison. In addition to providing basic frequency metrology of external-cavity QCLs, this comb-calibrated swept QCL system can be applied to rapid, precise broadband spectroscopy in the mid-infrared spectral region.
Morphology and microhardness of TiC coatings on titanium treated with high-frequency currents
NASA Astrophysics Data System (ADS)
Voyko, Aleksey V.; Fomina, Marina A.; Koshuro, Vladimir A.; Fomin, Aleksandr A.; Rodionov, Igor V.; Atkin, Vsevolod S.; Galushka, Viktor V.; Zakharevich, Andrey M.; Skaptsov, Alexander A.
2018-04-01
The treatment with high frequency currents (HFC) is traditionally used to improve the mechanical properties of metal products, in particular hardness and wear resistance. A new method of carburization of titanium samples in a solid carburizer using HFC is proposed in the work. The temperature of the carburization is characterized by a wide range from 1000 to 1400 °C. As a result of thermochemical treatment, a hard coating of TiC (H ≥ 20 GPa) with a microstructure (d = 7-14 μm) consisting of nanoparticles (d = 10-12 nm) is formed on the titanium surface. These coatings are widely used in friction pairs for various purposes, including machinery, instrumentation and medicine.
NASA Astrophysics Data System (ADS)
Hu, Xiaolin; Aggarwal, Kamal; Yang, Mimi X.; Parizi, Kokab B.; Xu, Xiaoqing; Akin, Demir; Poon, Ada S. Y.; Wong, H.-S. Philip
2017-07-01
We report the design, analysis, and characterization of a three-inductor radio-frequency identification (RFID) and transceiver system for potential applications in individual cell tracking and monitoring. The RFID diameter is 22 μ m and can be naturally internalized by living cells. Using magnetic resonance coupling, the system shows resonance shifts when the RFID is present and also when the RFID loading capacitance changes. It operates at 60 GHz with a high signal magnitude up to -50 dB and a sensitivity of 0.2. This miniaturized RFID with a high signal magnitude is a promising step toward continuous, real-time monitoring of activities at cellular levels.
Fan, Mengbao; Wang, Qi; Cao, Binghua; Ye, Bo; Sunny, Ali Imam; Tian, Guiyun
2016-01-01
Eddy current testing is quite a popular non-contact and cost-effective method for nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of the key performance factors for defect characterization. In the literature, there are many interesting papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity. However, research activity on frequency optimization with respect to characterization performances is lacking. In this paper, an investigation into optimum excitation frequency has been conducted to enhance surface defect classification performance. The influences of excitation frequency for a group of defects were revealed in terms of detection sensitivity, contrast between defect features, and classification accuracy using kernel principal component analysis (KPCA) and a support vector machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of defects when excitation frequency is set near the frequency at which maximum probe signals are retrieved for the largest defect. After the use of KPCA, the margins between the defect features are optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk minimization. As a result, the best classification accuracy is obtained. The main contribution is that the influences of excitation frequency on defect characterization are interpreted, and experiment-based procedures are proposed to determine the optimal excitation frequency for a group of defects rather than a single defect with respect to optimal characterization performances. PMID:27164112
Fan, Mengbao; Wang, Qi; Cao, Binghua; Ye, Bo; Sunny, Ali Imam; Tian, Guiyun
2016-05-07
Eddy current testing is quite a popular non-contact and cost-effective method for nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of the key performance factors for defect characterization. In the literature, there are many interesting papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity. However, research activity on frequency optimization with respect to characterization performances is lacking. In this paper, an investigation into optimum excitation frequency has been conducted to enhance surface defect classification performance. The influences of excitation frequency for a group of defects were revealed in terms of detection sensitivity, contrast between defect features, and classification accuracy using kernel principal component analysis (KPCA) and a support vector machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of defects when excitation frequency is set near the frequency at which maximum probe signals are retrieved for the largest defect. After the use of KPCA, the margins between the defect features are optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk minimization. As a result, the best classification accuracy is obtained. The main contribution is that the influences of excitation frequency on defect characterization are interpreted, and experiment-based procedures are proposed to determine the optimal excitation frequency for a group of defects rather than a single defect with respect to optimal characterization performances.
Tuning of Human Modulation Filters Is Carrier-Frequency Dependent
Simpson, Andrew J. R.; Reiss, Joshua D.; McAlpine, David
2013-01-01
Recent studies employing speech stimuli to investigate ‘cocktail-party’ listening have focused on entrainment of cortical activity to modulations at syllabic (5 Hz) and phonemic (20 Hz) rates. The data suggest that cortical modulation filters (CMFs) are dependent on the sound-frequency channel in which modulations are conveyed, potentially underpinning a strategy for separating speech from background noise. Here, we characterize modulation filters in human listeners using a novel behavioral method. Within an ‘inverted’ adaptive forced-choice increment detection task, listening level was varied whilst contrast was held constant for ramped increments with effective modulation rates between 0.5 and 33 Hz. Our data suggest that modulation filters are tonotopically organized (i.e., vary along the primary, frequency-organized, dimension). This suggests that the human auditory system is optimized to track rapid (phonemic) modulations at high sound-frequencies and slow (prosodic/syllabic) modulations at low frequencies. PMID:24009759
The Advanced ACTPol 27/39 GHz Array
NASA Astrophysics Data System (ADS)
Simon, S. M.; Beall, J. A.; Cothard, N. F.; Duff, S. M.; Gallardo, P. A.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; McMahon, J. J.; Nati, F.; Niemack, M. D.; Staggs, S. T.; Vavagiakis, E. M.; Wollack, E. J.
2018-05-01
Advanced ACTPol (AdvACT) will observe the temperature and polarization of the cosmic microwave background (CMB) at multiple frequencies and high resolution to place improved constraints on inflation, dark matter, and dark energy. Foregrounds from synchrotron and dust radiation are a source of contamination that must be characterized and removed across a wide range of frequencies. AdvACT will thus observe at five frequency bands from 27 to 230 GHz. We discuss the design of the pixels and feedhorns for the 27/39 GHz multichroic array for AdvACT, which will target the synchrotron radiation that dominates at these frequencies. To gain 35% in mapping speed in the 39 GHz band where the foreground signals are faintest, the pixel number was increased through reducing the pixel diameter to 1.08λ at the lowest frequency, which represents a 22% decrease in size compared to our previously most tightly packed pixels.
Efficacy of High Frequency Ultrasound in Localization and Characterization of Orbital Lesions
Gurushankar, G; Bhimarao; Kadakola, Bindushree
2015-01-01
Background The complicated anatomy of orbit and the wide spectrum of pathological conditions present a formidable challenge for early diagnosis, which is critical for management. Ultrasonography provides a detailed cross sectional anatomy of the entire globe with excellent topographic visualization and real time display of the moving organ. Objectives of the study To evaluate the efficacy of high frequency Ultrasound in localization of orbital diseases and to characterize various orbital pathologies sonologically. Materials and Methods Hundred eyes of 85 patients were examined with ultrasound using linear high frequency probe (5 to 17 MHz) of PHILPS IU22 ultrasound system. Sonological diagnosis was made based on location, acoustic characteristics, kinetic properties and Doppler flow dynamics. Final diagnosis was made based on clinical & laboratory findings/higher cross-sectional imaging/surgery & histopathology (as applicable). Diagnostic accuracy of ultrasonography was evaluated and compared with final diagnosis. Results The distinction between ocular and extraocular pathologies was made in 100% of cases. The overall sensitivity, specificity, NPV and accuracy of ultrasonography were 94.2%, 98.8%, 92.2% & 94.9% respectively for diagnosis of ocular pathologies and 94.2%, 99.2%, 95.9% & 95.2% respectively for extra ocular pathologies. Conclusion Ultrasonography is a readily available, simple, cost effective, non ionizing and non invasive modality with overall high diagnostic accuracy in localising and characterising orbital pathologies. It has higher spatial and temporal resolution compared to CT/MRI. However, CT/MRI may be indicated in certain cases for the evaluation of calcifications, bony involvement, extension to adjacent structures and intracranial extension. PMID:26500977
Yungher, Don A.; Morris, Tiffany R.; Dilda, Valentina; Shine, James M.; Naismith, Sharon L.; Lewis, Simon J. G.; Moore, Steven T.
2014-01-01
A cardinal feature of freezing of gait (FOG) is high frequency (3–8 Hz) oscillation of the legs, and this study aimed to quantify the temporal pattern of lower-body motion prior to and during FOG. Acceleration data was obtained from sensors attached to the back, thighs, shanks, and feet in 14 Parkinson's disease patients performing timed-up-and-go tasks, and clinical assessment of FOG was performed by two experienced raters from video. A total of 23 isolated FOG events, defined as occurring at least 5 s after gait initiation and with no preceding FOG, were identified from the clinical ratings. The corresponding accelerometer records were analyzed within a 4 s window centered at the clinical onset of freezing. FOG-related high-frequency oscillation (an increase in power in the 3–8 Hz band >3 SD from baseline) followed a distal to proximal onset pattern, appearing at the feet, shanks, thighs, and then back over a period of 250 ms. Peak power tended to decrease as the focus of oscillation moved from feet to back. There was a consistent delay (mean 872 ms) between the onset of high frequency oscillation at the feet and clinical onset of FOG. We infer that FOG is characterized by high frequency oscillation at the feet, which progresses proximally and is mechanically damped at the torso. PMID:25101189
Flexible radio-frequency single-crystal germanium switch on plastic substrates
NASA Astrophysics Data System (ADS)
Qin, Guoxuan; Cai, Tianhao; Yuan, Hao-Chih; Seo, Jung-Hun; Ma, Jianguo; Ma, Zhenqiang
2014-04-01
This Letter presents the realization and characterizations of the flexible radio-frequency (RF)/microwave switches on plastic substrates employing single-crystal germanium (Ge) nanomembranes. The fabricated flexible Ge single-pole, single-throw (SPST) switches display high frequency responses (e.g., insertion loss of <1.3 dB at up to 30 GHz and isolation >10 dB at up to ˜13 GHz). RF performance tradeoff exists for the flexible Ge switches and the major affecting parameters are determined. The flexible Ge SPST switch shows better RF property to that of the flexible Si SPST switch. Underlying mechanism is investigated by theoretical analysis and modeling of switches with different structures.
Michaud, Mark; Leong, Thomas; Swiergon, Piotr; Juliano, Pablo; Knoerzer, Kai
2015-09-01
This work validated, in a higher frequency range, the theoretical predictions made by Boyle around 1930, which state that the optimal transmission of sound pressure through a metal plate occurs when the plate thickness equals a multiple of half the wavelength of the sound wave. Several reactor design parameters influencing the transmission of high frequency ultrasonic waves through a stainless steel plate were examined. The transmission properties of steel plates of various thicknesses (1-7 mm) were studied for frequencies ranging from 400 kHz to 2 MHz and at different distances between plates and transducers. It was shown that transmission of sound pressure through a steel plate showed high dependence of the thickness of the plate to the frequency of the sound wave (thickness ratio). Maximum sound pressure transmission of ∼ 60% of the incident pressure was observed when the ratio of the plate thickness to the applied frequency was a multiple of a half wavelength (2 MHz, 6mm stainless steel plate). In contrast, minimal sound pressure transmission (∼ 10-20%) was measured for thickness ratios that were not a multiple of a half wavelength. Furthermore, the attenuation of the sound pressure in the transmission region was also investigated. As expected, it was confirmed that higher frequencies have more pronounced sound pressure attenuation than lower frequencies. The spatial distribution of the sound pressure transmitted through the plate characterized by sonochemiluminescence measurements using luminol emission, supports the validity of the pressure measurements in this study. Copyright © 2015 Elsevier B.V. All rights reserved.
Bhaumik, G; Dass, D; Bhattacharyya, D; Sharma, Y K; Singh, S B
2013-01-01
Acute exposure to hypobaric hypoxia induces the changes in autonomic control of heart rate. Due to emergencies or war like conditions, rapid deployment of Indian military personnel into high altitude frequently occurs. Rapid deployment to high altitude soldiers are at risk of developing high altitude sickness. The present study was conducted to evaluate the acute exposure to high altitude hypobaric hypoxia (3500 m altitude) on the autonomic nervous control of heart rate in Indian military personnel during first week of acclimatization Indices of heart rate variability (viz; R-R interval, total power, low frequency, high frequency, ratio of low to high frequency) and pulse arterial oxygen saturation were measured at sea level and 3500m altitude. Power spectrum of heart rate variability was quantified by low frequency (LF: 0.04-0.15 Hz) and high frequency (HF: 0.15-0.5 Hz) widths. The ratio of LF to HF was also assessed as an index of the sympathovagal balance. Mean R-R interval decreased significantly on day 2 on induction to altitude which tended to increase on day 5. Total power (TP) decreased high altitude and tended to recover within a week. Both HF and LF power showed decrement at 3500m in comparison to sea level. The ratio of LF to HF (LF/HF) at 3500m was significantly higher at 3500m. SpO2 values decreased significantly (P < 0.05) at high altitude on day-2 which increased on day-5. We conclude that autonomic control of the heart rate measured by heart rate variability was altered on acute induction to 3500m which showed a significant decrease in parasympathetic tone and increase in sympathetic tone, then acclimatization seems to be characterized by progressive shift toward a higher parasympathetic tone.
High frequency ultrasound imaging using Fabry-Perot optical etalon
NASA Astrophysics Data System (ADS)
Ashkenazi, S.; Witte, R.; O'Donnell, M.
2005-04-01
Optical detection of ultrasound provides a unique and appealing way of forming detector arrays (1D or 2D) using either raster beam scanning or simultaneous array detection exploiting wide area illumination. Etalon based optical techniques are of particular interest, due to their relatively high sensitivity resulting from multiple optical reflections within the resonance structure. Detector arrays formed by etalon based techniques are characterized by high element density and small element active area, which enables high resolution imaging at high ultrasonic frequencies (typically 10-50 MHz). In this paper we present an application of an optical etalon structure for very high frequency ultrasound detection (exceeding 100 MHz). A thin polymer Fabry-Perot etalon (10 μm thickness) has been fabricated using spin coating of polymer photoresist on a glass substrate and gold evaporation forming partially reflecting mirrors on both faces of the polymer layer. The optical resonator formed by the etalon structure has a measured Q-factor of 300. The characteristic broadband response of the optical signal was demonstrated by insonifying the etalon using two different ultrasound transducers and recording the resulting intensity modulation of optical reflection from the etalon. A focused 10 MHz transducer was used for the low MHz frequency region, and a 50 MHz focused transducer was used for the high frequency region. The optical reflection signal was compared to the pulse/echo signal detected by the same ultrasound transducer. The measured signal to noise ratio of the optically detected signal is comparable to that of the pulse/echo signal in both low and high frequency ranges. The etalon detector was integrated in a photoacoustic imaging system. High resolution images of phantom targets and biological tissue (nerve cord) were obtained. The additional information of optical absorption obtained by photoacoustic imaging, along with the high resolution detection of the etalon, offer unique advantages for intravascular and neurological imaging devices.
NASA Astrophysics Data System (ADS)
Zhao, Peng; Khosravi, Ava; Azcatl, Angelica; Bolshakov, Pavel; Mirabelli, Gioele; Caruso, Enrico; Hinkle, Christopher L.; Hurley, Paul K.; Wallace, Robert M.; Young, Chadwin D.
2018-07-01
Border traps and interface traps in HfO2/few-layer MoS2 top-gate stacks are investigated by C–V characterization. Frequency dependent C–V data shows dispersion in both the depletion and accumulation regions for the MoS2 devices. The border trap density is extracted with a distributed model, and interface traps are analyzed using the high-low frequency and multi-frequency methods. The physical origins of interface traps appear to be caused by impurities/defects in the MoS2 layers, performing as band tail states, while the border traps are associated with the dielectric, likely a consequence of the low-temperature deposition. This work provides a method of using multiple C–V measurements and analysis techniques to analyze the behavior of high-k/TMD gate stacks and deconvolute border traps from interface traps.
Floquet prethermalization in the resonantly driven Hubbard model
NASA Astrophysics Data System (ADS)
Herrmann, Andreas; Murakami, Yuta; Eckstein, Martin; Werner, Philipp
2017-12-01
We demonstrate the existence of long-lived prethermalized states in the Mott insulating Hubbard model driven by periodic electric fields. These states, which also exist in the resonantly driven case with a large density of photo-induced doublons and holons, are characterized by a nonzero current and an effective temperature of the doublons and holons which depends sensitively on the driving condition. Focusing on the specific case of resonantly driven models whose effective time-independent Hamiltonian in the high-frequency driving limit corresponds to noninteracting fermions, we show that the time evolution of the double occupation can be reproduced by the effective Hamiltonian, and that the prethermalization plateaus at finite driving frequency are controlled by the next-to-leading-order correction in the high-frequency expansion of the effective Hamiltonian. We propose a numerical procedure to determine an effective Hubbard interaction that mimics the correlation effects induced by these higher-order terms.
Wang, W; Degenhart, A D; Collinger, J L; Vinjamuri, R; Sudre, G P; Adelson, P D; Holder, D L; Leuthardt, E C; Moran, D W; Boninger, M L; Schwartz, A B; Crammond, D J; Tyler-Kabara, E C; Weber, D J
2009-01-01
In this study human motor cortical activity was recorded with a customized micro-ECoG grid during individual finger movements. The quality of the recorded neural signals was characterized in the frequency domain from three different perspectives: (1) coherence between neural signals recorded from different electrodes, (2) modulation of neural signals by finger movement, and (3) accuracy of finger movement decoding. It was found that, for the high frequency band (60-120 Hz), coherence between neighboring micro-ECoG electrodes was 0.3. In addition, the high frequency band showed significant modulation by finger movement both temporally and spatially, and a classification accuracy of 73% (chance level: 20%) was achieved for individual finger movement using neural signals recorded from the micro-ECoG grid. These results suggest that the micro-ECoG grid presented here offers sufficient spatial and temporal resolution for the development of minimally-invasive brain-computer interface applications.
Bilateral preictal signature of phase-amplitude coupling in canine epilepsy.
Gagliano, Laura; Bou Assi, Elie; Nguyen, Dang K; Rihana, Sandy; Sawan, Mohamad
2018-01-01
Seizure forecasting would improve the quality of life of patients with refractory epilepsy. Although early findings were optimistic, no single feature has been found capable of individually characterizing brain dynamics during transition to seizure. Cross-frequency phase amplitude coupling has been recently proposed as a precursor of seizure activity. This work evaluates the existence of a statistically significant difference in mean phase amplitude coupling distribution between the preictal and interictal states of seizures in dogs with bilaterally implanted intracranial electrodes. Results show a statistically significant change (p<0.05) of phase amplitude coupling during the preictal phase. This change is correlated with the position of implanted electrodes and is more significant within high-gamma frequency bands. These findings highlight the potential benefit of bilateral iEEG analysis and the feasibility of seizure forecasting based on slow modulation of high frequency amplitude. Copyright © 2017 Elsevier B.V. All rights reserved.
Fabrication and characterization of high current-density, submicron, NbN/MgO/NbN tunnel junctions
NASA Technical Reports Server (NTRS)
Stern, J. A.; Leduc, Henry G.; Judas, A. J.
1992-01-01
At near-millimeter wavelengths, heterodyne receivers based on SIS tunnel junctions are the most sensitive available. However, in order to scale these results to submillimeter wavelengths, certain device properties should be scaled. The tunnel-junction's current density should be increased to reduce the RC product. The device's area should be reduced to efficiently couple power from the antenna to the mixer. Finally, the superconductor used should have a large energy gap to minimize RF losses. Most SIS mixers use Nb or Pb-alloy tunnel junctions; the gap frequency for these materials is approximately 725 GHz. Above the gap frequency, these materials exhibit losses similar to those in a normal metal. The gap frequency in NbN films is as-large-as 1440 GHz. Therefore, we have developed a process to fabricate small area (down to 0.13 sq microns), high current density, NbN/MgO/NbN tunnel junctions.
Broadband high sound absorption from labyrinthine metasurfaces
NASA Astrophysics Data System (ADS)
Chang, Huiting; Liu, Liu; Zhang, Chi; Hu, Xinhua
2018-04-01
Metamaterials are artificial structures which exhibit fascinating properties unreachable by traditional materials. Here, we report on the design, fabrication, and characterization of acoustic metasurfaces consisting of dead-end channels coiled in a 2D plane. It is found that when the area of the channel's cross section is about 1/10 of the area (4.3 cm × 4.3 cm) of the upper surface of the building block, the sound loss in channels approaches to a critical value, resulting in near-perfect absorption (A > 99%) at resonant frequency. When the building block contains ten channels with specially designed lengths, sound waves can be highly absorbed above a cutoff frequency fc (A > 90% for fc < f < 3fc). The wavelength at the cutoff frequency can be 7.1 times of the thickness of the metasurface. Our results could find applications in noise reduction and sound detection.
Instability-driven frequency decoupling between structure dynamics and wake fluctuations
NASA Astrophysics Data System (ADS)
Jin, Yaqing; Kim, Jin-Tae; Chamorro, Leonardo P.
2018-04-01
Flow-induced dynamics of flexible structures is, in general, significantly modulated by periodic vortex shedding. Experiments and numerical simulations suggest that the frequencies associated with the dominant motions of structures are highly coupled with those of the wake under low-turbulence uniform flow. Here we present experimental evidence that demonstrates a significant decoupling between the dynamics of simple structures and wake fluctuations for various geometries, Reynolds numbers, and mass ratios. High-resolution particle tracking velocimetry and hot-wire anemometry are used to quantitatively characterize the dynamics of the structures and wake fluctuations; a complementary planar particle image velocimetry measurement is conducted to illustrate distinctive flow patterns. Results show that for structures with directional stiffness, von Kármán vortex shedding might dominate the wake of bodies governed by natural-frequency motion. This phenomenon can be a consequence of Kelvin-Helmholtz instability, where the structural characteristics of the body dominate the oscillations.
Ellipsometry study of optical parameters of AgIn5S8 crystals
NASA Astrophysics Data System (ADS)
Isik, Mehmet; Gasanly, Nizami
2015-12-01
AgIn5S8 crystals grown by Bridgman method were characterized for optical properties by ellipsometry measurements. Spectral dependence of optical parameters; real and imaginary parts of the pseudodielectric function, pseudorefractive index, pseudoextinction coefficient, reflectivity and absorption coefficient were obtained from ellipsometry experiments carried out in the 1.2-6.2 eV range. Direct band gap energy of 1.84 eV was found from the analysis of absorption coefficient vs. photon energy. The oscillator energy, dispersion energy and zero-frequency refractive index, high-frequency dielectric constant values were found from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. Crystal structure and atomic composition ratio of the constituent elements in the AgIn5S8 crystal were revealed from structural characterization techniques of X-ray diffraction and energy dispersive spectroscopy.
Under-sampling trajectory design for compressed sensing based DCE-MRI.
Liu, Duan-duan; Liang, Dong; Zhang, Na; Liu, Xin; Zhang, Yuan-ting
2013-01-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) needs high temporal and spatial resolution to accurately estimate quantitative parameters and characterize tumor vasculature. Compressed Sensing (CS) has the potential to accomplish this mutual importance. However, the randomness in CS under-sampling trajectory designed using the traditional variable density (VD) scheme may translate to uncertainty in kinetic parameter estimation when high reduction factors are used. Therefore, accurate parameter estimation using VD scheme usually needs multiple adjustments on parameters of Probability Density Function (PDF), and multiple reconstructions even with fixed PDF, which is inapplicable for DCE-MRI. In this paper, an under-sampling trajectory design which is robust to the change on PDF parameters and randomness with fixed PDF is studied. The strategy is to adaptively segment k-space into low-and high frequency domain, and only apply VD scheme in high-frequency domain. Simulation results demonstrate high accuracy and robustness comparing to VD design.
Characterization of Strombolian events by using independent component analysis
NASA Astrophysics Data System (ADS)
Ciaramella, A.; de Lauro, E.; de Martino, S.; di Lieto, B.; Falanga, M.; Tagliaferri, R.
2004-10-01
We apply Independent Component Analysis (ICA) to seismic signals recorded at Stromboli volcano. Firstly, we show how ICA works considering synthetic signals, which are generated by dynamical systems. We prove that Strombolian signals, both tremor and explosions, in the high frequency band (>0.5 Hz), are similar in time domain. This seems to give some insights to the organ pipe model generation for the source of these events. Moreover, we are able to recognize in the tremor signals a low frequency component (<0.5 Hz), with a well defined peak corresponding to 30s.
Characterization of the IEC 61000-4-6 Electromagnetic Clamp for Conducted-Immunity Testing
NASA Astrophysics Data System (ADS)
Grassi, F.; Pignari, S. A.; Spadacini, G.; Toscani, N.; Pelissou, P.
2016-05-01
A multiconductor transmission line model (MTL) is used to investigate the operation of the IEC 61000-4-6 electromagnetic (EM) clamp in a conducted-immunity test setup for aerospace applications. Aspects of interest include the performance of such a coupling device at very high frequencies (up to 1 GHz), and for extreme values of the common-mode impedance of equipment (short circuits, open circuits). The MTL model is finally exploited to predict the frequency response of coupling and decoupling factors defined in the IEC 61000-4-6 standard.
Modeling and characterization of shielded low loss CPWs on 65 nm node silicon
NASA Astrophysics Data System (ADS)
Hongrui, Wang; Dongxu, Yang; Li, Zhang; Lei, Zhang; Zhiping, Yu
2011-06-01
Coplanar waveguides (CPWs) are promising candidates for high quality passive devices in millimeter-wave frequency bands. In this paper, CPW transmission lines with and without ground shields have been designed and fabricated on 65 nm CMOS technology. A physical-based model is proposed to describe the frequency-dependent per-unit-length L, C, R and G parameters. Starting with a basic CPW structure, the slow-wave effect and ground-shield influence have been analyzed and incorporated into the general model. The accuracy of the model is confirmed by experimental results.
Savchenkov, Anatoliy A; Ilchenko, Vladimir S; Di Teodoro, Fabio; Belden, Paul M; Lotshaw, William T; Matsko, Andrey B; Maleki, Lute
2015-08-01
We report on the generation of mid-infrared Kerr frequency combs in high-finesse CaF2 and MgF2 whispering-gallery-mode resonators pumped with continuous-wave room-temperature quantum cascade lasers. The combs were centered at 4.5 μm, the longest wavelength to date. A frequency comb wider than one half of an octave was demonstrated when approximately 20 mW of pump power was coupled to an MgF2 resonator characterized with quality factor exceeding 10(8).
Cross-phase modulation bandwidth in ultrafast fiber wavelength converters
NASA Astrophysics Data System (ADS)
Luís, Ruben S.; Monteiro, Paulo; Teixeira, António
2006-12-01
We propose a novel analytical model for the characterization of fiber cross-phase modulation (XPM) in ultrafast all-optical fiber wavelength converters, operating at modulation frequencies higher than 1THz. The model is used to compare the XPM frequency limitations of a conventional and a highly nonlinear dispersion shifted fiber (HN-DSF) and a bismuth oxide-based fiber, introducing the XPM bandwidth as a design parameter. It is shown that the HN-DSF presents the highest XPM bandwidth, above 1THz, making it the most appropriate for ultrafast wavelength conversion.
NASA Astrophysics Data System (ADS)
Gao, Xiang; Du, Jia; Zhang, Ting; Jay Guo, Y.; Foley, Cathy P.
2017-11-01
This paper presents a systematic investigation of a broadband thin-film antenna-coupled high-temperature superconducting (HTS) terahertz (THz) harmonic mixer at relatively high operating temperature from 40 to 77 K. The mixer device chip was fabricated using the CSIRO established step-edge YBa2Cu3O7-x (YBCO) Josephson junction technology, packaged in a well-designed module and cooled in a temperature adjustable cryocooler. Detailed experimental characterizations were carried out for the broadband HTS mixer at both the 200 and 600 GHz bands in harmonic mixing mode. The DC current-voltage characteristics (IVCs), bias current condition, local oscillator (LO) power requirement, frequency response, as well as conversion efficiency under different bath temperatures were thoroughly investigated for demonstrating the frequency down-conversion performance.
NASA Technical Reports Server (NTRS)
Creason, A. S.; Miranda, F. A.
1996-01-01
Knowledge of the microwave properties at cryogenic temperatures of components fabricated using High-Temperature-Superconductors (HTS) is useful in the design of HTS-based microwave circuits. Therefore, fast and reliable characterization techniques have been developed to study the aforementioned properties. In this paper, we discuss computer analysis techniques employed in the cryogenic characterization of HTS-based resonators. The revised data analysis process requires minimal user input. and organizes the data in a form that is easily accessible by the user for further examination. These programs retrieve data generated during the cryogenic characterization at microwave frequencies of HTS based resonators and use it to calculate parameters such as the loaded and unloaded quality factors (Q and Q(sub o), respectively), the resonant frequency (f(sub o)), and the coupling coefficient (k), which are important quantities in the evaluation of HTS resonators. While the data are also stored for further use, the programs allow the user to obtain a graphical representation of any of the measured parameters as a function of temperature soon after the completion of the cryogenic measurement cycle. Although these programs were developed to study planar HTS-based resonators operating in the reflection mode, they could also be used in the cryogenic characterization of two ports (i.e., reflection/transmission) resonators.
NASA Astrophysics Data System (ADS)
Li, Xinlong; Reber, Melanie A. R.; Corder, Christopher; Chen, Yuning; Zhao, Peng; Allison, Thomas K.
2016-09-01
We present a detailed description of the design, construction, and performance of high-power ultrafast Yb:fiber laser frequency combs in operation in our laboratory. We discuss two such laser systems: an 87 MHz, 9 W, 85 fs laser operating at 1060 nm and an 87 MHz, 80 W, 155 fs laser operating at 1035 nm. Both are constructed using low-cost, commercially available components, and can be assembled using only basic tools for cleaving and splicing single-mode fibers. We describe practical methods for achieving and characterizing low-noise single-pulse operation and long-term stability from Yb:fiber oscillators based on nonlinear polarization evolution. Stabilization of the combs using a variety of transducers, including a new method for tuning the carrier-envelope offset frequency, is discussed. High average power is achieved through chirped-pulse amplification in simple fiber amplifiers based on double-clad photonic crystal fibers. We describe the use of these combs in several applications, including ultrasensitive femtosecond time-resolved spectroscopy and cavity-enhanced high-order harmonic generation.
Withanage, Wenura K.; Xi, X. X.; Nassiri, Alireza; ...
2017-02-16
Here, magnesium diboride (MgB 2) coating is a potential candidate to replace bulk niobium (Nb) for superconducting radio frequency cavities due to the appealing superconducting properties of MgB 2. MgB 2 coating on copper may allow cavity operation near 20–25 K as a result of the high transition temperature (T c) of MgB 2 and excellent thermal conductivity of Cu. We have grown MgB 2 films on 2 inch diameter Cu discs by hybrid physical–chemical vapor deposition for radio frequency characterization. Structural and elemental analyses showed a uniform MgB 2 coating on top of a Mg–Cu alloy layer with occasionalmore » intrusion of Mg–Cu alloy regions. High T c values of around 37 K and high critical current density (J c) on the order of 107 A cm –2 at zero field were observed. Radio frequency measurements at 11.4 GHz confirmed a high T c and showed a quality factor (Q 0) much higher than for Cu and close to that of Nb.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Withanage, Wenura K.; Xi, X. X.; Nassiri, Alireza
Here, magnesium diboride (MgB 2) coating is a potential candidate to replace bulk niobium (Nb) for superconducting radio frequency cavities due to the appealing superconducting properties of MgB 2. MgB 2 coating on copper may allow cavity operation near 20–25 K as a result of the high transition temperature (T c) of MgB 2 and excellent thermal conductivity of Cu. We have grown MgB 2 films on 2 inch diameter Cu discs by hybrid physical–chemical vapor deposition for radio frequency characterization. Structural and elemental analyses showed a uniform MgB 2 coating on top of a Mg–Cu alloy layer with occasionalmore » intrusion of Mg–Cu alloy regions. High T c values of around 37 K and high critical current density (J c) on the order of 107 A cm –2 at zero field were observed. Radio frequency measurements at 11.4 GHz confirmed a high T c and showed a quality factor (Q 0) much higher than for Cu and close to that of Nb.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Withanage, Wenura K.; Xi, X. X.; Nassiri, Alireza
Magnesium diboride (MgB2) coating is a potential candidate to replace bulk niobium (Nb) for superconducting radio frequency cavities due to the appealing superconducting properties of MgB2. MgB2 coating on copper may allow cavity operation near 20–25 K as a result of the high transition temperature (T c) of MgB2 and excellent thermal conductivity of Cu. We have grown MgB2 films on 2 inch diameter Cu discs by hybrid physical–chemical vapor deposition for radio frequency characterization. Structural and elemental analyses showed a uniform MgB2 coating on top of a Mg–Cu alloy layer with occasional intrusion of Mg–Cu alloy regions. High Tmore » c values of around 37 K and high critical current density (J c) on the order of 107 A cm-2 at zero field were observed. Radio frequency measurements at 11.4 GHz confirmed a high T c and showed a quality factor (Q 0) much higher than for Cu and close to that of Nb.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artem’ev, K. V.; Berezhetskaya, N. K.; Kossyi, I. A., E-mail: kossyi@fpl.gpi.ru
Results are presented from experiments on the inflammation of a stoichiometric methane-oxygen mixture by a high-current multielectrode spark-gap in a closed cylindrical chamber. It is shown that, in both the preflame and well-developed flame stages, the gas medium is characterized by a high degree of ionization (n{sub e} ≈ 10{sup 12} cm{sup −3}) due to chemoionization processes and a high electron-neutral collision frequency (ν{sub e0} ≈ 10{sup 12} s{sup −1})
International Space Station Increment-4/5 Microgravity Environment Summary Report
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy
2003-01-01
This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of December 2001 to December 2002. Unlike the past two ISS Increment reports, which were increment specific, this summary report covers two increments: Increments 4 and 5, hereafter referred to as Increment-4/5. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-4/5. Due to time constraint and lack of precise timeline information regarding some payload operations and station activities, not a11 of the activities were analyzed for this report. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System supports science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit supports experiments requiring vibratory acceleration measurement. The International Space Station Increment-4/5 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: The Microgravity Acceleration Measurement System, which consists of two sensors: the low-frequency Orbital Acceleration Research Experiment Sensor Subsystem and the higher frequency High Resolution Accelerometer Package. The low frequency sensor measures up to 1 Hz, but is routinely trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to arbitrary locations for characterizing the quasi-steady environment for payloads and the vehicle. The high frequency sensor is used to characterize the vibratory environment up to 100 Hz at a single measurement location. The Space Acceleration Measurement System, which deploys high frequency sensors, measures vibratory acceleration data in the range of 0.01 to 400 Hz at multiple measurement locations. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment- 4/5 from December 2001 to December 2002.
Development of an ultrasensitive interferometry system as a key to precision metrology applications
NASA Astrophysics Data System (ADS)
Gohlke, Martin; Schuldt, Thilo; Weise, Dennis; Johann, Ulrich; Peters, Achim; Braxmaier, Claus
2009-06-01
We present a symmetric heterodyne interferometer as a prototype of a highly sensitive translation and tilt measurement system. This compact optical metrology system was developed over the past several years by EADS Astrium (Friedrichshafen) in cooperation with the Humboldt-University (Berlin) and the university of applied science Konstanz (HTWG-Konstanz). The noise performance was tested at frequencies between 10-4 and 3 Hz, the noise levels are below 1 nm/Hz 1/2 for translation and below 1 μrad/Hz1/2, for tilt measurements. For frequencies higher than 10 mHz noise levels below 5pm/Hz1/2 and 4 nrad/Hz1/2 respectively, were demonstrated. Based on this highly sensitive metrology system we also developed a dilatometer for the characterization of the CTE (coefficient of thermal expansion) of various materials, i.e. CFRP (carbon fiber reinforced plastic) or Zerodur. The currently achieved sensitivity of these measurements is better than 10-7 K-1. Future planned applications of the interferometer include ultra-high-precision surface profiling and characterization of actuator noise in low-noise opto-mechanics setups. We will give an overview of the current experimental setup and the latest measurement results.
NASA Astrophysics Data System (ADS)
Possinger, A. R.; Inagaki, T.; Bailey, S. W.; Kogel-Knabner, I.; Lehmann, J.
2017-12-01
Soil carbon (C) interaction with minerals and metals through surface adsorption and co-precipitation processes is important for soil organic C (SOC) stabilization. Co-precipitation (i.e., the incorporation of C as an "impurity" in metal precipitates as they form) may increase the potential quantity of mineral-associated C per unit mineral surface compared to surface adsorption: a potentially important and as yet unaccounted for mechanism of C stabilization in soil. However, chemical, physical, and biological characterization of co-precipitated SOM as such in natural soils is limited, and the relative persistence of co-precipitated C is unknown, particularly under dynamic environmental conditions. To better understand the relationships between SOM stabilization via organometallic co-precipitation and environmental variables, this study compares mineral-SOM characteristics across a forest soil (Spodosol) hydrological gradient with expected differences in co-precipitation of SOM with iron (Fe) and aluminum (Al) due to variable saturation frequency. Soils were collected from a steep, well-drained forest soil transect with low, medium, and high frequency of water table intrusion into surface soils (Hubbard Brook Experimental Forest, Woodstock, NH). Lower saturation frequency soils generally had higher C content, C/Fe, C/Al, and other indicators of co-precipitation interactions resulting from SOM complexation, transport, and precipitation, an important process of Spodosol formation. Preliminary Fe X-ray Absorption Spectroscopic (XAS) characterization of SOM and metal chemistry in low frequency profiles suggest co-precipitation of SOM in the fine fraction (<20 µm). Short-term (10d) aerobic incubation of high and low saturation frequency soils showed greater SOC mineralization per unit soil C for low saturation frequency (i.e., higher co-precipitation) soils; however, increased mineralization may be attributed to non-mineral associated fractions of SOM. Further work to identify the component of SOM contributing to rapid mineralization using 13C-labeled substrates will link the observed chemical characteristics (13C-NMR, C K-edge XANES, and Fe XAS) of mineral-organic associations resulting from varying saturation frequency with mechanisms driving mineralization processes.
Characterizing Far-infrared Laser Emissions and the Measurement of Their Frequencies.
Jackson, Michael; Zink, Lyndon R
2015-12-18
The generation and subsequent measurement of far-infrared radiation has found numerous applications in high-resolution spectroscopy, radio astronomy, and Terahertz imaging. For about 45 years, the generation of coherent, far-infrared radiation has been accomplished using the optically pumped molecular laser. Once far-infrared laser radiation is detected, the frequencies of these laser emissions are measured using a three-laser heterodyne technique. With this technique, the unknown frequency from the optically pumped molecular laser is mixed with the difference frequency between two stabilized, infrared reference frequencies. These reference frequencies are generated by independent carbon dioxide lasers, each stabilized using the fluorescence signal from an external, low pressure reference cell. The resulting beat between the known and unknown laser frequencies is monitored by a metal-insulator-metal point contact diode detector whose output is observed on a spectrum analyzer. The beat frequency between these laser emissions is subsequently measured and combined with the known reference frequencies to extrapolate the unknown far-infrared laser frequency. The resulting one-sigma fractional uncertainty for laser frequencies measured with this technique is ± 5 parts in 10(7). Accurately determining the frequency of far-infrared laser emissions is critical as they are often used as a reference for other measurements, as in the high-resolution spectroscopic investigations of free radicals using laser magnetic resonance. As part of this investigation, difluoromethane, CH2F2, was used as the far-infrared laser medium. In all, eight far-infrared laser frequencies were measured for the first time with frequencies ranging from 0.359 to 1.273 THz. Three of these laser emissions were discovered during this investigation and are reported with their optimal operating pressure, polarization with respect to the CO2 pump laser, and strength.
Characterizing Far-infrared Laser Emissions and the Measurement of Their Frequencies
Jackson, Michael; Zink, Lyndon R.
2015-01-01
The generation and subsequent measurement of far-infrared radiation has found numerous applications in high-resolution spectroscopy, radio astronomy, and Terahertz imaging. For about 45 years, the generation of coherent, far-infrared radiation has been accomplished using the optically pumped molecular laser. Once far-infrared laser radiation is detected, the frequencies of these laser emissions are measured using a three-laser heterodyne technique. With this technique, the unknown frequency from the optically pumped molecular laser is mixed with the difference frequency between two stabilized, infrared reference frequencies. These reference frequencies are generated by independent carbon dioxide lasers, each stabilized using the fluorescence signal from an external, low pressure reference cell. The resulting beat between the known and unknown laser frequencies is monitored by a metal-insulator-metal point contact diode detector whose output is observed on a spectrum analyzer. The beat frequency between these laser emissions is subsequently measured and combined with the known reference frequencies to extrapolate the unknown far-infrared laser frequency. The resulting one-sigma fractional uncertainty for laser frequencies measured with this technique is ± 5 parts in 107. Accurately determining the frequency of far-infrared laser emissions is critical as they are often used as a reference for other measurements, as in the high-resolution spectroscopic investigations of free radicals using laser magnetic resonance. As part of this investigation, difluoromethane, CH2F2, was used as the far-infrared laser medium. In all, eight far-infrared laser frequencies were measured for the first time with frequencies ranging from 0.359 to 1.273 THz. Three of these laser emissions were discovered during this investigation and are reported with their optimal operating pressure, polarization with respect to the CO2 pump laser, and strength. PMID:26709957
NASA Astrophysics Data System (ADS)
Shojaei Zoeram, Ali; Rahmani, Aida; Asghar Akbari Mousavi, Seyed Ali
2017-05-01
The precise controllability of heat input in pulsed Nd:YAG welding method provided by two additional parameters, frequency and pulse duration, has made this method very promising for welding of alloys sensitive to heat input. The poor weldability of Ti-rich nitinol as a result of the formation of Ti2Ni IMC has deprived us of the unique properties of this alloy. In this study, to intensify solidification rate during welding of Ti-rich nitinol, pulsed Nd:YAG laser beam in low frequency was employed in addition to the employment of a copper substrate. Specific microstructure produced in this condition was characterized and the effects of this microstructure on tensile and fracture behavior of samples welded by two different procedures, full penetration and double-sided method with halved penetration depth for each side were investigated. The investigations revealed although the combination of low frequencies, the use of a high thermal conductor substrate and double-sided method eliminated intergranular fracture and increased tensile strength, the particular microstructure, built in the pulsed welding method in low frequencies, results to the formation of the longitudinal cracks during the first stages of tensile test at weld centerline. This degrades tensile strength of welded samples compared to base metal. The results showed samples welded in double-sided method performed much better than samples welded in full penetration mode.
Meaney, Paul M.; Fox, Colleen J.; Geimer, Shireen D.; Paulsen, Keith D.
2016-01-01
We examine the broadband behavior of complex electrical properties of glycerin and water mixtures over the frequency range of 0.1 – 25.0 GHz, especially as they relate to using these liquids as coupling media for microwave tomographic imaging. Their combination is unique in that they are mutually miscible over the full range of concentrations which allows them to be tailored to dielectric property matching for biological tissues. While the resultant mixture properties are partially driven by differences in the inherent low frequency permittivity of each constituent, relaxation frequency shifts play a disproportionately larger role in increasing the permittivity dispersion while also dramatically increasing the effective conductivity over the frequency range of 1 to 3 GHz. For the full range of mixture ratios, the relaxation frequency shifts from 17.5 GHz for 0% glycerin to less than 0.1 GHz for 100% glycerin. Of particular interest is the fact that the conductivity stays above 1.0 S/m over the 1–3 GHz range for glycerin mixture ratios (70–90% glycerin) we use for microwave breast tomography. The high level of attenuation is critical for suppressing unwanted multipath signals. This paper presents a full characterization of these liquids along with a discussion of their benefits and limitations in the context of microwave tomography. PMID:28507391
Reconstruction of Haplotype-Blocks Selected during Experimental Evolution.
Franssen, Susanne U; Barton, Nicholas H; Schlötterer, Christian
2017-01-01
The genetic analysis of experimentally evolving populations typically relies on short reads from pooled individuals (Pool-Seq). While this method provides reliable allele frequency estimates, the underlying haplotype structure remains poorly characterized. With small population sizes and adaptive variants that start from low frequencies, the interpretation of selection signatures in most Evolve and Resequencing studies remains challenging. To facilitate the characterization of selection targets, we propose a new approach that reconstructs selected haplotypes from replicated time series, using Pool-Seq data. We identify selected haplotypes through the correlated frequencies of alleles carried by them. Computer simulations indicate that selected haplotype-blocks of several Mb can be reconstructed with high confidence and low error rates, even when allele frequencies change only by 20% across three replicates. Applying this method to real data from D. melanogaster populations adapting to a hot environment, we identify a selected haplotype-block of 6.93 Mb. We confirm the presence of this haplotype-block in evolved populations by experimental haplotyping, demonstrating the power and accuracy of our haplotype reconstruction from Pool-Seq data. We propose that the combination of allele frequency estimates with haplotype information will provide the key to understanding the dynamics of adaptive alleles. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Sugandi, Gandi; Mambu, Grace A.; Mulyadi, Dadang; Mulyana, Edi
2017-07-01
Planar spring as a mechanical resonator is very important in designing an electrodynamic vibration energy harvesting application (EVEH) to generate output power with high efficiency. Generally, component of the mechanical resonator is a cantilever beam that is designed using one cantilever with an inertial mass placed cantilever tip. In this study, a planar spring which has four arms cantilever beam was designed and fabricated using an extra-thin FR4-PCB material with a total thickness of 130 µm. There are four types of planar spring that were designed and fabricated in this research to produce resonant frequencies at about 30, 40, 50 and 60 Hz with 1 mm width cantilever arm and various length of 13.5, 11.2, 9.8 and 8.7 mm, respectively. FR4 resonator is fabricated using technology LASER-cutting in order to obtain results precisely. The resonant frequency generated by the mechanical resonator is characterized using vibrator system with certain acceleration. The resonant frequency of the planar spring was obtained at a frequency where the maximum induced voltage occurs. The resonant frequency generated by each type of planar spring was obtained at 24.81, 34.24, 40.2, and 46.8 Hz with three conditions of acceleration of 0.02, 0.06, and 0,1g (g=9.8 m/s2).
High-frequency waves following PKP-CDIFF at distances greater than 155°
NASA Astrophysics Data System (ADS)
Nakanishi, Ichiro
1990-04-01
Using a seismic network in Hokkaido-Tohoku region, Japan we observe PKP waves in the distance range 152 to 157°from a deep earthquake in Argentina. The seismic network consists of 26 stations and provides us with a data set of dense distance sampling. The examination of amplitude variation of PKP-BC and PKP-Cdiff with distance locates the C-cusp at about 155.5° for a surface source for the path from Argentina to Japan. This C-cusp position suggests a P velocity of 10.27 km/s at the bottom of the outer core. The bandpass filtering of the data shows that high-frequency waves are observed following PKP-Cdiff at distances beyond the C-cusp. The waves are characterized by a dominant frequency of about 2 to 3 Hz, a long duration of oscillation until the arrival of PKP-AB, and an apparent onset slowness of about 4 s/deg, which is approximately equal to that of PKP-AB in the distance range. The onset time of the high-frequency waves seems to be consistent with the least time of the scattering of PKP-BC on the receiver side near the bottom of the upper mantle.
NASA Astrophysics Data System (ADS)
Jain, P.; Recchia, M.; Cavenago, M.; Fantz, U.; Gaio, E.; Kraus, W.; Maistrello, A.; Veltri, P.
2018-04-01
Neutral beam injection (NBI) for plasma heating and current drive is necessary for International Thermonuclear Experimental reactor (ITER) tokamak. Due to its various advantages, a radio frequency (RF) driven plasma source type was selected as a reference ion source for the ITER heating NBI. The ITER relevant RF negative ion sources are inductively coupled (IC) devices whose operational working frequency has been chosen to be 1 MHz and are characterized by high RF power density (˜9.4 W cm-3) and low operational pressure (around 0.3 Pa). The RF field is produced by a coil in a cylindrical chamber leading to a plasma generation followed by its expansion inside the chamber. This paper recalls different concepts based on which a methodology is developed to evaluate the efficiency of the RF power transfer to hydrogen plasma. This efficiency is then analyzed as a function of the working frequency and in dependence of other operating source and plasma parameters. The study is applied to a high power IC RF hydrogen ion source which is similar to one simplified driver of the ELISE source (half the size of the ITER NBI source).
Preterm labour detection by use of a biophysical marker: the uterine electrical activity.
Marque, Catherine K; Terrien, Jérémy; Rihana, Sandy; Germain, Guy
2007-06-01
The electrical activity of the uterine muscle is representative of uterine contractility. Its characterization may be used to detect a potential risk of preterm delivery in women, even at an early gestational stage. We have investigated the effect of the recording electrode position on the spectral content of the signal by using a mathematical model of the women's abdomen. We have then compared the simulated results to actual recordings. On signals with noise reduced with a dedicated algorithm, we have characterized the main frequency components of the signal spectrum in order to compute parameters indicative of different situations: preterm contractions resulting nonetheless in term delivery (i.e. normal contractions) and preterm contractions leading to preterm delivery (i.e. high-risk contractions). A diagnosis system permitted us to discriminate between these different categories of contractions. As the position of the placenta seems to affect the frequency content of electrical activity, we have also investigated in monkeys, with internal electrodes attached on the uterus, the effect of the placenta on the spectral content of the electrical signals. In women, the best electrode position was the median vertical axis of the abdomen. The discrimination between high risk and normal contractions showed that it was possible to detect a risk of preterm labour as early as at the 27th week of pregnancy (Misclassification Rate range: 11-19.5%). Placental influence on electrical signals was evidenced in animal recordings, with higher energy content in high frequency bands, for signals recorded away from the placenta when compared to signals recorded above the placental insertion. However, we noticed, from pregnancy to labour, a similar evolution of the frequency content of the signal towards high frequencies, whatever the relative position of electrodes and placenta. On human recordings, this study has proved that it is possible to detect, by non-invasive abdominal recordings, a risk of preterm birth as early as the 27th week of pregnancy. On animal signals, we have evidenced that the placenta exerts a local influence on the characteristics of the electrical activity of the uterus. However, these differences have a small influence on premature delivery risk diagnosis when using proper diagnosis tools.
A Probabilistic Analysis of Surface Water Flood Risk in London.
Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris
2018-06-01
Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.
Inflammatory activity in Crohn disease: ultrasound findings.
Migaleddu, Vincenzo; Quaia, Emilio; Scano, Domenico; Virgilio, Giuseppe
2008-01-01
Improvements in the ultrasound examination of bowel disease have registered in the last years the introduction of new technologies regarding high frequency probes (US), highly sensitive color or power Doppler units (CD-US), and the development of new non-linear technologies that optimize detection of contrast agents. Contrast-enhanced ultrasound (CE-US) most importantly increases the results in sonographic evaluation of Crohn disease inflammatory activity. CE-US has become an imaging modality routinely employed in the clinical practice for the evaluation of parenchymal organs due to the introduction of new generation microbubble contrast agents which persist in the bloodstream for several minutes after intravenous injection. The availability of high frequency dedicated contrast-specific US techniques provide accurate depiction of small bowel wall perfusion due to the extremely high sensitivity of non-linear signals produced by microbubble insonation. In Crohn's disease, CE-US may characterize the bowel wall thickness by differentiating fibrosis from edema and may grade the inflammatory disease activity by assessing the presence and distribution of vascularity within the layers of the bowel wall (submucosa alone or the entire bowel wall). Peri-intestinal inflammatory involvement can be also characterized. CE-US can provide prognostic data concerning clinical recurrence of the inflammatory disease and evaluate the efficacy of drugs treatments.
Rogue waves generation in a left-handed nonlinear transmission line with series varactor diodes
NASA Astrophysics Data System (ADS)
Onana Essama, B. G.; Atangana, J.; Biya Motto, F.; Mokhtari, B.; Cherkaoui Eddeqaqi, N.; Kofane, Timoleon C.
2014-07-01
We investigate the electromagnetic wave behavior and its characterization using collective variables technique. Second-order dispersion, first- and second-order nonlinearities, which strongly act in a left-handed nonlinear transmission line with series varactor diodes, are taken into account. Four frequency ranges have been found. The first one gives the so-called energetic soliton due to a perfect combination of second-order dispersion and first-order nonlinearity. The second frequency range presents a dispersive soliton leading to the collapse of the electromagnetic wave at the third frequency range. But the fourth one shows physical conditions which are able to provoke the appearance of wave trains generation with some particular waves, the rogue waves. Moreover, we demonstrate that the number of rogue waves increases with frequency. The soliton, thereafter, gains a relative stability when second-order nonlinearity comes into play with some specific values in the fourth frequency range. Furthermore, the stability conditions of the electromagnetic wave at high frequencies have been also discussed.
Contactless measurement of alternating current conductance in quantum Hall structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drichko, I. L.; Diakonov, A. M.; Malysh, V. A.
2014-10-21
We report a procedure to determine the frequency-dependent conductance of quantum Hall structures in a broad frequency domain. The procedure is based on the combination of two known probeless methods—acoustic spectroscopy and microwave spectroscopy. By using the acoustic spectroscopy, we study the low-frequency attenuation and phase shift of a surface acoustic wave in a piezoelectric crystal in the vicinity of the electron (hole) layer. The electronic contribution is resolved using its dependence on a transverse magnetic field. At high frequencies, we study the attenuation of an electromagnetic wave in a coplanar waveguide. To quantitatively calibrate these data, we use themore » fact that in the quantum-Hall-effect regime the conductance at the maxima of its magnetic field dependence is determined by extended states. Therefore, it should be frequency independent in a broad frequency domain. The procedure is verified by studies of a well-characterized p-SiGe/Ge/SiGe heterostructure.« less
Scientific applications of frequency-stabilized laser technology in space
NASA Technical Reports Server (NTRS)
Schumaker, Bonny L.
1990-01-01
A synoptic investigation of the uses of frequency-stabilized lasers for scientific applications in space is presented. It begins by summarizing properties of lasers, characterizing their frequency stability, and describing limitations and techniques to achieve certain levels of frequency stability. Limits to precision set by laser frequency stability for various kinds of measurements are investigated and compared with other sources of error. These other sources include photon-counting statistics, scattered laser light, fluctuations in laser power, and intensity distribution across the beam, propagation effects, mechanical and thermal noise, and radiation pressure. Methods are explored to improve the sensitivity of laser-based interferometric and range-rate measurements. Several specific types of science experiments that rely on highly precise measurements made with lasers are analyzed, and anticipated errors and overall performance are discussed. Qualitative descriptions are given of a number of other possible science applications involving frequency-stabilized lasers and related laser technology in space. These applications will warrant more careful analysis as technology develops.
Cryogenic probe station for on-wafer characterization of electrical devices
NASA Astrophysics Data System (ADS)
Russell, Damon; Cleary, Kieran; Reeves, Rodrigo
2012-04-01
A probe station, suitable for the electrical characterization of integrated circuits at cryogenic temperatures is presented. The unique design incorporates all moving components inside the cryostat at room temperature, greatly simplifying the design and allowing automated step and repeat testing. The system can characterize wafers up to 100 mm in diameter, at temperatures <20 K. It is capable of highly repeatable measurements at millimeter-wave frequencies, even though it utilizes a Gifford McMahon cryocooler which typically imposes limits due to vibration. Its capabilities are illustrated by noise temperature and S-parameter measurements on low noise amplifiers for radio astronomy, operating at 75-116 GHz.
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo
2012-01-01
An experiment was conducted to characterize the effects of HIRF-induced upsets on a prototype onboard data network. The experiment was conducted at the NASA Langley Research Center s High Intensity Radiation Field Laboratory and used a generic distributed system prototyping platform to realize the data network. This report presents the results of the hardware susceptibility threshold characterization which examined the dependence of measured susceptibility on factors like the frequency and modulation of the radiation, layout of the physical nodes and position of the nodes in the test chamber. The report also includes lessons learned during the development and execution of the experiment.
Optical Characterization of the SPT-3G Camera
NASA Astrophysics Data System (ADS)
Pan, Z.; Ade, P. A. R.; Ahmed, Z.; Anderson, A. J.; Austermann, J. E.; Avva, J. S.; Thakur, R. Basu; Bender, A. N.; Benson, B. A.; Carlstrom, J. E.; Carter, F. W.; Cecil, T.; Chang, C. L.; Cliche, J. F.; Cukierman, A.; Denison, E. V.; de Haan, T.; Ding, J.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Foster, A.; Gannon, R. N.; Gilbert, A.; Groh, J. C.; Halverson, N. W.; Harke-Hosemann, A. H.; Harrington, N. L.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O. B.; Jonas, M.; Khaire, T.; Kofman, A. M.; Korman, M.; Kubik, D.; Kuhlmann, S.; Kuo, C. L.; Lee, A. T.; Lowitz, A. E.; Meyer, S. S.; Michalik, D.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Noble, G. I.; Novosad, V.; Padin, S.; Pearson, J.; Posada, C. M.; Rahlin, A.; Ruhl, J. E.; Saunders, L. J.; Sayre, J. T.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J. A.; Stark, A. A.; Story, K. T.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vale, L. R.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Young, M. R.
2018-05-01
The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (centered at 95, 150 and 220 GHz) with ˜ 16,000 transition-edge sensor (TES) bolometers. Each multichroic array element on a detector wafer has a broadband sinuous antenna that couples power to six TESs, one for each of the three observing bands and both polarizations, via lumped element filters. Ten detector wafers populate the detector array, which is coupled to the sky via a large-aperture optical system. Here we present the frequency band characterization with Fourier transform spectroscopy, measurements of optical time constants, beam properties, and optical and polarization efficiencies of the detector array. The detectors have frequency bands consistent with our simulations and have high average optical efficiency which is 86, 77 and 66% for the 95, 150 and 220 GHz detectors. The time constants of the detectors are mostly between 0.5 and 5 ms. The beam is round with the correct size, and the polarization efficiency is more than 90% for most of the bolometers.
Heart energy signature spectrogram for cardiovascular diagnosis
Kudriavtsev, Vladimir; Polyshchuk, Vladimir; Roy, Douglas L
2007-01-01
A new method and application is proposed to characterize intensity and pitch of human heart sounds and murmurs. Using recorded heart sounds from the library of one of the authors, a visual map of heart sound energy was established. Both normal and abnormal heart sound recordings were studied. Representation is based on Wigner-Ville joint time-frequency transformations. The proposed methodology separates acoustic contributions of cardiac events simultaneously in pitch, time and energy. The resolution accuracy is superior to any other existing spectrogram method. The characteristic energy signature of the innocent heart murmur in a child with the S3 sound is presented. It allows clear detection of S1, S2 and S3 sounds, S2 split, systolic murmur, and intensity of these components. The original signal, heart sound power change with time, time-averaged frequency, energy density spectra and instantaneous variations of power and frequency/pitch with time, are presented. These data allow full quantitative characterization of heart sounds and murmurs. High accuracy in both time and pitch resolution is demonstrated. Resulting visual images have self-referencing quality, whereby individual features and their changes become immediately obvious. PMID:17480232
Optical Characterization of the SPT-3G Focal Plane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Z.; et al.
The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (95, 150 and 220 GHz) with ~16,000 transition-edge sensor (TES) bolometers. Each multichroic pixel on a detector wafer has a broadband sinuous antenna that couples power to six TESs, one for each of the three observing bands and both polarization directions, via lumped element filters. Ten detector wafers populate the focal plane, which is coupled to the sky via a large-aperture optical system. Here we present the frequency band characterization with Fourier transform spectroscopy, measurements of optical time constants, beam properties, andmore » optical and polarization efficiencies of the focal plane. The detectors have frequency bands consistent with our simulations, and have high average optical efficiency which is 86%, 77% and 66% for the 95, 150 and 220 GHz detectors. The time constants of the detectors are mostly between 0.5 ms and 5 ms. The beam is round with the correct size, and the polarization efficiency is more than 90% for most of the bolometers« less
Bio-implantable passive on-chip RF-MEMS strain sensing resonators for orthopaedic applications
NASA Astrophysics Data System (ADS)
Melik, Rohat; Kosku Perkgoz, Nihan; Unal, Emre; Puttlitz, Christian; Demir, Hilmi Volkan
2008-11-01
One out of ten bone fractures does not heal properly due to improper load distribution and strain profiles during the healing process. To provide implantable tools for the assessment of bone fractures, we have designed novel, bio-implantable, passive, on-chip, RF-MEMS strain sensors that rely on the resonance frequency shift with mechanical deformation. For this purpose, we modeled, fabricated and experimentally characterized two on-chip sensors with high quality factors for in vivo implantation. One of the sensors has an area of ~0.12 mm2 with a quality factor of ~60 and the other has an area of ~0.07 mm2 with a quality factor of ~70. To monitor the mechanical deformation by measuring the change in the resonance frequencies with the applied load, we employed a controllable, point load applying experimental setup designed and constructed for in vitro characterization. In the case of the sensor with the larger area, when we apply a load of 3920 N, we obtain a frequency shift of ~330 MHz and a quality factor of ~76. For the smaller sensor, the frequency shift and the quality factor are increased to 360 MHz and 95, respectively. These data demonstrate that our sensor chips have the capacity to withstand relatively high physiologic loads, and that the concomitant and very large resonant frequency shift with the applied load is achieved while maintaining a high signal quality factor. These experiments demonstrate that these novel sensors have the capacity for producing high sensitivity strain readout, even when the total device area is considerably small. Also, we have demonstrated that our bio-implantable, passive sensors deliver a telemetric, real-time readout of the strain on a chip. Placing two more resonators on the sides of the sensor to serve as transmitter and receiver antennas, we achieved to transfer contactless power and read out loads in the absence of direct wiring to the sensor. With this model, where telemetric measurements become simpler due to the fact that all sensor system is built on the same chip, we obtain a frequency shift of ~190 MHz with an increase in the quality factor from ~38 to ~46 when a load of 3920 N is applied. Therefore, as a first proof of concept, we have demonstrated the feasibility of our on-chip strain sensors for monitoring the mechanical deformation using telemetry-based systems.
Christov, Mario; Dushanova, Juliana
2016-01-01
The brain as a system with gradually declined resources by age maximizes its performance by neural network reorganization for greater efficiency of neuronal oscillations in a given frequency band. Whether event-related high-frequency band responses are related to plasticity in neural recruitment contributed to the stability of sensory/cognitive mechanisms accompanying aging or are underlined pathological changes seen in aging brain remains unknown. Aged effect on brain electrical activity was studied in auditory discrimination task (low-frequency and high-frequency tone) at particular cortical locations in beta (β1: 12.5-20; β2: 20.5-30 Hz) and gamma frequency bands (γ1: 30.5-49; γ2: 52-69 Hz) during sensory (post-stimulus interval 0-250 ms) and cognitive processing (250-600 ms). Beta1 activity less affected by age during sensory processing. Reduced beta1 activity was more widespread during cognitive processing. This difference increased in fronto-parietal direction more expressed after high-frequency tone stimulation. Beta2 and gamma activity were more pronounced with progressive age during sensory processing. Reducing regional-process specificity with progressing age characterized age-related and tone-dependent beta2 changes during sensory, but not during cognitive processing. Beta2 and gamma activity diminished with age on cognitive processes, except the higher frontal tone-dependent gamma activity during cognitive processing. With increasing age, larger gamma2 activity was more expressed over the frontal brain areas to high tone discrimination and hand reaction choice. These gamma2 differences were shifted from posterior to anterior brain regions with advancing age. The aged influence was higher on cognitive processes than on perceptual ones.
Temporal Characterization of Aircraft Noise Sources
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Sullivan, Brenda M.; Rizzi, Stephen A.
2004-01-01
Current aircraft source noise prediction tools yield time-independent frequency spectra as functions of directivity angle. Realistic evaluation and human assessment of aircraft fly-over noise require the temporal characteristics of the noise signature. The purpose of the current study is to analyze empirical data from broadband jet and tonal fan noise sources and to provide the temporal information required for prediction-based synthesis. Noise sources included a one-tenth-scale engine exhaust nozzle and a one-fifth scale scale turbofan engine. A methodology was developed to characterize the low frequency fluctuations employing the Short Time Fourier Transform in a MATLAB computing environment. It was shown that a trade-off is necessary between frequency and time resolution in the acoustic spectrogram. The procedure requires careful evaluation and selection of the data analysis parameters, including the data sampling frequency, Fourier Transform window size, associated time period and frequency resolution, and time period window overlap. Low frequency fluctuations were applied to the synthesis of broadband noise with the resulting records sounding virtually indistinguishable from the measured data in initial subjective evaluations. Amplitude fluctuations of blade passage frequency (BPF) harmonics were successfully characterized for conditions equivalent to take-off and approach. Data demonstrated that the fifth harmonic of the BPF varied more in frequency than the BPF itself and exhibited larger amplitude fluctuations over the duration of the time record. Frequency fluctuations were found to be not perceptible in the current characterization of tonal components.
Periyaswamy, Thamizhisai; Balasubramanian, Karthikeyan; Pastore, Christopher
2015-02-01
Fibrous materials are unique hierarchical complex structures exhibiting a range of mechanical, thermal, optical and electrical properties. The inherent discontinuity at micro and macro levels, heterogeneity and multi-scale porosity differentiates fibrous materials from other engineering materials that are typically continuum in nature. These structural complexities greatly influence the techniques and modalities that can be applied to characterize fibrous materials. Typically, the material response to an applied external force is measured and used as a characteristic number of the specimen. In general, a range of equipment is in use to obtain these numbers to signify the material properties. Nevertheless, obtaining these numbers for materials like fiber ensembles is often time consuming, destructive, and requires multiple modalities. It is hypothesized that the material response to an applied acoustic frequency would provide a robust alternative characterization mode for rapid and non-destructive material analysis. This research proposes applying air-coupled ultrasonic acoustics to characterize fibrous materials. Ultrasonic frequency waves transmitted through fibrous assemblies were feature extracted to understand the correlation between the applied frequency and the material properties. Mechanical and thermal characteristics were analyzed using ultrasonic features such as time of flight, signal velocity, power and the rate of attenuation of signal amplitude. Subsequently, these temporal and spectral characteristics were mapped with the standard low-stress mechanical and thermal properties via an empirical artificial intelligence engine. A high correlation of >0.92 (S.D. 0.06) was observed between the ultrasonic features and the standard measurements. The proposed ultrasonic technique can be used toward rapid characterization of dynamic behavior of flexible fibrous assemblies. Copyright © 2014 Elsevier B.V. All rights reserved.
Energy-Based Tetrahedron Sensor for High-Temperature, High-Pressure Environments
NASA Technical Reports Server (NTRS)
Gee, Kent L.; Sommerfeldt, Scott D.; Blotter, Jonathan D.
2012-01-01
An acoustic energy-based probe has been developed that incorporates multiple acoustic sensing elements in order to obtain the acoustic pressure and three-dimensional acoustic particle velocity. With these quantities, the user can obtain various energy-based quantities, including acoustic energy density, acoustic intensity, and acoustic impedance. In this specific development, the probe has been designed to operate in an environment characterized by high temperatures and high pressures as is found in the close vicinity of rocket plumes. Given these capabilities, the probe is designed to be used to investigate the acoustic conditions within the plume of a rocket engine or jet engine to facilitate greater understanding of the noise generation mechanisms in those plumes. The probe features sensors mounted inside a solid sphere. The associated electronics for the probe are contained within the sphere and the associated handle for the probe. More importantly, the design of the probe has desirable properties that reduce the bias errors associated with determining the acoustic pressure and velocity using finite sum and difference techniques. The diameter of the probe dictates the lower and upper operating frequencies for the probe, where accurate measurements can be acquired. The current probe design implements a sphere diameter of 1 in. (2.5 cm), which limits the upper operating frequency to about 4.5 kHz. The sensors are operational up to much higher frequencies, and could be used to acquire pressure data at higher frequencies, but the energy-based measurements are limited to that upper frequency. Larger or smaller spherical probes could be designed to go to lower or higher frequency range
NASA Astrophysics Data System (ADS)
Roten, D.; Fäh, D.; Bonilla, L. F.
2013-05-01
Ground motions of the 2011 Tohoku earthquake recorded at Onahama port (Iwaki, Fukushima prefecture) rank among the highest accelerations ever observed, with the peak amplitude of the 3-D acceleration vector approaching 2g. The response of the site was distinctively non-linear, as indicated by the presence of horizontal acceleration spikes which have been linked to cyclic mobility during similar observations. Compared to records of weak ground motions, the response of the site during the Mw 9.1 earthquake was characterized by increased amplification at frequencies above 10 Hz and in peak ground acceleration. This behaviour contrasts with the more common non-linear response encountered at non-liquefiable sites, which results in deamplification at higher frequencies. We simulate propagation of SH waves through the dense sand deposit using a non-linear finite difference code that is capable of modelling the development of excess pore water pressure. Dynamic soil parameters are calibrated using a direct search method that minimizes the difference between observed and simulated acceleration envelopes and response spectra. The finite difference simulations yield surface acceleration time-series that are consistent with the observations in shape and amplitude, pointing towards soil dilatancy as a likely explanation for the high-frequency pulses recorded at Onahama port. The simulations also suggest that the occurrence of high-frequency spikes coincided with a rapid increase in pore water pressure in the upper part of the sand deposit between 145 and 170 s. This sudden increase is possibly linked to a burst of high-frequency energy from a large slip patch below the Iwaki region.
Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon
2017-01-01
Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10−9 fs2/Hz (equivalent to −174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources. PMID:28102352
Inferior Frontal Sensitivity to Common Speech Sounds Is Amplified by Increasing Word Intelligibility
ERIC Educational Resources Information Center
Vaden, Kenneth I., Jr.; Kuchinsky, Stefanie E.; Keren, Noam I.; Harris, Kelly C.; Ahlstrom, Jayne B.; Dubno, Judy R.; Eckert, Mark A.
2011-01-01
The left inferior frontal gyrus (LIFG) exhibits increased responsiveness when people listen to words composed of speech sounds that frequently co-occur in the English language (Vaden, Piquado, & Hickok, 2011), termed high phonotactic frequency (Vitevitch & Luce, 1998). The current experiment aimed to further characterize the relation of…
Poverty, Residential Mobility, and Student Transiency within a Rural New York School District
ERIC Educational Resources Information Center
Schafft, Kai A.
2006-01-01
Human capital models assume residential mobility is both voluntary and opportunity-driven. Residential mobility of low income households, however, often does not fit these assumptions. Often characterized by short-distance, high frequency movement, poverty-related mobility may only deepen the social and economic instability that precipitated the…
Effects of irrigation frequency and grit color on the germination of lodgepole pine seeds
Jeremy R. Pinto; R. Kasten Dumroese; Douglas R. Cobos
2009-01-01
Nursery cultural practices during germination can be highly variable between existing production facilities. Although nursery guidebooks suggest keeping seeds moist, there are no known scientific answers indicating what sufficient moisture levels are. This study objective was to characterize differing irrigation regimes and grit color choices on different germination...
Bellili, A; Linguerri, R; Hochlaf, M; Puzzarini, C
2015-11-14
In an effort to provide an accurate structural and spectroscopic characterization of acetyl cyanide, its two enolic isomers and the corresponding cationic species, state-of-the-art computational methods, and approaches have been employed. The coupled-cluster theory including single and double excitations together with a perturbative treatment of triples has been used as starting point in composite schemes accounting for extrapolation to the complete basis-set limit as well as core-valence correlation effects to determine highly accurate molecular structures, fundamental vibrational frequencies, and rotational parameters. The available experimental data for acetyl cyanide allowed us to assess the reliability of our computations: structural, energetic, and spectroscopic properties have been obtained with an overall accuracy of about, or better than, 0.001 Å, 2 kcal/mol, 1-10 MHz, and 11 cm(-1) for bond distances, adiabatic ionization potentials, rotational constants, and fundamental vibrational frequencies, respectively. We are therefore confident that the highly accurate spectroscopic data provided herein can be useful for guiding future experimental investigations and/or astronomical observations.
He, Guanglin; Wang, Zheng; Su, Yongdong; Zou, Xing; Wang, Mengge; Liu, Jing; Hou, Yiping
2018-01-08
Understanding the origin and genetic background of Chinese high-altitude Tibetans play a pivotal role in medical genetics, archeology, anthropology, and forensics. In this study, to investigate the forensic characterization and genetic diversity of Chinese Tibetan, allele frequencies and corresponding forensic statistical parameters of 15 autosomal STRs included in the AmpFℓSTR® Sinofiler™ kit were obtained from 1220 Tibetan individuals residing in Lhasa country, Tibet Autonomous Region. We identified 191 alleles with corresponding allele frequencies varied from 0.0004 to 0.3984. The combined probability of discrimination and the combined probability of exclusion are 0.9999999999999999997 and 0.9999996, respectively. Our study provided the valuable dataset for forensic individual identification and parentage testing in the high-altitude Tibetan population. In addition, comprehensive population comparisons among 30 Chinese populations via PCA, AMOVA, MDS, and N-J tree demonstrated that the genetic components of Tibet Tibetan have received gene introgression from surrounding lowland populations (Such as Gansu Hui and Yunnan Bai) and Tibetan keeps the close genetic relationship with geographic neighboring populations.
High-Frequency Ultrasound for the Study of Early Mouse Embryonic Cardiovascular System.
Greco, Adelaide; Coda, Anna Rita Daniela; Albanese, Sandra; Ragucci, Monica; Liuzzi, Raffaele; Auletta, Luigi; Gargiulo, Sara; Lamagna, Francesco; Salvatore, Marco; Mancini, Marcello
2015-12-01
An accurate diagnosis of congenital heart defects during fetal development is critical for interventional planning. Mice can be used to generate animal models with heart defects, and high-frequency ultrasound (HFUS) imaging enables in utero imaging of live mouse embryos. A wide range of physiological measurements is possible using Doppler-HFUS imaging; limitations of any single measurement warrant a multiparameter approach to characterize cardiovascular function. Doppler-HFUS was used to explore the embryonic (heart, aorta) and extraembryonic (umbilical blood flow) circulatory systems to create a database in normal mouse embryos between 9.5 and 16.5 days of gestation. Multivariate analyses were performed to explore correlations between gestational age and embryo echocardiographic parameters. Heart rate and peak velocity in the aorta were positively correlated with gestational time, whereas cardiac cycle length, isovolumetric relaxation time, myocardial performance index, and arterial deceleration time of the umbilical cord were negatively correlated with it. Doppler-HFUS facilitated detailed characterization of the embryonic mouse circulation and represents a useful tool for investigation of the early mouse embryonic cardiovascular system. © The Author(s) 2015.
High damping properties of magnetic particles doped rubber composites at wide frequency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Ye, E-mail: schtiany@163.com; College of Material Science and Engineering, North University of China, Taiyuan 030051; Liu, Yaqing, E-mail: lyq@nuc.edu.cn
Highlights: ► A new kind of permanent magnetic rubber was prepared. ► The microstructure and magnetic properties were investigated. ► The mechanical and damping properties were discussed. ► The new material is expected to be an isolator material to a changed frequency. - Abstract: A new kind of rubber composite was prepared by doping SrFe{sub 12}O{sub 19} nanoparticles coated with silane coupling agents (Si-69) into nitrile butadiene rubber (NBR) matrix, which was characterized by the scanning electron microscopy and X-ray spectroscopy. The results showed that the SrFe{sub 12}O{sub 19} nanoparticles were well dispersed in rubber matrix. Furthermore, the mechanical andmore » magnetic properties of the rubber composites were investigated, in which the high tensile strength (15.8 MPa) and high saturation magnetization (22.9 emu/g) were observed. What is more, the high loss factor of the rubber composites was also obtained in a wide frequency range (0–100 Hz) at high loading (80 phr). The result is attributed to that the permanent magnetic field in rubber nanocomposites can absorb shock energy. These results indicate that the new kind of permanent magnetic rubber is expected to be a smart isolator material, in which the isolator will be able to adapt to a changed frequency.« less
Submillimeter sources for radiometry using high power Indium Phosphide Gunn diode oscillators
NASA Technical Reports Server (NTRS)
Deo, Naresh C.
1990-01-01
A study aimed at developing high frequency millimeter wave and submillimeter wave local oscillator sources in the 60-600 GHz range was conducted. Sources involved both fundamental and harmonic-extraction type Indium Phosphide Gunn diode oscillators as well as varactor multipliers. In particular, a high power balanced-doubler using varactor diodes was developed for 166 GHz. It is capable of handling 100 mW input power, and typically produced 25 mW output power. A high frequency tripler operating at 500 GHz output frequency was also developed and cascaded with the balanced-doubler. A dual-diode InP Gunn diode combiner was used to pump this cascaded multiplier to produce on the order of 0.5 mW at 500 GHz. In addition, considerable development and characterization work on InP Gunn diode oscillators was carried out. Design data and operating characteristics were documented for a very wide range of oscillators. The reliability of InP devices was examined, and packaging techniques to enhance the performance were analyzed. A theoretical study of a new class of high power multipliers was conducted for future applications. The sources developed here find many commercial applications for radio astronomy and remote sensing.
Realization of Ultra-High Spectral Purity with the Opto-Electronic Oscillator
NASA Technical Reports Server (NTRS)
Yao, Steve; Maleki, Lute; Ji, Yu; Dick, John
2000-01-01
Recent results with the Opto-Electronic Oscillator (OEO) have led to the realization of very high spectral purity. Experimental results have produced a performance characterized by a noise as low as by -50 dBc/Hz at 10 Hz for a 10 GHz OEO. The unit was built in a compact package containing an integrated DFB laser and the modulator. This performance is significant because the oscillator is free running, and since the noise in an OEO is independent of the oscillation frequency, the same result can also be obtained at higher frequencies. The result also demonstrates that high frequency, high performance, low cost, and miniature OEO can be realized with the integrated photonic technology. We have also developed a novel carrier suppression technique to reduce the 1/f phase noise of the oscillator even further. The technique is based on the use of a long fiber delay, in place of the high Q cavity, to implement carrier suppression. Our preliminary experimental results indicate an extra 10 to 20 dB phase noise reduction of the OEO with this novel technique. Further noise reduction beyond this value is expected with improved circuit design and longer reference fiber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2004-06-16
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 0.1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002, Tseng et al., 2003). Electric and magnetic sensors are being tested and calibrated on sea water and in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
Climate, orography and scale controls on flood frequency in Triveneto (Italy)
NASA Astrophysics Data System (ADS)
Persiano, Simone; Castellarin, Attilio; Salinas, Jose Luis; Domeneghetti, Alessio; Brath, Armando
2016-05-01
The growing concern about the possible effects of climate change on flood frequency regime is leading Authorities to review previously proposed reference procedures for design-flood estimation, such as national flood frequency models. Our study focuses on Triveneto, a broad geographical region in North-eastern Italy. A reference procedure for design flood estimation in Triveneto is available from the Italian NCR research project "VA.PI.", which considered Triveneto as a single homogeneous region and developed a regional model using annual maximum series (AMS) of peak discharges that were collected up to the 1980s by the former Italian Hydrometeorological Service. We consider a very detailed AMS database that we recently compiled for 76 catchments located in Triveneto. All 76 study catchments are characterized in terms of several geomorphologic and climatic descriptors. The objective of our study is threefold: (1) to inspect climatic and scale controls on flood frequency regime; (2) to verify the possible presence of changes in flood frequency regime by looking at changes in time of regional L-moments of annual maximum floods; (3) to develop an updated reference procedure for design flood estimation in Triveneto by using a focused-pooling approach (i.e. Region of Influence, RoI). Our study leads to the following conclusions: (1) climatic and scale controls on flood frequency regime in Triveneto are similar to the controls that were recently found in Europe; (2) a single year characterized by extreme floods can have a remarkable influence on regional flood frequency models and analyses for detecting possible changes in flood frequency regime; (3) no significant change was detected in the flood frequency regime, yet an update of the existing reference procedure for design flood estimation is highly recommended and we propose the RoI approach for properly representing climate and scale controls on flood frequency in Triveneto, which cannot be regarded as a single homogeneous region.
NASA Astrophysics Data System (ADS)
Weigand, Maximilian; Kemna, Andreas
2017-02-01
A better understanding of root-soil interactions and associated processes is essential in achieving progress in crop breeding and management, prompting the need for high-resolution and non-destructive characterization methods. To date, such methods are still lacking or restricted by technical constraints, in particular the charactization and monitoring of root growth and function in the field. A promising technique in this respect is electrical impedance tomography (EIT), which utilizes low-frequency (< 1 kHz)- electrical conduction- and polarization properties in an imaging framework. It is well established that cells and cell clusters exhibit an electrical polarization response in alternating electric-current fields due to electrical double layers which form at cell membranes. This double layer is directly related to the electrical surface properties of the membrane, which in turn are influenced by nutrient dynamics (fluxes and concentrations on both sides of the membranes). Therefore, it can be assumed that the electrical polarization properties of roots are inherently related to ion uptake and translocation processes in the root systems. We hereby propose broadband (mHz to hundreds of Hz) multi-frequency EIT as a non-invasive methodological approach for the monitoring and physiological, i.e., functional, characterization of crop root systems. The approach combines the spatial-resolution capability of an imaging method with the diagnostic potential of electrical-impedance spectroscopy. The capability of multi-frequency EIT to characterize and monitor crop root systems was investigated in a rhizotron laboratory experiment, in which the root system of oilseed plants was monitored in a water-filled rhizotron, that is, in a nutrient-deprived environment. We found a low-frequency polarization response of the root system, which enabled the successful delineation of its spatial extension. The magnitude of the overall polarization response decreased along with the physiological decay of the root system due to the stress situation. Spectral polarization parameters, as derived from a pixel-based Debye decomposition analysis of the multi-frequency imaging results, reveal systematic changes in the spatial and spectral electrical response of the root system. In particular, quantified mean relaxation times (of the order of 10 ms) indicate changes in the length scales on which the polarization processes took place in the root system, as a response to the prolonged induced stress situation. Our results demonstrate that broadband EIT is a capable, non-invasive method to image root system extension as well as to monitor changes associated with the root physiological processes. Given its applicability on both laboratory and field scales, our results suggest an enormous potential of the method for the structural and functional imaging of root systems for various applications. This particularly holds for the field scale, where corresponding methods are highly desired but to date are lacking.
High-Frequency, High-Temperature Fretting Experiments
NASA Technical Reports Server (NTRS)
Matlik, J. F.; Farris, T. N.; Haake, F. K.; Swanson, G. R.; Duke, G. C.
2005-01-01
Fretting is a structural damage mechanism observed when two nominally clamped surfaces are subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact. These contact stresses drive crack nucleation and propagation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting cracks pose to damage tolerance and structural integrity of in-service components, the objective of this work is to develop a well-characterized experimental fretting rig capable of investigating fretting behavior of advanced aerospace alloys subjected to load and temperature conditions representative of such turbomachinery components.
High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing
Yun, S.H.; Vakoc, B.J.; Shishkov, M.; Desjardins, A.E.; Park, B.H.; de Boer, J.F.; Tearney, G.J.; Bouma, B.E.
2009-01-01
Polarization sensitive optical coherence tomography (PS-OCT) provides a cross-sectional image of birefringence in biological samples that is complementary in many applications to the standard reflectance-based image. Recent ex vivo studies have demonstrated that birefringence mapping enables the characterization of collagen and smooth muscle concentration and distribution in vascular tissues. Instruments capable of applying these measurements percutaneously in vivo may provide new insights into coronary atherosclerosis and acute myocardial infarction. We have developed a polarization sensitive optical frequency domain imaging (PS-OFDI) system that enables high-speed intravascular birefringence imaging through a fiber-optic catheter. The novel design of this system utilizes frequency multiplexing to simultaneously measure reflectance of two incident polarization states, overcoming concerns regarding temporal variations of the catheter fiber birefringence and spatial variations in the birefringence of the sample. We demonstrate circular cross-sectional birefringence imaging of a human coronary artery ex vivo through a flexible fiber-optic catheter with an A-line rate of 62 kHz and a ranging depth of 6.2 mm. PMID:18542183
Digital accumulators in phase and frequency tracking loops
NASA Technical Reports Server (NTRS)
Hinedi, Sami; Statman, Joseph I.
1990-01-01
Results on the effects of digital accumulators in phase and frequency tracking loops are presented. Digital accumulators or summers are used extensively in digital signal processing to perform averaging or to reduce processing rates to acceptable levels. For tracking the Doppler of high-dynamic targets at low carrier-to-noise ratios, it is shown through simulation and experiment that digital accumulators can contribute an additional loss in operating threshold. This loss was not considered in any previous study and needs to be accounted for in performance prediction analysis. Simulation and measurement results are used to characterize the loss due to the digital summers for three different tracking loops: a digital phase-locked loop, a cross-product automatic frequency tracking loop, and an extended Kalman filter. The tracking algorithms are compared with respect to their frequency error performance and their ability to maintain lock during severe maneuvers at various carrier-to-noise ratios. It is shown that failure to account for the effect of accumulators can result in an inaccurate performance prediction, the extent of which depends highly on the algorithm used.
Screening for the C9ORF72 repeat expansion in a greek frontotemporal dementia cohort.
Kartanou, Chrisoula; Karadima, Georgia; Koutsis, Georgios; Breza, Marianthi; Papageorgiou, Sokratis G; Paraskevas, George P; Kapaki, Elisabeth; Panas, Marios
2018-02-01
The C9orf72 repeat expansion is a common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) in European populations. A previous study has reported a high frequency of the expansion in Greek ALS. However, no data have been reported on the frequency of the expansion in Greek FTD. Currently, we investigated the frequency of the C9orfF72 expansion in a well-characterized cohort of 64 Greek FTD patients. We detected the C9orf72 repeat expansion in 9.3% of cases. Overall, 27.7% of familial and 2.2% of sporadic cases were expansion-positive. Five out of 6 cases had a diagnosis of behavioral variant FTD. All expansion-positive cases had fairly typical FTD presentations. Clinical features included motor neuron disease, Parkinsonism and hallucinations. We conclude that the overall frequency of C9orf72-positive cases in Greek FTD is high, comparable to Greek ALS, similar to some Western European, but significantly higher than some Mediterranean FTD populations.
High-frequency, silicon-based ultrasonic nozzles using multiple Fourier horns.
Tsai, Shirley C; Song, Yu L; Tseng, Terry K; Chou, Yuan F; Chen, Wei J; Tsai, Chen S
2004-03-01
This paper presents the design, simulation, and characterization of microfabricated 0.5 MHz, silicon-based, ultrasonic nozzles. Each nozzle is made of a piezoelectric drive section and a silicon resonator consisting of multiple Fourier horns, each with half wavelength design and twice amplitude magnification. Results of finite element three-dimensional (3-D) simulation using a commercial program predicted existence of one resonant frequency of pure longitudinal vibration. Both impedance analysis and measurement of longitudinal vibration confirmed the simulation results with one pure longitudinal vibration mode at the resonant frequency in excellent agreement with the design value. Furthermore, at the resonant frequency, the measured longitudinal vibration amplitude at the nozzle tip increases as the number of Fourier horns (n) increases in good agreement with the theoretical values of 2(n). Using this design, very high vibration amplitude gain at the nozzle tip can be achieved with no reduction in the tip cross-sectional area for contact of liquid to be atomized. Therefore, the required electric drive power should be drastically reduced, decreasing the likelihood of transducer failure in ultrasonic atomization.
Damage assessment of RC buildings subjected to the different strong motion duration
NASA Astrophysics Data System (ADS)
Mortezaei, Alireza; mohajer Tabrizi, Mohsen
2015-07-01
An earthquake has three important characteristics; namely, amplitude, frequency content and duration. Amplitude and frequency content have a direct impact but not necessarily the sole cause of structural damage. Regarding the duration, some researchers show a high correlation between strong motion duration and structural damage whereas some others find no relation. This paper focuses on the ground motion durations characterized by Arias Intensity (AI). High duration may increase the damage state of structure for the damage accumulation. This paper investigates the response time histories (acceleration, velocity and displacement) of RC buildings under the different strong motion durations. Generally, eight earthquake records were selected from different soil type, and these records were grouped according to their PGA and frequency ranges. Maximum plastic rotation and drift response was chosen as damage indicator. In general, there was a positive correlation between strong motion duration and damage; however, in some PGA and frequency ranges input motions with shorter durations might cause more damage than the input motions with longer durations. In soft soils, input motions with longer durations caused more damage than the input motions with shorter durations.
Dumont, Martine; Jurysta, Fabrice; Lanquart, Jean-Pol; Noseda, André; van de Borne, Philippe; Linkowski, Paul
2007-12-01
To investigate the dynamics of the synchronization between heart rate variability and sleep electroencephalogram power spectra and the effect of sleep apnea-hypopnea syndrome. Heart rate and sleep electroencephalogram signals were recorded in controls and patients with sleep apnea-hypopnea syndrome that were matched for age, gender, sleep parameters, and blood pressure. Spectral analysis was applied to electrocardiogram and electroencephalogram sleep recordings to obtain power values every 20s. Synchronization likelihood was computed between time series of the normalized high frequency spectral component of RR-intervals and all electroencephalographic frequency bands. Detrended fluctuation analysis was applied to the synchronizations in order to qualify their dynamic behaviors. For all sleep bands, the fluctuations of the synchronization between sleep EEG and heart activity appear scale free and the scaling exponent is close to one as for 1/f noise. We could not detect any effect due to sleep apnea-hypopnea syndrome. The synchronizations between the high frequency component of heart rate variability and all sleep power bands exhibited robust fluctuations characterized by self-similar temporal behavior of 1/f noise type. No effects of sleep apnea-hypopnea syndrome were observed in these synchronizations. Sleep apnea-hypopnea syndrome does not affect the interdependence between the high frequency component of heart rate variability and all sleep power bands as measured by synchronization likelihood.
The Effects of Practice-Based Training on Graduate Teaching Assistants’ Classroom Practices
Becker, Erin A.; Easlon, Erin J.; Potter, Sarah C.; Guzman-Alvarez, Alberto; Spear, Jensen M.; Facciotti, Marc T.; Igo, Michele M.; Singer, Mitchell; Pagliarulo, Christopher
2017-01-01
Evidence-based teaching is a highly complex skill, requiring repeated cycles of deliberate practice and feedback to master. Despite existing well-characterized frameworks for practice-based training in K–12 teacher education, the major principles of these frameworks have not yet been transferred to instructor development in higher educational contexts, including training of graduate teaching assistants (GTAs). We sought to determine whether a practice-based training program could help GTAs learn and use evidence-based teaching methods in their classrooms. We implemented a weekly training program for introductory biology GTAs that included structured drills of techniques selected to enhance student practice, logic development, and accountability and reduce apprehension. These elements were selected based on their previous characterization as dimensions of active learning. GTAs received regular performance feedback based on classroom observations. To quantify use of target techniques and levels of student participation, we collected and coded 160 h of video footage. We investigated the relationship between frequency of GTA implementation of target techniques and student exam scores; however, we observed no significant relationship. Although GTAs adopted and used many of the target techniques with high frequency, techniques that enforced student participation were not stably adopted, and their use was unresponsive to formal feedback. We also found that techniques discussed in training, but not practiced, were not used at quantifiable frequencies, further supporting the importance of practice-based training for influencing instructional practices. PMID:29146664
NASA Technical Reports Server (NTRS)
Scardelletti, M. C.; Jordan, J. L.; Ponchak, G. E.; Zorman, C. A.
2015-01-01
This paper presents the design, fabrication and characterization of a wireless capacitive pressure sensor with directional RF chip antenna that is envisioned for the health monitoring of aircraft engines operating in harsh environments. The sensing system is characterized from room temperature (25 C) to 300 C for a pressure range from 0 to 100 psi. The wireless pressure system consists of a Clapp-type oscillator design with a capacitive MEMS pressure sensor located in the LC-tank circuit of the oscillator. Therefore, as the pressure of the aircraft engine changes, so does the output resonant frequency of the sensing system. A chip antenna is integrated to transmit the system output to a receive antenna 10 m away.The design frequency of the wireless pressure sensor is 127 MHz and a 2 increase in resonant frequency over the temperature range of 25 to 300 C from 0 to 100 psi is observed. The phase noise is less than minus 30 dBcHz at the 1 kHz offset and decreases to less than minus 80 dBcHz at 10 kHz over the entire temperature range. The RF radiation patterns for two cuts of the wireless system have been measured and show that the system is highly directional and the MEMS pressure sensor is extremely linear from 0 to 100 psi.
High-Temperature Electromechanical Characterization of AlN Single Crystals.
Kim, Taeyang; Kim, Jinwook; Dalmau, Rafael; Schlesser, Raoul; Preble, Edward; Jiang, Xiaoning
2015-10-01
Hexagonal AlN is a non-ferroelectric material and does not have any phase transition up to its melting point (>2000°C), which indicates the potential use of AlN for high-temperature sensing. In this work, the elastic, dielectric, and piezoelectric constants of AlN single crystals were investigated at elevated temperatures up to 1000°C by the resonance method. We used resonators of five different modes to obtain a complete set of material constants of AlN single crystals. The electrical resistivity of AlN at elevated temperature (1000°C) was found to be greater than 5 × 10(10) Ω · cm. The resonance frequency of the resonators, which was mainly determined by the elastic compliances, decreased linearly with increasing temperature, and was characterized by a relatively low temperature coefficient of frequency, in the range of -20 to -36 ppm/°C. For all the investigated resonator modes, the elastic constants and the electromechanical coupling factors exhibited excellent temperature stability, with small variations over the full temperature range, <11.2% and <17%, respectively. Of particular significance is that due to the pyroelectricity of AlN, both the dielectric and the piezoelectric constants had high thermal resistivity even at extreme high temperature (1000°C). Therefore, high electrical resistivity, temperature independence of electromechanical properties, as well as high thermal resistivity of the elastic, dielectric, and piezoelectric properties, suggest that AlN single crystals are a promising candidate for high-temperature piezoelectric sensing applications.
Electrical characterization of glass, teflon, and tantalum capacitors at high temperatures
NASA Technical Reports Server (NTRS)
Hammoud, A. N.; Baumann, E. D.; Myers, I. T.; Overton, E.
1991-01-01
Dielectric materials and electrical components and devices employed in radiation fields and the space environment are often exposed to elevated temperatures among other things. Therefore, these systems must withstand the high temperature exposure while still providing good electrical and other functional properties. Experiments were carried out to evaluate glass, teflon, and tantalum capacitors for potential use in high temperature applications. The capacitors were characterized in terms of their capacitance and dielectric loss as a function of temperature up to 200 C. At a given temperature, these properties were obtained in a frequency range of 50 Hz to 100 kHz. The DC leakage current measurements were also performed in a temperature range from 20 to 200 C. The obtained results are discussed and conclusions are made concerning the suitability of the capacitors investigated for high temperature applications.
Altered cerebral blood flow velocity features in fibromyalgia patients in resting-state conditions
Rodríguez, Alejandro; Tembl, José; Mesa-Gresa, Patricia; Muñoz, Miguel Ángel; Montoya, Pedro
2017-01-01
The aim of this study is to characterize in resting-state conditions the cerebral blood flow velocity (CBFV) signals of fibromyalgia patients. The anterior and middle cerebral arteries of both hemispheres from 15 women with fibromyalgia and 15 healthy women were monitored using Transcranial Doppler (TCD) during a 5-minute eyes-closed resting period. Several signal processing methods based on time, information theory, frequency and time-frequency analyses were used in order to extract different features to characterize the CBFV signals in the different vessels. Main results indicated that, in comparison with control subjects, fibromyalgia patients showed a higher complexity of the envelope CBFV and a different distribution of the power spectral density. In addition, it has been observed that complexity and spectral features show correlations with clinical pain parameters and emotional factors. The characterization features were used in a lineal model to discriminate between fibromyalgia patients and healthy controls, providing a high accuracy. These findings indicate that CBFV signals, specifically their complexity and spectral characteristics, contain information that may be relevant for the assessment of fibromyalgia patients in resting-state conditions. PMID:28700720
Matrix basis for plane and modal waves in a Timoshenko beam.
Claeyssen, Julio Cesar Ruiz; Tolfo, Daniela de Rosso; Tonetto, Leticia
2016-11-01
Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville's technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form.
Altered cerebral blood flow velocity features in fibromyalgia patients in resting-state conditions.
Rodríguez, Alejandro; Tembl, José; Mesa-Gresa, Patricia; Muñoz, Miguel Ángel; Montoya, Pedro; Rey, Beatriz
2017-01-01
The aim of this study is to characterize in resting-state conditions the cerebral blood flow velocity (CBFV) signals of fibromyalgia patients. The anterior and middle cerebral arteries of both hemispheres from 15 women with fibromyalgia and 15 healthy women were monitored using Transcranial Doppler (TCD) during a 5-minute eyes-closed resting period. Several signal processing methods based on time, information theory, frequency and time-frequency analyses were used in order to extract different features to characterize the CBFV signals in the different vessels. Main results indicated that, in comparison with control subjects, fibromyalgia patients showed a higher complexity of the envelope CBFV and a different distribution of the power spectral density. In addition, it has been observed that complexity and spectral features show correlations with clinical pain parameters and emotional factors. The characterization features were used in a lineal model to discriminate between fibromyalgia patients and healthy controls, providing a high accuracy. These findings indicate that CBFV signals, specifically their complexity and spectral characteristics, contain information that may be relevant for the assessment of fibromyalgia patients in resting-state conditions.
Properties of Silica-Based Aerogel Substrates and Application to C-Band Circular Patch Antenna
NASA Astrophysics Data System (ADS)
Abdel-Rahman, Mohamed; Haraz, Osama M.; Ashraf, Nadeem; Zia, Muhammad Fakhar; Khaled, Usama; Elsahfiey, Ibrahim; Alshebeili, Saleh; Sebak, Abdel Razik
2018-03-01
Silica aerogel is a lightweight and low-permittivity dielectric material that possesses attractive features for use as an antenna substrate. In this paper, we characterize the radio frequency and microwave dielectric permittivity properties of substrates composed of silica aerogel encapsulated in polymer aerogel in the frequency range from 10 MHz to 8.5 GHz. Characterized silica-based aerogel substrates show relative permittivity values varying between 1.055 and 1.25 and loss tangent values ranging from 5.08 × 10-4 to 0.0206. Silica-based aerogel substrates thus have the potential of use in designing antennas with high gain and large bandwidth. Validation is presented by characterizing the performance of a manufactured C-band circular patch antenna on silica-based aerogel substrate. The performance is also compared to a design that uses Rogers Duroid RT5880 substrate. The results reveal that the silica aerogel substrate antenna at 7.2 GHz provides 1.5 dB increase in gain, 88% enhancement in bandwidth and 68.5% reduction in mass, in comparison with the antenna on RT5880 substrate.
NASA Astrophysics Data System (ADS)
Yusufzai, Mohd Zaheer Khan; Vashista, M.
2018-04-01
Barkhausen Noise analysis is a popular and preferred technique for micro-structural characterization. The root mean square value and peak value of Barkhausen Noise burst are important parameters to assess the micro-hardness and residual stress. Barkhausen Noise burst can be enveloped using a curve known as Barkhausen Noise profile. Peak position of profile changes with change in micro-structure. In the present work, raw signal of Barkhausen Noise burst was obtained from Ni based sample at various magnetic field intensity to observe the effect of variation in field intensity on Barkhausen Noise burst. Raw signal was opened using MATLAB to further process for microstructure analysis. Barkhausen Noise analysis parameters such as magnetizing frequency, number of burst, high pass and low pass filter frequency were kept constant and magnetizing field was varied in wide range between 200 Oe to 1200 Oe. The processed profiles of Barkhausen Noise burst obtained at various magnetizing field intensity clearly reveals requirement of optimum magnetic field strength for better characterization of micro-structure.
Evaluate error correction ability of magnetorheological finishing by smoothing spectral function
NASA Astrophysics Data System (ADS)
Wang, Jia; Fan, Bin; Wan, Yongjian; Shi, Chunyan; Zhuo, Bin
2014-08-01
Power Spectral Density (PSD) has been entrenched in optics design and manufacturing as a characterization of mid-high spatial frequency (MHSF) errors. Smoothing Spectral Function (SSF) is a newly proposed parameter that based on PSD to evaluate error correction ability of computer controlled optical surfacing (CCOS) technologies. As a typical deterministic and sub-aperture finishing technology based on CCOS, magnetorheological finishing (MRF) leads to MHSF errors inevitably. SSF is employed to research different spatial frequency error correction ability of MRF process. The surface figures and PSD curves of work-piece machined by MRF are presented. By calculating SSF curve, the correction ability of MRF for different spatial frequency errors will be indicated as a normalized numerical value.
NASA Astrophysics Data System (ADS)
Kumbhar, A. P.; Vyavahare, R. T.; Kulkarni, S. G.
2018-05-01
Aluminium alloy based metal matrix composites (AAMMC) are mainly used in sliding wear application, automobile, Aircraft and aerospace components, Marine fittings, Transport and other industry are becoming highly advantageous due to their excellent wear resistance, lighter weight, higher strength and durability. In this paper the effect of reinforcement percentage on vibration response and mechanical properties of metal matrix composite has been investigated. Composite material was prepared by varying Sic (0, 3, 6, and 9 wt. %) by stir casting method. Natural frequency, tensile strength, rockwell hardness and compressive strength were analyzed. The result shows that, addition of sic in aluminium matrix increases natural frequency, hardness, tensile strength, compressive strength and 9 wt. % showed maximum natural frequency, hardness, tensile strength, compressive strength.
Electromagnetic Effices from Impacts on Spacecraft
NASA Astrophysics Data System (ADS)
Close, Sigrid
2018-04-01
Hypervelocity micro particles, including meteoroids and space debris with masses < 1 ng, routinely impact spacecraft and create dense plasma that expands at the isothermal sound speed. This plasma, with a charge separation commensurate with different species mobilities, can produce a strong electromagnetic pulse (EMP) with a broad frequency spectrum. Subsequent plasma oscillations resulting from instabilities can also emit significant power and may be responsible for many reported satellite anomalies. We present theory and recent results from ground-based impact tests aimed at characterizing hypervelocity impact plasma and show that impact-produced radio frequency (RF) emissions occurred in frequencies ranging from VHF through L-band and that these emissions were highly correlated with fast (> 20 km/s) impacts that produced a fully ionized plasma.
Long-Term Trends in Space-Ground Atmospheric Propagation Measurements
NASA Technical Reports Server (NTRS)
Zemba, Michael J.; Nessel, James A.; Morse, Jacquelynne R.
2015-01-01
Propagation measurement campaigns are critical to characterizing the atmospheric behavior of a location and efficiently designing space-ground links. However, as global climate change affects weather patterns, the long-term trends of propagation data may be impacted over periods of decades or longer. Particularly, at high microwave frequencies (10 GHz and above), rain plays a dominant role in the attenuation statistics, and it has been observed that rain events over the past 50 years have trended toward increased frequency, intensity, and rain height. In the interest of quantifying the impact of these phenomena on long-term trends in propagation data, this paper compares two 20 GHz measurement campaigns both conducted at NASAs White Sands facility in New Mexico. The first is from the Advanced Communications Technology Satellite (ACTS) propagation campaign from 1994 to 1998, while the second is amplitude data recorded during a site test interferometer (STI) phase characterization campaign from 2009 to 2014.
Long-Term Trends in Space-Ground Atmospheric Propagation Measurements
NASA Technical Reports Server (NTRS)
Zemba, Michael J.; Morse, Jacquelynne R.; Nessel, James A.
2015-01-01
Propagation measurement campaigns are critical to characterizing the atmospheric behavior of a location and efficiently designing space-ground links. However, as global climate change affects weather patterns, the long-term trends of propagation data may be impacted over periods of decades or longer. Particularly, at high microwave frequencies (10 GHz and above), rain plays a dominant role in the attenuation statistics, and it has been observed that rain events over the past 50 years have trended toward increased frequency, intensity, and rain height. In the interest of quantifying the impact of these phenomena on long-term trends in propagation data, this paper compares two 20 GHz measurement campaigns both conducted at NASA's White Sands facility in New Mexico. The first is from the Advanced Communication Technology Satellite (ACTS) propagation campaign from 1994 - 1998, while the second is amplitude data recorded during a site test interferometer (STI) phase characterization campaign from 2009 - 2014.
Laser fabrication of perfect absorbers
NASA Astrophysics Data System (ADS)
Mizeikis, V.; Faniayeu, I.
2018-01-01
We describe design and characterization of electromagnetic metasurfaces consisting of sub-wavelength layers of artificially structured 3D metallic elements arranged into two-dimensional arrays. Such metasurfaces allow novel ways to control propagation, absorption, emission, and polarization state of electromagnetic waves, but their practical realization using traditional planar micro-/nano-fabrication techniques is extremely difficult at infra- red frequencies, where unit cell size must be reduced to few micrometers. We have addressed this challenge by using femtosecond direct laser write (DLW) technique as a high-resolution patterning tool for the fabrication of dielectric templates, followed by a simple metallization process. Functional metasurfaces consisting of metallic helices and vertical split-ring resonators that can be used as perfect absorbers and polarization converters at infra- red frequencies were obtained and characterized experimentally and theoretically. In the future they may find applications in narrow-band infra-red detectors and emitters, spectral filters, and combined into multi-functional, multi-layered structures.
Models and methods to characterize site amplification from a pair of records
Safak, E.
1997-01-01
The paper presents a tutorial review of the models and methods that are used to characterize site amplification from the pairs of rock- and soil-site records, and introduces some new techniques with better theoretical foundations. The models and methods discussed include spectral and cross-spectral ratios, spectral ratios for downhole records, response spectral ratios, constant amplification factors, parametric models, physical models, and time-varying filters. An extensive analytical and numerical error analysis of spectral and cross-spectral ratios shows that probabilistically cross-spectral ratios give more reliable estimates of site amplification. Spectral ratios should not be used to determine site amplification from downhole-surface recording pairs because of the feedback in the downhole sensor. Response spectral ratios are appropriate for low frequencies, but overestimate the amplification at high frequencies. The best method to be used depends on how much precision is required in the estimates.
FTIR characterization of Bi2Sr2Can-1(Cu1-xFex)3O10+δ with (n=3, x = 0.01) ceramic superconductor
NASA Astrophysics Data System (ADS)
Kumar, Rohitash; Singh, H. S.; Singh, Yadunath
2018-05-01
We synthesized a ceramic superconductor Bi2Sr2Can-1(Cu1-xFex)3O10+δ with (n = 3, x = 0.01) by usual method of oxides superconductor. In this paper, we report the characterization of the said sample by Fourier Transform Infrared Spectroscopic (FTIR) method. This method provides information about structural and compound bonding formation for the studied sample in powder form. The sharper peaks in the recorded spectra are reflecting with a functional group in the high-frequency stretching and low frequency bending modes. In this study, the interaction between Cu-O and Fe-O bond occupies octahedral and tetrahedral positions due to occupancy of cations and anions. The increasing amount of (Fe) is showing the transmittance (T%) behavior with different bonding vibration modes.
Eddy current imaging for electrical characterization of silicon solar cells and TCO layers
NASA Astrophysics Data System (ADS)
Hwang, Byungguk; Hillmann, Susanne; Schulze, Martin; Klein, Marcus; Heuer, Henning
2015-03-01
Eddy Current Testing has been mainly used to determine defects of conductive materials and wall thicknesses in heavy industries such as construction or aerospace. Recently, high frequency Eddy Current imaging technology was developed. This enables the acquirement of information of different depth level in conductive thin-film structures by realizing proper standard penetration depth. In this paper, we summarize the state of the art applications focusing on PV industry and extend the analysis implementing achievements by applying spatially resolved Eddy Current Testing. The specific state of frequency and complex phase angle rotation demonstrates diverse defects from front to back side of silicon solar cells and characterizes homogeneity of sheet resistance in Transparent Conductive Oxide (TCO) layers. In order to verify technical feasibility, measurement results from the Multi Parameter Eddy Current Scanner, MPECS are compared to the results from Electroluminescence.
Ultrasonic characterization of silicate glasses, polymer composites and hydrogels
NASA Astrophysics Data System (ADS)
Lee, Wan Jae
In many applications of material designing and engineering, high-frequency linear viscoelastic properties of materials are essential. Traditionally, the high-frequency properties are estimated through the time-temperature superposition (WLF equation) of low-frequency data, which are questionable because the existence of multi-phase in elastomer compounds. Moreover, no reliable data at high frequencies over MHz have been available thus far. Ultrasound testing is cost-effective for measuring high-frequency properties. Although both ultrasonic longitudinal and shear properties are necessary in order to fully characterize high-frequency mechanical properties of materials, longitudinal properties will be extensively explored in this thesis. Ultrasonic pulse echo method measures longitudinal properties. A precision ultrasonic measurement system has been developed in our laboratory, which allows us to monitor the in-situ bulk and/or surface properties of silicate glasses, polymer composites and even hydrogels. The system consists of a pulse-echo unit and an impedance measurement unit. A pulse echo unit is explored mainly. First, a systematic procedure was developed to obtain precise water wavespeed value. A calibration curve of water wavespeed as a function of temperature has been established, and water wavespeed at 23°C serves as a yardstick to tell whether or not a setup is properly aligned. Second, a sound protocol in calculating attenuation coefficient and beam divergence effects was explored using three kinds of silicate glass of different thicknesses. Then the system was applied to four composite slabs, two slabs for each type of fiberglass reinforced plastics, phenolic and polyester manufactured under different processing conditions: one was made by the normal procedures and the other with deliberate flaws such as voids, tapes and/or prepared at improper operation temperature and pressure. The experiment was conducted under the double blind test protocol. After carefully and methodically analyzing the data, we are able to detect defected specimens from all the specimens supplied to us, differentiate polyester-based composite from the phenolic-based composite and even recognized types of defects. Lastly, ultrasonic monitoring of advancement of the swollen-unswollen fronts, and hence monitor phase transition from glassy state to rubbery state, of poly(acrylic-acid) hydrogel of one of the three different crosslinking densities is performed. With ultrasonic measurement, swelling monitoring is possible since the structural and mechanical changes during swelling of a dry hydrogel are related to changes in density and elastic constants. Using our carefully developed methodology from previous chapters, we may obtain and monitor average acoustic properties of each layer of hydrogel as it swells.
NASA Astrophysics Data System (ADS)
Santos, J. T.; Holz, T.; Fernandes, A. J. S.; Costa, F. M.; Chu, V.; Conde, J. P.
2015-02-01
Diamond-based microelectromechanical resonators have the potential of enhanced performance due to the chemical inertness of the diamond structural layer and its high Young’s modulus, high wear resistance, low thermal expansion coefficient, and very high thermal conductivity. In this work, the resonance frequency and quality factor of MEMS resonators based on nanocrystalline diamond films are characterized under different air pressures. The dynamic behavior of 50-300 μm long linear bridges and double ended tuning forks, with resonance frequencies between 0.5 and 15 MHz and quality factors as high as 50 000 are described as a function of measurement pressure from high vacuum(~10 mTorr) up to atmospheric conditions. The resonance frequencies and quality factors in vacuum show good agreement with the theoretical models including anchor and thermoelastic dissipation (TED). The Young’s moduli for nanocrystalline diamond films extrapolated from experimental data are between 840-920 GPa. The critical pressure values, at which the quality factor starts decreasing due to dissipation in air, are dependent on the resonator length. Longer structures, with quality factors limited by TED and lower resonance frequencies, have low critical pressures, of the order of 1-10 Torr and go from an intrinsic dissipation, to a molecular dissipation regime and finally to a region of viscous dissipation. Shorter resonators, with higher resonance frequencies and quality factors limited by anchor losses, have higher critical pressures, some higher than atmospheric pressure, and enter directly into the viscous dissipation regime from the intrinsic region.
A high sensitivity ultralow temperature RF conductance and noise measurement setup.
Parmentier, F D; Mahé, A; Denis, A; Berroir, J-M; Glattli, D C; Plaçais, B; Fève, G
2011-01-01
We report on the realization of a high sensitivity RF noise measurement scheme to study small current fluctuations of mesoscopic systems at milli-Kelvin temperatures. The setup relies on the combination of an interferometric amplification scheme and a quarter-wave impedance transformer, allowing the measurement of noise power spectral densities with gigahertz bandwidth up to five orders of magnitude below the amplifier noise floor. We simultaneously measure the high frequency conductance of the sample by derivating a portion of the signal to a microwave homodyne detection. We describe the principle of the setup, as well as its implementation and calibration. Finally, we show that our setup allows to fully characterize a subnanosecond on-demand single electron source. More generally, its sensitivity and bandwidth make it suitable for applications manipulating single charges at GHz frequencies.
A seismic coherency method using spectral amplitudes
NASA Astrophysics Data System (ADS)
Sui, Jing-Kun; Zheng, Xiao-Dong; Li, Yan-Dong
2015-09-01
Seismic coherence is used to detect discontinuities in underground media. However, strata with steeply dipping structures often produce false low coherence estimates and thus incorrect discontinuity characterization results. It is important to eliminate or reduce the effect of dipping on coherence estimates. To solve this problem, time-domain dip scanning is typically used to improve estimation of coherence in areas with steeply dipping structures. However, the accuracy of the time-domain estimation of dip is limited by the sampling interval. In contrast, the spectrum amplitude is not affected by the time delays in adjacent seismic traces caused by dipping structures. We propose a coherency algorithm that uses the spectral amplitudes of seismic traces within a predefined analysis window to construct the covariance matrix. The coherency estimates with the proposed algorithm is defined as the ratio between the dominant eigenvalue and the sum of all eigenvalues of the constructed covariance matrix. Thus, we eliminate the effect of dipping structures on coherency estimates. In addition, because different frequency bands of spectral amplitudes are used to estimate coherency, the proposed algorithm has multiscale features. Low frequencies are effective for characterizing large-scale faults, whereas high frequencies are better in characterizing small-scale faults. Application to synthetic and real seismic data show that the proposed algorithm can eliminate the effect of dip and produce better coherence estimates than conventional coherency algorithms in areas with steeply dipping structures.
Low-Temperature Variation of Acoustic Velocity in PDMS for High-Frequency Applications.
Streque, Jeremy; Rouxel, Didier; Talbi, Abdelkrim; Thomassey, Matthieu; Vincent, Brice
2018-05-01
Polydimethylsiloxane (PDMS) and other related silicon-based polymers are among the most widely employed elastomeric materials in microsystems, owing to their physical and chemical properties. Meanwhile, surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors and filters have been vastly explored for sensing and wireless applications. Many fields could benefit from the combined use of acoustic wave devices, and polydimethylsiloxane-based soft-substrates, microsystems, or packaging elements. The mechanical constants of PDMS strongly depend on frequency, similar to rubber materials. This brings to the exploration of the specific mechanical properties of PDMS encountered at high frequency, required for its exploitation in SAW or BAW devices. First, low-frequency mechanical behavior is confirmed from stress strain measurements, remaining useful for the exploitation of PDMS as a soft substrate or packaging material. The study, then, proposes a temperature-dependent, high-frequency mechanical study of PDMS based on Brillouin spectroscopy to determine the evolution of the longitudinal acoustic velocity in this material, which constitutes the main mechanical parameter for the design of acoustic wave devices. The PDMS glass transition is then retrieved by differential scanning calorimetry in order to confirm the observations made by Brillouin spectroscopy. This paper validates Brillouin spectroscopy as a very suitable characterization technique for the retrieval of longitudinal mechanical properties at low temperature, as a preliminary investigation for the design of acoustic wave devices coupled with soft materials.
Kamiya, Regianne Umeko; Höfling, José Francisco; Gonçalves, Reginaldo Bruno
2008-05-01
The aim of this study was to analyse the frequency and expression of biosynthesis genes in 47 Streptococcus mutans isolates with different mutacin-producing phenotypes. Detection of the frequency and expression of genes encoding mutacin types I, II, III and IV were carried out by PCR and semi-quantitative RT-PCR, respectively, using primers specific for each type of biosynthesis gene. In addition, a further eight genes encoding putative bacteriocins, designated bsm 283, bsm 299, bsm 423, bsm 1889c, bsm 1892c, bsm 1896, bsm 1906c and bsm 1914, were also screened. There was a high phenotypic diversity; some Streptococcus mutans isolates presented broad antimicrobial spectra against other Streptococcus mutans clinical isolates, including bacteria resistant to common antibiotics, as well as Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Streptococcus pyogenes. The expression frequency of the bsm gene was higher than that of the previously characterized mutacins (I-IV). There was no positive correlation between the number of indicator strains inhibited (antimicrobial spectra) and the number of biosynthesis genes expressed (Spearman correlation test, r=-0.03, P>0.05). In conclusion, the high diversity of mutacin-producing phenotypes, associated with high frequency of expression of the biosynthesis genes screened, reveals a broad repertoire of genetic determinants encoding antimicrobial peptides that can act in different combinations.
Development of enhanced piezoelectric energy harvester induced by human motion.
Minami, Y; Nakamachi, E
2012-01-01
In this study, a high frequency piezoelectric energy harvester converted from the human low vibrated motion energy was newly developed. This hybrid energy harvester consists of the unimorph piezoelectric cantilever and a couple of permanent magnets. One magnet was attached at the end of cantilever, and the counterpart magnet was set at the end of the pendulum. The mechanical energy provided through the human walking motion, which is a typical ubiquitous presence of vibration, is converted to the electric energy via the piezoelectric cantilever vibration system. At first, we studied the energy convert mechanism and the performance of our energy harvester, where the resonance free vibration of unimorph cantilever with one permanent magnet under a rather high frequency was induced by the artificial low frequency vibration. The counterpart magnet attached on the pendulum. Next, we equipped the counterpart permanent magnet pendulum, which was fluctuated under a very low frequency by the human walking, and the piezoelectric cantilever, which had the permanent magnet at the end. The low-to-high frequency convert "hybrid system" can be characterized as an enhanced energy harvest one. We examined and obtained maximum values of voltage and power in this system, as 1.2V and 1.2 µW. Those results show the possibility to apply for the energy harvester in the portable and implantable Bio-MEMS devices.
Digital holographic interferometry for characterizing deformable mirrors in aero-optics
NASA Astrophysics Data System (ADS)
Trolinger, James D.; Hess, Cecil F.; Razavi, Payam; Furlong, Cosme
2016-08-01
Measuring and understanding the transient behavior of a surface with high spatial and temporal resolution are required in many areas of science. This paper describes the development and application of a high-speed, high-dynamic range, digital holographic interferometer for high-speed surface contouring with fractional wavelength precision and high-spatial resolution. The specific application under investigation here is to characterize deformable mirrors (DM) employed in aero-optics. The developed instrument was shown capable of contouring a deformable mirror with extremely high-resolution at frequencies exceeding 40 kHz. We demonstrated two different procedures for characterizing the mechanical response of a surface to a wide variety of input forces, one that employs a high-speed digital camera and a second that employs a low-speed, low-cost digital camera. The latter is achieved by cycling the DM actuators with a step input, producing a transient that typically lasts up to a millisecond before reaching equilibrium. Recordings are made at increasing times after the DM initiation from zero to equilibrium to analyze the transient. Because the wave functions are stored and reconstructable, they can be compared with each other to produce contours including absolute, difference, and velocity. High-speed digital cameras recorded the wave functions during a single transient at rates exceeding 40 kHz. We concluded that either method is fully capable of characterizing a typical DM to the extent required by aero-optical engineers.
Characterization of Plasma Discharges in a High-Field Magnetic Tandem Mirror
NASA Technical Reports Server (NTRS)
Chang-Diaz, Franklin R.
1998-01-01
High density magnetized plasma discharges in open-ended geometries, like Tandem Mirrors, have a variety of space applications. Chief among them is the production of variable Specific Impulse (I(sub sp)) and variable thrust in a magnetic nozzle. Our research group is pursuing the experimental characterization of such discharges in our high-field facility located at the Advanced Space Propulsion Laboratory (ASPL). These studies focus on identifying plasma stability criteria as functions of density, temperature and magnetic field strength. Plasma heating is accomplished by both Electron and Ion Cyclotron Resonance (ECR and ICR) at frequencies of 2-3 Ghz and 1-30 Mhz respectively, for both Hydrogen and Helium. Electron density and temperature has measured by movable Langmuir probes. Macroscopic plasma stability is being investigated in ongoing research.
Shaw, Jared B; Gorshkov, Mikhail V; Wu, Qinghao; Paša-Tolić, Ljiljana
2018-05-01
Mass spectrometric characterization of large biomolecules, such as intact proteins, requires the specificity afforded by ultrahigh resolution mass measurements performed at both the intact mass and product ion levels. Although the performance of time-of-flight mass analyzers is steadily increasing, the choice of mass analyzer for large biomolecules (e.g., proteins >50 kDa) is generally limited to the Fourier transform family of mass analyzers such as Orbitrap and ion cyclotron resonance (FTICR-MS), with the latter providing unmatched mass resolving power and measurement accuracy. Yet, protein analyses using FTMS are largely hindered by the low acquisition rates of spectra with ultrahigh resolving power. Frequency multiple detection schemes enable FTICR-MS to overcome this fundamental barrier and achieve resolving powers and acquisition speeds 4× greater than the limits imposed by magnetic field strength. Here we expand upon earlier work on the implementation of this technique for biomolecular characterization. We report the coupling of 21T FTICR-MS, 4X frequency multiplication, ion trapping field harmonization technology, and spectral data processing methods to achieve unprecedented acquisition rates and resolving power in mass spectrometry of large intact proteins. Isotopically resolved spectra of multiply charged ubiquitin ions were acquired using detection periods as short as 12 ms. Large proteins such as apo-transferrin (MW = 78 kDa) and monoclonal antibody (MW = 150 kDa) were isotopically resolved with detection periods of 384 and 768 ms, respectively. These results illustrate the future capability of accurate characterization of large proteins on time scales compatible with online separations.
Sedlik, C; Dadaglio, G; Saron, M F; Deriaud, E; Rojas, M; Casal, S I; Leclerc, C
2000-07-01
Many approaches are currently being developed to deliver exogenous antigen into the major histocompatibility complex class I-restricted antigen pathway, leading to in vivo priming of CD8(+) cytotoxic T cells. One attractive possibility consists of targeting the antigen to phagocytic or macropinocytic antigen-presenting cells. In this study, we demonstrate that strong CD8(+) class I-restricted cytotoxic responses are induced upon intraperitoneal immunization of mice with different peptides, characterized as CD8(+) T-cell epitopes, bound to 1-microm synthetic latex microspheres and injected in the absence of adjuvant. The cytotoxic response induced against a lymphocytic choriomeningitis virus (LCMV) peptide linked to these microspheres was compared to the cytotoxic T-lymphocyte (CTL) response obtained upon immunization with the nonreplicative porcine parvovirus-like particles (PPV:VLP) carrying the same peptide (PPV:VLP-LCMV) previously described (C. Sedlik, M. F. Saron, J. Sarraseca, I. Casal, and C. Leclerc, Proc. Natl. Acad. Sci. USA 94:7503-7508, 1997). We show that the induction of specific CTL activity by peptides bound to microspheres requires CD4(+) T-cell help in contrast to the CTL response obtained with the peptide delivered by viral pseudoparticles. Furthermore, PPV:VLP are 100-fold more efficient than microspheres in generating a strong CTL response characterized by a high frequency of specific T cells of high avidity. Moreover, PPV:VLP-LCMV are able to protect mice against a lethal LCMV challenge whereas microspheres carrying the LCMV epitope fail to confer such protection. This study demonstrates the crucial involvement of the frequency and avidity of CTLs in conferring antiviral protective immunity and highlights the importance of considering these parameters when developing new vaccine strategies.
Sedlik, C.; Dadaglio, G.; Saron, M. F.; Deriaud, E.; Rojas, M.; Casal, S. I.; Leclerc, C.
2000-01-01
Many approaches are currently being developed to deliver exogenous antigen into the major histocompatibility complex class I-restricted antigen pathway, leading to in vivo priming of CD8+ cytotoxic T cells. One attractive possibility consists of targeting the antigen to phagocytic or macropinocytic antigen-presenting cells. In this study, we demonstrate that strong CD8+ class I-restricted cytotoxic responses are induced upon intraperitoneal immunization of mice with different peptides, characterized as CD8+ T-cell epitopes, bound to 1-μm synthetic latex microspheres and injected in the absence of adjuvant. The cytotoxic response induced against a lymphocytic choriomeningitis virus (LCMV) peptide linked to these microspheres was compared to the cytotoxic T-lymphocyte (CTL) response obtained upon immunization with the nonreplicative porcine parvovirus-like particles (PPV:VLP) carrying the same peptide (PPV:VLP-LCMV) previously described (C. Sedlik, M. F. Saron, J. Sarraseca, I. Casal, and C. Leclerc, Proc. Natl. Acad. Sci. USA 94:7503–7508, 1997). We show that the induction of specific CTL activity by peptides bound to microspheres requires CD4+ T-cell help in contrast to the CTL response obtained with the peptide delivered by viral pseudoparticles. Furthermore, PPV:VLP are 100-fold more efficient than microspheres in generating a strong CTL response characterized by a high frequency of specific T cells of high avidity. Moreover, PPV:VLP-LCMV are able to protect mice against a lethal LCMV challenge whereas microspheres carrying the LCMV epitope fail to confer such protection. This study demonstrates the crucial involvement of the frequency and avidity of CTLs in conferring antiviral protective immunity and highlights the importance of considering these parameters when developing new vaccine strategies. PMID:10846055
Schmäh, Juliane; Fedders, Birthe; Panzer-Grümayer, Renate; Fischer, Susanna; Zimmermann, Martin; Dagdan, Elif; Bens, Susanne; Schewe, Denis; Moericke, Anja; Alten, Julia; Bleckmann, Kirsten; Siebert, Reiner; Schrappe, Martin; Stanulla, Martin; Cario, Gunnar
2017-10-01
A high-level expression of the CRLF2 gene is frequent in precursor B-cell acute lymphoblastic leukemia (pB-ALL) and can be caused by different genetic aberrations. The presence of the most frequent alteration, the P2RY8/CRLF2 fusion, was shown to be associated with a high relapse incidence in children treated according to ALL-Berlin-Frankfurt-Münster (BFM) protocols, which is poorly understood. Moreover, the frequency of other alterations has not been systematically analyzed yet. CRLF2 mRNA expression and potential genetic aberrations causing a CRLF2 high expression were prospectively assessed in 1,105 patients treated according to the Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP)-BFM ALL 2009 protocol. Additionally, we determined copy number alterations in selected B-cell differentiation genes for all CRLF2 high-expressing pB-ALL cases, as well as JAK2 and CRLF2 mutations. A CRLF2 high expression was detected in 26/178 (15%) T-cell acute lymphoblastic leukemia (T-ALL) cases, 21 of them (81%) had been stratified as high-risk patients by treatment response. In pB-ALL, a CRLF2 high expression was determined in 91/927 (10%) cases; the P2RY8/CRLF2 rearrangement in 44/91 (48%) of them, supernumerary copies of CRLF2 in 18/91 (20%), and, notably, the IGH/CRLF2 translocation was detected in 16/91 (18%). Remarkably, 7 of 16 (44%) patients with IGH/CRLF2 translocation had already relapsed. P2RY8/CRLF2- and IGH/CRLF2-positive samples (70 and 94%, respectively) were characterized by a high frequency of additional deletions in B-cell differentiation genes such as IKZF1 or PAX5. Our data suggest that this high frequency of genetic aberrations in the context of a high CRLF2 expression could contribute to the high risk of relapse in P2RY8/CRLF2- and IGH/CRLF2-positive ALL. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Donoughe, P. L.; Hunczak, H. R.
1977-01-01
The U.S. experiments conducted with the Communications Technology Satellite, a joint Canadian-U.S. venture launched in 1976, are discussed. The 14/12 GHz frequencies employed by the 200-W transmitter on board the satellite provide two-way television and voice communications. Applications of the satellite in the categories of health care, community services and education are considered; experiments have also made use of the special properties of the super-high frequency band (e.g. link characterization and digital communications). Time-sharing of the 14/12 GHz communication between the U.S. and Canada has functioned well.
Rapid updating of optical arbitrary waveforms via time-domain multiplexing.
Scott, R P; Fontaine, N K; Yang, C; Geisler, D J; Okamoto, K; Heritage, J P; Yoo, S J B
2008-05-15
We demonstrate high-fidelity optical arbitrary waveform generation with 5 GHz waveform switching via time-domain multiplexing. Compact, integrated waveform shapers based on silica arrayed-waveguide grating pairs with 10 GHz channel spacing are used to shape (line-by-line) two different waveforms from the output of a 10-mode x 10 GHz optical frequency comb generator. Characterization of the time multiplexer's complex transfer function (amplitude and phase) by frequency-resolved optical gating permits compensation of its impact on the switched waveforms and matching of the measured and target waveforms to better than G'=5%.
Rosselló, J M; Dellavale, D; Bonetto, F J
2016-07-01
The use of bi-frequency driving in sonoluminescence has proved to be an effective way to avoid the spatial instability (pseudo-orbits) developed by bubbles in systems with high viscous liquids like sulfuric or phosphoric acids. In this work, we present extensive experimental and numerical evidence in order to assess the effect of the high frequency component (PAc(HF)) of a bi-harmonic acoustic pressure field on the dynamic of sonoluminescent bubbles in an aqueous solution of sulfuric acid. The present study is mainly focused on the role of the harmonic frequency (Nf0) and the relative phase between the two frequency components (φb) of the acoustic field on the spatial, positional and diffusive stability of the bubbles. The results presented in this work were analyzed by means of three different approaches. First, we discussed some qualitative considerations about the changes observed in the radial dynamics, and the stability of similar bubbles under distinct bi-harmonic drivings. Later, we have investigated, through a series of numerical simulations, how the use of high frequency harmonic components of different order N, affects the positional stability of the SL bubbles. Furthermore, the influence of φb in their radius temporal evolution is systematically explored for harmonics ranging from the second to the fifteenth harmonic (N=2-15). Finally, a multivariate analysis based on the covariance method is performed to study the dependences among the parameters characterizing the SL bubble. Both experimental and numerical results indicate that the impact of PAc(HF) on the positional instability and the radial dynamics turns to be progressively negligible as the order of the high frequency harmonic component grows (i.e. N ≫ 1), however its effectiveness on the reduction of the spatial instability remains unaltered or even improved. Copyright © 2016 Elsevier B.V. All rights reserved.
Characterizing Droplet Formation from Non-Linear Slosh in a Propellant Tank
NASA Technical Reports Server (NTRS)
Brodnick, Jacob; Yang, Hong; West, Jeffrey
2015-01-01
The Fluid Dynamics Branch (ER42) at the Marshall Space Flight Center (MSFC) was tasked with characterizing the formation and evolution of liquid droplets resulting from nonlinear propellant slosh in a storage tank. Lateral excitation of propellant tanks can produce high amplitude nonlinear slosh waves through large amplitude excitations and or excitation frequencies near a resonance frequency of the tank. The high amplitude slosh waves become breaking waves upon attaining a certain amplitude or encountering a contracting geometry such as the upper dome section of a spherical tank. Inherent perturbations in the thinning regions of breaking waves result in alternating regions of high and low pressure within the fluid. Droplets form once the force from the local pressure differential becomes larger than the force maintaining the fluid interface shape due to surface tension. Droplets released from breaking waves in a pressurized tank may lead to ullage collapse given the appropriate conditions due to the increased liquid surface area and thus heat transfer between the fluids. The goal of this project is to create an engineering model that describes droplet formation as a function of propellant slosh for use in the evaluation of ullage collapse during a sloshing event. The Volume of Fluid (VOF) model in the production level Computational Fluid Dynamics (CFD) code Loci-Stream was used to predict droplet formation from breaking waves with realistic surface tension characteristics. Various excitation frequencies and amplitudes were investigated at multiple fill levels for a single storage tank to create the engineering model of droplet formation from lateral propellant slosh.
NASA Astrophysics Data System (ADS)
Meng, Lingsen; Ampuero, Jean-Paul; Luo, Yingdi; Wu, Wenbo; Ni, Sidao
2012-12-01
Comparing teleseismic array back-projection source images of the 2011 Tohoku-Oki earthquake with results from static and kinematic finite source inversions has revealed little overlap between the regions of high- and low-frequency slip. Motivated by this interesting observation, back-projection studies extended to intermediate frequencies, down to about 0.1 Hz, have suggested that a progressive transition of rupture properties as a function of frequency is observable. Here, by adapting the concept of array response function to non-stationary signals, we demonstrate that the "swimming artifact", a systematic drift resulting from signal non-stationarity, induces significant bias on beamforming back-projection at low frequencies. We introduce a "reference window strategy" into the multitaper-MUSIC back-projection technique and significantly mitigate the "swimming artifact" at high frequencies (1 s to 4 s). At lower frequencies, this modification yields notable, but significantly smaller, artifacts than time-domain stacking. We perform extensive synthetic tests that include a 3D regional velocity model for Japan. We analyze the recordings of the Tohoku-Oki earthquake at the USArray and at the European array at periods from 1 s to 16 s. The migration of the source location as a function of period, regardless of the back-projection methods, has characteristics that are consistent with the expected effect of the "swimming artifact". In particular, the apparent up-dip migration as a function of frequency obtained with the USArray can be explained by the "swimming artifact". This indicates that the most substantial frequency-dependence of the Tohoku-Oki earthquake source occurs at periods longer than 16 s. Thus, low-frequency back-projection needs to be further tested and validated in order to contribute to the characterization of frequency-dependent rupture properties.
NASA Astrophysics Data System (ADS)
Shekhar, Himanshu; Doyley, Marvin M.
2013-03-01
Nonlinear (subharmonic/harmonic) imaging with ultrasound contrast agents (UCA) could characterize the vasa vasorum, which could help assess the risk associated with atherosclerosis. However, the sensitivity and specificity of high-frequency nonlinear imaging must be improved to enable its clinical translation. The current excitation scheme employs sine-bursts — a strategy that requires high-peak pressures to produce strong nonlinear response from UCA. In this paper, chirp-coded excitation was evaluated to assess its ability to enhance the subharmonic and harmonic response of UCA. Acoustic measurements were conducted with a pair of single-element transducers at 10-MHz transmit frequencies to evaluate the subharmonic and harmonic response of Targestar-P® (Targeson Inc., San Diego, CA, USA), a commercially available phospholipid-encapsulated contrast agent. The results of this study demonstrated a 2 - 3 fold reduction in the subharmonic threshold, and a 4 - 14 dB increase in nonlinear signal-to-noise ratio, with chirp-coded excitation. Therefore, chirp-coded excitation could be well suited for improving the imaging performance of high-frequency harmonic and subharmonic imaging.
Leitersdorf, E; Van der Westhuyzen, D R; Coetzee, G A; Hobbs, H H
1989-09-01
Familial hypercholesterolemia (FH), an autosomal dominant disease caused by mutations in the LDL receptor gene, is five times more frequent in the Afrikaner population of South Africa than it is in the population of the United States and Europe. It has been proposed that the high frequency is due to a founder effect. In this paper, we characterized 24 mutant LDL receptor alleles from 12 Afrikaner individuals homozygous for FH. We identified two mutations that together makeup greater than 95% of the mutant LDL receptor genes represented in our sample. Both mutations were basepair substitutions that result in single-amino acid changes. Each mutation can be detected readily with the polymerase chain reaction and restriction analysis. The finding of two common LDL receptor mutations in the Afrikaner FH homozygotes predicts that these mutations will predominate in the Afrikaner population and that the high frequency of FH is due to a founder effect. The increased incidence of ischemic heart disease in the Afrikaner population may in part be due to the high frequency of these two mutations in the LDL receptor gene.
Leitersdorf, E; Van der Westhuyzen, D R; Coetzee, G A; Hobbs, H H
1989-01-01
Familial hypercholesterolemia (FH), an autosomal dominant disease caused by mutations in the LDL receptor gene, is five times more frequent in the Afrikaner population of South Africa than it is in the population of the United States and Europe. It has been proposed that the high frequency is due to a founder effect. In this paper, we characterized 24 mutant LDL receptor alleles from 12 Afrikaner individuals homozygous for FH. We identified two mutations that together makeup greater than 95% of the mutant LDL receptor genes represented in our sample. Both mutations were basepair substitutions that result in single-amino acid changes. Each mutation can be detected readily with the polymerase chain reaction and restriction analysis. The finding of two common LDL receptor mutations in the Afrikaner FH homozygotes predicts that these mutations will predominate in the Afrikaner population and that the high frequency of FH is due to a founder effect. The increased incidence of ischemic heart disease in the Afrikaner population may in part be due to the high frequency of these two mutations in the LDL receptor gene. Images PMID:2569482
A frequency and sensitivity tunable microresonator array for high-speed quantum processor readout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whittaker, J. D., E-mail: jwhittaker@dwavesys.com; Swenson, L. J.; Volkmann, M. H.
Superconducting microresonators have been successfully utilized as detection elements for a wide variety of applications. With multiplexing factors exceeding 1000 detectors per transmission line, they are the most scalable low-temperature detector technology demonstrated to date. For high-throughput applications, fewer detectors can be coupled to a single wire but utilize a larger per-detector bandwidth. For all existing designs, fluctuations in fabrication tolerances result in a non-uniform shift in resonance frequency and sensitivity, which ultimately limits the efficiency of bandwidth utilization. Here, we present the design, implementation, and initial characterization of a superconducting microresonator readout integrating two tunable inductances per detector. Wemore » demonstrate that these tuning elements provide independent control of both the detector frequency and sensitivity, allowing us to maximize the transmission line bandwidth utilization. Finally, we discuss the integration of these detectors in a multilayer fabrication stack for high-speed readout of the D-Wave quantum processor, highlighting the use of control and routing circuitry composed of single-flux-quantum loops to minimize the number of control wires at the lowest temperature stage.« less
A NARX damper model for virtual tuning of automotive suspension systems with high-frequency loading
NASA Astrophysics Data System (ADS)
Alghafir, M. N.; Dunne, J. F.
2012-02-01
A computationally efficient NARX-type neural network model is developed to characterise highly nonlinear frequency-dependent thermally sensitive hydraulic dampers for use in the virtual tuning of passive suspension systems with high-frequency loading. Three input variables are chosen to account for high-frequency kinematics and temperature variations arising from continuous vehicle operation over non-smooth surfaces such as stone-covered streets, rough or off-road conditions. Two additional input variables are chosen to represent tuneable valve parameters. To assist in the development of the NARX model, a highly accurate but computationally excessive physical damper model [originally proposed by S. Duym and K. Reybrouck, Physical characterization of non-linear shock absorber dynamics, Eur. J. Mech. Eng. M 43(4) (1998), pp. 181-188] is extended to allow for high-frequency input kinematics. Experimental verification of this extended version uses measured damper data obtained from an industrial damper test machine under near-isothermal conditions for fixed valve settings, with input kinematics corresponding to harmonic and random road profiles. The extended model is then used only for simulating data for training and testing the NARX model with specified temperature profiles and different valve parameters, both in isolation and within quarter-car vehicle simulations. A heat generation and dissipation model is also developed and experimentally verified for use within the simulations. Virtual tuning using the quarter-car simulation model then exploits the NARX damper to achieve a compromise between ride and handling under transient thermal conditions with harmonic and random road profiles. For quarter-car simulations, the paper shows that a single tuneable NARX damper makes virtual tuning computationally very attractive.
Analysis of the Microstructure of Titles in the INSPEC Data-Base
ERIC Educational Resources Information Center
And Others; Lynch, Michael F.
1973-01-01
A high degree of constancy has been found in the microstructure of titles of samples of the INSPEC data base taken over a three-year period. Character and digram frequencies are relatively stable, while variable-length character-strings characterizing samples separated by three years in time show close similarities. (2 references) (Author/SJ)
High bandwidth on-chip capacitive tuning of microtoroid resonators
NASA Astrophysics Data System (ADS)
Baker, Christopher G.; Bekker, Christiaan; McAuslan, David L.; Sheridan, Eoin; Bowen, Warwick P.
2016-09-01
We report on the design, fabrication and characterization of silica microtoroid based cavity opto-electromechanical systems (COEMS). Electrodes patterned onto the microtoroid resonators allow for rapid capacitive tuning of the optical whispering gallery mode resonances while maintaining their ultrahigh quality factor, enabling applications such as efficient radio to optical frequency conversion, optical routing and switching applications.
The premise that genetic exchange is primarily localized in niches characterized by dense bacterial populations and high availability of growth substrates was tested by relating conjugal gene transfer of an RP4 derivative to availability of root exudates and bacterial metabolic a...