Sample records for high frequency conduction

  1. 50 CFR 218.84 - Mitigation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... aircraft conducting high-frequency or non-hull-mounted mid-frequency active sonar activities associated... or aircraft conducting high-frequency active sonar activities associated with anti-submarine warfare...). (2) High-frequency and non-hull mounted mid-frequency active sonar (except helicopter dipping). (3...

  2. Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz–1GHz

    PubMed Central

    Revil, A

    2013-01-01

    A model combining low-frequency complex conductivity and high-frequency permittivity is developed in the frequency range from 1 mHz to 1 GHz. The low-frequency conductivity depends on pore water and surface conductivities. Surface conductivity is controlled by the electrical diffuse layer, the outer component of the electrical double layer coating the surface of the minerals. The frequency dependence of the effective quadrature conductivity shows three domains. Below a critical frequency fp, which depends on the dynamic pore throat size Λ, the quadrature conductivity is frequency dependent. Between fp and a second critical frequency fd, the quadrature conductivity is generally well described by a plateau when clay minerals are present in the material. Clay-free porous materials with a narrow grain size distribution are described by a Cole-Cole model. The characteristic frequency fd controls the transition between double layer polarization and the effect of the high-frequency permittivity of the material. The Maxwell-Wagner polarization is found to be relatively negligible. For a broad range of frequencies below 1 MHz, the effective permittivity exhibits a strong dependence with the cation exchange capacity and the specific surface area. At high frequency, above the critical frequency fd, the effective permittivity reaches a high-frequency asymptotic limit that is controlled by the two Archie's exponents m and n like the low-frequency electrical conductivity. The unified model is compared with various data sets from the literature and is able to explain fairly well a broad number of observations with a very small number of textural and electrochemical parameters. It could be therefore used to interpret induced polarization, induction-based electromagnetic methods, and ground penetrating radar data to characterize the vadose zone. PMID:23576823

  3. Effect of Impedance Relaxation in Conductance Mechanisms in TiO2/ITO/ZnO:Al/p-Si Heterostructure

    NASA Astrophysics Data System (ADS)

    Nouiri, M.; El Mir, L.

    2018-03-01

    The electrical conduction of a TiO2/ITO/ZnO:Al/p-Si structure under alternating-current excitation was investigated in the temperature range of 80 K to 300 K. The frequency dependence of the capacitance and conductance revealed the response of a thermally activated trap characterized by activation energy of about 140 meV. The frequency dependence of the conductance obeyed the universal dynamic response according to the common relation G = Aωs . The temperature dependence of the frequency exponent s illustrates that, in the low frequency range, conduction is governed by the correlated barrier hopping (CBH) mechanism involving two distinct energy levels for all investigated temperatures. For the high frequency region, conduction takes place according to the overlapping large-polaron tunneling mechanism at low temperatures but the CBH mechanism becomes dominant in the high temperature region. This difference in electrical behavior between low and high temperatures can be attributed to the dominance of dielectric relaxation at low compared with high temperatures.

  4. High-power radio-frequency attenuation device

    DOEpatents

    Kerns, Q.A.; Miller, H.W.

    1981-12-30

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  5. High power radio frequency attenuation device

    DOEpatents

    Kerns, Quentin A.; Miller, Harold W.

    1984-01-01

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  6. Analysis of fast and slow responses in AC conductance curves for p-type SiC MOS capacitors

    NASA Astrophysics Data System (ADS)

    Karamoto, Yuki; Zhang, Xufang; Okamoto, Dai; Sometani, Mitsuru; Hatakeyama, Tetsuo; Harada, Shinsuke; Iwamuro, Noriyuki; Yano, Hiroshi

    2018-06-01

    We used a conductance method to investigate the interface characteristics of a SiO2/p-type 4H-SiC MOS structure fabricated by dry oxidation. It was found that the measured equivalent parallel conductance–frequency (G p/ω–f) curves were not symmetric, showing that there existed both high- and low-frequency signals. We attributed high-frequency responses to fast interface states and low-frequency responses to near-interface oxide traps. To analyze the fast interface states, Nicollian’s standard conductance method was applied in the high-frequency range. By extracting the high-frequency responses from the measured G p/ω–f curves, the characteristics of the low-frequency responses were reproduced by Cooper’s model, which considers the effect of near-interface traps on the G p/ω–f curves. The corresponding density distribution of slow traps as a function of energy level was estimated.

  7. Microwave conductance properties of aligned multiwall carbon nanotube textile sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Brian L.; Martinez, Patricia; Zakhidov, Anvar A.

    2015-07-06

    Understanding the conductance properties of multi-walled carbon nanotube (MWNT) textile sheets in the microwave regime is essential for their potential use in high-speed and high-frequency applications. To expand current knowledge, complex high-frequency conductance measurements from 0.01 to 50 GHz and across temperatures from 4.2 K to 300 K and magnetic fields up to 2 T were made on textile sheets of highly aligned MWNTs with strand alignment oriented both parallel and perpendicular to the microwave electric field polarization. Sheets were drawn from 329 and 520 μm high MWNT forests that resulted in different DC resistance anisotropy. For all samples, themore » microwave conductance can be modeled approximately by a shunt capacitance in parallel with a frequency-independent conductance, but with no inductive contribution. Finally, this is consistent with diffusive Drude conduction as the primary transport mechanism up to 50 GHz. Further, it is found that the microwave conductance is essentially independent of both temperature and magnetic field.« less

  8. Self-consistent modeling of terahertz waveguide and cavity with frequency-dependent conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y. J.; Chu, K. R., E-mail: krchu@yahoo.com.tw; Thumm, M.

    The surface resistance of metals, and hence the Ohmic dissipation per unit area, scales with the square root of the frequency of an incident electromagnetic wave. As is well recognized, this can lead to excessive wall losses at terahertz (THz) frequencies. On the other hand, high-frequency oscillatory motion of conduction electrons tends to mitigate the collisional damping. As a result, the classical theory predicts that metals behave more like a transparent medium at frequencies above the ultraviolet. Such a behavior difference is inherent in the AC conductivity, a frequency-dependent complex quantity commonly used to treat electromagnetics of metals at opticalmore » frequencies. The THz region falls in the gap between microwave and optical frequencies. However, metals are still commonly modeled by the DC conductivity in currently active vacuum electronics research aimed at the development of high-power THz sources (notably the gyrotron), although a small reduction of the DC conductivity due to surface roughness is sometimes included. In this study, we present a self-consistent modeling of the gyrotron interaction structures (a metallic waveguide or cavity) with the AC conductivity. The resulting waveguide attenuation constants and cavity quality factors are compared with those of the DC-conductivity model. The reduction in Ohmic losses under the AC-conductivity model is shown to be increasingly significant as the frequency reaches deeper into the THz region. Such effects are of considerable importance to THz gyrotrons for which the minimization of Ohmic losses constitutes a major design consideration.« less

  9. 50 CFR 218.74 - Mitigation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Surface ships or aircraft conducting high-frequency or non-hull-mounted mid-frequency active sonar...) When marine mammals are visually detected, the Navy shall ensure that high-frequency and non-hull... using low-frequency or hull-mounted mid-frequency active sonar sources associated with anti-submarine...

  10. 75 FR 79342 - Taking and Importing Marine Mammals; Navy Training Activities Conducted Within the Northwest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-20

    ...-frequency or high frequency active sonar (MFAS/HFAS) or to underwater detonations at levels that NMFS... exposing them to sound from mid-frequency or high frequency active sonar (MFAS/HFAS) or underwater...

  11. Synthesis of nitrogen-containing carbon by solution plasma in aniline with high-repetition frequency discharges

    NASA Astrophysics Data System (ADS)

    Hyun, Koangyong; Ueno, Tomonaga; Saito, Nagahiro

    2016-01-01

    Nitrogen-containing carbon nanoparticles were synthesized in aniline by solution plasma with high-repetition frequency discharges. We developed a bipolar pulsed power supply that can apply high-repetition frequencies ranging from 25 to 200 kHz. By utilizing high-repetition frequencies, conductive carbons were directly synthesized. The crystallinity was increased and H/C ratio of carbon was decreased. Furthermore, nitrogen atoms were simultaneously embedded in the carbon matrix. Due to the presence of nitrogen atoms, the conductivity and electrocatalytic activity of the samples were remarkably improved compared to that of a pure carbon matrix synthesized from a benzene precursor.

  12. High frequency bone conduction auditory evoked potentials in the guinea pig: Assessing cochlear injury after ossicular chain manipulation.

    PubMed

    Bergin, M J; Bird, P A; Vlajkovic, S M; Thorne, P R

    2015-12-01

    Permanent high frequency (>4 kHz) sensorineural hearing loss following middle ear surgery occurs in up to 25% of patients. The aetiology of this loss is poorly understood and may involve transmission of supra-physiological forces down the ossicular chain to the cochlea. Investigating the mechanisms of this injury using animal models is challenging, as evaluating cochlear function with evoked potentials is confounded when ossicular manipulation disrupts the normal air conduction (AC) pathway. Bone conduction (BC) using clinical bone vibrators in small animals is limited by poor transducer output at high frequencies sensitive to trauma. The objectives of the present study were firstly to evaluate a novel high frequency bone conduction transducer with evoked auditory potentials in a guinea pig model, and secondly to use this model to investigate the impact of middle ear surgical manipulation on cochlear function. We modified a magnetostrictive device as a high frequency BC transducer and evaluated its performance by comparison with a calibrated AC transducer at frequencies up to 32 kHz using the auditory brainstem response (ABR), compound action potential (CAP) and summating potential (SP). To mimic a middle ear traumatising stimulus, a rotating bur was brought in to contact with the incudomalleal complex and the effect on evoked cochlear potentials was observed. BC-evoked potentials followed the same input-output function pattern as AC potentials for all ABR frequencies. Deterioration in CAP and SP thresholds was observed after ossicular manipulation. It is possible to use high frequency BC to evoke responses from the injury sensitive basal region of the cochlea and so not rely on AC with the potential confounder of conductive hearing loss. Ongoing research explores how these findings evolve over time, and ways in which injury may be reduced and the cochlea protected during middle ear surgery. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Eddy current imaging with an atomic radio-frequency magnetometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wickenbrock, Arne, E-mail: wickenbr@uni-mainz.de; Leefer, Nathan; Blanchard, John W.

    2016-05-02

    We use a radio-frequency {sup 85}Rb alkali-vapor cell magnetometer based on a paraffin-coated cell with long spin-coherence time and a small, low-inductance driving coil to create highly resolved conductivity maps of different objects. We resolve sub-mm features in conductive objects, we characterize the frequency response of our technique, and by operating at frequencies up to 250 kHz we are able to discriminate between differently conductive materials based on the induced response. The method is suited to cover a wide range of driving frequencies and can potentially be used for detecting non-metallic objects with low DC conductivity.

  14. Electrical Conduction of Ba(Ti0.99Fe0.01)O3-δ Ceramic at High Temperatures

    NASA Astrophysics Data System (ADS)

    Yu, Zi-De; Chen, Xiao-Ming

    2018-03-01

    BaTiO3 and Ba(Ti0.99Fe0.01)O3-δ ceramics with dense microstructure have been synthesized by a solid-state reaction method, and their electrical conduction investigated by broadband electrical impedance spectroscopy at frequencies from 0.05 Hz to 3 × 106 Hz and temperatures from 200°C to 400°C. Compared with BaTiO3, the real part of the permittivity and the phase-transition temperature of Ba(Ti0.99Fe0.01)O3-δ decreased. Relaxation peaks appeared in the curves of the imaginary part of the permittivity as a function of frequency. With increase in frequency, the peaks gradually shifted towards higher frequency and their height increased. Conductivity was closely related to frequency and temperature. Frequency-dependent conductivity was analyzed using the Jonscher double power law. Compared with BaTO3, Ba(Ti0.99Fe0.01)O3-δ exhibited high impedance at given frequency and temperature. Impedance Cole-Cole plots displayed two semicircles, which could be well fit using two parallel RC equivalent circuit models. The conductivity activation energy was found to be around 1 eV. For Ba(Ti0.99Fe0.01)O3-δ , the electrical modulus curve versus frequency displayed two peaks.

  15. Electrical Conduction of Ba(Ti0.99Fe0.01)O3- δ Ceramic at High Temperatures

    NASA Astrophysics Data System (ADS)

    Yu, Zi-De; Chen, Xiao-Ming

    2018-07-01

    BaTiO3 and Ba(Ti0.99Fe0.01)O3- δ ceramics with dense microstructure have been synthesized by a solid-state reaction method, and their electrical conduction investigated by broadband electrical impedance spectroscopy at frequencies from 0.05 Hz to 3 × 106 Hz and temperatures from 200°C to 400°C. Compared with BaTiO3, the real part of the permittivity and the phase-transition temperature of Ba(Ti0.99Fe0.01)O3- δ decreased. Relaxation peaks appeared in the curves of the imaginary part of the permittivity as a function of frequency. With increase in frequency, the peaks gradually shifted towards higher frequency and their height increased. Conductivity was closely related to frequency and temperature. Frequency-dependent conductivity was analyzed using the Jonscher double power law. Compared with BaTO3, Ba(Ti0.99Fe0.01)O3- δ exhibited high impedance at given frequency and temperature. Impedance Cole-Cole plots displayed two semicircles, which could be well fit using two parallel RC equivalent circuit models. The conductivity activation energy was found to be around 1 eV. For Ba(Ti0.99Fe0.01)O3- δ , the electrical modulus curve versus frequency displayed two peaks.

  16. Radio frequency self-resonant coil for contactless AC-conductivity in 100 T class ultra-strong pulse magnetic fields

    NASA Astrophysics Data System (ADS)

    Nakamura, D.; Altarawneh, M. M.; Takeyama, S.

    2018-03-01

    A contactless measurement system of electrical conductivity was developed for application under pulsed high magnetic fields over 100 T by using a self-resonant-type, high-frequency circuit. Electromagnetic fields in the circuit were numerically analysed by the finite element method, to show how the resonant power spectra of the circuit depends on the electrical conductivity of a sample set on the probe-coil. The performance was examined using a high-temperature cuprate superconductor, La2-x Sr x CuO4, in magnetic fields up to 102 T with a high frequency of close to 800 MHz. As a result, the upper critical field could be determined with a good signal-to-noise ratio.

  17. High-current, high-frequency capacitors

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1983-01-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  18. Graphene-coated coupling coil for AC resistance reduction

    DOEpatents

    Miller, John M

    2014-03-04

    At least one graphene layer is formed to laterally surround a tube so that the basal plane of each graphene layer is tangential to the local surface of the tube on which the graphene layer is formed. An electrically conductive path is provided around the tube for providing high conductivity electrical path provided by the basal plane of each graphene layer. The high conductivity path can be employed for high frequency applications such as coupling coils for wireless power transmission to overcome skin depth effects and proximity effects prevalent in high frequency alternating current paths.

  19. Modification of Akhieser mechanism in Si nanomembranes and thermal conductivity dependence of the Q-factor of high frequency nanoresonators

    NASA Astrophysics Data System (ADS)

    Chávez-Ángel, E.; Zarate, R. A.; Gomis-Bresco, J.; Alzina, F.; Sotomayor Torres, C. M.

    2014-12-01

    We present and validate a reformulated Akhieser model that takes into account the reduction of thermal conductivity due to the impact of boundary scattering on the thermal phonons’ lifetime. We consider silicon nanomembranes with mechanical mode frequencies in the GHz range as textbook examples of nanoresonators. The model successfully accounts for the measured shortening of the mechanical mode lifetime. Moreover, the thermal conductivity is extracted from the measured lifetime of the mechanical modes in the high-frequency regime, thereby demonstrating that the Q-factor can be used as an indication of the thermal conductivity and/or diffusivity of a mechanical resonator.

  20. Spike Phase Locking in CA1 Pyramidal Neurons depends on Background Conductance and Firing Rate

    PubMed Central

    Broiche, Tilman; Malerba, Paola; Dorval, Alan D.; Borisyuk, Alla; Fernandez, Fernando R.; White, John A.

    2012-01-01

    Oscillatory activity in neuronal networks correlates with different behavioral states throughout the nervous system, and the frequency-response characteristics of individual neurons are believed to be critical for network oscillations. Recent in vivo studies suggest that neurons experience periods of high membrane conductance, and that action potentials are often driven by membrane-potential fluctuations in the living animal. To investigate the frequency-response characteristics of CA1 pyramidal neurons in the presence of high conductance and voltage fluctuations, we performed dynamic-clamp experiments in rat hippocampal brain slices. We drove neurons with noisy stimuli that included a sinusoidal component ranging, in different trials, from 0.1 to 500 Hz. In subsequent data analysis, we determined action potential phase-locking profiles with respect to background conductance, average firing rate, and frequency of the sinusoidal component. We found that background conductance and firing rate qualitatively change the phase-locking profiles of CA1 pyramidal neurons vs. frequency. In particular, higher average spiking rates promoted band-pass profiles, and the high-conductance state promoted phase-locking at frequencies well above what would be predicted from changes in the membrane time constant. Mechanistically, spike-rate adaptation and frequency resonance in the spike-generating mechanism are implicated in shaping the different phase-locking profiles. Our results demonstrate that CA1 pyramidal cells can actively change their synchronization properties in response to global changes in activity associated with different behavioral states. PMID:23055508

  1. Anomalous Complex Electrical Conductivity of a Graphitic Black Schist From the Himalayas of Central Nepal

    NASA Astrophysics Data System (ADS)

    Börner, Jana H.; Girault, Frédéric; Bhattarai, Mukunda; Adhikari, Lok Bijaya; Deldicque, Damien; Perrier, Frédéric; Spitzer, Klaus

    2018-05-01

    We analyzed in the laboratory the frequency-dependent, complex-valued, electrical conductivity of a graphitic black schist and an augen gneiss, both collected in the Main Central Thrust shear zone in the Himalayas of central Nepal, which was heavily affected by the deadly Mw7.8 Gorkha earthquake in 2015. We focused on anisotropy and salinity dependence of both cores and crushed material as well as the impact of CO2 on conductivity. This black schist possesses an extraordinarily high polarizability and a highly frequency-dependent conductivity. Its anisotropy is very pronounced. The investigations can relate the main polarization feature to disseminated, aligned plates of graphite. By contrast, the augen gneiss shows low polarizability and a moderately anisotropic conductivity dominated by the pore-filling brine. We further demonstrate that neglecting the complex and frequency-dependent nature of conductivity can lead to serious misinterpretation of magnetotelluric data during inversion if highly polarizable rocks are present.

  2. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR)

    NASA Astrophysics Data System (ADS)

    Jiang, Puqing; Huang, Bin; Koh, Yee Kan

    2016-07-01

    Accurate measurements of the cross-plane thermal conductivity Λcross of a high-thermal-conductivity thin film on a low-thermal-conductivity (Λs) substrate (e.g., Λcross/Λs > 20) are challenging, due to the low thermal resistance of the thin film compared with that of the substrate. In principle, Λcross could be measured by time-domain thermoreflectance (TDTR), using a high modulation frequency fh and a large laser spot size. However, with one TDTR measurement at fh, the uncertainty of the TDTR measurement is usually high due to low sensitivity of TDTR signals to Λcross and high sensitivity to the thickness hAl of Al transducer deposited on the sample for TDTR measurements. We observe that in most TDTR measurements, the sensitivity to hAl only depends weakly on the modulation frequency f. Thus, we performed an additional TDTR measurement at a low modulation frequency f0, such that the sensitivity to hAl is comparable but the sensitivity to Λcross is near zero. We then analyze the ratio of the TDTR signals at fh to that at f0, and thus significantly improve the accuracy of our Λcross measurements. As a demonstration of the dual-frequency approach, we measured the cross-plane thermal conductivity of a 400-nm-thick nickel-iron alloy film and a 3-μm-thick Cu film, both with an accuracy of ˜10%. The dual-frequency TDTR approach is useful for future studies of thin films.

  3. Investigations of a bearing fault detector for railroad bearings

    NASA Technical Reports Server (NTRS)

    Wilson, D. S.; Frarey, J. L.

    1975-01-01

    The laboratory tests are described which were conducted on new and damaged bearings to determine the feasibility of using high-frequency vibration as a diagnostic tool. A high-frequency band pass filter and demodulator was assembled to permit field measurements of the high-frequency vibrations. Field tests were conducted on an actual truck and on an axle assembly run in a grease test rig. These field tests were directed toward demonstration of the suitability and capabilities of the high-frequency technique for field application. Two specific areas of field application were identified as being cost effective for railroad use. One area is the examination of railroad roller bearings at a derailment site, and the second is as a wayside detector to supplement present hot box detectors for defective roller bearings.

  4. Printing of highly conductive solution by alternating current electrohydrodynamic direct-write

    NASA Astrophysics Data System (ADS)

    Jiang, Jiaxin; Zheng, Gaofeng; Wang, Xiang; Zheng, Jianyi; Liu, Juan; Liu, Yifang; Li, Wenwang; Guo, Shumin

    2018-03-01

    Electrohydrodynamic Direct-Write (EDW) is a novel technology for the printing of micro/nano structures. In this paper, Alternating Current (AC) electrical field was introduced to improve the ejection stability of jet with highly conductive solution. By alternating the electrical field, the polarity of free charges on the surface of jet was changed and the average density of charge, as well as the repulsive force, was reduced to stabilize the jet. When the frequency of AC electrical field increased, the EDW process became more stable and the shape of deposited droplets became more regular. The diameter of printed droplets decreased and the deposition frequency increased with the increase of voltage frequency. The phenomenon of corona discharge was overcome effectively as well. To further evaluate the performance of AC EDW for highly conductive solution, more NaCl was added to the solution and the conductivity was increased to 2810μs/cm. With such high conductivity, the problem of serious corona discharge could still be prevented by AC EDW, and the diameter of printed droplets decreased significantly. This work provides an effective way to accelerate industrial applications of EDW.

  5. High voltage-high power components for large space power distribution systems

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1984-01-01

    Space power components including a family of bipolar power switching transistors, fast switching power diodes, heat pipe cooled high frequency transformers and inductors, high frequency conduction cooled transformers, high power-high frequency capacitors, remote power controllers and rotary power transfer devices were developed. Many of these components such as the power switching transistors, power diodes and the high frequency capacitor are commercially available. All the other components were developed to the prototype level. The dc/dc series resonant converters were built to the 25 kW level.

  6. Observation of frequency up-conversion in the propagation of a high-power microwave pulse in a self-generated plasma

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Zhang, Y. S.; Ren, A.

    1990-01-01

    A chamber experiment is conducted to study the propagation of a high-power microwave pulse. The results show that the pulse is experiencing frequency up-shift while ionizing the background air if the initial carrier frequency of the pulse is higher than the electron plasma frequency at the incident boundary. Such a frequency autoconversion process may lead to reflectionless propagation of a high-power microwave pulse through the atmosphere.

  7. Bioelectrical Impedance and The Frequency Dependent Current Conduction Through Biological Tissues: A Short Review

    NASA Astrophysics Data System (ADS)

    Kanti Bera, Tushar

    2018-03-01

    Biological tissues are developed with biological cells which exhibit complex electrical impedance called electrical bioimpedance. Under an alternating electrical excitation the bioimpedance varies with the tissue anatomy, composition and the signal frequency. The current penetration and conduction paths vary with frequency of the applied signal. Bioimpedance spectroscopy is used to study the frequency response of the electrical impedance of biological materials noninvasively. In bioimpedance spectroscopy, a low amplitude electrical signal is injected to the tissue sample or body parts to characterization the sample in terms of its bioimpedance. The electrical current conduction phenomena, which is highly influenced by the tissue impedance and the signal frequency, is an important phenomena which should be studied to understand the bioimpedance techniques like bioelectrical impedance analysis (BIA), EIS, or else. In this paper the origin of bioelectrical impedance and current conduction phenomena has been reviewed to present a brief summary of bioelectrical impedance and the frequency dependent current conduction through biological tissues. Simulation studies are conducted with alternation current injection through a two dimensional model of biological tissues containing finite number of biological cells suspended in extracellular fluid. The paper demonstrates the simulation of alternating current conduction through biological tissues conducted by COMSOL Multiphysics. Simulation studies also show the frequency response of the tissue impedance for different tissue compositions.

  8. Self-adaptive method for high frequency multi-channel analysis of surface wave method

    USDA-ARS?s Scientific Manuscript database

    When the high frequency multi-channel analysis of surface waves (MASW) method is conducted to explore soil properties in the vadose zone, existing rules for selecting the near offset and spread lengths cannot satisfy the requirements of planar dominant Rayleigh waves for all frequencies of interest ...

  9. Self-adaptive method for high-frequency dispersion curve determination

    USDA-ARS?s Scientific Manuscript database

    When high-frequency (from 50 to 500 Hz) MASW is conducted to explore soil profile in the vadose zone, existing rules for selecting near offset and receiver spread length cannot satisfy the requirements of planar and dominant Rayleigh waves for all frequencies and will inevitably introduce near and f...

  10. A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes.

    PubMed

    Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos

    2012-07-11

    The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.

  11. Eddy current spectroscopy for near-surface residual stress profiling in surface treated nonmagnetic engine alloys

    NASA Astrophysics Data System (ADS)

    Abu-Nabah, Bassam A.

    Recent research results indicated that eddy current conductivity measurements can be exploited for nondestructive evaluation of near-surface residual stresses in surface-treated nickel-base superalloy components. Most of the previous experimental studies were conducted on highly peened (Almen 10-16A) specimens that exhibit harmful cold work in excess of 30% plastic strain. Such high level of cold work causes thermo-mechanical relaxation at relatively modest operational temperatures; therefore the obtained results were not directly relevant to engine manufacturers and end users. The main reason for choosing peening intensities in excess of recommended normal levels was that in low-conductivity engine alloys the eddy current penetration depth could not be forced below 0.2 mm without expanding the measurements above 10 MHz which is beyond the operational range of most commercial eddy current instruments. As for shot-peened components, it was initially felt that the residual stress effect was more difficult to separate from cold work, texture, and inhomogeneity effects in titanium alloys than in nickel-base superalloys. In addition, titanium alloys have almost 50% lower electric conductivity than nickel-base superalloys; therefore require proportionally higher inspection frequencies, which was not feasible until our recent breakthrough in instrument development. Our work has been focused on six main aspects of this continuing research, namely, (i) the development of an iterative inversion technique to better retrieve the depth-dependent conductivity profile from the measured frequency-dependent apparent eddy current conductivity (AECC), (ii) the extension of the frequency range up to 80 MHz to better capture the peak compressive residual stress in nickel-base superalloys using a new eddy current conductivity measuring system, which offers better reproducibility, accuracy and measurement speed than the previously used conventional systems, (iii) the lift-off effect on high frequency eddy current spectroscopy, (iv) the development of custom-made spiral coils to allow eddy current conductivity characterization over the whole frequency range of interest with reduced coil sensitivity to lift off, (v) the benefits of implementing a semi-quadratic system calibration in reducing the coil sensitivity to lift-off, and (vi) the feasibility of adapting high-frequency eddy current residual stress characterization for shot-peened titanium alloys.

  12. Food deprivation and prior anoxic coma have opposite effects on the activity of a visual interneuron in the locust.

    PubMed

    Cross, Kevin P; Britton, Samantha; Mangulins, Rebecca; Money, Tomas G A; Robertson, R Meldrum

    2017-04-01

    We compared how different metabolic stressors, anoxic coma and food deprivation, affected signaling in neural tissue. We used the locust's Descending Contralateral Movement Detector (DCMD) interneuron because its large axon, high firing frequencies, and rapid conduction velocity make it energetically expensive. We exposed locusts to a 30min anoxic coma or 1day of food deprivation and found contrasting effects on signaling within the axon. After a prior anoxic coma, the DCMD fired fewer high-frequency (>200Hz) action potentials (APs) (Control: 12.4±1.6; Coma: 6.3±0.9) with a reduction in axonal conduction velocity (CV) at all frequencies (∼4-8%) when presented with a standard looming visual stimulus. Prior anoxic coma was also associated with a loss of supernormal conduction by reducing both the number of supernormal APs and the firing frequency with the highest CV. Initially, food deprivation caused a significant increase in the number of low- and high-frequency APs with no differences observed in CV. After controlling for isolation, food deprivation resulted in an increase in high-frequency APs (>200Hz: Control: 17.1±1.7; Food-deprived: 19.9±1.3) and an increase in relative conduction velocity for frequencies >150Hz (∼2%). Action potentials of food-deprived animals had a smaller half-width (Control: 0.45±0.02ms; Food-deprived: 0.40±0.01ms) and decay time (Control: 0.62±0.03ms; Food-deprived: 0.54±0.02ms). Our data indicate that the effects of metabolic stress on neural signaling can be stressor-dependent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Refinement of the theory for extracting cell dielectric properties from dielectrophoresis and electrorotation experiments.

    PubMed

    Lei, U; Sun, Pei-Hou; Pethig, Ronald

    2011-12-01

    A modified theory is proposed for extracting cell dielectric properties from the peak frequency measurement of electrorotation (ER) and the crossover frequency measurement of dielectrophoresis (DEP). Current theory in the literature is based on the low frequency (DC) approximations for the equivalent cell permittivity and conductivity, which are valid when the measurements are performed in a medium with conductivity less than 1 mS/m. The present theory extracts the cell properties through optimizing an expression for the medium conductivity in terms of the peak ER, or DEP crossover, frequency according to its definition using full expressions of equivalent cell permittivity and conductivity. Various levels of approximation of the theory are proposed and discussed through a scaling analysis. The present theory can extract both membrane and interior properties from the low and the high peak ER, or DEP crossover, frequencies for any medium conductivity provided the peak ER, or DEP crossover, frequency exists. It can be reduced to the linear theory for the low peak ER and DEP crossover frequencies in the literature when the medium conductivity is less than 10 mS/m. However, we can determine the membrane capacitance and conductance via the slope and intercept, respectively, of the straight line fitting of the ER peak and DEP frequency against medium conductivity data according to the linear theory only when the intercept dominates the experimental uncertainty, which occurs when the medium conductivity is less than 1 mS/m in practice.

  14. Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites

    NASA Astrophysics Data System (ADS)

    Maaroufi, A.; Oabi, O.; Lucas, B.

    2016-07-01

    The ac-conductivity and dielectric response of new composites based on zinc-phosphate glass with composition 45 mol%ZnO-55 mol%P2O5, filled with metallic powder of nickel (ZP/Ni) were investigated by impedance spectroscopy in the frequency range from 100 Hz to 1 MHz at room temperature. A high percolating jump of seven times has been observed in the conductivity behavior from low volume fraction of filler to the higher fractions, indicating an insulator - semiconductor phase transition. The measured conductivity at higher filler volume fraction is about 10-1 S/cm and is frequency independent, while, the obtained conductivity for low filler volume fraction is around 10-8 S/cm and is frequency dependent. Moreover, the elaborated composites are characterized by high dielectric constants in the range of 105 for conductive composites at low frequencies (100 Hz). In addition, the distribution of the relaxation processes was also evaluated. The Debye, Cole-Cole, Davidson-Cole and Havriliak-Negami models in electric modulus formalism were used to model the observed relaxation phenomena in ZP/Ni composites. The observed relaxation phenomena are fairly simulated by Davidson-Cole model, and an account of the interpretation of results is given.

  15. Nonlinear optical conductivity and subharmonic instabilities of graphene in a strong electromagnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyuan; Basov, Dimitri; Fogler, Michael

    We study theoretically the second-order nonlinear optical conductivity σ (2) of graphene as a function of frequency and momentum. We distinguish two regimes. At frequencies ω higher than the temperature-dependent electron-electron collision rate γee- 1 , the conductivity σ (2) can be derived from the semiclassical kinetic equation. The calculation requires taking into account the photon drag (Lorentz force) due to the ac magnetic field. In the low-frequency hydrodynamic regime ω <<γee- 1 , the nonlinear conductivity has a different form and the photon drag effect is suppressed. As a consequence of the nonlinearity, a strong enough photoexcitation can cause spontaneous generation of collective modes in a graphene strip: plasmons in the high-frequency regime and energy waves (demons) in the hydrodynamic one. The dominant instability occurs at frequency ω / 2 .

  16. AC and DC conductivity due to hopping mechanism in double ion doped ceramics

    NASA Astrophysics Data System (ADS)

    Rizwana, Mahboob, Syed; Sarah, P.

    2018-04-01

    Sr1-2xNaxNdxBi4Ti4O15 (x = 0.1, 0.2 and 0.4) system is prepared by sol gel method involving Pechini process of modified polymeric precursor method. Phase identification is done using X-ray diffraction. Conduction in prepared materials involves different mechanisms and is explained through detailed AC and DC conductivity studies. AC conductivity studies carried out on the samples at different frequencies and different temperatures gives more information about electrical transport. Exponents used in two term power relation helps us to understand the different hopping mechanism involved at low as well as high frequencies. Activation energies calculated from the Arrhenius plots are used to calculate activation energies at different temperatures and frequencies. Hopping frequency calculated from the measured data explains hopping of charge carriers at different temperatures. DC conductivity studies help us to know the role of oxygen vacancies in conduction.

  17. Solution-Based Electro-Orientation Spectroscopy (EOS) for Contactless Measurement of Semiconductor Nanowires

    NASA Astrophysics Data System (ADS)

    Yuan, Wuhan; Mohabir, Amar; Tutuncuoglu, Gozde; Filler, Michael; Feldman, Leonard; Shan, Jerry

    2017-11-01

    Solution-based, contactless methods for determining the electrical conductivity of nanowires and nanotubes have unique advantages over conventional techniques in terms of high throughput and compatibility with further solution-based processing and assembly methods. Here, we describe the solution-based electro-orientation spectroscopy (EOS) method, in which nanowire conductivity is measured from the AC-electric-field-induced alignment rate of the nanowire in a suspending fluid. The particle conductivity is determined from the measured crossover frequency between conductivity-dominated, low-frequency alignment to the permittivity-dominated, high-frequency regime. We discuss the extension of the EOS measurement range by an order-of-magnitude, taking advantage of the high dielectric constant of deionized water. With water and other fluids, we demonstrate that EOS can quantitatively characterize the electrical conductivities of nanowires over a 7-order-of-magnitude range, 10-5 to 102 S/m. We highlight the efficiency and utility of EOS for nanomaterial characterization by statistically characterizing the variability of semiconductor nanowires of the same nominal composition, and studying the connection between synthesis parameters and properties. NSF CBET-1604931.

  18. 76 FR 3092 - Taking and Importing Marine Mammals: Taking Marine Mammals Incidental to Navy's Mission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... involve underwater explosive detonation, projectile firing, and sonar testing. Summary of Activity Under..., most of the mid-frequency active sonar (MFAS) and high-frequency active sonar (HFAS) testing events... (Number Authorized vs. Conducted). Number Number Sonar system authorized conducted (hrs) (hrs) AN/SQS-53...

  19. Relations among low ionosphere parameters and high frequency radio wave absorption

    NASA Technical Reports Server (NTRS)

    Cipriano, J. P.

    1973-01-01

    Charged particle conductivities measured in the very low ionosphere at White Sands Missile Range, New Mexico, and Wallops Island, Virginia, are compared with atmospheric parameters and high frequency radio wave absorption measurements. Charged particle densities are derived from the conductivity data. Between 33 and 58 km, positive conductivity correlated well with neutral atmospheric temperature, with temperature coefficients as large as 4.6%/deg K. Good correlations were also found between HF radio wave absorption and negative conductivity at altitudes as low as 53 km, indicating that the day-to-day absorption variations were principally due to variations in electron loss rate.

  20. Transport conductivity of graphene at RF and microwave frequencies

    NASA Astrophysics Data System (ADS)

    Awan, S. A.; Lombardo, A.; Colli, A.; Privitera, G.; Kulmala, T. S.; Kivioja, J. M.; Koshino, M.; Ferrari, A. C.

    2016-03-01

    We measure graphene coplanar waveguides from direct current (DC) to a frequency f = 13.5 GHz and show that the apparent resistance (in the presence of parasitic impedances) has an {ω }2 dependence (where ω =2π f), but the intrinsic conductivity (without the influence of parasitic impedances) is frequency-independent. Consequently, in our devices the real part of the complex alternating current (AC) conductivity is the same as the DC value and the imaginary part is ˜0. The graphene channel is modeled as a parallel resistive-capacitive network with a frequency dependence identical to that of the Drude conductivity with momentum relaxation time ˜2.1 ps, highlighting the influence of AC electron transport on the electromagnetic properties of graphene. This can lead to optimized design of high-speed analog field-effect transistors, mixers, frequency doublers, low-noise amplifiers and radiation detectors.

  1. Artifactual responses when recording auditory steady-state responses.

    PubMed

    Small, Susan A; Stapells, David R

    2004-12-01

    The goal of this study was to investigate, in hearing-impaired participants who could not hear the stimuli, the possibility of artifactual auditory steady-state responses (ASSRs) when stimuli are presented at high intensities. ASSRs to single (60 dB HL) and multiple (20 to 50 dB HL; 500 to 4000 Hz) bone-conduction stimuli as well as single 114 to 120 dB HL air-conduction stimuli, were obtained using the Rotman MASTER system, using analog-to-digital (A/D) conversion rates of 500, 1000, and 1250 Hz. Responses (p < 0.05) were considered artifactual when their numbers exceeded that expected by chance. In some conditions, we also obtained ASSRs to "alternated" stimuli (stimuli inverted and ASSRs to the two polarities averaged). A total of 17 subjects were tested. Bone conduction results: 500 Hz A/D rate: Large-amplitude (43 to 1558 nV) artifactual ASSRs were seen at 40 and 50 dB HL for the 500 Hz carrier frequency. Smaller responses (28 to 53 nV) were also recorded at 20 dB HL for the 500 Hz carrier frequency. Artifactual ASSRs (17 to 62 nV) were seen at 40 dB HL and above for the 1000 Hz carrier frequency and at 50 dB HL for the 2000 Hz carrier frequency. Alternating the stimulus polarity decreased the amplitude and occurrence of these artifactual responses but did not eliminate responses for the 500 Hz carrier frequency at 40 dB HL and above. No artifactual responses were recorded for 4000 Hz stimuli for any condition. 1000 Hz A/D rate: Artifactual ASSRs (15 to 523 nV) were seen at 50 dB HL and above for the 500 Hz carrier frequency and 40 dB HL and above for the 1000 Hz carrier frequency. Artifactual responses were also obtained at 50 dB HL for a 2000 Hz carrier frequency but not at lower levels. Artifactual responses were not seen for the 4000 Hz carrier frequency. Alternating the stimulus polarity removed the responses for the 1000 and 2000 Hz carrier frequencies but did not change the results for the 500 Hz carrier frequency. 1250 Hz A/D rate: Artifactual ASSRs (16 to 220 nV) were seen at 50 dB HL and above for the 500 Hz carrier frequency and 60 dB HL and above for the 1000 Hz carrier frequency. Alternating the stimulus polarity removed the responses for the 1000 Hz carrier frequency but did not change the results for the 500 Hz carrier frequency. There were no artifactual responses at 2000 and 4000 Hz. Air conduction results: 500 Hz A/D rate: Artifactual ASSRs (49 to 153 nV) were seen for 114 to 120 dB HL stimuli for 500 and 1000 Hz carrier frequencies. Alternating the stimulus polarity removed these responses. There were no artifactual responses at 2000 and 4000 Hz. 1000 and 1250 Hz A/D rates: Artifactual ASSRs (19 to 55 nV) were seen for a 120 dB HL stimulus for a 1000 Hz carrier. Alternating the stimulus polarity removed these responses. High-intensity air- or bone-conduction stimuli can produce spurious ASSRs, especially for 500 and 1000 Hz carrier frequencies. High-amplitude stimulus artifact can result in energy that is aliased to exactly the modulation frequency. Choice of signal conditioning (electroencephalogram filter slope and low-pass cutoff) and processing (A/D rate) can avoid spurious responses due to aliasing. However, artifactual responses due to other causes may still occur for bone-conduction stimuli 50 dB HL and higher (and possibly for high-level air conduction). Because the phases of these spurious responses do not invert with inversion of stimulus, the possibility of nonauditory physiologic responses cannot be ruled out. The clinical implications of these results are that artifactual responses may occur for any patient for bone-conduction stimuli at levels greater than 40 dB HL and for high-intensity air-conduction stimuli used to assess patients with profound hearing loss.

  2. AC conductivity, magnetic and shielding effectiveness studies on polyaniline embedded Co0.5Mn0.5Fe2O4 nanoparticles for electromagnetic interference suppression

    NASA Astrophysics Data System (ADS)

    Gurusiddesh, M.; Madhu, B. J.; Shankaramurthy, G. J.

    2018-05-01

    Electrically conducting Polyaniline (PANI)/Co0.5Mn0.5Fe2O4 nanocomposites are synthesized by in situ polymerization of aniline monomer in the presence of Co0.5Mn0.5Fe2O4 nanoparticles. Structural studies on the synthesized samples have been carried out using X-ray diffraction technique, Field emission scanning electron microscopy and Energy dispersive X-ray spectroscopy. Frequency dependent ac conductivity studies on the prepared samples revealed that conductivity of the composite is high compared to Co0.5Mn0.5Fe2O4 nanoparticles. Further, both the samples exhibited hysteresis behavior under the applied magnetic field. Electromagnetic interference (EMI) shielding effectiveness of both the samples decreases with increase in the applied frequency in the studied frequency range. Maximum shielding effectiveness (SE) of 31.49 dB and 62.84 dB were obtained for Co0.5Mn0.5Fe2O4 nanoparticles and PANI/Co0.5Mn0.5Fe2O4 nanocomposites respectively in the studied frequency range. Observed higher EMI shielding in the composites was attributed to its high electrical conductivity.

  3. Dynamic Scattering Mode LCDs

    NASA Astrophysics Data System (ADS)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * CELL DESIGNING * EXPERIMENTAL OBSERVATIONS IN NEMATICS RELATED WITH DYNAMIC SCATTERING * Experimental Observations at D.C. Field and Electrode Effects * Experimental Observation at Low Frequency A.C. Fields * Homogeneously Aligned Nematic Regime * Williams Domains * Dynamic Scattering * Experimental Observation at High Frequency A.C. Field * Other Experimental Observations * THEORETICAL INTERPRETATIONS * Felici Model * Carr-Helfrich Model * D.C. Excitation * Dubois-Violette, de Gennes and Parodi Model * Low Freqency or Conductive Regime * High Frequency or Dielectric Regime * DYNAMIC SCATTERING IN SMECRIC A PHASE * ELECTRO-OPTICAL CHARACTERISTICS AND LIMITATIONS * Contrast Ratio vs. Voltage, Viewing Angle, Cell Gap, Wavelength and Temperature * Display Current vs. Voltage, Cell Gap and Temperature * Switching Time * Effect of Alignment * Effect of Conductivity, Temperature and Frequency * Addressing of DSM LCDs * Limitations of DSM LCDs * ACKNOWLEDGEMENTS * REFERENCES

  4. Assessing the high frequency behavior of non-polarizable electrodes for spectral induced polarization measurements

    NASA Astrophysics Data System (ADS)

    Abdulsamad, Feras; Florsch, Nicolas; Schmutz, Myriam; Camerlynck, Christian

    2016-12-01

    During the last decades, the usage of spectral induced polarization (SIP) measurements in hydrogeology and detecting environmental problems has been extensively increased. However, the physical mechanisms which are responsible for the induced polarization response over the usual frequency range (typically 1 mHz to 10-20 kHz) require better understanding. The phase shift observed at high frequencies is sometimes attributed to the so-called Maxwell-Wagner polarization which takes place when charges cross an interface. However, SIP measurements of tap water show a phase shift at frequencies higher than 1 kHz, where no Maxwell-Wagner polarization may occur. In this paper, we enlighten the possible origin of this phase shift and deduce its likely relationship with the types of the measuring electrodes. SIP Laboratory measurements of tap water using different types of measuring electrodes (polarizable and non-polarizable electrodes) are carried out to detect the origin of the phase shift at high frequencies and the influence of the measuring electrodes types on the observed complex resistivity. Sodium chloride is used to change the conductivity of the medium in order to quantify the solution conductivity role. The results of these measurements are clearly showing the impact of the measuring electrodes type on the measured phase spectrum while the influence on the amplitude spectrum is negligible. The phenomenon appearing on the phase spectrum at high frequency (> 1 kHz) whatever the electrode type is, the phase shows an increase compared to the theoretical response, and the discrepancy (at least in absolute value) increases with frequency, but it is less severe when medium conductivity is larger. Additionally, the frequency corner is shifted upward in frequency. The dependence of this phenomenon on the conductivity and the measuring electrodes type (electrode-electrolyte interface) seems to be due to some dielectric effects (as an electrical double layer of small relaxation time formed at the electrodes interface). Therefore, this dielectric response should be taken into account at high frequency to better analytically separate the medium own response from that linked to the measuring electrodes used. We modeled this effect by adding a capacitance connected in parallel with the traditional equivalent electric circuit used to describe the dielectric response of medium.

  5. Imaging of conductivity distributions using audio-frequency electromagnetic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Morrison, H.F.

    1990-10-01

    The objective of this study has been to develop mathematical methods for mapping conductivity distributions between boreholes using low frequency electromagnetic (em) data. In relation to this objective this paper presents two recent developments in high-resolution crosshole em imaging techniques. These are (1) audio-frequency diffusion tomography, and (2) a transform method in which low frequency data is first transformed into a wave-like field. The idea in the second approach is that we can then treat the transformed field using conventional techniques designed for wave field analysis.

  6. Deformation of giant vesicles in AC electric fields —Dependence of the prolate-to-oblate transition frequency on vesicle radius

    NASA Astrophysics Data System (ADS)

    Antonova, K.; Vitkova, V.; Mitov, M. D.

    2010-02-01

    The electrodeformation of giant vesicles is studied as a function of their radii and the frequency of the applied AC field. At low frequency the shape is prolate, at sufficiently high frequency it is oblate and at some frequency, fc, the shape changes from prolate to oblate. A linear dependence of the prolate-to-oblate transition inverse frequency, 1/fc, on the vesicle radius is found. The nature of this phenomenon does not change with the variation of both the solution conductivity, σ, and the type of the fluid enclosed by the lipid membrane (water, sucrose or glucose aqueous solution). When σ increases, the value of fc increases while the slope of the line 1/fc(r) decreases. For vesicles in symmetrical conditions (the same conductivity of the inner and the outer solution) a linear dependence between σ and the critical frequency, fc, is obtained for conductivities up to σ=114 μS/cm. For vesicles with sizes below a certain minimum radius, depending on the solution conductivity, no shape transition could be observed.

  7. Capacitance and conductance-frequency characteristics of In-pSi Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Dhimmar, J. M.; Desai, H. N.; Modi, B. P.

    2015-06-01

    The Schottky barrier height (SBH) values have been calculated by using the reverse bias capacitance-voltage (C-V) characteristics at temperature range of 120-360K. The forward bias capacitance-frequency (C-f) and conductance- frequency (G-f) measurement of In-pSi SBD have been carried out from 0-1.0 V with a step up 0.05 V whereby the energy distribution of the interface state has been determined from the forward bias I-V data taking the bias dependence of the effective barrier height and series resistance (RS) into account. The high value of ideality factor (n=2.12) was attributing to high density of interface states and interfacial oxide layer at metal semiconductor interface. The interface state density (NSS) shows a decrease with bias from bottom of conduction band toward the mid gap. In order to examine frequency dependence NSS, RS, C-V and G(ω)/ω-f measurement of the diode were performed at room temperature in the frequency range of 100Hz-100KHz. Experimental result confirmed that there is an influence in the electrical characteristic of Schottky diode.

  8. Basis of Ionospheric Modification by High-Frequency Waves

    DTIC Science & Technology

    2007-06-01

    for conducting ionospheric heating experiments in Gakona, Alaska, as part of the High Frequency Active Auroral Research Program ( HAARP ) [5], is being...upgraded. The upgraded HAARP HF transmitting system will be a phased-array antenna of 180 elements. Each element is a cross dipole, which radiates a...supported by the High Frequency Active Auroral Research Program ( HAARP ), the Air Force Research Laboratory at Hanscom Air Force Base, MA, and by the Office

  9. Experimental Study on an Unsteady Pressure Gain Combustion Hypergolic Rocket Engine Concept

    NASA Astrophysics Data System (ADS)

    Kan, Brandon K.

    An experimental study is conducted to investigate pulsed combustion in a lab-scale bipropellant rocket engine using hypergolic propellants. The propellant combination is high concentration hydrogen peroxide and a catalyst-laced triglyme fuel. A total of 50 short duration firings have been conducted; the vast majority in an open-chamber configuration. High amplitude pulsations were evident in nearly all cases and have been assessed with high frequency pressure measurements. Both pintle and unlike impinging quadlet injector types have been evaluated although the bulk of the testing was with the latter configuration. Several firings were conducted with a transparent chamber in an attempt to gain understanding using a high-speed camera in the visible spectrum. Peak chamber pressures in excess of 5000 psi have been recorded with surface mounted high frequency gages with pulsation frequencies exceeding 600 Hz. A characterization of time-averaged performance is made for the unsteady system, where time-resolved thrust and pressure measurements were attempted. While prior literature describes this system as a pulse detonation rocket engine, the combustion appears to be more "constant volume" in nature.

  10. High frequency measurements of shot noise suppression in atomic-scale metal contacts

    NASA Astrophysics Data System (ADS)

    Wheeler, Patrick J.; Evans, Kenneth; Russom, Jeffrey; King, Nicholas; Natelson, Douglas

    2009-03-01

    Shot noise provides a means of assessing the number and transmission coefficients of transmitting channels in atomic- and molecular-scale junctions. Previous experiments at low temperatures in metal and semiconductor point contacts have demonstrated the expected suppression of shot noise when junction conductance is near an integer multiple of the conductance quantum, G0≡2e^2/h. Using high frequency techniques, we demonstrate the high speed acquisition of such data at room temperature in mechanical break junctions. In clean Au contacts conductance histograms with clear peaks at G0, 2G0, and 3G0 are acquired within hours, and histograms of simultaneous measurements of the shot noise show clear suppression at those conductance values. We describe the dependence of the noise on bias voltage and analyze the noise vs. conductance histograms in terms of a model that averages over transmission coefficients.

  11. High frequency electromagnetic impedance measurements for characterization, monitoring and verification efforts. 1998 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, K.H.; Pellerin, L.; Becker, A.

    1998-06-01

    'Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small due, and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high resolution imaging, accurate measurements are necessary so the field datamore » can be mapped into the space of the subsurface parameters. The authors are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach, known as the magnetotelluric (MT) method at low frequencies. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques. The summary of the work to date is divided into three sections: equipment procurement, instrumentation, and theoretical developments. For most earth materials, the frequency range from 1 to 100 MHz encompasses a very difficult transition zone between the wave propagation of displacement currents and the diffusive behavior of conduction currents. Test equipment, such as signal generators and amplifiers, does not cover the entire range except at great expense. Hence the authors have divided the range of investigation into three sub-ranges: 1--10 MHz, 10--30 MHz, and 30--100 MHz. Results to date are in the lowest frequency range of 1--10 MHz. Even though conduction currents dominate in this range, as in traditional electromagnetic exploration methods, little work has been done by the geophysical community above 500 kHz.'« less

  12. Finite element modeling of electromagnetic fields and waves using NASTRAN

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.; Schroeder, Erwin

    1989-01-01

    The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.

  13. Study on sound-speed dispersion in a sandy sediment at frequency ranges of 0.5-3 kHz and 90-170 kHz

    NASA Astrophysics Data System (ADS)

    Yu, Sheng-qi; Liu, Bao-hua; Yu, Kai-ben; Kan, Guang-ming; Yang, Zhi-guo

    2017-03-01

    In order to study the properties of sound-speed dispersion in a sandy sediment, the sound speed was measured both at high frequency (90-170 kHz) and low frequency (0.5-3 kHz) in laboratory environments. At high frequency, a sampling measurement was conducted with boiled and uncooked sand samples collected from the bottom of a large water tank. The sound speed was directly obtained through transmission measurement using single source and single hydrophone. At low frequency, an in situ measurement was conducted in the water tank, where the sandy sediment had been homogeneously paved at the bottom for a long time. The sound speed was indirectly inverted according to the traveling time of signals received by three buried hydrophones in the sandy sediment and the geometry in experiment. The results show that the mean sound speed is approximate 1710-1713 m/s with a weak positive gradient in the sand sample after being boiled (as a method to eliminate bubbles as much as possible) at high frequency, which agrees well with the predictions of Biot theory, the effective density fluid model (EDFM) and Buckingham's theory. However, the sound speed in the uncooked sandy sediment obviously decreases (about 80%) both at high frequency and low frequency due to plenty of bubbles in existence. And the sound-speed dispersion performs a weak negative gradient at high frequency. Finally, a water-unsaturated Biot model is presented for trying to explain the decrease of sound speed in the sandy sediment with plenty of bubbles.

  14. Study of Ni Metallization in Macroporous Si Using Wet Chemistry for Radio Frequency Cross-Talk Isolation in Mixed Signal Integrated Circuits

    PubMed Central

    Zhang, Xi; Xu, Chengkun; Chong, Kyuchul; Tu, King-Ning; Xie, Ya-Hong

    2011-01-01

    A highly conductive moat or Faraday cage of through-the-wafer thickness in Si substrate was proposed to be effective in shielding electromagnetic interference thereby reducing radio frequency (RF) cross-talk in high performance mixed signal integrated circuits. Such a structure was realized by metallization of selected ultra-high-aspect-ratio macroporous regions that were electrochemically etched in p− Si substrates. The metallization process was conducted by means of wet chemistry in an alkaline aqueous solution containing Ni2+ without reducing agent. It is found that at elevated temperature during immersion, Ni2+ was rapidly reduced and deposited into macroporous Si and a conformal metallization of the macropore sidewalls was obtained in a way that the entire porous Si framework was converted to Ni. A conductive moat was as a result incorporated into p− Si substrate. The experimentally measured reduction of crosstalk in this structure is 5~18 dB at frequencies up to 35 GHz. PMID:28879960

  15. Study of Ni Metallization in Macroporous Si Using Wet Chemistry for Radio Frequency Cross-Talk Isolation in Mixed Signal Integrated Circuits.

    PubMed

    Zhang, Xi; Xu, Chengkun; Chong, Kyuchul; Tu, King-Ning; Xie, Ya-Hong

    2011-05-25

    A highly conductive moat or Faraday cage of through-the-wafer thickness in Si substrate was proposed to be effective in shielding electromagnetic interference thereby reducing radio frequency (RF) cross-talk in high performance mixed signal integrated circuits. Such a structure was realized by metallization of selected ultra-high-aspect-ratio macroporous regions that were electrochemically etched in p - Si substrates. The metallization process was conducted by means of wet chemistry in an alkaline aqueous solution containing Ni 2+ without reducing agent. It is found that at elevated temperature during immersion, Ni 2+ was rapidly reduced and deposited into macroporous Si and a conformal metallization of the macropore sidewalls was obtained in a way that the entire porous Si framework was converted to Ni. A conductive moat was as a result incorporated into p - Si substrate. The experimentally measured reduction of crosstalk in this structure is 5~18 dB at frequencies up to 35 GHz.

  16. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics

    DOE PAGES

    Chen, Zhiwei; Ge, Binghui; Li, Wen; ...

    2017-01-04

    To minimize the lattice thermal conductivity in thermoelectrics, strategies typically focus on the scattering of low-frequency phonons by interfaces and high-frequency phonons by point defects. In addition, scattering of mid-frequency phonons by dense dislocations, localized at the grain boundaries, has been shown to reduce the lattice thermal conductivity and improve the thermoelectric performance. Here we propose a vacancy engineering strategy to create dense dislocations in the grains. In Pb 1$-$xSb 2x/3Se solid solutions, cation vacancies are intentionally introduced, where after thermal annealing the vacancies can annihilate through a number of mechanisms creating the desired dislocations homogeneously distributed within the grains.more » This leads to a lattice thermal conductivity as low as 0.4Wm -1 K -1 and a high thermoelectric figure of merit, which can be explained by a dislocation scattering model. As a result, the vacancy engineering strategy used here should be equally applicable for solid solution thermoelectrics and provides a strategy for improving zT.« less

  17. Oligoyne Molecular Junctions for Efficient Room Temperature Thermoelectric Power Generation.

    PubMed

    Sadeghi, Hatef; Sangtarash, Sara; Lambert, Colin J

    2015-11-11

    Understanding phonon transport at a molecular scale is fundamental to the development of high-performance thermoelectric materials for the conversion of waste heat into electricity. We have studied phonon and electron transport in alkane and oligoyne chains of various lengths and find that, due to the more rigid nature of the latter, the phonon thermal conductances of oligoynes are counterintuitively lower than that of the corresponding alkanes. The thermal conductance of oligoynes decreases monotonically with increasing length, whereas the thermal conductance of alkanes initially increases with length and then decreases. This difference in behavior arises from phonon filtering by the gold electrodes and disappears when higher-Debye-frequency electrodes are used. Consequently a molecule that better transmits higher-frequency phonon modes, combined with a low-Debye-frequency electrode that filters high-energy phonons is a viable strategy for suppressing phonon transmission through the molecular junctions. The low thermal conductance of oligoynes, combined with their higher thermopower and higher electrical conductance lead to a maximum thermoelectric figure of merit of ZT = 1.4, which is several orders of magnitude higher than that of alkanes.

  18. Flexible and reversibly deformable radio-frequency antenna based on stretchable SWCNTs/PANI/Lycra conductive fabric

    NASA Astrophysics Data System (ADS)

    Guo, Xiaohui; Huang, Ying; Wu, Can; Mao, Leidong; Wang, Yue; Xie, Zhicheng; Liu, Caixia; Zhang, Yugang

    2017-10-01

    We demonstrated a flexible and reversibly deformable radio-frequency antenna based on SWCNTs/PANI/Lycra conductive fabric and semipermeable film for wireless wearable communications applications. The conductive fabric fabricated by using the ‘dip and dry’ process exhibits good flexibility, electrical stability, stretchability and mechanical properties, and a high electrical conductivity (with low sheet resistance of ˜35 Ω/sq) was obtained based on the SWCNTs/PANI synergistic conductive network. The morphology of the semipermeable film was investigated to further illustrate the waterproof breathable features. Meanwhile, the modeling, fabrication procedure and radiating properties of the radio-frequency textile antenna worked at 2.45 GHz were systematically illustrated. The measured reflection coefficient, VSWR and the -10 dB bandwidth is ˜-18.6 dB, 1.58 and ˜270 MHz respectively, which agreed well with the simulation results. Furthermore, the results indicate that the design methodology for the radio-frequency textile antenna could have promising applications in flexible and reversibly deformable antennas for wearable wireless communications systems.

  19. Unusual phonon behavior and ultra-low thermal conductance of monolayer InSe.

    PubMed

    Zhou, Hangbo; Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei

    2017-12-21

    Monolayer indium selenide (InSe) possesses numerous fascinating properties, such as high electron mobility, quantum Hall effect and anomalous optical response. However, its phonon properties, thermal transport properties and the origin of its structural stability remain unexplored. Using first-principles calculations, we show that the atoms in InSe are highly polarized and such polarization causes strong long-range dipole-dipole interaction (DDI). For acoustic modes, DDI is essential for maintaining its structural stability. For optical modes, DDI causes a significant frequency shift of its out-of-phase vibrations. Surprisingly, we observed that there were two isolated frequency regimes, which were completely separated from other frequency regimes with large frequency gaps. Within each frequency regime, only a single phonon mode exists. We further reveal that InSe possesses the lowest thermal conductance among the known two-dimensional materials due to the low cut-off frequency, low phonon group velocities and the presence of large frequency gaps. These unique behaviors of monolayer InSe can enable the fabrication of novel devices, such as thermoelectric module, single-mode phonon channel and phononic laser.

  20. Comparison effects and dielectric properties of different dose methylene-blue-doped hydrogels.

    PubMed

    Yalçın, O; Coşkun, R; Okutan, M; Öztürk, M

    2013-08-01

    The dielectric properties of methylene blue (MB)-doped hydrogels were investigated by impedance spectroscopy. The real part (ε') and the imaginary part (ε") of the complex dielectric constant and the energy loss tangent/dissipation factor (tan δ) were measured in the frequency range of 10 Hz to 100 MHz at room temperature for pH 5.5 value. Frequency variations of the resistance, the reactance, and the impedance of the samples have also been investigated. The dielectric permittivity of the MB-doped hydrogels is sensitive to ionic conduction and electrode polarization in low frequency. Furthermore, the dielectric behavior in high-frequency parts was attributed to the Brownian motion of the hydrogen bonds. The ionic conduction for MB-doped samples was prevented for Cole-Cole plots, while the Cole-Cole plots for pure sample show equivalent electrical circuit. The alternative current (ac) conductivity increases with the increasing MB concentration and the frequency.

  1. Impedance Spectroscopy and AC Conductivity Studies of Bulk 3-Amino-7-(dimethylamino)-2-methyl-hydrochloride

    NASA Astrophysics Data System (ADS)

    El-Shabaan, M. M.

    2018-02-01

    Impedance spectroscopy and alternating-current (AC) conductivity (σ AC) studies of bulk 3-amino-7-(dimethylamino)-2-methyl-hydrochloride (neutral red, NR) have been carried out over the temperature (T) range from 303 K to 383 K and frequency (f) range from 0.5 kHz to 5 MHz. Dielectric data were analyzed using the complex impedance (Z *) and complex electric modulus (M *) for bulk NR at various temperatures. The impedance loss peaks were found to shift towards high frequencies, indicating an increase in the relaxation time (τ 0) and loss in the material, with increasing temperature. For each temperature, a single depressed semicircle was observed at high frequencies, originating from the bulk transport, and a spike in the low-frequency region, resulting from the electrode effect. Fitting of these curves yielded an equivalent circuit containing a parallel combination of a resistance R and constant-phase element (CPE) Q. The carrier transport in bulk NR is governed by the correlated barrier hopping (CBH) mechanism, some parameters of which, such as the maximum barrier height (W M), charge density (N), and hopping distance (r), were determined as functions of both temperature and frequency. The frequency dependence of σ AC at different temperatures indicated that the conduction in bulk NR is a thermally activated process. The σ AC value at different frequencies increased linearly with temperature.

  2. Electrical properties of dispersions of graphene in mineral oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteiro, O. R., E-mail: othon.monteiro@bakerhughes.com

    2014-02-03

    Dispersions of graphene in mineral oil have been prepared and electrical conductivity and permittivity have been measured. The direct current (DC) conductivity of the dispersions depends on the surface characteristics of the graphene platelets and followed a percolation model with a percolation threshold ranging from 0.05 to 0.1 wt. %. The difference in DC conductivities can be attributed to different states of aggregation of the graphene platelets and to the inter-particle electron transfer, which is affected by the surface radicals. The frequency-dependent conductivity (σ(ω)) and permittivity (ε(ω)) were also measured. The conductivity of dispersions with particle contents much greater than themore » percolation threshold remains constant and equal to the DC conductivity at low frequencies ω with and followed a power-law σ(ω)∝ ω{sup s} dependence at very high frequencies with s≈0.9. For dispersions with graphene concentration near the percolation threshold, a third regime was displayed at intermediate frequencies indicative of interfacial polarization consistent with Maxwell-Wagner effect typically observed in mixtures of two (or more) phases with very distinct electrical and dielectric properties.« less

  3. Contactless measurement of alternating current conductance in quantum Hall structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drichko, I. L.; Diakonov, A. M.; Malysh, V. A.

    2014-10-21

    We report a procedure to determine the frequency-dependent conductance of quantum Hall structures in a broad frequency domain. The procedure is based on the combination of two known probeless methods—acoustic spectroscopy and microwave spectroscopy. By using the acoustic spectroscopy, we study the low-frequency attenuation and phase shift of a surface acoustic wave in a piezoelectric crystal in the vicinity of the electron (hole) layer. The electronic contribution is resolved using its dependence on a transverse magnetic field. At high frequencies, we study the attenuation of an electromagnetic wave in a coplanar waveguide. To quantitatively calibrate these data, we use themore » fact that in the quantum-Hall-effect regime the conductance at the maxima of its magnetic field dependence is determined by extended states. Therefore, it should be frequency independent in a broad frequency domain. The procedure is verified by studies of a well-characterized p-SiGe/Ge/SiGe heterostructure.« less

  4. Terahertz conductivity of MnSi thin films

    NASA Astrophysics Data System (ADS)

    Dodge, J.; Mohtashemi, Laleh; Farahani, Amir; Karhu, Eric; Monchesky, Theodore

    2013-03-01

    We present measurements of the low-frequency optical conductivity of MnSi thin films, using time-domain terahertz spectroscopy. At low temperatures and low frequencies, we extract the DC resistivity, scattering life time and plasma frequency from a Drude fit. We obtain a value of ωp ~= 1 . 0 eV, which can be used to estimate the renormalization coefficient through comparison with band theory. At higher temperatures, deviations from Drude behavior are observed, suggesting a loss of quasi-particle coherence. In the region of low temperatures and high frequencies, we see evidence for a crossover to the anomalous power law dependence observed by Mena et al. As the temperature increases, the anomalous frequency dependence becomes more pronounced, and the plasma frequency inferred from a Drude fit decreases dramatically. Above T ~ 50 K, σ2 (ω) develops a negative slope that is inconsistent with both a Drude model and the anomalous power law observed earlier, indicating a sharp pseudogap in the conductivity spectrum.

  5. AC electrical characterisation and insight to charge transfer mechanisms in DNA molecular wires through temperature and UV effects.

    PubMed

    Kassegne, Sam; Wibowo, Denni; Chi, James; Ramesh, Varsha; Narenji, Alaleh; Khosla, Ajit; Mokili, John

    2015-06-01

    In this study, AC characterisation of DNA molecular wires, effects of frequency, temperature and UV irradiation on their conductivity is presented. λ-DNA molecular wires suspended between high aspect-ratio electrodes exhibit highly frequency-dependent conductivity that approaches metal-like behaviour at high frequencies (∼MHz). Detailed temperature dependence experiments were performed that traced the impedance response of λ-DNA until its denaturation. UV irradiation experiments where conductivity was lost at higher and longer UV exposures helped to establish that it is indeed λ-DNA molecular wires that generate conductivity. The subsequent renaturation of λ-DNA resulted in the recovery of current conduction, providing yet another proof of the conducting DNA molecular wire bridge. The temperature results also revealed hysteretic and bi-modal impedance responses that could make DNA a candidate for nanoelectronics components like thermal transistors and switches. Further, these experiments shed light on the charge transfer mechanism in DNA. At higher temperatures, the expected increase in thermal-induced charge hopping may account for the decrease in impedance supporting the 'charge hopping mechanism' theory. UV light, on the other hand, causes damage to GC base-pairs and phosphate groups reducing the path available both for hopping and short-range tunneling mechanisms, and hence increasing impedance--this again supporting both the 'charge hopping' and 'tunneling' mechanism theories.

  6. Development of a high-frequency and large-stroke fatigue testing system for rubber

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Wu, Hao; Gao, Jianwen; Lin, Qiang

    2017-04-01

    The limited capabilities of current fatigue testing machines have resulted in studies on the fatigue behavior of rubber under large-displacement amplitude and high frequency being very sparse. In this study, a fatigue testing system that can carry out large-displacement amplitude and high-frequency fatigue tests on rubber was developed using a moving magnet voice coil motor (MMVCM) actuator, with finite element analysis applied to analyze the thrust of the MMVCM actuator. The results of a series of cyclic tension tests conducted on vulcanized natural rubber specimens using the developed fatigue testing system verify that it has high precision, low noise, large-stroke, and high-frequency characteristics. Further, the load frame with the developed MMVCM actuator is feasible for material testing, especially for large-stroke and high-frequency fatigue tests.

  7. Comparison of transducers with different frequencies in breast contrast-enhanced ultrasound (CEUS) using SonoVue as contrast agent.

    PubMed

    Wang, Yong-Mei; Fan, Wei; Zhang, Kai; Zhang, Li; Tan, Zhen; Ma, Rong

    2016-07-01

    To explore the effectiveness of different transducers in breast contrast-enhanced ultrasound (CEUS) using SonoVue(®) (Bracco, Plan-Les-Ouates, Switzerland) as the contrast agent. Breast CEUS was performed in 51 patients with 51 breast lesions using a low-frequency transducer (probe C5-1) and a high-frequency transducer (probe L12-5) separately. All image processes were reviewed for the presence of local blood perfusion defects and surrounding vessels. McNemar's test was conducted to compare the detection effectiveness between these two transducers. Pathological results revealed 38 malignant and 13 benign lesions. The two transducers showed no difference in detecting benign lesions. Among malignant lesions, CEUS conducted by probe C5-1 (frequency range from 1 to 5 MHz) presented 23 (60.5%) lesions with local blood perfusion defects and 26 (68.4%) lesions with surrounding vessels. Meanwhile, probe L12-5 (frequency range from 5 to 12 MHz) showed only 12 (31.6%) lesions with local blood perfusion defects and 12 (31.6%) lesions with surrounding vessel. Probe C5-1 was more sensitive than probe L12-5 in detecting malignant CEUS characteristics (p-value < 0.05). The low-frequency transducer was more sensitive than the high-frequency transducer in breast CEUS using SonoVue as the contrast agent. A new contrast agent with a higher resonance frequency, specially designed for high-frequency transducers, may be helpful in improving the clinical value of breast CEUS. The first study comparing different frequency transducers in breast CEUS of the same patient lesions. We brought out the requirement for CEUS contrast agents which are more suitable for high-frequency examinations.

  8. PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave Doppler application.

    PubMed

    Zhou, Qifa; Xu, Xiaochen; Gottlieb, Emanuel J; Sun, Lei; Cannata, Jonathan M; Ameri, Hossein; Humayun, Mark S; Han, Pengdi; Shung, K Kirk

    2007-03-01

    High-frequency needle ultrasound transducers with an aperture size of 0.4 mm were fabricated using lead magnesium niobate-lead titanate (PMN-33% PT) as the active piezoelectric material. The active element was bonded to a conductive silver particle matching layer and a conductive epoxy backing through direct contact curing. An outer matching layer of parylene was formed by vapor deposition. The active element was housed within a polyimide tube and a 20-gauge needle housing. The magnitude and phase of the electrical impedance of the transducer were 47 omega and -38 degrees, respectively. The measured center frequency and -6 dB fractional bandwidth of the PMN-PT needle transducer were 44 MHz and 45%, respectively. The two-way insertion loss was approximately 15 dB. In vivo high-frequency, pulsed-wave Doppler patterns of blood flow in the posterior portion and in vitro ultrasonic backscatter microscope (UBM) images of the rabbit eye were obtained with the 44-MHz needle transducer.

  9. In Situ Polymerization and Characterization of Highly Conducting Polypyrrole Fish Scales for High-Frequency Applications

    NASA Astrophysics Data System (ADS)

    Velhal, Ninad B.; Patil, Narayan D.; Puri, Vijaya R.

    2015-12-01

    Polypyrrole (Ppy) thin films on alumina were synthesized by an in situ chemical oxidative polymerization method at 300 K with equal monomer-to-oxidant ratio. Fourier transform infrared spectroscopy (FTIR) and FT-Raman spectroscopy confirmed the formation of Ppy. A thickness-dependent change from cauliflower to fish-scale morphology was observed. Microwave properties such as transmission, reflection, shielding effectiveness, permittivity, and microwave conductivity are reported in the frequency range from 8 GHz to 12 GHz. The direct-current (DC) conductivity varied from 9.45 × 10-3 S/cm to 17.29 × 10-3 S/cm, whereas the microwave conductivity varied from 63.07 S/cm to 349.08 S/cm. The shielding effectiveness varied between 6.18 dB and 10.39 dB.

  10. Thermal Conductivity of Carbon Nanotube Composite Films

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Walker, Megan D.; Koehne, Jessica E.; Meyyappan, M.; Li, Jun; Yang, Cary Y.

    2004-01-01

    State-of-the-art ICs for microprocessors routinely dissipate power densities on the order of 50 W/sq cm. This large power is due to the localized heating of ICs operating at high frequencies, and must be managed for future high-frequency microelectronic applications. Our approach involves finding new and efficient thermally conductive materials. Exploiting carbon nanotube (CNT) films and composites for their superior axial thermal conductance properties has the potential for such an application requiring efficient heat transfer. In this work, we present thermal contact resistance measurement results for CNT and CNT-Cu composite films. It is shown that Cu-filled CNT arrays enhance thermal conductance when compared to as-grown CNT arrays. Furthermore, the CNT-Cu composite material provides a mechanically robust alternative to current IC packaging technology.

  11. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  12. Source conductance scaling for high frequency superconducting quasiparticle receivers

    NASA Technical Reports Server (NTRS)

    Ke, Qing; Feldman, M. J.

    1992-01-01

    It has been suggested that the optimum source conductance G(sub s) for the superconductor-insulator-superconductor (SIS) quasiparticle mixer should have a l/f dependence. This would imply that the critical current density of SIS junctions used for mixing should increase as frequency squared, a stringent constraint on the design of submillimeter SIS mixers, rather than in simple proportion to frequency as previously believed. We have used Tucker's quantum theory of mixing for extensive numerical calculations to determine G(sub s) for an optimized SIS receiver. We find that G(sub s) is very roughly independent of frequency (except for the best junctions at low frequency), and discuss the implications of our results for the design of submillimeter SIS mixers.

  13. [Clinical auxiliary diagnosis value of high frequency ultrasonographic measurements of the thickness of transverse carpal ligaments in carpal tunnel syndrome patients].

    PubMed

    Xu, L; Chen, F M; Wang, L; Zhang, P X; Jiang, X R

    2016-04-18

    To evaluate the meaning and value of high-frequency ultrasound in the diagnosis of carpal tunnel syndrome (CTS). In this study, 48 patients (unilateral hand) with CTS were analyzed. The thickness of transverse carpal ligaments at the pisiform bone was measured using high-frequency ultrasound. Open carpal tunnel release procedure was performed in the 48 CTS patients, and the thickness of transverse carpal ligaments at the hamate hook bone measured using vernier caliper under direct vision. The accuracy of thickness of transverse carpal ligaments was evaluated using high-frequency ultrasound. high-frequency ultrasound measurement of thickness of transverse carpal ligaments at the hamate hook bone and pisiform bone, and determination of the diagnostic threshold measurement index using receiver operating characteristic (ROC) curve, sensitivity and specificity were performed and the correlation between the thickness of transverse carpal ligaments and nerve conduction study (NCS) analyzed. The thickness of transverse carpal ligaments in the CTS patients were (0.42±0.08) cm (high-frequency ultrasound) and (0.41±0.06) cm (operation) at hamate hook bone, and there was no significant difference between the two ways (t=0.672, P>0.05). The optimal cut-off value of the transverse carpal ligaments at hamate hook bone was 0.385 cm, the sensitivity 0.775, and the specificity 0.788. The optimal cut-off value of the transverse carpal ligaments at the pisiform bone was 0.315 cm, the sensitivity 0.950, and the specificity 1.000. The transverse carpal ligaments thickness and wrist-index finger sensory nerve conduction velocity (SCV), wrist-middle finger SCV showed a negative correlation. High frequency ultrasound measurements of thickness of transverse carpal ligaments is a valuable method for the diagnosis of CTS.

  14. A model for studying the energetics of sustained high frequency firing

    PubMed Central

    Morris, Catherine E.

    2018-01-01

    Regulating membrane potential and synaptic function contributes significantly to the energetic costs of brain signaling, but the relative costs of action potentials (APs) and synaptic transmission during high-frequency firing are unknown. The continuous high-frequency (200-600Hz) electric organ discharge (EOD) of Eigenmannia, a weakly electric fish, underlies its electrosensing and communication. EODs reflect APs fired by the muscle-derived electrocytes of the electric organ (EO). Cholinergic synapses at the excitable posterior membranes of the elongated electrocytes control AP frequency. Based on whole-fish O2 consumption, ATP demand per EOD-linked AP increases exponentially with AP frequency. Continual EOD-AP generation implies first, that ion homeostatic processes reliably counteract any dissipation of posterior membrane ENa and EK and second that high frequency synaptic activation is reliably supported. Both of these processes require energy. To facilitate an exploration of the expected energy demands of each, we modify a previous excitability model and include synaptic currents able to drive APs at frequencies as high as 600 Hz. Synaptic stimuli are modeled as pulsatile cation conductance changes, with or without a small (sustained) background conductance. Over the full species range of EOD frequencies (200–600 Hz) we calculate frequency-dependent “Na+-entry budgets” for an electrocyte AP as a surrogate for required 3Na+/2K+-ATPase activity. We find that the cost per AP of maintaining constant-amplitude APs increases nonlinearly with frequency, whereas the cost per AP for synaptic input current is essentially constant. This predicts that Na+ channel density should correlate positively with EOD frequency, whereas AChR density should be the same across fish. Importantly, calculated costs (inferred from Na+-entry through Nav and ACh channels) for electrocyte APs as frequencies rise are much less than expected from published whole-fish EOD-linked O2 consumption. For APs at increasingly high frequencies, we suggest that EOD-related costs external to electrocytes (including packaging of synaptic transmitter) substantially exceed the direct cost of electrocyte ion homeostasis. PMID:29708986

  15. Temperature dependence of the dielectric properties of rubber wood

    Treesearch

    Mohammed Firoz Kabir; Wan M. Daud; Kaida B. Khalid; Haji A.A. Sidek

    2001-01-01

    The effect of temperature on the dielectric properties of rubber wood was investigated in three anisotropic directions—longitudinal, radial, and tangential, and at different measurement frequencies. Low frequency measurements were conducted with a dielectric spectrometer, and high frequencies used microwave applied with open-ended coaxial probe sensors. Dielectric...

  16. Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance.

    PubMed

    Cheng, Zhe; Bougher, Thomas; Bai, Tingyu; Wang, Steven Y; Li, Chao; Yates, Luke; Foley, Brian M; Goorsky, Mark; Cola, Baratunde A; Faili, Firooz; Graham, Samuel

    2018-02-07

    The maximum output power of GaN-based high-electron mobility transistors is limited by high channel temperature induced by localized self-heating, which degrades device performance and reliability. Chemical vapor deposition (CVD) diamond is an attractive candidate to aid in the extraction of this heat and in minimizing the peak operating temperatures of high-power electronics. Owing to its inhomogeneous structure, the thermal conductivity of CVD diamond varies along the growth direction and can differ between the in-plane and out-of-plane directions, resulting in a complex three-dimensional (3D) distribution. Depending on the thickness of the diamond and size of the electronic device, this 3D distribution may impact the effectiveness of CVD diamond in device thermal management. In this work, time-domain thermoreflectance is used to measure the anisotropic thermal conductivity of an 11.8 μm-thick high-quality CVD diamond membrane from its nucleation side. Starting with a spot-size diameter larger than the thickness of the membrane, measurements are made at various modulation frequencies from 1.2 to 11.6 MHz to tune the heat penetration depth and sample the variation in thermal conductivity. We then analyze the data by creating a model with the membrane divided into ten sublayers and assume isotropic thermal conductivity in each sublayer. From this, we observe a two-dimensional gradient of the depth-dependent thermal conductivity for this membrane. The local thermal conductivity goes beyond 1000 W/(m K) when the distance from the nucleation interface only reaches 3 μm. Additionally, by measuring the same region with a smaller spot size at multiple frequencies, the in-plane and cross-plane thermal conductivities are extracted. Through this use of multiple spot sizes and modulation frequencies, the 3D anisotropic thermal conductivity of CVD diamond membrane is experimentally obtained by fitting the experimental data to a thermal model. This work provides an improved understanding of thermal conductivity inhomogeneity in high-quality CVD polycrystalline diamond that is important for applications in the thermal management of high-power electronics.

  17. Electrical treeing behaviors in silicone rubber under an impulse voltage considering high temperature

    NASA Astrophysics Data System (ADS)

    Yunxiao, ZHANG; Yuanxiang, ZHOU; Ling, ZHANG; Zhen, LIN; Jie, LIU; Zhongliu, ZHOU

    2018-05-01

    In this paper, work was conducted to reveal electrical tree behaviors (initiation and propagation) of silicone rubber (SIR) under an impulse voltage with high temperature. Impulse frequencies ranging from 10 Hz to 1 kHz were applied and the temperature was controlled between 30 °C and 90 °C. Experimental results show that tree initiation voltage decreases with increasing pulse frequency, and the descending amplitude is different in different frequency bands. As the pulse frequency increases, more frequent partial discharges occur in the channel, increasing the tree growth rate and the final shape intensity. As for temperature, the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher. Based on differential scanning calorimetry results, we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage. However, the tree growth rate decreases with increasing temperature. Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis. Different tree growth models considering tree channel characteristics are proposed. It is believed that increasing the conductivity in the tree channel restrains the partial discharge, holding back the tree growth at high temperature.

  18. Edge-Oriented Graphene on Carbon Nanofiber for High-Frequency Supercapacitors

    NASA Astrophysics Data System (ADS)

    Islam, Nazifah; Warzywoda, Juliusz; Fan, Zhaoyang

    2018-03-01

    High-frequency supercapacitors are being studied with the aim to replace the bulky electrolytic capacitors for current ripple filtering and other functions used in power systems. Here, 3D edge-oriented graphene (EOG) was grown encircling carbon nanofiber (CNF) framework to form a highly conductive electrode with a large surface area. Such EOG/CNF electrodes were tested in aqueous and organic electrolytes for high-frequency supercapacitor development. For the aqueous and the organic cell, the characteristic frequency at - 45° phase angle was found to be as high as 22 and 8.5 kHz, respectively. At 120 Hz, the electrode capacitance density was 0.37 and 0.16 mF cm-2 for the two cells. In particular, the 3 V high-frequency organic cell was successfully tested as filtering capacitor used in AC/DC converter, suggesting the promising potential of this technology for compact power supply design and other applications. [Figure not available: see fulltext.

  19. The word-frequency paradox for recall/recognition occurs for pictures.

    PubMed

    Karlsen, Paul Johan; Snodgrass, Joan Gay

    2004-08-01

    A yes-no recognition task and two recall tasks were conducted using pictures of high and low familiarity ratings. Picture familiarity had analogous effects to word frequency, and replicated the word-frequency paradox in recall and recognition. Low-familiarity pictures were more recognizable than high-familiarity pictures, pure lists of high-familiarity pictures were more recallable than pure lists of low-familiarity pictures, and there was no effect of familiarity for mixed lists. These results are consistent with the predictions of the Search of Associative Memory (SAM) model.

  20. Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate

    NASA Astrophysics Data System (ADS)

    Pal, P.; Ghosh, A.

    2016-07-01

    In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.

  1. Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, P.; Ghosh, A., E-mail: sspag@iacs.res.in

    2016-07-28

    In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamicsmore » of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.« less

  2. Charge carrier dynamics in PMMA-LiClO4 based polymer electrolytes plasticized with different plasticizers

    NASA Astrophysics Data System (ADS)

    Pal, P.; Ghosh, A.

    2017-07-01

    We have studied the charge carrier dynamics in poly(methylmethacrylate)-LiClO4 polymer electrolytes plasticized with different plasticizers such as ethylene carbonate (EC), propylene carbonate (PC), polyethylene glycol (PEG), and dimethyl carbonate (DMC). We have measured the broadband complex conductivity spectra of these electrolytes in the frequency range of 0.01 Hz-3 GHz and in the temperature range of 203 K-363 K and analyzed the conductivity spectra in the framework of the random barrier model by taking into account the contribution of the electrode polarization observed at low frequencies and/or at high temperatures. It is observed that the temperature dependences of the ionic conductivity and relaxation time follow the Vogel-Tammann-Fulcher relation for all plasticized electrolytes. We have also performed the scaling of the conductivity spectra, which indicates that the charge carrier dynamics is almost independent of temperature and plasticizers in a limited frequency range. The existence of nearly constant loss in these electrolytes has been observed at low temperatures and/or high frequencies. We have studied the dielectric relaxation in these electrolytes using electric modulus formalism and obtained the stretched exponent and the decay function. We have observed less cooperative ion dynamics in electrolytes plasticized with DMC compared to electrolytes plasticized with EC, PC, and PEG.

  3. Characterization of grain boundary conductivity of spin-sprayed ferrites using scanning microwave microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, J.; Nicodemus, T.; Zhuang, Y., E-mail: yan.zhuang@wright.edu

    2014-05-07

    Grain boundary electrical conductivity of ferrite materials has been characterized using scanning microwave microscope. Structural, electrical, and magnetic properties of Fe{sub 3}O{sub 4} spin-sprayed thin films onto glass substrates for different length of growth times were investigated using a scanning microwave microscope, an atomic force microscope, a four-point probe measurement, and a made in house transmission line based magnetic permeameter. The real part of the magnetic permeability shows almost constant between 10 and 300 MHz. As the Fe{sub 3}O{sub 4} film thickness increases, the grain size becomes larger, leading to a higher DC conductivity. However, the loss in the Fe{sub 3}O{submore » 4} films at high frequency does not increase correspondingly. By measuring the reflection coefficient s{sub 11} from the scanning microwave microscope, it turns out that the grain boundaries of the Fe{sub 3}O{sub 4} films exhibit higher electric conductivity than the grains, which contributes loss at radio frequencies. This result will provide guidance for further improvement of low loss ferrite materials for high frequency applications.« less

  4. Membrane voltage fluctuations reduce spike frequency adaptation and preserve output gain in CA1 pyramidal neurons in a high conductance state

    PubMed Central

    Fernandez, Fernando R.; Broicher, Tilman; Truong, Alan; White, John A.

    2011-01-01

    Modulating the gain of the input-output function of neurons is critical for processing of stimuli and network dynamics. Previous gain control mechanisms have suggested that voltage fluctuations play a key role in determining neuronal gain in vivo. Here we show that, under increased membrane conductance, voltage fluctuations restore Na+ current and reduce spike frequency adaptation in rat hippocampal CA1 pyramidal neurons in vitro. As a consequence, membrane voltage fluctuations produce a leftward shift in the f-I relationship without a change in gain, relative to an increase in conductance alone. Furthermore, we show that these changes have important implications for the integration of inhibitory inputs. Due to the ability to restore Na+ current, hyperpolarizing membrane voltage fluctuations mediated by GABAA-like inputs can increase firing rate in a high conductance state. Finally, our data show that the effects on gain and synaptic integration are mediated by voltage fluctuations within a physiologically relevant range of frequencies (10–40 Hz). PMID:21389243

  5. Impedance Spectroscopy Analysis of Mg4Nb2O9 Ceramics with Different Additions of V2O5 for Microwave and Radio Frequency Applications

    NASA Astrophysics Data System (ADS)

    Filho, J. M. S.; Rodrigues Junior, C. A.; Sousa, D. G.; Oliveira, R. G. M.; Costa, M. M.; Barroso, G. C.; Sombra, A. S. B.

    2017-07-01

    The complex impedance spectroscopy study of magnesium niobate Mg4Nb2O9 (MN) ceramics with different additions of V2O5 (0%, 2%, 5%) was performed in this present paper. The preparation of MN samples were carried out by using the solid-state reaction method with a high-energy milling machine. Frequency and temperature dependence of the complex impedance, complex modulus analysis, and conductivity were measured and calculated at different temperatures by using a network impedance analyzer. A non-Debye type relaxation was observed showing a decentralization of the semicircles. Cole-Cole formalism was adopted here with the help of a computer program used to fit the experimental data. A typical universal dielectric response in the frequency-dependent conductivity at different temperatures was found. The frequency dependent ac conductivity at different temperatures indicates that the conduction process is thermally activated. The activation energy was obtained from the Arrhenius fitting by using conductivity and electrical modules data. The results would help to understand deeply the relaxation process in these types of materials.

  6. Frequency and voltage dependent electrical responses of poly(triarylamine) thin film-based organic Schottky diode

    NASA Astrophysics Data System (ADS)

    Anuar Mohamad, Khairul; Tak Hoh, Hang; Alias, Afishah; Ghosh, Bablu Kumar; Fukuda, Hisashi

    2017-11-01

    A metal-organic-metal (MOM) type Schottky diode based on poly (triarylamine) (PTAA) thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f) and capacitance-voltage (C-V-f) characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit). Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz) but decreases at high frequency (1 - 10 kHz). The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV-1cm-2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC) signal.

  7. Investigation of conduction and relaxation phenomena in BaZrxTi1-xO3 (x=0.05) by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Mahajan, Sandeep; Haridas, Divya; Ali, S. T.; Munirathnam, N. R.; Sreenivas, K.; Thakur, O. P.; Prakash, Chandra

    2014-10-01

    In present study we have prepared ferroelectric BaZrxTi1-xO3 (x=0.05) ceramic by conventional solid state reaction route and studied its electrical properties as a function of temperature and frequency. X-ray diffraction (XRD) analysis shows single-phase formation of the compound with orthorhombic crystal structure at room temperature. Impedance and electric modulus spectroscopy analysis in the frequency range of 40 Hz-1 MHz at high temperature (200-600 °C) suggests two relaxation processes with different time constant are involved which are attributed to bulk and grain boundary effects. Frequency dependent dielectric plot at different temperature shows normal variation with frequency while dielectric loss (tanδ) peak was found to obey an Arrhenius law with activation energy of 1.02 eV. The frequency-dependent AC conductivity data were also analyzed in a wide temperature range. In present work we have studied the role of grain and grain boundaries on the electrical behaviour of Zr-doped BaTiO3 and their dependence on temperature and frequency by complex impedance and modulus spectroscopy (CIS) technique in a wide frequency (40 Hz-1 MHz) and high temperature range.

  8. Fabrication of Nd3+ and Mn2+ ions Co-doped Spinal Strontium Nanoferrites for High Frequency Device Applications

    NASA Astrophysics Data System (ADS)

    Ahmad, Iqbal; Shah, Syed Mujtaba; Ashiq, Muhammad Naeem; Nawaz, Faisal; Shah, Afzal; Siddiq, Muhammad; Fahim, Iqra; Khan, Samiullah

    2016-10-01

    Microemulsion method has been used for the synthesis of high resistive spinal nanoferrites with nominal composition Sr1- x Nd x Fe2- y Mn y O4 (0.0 ≤ x ≤ 0.1, 0.0 ≤ y ≤ 1.0) for high frequency device applications. It has been confirmed by x-ray diffraction (XRD) results that these ferrites have a cubic spinal structure with a mean crystallite size ranging from 34 mm to 47 nm. The co-substitution of Nd3+ and Mn2+ ions was performed, and its effect on electrical, dielectric and impedance properties was analyzed employing direct current (DC) resistivity measurements, dielectric measurements and electrochemical impedance spectroscopy (EIS). The DC resistivity ( ρ) value was the highest for the composition Sr0.90Nd0.1FeMnO4, but for the same composition, dielectric parameters and alternating current (AC) conductivity showed their minimum values. In the lower frequency range, the magnitudes of dielectric parameters decrease with increasing frequency and show an almost independent frequency response at higher frequencies. Dielectric polarization has been employed to explain these results. It was inferred from the results of EIS that the conduction process in the studied ferrite materials is predominantly governed by grain boundary volume.

  9. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors.

    PubMed

    Zhang, Li Li; Zhao, Xin; Stoller, Meryl D; Zhu, Yanwu; Ji, Hengxing; Murali, Shanthi; Wu, Yaping; Perales, Stephen; Clevenger, Brandon; Ruoff, Rodney S

    2012-04-11

    We present a novel method to prepare highly conductive, free-standing, and flexible porous carbon thin films by chemical activation of reduced graphene oxide paper. These flexible carbon thin films possess a very high specific surface area of 2400 m(2) g(-1) with a high in-plane electrical conductivity of 5880 S m(-1). This is the highest specific surface area for a free-standing carbon film reported to date. A two-electrode supercapacitor using these carbon films as electrodes demonstrated an excellent high-frequency response, an extremely low equivalent series resistance on the order of 0.1 ohm, and a high-power delivery of about 500 kW kg(-1). While higher frequency and power values for graphene materials have been reported, these are the highest values achieved while simultaneously maintaining excellent specific capacitances and energy densities of 120 F g(-1) and 26 W h kg(-1), respectively. In addition, these free-standing thin films provide a route to simplify the electrode-manufacturing process by eliminating conducting additives and binders. The synthetic process is also compatible with existing industrial level KOH activation processes and roll-to-roll thin-film fabrication technologies. © 2012 American Chemical Society

  10. Experimental Investigation of Cavitation Induced Feedline Instability from an Orifice

    NASA Technical Reports Server (NTRS)

    Hitt, Matthew A.; Lineberry, David M.; Ahuja, Vineet; Frederick, Robert A,

    2012-01-01

    This paper details the results of an experimental investigation into the cavitation instabilities created by a circular orifice conducted at the University of Alabama in Huntsville Propulsion Research Center. This experiment was conducted in concert with a computational simulation to serve as a reference point for the simulation. Testing was conducted using liquid nitrogen as a cryogenic propellant simulant. A 1.06 cm diameter thin orifice with a rounded inlet was tested in an approximately 1.25 kg/s flow with inlet pressures ranging from 504.1 kPa to 829.3 kPa. Pressure fluctuations generated by the orifice were measured using a high frequency pressure sensor located 0.64 tube diameters downstream of the orifice. Fast Fourier Transforms were performed on the high frequency data to determine the instability frequency. Shedding resulted in a primary frequency with a cavitation related subharmonic frequency. For this experiment, the cavitation instability ranged from 153 Hz to 275 Hz. Additionally, the strength of the cavitation occur red as a function of cavitation number. At lower cavitation numbers, the strength of the cavitation instability ranged from 2.4 % to 7 % of the inlet pressure. However, at higher cavitation numbers, the strength of the cavitation instability ranged from 0.6 % to 1 % of the inlet pressure.

  11. DSL prescriptive targets for bone conduction devices: adaptation and comparison to clinical fittings.

    PubMed

    Hodgetts, William E; Scollie, Susan D

    2017-07-01

    To develop an algorithm that prescribes targets for bone conduction frequency response shape, compression, and output limiting, along with a clinical method that ensures accurate transforms between assessment and verification stages of the clinical workflow. Technical report of target generation and validation. We recruited 39 adult users of unilateral percutaneous bone conduction hearing aids with a range of unilateral, bilateral, mixed and conductive hearing losses across the sample. The initial algorithm over-prescribed output compared to the user's own settings in the low frequencies, but provided a good match to user settings in the high frequencies. Corrections to the targets were derived and implemented as a low-frequency cut aimed at improving acceptance of the wearer's own voice during device use. The DSL-BCD prescriptive algorithm is compatible with verification of devices and fine-tuning to target for percutaneous bone conduction hearing devices that can be coupled to a skull simulator. Further study is needed to investigate the appropriateness of this prescriptive algorithm for other input levels, and for other clinical populations including those with single-sided deafness, bilateral devices, children and users of transcutaneous bone conduction hearing aids.

  12. [Reparative Osteogenesis and Angiogenesis in Low Intensity Electromagnetic Radiation of Ultra-High Frequency].

    PubMed

    Iryanov, Y M; Kiryanov, N A

    2015-01-01

    Non-drug correction of reparative bone tissue regeneration in different pathological states - one of the most actual problems of modern medicine. Our aim was to conduct morphological analysis of the influence of electromagnetic radiation of ultra-high frequency and low intensity on reparative osteogenesis and angiogenesis in fracture treatment under transosseous osteosynthesis. A controlled nonrandomized study was carried out. In the experiment conducted on rats we modeled tibial fracture with reposition and fixation of the bone fragments both in control and experimental groups. In the animals of the experimental group the fracture zone was exposed to low intensity electromagnetic radiation of ultra-high frequency. Exposure simulation was performed in the control group. The operated bones were examined using radiography, light and electronic microscopy, X-ray electronic probe microanalysis. It has been established that electromagnetic radiation of ultra-high frequency sessions in fracture treatment stimulate secretory activity and degranulation of mast cells, produce microcirculatory bed vascular permeability increase, endotheliocyte migration phenotype expression, provide endovascular endothelial outgrowth formation, activate reparative osteogenesis and angiogenesis while fracture reparation becomes the one of the primary type. The full periosteal, intermediary and intraosteal bone union was defined in 28 days. Among the therapeutic benefits of electromagnetic radiation of ultra-high frequency in fracture treatment we can detect mast cell secretorv activity stimulation and endovascular anziozenesis activation.

  13. Development of a four-frequency selective surface prototype spacecraft antenna

    NASA Astrophysics Data System (ADS)

    Hickey, Gregory S.; Wu, Te-Kao

    NASA-JPL's four-frequency telecommunication system design entails the creation and integration of a frequency-selective surface (FSS) subreflector into the high-gain antenna subsystem. The FSS design, which incorporates a periodic array of conducting elements on a kevlar/polymer composite structure, will be able to multiplex S, X, Ku, and Ka frequency-band wavelengths. Accounts are presented of the FSS's development, mechanical testing, and electrical testing.

  14. Digital pressure transducer for use at high temperatures

    DOEpatents

    Karplus, Henry H. B.

    1981-01-01

    A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.

  15. Digital pressure transducer for use at high temperatures

    DOEpatents

    Karplus, H.H.B.

    A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.

  16. Heat transport by phonons in crystalline materials and nanostructures

    NASA Astrophysics Data System (ADS)

    Koh, Yee Kan

    This dissertation presents experimental studies of heat transport by phonons in crystalline materials and nanostructures, and across solid-solid interfaces. Particularly, this dissertation emphasizes advancing understanding of the mean-free-paths (i.e., the distance phonons propagate without being scattered) of acoustic phonons, which are the dominant heat carriers in most crystalline semiconductor nanostructures. Two primary tools for the studies presented in this dissertation are time-domain thermoreflectance (TDTR) for measurements of thermal conductivity of nanostructures and thermal conductance of interfaces; and frequency-domain thermoreflectance (FDTR), which I developed as a direct probe of the mean-free-paths of dominant heat-carrying phonons in crystalline solids. The foundation of FDTR is the dependence of the apparent thermal conductivity on the frequency of periodic heat sources. I find that the thermal conductivity of semiconductor alloys (InGaP, InGaAs, and SiGe) measured by TDTR depends on the modulation frequency, 0.1 ≤ f ≤ 10 MHz, used in TDTR measurements. Reduction in the thermal conductivity of the semiconductor alloys at high f compares well to the reduction in the thermal conductivity of epitaxial thin films, indicating that frequency dependence and thickness dependence of thermal conductivity are fundamentally equivalent. I developed the frequency dependence of thermal conductivity into a convenient probe of phonon mean-free-paths, a technique which I call frequency-domain thermoreflectance (FDTR). In FDTR, I monitor the changes in the intensity of the reflected probe beam as a function of the modulation frequency. To facilitate the analysis of FDTR measurements, I developed a nonlocal theory for heat conduction by phonons at high heating frequencies. Calculations of the nonlocal theory confirm my experimental findings that phonons with mean-free-paths longer than two times the penetration depth do not contribute to the apparent thermal conductivity. I employed FDTR to study the mean-free-paths of acoustic phonons in Si1-xGex. I experimentally demonstrate that 40% of heat is carried in Si1-xGe x alloys by phonons with mean-free-path 0.5 ≤ ℓ ≤ 5 mum, and phonons with > 2 mum do not contribute to the thermal conductivity of Si. I employed TDTR and frequency-dependent TDTR to study scattering of long- and medium-wavelength phonons in two important thermoelectric materials embedded with nanoscale precipitates. I find that the through-thickness lattice thermal conductivity of (PbTe)1-x/(PbSe)x nanodot superlattices (NDSLs) approaches the thermal conductivity of bulk homogenous PbTe1-x Sex alloys with the same average composition. On the other hand, I find that 3% of ErAs nanoparticles embedded in InGaAs is sufficient to scatter most of the phonons in InGaAs that have intermediate mean-free-paths, and thus reduces the thermal conductivity of InGaAs below the alloy limit. I find that scattering by nanoparticles approach the geometrical limit and can be readily accounted for by an additional boundary scattering which depends on the concentration of nanoparticles. Finally, I studied the thermal conductance of Au/Ti/Graphene/SiO 2 interfaces by TDTR. I find that heat transport across the interface is dominated by phonons. Even though graphene is only one atomic layer thick, graphene interfaces should be treated as two discrete interfaces instead of one diffuse interface in thermal analysis, suggesting that direct transmission of phonons from Au to SiO2 is negligible. My study is important for thermal management of graphene devices.

  17. Evidence for power-law frequency dependence of intrinsic dielectric response in the Ca Cu3 Ti4 O12

    NASA Astrophysics Data System (ADS)

    Tselev, Alexander; Brooks, Charles M.; Anlage, Steven M.; Zheng, Haimei; Salamanca-Riba, Lourdes; Ramesh, R.; Subramanian, M. A.

    2004-10-01

    We investigated the dielectric response of CaCu3Ti4O12 (CCTO) thin films grown epitaxially on LaAlO3 (001) substrates by pulsed laser deposition. The dielectric response of the films was found to be strongly dominated by a power law in frequency, typical of materials with localized hopping charge carriers, in contrast to the Debye-like response of the bulk material. The film conductivity decreases with annealing in oxygen, and it suggests that oxygen deficit is a cause of the relatively high film conductivity. With increase of the oxygen content, the room temperature frequency response of the CCTO thin films changes from the response indicating the presence of some relatively low conducting capacitive layers to purely power law, and then toward a frequency independent response with a relative dielectric constant ɛ'˜102 . The film conductance and dielectric response decrease upon decrease of the temperature, with dielectric response being dominated by the power-law frequency dependence. Below ˜80K , the dielectric response of the films is frequency independent with ɛ' close to 102 . The results provide another piece of evidence for an extrinsic, Maxwell-Wagner type, origin of the colossal dielectric response of the bulk CCTO material, connected with electrical inhomogeneity of the bulk material.

  18. Latino High School Students' Perceptions of Caring: Keys to Success

    ERIC Educational Resources Information Center

    Garza, Rubén; Soto Huerta, Mary Esther

    2014-01-01

    This mixed methods investigation specifically examined Latino high school adolescents' perceptions of teacher behaviors that demonstrate caring. A chi-square test was conducted to analyze the frequency of responses, and focus group interviews were conducted to expand on the results. The data indicated that although Latino male students were as…

  19. High-Performance Power-Semiconductor Packages

    NASA Technical Reports Server (NTRS)

    Renz, David; Hansen, Irving; Berman, Albert

    1989-01-01

    A 600-V, 50-A transistor and 1,200-V, 50-A diode in rugged, compact, lightweight packages intended for use in inverter-type power supplies having switching frequencies up to 20 kHz. Packages provide low-inductance connections, low loss, electrical isolation, and long-life hermetic seal. Low inductance achieved by making all electrical connections to each package on same plane. Also reduces high-frequency losses by reducing coupling into inherent shorted turns in packaging material around conductor axes. Stranded internal power conductors aid conduction at high frequencies, where skin effect predominates. Design of packages solves historical problem of separation of electrical interface from thermal interface of high-power semiconductor device.

  20. Generalized thermoelastic diffusive waves in heat conducting materials

    NASA Astrophysics Data System (ADS)

    Sharma, J. N.

    2007-04-01

    Keeping in view the applications of diffusion processes in geophysics and electronics industry, the aim of the present paper is to give a detail account of the plane harmonic generalized thermoelastic diffusive waves in heat conducting solids. According to the characteristic equation, three longitudinal waves namely, elastodiffusive (ED), mass diffusion (MD-mode) and thermodiffusive (TD-mode), can propagate in such solids in addition to transverse waves. The transverse waves get decoupled from rest of the fields and hence remain unaffected due to temperature change and mass diffusion effects. These waves travel without attenuation and dispersion. The other generalized thermoelastic diffusive waves are significantly influenced by the interacting fields and hence suffer both attenuation and dispersion. At low frequency mass diffusion and thermal waves do not exist but at high-frequency limits these waves propagate with infinite velocity being diffusive in character. Moreover, in the low-frequency regions, the disturbance is mainly dominant by mechanical process of transportation of energy and at high-frequency regions it is significantly dominated by a close to diffusive process (heat conduction or mass diffusion). Therefore, at low-frequency limits the waves like modes are identifiable with small amplitude waves in elastic materials that do not conduct heat. The general complex characteristic equation is solved by using irreducible case of Cardano's method with the help of DeMoivre's theorem in order to obtain phase speeds, attenuation coefficients and specific loss factor of energy dissipation of various modes. The propagation of waves in case of non-heat conducting solids is also discussed. Finally, the numerical solution is carried out for copper (solvent) and zinc (solute) materials and the obtained phase velocities, attenuation coefficients and specific loss factor of various thermoelastic diffusive waves are presented graphically.

  1. Realizing one-dimensional quantum and high-frequency transport features in aligned single-walled carbon nanotube ropes

    NASA Astrophysics Data System (ADS)

    Ncube, Siphephile; Chimowa, George; Chiguvare, Zivayi; Bhattacharyya, Somnath

    2014-07-01

    The superiority of the electronic transport properties of single-walled carbon nanotube (SWNT) ropes over SWNT mats is verified from low temperature and frequency-dependent transport. The overall change of resistance versus in nanotube mats shows that 3D variable range hopping is the dominant conduction mechanism within the 2-300 K range. The magneto-resistance (MR) is found to be predominantly negative with a parabolic nature, which can also be described by the hopping model. Although the positive upturn of the MR at low temperatures establishes the contribution from quantum interference, the inherent quantum transport in individual tubes is suppressed at elevated temperatures. Therefore, to minimize multi-channel effects from inter-tube interactions and other defects, two-terminal devices were fabricated from aligned SWNT (extracted from a mat) for low temperature transport as well as high-frequency measurements. In contrast to the mat, the aligned ropes exhibit step-like features in the differential conductance within the 80-300 K temperature range. The effects of plasmon propagation, unique to one dimension, were identified in electronic transport as a non-universal power-law dependence of the differential conductance on temperature and source-drain voltage. The complex impedance showed high power transmission capabilities up to 65 GHz as well as oscillations in the frequency range up to 30 GHz. The measurements suggest that aligned SWNT ropes have a realistic potential for high-speed device applications.

  2. Ground EMI: designing the future trends in shallow depth surveying

    NASA Astrophysics Data System (ADS)

    Thiesson, J.; Schamper, C.; Simon, F. X.; Tabbagh, A.

    2017-12-01

    In theory, electromagnetic induction phenomena are driven by three fundamental properties (conductivity, susceptibility, permittivity). Since the 1930's, the developments of EMI prospecting were based on assumptions (Low frequency VS High frequency, low/high induction number). The design of the devices was focused on specific aims (diffusive/propagative, mapping/sounding) and, in the last thirty years the progressive transition from analog to numeric electronics completely enhanced the potency of measurements (multi-channeling, automatic positioning) a) as it did in model computation. In the field of metric sized devices for lower depths of investigation, the measurements have been first restricted to electrical conductivity. However, the measurement of the magnetic susceptibility proved to be possible thanks to in phase and quadrature separation, and the last developed commercially available multi-frequency and/or multi-receivers devices permit, thanks to accurate calibration, the measurements of the three properties with various geometries or frequencies simultaneously. The aims of this study is to present theoretical results in order to give hints for designing a device which can be optimal to evaluate the three properties and their frequency dependence.

  3. The high frequency characteristics of laser reflection and visible light during solid state disk laser welding

    NASA Astrophysics Data System (ADS)

    Gao, Xiangdong; You, Deyong; Katayama, Seiji

    2015-07-01

    Optical properties are related to weld quality during laser welding. Visible light radiation generated from optical-induced plasma and laser reflection is considered a key element reflecting weld quality. An in-depth analysis of the high-frequency component of optical signals is conducted. A combination of a photoelectric sensor and an optical filter helped to obtain visible light reflection and laser reflection in the welding process. Two groups of optical signals were sampled at a high sampling rate (250 kHz) using an oscilloscope. Frequencies in the ranges 1-10 kHz and 10-125 kHz were investigated respectively. Experimental results showed that there was an obvious correlation between the high-frequency signal and the laser power, while the high-frequency signal was not sensitive to changes in welding speed. In particular, when the defocus position was changed, only a high frequency of the visible light signal was observed, while the high frequency of the laser reflection signal remained unchanged. The basic correlation between optical features and welding status during the laser welding process is specified, which helps to provide a new research focus for investigating the stability of welding status.

  4. Elimination of Intermediate-Frequency Combustion Instability in the Fastrac Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin; Nesman, Tomas E.; Turner, Jim E. (Technical Monitor)

    2001-01-01

    A series of tests were conducted to measure the combustion performance of the Fastrac engine thrust chamber. The thrust chamber exhibited benign, yet marginally unstable combustion. The marginally unstable combustion was characterized by chamber pressure oscillations with large amplitudes and a frequency that was too low to be identified as acoustic or high-frequency combustion instability and too high to be identified as chug or low-frequency combustion instability. The source of the buzz or intermediate-frequency combustion instability was traced to the fuel venturi whose violently noisy cavitation caused resonance in the feedline downstream. Combustion was stabilized by increasing the throat diameter of the fuel venturi such that the cavitation would occur more quietly.

  5. High Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Framgos, William

    1999-06-01

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  6. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2002-11-20

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  7. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring, and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex

    2000-06-01

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach (Song et al., 1997). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  8. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2001-06-10

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  9. Investigation of phonon transport and thermal boundary conductance at the interface of functionalized SWCNT and poly (ether-ketone)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Haoxiang; Kumar, Satish, E-mail: satish.kumar@me.gatech.edu; Chen, Liang

    2016-09-07

    Carbon nanostructures such as carbon nanotube (CNT), graphene, and carbon fibers can be used as fillers in amorphous polymers to improve their thermal properties. In this study, the effect of covalent bonding of CNT with poly(ether ketone) (PEK) on interfacial thermal interactions is investigated using non-equilibrium molecular dynamics simulations. The number of covalent bonds between (20, 20) CNT and PEK is varied in the range of 0–80 (0%–6.25%), and the thermal boundary conductance is computed. The analysis reveals that covalent functionalization of CNT atoms can enhance the thermal boundary conductance by an order of magnitude compared to the non-functionalized CNT-PEKmore » interface at a high degree of CNT functionalization. Besides strengthening the thermal coupling, covalent functionalization is also shown to modify the phonon spectra of CNT. The transient spectral energy analysis shows that the crosslinks cause faster energy exchange from CNT to PEK in different frequency bands. The oxygen atom of hydroxyl group of PEK contributes energy transfer in the low frequency band, while aromatic and carbonyl carbon atoms play a more significant role in high frequency bands. In addition, by analyzing the relaxation time of the spectral temperature of different frequency bands of CNT, it is revealed that with increasing number of bonds, both lower frequency vibrational modes and higher frequency modes efficiently couple across the CNT-PEK interface and contribute in thermal energy transfer from CNT to the matrix.« less

  10. Resonance-induced sensitivity enhancement method for conductivity sensors

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Shih, Chi-yuan (Inventor); Li, Wei (Inventor); Zheng, Siyang (Inventor)

    2009-01-01

    Methods and systems for improving the sensitivity of a variety of conductivity sensing devices, in particular capacitively-coupled contactless conductivity detectors. A parallel inductor is added to the conductivity sensor. The sensor with the parallel inductor is operated at a resonant frequency of the equivalent circuit model. At the resonant frequency, parasitic capacitances that are either in series or in parallel with the conductance (and possibly a series resistance) is substantially removed from the equivalent circuit, leaving a purely resistive impedance. An appreciably higher sensor sensitivity results. Experimental verification shows that sensitivity improvements of the order of 10,000-fold are possible. Examples of detecting particulates with high precision by application of the apparatus and methods of operation are described.

  11. Utterance Detection by Intraoral Acceleration Sensor

    NASA Astrophysics Data System (ADS)

    Saiki, Tsunemasa; Takizawa, Yukako; Hashizume, Tsutomu; Higuchi, Kohei; Fujita, Takayuki; Maenaka, Kazusuke

    In order to establish monitoring systems for home health in elderly people including the prevention of mental illness, we investigated the acceleration of teeth in utterance on the assumption that an acceleration sensor can be implanted into an artificial denture in the near future. In the experiment, an acceleration sensor was fixed in front of the central incisors on the lower jaw by using a denture adhesive, and female and male subjects spoke five Japanese vowels. We then measured the teeth accelerations in three (front-to-back, right-to-left and top-to-bottom) axes and conducted frequency analyses. The result showed that high power spectral densities of the teeth accelerations were observed at a low frequency range of 2-10Hz (both the female and the male) and at a high frequency range of 200-300Hz (the female) or 100-150 Hz (the male). The low and high frequency components indicate movements of the lower jaw and voice sounds by bone conduction, respectively. Especially in the top-to-bottom axis of the central incisor, the frequency component appeared to be significant. Therefore, we found that utterance can be efficiently detected using the acceleration in this axis. We also found that three conditions of normal speech, lip synchronizing and humming can be recognized by using frequency analysis of the acceleration in the top-to-bottom axis of the central incisor.

  12. Impedance of (CoFeZr)0,559(PbZrTiO3)0,441 nanocomposite annealed in a tubular furnace

    NASA Astrophysics Data System (ADS)

    Boiko, Oleksandr

    2016-12-01

    The objective of the present research has been to determine the influence of annealing in tubular furnace on capacity of (CoFeZr)0,559(PbZrTiO3)0,441 nanocomposite produced by ion beam sputtering using combined argon and oxygen beam. The phase angle of the nanocomposite directly after preparing demonstrates negative values, which indicates the capacitive type of electrical conductivity of the material. The rapid increase of conductivity when frequency increases indicates hopping conductance in the material. The additional polarization of the nanocomposite occurs with its extinction in the area of high frequencies. The electrons relaxation time has been defined as of ca τ = 1,25×10-4 s. Annealing of nanocomposite sample x = 55.9 at.% at temperature Ta = 548 K causes phase angle obtains positive values in high frequency area, which indicates the change of conduction type from capacitive to inductive. The voltage resonance phenomenon occurs in the material. Annealing in temperature of Ta = 648 K causes changes of the nanomaterials capacity. The additional oxidization of CoFeZr metallic phase nanograins which provides to the potential barrier formation around potential wells (CoFeZr nanoparticles).

  13. Coil design considerations for a high-frequency electromagnetic induction sensing instrument

    NASA Astrophysics Data System (ADS)

    Sigman, John B.; Barrowes, Benjamin E.; Wang, Yinlin; Bennett, Hollis J.; Simms, Janet E.; Yule, Donald E.; O'Neill, Kevin; Shubitidze, Fridon

    2016-05-01

    Intermediate electrical conductivity (IEC) materials (101S/m < σ < 104S/m), such as carbon fiber (CF), have recently been used to make smart bombs. In addition, homemade improvised explosive devices (IED) can be produced with low conducting materials (10-4S/m < σ < 1S/m), such as Ammonium Nitrate (AN). To collect unexploded ordnance (UXO) from military training ranges and thwart deadly IEDs, the US military has urgent need for technology capable of detection and identification of subsurface IEC objects. Recent analytical and numerical studies have showed that these targets exhibit characteristic quadrature response peaks at high induction frequencies (100kHz - 15MHz, the High Frequency Electromagnetic Induction (HFEMI) band), and they are not detectable with traditional ultra wideband (UWB) electromagnetic induction (EMI) metal detectors operating between 100Hz - 100kHz. Using the HFEMI band for induction sensing is not so simple as driving existing instruments at higher frequencies, though. At low frequency, EMI systems use more wire turns in transmit and receive coils to boost signal-to-noise ratios (SNR), but at higher frequencies, the transmitter current has non-uniform distribution along the coil length. These non-uniform currents change the spatial distribution of the primary magnetic field and disturb axial symmetry and thwart established approaches for inferring subsurface metallic object properties. This paper discusses engineering tradeoffs for sensing with a broader band of frequencies ever used for EMI sensing, with particular focus on coil geometries.

  14. Effect of Al2O3 nanoparticles in plasticized PMMA-LiClO4 based solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Pal, P.; Ghosh, A.

    2017-05-01

    We have studied the broadband complex conductivity spectra covering a 0.01 Hz-3 GHz frequency range for plasticized PMMA-LiClO4 based solid polymer electrolyte embedded with Al2O3 nanoparticle. We have analyzed the conductivity spectra using the random free-energy barrier model (RBM) coupled with electrode polarization contribution in the low frequency region and at high temperatures. The temperature dependence of the ionic conductivity obtained from the analysis has been analyzed using Vogel-Tammann-Fulcher equation. The maximum ionic conductivity ˜ 1.93×10-4 S/cm has been obtained for 1 wt% Al2O3 nanoparticle.

  15. A New Approach to Look at the Electrical Conductivity of Streamflow: Decomposing a Bulk Signal to Recover Individual Solute Concentrations at High-Frequency

    NASA Astrophysics Data System (ADS)

    Benettin, P.; Van Breukelen, B. M.

    2017-12-01

    The ability to evaluate stream hydrochemistry is often constrained by the capacity to sample streamwater at an adequate frequency. While technology is no longer a limiting factor, economic and management efforts can still be a barrier to high-resolution water quality instrumentation. We propose a new framework to investigate the electrical conductivity (EC) of streamwater, which can be measured continuously through inexpensive sensors. We show that EC embeds information on ion content which can be isolated to retrieve solute concentrations at high resolution. The approach can already be applied to a number of datasets worldwide where water quality campaigns are conducted, provided continuous EC measurements can be collected. The essence of the approach is the decomposition of the EC signal into its "harmonics", i.e. the specific contributions of the major ions which conduct current in water. The ion contribution is used to explore water quality patterns and to develop algorithms that reconstruct solute concentrations during periods where solute measurements are not available. The approach is validated on a hydrochemical dataset from Plynlimon, Wales. Results show that the decomposition of EC is feasible and for at least two major elements the methodology provided improved estimates of high-frequency solute dynamics. Our results support the installation of EC probes to complement water quality campaigns and suggest that the potential of EC measurements in rivers is currently far from being fully exploited.

  16. Frequency comb generation in a silicon ring resonator modulator.

    PubMed

    Demirtzioglou, Iosif; Lacava, Cosimo; Bottrill, Kyle R H; Thomson, David J; Reed, Graham T; Richardson, David J; Petropoulos, Periklis

    2018-01-22

    We report on the generation of an optical comb of highly uniform in power frequency lines (variation less than 0.7 dB) using a silicon ring resonator modulator. A characterization involving the measurement of the complex transfer function of the ring is presented and five frequency tones with a 10-GHz spacing are produced using a dual-frequency electrical input at 10 and 20 GHz. A comb shape comparison is conducted for different modulator bias voltages, indicating optimum operation at a small forward-bias voltage. A time-domain measurement confirmed that the comb signal was highly coherent, forming 20.3-ps-long pulses.

  17. SOI MESFETs on high-resistivity, trap-rich substrates

    NASA Astrophysics Data System (ADS)

    Mehr, Payam; Zhang, Xiong; Lepkowski, William; Li, Chaojiang; Thornton, Trevor J.

    2018-04-01

    The DC and RF characteristics of metal-semiconductor field-effect-transistors (MESFETs) on conventional CMOS silicon-on-insulator (SOI) substrates are compared to nominally identical devices on high-resistivity, trap-rich SOI substrates. While the DC transfer characteristics are statistically identical on either substrate, the maximum available gain at GHz frequencies is enhanced by ∼2 dB when using the trap-rich substrates, with maximum operating frequencies, fmax, that are approximately 5-10% higher. The increased fmax is explained by the reduced substrate conduction at GHz frequencies using a lumped-element, small-signal model.

  18. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source

    NASA Astrophysics Data System (ADS)

    Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  19. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source.

    PubMed

    Wells, R P; Ghiorso, W; Staples, J; Huang, T M; Sannibale, F; Kramasz, T D

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  20. Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors

    NASA Astrophysics Data System (ADS)

    Demirezen, S.; Kaya, A.; Yerişkin, S. A.; Balbaşı, M.; Uslu, İ.

    In this study, praseodymium barium cobalt oxide nanofiber interfacial layer was sandwiched between Au and n-Si. Frequency and voltage dependence of ε‧, ε‧, tanδ, electric modulus (M‧ and M″) and σac of PrBaCoO nanofiber capacitor have been investigated by using impedance spectroscopy method. The obtained experimental results show that the values of ε‧, ε‧, tanδ, M‧, M″ and σac of the PrBaCoO nanofiber capacitor are strongly dependent on frequency of applied bias voltage. The values of ε‧, ε″ and tanδ show a steep decrease with increasing frequency for each forward bias voltage, whereas the values of σac and the electric modulus increase with increasing frequency. The high dispersion in ε‧ and ε″ values at low frequencies may be attributed to the Maxwell-Wagner and space charge polarization. The high values of ε‧ may be due to the interfacial effects within the material, PrBaCoO nanofibers interfacial layer and electron effect. The values of M‧ and M″ reach a maximum constant value corresponding to M∞ ≈ 1/ε∞ due to the relaxation process at high frequencies, but both the values of M‧ and M″ approach almost to zero at low frequencies. The changes in the dielectric and electrical properties with frequency can be also attributed to the existence of Nss and Rs of the capacitors. As a result, the change in the ε‧, ε″, tanδ, M‧, M″ and ac electric conductivity (σac) is a result of restructuring and reordering of charges at the PrBaCoO/n-Si interface under an external electric field or voltage and interface polarization.

  1. Exposure to electromagnetic fields aboard high-speed electric multiple unit trains.

    PubMed

    Niu, D; Zhu, F; Qiu, R; Niu, Q

    2016-01-01

    High-speed electric multiple unit (EMU) trains generate high-frequency electric fields, low-frequency magnetic fields, and high-frequency wideband electromagnetic emissions when running. Potential human health concerns arise because the electromagnetic disturbances are transmitted mainly into the car body from windows, and from there to passengers and train staff. The transmission amount and amplitude distribution characteristics that dominate electromagnetic field emission need to be studied, and the exposure level of electromagnetic field emission to humans should be measured. We conducted a series of tests of the on board electromagnetic field distribution on several high-speed railway lines. While results showed that exposure was within permitted levels, the possibility of long-term health effects should be investigated.

  2. Polymer nanocomposite dielectric and electrical properties with quantum dots nanofiller

    NASA Astrophysics Data System (ADS)

    Ahmed, R. M.; Morsi, R. M. M.

    2017-10-01

    Nanocomposite films of different contents of CdSe/ZnS quantum dots nanoparticles embedded in hosting matrix of polyvinyl chloride (PVC) were prepared by simple solution casting method. Electrical and dielectric properties of nanocomposites films were investigated in the temperature range 323-393 (K) and at frequencies (50-2000) kHz. The frequency dependence of AC conductivity was following the universal power law. The values of the frequency exponent, s, revealed that the conduction mechanism at low temperature is considered by small polaron tunneling model, whereas at high temperature, it is related to CBH model. The activation energy values (ΔE) were depending on nanoparticle concentration as well as frequency. Also, X-ray diffraction (XRD) enabled approximately estimating the average particle size of the nanoparticles incorporated in PVC.

  3. Ultrafast Spectral Photoresponse of Bilayer Graphene: Optical Pump-Terahertz Probe Spectroscopy.

    PubMed

    Kar, Srabani; Nguyen, Van Luan; Mohapatra, Dipti R; Lee, Young Hee; Sood, A K

    2018-02-27

    Photoinduced terahertz conductivity Δσ(ω) of Bernal stacked bilayer graphene (BLG) with different dopings is measured by time-resolved optical pump terahertz probe spectroscopy. The real part of photoconductivity Δσ(ω) (Δσ Re (ω)) is positive throughout the spectral range 0.5-2.5 THz in low-doped BLG. This is in sharp contrast to Δσ(ω) for high-doped bilayer graphene where Δσ Re (ω) is negative at low frequency and positive on the high frequency side. We use Boltzmann transport theory to understand quantitatively the frequency dependence of Δσ(ω), demanding the energy dependence of different scattering rates such as short-range impurity scattering, Coulomb scattering, carrier-acoustic phonon scattering, and substrate surface optical phonon scattering. We find that the short-range disorder scattering dominates over other processes. The calculated photoconductivity captures very well the experimental conductivity spectra as a function of lattice temperature varying from 300 to 4 K, without any empirical fitting procedures adopted so far in the literature. This helps us to understand the intraband conductivity of photoexcited hot carriers in 2D materials.

  4. Electrophysiological examination and high frequency ultrasonography for diagnosis of radial nerve torsion and compression

    PubMed Central

    Shi, Miao; Qi, Hengtao; Ding, Hongyu; Chen, Feng; Xin, Zhaoqin; Zhao, Qinghua; Guan, Shibing; Shi, Hao

    2018-01-01

    Abstract This study aims to evaluate the value of electrophysiological examination and high frequency ultrasonography in the differential diagnosis of radial nerve torsion and radial nerve compression. Patients with radial nerve torsion (n = 14) and radial nerve compression (n = 14) were enrolled. The results of neurophysiological and high frequency ultrasonography were compared. Electrophysiological examination and high-frequency ultrasonography had a high diagnostic rate for both diseases with consistent results. Of the 28 patients, 23 were positive for electrophysiological examination, showing decreased amplitude and decreased conduction velocity of radial nerve; however, electrophysiological examination cannot distinguish torsion from compression. A total of 27 cases showed positive in ultrasound examinations among all 28 cases. On ultrasound images, the nerve was thinned at torsion site whereas thickened at the distal ends of torsion. The diameter and cross-sectional area of torsion or compression determined the nerve damage, and ultrasound could locate the nerve injury site and measure the length of the nerve. Electrophysiological examination and high-frequency ultrasonography can diagnose radial neuropathy, with electrophysiological examination reflecting the neurological function, and high-frequency ultrasound differentiating nerve torsion from compression. PMID:29480857

  5. On the effect of addition of carbon nanotubes on the electric conductivity of alkali-activated slag mortars

    NASA Astrophysics Data System (ADS)

    Kusak, I.; Lunak, M.

    2017-09-01

    This paper presents basic electric properties of laboratory prepared alkali-activated composite materials on the basis of finely ground granular high furnace slag to which various quantities of carbon nanotubes (CNT) have been added. Impedance spectroscopy in the frequency range from 40 Hz to 1 MHz was used to measure the specimens. Electric resistivity ρ versus frequency and electric resistivity ρ versus CNT content relationships were examined on our specimens R&S ZNC vector analyser with DAK-12 coaxial probe (made by Speag) was used to carry out the measurements at higher frequencies (from 100 MHz to 3 GHz). Electric conductivity σ as a function of the frequency and as a function of the specimen CNT content was studied in this frequency range. Up-to-date instruments and a unique approach have evidently been employed to carry out non-destructive measurement of mortar materials.

  6. Giant dielectric constant in titania nanoparticles embedded in conducting polymer matrix.

    PubMed

    Dey, Ashis; De, Sukanta; De, Amitabha; De, S K

    2006-05-01

    Complex impedance and dielectric permittivity of titania-polypyrrole nanocomposites have been investigated as a function of frequency and temperature at different compositions. A very large dielectric constant of about 13,000 at room temperature has been observed. The colossal dielectric constant is mainly dominated by interfacial polarization due to Maxwell-Wagner relaxation effect. Two completely separate groups of dielectric relaxation have been observed. The low frequency dielectric relaxation arises from surface defect states of titania nanoparticles. The broad peak at high frequency region is attributed to Maxwell-Wagner type polarization originating from the inhomogeneous property of nanocomposite. An abrupt change in grain boundary conductivity and dielectric relaxation associated with titania was observed at around 150 K. Anomalous behavior in conductivity and dielectric relaxation is qualitatively explained by band tail structure of titania nanoparticle.

  7. Gender Identification Using High-Frequency Speech Energy: Effects of Increasing the Low-Frequency Limit.

    PubMed

    Donai, Jeremy J; Halbritter, Rachel M

    The purpose of this study was to investigate the ability of normal-hearing listeners to use high-frequency energy for gender identification from naturally produced speech signals. Two experiments were conducted using a repeated-measures design. Experiment 1 investigated the effects of increasing high-pass filter cutoff (i.e., increasing the low-frequency spectral limit) on gender identification from naturally produced vowel segments. Experiment 2 studied the effects of increasing high-pass filter cutoff on gender identification from naturally produced sentences. Confidence ratings for the gender identification task were also obtained for both experiments. Listeners in experiment 1 were capable of extracting talker gender information at levels significantly above chance from vowel segments high-pass filtered up to 8.5 kHz. Listeners in experiment 2 also performed above chance on the gender identification task from sentences high-pass filtered up to 12 kHz. Cumulatively, the results of both experiments provide evidence that normal-hearing listeners can utilize information from the very high-frequency region (above 4 to 5 kHz) of the speech signal for talker gender identification. These findings are at variance with current assumptions regarding the perceptual information regarding talker gender within this frequency region. The current results also corroborate and extend previous studies of the use of high-frequency speech energy for perceptual tasks. These findings have potential implications for the study of information contained within the high-frequency region of the speech spectrum and the role this region may play in navigating the auditory scene, particularly when the low-frequency portion of the spectrum is masked by environmental noise sources or for listeners with substantial hearing loss in the low-frequency region and better hearing sensitivity in the high-frequency region (i.e., reverse slope hearing loss).

  8. Microstrip Patch Sensor for Salinity Determination.

    PubMed

    Lee, Kibae; Hassan, Arshad; Lee, Chong Hyun; Bae, Jinho

    2017-12-18

    In this paper, a compact microstrip feed inset patch sensor is proposed for measuring the salinities in seawater. The working principle of the proposed sensor depends on the fact that different salinities in liquid have different relative permittivities and cause different resonance frequencies. The proposed sensor can obtain better sensitivity to salinity changes than common sensors using conductivity change, since the relative permittivity change to salinity is 2.5 times more sensitive than the conductivity change. The patch and ground plane of the proposed sensor are fabricated by conductive copper spray coating on the masks made by 3D printer. The fabricated patch and the ground plane are bonded to a commercial silicon substrate and then attached to 5 mm-high chamber made by 3D printer so that it contains only 1 mL seawater. For easy fabrication and testing, the maximum resonance frequency was selected under 3 GHz and to cover salinities in real seawater, it was assumed that the salinity changes from 20 to 35 ppt. The sensor was designed by the finite element method-based ANSYS high-frequency structure simulator (HFSS), and it can detect the salinity with 0.01 ppt resolution. The designed sensor has a resonance frequency separation of 37.9 kHz and reflection coefficients under -20 dB at the resonant frequencies. The fabricated sensor showed better performance with average frequency separation of 48 kHz and maximum reflection coefficient of -35 dB. By comparing with the existing sensors, the proposed compact and low-cost sensor showed a better detection capability. Therefore, the proposed patch sensor can be utilized in radio frequency (RF) tunable sensors for salinity determination.

  9. Microwave ablation at 10.0 GHz achieves comparable ablation zones to 1.9 GHz in ex vivo bovine liver.

    PubMed

    Luyen, Hung; Gao, Fuqiang; Hagness, Susan C; Behdad, Nader

    2014-06-01

    We demonstrate the feasibility of using high-frequency microwaves for tissue ablation by comparing the performance of a 10 GHz microwave ablation system with that of a 1.9 GHz system. Two sets of floating sleeve dipole antennas operating at these frequencies were designed and fabricated for use in ex vivo experiments with bovine livers. Combined electromagnetic and transient thermal simulations were conducted to analyze the performance of these antennas. Subsequently, a total of 16 ablation experiments (eight at 1.9 GHz and eight at 10.0 GHz) were conducted at a power level of 42 W for either 5 or 10 min. In all cases, the 1.9 and 10 GHz experiments resulted in comparable ablation zone dimensions. Temperature monitoring probes revealed faster heating rates in the immediate vicinity of the 10.0 GHz antenna compared to the 1.9 GHz antenna, along with a slightly delayed onset of heating farther from the 10 GHz antenna, suggesting that heat conduction plays a greater role at higher microwave frequencies in achieving a comparably sized ablation zone. The results obtained from these experiments agree very well with the combined electromagnetic/thermal simulation results. These simulations and experiments show that using lower frequency microwaves does not offer any significant advantages, in terms of the achievable ablation zones, over using higher frequency microwaves. Indeed, it is demonstrated that high-frequency microwave antennas may be used to create reasonably large ablation zones. Higher frequencies offer the advantage of smaller antenna size, which is expected to lead to less invasive interstitial devices and may possibly lead to the development of more compact multielement arrays with heating properties not available from single-element antennas.

  10. Extremely high frequency RF effects on electronics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit boardmore » traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.« less

  11. The P Wave Time-Frequency Variability Reflects Atrial Conduction Defects before Paroxysmal Atrial Fibrillation.

    PubMed

    Alcaraz, Raúl; Martínez, Arturo; Rieta, José J

    2015-09-01

    The study of atrial conduction defects associated with the onset of paroxysmal atrial fibrillation (PAF) can be addressed by analyzing the P wave from the surface electrocardiogram (ECG). Traditionally, signal-averaged ECGs have been mostly used for this purpose. However, this alternative hinders the possibility to quantify every single P wave, its variability over time, as well as to obtain complimentary and evolving information about the arrhythmia. This work analyzes the time progression of several time and frequency P wave features as potential indicators of atrial conduction variability several hours preceding the onset of PAF. The longest sinus rhythm interval from 24-hour Holter recordings of 46 PAF patients was selected. Next, the 2 hours before the onset of PAF were extracted and divided into two 1-hour periods. Every single P wave was automatically delineated and characterized by 16 time and frequency metrics, such as its duration, absolute energy in several frequency bands and high-to-low-frequency energy ratios. Finally, the P wave variability over each 1-hour period was estimated from the 16 features making use of a least-squares linear fitting. As a reference, the same parameters were also estimated from a set of 1-hour ECG segments randomly chosen from a control group of 53 healthy subjects age-, gender-, and heart rate-matched. All the analyzed metrics provided an increasing P wave variability trend as the onset of PAF approximated, being P wave duration and P wave high-frequency energy the most significant individual metrics. The linear fitting slope α associated with P wave duration was (2.48 ± 1.98)×10(-2) for healthy subjects, (23.8 ± 14.1)×10(-2) for ECG segments far from PAF and for (81.8 ± 48.7)×10(-2) ECG segments close to PAF p = 6.96×10(-22) . Similarly, the P wave high-frequency energy linear fitting slope was (2.42 ± 4.97)×10(-9) , (54.2 ± 107.1)×10(-9) and (274.2 ± 566.1)×10(-9) , respectively (p = 2.85×10(-20) ). A univariate discriminant analysis provided that both P wave duration and P wave high-frequency energy could discern among the three ECG sets with diagnostic ability around 80%, which was improved up to 88% by combining these metrics in a multivariate discriminant analysis. Alterations in atrial conduction can be successfully quantified several hours before the onset of PAF by estimating variability over time of several time and frequency P wave features. © 2014 Wiley Periodicals, Inc.

  12. Tensile buckling of advanced turboprops

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Aiello, R. A.

    1982-01-01

    Theoretical studies were conducted to determine analytically the tensile buckling of advanced propeller blades (turboprops) in centrifugal fields, as well as the effects of tensile buckling on other types of structural behavior, such as resonant frequencies and flutter. Theoretical studies were also conducted to establish the advantages of using high performance composite turboprops as compared to titanium. Results show that the vibration frequencies are not affected appreciably prior to 80 percent of the tensile speed. Some frequencies approach zero as the tensile buckling speed is approached. Composites provide a substantial advantage over titanium on a buckling speed to weight basis. Vibration modes change as the rotor speed is increased and substantial geometric coupling is present.

  13. Emotional communication in families of conduct problem children with high versus low callous-unemotional traits.

    PubMed

    Pasalich, Dave S; Dadds, Mark R; Vincent, Lucy C; Cooper, Francesca A; Hawes, David J; Brennan, John

    2012-01-01

    This study examined relationships between parent-child emotional communication and callous-unemotional (CU) traits and conduct problems. References to negative and positive emotions made by clinic-referred boys (3-9 years) and their parents were coded from direct observations of family interactions involving the discussion of shared emotional experiences. Although frequencies of parents' emotion expression did not generally relate to levels of CU traits, boys higher on CU traits were observed to be more expressive of negative emotions in conversation with their caregivers-specifically for sadness and fear. Independent coders did not judge these children to be less genuine in their emotion expression compared to their low-CU counterparts. We also examined whether CU traits moderated the relationship between parents' focus on emotions and conduct problem severity. Higher levels of maternal focus on negative emotions were found to be associated with lower conduct problems in high-CU boys but related to higher conduct problems in low-CU boys. Frequencies of fathers' emotional communication were unrelated to either child CU traits or conduct problems. We discuss the implications of these findings for the conceptualization of CU traits in preadolescent children, and interventions for conduct problems in children elevated on these traits.

  14. Frequency up-conversion of a high-power microwave pulse propagating in a self-generated plasma

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Ren, A.

    1992-01-01

    In the study of the propagation of a high-power microwave pulse, one of the main concerns is how to minimize the energy loss of the pulse before reaching the destination. A frequency autoconversion process that can lead to reflectionless propagation of powerful electromagnetic pulses in self-generated plasmas is studied. The theory shows that, under the proper condition, the carrier frequency omega of the pulse shifts upward during the growth of local plasma frequency omega(pe). Thus, the self-generated plasma remains underdense to the pulse. A chamber experiment to demonstrate the frequency autoconversion during the pulse propagation through the self-generated plasma is conducted. The detected frequency shift is compared with the theoretical result calculated by using the measured electron density distribution along the propagation path of the pulse. Good agreement is obtained.

  15. Fluorine follows water: Effect on electrical conductivity of silicate minerals by experimental constraints from phlogopite

    NASA Astrophysics Data System (ADS)

    Li, Yan; Jiang, Haotian; Yang, Xiaozhi

    2017-11-01

    Fluorine and hydroxyl groups are minor constituents of silicate minerals, and share a lot of similarities concerning their physical and chemical properties. Hydroxyl groups significantly enhance the electrical conductivity of many silicate minerals, and it is expected that fluorine would have a comparable effect. This, however, has never been documented quantitatively. Here we present experimental approaches on this issue, by investigating the electrical conductivity of phlogopite with a wide range of fluorine content (but with broadly similar contents for other major elements). Electrical conductivities of gem-quality single crystal phlogopites, with samples prepared along the same orientation (normal to the (0 0 1) plane), were determined at 1 GPa and 200-650 °C using an end-loaded piston cylinder apparatus and a Solartron-1260 Impedance/Gain Phase Analyzer over the frequency range of 106 to 0.1 Hz. The complex spectra usually show an arc in the high frequency range and a short tail in the low frequency range, which are caused by lattice conduction and electrode effects, respectively. The electrical conductivity increases with increasing fluorine content, and the main charge carriers are fluorine. The activation enthalpies are ∼180 to 200 kJ/mol, nearly independent of fluorine content. The conductivity is linearly proportional to the content of fluorine, with an exponent factor of ∼1. The results demonstrate that conduction by fluorine leads to very high electrical conductivity at high temperatures. The influence of fluorine on electrical conductivity may be compared to that of hydrogen in nominally anhydrous minerals. This, along with the close association of fluorine and hydroxyl groups in silicate minerals and their similar crystal-chemical behaviors, suggests a more general role of fluorine in enhancing the electrical conductivity of many silicate minerals. Fluorine-rich assemblages, e.g., phlogopite and amphibole, could be locally enriched in the upper mantle, and if they form connected networks as observed for some natural samples, regionally high electrical conductivities could be produced. It has been recently proposed that the transition zone is probably a major reservoir for fluorine in the mantle, due to the significant dissolution of fluorine in wadsleyite and ringwoodite and the coupled incorporation with hydroxyl groups. As such, geophysically-resolved high electrical conductivities in the transition zone may be accounted for by fluorine in the dominant minerals, rather than by hydroxyl groups. The results of this work would stimulate a wide scope of future studies on the deep fluorine cycle, the deep water cycle and the geodynamical properties of the mantle.

  16. Submillimeter sources for radiometry using high power Indium Phosphide Gunn diode oscillators

    NASA Technical Reports Server (NTRS)

    Deo, Naresh C.

    1990-01-01

    A study aimed at developing high frequency millimeter wave and submillimeter wave local oscillator sources in the 60-600 GHz range was conducted. Sources involved both fundamental and harmonic-extraction type Indium Phosphide Gunn diode oscillators as well as varactor multipliers. In particular, a high power balanced-doubler using varactor diodes was developed for 166 GHz. It is capable of handling 100 mW input power, and typically produced 25 mW output power. A high frequency tripler operating at 500 GHz output frequency was also developed and cascaded with the balanced-doubler. A dual-diode InP Gunn diode combiner was used to pump this cascaded multiplier to produce on the order of 0.5 mW at 500 GHz. In addition, considerable development and characterization work on InP Gunn diode oscillators was carried out. Design data and operating characteristics were documented for a very wide range of oscillators. The reliability of InP devices was examined, and packaging techniques to enhance the performance were analyzed. A theoretical study of a new class of high power multipliers was conducted for future applications. The sources developed here find many commercial applications for radio astronomy and remote sensing.

  17. High-Frequency Electromagnetic Impedance Measurements for Characterization, Monitoring and Verification Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen

    2004-06-16

    Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 0.1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002, Tseng et al., 2003). Electric and magnetic sensors are being tested and calibrated on sea water and in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less

  18. Dielectric Performance of a High Purity HTCC Alumina at High Temperatures - a Comparison Study with Other Polycrystalline Alumina

    NASA Technical Reports Server (NTRS)

    Chen, Liangyu

    2014-01-01

    A very high purity (99.99+%) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this alumina material for co-firing processing. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96% polycrystalline alumina (96% Al2O3), where 96% alumina was used as the benchmark. A prototype packaging system based on regular 96% alumina with Au thickfilm metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500 C. In order to evaluate this new high purity HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96% alumina and a previously tested LTCC alumina from room temperature to 550 C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96% alumina and a selected LTCC alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  19. Interface conductance modal analysis of lattice matched InGaAs/InP

    NASA Astrophysics Data System (ADS)

    Gordiz, Kiarash; Henry, Asegun

    2016-05-01

    We studied the heat conduction at InGaAs/InP interfaces and found that the total value of interface conductance was quite high ˜830 MW m-2 K-1. The modal contributions to the thermal interface conductance (TIC) were then investigated to determine the mode responsible. Using the recently developed interface conductance modal analysis method, we showed that more than 70% of the TIC arises from extended modes in the system. The lattice dynamics calculations across the interface revealed that, unlike any other interfaces previously studied, the different classes of vibration around the interface of InGaAs/InP naturally segregate into distinct regions with respect to frequency. In addition, interestingly, the entire region of frequency overlap between the sides of the interface is occupied by extended modes, whereby the two materials vibrate together with a single frequency. We also mapped the correlations between modes, which showed that the contribution by extended modes to the TIC primarily arises from coupling to the modes that have the same frequencies of vibration (i.e., autocorrelations). Moreover, interfacial modes despite their low population still contribute more than 6% to interfacial thermal transport. The analysis sheds light on the nature of heat conduction by different classes of vibration that exist in interfacial systems, which has technological relevance to applications such as thermophotovoltaics and optoelectronics.

  20. Application of Excitation from Multiple Locations on a Simplified High-Lift System

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2004-01-01

    A series of active flow control experiments were recently conducted on a simplified high-lift system. The purpose of the experiments was to explore the prospects of eliminating all but simply hinged leading and trailing edge flaps, while controlling separation on the supercritical airfoil using multiple periodic excitation slots. Excitation was provided by three. independently controlled, self-contained, piezoelectric actuators. Low frequency excitation was generated through amplitude modulation of the high frequency carrier wave, the actuators' resonant frequencies. It was demonstrated, for the first time, that pulsed modulated signal from two neighboring slots interact favorably to increase lift. Phase sensitivity at the low frequency was measured, even though the excitation was synthesized from the high-frequency carrier wave. The measurements were performed at low Reynolds numbers and included mean and unsteady surface pressures, surface hot-films, wake pressures and particle image velocimetry. A modest (6%) increase in maximum lift (compared to the optimal baseline) was obtained due t o the activation of two of the three actuators.

  1. Comparison of high temperature, high frequency core loss and dynamic B-H loops of a 2V-49Fe-49Co and a grain oriented 3Si-Fe alloy

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1992-01-01

    The design of power magnetic components such as transformers, inductors, motors, and generators, requires specific knowledge about the magnetic and electrical characteristics of the magnetic materials used in these components. Limited experimental data exists that characterizes the performance of soft magnetic materials for the combined conditions of high temperature and high frequency over a wide flux density range. An experimental investigation of a 2V-49-Fe-49Co (Supermendur) and a grain oriented 3 Si-Fe (Magnesil) alloy was conducted over the temperature range of 23 to 300 C and frequency range of 0.1 to 10 kHz. The effects of temperature, frequency, and maximum flux density on the core loss and dynamic B-H loops for sinusoidal voltage excitation conditions are examined for each of these materials. A comparison of the core loss of these two materials is also made over the temperature and frequency range investigated.

  2. Estimation of Existence Geothermal Manifestation Using Very Low Frequency (VLF) Method in the PagerkandangVulcanic, Dieng, Central Java

    NASA Astrophysics Data System (ADS)

    Wulandari, Asri; Asti Anggari, Ega; Dwiasih, Novi; Suyanto, Imam

    2018-03-01

    Very Low Frequency (VLF) measurement has been done at Pagerkandang Volcanic, Dieng Volcanic Complex (DVC) to examine the possible existence of conductive zones that related with geothermal manifestation. VLF – EM survey used tilt mode with T-VLF BRGM Iris Instrument operated with two frequencies, they are 22200 Hz from Japan (JJI) and 19800 Hz from Australia (NWC). There are five lines with distance between lines is 50 m, and distance between measure points is 20 m. The parameters measured from VLF method are tilt angle (%) and elliptisity (%). Data processed by tilt angle value with fraser and Karous – Hjelt filter used WinVLF program. Karous – Hjelt filter resulted current density contour to estimate lateral location from conductive and resistive zones. The conductive zone is interpreted as the area which have high current density value. This area located at eastern dan western of Pagerkandang Volcanic. The conductive zone related to geothermal manifestation as like as fumarol that appeared because presenced of normal fault. Whereas the resistive zone is interpreted as the area which have low current density value. This area spread almost in the middle of the Pagerkandang Volcanic. The resistive zone was caused by the high weathering in claystone.

  3. Conductivity tomography based on pulsed eddy current with SQUID magnetometer

    NASA Astrophysics Data System (ADS)

    Panaitov, G. I.; Krause, H.-J.; Zhang, Y.

    2002-05-01

    Pulsed eddy current (EC) techniques have the advantage of potentially covering a broader depth range than standard single frequency EC testing. We developed a novel pulsed EC technique using a liquid-nitrogen cooled SQUID magnetometer. For two reasons, SQUID magnetometers are particularly well suited as sensors: first they constitute an extremely sensitive magnetic field sensor, second they measure the field directly which decays more slowly than its time derivative picked up by induction coils. A square waveform transmitter signal was used, with alternating slopes in order to eliminate drift effect, and stacking synchronous to the power line frequency in order to improve signal-to-noise. The early time (high frequency) data of the recorded transient correspond to the upper layers of the conducting medium, while late time data or low frequencies deliver information on deep layers. Measurements of cracks at different depths in a stacked aluminum sample are presented. From the measured data, the apparent conductivity of the sample was calculated for each position and depth by applying a technique known from geophysical data interpretation. Thus, the position and depth of the crack was determined from the tomographic conductivity image of the sample.

  4. Principle and design of small-sized and high-definition x-ray machine

    NASA Astrophysics Data System (ADS)

    Zhao, Anqing

    2010-10-01

    The paper discusses the circuit design and working principles of VMOS PWM type 75KV10mA high frequency X-ray machine. The system mainly consists of silicon controlled rectifier, VMOS tube PWM type high-frequency and highvoltage inverter circuit, filament inverter circuit, high-voltage rectifier filter circuit and as X-ray tube. The working process can be carried out under the control of a single-chip microcomputer. Due to the small size and high resolution in imaging, the X-ray machine is mostly adopted for emergent medical diagnosis and specific circumstances where nondestructive tests are conducted.

  5. Electric Field Induced Interfacial Instabilities

    NASA Technical Reports Server (NTRS)

    Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-lun; Onuki, Akira

    1999-01-01

    The study of the interface in a charge-free, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In this paper, the flat interface of a marginally polar binary fluid mixture is stressed by a perpendicular alternating electric field and the resulting instability is characterized by the critical electric field E(sub c) and the pattern observed. The character of the surface dynamics at the onset of instability is found to be strongly dependent on the frequency f of the field applied. The plot of E(sub c) vs. f for a fixed temperature shows a sigmoidal shape, whose low and high frequency limits are well described by a power-law relationship, E(sub c) = epsilon(exp zeta) with zeta = 0.35 and zeta = 0.08, respectively. The low-limit exponent compares well with the value zeta = 4 for a system of conducting and non-conducting fluids. On the other hand, the high-limit exponent coincides with what was first predicted by Onuki. The instability manifests itself as the conducting phase penetrates the non-conducting phase. As the frequency increases, the shape of the pattern changes from an array of bifurcating strings to an array of column-like (or rod-like) protrusions, each of which spans the space between the plane interface and one of the electrodes. For an extremely high frequency, the disturbance quickly grows into a parabolic cone pointing toward the upper plate. As a result, the interface itself changes its shape from that of a plane to that of a high sloping pyramid.

  6. High Frequency Amplitude Detector for GMI Magnetic Sensors

    PubMed Central

    Asfour, Aktham; Zidi, Manel; Yonnet, Jean-Paul

    2014-01-01

    A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI) sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted. PMID:25536003

  7. Late administration of high-frequency electrical stimulation increases nerve regeneration without aggravating neuropathic pain in a nerve crush injury.

    PubMed

    Su, Hong-Lin; Chiang, Chien-Yi; Lu, Zong-Han; Cheng, Fu-Chou; Chen, Chun-Jung; Sheu, Meei-Ling; Sheehan, Jason; Pan, Hung-Chuan

    2018-06-25

    High-frequency transcutaneous neuromuscular electrical nerve stimulation (TENS) is currently used for the administration of electrical current in denervated muscle to alleviate muscle atrophy and enhance motor function; however, the time window (i.e. either immediate or delayed) for achieving benefit is still undetermined. In this study, we conducted an intervention of sciatic nerve crush injury using high-frequency TENS at different time points to assess the effect of motor and sensory functional recovery. Animals with left sciatic nerve crush injury received TENS treatment starting immediately after injury or 1 week later at a high frequency(100 Hz) or at a low frequency (2 Hz) as a control. In SFI gait analysis, either immediate or late admission of high-frequency electrical stimulation exerted significant improvement compared to either immediate or late administration of low-frequency electrical stimulation. In an assessment of allodynia, immediate high frequency electrical stimulation caused a significantly decreased pain threshold compared to late high-frequency or low-frequency stimulation at immediate or late time points. Immunohistochemistry staining and western blot analysis of S-100 and NF-200 demonstrated that both immediate and late high frequency electrical stimulation showed a similar effect; however the effect was superior to that achieved with low frequency stimulation. Immediate high frequency electrical stimulation resulted in significant expression of TNF-α and synaptophysin in the dorsal root ganglion, somatosensory cortex, and hippocampus compared to late electrical stimulation, and this trend paralleled the observed effect on somatosensory evoked potential. The CatWalk gait analysis also showed that immediate electrical stimulation led to a significantly high regularity index. In primary dorsal root ganglion cells culture, high-frequency electrical stimulation also exerted a significant increase in expression of TNF-α, synaptophysin, and NGF in accordance with the in vivo results. Immediate or late transcutaneous high-frequency electrical stimulation exhibited the potential to stimulate the motor nerve regeneration. However, immediate electrical stimulation had a predilection to develop neuropathic pain. A delay in TENS initiation appears to be a reasonable approach for nerve repair and provides the appropriate time profile for its clinical application.

  8. Terahertz and infrared transmission of an organic/inorganic hybrid thermoelectric material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyman, J. N., E-mail: heyman@macalester.edu; Alebachew, B. A.; Kaminski, Z. S.

    2014-04-07

    We report terahertz and infrared transmission measurements of a high-performance thermoelectric material containing tellurium nanowires in a conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) matrix. The DC electrical conductivity of the hybrid material (41 S/cm) is approximately one hundred times that of pure PEDOT:PSS and more than 400 times that of a film of pure tellurium nanowires, while the terahertz-frequency (THz) conductivity of PEDOT:PSS and the hybrid material are comparable at f ∼ 2THz. A frequency-dependent conductivity model indicates that the increased DC conductivity of the hybrid material results from an increase in the DC charge mobility rather than in the free charge density. We suggestmore » that the increased DC conductivity of the hybrid material results from an increase in linkage between PEDOT domains by the tellurium nanowires.« less

  9. Characterization of the IEC 61000-4-6 Electromagnetic Clamp for Conducted-Immunity Testing

    NASA Astrophysics Data System (ADS)

    Grassi, F.; Pignari, S. A.; Spadacini, G.; Toscani, N.; Pelissou, P.

    2016-05-01

    A multiconductor transmission line model (MTL) is used to investigate the operation of the IEC 61000-4-6 electromagnetic (EM) clamp in a conducted-immunity test setup for aerospace applications. Aspects of interest include the performance of such a coupling device at very high frequencies (up to 1 GHz), and for extreme values of the common-mode impedance of equipment (short circuits, open circuits). The MTL model is finally exploited to predict the frequency response of coupling and decoupling factors defined in the IEC 61000-4-6 standard.

  10. [Effects of simulated hypoxia on dielectric properties of mouse erythrocytes].

    PubMed

    Ma, Qing; Tang, Zhi-Yuan; Wang, Qin-Wen; Zhao, Xin

    2008-02-01

    To explore the influence of simulated altitude hypoxia on dielectric properties of mouse erythrocytes. Experimental animals were divided into the plain control group(control) and simulated altitude hypoxia group (altitude). The AC impedance of mouse erythrocytes was measured with the Agilent 4294A impedance analyzer, the influence of simulated altitude hypoxia on dielectric properties of mouse erythrocytes was observed by cell dielectric spectroscopy, Cole-Cole plots, loss factor spectrum, loss tangent spectrum, and curve fitting analysis of Cole-Cole equation. After mice were exposed to hypoxia at simulated 5000 m altitude for 4 weeks, permittivity at low frequency (epsilonl) and dielectric increment (deltaepsilon) increased 57% and 59% than that of control group respectively, conductivity at low frequency (kappal) and conductivity at high frequency (kappah) reduced 49% and 11% than that of control group respectively. The simulated altitude hypoxia could arise to increase dielectric capability and depress conductive performance on mouse erythrocytes.

  11. Novel high-frequency, high-power, pulsed oscillator based on a transmission line transformer.

    PubMed

    Burdt, R; Curry, R D

    2007-07-01

    Recent analysis and experiments have demonstrated the potential for transmission line transformers to be employed as compact, high-frequency, high-power, pulsed oscillators with variable rise time, high output impedance, and high operating efficiency. A prototype system was fabricated and tested that generates a damped sinusoidal wave form at a center frequency of 4 MHz into a 200 Omega load, with operating efficiency above 90% and peak power on the order of 10 MW. The initial rise time of the pulse is variable and two experiments were conducted to demonstrate initial rise times of 12 and 3 ns, corresponding to a spectral content from 4-30 and from 4-100 MHz, respectively. A SPICE model has been developed to accurately predict the circuit behavior and scaling laws have been identified to allow for circuit design at higher frequencies and higher peak power. The applications, circuit analysis, test stand, experimental results, circuit modeling, and design of future systems are all discussed.

  12. Advances in high gradient normal conducting accelerator structures

    DOE PAGES

    Simakov, Evgenya Ivanovna; Dolgashev, Valery A.; Tantawi, Sami G.

    2018-03-09

    Here, this paper reviews the current state-of-the-art in understanding the phenomena of ultra-high vacuum radio-frequency (rf) breakdown in accelerating structures and the efforts to improve stable operation of the structures at accelerating gradients above 100 MV/m. Numerous studies have been conducted recently with the goal of understanding the dependence of the achievable accelerating gradients and breakdown rates on the frequency of operations, the geometry of the structure, material and method of fabrication, and operational temperature. Tests have been conducted with single standing wave accelerator cells as well as with the multi-cell traveling wave structures. Notable theoretical effort was directed atmore » understanding the physical mechanisms of the rf breakdown and its statistical behavior. Finally, the achievements presented in this paper are the result of the large continuous self-sustaining collaboration of multiple research institutions in the United States and worldwide.« less

  13. Advances in high gradient normal conducting accelerator structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Evgenya Ivanovna; Dolgashev, Valery A.; Tantawi, Sami G.

    Here, this paper reviews the current state-of-the-art in understanding the phenomena of ultra-high vacuum radio-frequency (rf) breakdown in accelerating structures and the efforts to improve stable operation of the structures at accelerating gradients above 100 MV/m. Numerous studies have been conducted recently with the goal of understanding the dependence of the achievable accelerating gradients and breakdown rates on the frequency of operations, the geometry of the structure, material and method of fabrication, and operational temperature. Tests have been conducted with single standing wave accelerator cells as well as with the multi-cell traveling wave structures. Notable theoretical effort was directed atmore » understanding the physical mechanisms of the rf breakdown and its statistical behavior. Finally, the achievements presented in this paper are the result of the large continuous self-sustaining collaboration of multiple research institutions in the United States and worldwide.« less

  14. An analysis of the relationships between subthreshold electrical properties and excitability in skeletal muscle

    PubMed Central

    L.-H. Huang, Christopher; Fraser, James A.

    2011-01-01

    Skeletal muscle activation requires action potential (AP) initiation followed by its sarcolemmal propagation and tubular excitation to trigger Ca2+ release and contraction. Recent studies demonstrate that ion channels underlying the resting membrane conductance (GM) of fast-twitch mammalian muscle fibers are highly regulated during muscle activity. Thus, onset of activity reduces GM, whereas prolonged activity can markedly elevate GM. Although these observations implicate GM regulation in control of muscle excitability, classical theoretical studies in un-myelinated axons predict little influence of GM on membrane excitability. However, surface membrane morphologies differ markedly between un-myelinated axons and muscle fibers, predominantly because of the tubular (t)-system of muscle fibers. This study develops a linear circuit model of mammalian muscle fiber and uses this to assess the role of subthreshold electrical properties, including GM changes during muscle activity, for AP initiation, AP propagation, and t-system excitation. Experimental observations of frequency-dependent length constant and membrane-phase properties in fast-twitch rat fibers could only be replicated by models that included t-system luminal resistances. Having quantified these resistances, the resulting models showed enhanced conduction velocity of passive current flow also implicating elevated AP propagation velocity. Furthermore, the resistances filter passive currents such that higher frequency current components would determine sarcolemma AP conduction velocity, whereas lower frequency components excite t-system APs. Because GM modulation affects only the low-frequency membrane impedance, the GM changes in active muscle would predominantly affect neuromuscular transmission and low-frequency t-system excitation while exerting little influence on the high-frequency process of sarcolemmal AP propagation. This physiological role of GM regulation was increased by high Cl− permeability, as in muscle endplate regions, and by increased extracellular [K+], as observed in working muscle. Thus, reduced GM at the onset of exercise would enhance t-system excitation and neuromuscular transmission, whereas elevated GM after sustained activity would inhibit these processes and thereby accentuate muscle fatigue. PMID:21670208

  15. ELECTRIC IMPEDANCE OF ARBACIA EGGS

    PubMed Central

    Cole, Kenneth S.; Cole, Robert H.

    1936-01-01

    The alternating current resistance and capacity of suspensions of unfertilized and fertilized eggs of Arbacia punctulata have been measured at frequencies from 103 to 1.64 x 107 cycles per second. The unfertilized egg has a static plasma membrane capacity of 0.73 µf./cm.2 which is practically independent of frequency. The fertilized egg has a static membrane capacity of 3.1 µf./cm.2 at low frequencies which decreases to a value of 0.55 µf./cm.2 at high frequencies. The decrease follows closely the relaxation dispersion of the dielectric constant if the dissipation of such a system is ignored. It is considered more probable that the effect is due to a fertilization membrane of 3.1 µf./cm.2 capacity lifted 1.5 µ. from the plasma membrane, the interspace having the conductivity of sea water. The suspensions show a frequency-dependent capacity at low frequencies which may be attributable to surface conductance. The equivalent low frequency internal specific resistance of both the unfertilized and fertilized egg is about 186 ohm cm. or about 6 times that of sea water, while the high frequency data extrapolate to a value of about 4 times sea water. There is evidence at the highest frequencies that the current is penetrating the nucleus and other materials in the cytoplasm. If this effect were entirely due to the nucleus it would lead to a very approximate value of 0.1 µf./cm.2 for the capacity of the nuclear membrane. The measurements do not indicate any change in this effect on fertilization. PMID:19872952

  16. Nondestructive In Situ Measurement Method for Kernel Moisture Content in Corn Ear.

    PubMed

    Zhang, Han-Lin; Ma, Qin; Fan, Li-Feng; Zhao, Peng-Fei; Wang, Jian-Xu; Zhang, Xiao-Dong; Zhu, De-Hai; Huang, Lan; Zhao, Dong-Jie; Wang, Zhong-Yi

    2016-12-20

    Moisture content is an important factor in corn breeding and cultivation. A corn breed with low moisture at harvest is beneficial for mechanical operations, reduces drying and storage costs after harvesting and, thus, reduces energy consumption. Nondestructive measurement of kernel moisture in an intact corn ear allows us to select corn varieties with seeds that have high dehydration speeds in the mature period. We designed a sensor using a ring electrode pair for nondestructive measurement of the kernel moisture in a corn ear based on a high-frequency detection circuit. Through experiments using the effective scope of the electrodes' electric field, we confirmed that the moisture in the corn cob has little effect on corn kernel moisture measurement. Before the sensor was applied in practice, we investigated temperature and conductivity effects on the output impedance. Results showed that the temperature was linearly related to the output impedance (both real and imaginary parts) of the measurement electrodes and the detection circuit's output voltage. However, the conductivity has a non-monotonic dependence on the output impedance (both real and imaginary parts) of the measurement electrodes and the output voltage of the high-frequency detection circuit. Therefore, we reduced the effect of conductivity on the measurement results through measurement frequency selection. Corn moisture measurement results showed a quadric regression between corn ear moisture and the imaginary part of the output impedance, and there is also a quadric regression between corn kernel moisture and the high-frequency detection circuit output voltage at 100 MHz. In this study, two corn breeds were measured using our sensor and gave R ² values for the quadric regression equation of 0.7853 and 0.8496.

  17. Methods, computer readable media, and graphical user interfaces for analysis of frequency selective surfaces

    DOEpatents

    Kotter, Dale K [Shelley, ID; Rohrbaugh, David T [Idaho Falls, ID

    2010-09-07

    A frequency selective surface (FSS) and associated methods for modeling, analyzing and designing the FSS are disclosed. The FSS includes a pattern of conductive material formed on a substrate to form an array of resonance elements. At least one aspect of the frequency selective surface is determined by defining a frequency range including multiple frequency values, determining a frequency dependent permittivity across the frequency range for the substrate, determining a frequency dependent conductivity across the frequency range for the conductive material, and analyzing the frequency selective surface using a method of moments analysis at each of the multiple frequency values for an incident electromagnetic energy impinging on the frequency selective surface. The frequency dependent permittivity and the frequency dependent conductivity are included in the method of moments analysis.

  18. Measurement of n-type Dry Thermally Oxidized 6H-SiC Metal-oxide Semiconductor Diodes by Quasistatic and High-Frequency Capacitance Versus Voltage and Capacitance Transient Techniques

    NASA Technical Reports Server (NTRS)

    Neudeck, P.; Kang, S.; Petit, J.; Tabib-Azar, M.

    1994-01-01

    Dry-oxidized n-type 6H-SiC metal-oxide-semiconductor capacitors are investigated using quasistatic capacitance versus voltage (C-V), high-frequency C-V, and pulsed high-frequency capacitance transient (C-t) analysis over the temperature range from 297 to 573 K. The quasistatic C - V characteristics presented are the first reported for 6H-SiC MOS capacitors, and exhibit startling nonidealities due to nonequilibrium conditions that arise from the fact that the recombination/generation process in 6H-SiC is extraordinarily slow even at the highest measurement temperature employed. The high-frequency dark C-V characteristics all showed deep depletion with no observable hysteresis. The recovery of the high-frequency capacitance from deep depletion to inversion was used to characterize the minority-carrier generation process as a function of temperature. Zerbst analysis conducted on the resulting C-t transients, which were longer than 1000 s at 573 K, showed a generation lifetime thermal activation energy of 0.49 eV.

  19. High output lamp with high brightness

    DOEpatents

    Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.

    2002-01-01

    An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.

  20. Superresolution imaging reveals activity-dependent plasticity of axon morphology linked to changes in action potential conduction velocity.

    PubMed

    Chéreau, Ronan; Saraceno, G Ezequiel; Angibaud, Julie; Cattaert, Daniel; Nägerl, U Valentin

    2017-02-07

    Axons convey information to nearby and distant cells, and the time it takes for action potentials (APs) to reach their targets governs the timing of information transfer in neural circuits. In the unmyelinated axons of hippocampus, the conduction speed of APs depends crucially on axon diameters, which vary widely. However, it is not known whether axon diameters are dynamic and regulated by activity-dependent mechanisms. Using time-lapse superresolution microscopy in brain slices, we report that axons grow wider after high-frequency AP firing: synaptic boutons undergo a rapid enlargement, which is mostly transient, whereas axon shafts show a more delayed and progressive increase in diameter. Simulations of AP propagation incorporating these morphological dynamics predicted bidirectional effects on AP conduction speed. The predictions were confirmed by electrophysiological experiments, revealing a phase of slowed down AP conduction, which is linked to the transient enlargement of the synaptic boutons, followed by a sustained increase in conduction speed that accompanies the axon shaft widening induced by high-frequency AP firing. Taken together, our study outlines a morphological plasticity mechanism for dynamically fine-tuning AP conduction velocity, which potentially has wide implications for the temporal transfer of information in the brain.

  1. A high-frequency transimpedance amplifier for CMOS integrated 2D CMUT array towards 3D ultrasound imaging.

    PubMed

    Huang, Xiwei; Cheong, Jia Hao; Cha, Hyouk-Kyu; Yu, Hongbin; Je, Minkyu; Yu, Hao

    2013-01-01

    One transimpedance amplifier based CMOS analog front-end (AFE) receiver is integrated with capacitive micromachined ultrasound transducers (CMUTs) towards high frequency 3D ultrasound imaging. Considering device specifications from CMUTs, the TIA is designed to amplify received signals from 17.5MHz to 52.5MHz with center frequency at 35MHz; and is fabricated in Global Foundry 0.18-µm 30-V high-voltage (HV) Bipolar/CMOS/DMOS (BCD) process. The measurement results show that the TIA with power-supply 6V can reach transimpedance gain of 61dBΩ and operating frequency from 17.5MHz to 100MHz. The measured input referred noise is 27.5pA/√Hz. Acoustic pulse-echo testing is conducted to demonstrate the receiving functionality of the designed 3D ultrasound imaging system.

  2. Corrosion monitoring using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  3. A high sensitivity ultralow temperature RF conductance and noise measurement setup.

    PubMed

    Parmentier, F D; Mahé, A; Denis, A; Berroir, J-M; Glattli, D C; Plaçais, B; Fève, G

    2011-01-01

    We report on the realization of a high sensitivity RF noise measurement scheme to study small current fluctuations of mesoscopic systems at milli-Kelvin temperatures. The setup relies on the combination of an interferometric amplification scheme and a quarter-wave impedance transformer, allowing the measurement of noise power spectral densities with gigahertz bandwidth up to five orders of magnitude below the amplifier noise floor. We simultaneously measure the high frequency conductance of the sample by derivating a portion of the signal to a microwave homodyne detection. We describe the principle of the setup, as well as its implementation and calibration. Finally, we show that our setup allows to fully characterize a subnanosecond on-demand single electron source. More generally, its sensitivity and bandwidth make it suitable for applications manipulating single charges at GHz frequencies.

  4. Radio frequency (RF) microwave components and subsystems using loaded ridge waveguide

    DOEpatents

    Kang, Yoon W.

    2013-08-20

    A waveguide having a non-conductive material with a high permeability (.mu., .mu..sub.r for relative permeability) and/or a high permittivity (.di-elect cons., .di-elect cons..sub.r for relative permittivity) positioned within a housing. When compared to a hollow waveguide, the waveguide of this invention, reduces waveguide dimensions by .varies..mu. ##EQU00001## The waveguide of this invention further includes ridges which further reduce the size and increases the usable frequency bandwidth.

  5. Introduction of a Current Waveform, Waveshaping Technique to Limit Conduction Loss in High-Frequency DC-DC Converters Suitable for Space Power

    DTIC Science & Technology

    1990-06-01

    resonant Buck converter 19 ABSTRACT (Continue on reverse if necessary and identify by block number) Space power supply manufacturers have tried to...increase power density and construct smaller, highly efficient power supplies by increasing switching frequency. Incorporation of a power MOSFET as a...Michael, Second Reader \\’-. ohn P. Powers , Chairman Department of Electrical Engineering iii ABSTRACT Space power supply manufacturers have tried to

  6. High-frequency source radiation during the 2011 Tohoku-Oki earthquake, Japan, inferred from KiK-net strong-motion seismograms

    NASA Astrophysics Data System (ADS)

    Kumagai, Hiroyuki; Pulido, Nelson; Fukuyama, Eiichi; Aoi, Shin

    2013-01-01

    investigate source processes of the 2011 Tohoku-Oki earthquake, we utilized a source location method using high-frequency (5-10 Hz) seismic amplitudes. In this method, we assumed far-field isotropic radiation of S waves, and conducted a spatial grid search to find the best fitting source locations along the subducted slab in each successive time window. Our application of the method to the Tohoku-Oki earthquake resulted in artifact source locations at shallow depths near the trench caused by limited station coverage and noise effects. We then assumed various source node distributions along the plate, and found that the observed seismograms were most reasonably explained when assuming deep source nodes. This result suggests that the high-frequency seismic waves were radiated at deeper depths during the earthquake, a feature which is consistent with results obtained from teleseismic back-projection and strong-motion source model studies. We identified three high-frequency subevents, and compared them with the moment-rate function estimated from low-frequency seismograms. Our comparison indicated that no significant moment release occurred during the first high-frequency subevent and the largest moment-release pulse occurred almost simultaneously with the second high-frequency subevent. We speculated that the initial slow rupture propagated bilaterally from the hypocenter toward the land and trench. The landward subshear rupture propagation consisted of three successive high-frequency subevents. The trenchward propagation ruptured the strong asperity and released the largest moment near the trench.

  7. Electric discharge for treatment of trace contaminants

    NASA Technical Reports Server (NTRS)

    Flamm, D. L.; Wydeven, T. J. (Inventor)

    1978-01-01

    A radio frequency glow discharge reactor is described for removing trace oxidizable contaminants from an oxygen bearing atmosphere. The reaction chamber is defined by an inner metal electrode facing a dielectric backed by an outer conductive electrode. In one embodiment, a conductive liquid forms the conductor of an outer electrode and cools the dielectric. A resonator coupled to a variable radio frequency source generates the high voltages for creating a glow discharge in the chamber at a predetermined pressure whereby the trace contaminants are oxidized into a few simple non-toxic products that may be easily recovered. The corresponding process for removal of trace contaminants from an oxygen-bearing atmosphere with high efficiency independent of the concentration level is also disclosed.

  8. High-frequency response and the possibilities of frequency-tunable narrow-band terahertz amplification in resonant tunneling nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapaev, V. V., E-mail: kapaev@sci.lebedev.ru; Kopaev, Yu. V.; Savinov, S. A.

    2013-03-15

    The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schroedinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In{sub 0.53}Ga{sub 0.47}As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V{sub dc} in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in suchmore » structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.« less

  9. Investigation of the Effects of Notch Width on Eddy Current Response and Comparison of Signals from Notches and Cracks

    NASA Astrophysics Data System (ADS)

    Larson, B. F.; Lo, C. C. H.; Nakagawa, N.

    2010-02-01

    This paper reports on work conducted to investigate the effect that electrical discharge machining (EDM) notch width has on the eddy current (EC) signal as a function of coil drive frequency. The notch results are also compared to EC signals from laboratory-grown fatigue cracks. This study builds upon previous work with titanium, Inconel and aluminum materials where the signal amplitude was shown to decrease, as expected, as the notch width decreases. The trend was captured well by numerical results and this allowed estimates to be made about the signals from idealized "zero-width" notches. The results indicated that the signal reduction factor from a 0.127 mm (0.005 inch) wide, rectangular notch to a theoretical zero-width semi-elliptical notch of the same size ranged from 25 to 42% for low conductivity materials when data was collected at 2 MHz. For aluminum, the difference between signals from 0.127 mm wide notches and estimated signals for zero-width notches was approximately 50%. However, 2 MHz is an uncommonly high frequency for inspecting aluminum alloys so additional work was necessary to investigate the notch width effect at lower frequencies. This study sought to determine how the notch-width effect changed as a function of frequency for high conductivity materials such as aluminum.

  10. Nonequilibrium simulations of model ionomers in an oscillating electric field

    DOE PAGES

    Ting, Christina L.; Sorensen-Unruh, Karen E.; Stevens, Mark J.; ...

    2016-07-25

    Here, we perform molecular dynamics simulations of a coarse-grained model of ionomer melts in an applied oscillating electric field. The frequency-dependent conductivity and susceptibility are calculated directly from the current density and polarization density, respectively. At high frequencies, we find a peak in the real part of the conductivity due to plasma oscillations of the ions. At lower frequencies, the dynamic response of the ionomers depends on the ionic aggregate morphology in the system, which consists of either percolated or isolated aggregates. We show that the dynamic response of the model ionomers to the applied oscillating field can be understoodmore » by comparison with relevant time scales in the systems, obtained from independent calculations.« less

  11. Nonequilibrium simulations of model ionomers in an oscillating electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, Christina L.; Sorensen-Unruh, Karen E.; Stevens, Mark J.

    Here, we perform molecular dynamics simulations of a coarse-grained model of ionomer melts in an applied oscillating electric field. The frequency-dependent conductivity and susceptibility are calculated directly from the current density and polarization density, respectively. At high frequencies, we find a peak in the real part of the conductivity due to plasma oscillations of the ions. At lower frequencies, the dynamic response of the ionomers depends on the ionic aggregate morphology in the system, which consists of either percolated or isolated aggregates. We show that the dynamic response of the model ionomers to the applied oscillating field can be understoodmore » by comparison with relevant time scales in the systems, obtained from independent calculations.« less

  12. Variations in otological presentation of lightning strike victims: Clinical report of 3 patients.

    PubMed

    Kılıç, Erbil; Genç, Hakan; Aydın, Ümit; Aşık, Burak; Satar, Bülent

    2017-03-01

    Lightning strike can cause fatal or nonfatal injuries. Some nonfatal injuries are associated with otological symptoms and findings. Conductive hearing loss due to rupture of the tympanic membrane is the most common audiovestibular lesion of lightning strike. Various forms of sensorineural hearing loss and dizziness have also been reported. Presently described are 3 cases of lightning strike injury. First patient had mid-frequency hearing loss in right ear and high frequency sensorineural hearing loss in left ear. Second patient had high frequency sensorineural hearing loss in left ear, and the third had peripheral facial palsy with perilymphatic fistula on same side. This is the first documented case of mid-frequency hearing loss occurring after lightning strike.

  13. Site of maxima of conductivity, temperatures, density of the current and specific capacity of the thermal emission in the HFI-discharge

    NASA Astrophysics Data System (ADS)

    Gerasimov, A.; Kirpichnikov, A.; Sabirova, F.; Gainullin, R.

    2017-11-01

    On the basis of theoretical analysis of distributions of the conductivity, current density and specific power of heat release in the high-frequency induction discharge, a law of crowding of maxima of these values has been established.

  14. Frequency of Six Early Childhood Education Approaches: A 10-Year Content Analysis of Early Childhood Education Journal

    ERIC Educational Resources Information Center

    Walsh, Bridget A.; Petty, Karen

    2007-01-01

    The frequency of early childhood education approaches spanning 10 years of publications was investigated. A content analysis of publications (N = 492) from "Early Childhood Education Journal" was conducted. From a previous content analysis six approaches or search words were identified: Bank Street, Head Start, High/Scope, Montessori, Reggio…

  15. Systems and methods for creation of conducting networks of magnetic particles through dynamic self-assembly process

    DOEpatents

    Snezhko, Oleksiy [Woodridge, IL; Aronson, Igor [Darien, IL; Kwok, Wai-Kwong [Downers Grove, IL

    2011-01-25

    Self-assembly of magnetic microparticles in AC magnetic fields. Excitation of the system by an AC magnetic field provides a variety of patterns that can be controlled by adjusting the frequency and the amplitude of the field. At low particle densities the low-frequency magnetic excitation favors cluster phase formation, while high frequency excitation favors chains and netlike structures. For denser configurations, an abrupt transition to the network phase was obtained.

  16. High-Frequency Axial Fatigue Test Procedures for Spectrum Loading

    DTIC Science & Technology

    2016-07-20

    histories can be performed at frequencies much higher than standard servo-hydraulic test frames by using a test frame that is optimized to run at higher...by using a test frame that is optimized to run at higher frequencies. AIR 4.3 has conducted a research program to develop a test capability for...Applied Research (BAR) program (219BAR-10-008) was initiated in 2010. The program investigated the influence of a generic rotorcraft main rotor blade root

  17. Optical conductivity of three and two dimensional topological nodal-line semimetals

    NASA Astrophysics Data System (ADS)

    Barati, Shahin; Abedinpour, Saeed H.

    2017-10-01

    The peculiar shape of the Fermi surface of topological nodal-line semimetals at low carrier concentrations results in their unusual optical and transport properties. We analytically investigate the linear optical responses of three- and two-dimensional nodal-line semimetals using the Kubo formula. The optical conductivity of a three-dimensional nodal-line semimetal is anisotropic. Along the axial direction (i.e., the direction perpendicular to the nodal-ring plane), the Drude weight has a linear dependence on the chemical potential at both low and high carrier dopings. For the radial direction (i.e., the direction parallel to the nodal-ring plane), this dependence changes from linear into quadratic in the transition from low into high carrier concentration. The interband contribution into optical conductivity is also anisotropic. In particular, at large frequencies, it saturates to a constant value for the axial direction and linearly increases with frequency along the radial direction. In two-dimensional nodal-line semimetals, no interband optical transition could be induced and the only contribution to the optical conductivity arises from the intraband excitations. The corresponding Drude weight is independent of the carrier density at low carrier concentrations and linearly increases with chemical potential at high carrier doping.

  18. Rietveld refinement, dielectric and magnetic properties of Nb modified Bi0.80Ba0.20FeO3 ceramic

    NASA Astrophysics Data System (ADS)

    Jangra, Sandhaya; Sanghi, Sujata; Agarwal, Ashish; Rangi, Manisha

    2018-05-01

    Bi0.80Ba0.20Fe0.95Nb0.05O3 ceramic has been prepared via conventional solid state reaction method. Structure analysis was carried out by X-ray diffraction (XRD) technique at room temperature. XRD pattern confirmed the crystalline nature of prepared sample. Rietveld analysis used for further structural investigations and confirmed the existence of rhombohedral symmetry (R3c space group). The dielectric response shows dispersion at lower frequency range and becomes frequency independent at high frequency. The approximation of conduction mechanism is determined by the temperature dependent behavior of frequency exponent `s'. Fitting results suggests the applicability of small polaron conduction mechanism at lower temperatures and CBH model at higher temperature. Room temperature magnetic measurements give the evidence of significant enhancement in magnetic properties with remanent magnetization (Mr = 0.1218 emu/g) and coercive field (Hc = 3.5342 kOe).

  19. Dielectric relaxation and conduction mechanism studies of BNT-BT-BKT ceramics

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, M.; Khatua, Dipak Kumar; Pattanayak, Ranjit; Kumar, P.

    2017-12-01

    Electrical properties of 0.884Bi0.5Na0.5TiO3-0.036BaTiO3-0.08Bi0.5K0.5TiO3 ceramic samples were investigated in 100Hz to 1 MHz frequency range and in 200-450 °C temperature range using impedance spectroscopy technique. Real part of impedance versus frequency plots in lower frequency region revealed its PTCR behavior and NTCR behaviors in higher frequency region. Impedance study also suggested the presence of non-Debye type relaxation mechanism. Cole-Cole plots suggested two relaxation regions, in which grain and grain, grain boundary effects were prominent in lower and high temperature regions, respectively. DC conductivity followed Arrhenius law with an activation energy of ∼0.79 and 1.2 eV, which suggested that the charge carrier were cation vacancies in lower temperature region whereas cation vacancies and oxygen vacancies in higher temperature region.

  20. Design and fabrication of PZN-7%PT single crystal high frequency angled needle ultrasound transducers.

    PubMed

    Zhou, Qifa; Wu, Dawei; Jin, Jing; Hu, Chang-hong; Xu, Xiaochen; Williams, Jay; Cannata, Jonathan M; Lim, Leongchew; Shung, K Kirk

    2008-01-01

    A high-frequency angled needle ultrasound transducer with an aperture size of 0.4 x 0.56 mm2 was fabricated using a lead zinc niobate-lead titanate (PZN- 7%PT) single crystal as the active piezoelectric material. The single crystal was bonded to a conductive silver particle matching layer and a conductive epoxy backing material through direct contact curing. A parylene outer matching layer was formed by vapor deposition. Angled needle probe configuration was achieved by dicing at 45 degrees to the single crystal poling direction to satisfy a clinical request for blood flow measurement in the posterior portion of the eye. The electrical impedance magnitude and phase of the transducer were 42 Omega and -63 degrees , respectively. The measured center frequency and the fractional bandwidth at -6 dB were 43 MHz and 45%, respectively. The two-way insertion loss was approximately 17 dB. Wire phantom imaging using fabricated PZN-7%PT single crystal transducers was obtained and spatial resolutions were assessed.

  1. HIGH FREQUENCY POWER TRANSMISSION LINE FOR CYCLOTRONS AND THE LIKE

    DOEpatents

    Armstrong, W.J.

    1954-04-20

    High-frequency power transmission systems, particularly a stacked capacitance alternating power current transmission line wherein maximum utilization of the effective conductios skin of the line conductors is achieved while enabling a low impedance to be obtained are reported. The transmission line consists of a number of flat metal strips with interleaved dielectric strips. The metal dielectric strips are coiled spirally with the axis of the spiral extending along the length of the strips, and the alternating metal strips at the output end have outwardly extending aligned lugs which are directly strapped together and connected to the respective terminals on the load. At the input end of the transmission line, similarly, the alternate metal strips are directly strapped together and connected to an altereating current source. With the arrangement described each metal strip conducts on both sides, so that the metal strips are designed to have a thickness corresponding to twice the depth of the "skin effect" conducting lamina of each conductor at the source frequency.

  2. Performance evaluation of a high power DC-DC boost converter for PV applications using SiC power devices

    NASA Astrophysics Data System (ADS)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2016-09-01

    The development of Wide band gap (WBG) power devices has been attracted by many commercial companies to be available in the market because of their enormous advantages over the traditional Si power devices. An example of WBG material is SiC, which offers a number of advantages over Si material. For example, SiC has the ability of blocking higher voltages, reducing switching and conduction losses and supports high switching frequency. Consequently, SiC power devices have become the affordable choice for high frequency and power application. The goal of this paper is to study the performance of 4.5 kW, 200 kHz, 600V DC-DC boost converter operating in continuous conduction mode (CCM) for PV applications. The switching behavior and turn on and turn off losses of different switching power devices such as SiC MOSFET, SiC normally ON JFET and Si MOSFET are investigated and analyzed. Moreover, a detailed comparison is provided to show the overall efficiency of the DC-DC boost converter with different switching power devices. It is found that the efficiency of SiC power switching devices are higher than the efficiency of Si-based switching devices due to low switching and conduction losses when operating at high frequencies. According to the result, the performance of SiC switching power devices dominate the conventional Si power devices in terms of low losses, high efficiency and high power density. Accordingly, SiC power switching devices are more appropriate for PV applications where a converter of smaller size with high efficiency, and cost effective is required.

  3. Near Surface Investigation of Agricultural Soils using a Multi-Frequency Electromagnetic Sensor

    NASA Astrophysics Data System (ADS)

    Sadatcharam, K.; Unc, A.; Krishnapillai, M.; Cheema, M.; Galagedara, L.

    2017-12-01

    Electromagnetic induction (EMI) sensors have been used as precision agricultural tools over decades. They are being used to measure spatiotemporal variability of soil properties and soil stratification in the sense of apparent electrical conductivity (ECa). We mapped the ECa variability by horizontal coplanar (HCP) and by vertical coplanar (VCP) orientation of a multi-frequency EMI sensor and identified its interrelation with physical properties of soil. A broadband, multi-frequency handheld EMI sensor (GEM-2) was used on a loamy sand soil cultivated with silage-corn in western Newfoundland, Canada. Log and line spaced, three frequency ranges (weak, low, and high), based on the factory calibration were tested using HCP and VCP orientation to produce spatiotemporal data of ECa. In parallel, we acquired data on soil moisture content, texture and bulk density. We then assessed the statistical significance of the relationship between ECa and soil physical properties. The test site had three areas of distinct soil properties corresponding to the elevation, in particular. The same spatial variability was also identified by ECa mapping at different frequencies and the two modes of coil orientations. Data analysis suggested that the high range frequency (38 kHz (log-spaced) and 49 kHz (line-spaced)) for both HCP and VCP orientations produced accurate ECa maps, better than the weak and low range frequencies tested. Furthermore, results revealed that the combined effects of soil texture, moisture content and bulk density affect ECameasurements as obtained by both frequencies and two coil orientations. Keywords: Apparent electrical conductivity, Electromagnetic induction, Horizontal coplanar, Soil properties, Vertical coplanar

  4. Effects of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper limb motor dysfunction in patients with subacute cerebral infarction.

    PubMed

    Li, Jiang; Meng, Xiang-Min; Li, Ru-Yi; Zhang, Ru; Zhang, Zheng; Du, Yi-Feng

    2016-10-01

    Studies have confirmed that low-frequency repetitive transcranial magnetic stimulation can decrease the activity of cortical neurons, and high-frequency repetitive transcranial magnetic stimulation can increase the excitability of cortical neurons. However, there are few studies concerning the use of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper-limb motor function after cerebral infarction. We hypothesized that different frequencies of repetitive transcranial magnetic stimulation in patients with cerebral infarction would produce different effects on the recovery of upper-limb motor function. This study enrolled 127 patients with upper-limb dysfunction during the subacute phase of cerebral infarction. These patients were randomly assigned to three groups. The low-frequency group comprised 42 patients who were treated with 1 Hz repetitive transcranial magnetic stimulation on the contralateral hemisphere primary motor cortex (M1). The high-frequency group comprised 43 patients who were treated with 10 Hz repetitive transcranial magnetic stimulation on ipsilateral M1. Finally, the sham group comprised 42 patients who were treated with 10 Hz of false stimulation on ipsilateral M1. A total of 135 seconds of stimulation was applied in the sham group and high-frequency group. At 2 weeks after treatment, cortical latency of motor-evoked potentials and central motor conduction time were significantly lower compared with before treatment. Moreover, motor function scores were significantly improved. The above indices for the low- and high-frequency groups were significantly different compared with the sham group. However, there was no significant difference between the low- and high-frequency groups. The results show that low- and high-frequency repetitive transcranial magnetic stimulation can similarly improve upper-limb motor function in patients with cerebral infarction.

  5. Comparative studies of the structure, morphology and electrical conductivity of polyaniline weakly doped with chlorocarboxylic acids

    NASA Astrophysics Data System (ADS)

    Gmati, Fethi; Fattoum, Arbi; Bohli, Nadra; Dhaoui, Wadia; Belhadj Mohamed, Abdellatif

    2007-08-01

    We report the results of studies on two series of polyaniline (PANI), doped with dichloroacetic (DCA) and trichloroacetic (TCA) acids, respectively, at various doping rates and obtained by the in situ polymerization method. Samples were characterized by x-ray diffraction, scanning electron microscopy and conductivity measurements. The direct current (dc) and alternating current (ac) electrical conductivities of PANI salts have been investigated in the temperature range 100-310 K and frequency range 7-106 Hz. The results of this study indicate better chain ordering and higher conductivity for PANI doped with TCA. The dc conductivity of all samples is suitably fitted to Mott's three-dimensional variable-range hopping (VRH) model. Different Mott parameters such as characteristic temperature T0, density of states at the Fermi level (N(EF)), average hopping energy (W) and the average hopping distance (R) have been evaluated. The dependence of such values on the dopant acid used is discussed. At high frequencies, the ac conductivity follows the power law σac(ω,T) = A(T)ωs(T,ω), which is characteristic for charge transport in disordered materials by hopping or tunnelling processes. The observed increase in the frequency exponent s with temperature suggests that the small-polaron tunnelling model best describes the dominant ac conduction mechanism. A direct correlation between conductivity, structure and morphology was obtained in our systems.

  6. AIN-Coated Al(2)O(3) Substrates For Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Kolawa, Elzbieta; Lowry, Lynn; Herman, Martin; Lee, Karen

    1996-01-01

    Type of improved ceramic substrate for high-frequency, high-power electronic circuits combines relatively high thermal conductivity of aluminum nitride with surface smoothness of alumina. Consists of 15-micrometer layer of AIN deposited on highly polished alumina. Used for packaging millimeter-wave gallium arsenide transmitter chips, power silicon chips, and like.

  7. Highly selective surface-wave resonators for terahertz frequency range formed by metallic Bragg gratings

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Malkin, A. M.; Sergeev, A. S.; Fil'chenkov, S. E.; Zaslavsky, V. Yu.

    2018-04-01

    In the frame of the quasi-optical approach we solve the diffraction problem and describe surface modes confined at a metallic plate with a shallow grating of finite length. We prove that such planar grating can form a highly selective surface-wave Bragg resonator. For a given material conductivity and grating length, we find the optimum corrugation depth that provides the maximum value of Q factor. These results are applicable for developing resonators for terahertz frequency bands.

  8. Dielectric studies on PVA/PVP blend polymer electrolyte films

    NASA Astrophysics Data System (ADS)

    Kumar, B. Ranjit; Basha, S. K. Shahenoor; Rao, M. C.

    2018-05-01

    Biodegradable blend polymer electrolytes of PVA/PVP with different wt% ratios of MgCl2.6H2O have been prepared using solution cast technique. Dielectric studies were performed on to the prepared films using HIOKI 3532-50 in the frequency range 5000 Hz - 50000 KHz. As increasing the frequency the dielectric constant gradually decreases and found to be high for the sample prepared at 30 wt%; this concludes that the drifting of ions is high giving raise to conductivity phenomenon.

  9. [Comparative assessment of MR-semiotics of acutest intracerebral hematomas in low- and extra high-field frequency magnetic resonance tomography].

    PubMed

    Skvortsova, V I; Burenchev, D V; Tvorogova, T V; Guseva, O I; Prokhorov, A V; Smirnov, A M; Kupriianov, D A; Pirogov, Iu A

    2009-01-01

    An objective of the study was to compare sensitivity of low- and extra high-field frequency magnetic resonance (MR) tomography of acutest intracerebral hematomas (ICH) and to assess differences between symptoms in obtained images. A study was conducted using experimental ICH in rats (n=6). Hematomas were formed by two injections of autologic blood into the brain. MR-devices "Bio Spec 70/30" with magnetic field strength of 7 T and "Ellipse-150" with magnetic field strength of 0,15 T were used in the study. MR-tomography was carried out 3-5 h after the injections. Both MR-devices revealed the presence of pathological lesion in all animals. Extra highfield frequency MR-tomography showed the specific signs of ICH caused by the paramagnetic effect of deoxyhemoglobin in T2 and T2*-weighted images (WI) and low frequency MR-tomography - in T2*-WI only. The comparable sensitivity of low- and extra high-field frequency MR-devices in acutest ICH was established.

  10. Stop Saying That It Is Wrong! Psychophysiological, Cognitive, and Metacognitive Markers of Children’s Sensitivity to Punishment

    PubMed Central

    Gonzalez-Gadea, Maria Luz; Scheres, Anouk; Tobon, Carlos Andres; Damm, Juliane; Baez, Sandra; Huepe, David; Marino, Julian; Marder, Sandra; Manes, Facundo; Abrevaya, Sofia; Ibanez, Agustin

    2015-01-01

    Neurodevelopmental evidence suggests that children’s main decision-making strategy is to avoid options likely to induce punishment. However, the cognitive and affective factors contributing to children’s avoidance to high punishment frequency remain unknown. The present study explored psychophysiological, cognitive, and metacognitive processes associated with sensitivity to punishment frequency. We evaluated 54 participants (between 8 and 15 years old) with a modified Iowa Gambling Task for children (IGT-C) which included options with varying long-term profit and punishment frequencies. Skin conductance responses (SCRs) were recorded during this task. Additionally, we assessed IGT-C metacognitive knowledge, fluid intelligence, and executive functions. Participants exhibited behavioral avoidance and high anticipatory SCRs to options with high frequency of punishment. Moreover, age, IGT-C metacognitive knowledge, and inhibitory control were associated with individual differences in sensitivity to punishment frequency. Our results suggest that children’s preference for infrequently punished decisions is partially explained by psychophysiological signals as well as task complexity and development of cognitive control. PMID:26218584

  11. Stop Saying That It Is Wrong! Psychophysiological, Cognitive, and Metacognitive Markers of Children's Sensitivity to Punishment.

    PubMed

    Gonzalez-Gadea, Maria Luz; Scheres, Anouk; Tobon, Carlos Andres; Damm, Juliane; Baez, Sandra; Huepe, David; Marino, Julian; Marder, Sandra; Manes, Facundo; Abrevaya, Sofia; Ibanez, Agustin

    2015-01-01

    Neurodevelopmental evidence suggests that children's main decision-making strategy is to avoid options likely to induce punishment. However, the cognitive and affective factors contributing to children's avoidance to high punishment frequency remain unknown. The present study explored psychophysiological, cognitive, and metacognitive processes associated with sensitivity to punishment frequency. We evaluated 54 participants (between 8 and 15 years old) with a modified Iowa Gambling Task for children (IGT-C) which included options with varying long-term profit and punishment frequencies. Skin conductance responses (SCRs) were recorded during this task. Additionally, we assessed IGT-C metacognitive knowledge, fluid intelligence, and executive functions. Participants exhibited behavioral avoidance and high anticipatory SCRs to options with high frequency of punishment. Moreover, age, IGT-C metacognitive knowledge, and inhibitory control were associated with individual differences in sensitivity to punishment frequency. Our results suggest that children's preference for infrequently punished decisions is partially explained by psychophysiological signals as well as task complexity and development of cognitive control.

  12. Autonomic nervous functions in fetal type Minamata disease patients: assessment of heart rate variability.

    PubMed

    Oka, Tomoko; Matsukura, Makoto; Okamoto, Miwako; Harada, Noriaki; Kitano, Takao; Miike, Teruhisa; Futatsuka, Makoto

    2002-12-01

    In order to assess the cardiovascular autonomic nervous functions in patients with fetal type Minamata disease (FMD), we investigated blood pressure (BP), and conducted time and frequency domain analysis of heart rate variability (HRV). Subjects were 9 patients in Meisuien recognized as FMD, and 13 healthy age matched control subjects. HRV and BP were assessed after subjects rested in a supine position for 10 minutes. Electrocardiographic (ECG) data were collected for 3 minutes during natural breathing. Time domain analysis (the average of R-R intervals [Mean RR], standard deviation of R-R intervals [SD RR], coefficient of variation [CV]), and frequency domain analysis by fast Fourier transformation (FFT) (power of low frequency [LF] and high frequency [HF] component, expressed in normalized units[nu]) were then conducted. In the time domain analysis, the mean RR of the FMD group was significantly lower than that of the control group. Neither SD RR nor CV showed significant differences between the two groups, but both tended to be lower in the FMD group. In the frequency domain analysis, the HF component of the FMD group was significantly lower than that of the control group. Pulse pressure (PP) was significantly lower in the FMD subjects. These findings suggest that parasympathetic nervous dysfunction might exist in FMD patients, who were exposed to high doses of methylmercury (MeHg) during the prenatal period. Decrease of PP might be due to degenerative changes of blood vessels driven by exposure to high doses of MeHg.

  13. The effect of sampling rate and anti-aliasing filters on high-frequency response spectra

    USGS Publications Warehouse

    Boore, David M.; Goulet, Christine

    2013-01-01

    The most commonly used intensity measure in ground-motion prediction equations is the pseudo-absolute response spectral acceleration (PSA), for response periods from 0.01 to 10 s (or frequencies from 0.1 to 100 Hz). PSAs are often derived from recorded ground motions, and these motions are usually filtered to remove high and low frequencies before the PSAs are computed. In this article we are only concerned with the removal of high frequencies. In modern digital recordings, this filtering corresponds at least to an anti-aliasing filter applied before conversion to digital values. Additional high-cut filtering is sometimes applied both to digital and to analog records to reduce high-frequency noise. Potential errors on the short-period (high-frequency) response spectral values are expected if the true ground motion has significant energy at frequencies above that of the anti-aliasing filter. This is especially important for areas where the instrumental sample rate and the associated anti-aliasing filter corner frequency (above which significant energy in the time series is removed) are low relative to the frequencies contained in the true ground motions. A ground-motion simulation study was conducted to investigate these effects and to develop guidance for defining the usable bandwidth for high-frequency PSA. The primary conclusion is that if the ratio of the maximum Fourier acceleration spectrum (FAS) to the FAS at a frequency fsaa corresponding to the start of the anti-aliasing filter is more than about 10, then PSA for frequencies above fsaa should be little affected by the recording process, because the ground-motion frequencies that control the response spectra will be less than fsaa . A second topic of this article concerns the resampling of the digital acceleration time series to a higher sample rate often used in the computation of short-period PSA. We confirm previous findings that sinc-function interpolation is preferred to the standard practice of using linear time interpolation for the resamplin

  14. Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Karlsen, P.; Shuba, M. V.; Beckerleg, C.; Yuko, D. I.; Kuzhir, P. P.; Maksimenko, S. A.; Ksenevich, V.; Viet, Ho; Nasibulin, A. G.; Tenne, R.; Hendry, E.

    2018-01-01

    We measure the conductivity spectra of thin films comprising bundled single-walled carbon nanotubes (CNTs) of different average lengths in the frequency range 0.3-1000 THz and temperature interval 10-530 K. The observed temperature-induced changes in the terahertz conductivity spectra are shown to depend strongly on the average CNT length, with a conductivity around 1 THz that increases/decreases as the temperature increases for short/long tubes. This behaviour originates from the temperature dependence of the electron scattering rate, which we obtain from Drude fits of the measured conductivity in the range 0.3-2 THz for 10 μm length CNTs. This increasing scattering rate with temperature results in a subsequent broadening of the observed THz conductivity peak at higher temperatures and a shift to lower frequencies for increasing CNT length. Finally, we show that the change in conductivity with temperature depends not only on tube length, but also varies with tube density. We record the effective conductivities of composite films comprising mixtures of WS2 nanotubes and CNTs versus CNT density for frequencies in the range 0.3-1 THz, finding that the conductivity increases/decreases for low/high density films as the temperature increases. This effect arises due to the density dependence of the effective length of conducting pathways in the composite films, which again leads to a shift and temperature dependent broadening of the THz conductivity peak.

  15. Development of a new medium frequency EM device: Mapping soil water content variations using electrical conductivity and dielectric permittivity

    NASA Astrophysics Data System (ADS)

    Kessouri, P.; Buvat, S.; Tabbagh, A.

    2012-12-01

    Both electrical conductivity and dielectric permittivity of soil are influenced by its water content. Dielectric permittivity is usually measured in the high frequency range, using GPR or TDR, where the sensitivity to water content is high. However, its evaluation is limited by a low investigation depth, especially for clay rich soils. Electrical conductivity is closely related not only to soil water content, but also to clay content and soil structure. A simultaneous estimation of these electrical parameters can allow the mapping of soil water content variations for an investigation depth close to 1m. In order to estimate simultaneously both soil electrical conductivity and dielectric permittivity, an electromagnetic device working in the medium frequency range (between 100 kHz and 10 MHz) has been designed. We adopted Slingram geometry for the EM prototype: its PERP configuration (vertical transmission loop Tx and horizontal measuring loop Rx) was defined using 1D ground models. As the required investigation depth is around 1m, the coil spacing was fixed to 1.2m. This prototype works in a frequency range between 1 and 5 MHz. After calibration, we tested the response of prototype to objects with known properties. The first in situ measurements were led on experimental sites with different types of soils and different water content variations (artificially created or natural): sandy alluvium on a plot of INRA (French National Institute for Agricultural Research) in Orléans (Centre, France), a clay-loam soil on an experimental site in Estrée-Mons (Picardie, France) and fractured limestone at the vicinity of Grand (Vosges, France). In the case of the sandy alluvium, the values of dielectric permittivity measured are close to those of HF permittivity and allow the use of existing theoretical models to determine the soil water content. For soils containing higher amount of clay, the coupled information brought by the electrical conductivity and the dielectric permittivity is used. Variations of water content detected by the EM prototype are confirmed by additional DC electrical profiling and direct mass water content measurements along depth. For the clay-loam soil, containing more than 20% of clay, the relative dielectric permittivity values, ranging from 63 to 138, are much higher than those expected in the high frequency range (above 20 MHz, the highest measured permittivity is equal to 81 for water). In the medium frequency range, those values are very likely due to interfacial polarization. This effect, also known as Maxwell-Wagner polarization, should increase with the soil clay content. The first measuring trial is coherent with the gravimetric water content as well as DC electrical profiling measurements. For a clay rich soil, the EM prototype is able to detect water content variations for an investigation depth close to 1m with both electrical conductivity and dielectric permittivity in the medium frequency range. Other field experiments are scheduled to confirm these results on other types of soils.

  16. Calibration of ultra-high frequency (UHF) partial discharge sensors using FDTD method

    NASA Astrophysics Data System (ADS)

    Ishak, Asnor Mazuan; Ishak, Mohd Taufiq

    2018-02-01

    Ultra-high frequency (UHF) partial discharge sensors are widely used for conditioning monitoring and defect location in insulation system of high voltage equipment. Designing sensors for specific applications often requires an iterative process of manufacturing, testing and mechanical modifications. This paper demonstrates the use of finite-difference time-domain (FDTD) technique as a tool to predict the frequency response of UHF PD sensors. Using this approach, the design process can be simplified and parametric studies can be conducted in order to assess the influence of component dimensions and material properties on the sensor response. The modelling approach is validated using gigahertz transverse electromagnetic (GTEM) calibration system. The use of a transient excitation source is particularly suitable for modeling using FDTD, which is able to simulate the step response output voltage of the sensor from which the frequency response is obtained using the same post-processing applied to the physical measurement.

  17. Optimum Construction of Heating Coil for Domestic Induction Cooker

    NASA Astrophysics Data System (ADS)

    Sinha, Dola; Bandyopadhyay, Atanu; Sadhu, Pradip Kumar; Pal, Nitai

    2010-10-01

    The design and optimization of the parameters of heating coil is very important for the analytical analysis of high frequency inverter fed induction cooker. Moreover, accurate prediction of high frequency winding loss (i.e., losses due to skin and proximity effects) is necessary as the induction cooker used in power electronics applications. At high frequency current penetration in the induction coil circuit is very difficult for conducting wire due to skin-effect. To eradicate the skin effect heating coil is made up of bundle conductor i.e., litz wire. In this paper inductances and AC resistances of a litz-wire are calculated and optimized by considering the input parameters like wire type, shape, number of strand, number of spiral turn, number of twist per feet of heating coil and operating frequency. A high frequency half bridge series resonant mirror inverter circuit is used in this paper and taking the optimum values of inductance and ac resistance the circuit is simulated through PSPICE simulations. It has been noticed that the results are feasible enough for real implementation.

  18. Ultra-Wideband EMI Sensing: Non-Metallic Target Detection and Automatic Classification of Unexploded Ordnance

    NASA Astrophysics Data System (ADS)

    Sigman, John Brevard

    Buried explosive hazards present a pressing problem worldwide. Millions of acres and thousands of sites are contaminated in the United States alone [1, 2]. There are three categories of explosive hazards: metallic, intermediate-electrical conducting (IEC), and non-conducting targets. Metallic target detection and classification by electromagnetic (EM) signature has been the subject of research for many years. Key to the success of this research is modern multi-static Electromagnetic Induction (EMI) sensors, which are able to measure the wideband EMI response from metallic buried targets. However, no hardware solutions exist which can characterize IEC and non-conducting targets. While high-conducting metallic targets exhibit a quadrature peak response for frequencies in a traditional EMI regime under 100 kHz, the response of intermediate-conducting objects manifests at higher frequencies, between 100 kHz and 15 MHz. In addition to high-quality electromagnetic sensor data and robust electromagnetic models, a classification procedure is required to discriminate Targets of Interest (TOI) from clutter. Currently, costly human experts are used for this task. This expense and effort can be spared by using statistical signal processing and machine learning. This thesis has two main parts. In the first part, we explore using the high frequency EMI (HFEMI) band (100 kHz-15 MHz) for detection of carbon fiber UXO, voids, and of materials with characteristics that may be associated with improvised explosive devices (IED). We constructed an HFEMI sensing instrument, and apply the techniques of metal detection to sensing in a band of frequencies which are the transition between the induction and radar bands. In this transition domain, physical considerations and technological issues arise that cannot be solved via the approaches used in either of the bracketing lower and higher frequency ranges. In the second half of this thesis, we present a procedure for automatic classification of UXO. For maximum generality, our algorithm is robust and can handle sparse training examples of multi-class data. This procedure uses an unsupervised starter, semi-supervised techniques to gather training data, and concludes with supervised learning until all TOI are found. Additionally, an inference method for estimating the number of remaining true positives from a partial Receiver Operating Characteristic (ROC) curve is presented and applied to live-site dig histories.

  19. AC electric field induced dielectrophoretic assembly behavior of gold nanoparticles in a wide frequency range

    NASA Astrophysics Data System (ADS)

    Liu, Weiyu; Wang, Chunhui; Ding, Haitao; Shao, Jinyou; Ding, Yucheng

    2016-05-01

    In this work, we focus on frequency-dependence of pearl chain formations (PCF) of gold nanoparticles driven by AC dielectrophoresis (DEP), especially in a low field-frequency range, where induced double-layer charging effect at ideally polarizable surfaces on particle DEP behavior and surrounding liquid motion need not be negligible. As field frequency varies, grown features of DEP assembly structures ranging from low-frequency non-bridged gap to high-frequency single gold nanoparticle-made nanowires bridging the electrodes are demonstrated experimentally. Specifically, at 10 kHz, a kind of novel channel-like structure with parallel opposing banks is formed at the center of interelectrode gap. In stark contrast, at 1 MHz, thin PCF with diameter of 100 nm is created along the shortest distance of the isolation spacing. Moreover, a particular conductive path of nanoparticle chains is produced at 1 MHz in a DEP device embedded with multiple floating electrodes. A theoretical framework taking into account field-induced double-layer polarization at both the particle/electrolyte and electrode/electrolyte interface is developed to correlate these experimental observations with induced-charge electrokinetic (ICEK) phenomenon. And a RC circuit model is helpful in accounting for the formation of this particular non-bridged channel-like structure induced by a low-frequency AC voltage. As compared to thin PCF formed at high field frequency that effectively short circuits the electrode pair, though it is difficult for complete PCF bridging to occur at low frequency, the non-bridged conducting microstructure has potential to further miniaturize the size of electrode gap fabricated by standard micromachining process and may find useful application in biochemical sensing.

  20. Frequency dependent electrical characteristics of ferroelectric Pb{4.0}K{1.0}Li{1.0}Nb{10}O{30} ceramics

    NASA Astrophysics Data System (ADS)

    Rao, K. S.; Krishna, P. M.; Prasad, D. M.; Latha, T. S.; Hussain, M.

    2007-09-01

    Dielectric, impedance, modulus and conductivity studies were performed over temperature 35 °C 600 °C and frequency 45 Hz 5 MHz range on the Lead Potassium Lithium Niobate (Pb{4.0}K{1.0}Li{1.0}Nb{10}O{30}, PKLN) ceramics. These studies established the conduction ion motion and polarization mechanism in the material. The dispersive dielectric loss at high temperature reveals the ionic conductivity. From frequency variation of \\varepsilonl response the pre-factor A(T) and critical exponent n(T) are evaluated, and are used in Jonscher's dielectric dispersion relation for \\varepsilon ' to fit with the experimental data. Complex impedance plots showed a non Debye type relaxation, are used to evaluate the grain and grain boundary conduction and relaxation activation energies. DC and ac conduction activation energies are estimated from Arrhenius plots. Occupancy of Li+ for C-sites gave a completely filled structure and enhanced the phase transition temperature to 520 °C compared to PKN. This is supported by the conduction activation energy in ferro region is more than the para region. Also, the dc conductivity characterized from bulk resistance and M^ll peak frequency. Polaron hoping mechanism at room temperature has been confirmed via the linear variation of the plot log (σ ac-σ dc) as a function of log ω 2. Stretched exponential parameter, β (0 < β ≤slant 1) has been evaluated from impedance plots, interpreted as a result of correlated motions between the Li+ ions and distribution of dielectric relaxation. Compared the results from different techniques, and discussed the conduction mechanism in the material.

  1. High frequency modulation circuits based on photoconductive wide bandgap switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampayan, Stephen

    Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP materialmore » conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.« less

  2. [Experimental research and analysis on dielectric properties of blood in anemia mice].

    PubMed

    Shen, Ben; Liang, Quiyan; Gao, Weiqi; You, Chu; Hong, Mengqi; Ma, Qing

    2013-12-01

    The conductivity and permittivity of blood in mice were measured by the AC electrical impedance method at frequency range of 0.1-100MHz, and then the changes of the Cole-Cole parameters of dielectric spectra of blood from phenylhydrazine-induced anemia mice were observed by numerical calculation and curve fitting residual analysis of the Cole-Cole equation. The results showed that hematocrit (Hct) of the mice with phenylhydrazine injection was significantly reduced; the permittivity(epsilon) spectroscopy of blood moved to the low insulating region and its permittivity decreased; conductivity (kappa) spectrum curve of blood moved to the high conductivity zone and conductivity increased; the 2nd characteristic frequency was lower than that in the normal group. There was phenylhydrazine dose dependent in the changes of the Cole-Cole parameters of dielectric spectra of blood.

  3. Field test of electromagnetic geophysical techniques for locating simulated in situ mining leach solution. Report of investigations/1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tweeton, D.R.; Hanson, J.C.; Friedel, M.J.

    1994-01-01

    The U.S. Bureau of Mines, the University of Arizona, Sandia National Laboratory, and Zonge Engineering and Research, Inc., conducted cooperative field tests of six electromagnetic geophysical methods to compare their effectiveness in locating a brine solution simulating in situ leach solution or a high-conductivity plume of contamination. The brine was approximately 160 meters below the surface. The test site was the University's San Xavier experimental mine near Tucson, Arizona. Geophysical surveys using surface and surface-borehole time-domain electromagnetics (TEM), surface controlled source audio-frequency magnetotellurics (CSAMT), surface-borehole frequency-domain electromagnetics (FEM), crosshole FEM and surface magnetic field ellipticity were conducted before and duringmore » brine injection.« less

  4. Transferring Data from Smartwatch to Smartphone through Mechanical Wave Propagation.

    PubMed

    Kim, Seung-Chan; Lim, Soo-Chul

    2015-08-28

    Inspired by the mechanisms of bone conduction transmission, we present a novel sensor and actuation system that enables a smartwatch to securely communicate with a peripheral touch device, such as a smartphone. Our system regards hand structures as a mechanical waveguide that transmits particular signals through mechanical waves. As a signal, we used high-frequency vibrations (18.0-20.0 kHz) so that users cannot sense the signals either tactually or audibly. To this end, we adopted a commercial surface transducer, which is originally developed as a bone-conduction actuator, for mechanical signal generation. At the receiver side, a piezoelement was adopted for picking up the transferred mechanical signals. Experimental results have shown that the proposed system can successfully transfer data using mechanical waves. We also validate dual-frequency actuations under which high-frequency signals (18.0-20.0 kHz) are generated along with low-frequency (up to 250 Hz) haptic vibrations. The proposed method has advantages in terms of security in that it does not reveal the signals outside the body, meaning that it is not possible for attackers to eavesdrop on the signals. To further illustrate the possible application spaces, we conclude with explorations of the proposed approach.

  5. Eddy-driven low-frequency variability: physics and observability through altimetry

    NASA Astrophysics Data System (ADS)

    Penduff, Thierry; Sérazin, Guillaume; Arbic, Brian; Mueller, Malte; Richman, James G.; Shriver, Jay F.; Morten, Andrew J.; Scott, Robert B.

    2015-04-01

    Model studies have revealed the propensity of the eddying ocean circulation to generate strong low-frequency variability (LFV) intrinsically, i.e. without low-frequency atmospheric variability. In the present study, gridded satellite altimeter products, idealized quasi-geostrophic (QG) turbulent simulations, and realistic high-resolution global ocean simulations are used to study the spontaneous tendency of mesoscale (relatively high frequency and high wavenumber) kinetic energy to non-linearly cascade towards larger time and space scales. The QG model reveals that large-scale variability, arising from the well-known spatial inverse cascade, is associated with low frequencies. Low-frequency, low-wavenumber energy is maintained primarily by nonlinearities in the QG model, with forcing (by large-scale shear) and friction playing secondary roles. In realistic simulations, nonlinearities also generally drive kinetic energy to low frequencies and low wavenumbers. In some, but not all, regions of the gridded altimeter product, surface kinetic energy is also found to cascade toward low frequencies. Exercises conducted with the realistic model suggest that the spatial and temporal filtering inherent in the construction of gridded satellite altimeter maps may contribute to the discrepancies seen in some regions between the direction of frequency cascade in models versus gridded altimeter maps. Finally, the range of frequencies that are highly energized and engaged these cascades appears much greater than the range of highly energized and engaged wavenumbers. Global eddying simulations, performed in the context of the CHAOCEAN project in collaboration with the CAREER project, provide estimates of the range of timescales that these oceanic nonlinearities are likely to feed without external variability.

  6. Comparison of vibrational conductivity and radiative energy transfer methods

    NASA Astrophysics Data System (ADS)

    Le Bot, A.

    2005-05-01

    This paper is concerned with the comparison of two methods well suited for the prediction of the wideband response of built-up structures subjected to high-frequency vibrational excitation. The first method is sometimes called the vibrational conductivity method and the second one is rather known as the radiosity method in the field of acoustics, or the radiative energy transfer method. Both are based on quite similar physical assumptions i.e. uncorrelated sources, mean response and high-frequency excitation. Both are based on analogies with some equations encountered in the field of heat transfer. However these models do not lead to similar results. This paper compares the two methods. Some numerical simulations on a pair of plates joined along one edge are provided to illustrate the discussion.

  7. Design and analysis of a new high frequency double-servo direct drive rotary valve

    NASA Astrophysics Data System (ADS)

    Zhu, Muzhi; Zhao, Shengdun; Li, Jingxiang

    2016-12-01

    Researchers have investigated direct drive valve for many years to solve problems, such as fluid force imbalance and switching frequency. The structure of the rotary valve has received considerable research interest because of its favorable dynamic properties and simple structure. This paper studied the high frequency doubleservo direct drive rotary valve (DDRV), and proposed a novel structure and drive method satisfying high reversing frequency and adequate quantity of flow. Servo motors are integrated into the valve by the innovative structure, which is designed to equilibrate the unbalanced radial fluid force with the symmetric distributed oil ports. Aside from the fast reversing function of the valve, the DDRV presented high performance in linearity of the flow quantity and valve opening as a result of the fan-shaped flow ports. In addition, a computational fluid dynamics (CFD) method based on Fluent was conducted to verify the flux regulation effect of the height change of the adjustable boss.

  8. Time-Varying Vocal Folds Vibration Detection Using a 24 GHz Portable Auditory Radar

    PubMed Central

    Hong, Hong; Zhao, Heng; Peng, Zhengyu; Li, Hui; Gu, Chen; Li, Changzhi; Zhu, Xiaohua

    2016-01-01

    Time-varying vocal folds vibration information is of crucial importance in speech processing, and the traditional devices to acquire speech signals are easily smeared by the high background noise and voice interference. In this paper, we present a non-acoustic way to capture the human vocal folds vibration using a 24-GHz portable auditory radar. Since the vocal folds vibration only reaches several millimeters, the high operating frequency and the 4 × 4 array antennas are applied to achieve the high sensitivity. The Variational Mode Decomposition (VMD) based algorithm is proposed to decompose the radar-detected auditory signal into a sequence of intrinsic modes firstly, and then, extract the time-varying vocal folds vibration frequency from the corresponding mode. Feasibility demonstration, evaluation, and comparison are conducted with tonal and non-tonal languages, and the low relative errors show a high consistency between the radar-detected auditory time-varying vocal folds vibration and acoustic fundamental frequency, except that the auditory radar significantly improves the frequency-resolving power. PMID:27483261

  9. Time-Varying Vocal Folds Vibration Detection Using a 24 GHz Portable Auditory Radar.

    PubMed

    Hong, Hong; Zhao, Heng; Peng, Zhengyu; Li, Hui; Gu, Chen; Li, Changzhi; Zhu, Xiaohua

    2016-07-28

    Time-varying vocal folds vibration information is of crucial importance in speech processing, and the traditional devices to acquire speech signals are easily smeared by the high background noise and voice interference. In this paper, we present a non-acoustic way to capture the human vocal folds vibration using a 24-GHz portable auditory radar. Since the vocal folds vibration only reaches several millimeters, the high operating frequency and the 4 × 4 array antennas are applied to achieve the high sensitivity. The Variational Mode Decomposition (VMD) based algorithm is proposed to decompose the radar-detected auditory signal into a sequence of intrinsic modes firstly, and then, extract the time-varying vocal folds vibration frequency from the corresponding mode. Feasibility demonstration, evaluation, and comparison are conducted with tonal and non-tonal languages, and the low relative errors show a high consistency between the radar-detected auditory time-varying vocal folds vibration and acoustic fundamental frequency, except that the auditory radar significantly improves the frequency-resolving power.

  10. Territorial black-capped chickadee males respond faster to high- than to low-frequency songs in experimentally elevated noise conditions

    PubMed Central

    Slabbekoorn, Hans; Otter, Ken A.

    2017-01-01

    Low-frequency urban noise can interfere with avian communication through masking. Some species are able to shift the frequency of their vocalizations upwards in noisy conditions, which may reduce the effects of masking. However, results from playback studies investigating whether or not such vocal changes improve audibility in noisy conditions are not clear; the responses of free-ranging individuals to shifted signals are potentially confounded by functional trade-offs between masking-related audibility and frequency-dependent signal quality. Black-capped chickadees (Poecile atricapillus) naturally sing their songs at several different frequencies as they pitch-shift to match conspecifics during song-matching contests. They are also known to switch to higher song frequencies in response to experimental noise exposure. Each male produces both high- and low-frequency songs and absolute frequency is not a signal of aggression or dominance, making this an interesting species in which to test whether higher-frequency songs are more audible than lower-frequency songs in noisy conditions. We conducted playback studies across southern and central British Columbia, Canada, using paired song stimuli (high- vs low-frequency songs, n = 24 pairs) embedded in synthetic background noise created to match typical urban sound profiles. Over the course of each playback, the signal-to-noise ratio of the song stimuli was gradually increased by raising the amplitude of the song stimuli while maintaining background noise at a constant amplitude. We evaluated variation in how quickly and aggressively territorial males reacted to each of the paired stimuli. We found that males responded more quickly to playbacks of high- than low-frequency songs when high-frequency songs were presented first, but not when low-frequency songs were first. This difference may be explained by high-frequency songs being more audible combined with a carry-over effect resulting in slower responses to the second stimulus due to habituation. We observed no difference in overall aggression between stimuli. These results suggest that high-frequency songs may be more audible under noisy conditions. PMID:28462051

  11. Frequency and temperature dependence of electrical breakdown at 21, 30, and 39 GHz.

    PubMed

    Braun, H H; Döbert, S; Wilson, I; Wuensch, W

    2003-06-06

    A TeV-range e(+)e(-) linear collider has emerged as one of the most promising candidates to extend the high energy frontier of experimental elementary particle physics. A high accelerating gradient for such a collider is desirable to limit its overall length. Accelerating gradient is mainly limited by electrical breakdown, and it has been generally assumed that this limit increases with increasing frequency for normal-conducting accelerating structures. Since the choice of frequency has a profound influence on the design of a linear collider, the frequency dependence of breakdown has been measured using six exactly scaled single-cell cavities at 21, 30, and 39 GHz. The influence of temperature on breakdown behavior was also investigated. The maximum obtainable surface fields were found to be in the range of 300 to 400 MV/m for copper, with no significant dependence on either frequency or temperature.

  12. Frequency and Temperature Dependence of Electrical Breakdown at 21, 30, and 39GHz

    NASA Astrophysics Data System (ADS)

    Braun, H. H.; Döbert, S.; Wilson, I.; Wuensch, W.

    2003-06-01

    A TeV-range e+e- linear collider has emerged as one of the most promising candidates to extend the high energy frontier of experimental elementary particle physics. A high accelerating gradient for such a collider is desirable to limit its overall length. Accelerating gradient is mainly limited by electrical breakdown, and it has been generally assumed that this limit increases with increasing frequency for normal-conducting accelerating structures. Since the choice of frequency has a profound influence on the design of a linear collider, the frequency dependence of breakdown has been measured using six exactly scaled single-cell cavities at 21, 30, and 39GHz. The influence of temperature on breakdown behavior was also investigated. The maximum obtainable surface fields were found to be in the range of 300 to 400 MV/m for copper, with no significant dependence on either frequency or temperature.

  13. Design of magneto-rheological mount for a cabin of heavy equipment vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Soon-Yong; Do, Xuan Phu; Choi, Seung-Bok

    2016-04-01

    In this paper, magneto-rheological (MR) mount for a cabin of heavy equipment vehicles is designed for improving vibration isolation in both low and high frequency domains. The proposed mount consists of two principal parts of mount, rubber part and MR fluid path. The rubber part of existed mount and spring are used to change the stiffness and frequency characteristics for low vibration frequency range. The MR fluid path is a valve type structure using flow mode. In order to control the external magnetic field, a solenoid coil is placed in MR mount. Magnetic intensity analysis is then conducted to optimize dimensions using computer simulation. Experimental results show that magnetic field can reduce low frequency vibration. The results presented in this work indicate that proper application of MR fluid and rubber characteristic to devise MR mount can lead to the improvement of vibration control performance in both low and high frequency ranges.

  14. Purely hopping conduction in c-axis oriented LiNbO3 thin films

    NASA Astrophysics Data System (ADS)

    Shandilya, Swati; Tomar, Monika; Sreenivas, K.; Gupta, Vinay

    2009-05-01

    Dielectric constant and ac conductivity of highly c-axis oriented LiNbO3 thin film grown by pulsed laser deposition were studied in a metal-insulator-metal configuration over a wide temperature (200 to 450 K) and frequency (100 Hz to 1 MHz) range. The preferred oriented Al (1%) doped ZnO film with electrical conductivity 1.1×103 Ω-1 cm-1 was deposited for dual purpose: (1) to serve as nucleating center for LiNbO3 crystallites along preferred c-axis growth direction, and (2) to act as a suitable bottom electrode for electrical studies. The room temperature dc conductivity (σdc) of LiNbO3 film was about 5.34×10-10 Ω-1 cm-1 with activation energy ˜0.3 eV, indicating extrinsic conduction. The ac conductivity σac was found to be much higher in comparison to σdc in the low temperature region (<300 K) and exhibits a power law behavior due to the hopping of charge carriers. In higher temperature region (>300 K), σac shows a weak frequency dependence, whereas dielectric constant exhibits a strong frequency dispersion. The dielectric dispersion data has been discussed in the light of theoretical models based on Debye type mixed conduction and purely hopping conduction. The dominant conduction in c-axis oriented LiNbO3 thin film is attributed to the purely hopping where both σdc and σac arise due to same mechanism.

  15. High-frequency ECG

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire ventricular surface and were signal-averaged and filtered in the 30-250 Hz frequency range. The results showed that the decrease noted in the HF-QRS correlated linearly with the local conduction delay. The results suggest that HF-QRS is a potent indicator of disturbed local conduction. An alternative theory is that HF-QRS reflect the shape of the original electrocardiographic signal. Bennhagen et al showed that root mean square (RMS) voltage values of the depolarization signal correlate poorly with the signal amplitude but highly with the first and second derivatives, i.e. the velocity and the acceleration of the signal. It has also been suggested that the autonomic nervous system affects HF-QRS. For example, sitting up causes significant changes in HF-QRS in some leads compared to the supine position [Douglas et al., 2006]. Unpublished results indicate that familial dysautonomic patients (both vagal and sympathetic degeneration) have very little Reduced Amplitude Zones (RAZ) formation . Athletic individuals, especially elite athletes, who have vagally-mediated changes on the conventional ECG (i.e. early repolarization, bradycardia) have increased RAZ formation. Further electrophysiological studies are needed, however, to better understand the underlying mechanisms of HF-QRS. Several investigators have studied HF-QRS in different cardiac conditions, including acute myocardial ischemia and myocardial infarction (MI). However, in order for clinicians to confidently use HF-QRS as an adjunct to standard ECG, more knowledge about the characteristics of HF-QRS is needed.

  16. Frequency-tunable continuous-wave terahertz sources based on GaAs plasmonic photomixers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shang-Hua; Jarrahi, Mona; Electrical Engineering Department, University of California Los Angeles, Los Angeles, California 90095

    2015-09-28

    We present frequency-tunable, continuous-wave terahertz sources based on GaAs plasmonic photomixers, which offer high terahertz radiation power levels at 50% radiation duty cycle. The use of plasmonic contact electrodes enhances photomixer quantum efficiency while maintaining its ultrafast operation by concentrating a large number of photocarriers in close proximity to the device contact electrodes. Additionally, the relatively high thermal conductivity and high resistivity of GaAs allow operation under high optical pump power levels and long duty cycles without reaching the thermal breakdown limit of the photomixer. We experimentally demonstrate continuous-wave terahertz radiation with a radiation frequency tuning range of more thanmore » 2 THz and a record-high radiation power of 17 μW at 1 THz through plasmonic photomixers fabricated on a low temperature grown GaAs substrate at 50% radiation duty cycle.« less

  17. Reduced graphene oxide coated thin aluminum film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation

    NASA Astrophysics Data System (ADS)

    Hwan Lee, Seok; Park, Mi-ae; Yoh, Jack J.; Song, Hyelynn; Yun Jang, Eui; Hyup Kim, Yong; Kang, Sungchan; Seop Yoon, Yong

    2012-12-01

    We demonstrate that reduced graphene oxide (rGO) coated thin aluminum film is an effective optoacoustic transmitter for generating high pressure and high frequency ultrasound previously unattainable by other techniques. The rGO layer of different thickness is deposited between a 100 nm-thick aluminum film and a glass substrate. Under a pulsed laser excitation, the transmitter generates enhanced optoacoustic pressure of 64 times the aluminum-alone transmitter. A promising optoacoustic wave generation is possible by optimizing thermoelasticity of metal film and thermal conductivity of rGO in the proposed transmitter for laser-induced ultrasound applications.

  18. Combined electromechanical impedance and fiber optic diagnosis of aerospace structures

    NASA Astrophysics Data System (ADS)

    Schlavin, Jon; Zagrai, Andrei; Clemens, Rebecca; Black, Richard J.; Costa, Joey; Moslehi, Behzad; Patel, Ronak; Sotoudeh, Vahid; Faridian, Fereydoun

    2014-03-01

    Electromechanical impedance is a popular diagnostic method for assessing structural conditions at high frequencies. It has been utilized, and shown utility, in aeronautic, space, naval, civil, mechanical, and other types of structures. By contrast, fiber optic sensing initially found its niche in static strain measurement and low frequency structural dynamic testing. Any low frequency limitations of the fiber optic sensing, however, are mainly governed by its hardware elements. As hardware improves, so does the bandwidth (frequency range * number of sensors) provided by the appropriate enabling fiber optic sensor interrogation system. In this contribution we demonstrate simultaneous high frequency measurements using fiber optic and electromechanical impedance structural health monitoring technologies. A laboratory specimen imitating an aircraft wing structure, incorporating surfaces with adjustable boundary conditions, was instrumented with piezoelectric and fiber optic sensors. Experiments were conducted at different structural boundary conditions associated with deterioration of structural health. High frequency dynamic responses were collected at multiple locations on a laboratory wing specimen and conclusions were drawn about correspondence between structural damage and dynamic signatures as well as correlation between electromechanical impedance and fiber optic sensors spectra. Theoretical investigation of the effect of boundary conditions on electromechanical impedance spectra is presented and connection to low frequency structural dynamics is suggested. It is envisioned that acquisition of high frequency structural dynamic responses with multiple fiber optic sensors may open new diagnostic capabilities for fiber optic sensing technologies.

  19. High-temperature electroacoustic characterization of Y-cut and singly-rotated Ca3TaGa3Si2O14 resonators.

    PubMed

    Johnson, Ward L; Schulz, Michal; Fritze, Holger

    2014-08-01

    Synthetic piezoelectric crystals in the P321 crystal class have been a focus of substantial research that is largely driven by applications in high-temperature resonant BAW and SAW sensing. Fully ordered crystals in this class, such as Ca3TaGa3Si2O14 (CTGS), have been suggested as offering the potential of electroacoustic performance that is superior to more extensively studied langasite (LGS) and langatate (LGT), which are partially disordered. In this study, the resonant frequencies, acoustic damping, and electrical conductivity of CTGS bulk acoustic resonators with Y-cut and (YXl)-30° crystal orientations and fundamental frequencies near 5 MHz are investigated at temperatures between ambient and 1100°C. (YXl)-30° resonators are found to have turnover temperatures near 200°C for the third and fifth overtones, in contrast to a monotonic decrease in resonant frequencies of Y-cut crystals with increasing temperature. The maximum temperature derivative of fractional changes in fifth-overtone frequency of (YXl)-30° CTGS is 40 × 10-6K-1 (near 1100°C), and this value is not greatly different from the temperature derivative of Y-cut CTGS frequencies over a broader range of temperatures. At ambient temperatures, the acoustic loss Q-1 of CTGS with both crystal orientations is found to be greater than the lowest values previously reported for LGS and LGT. The electrical conductivity of the CTGS specimens between 500°C and 1100°C is substantially lower than that previously reported for LGS. Corresponding to this lower conductivity, the piezoelectric/conductive contribution to Q-1 at elevated temperatures is reduced. Additional anelastic relaxation peaks observed between 100°C and 700°C are similar to those previously reported for LGS and LGT.

  20. Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures

    NASA Technical Reports Server (NTRS)

    Nellis, W. J.; Mitchell, A. C.; Mccandless, P. C.; Erskine, D. J.; Weir, S. T.

    1992-01-01

    Electrical conductivities were measured for liquid D2 and H2 shock compressed to pressures of 10-20 GPa (100-200 kbar), molar volumes near 8 cu cm/mol, and calculated temperatures of 2900-4600 K. The semiconducting energy gap derived from the conductivities is 12 eV, in good agreement with recent quasi-particle calculations and with oscillator frequencies measured in diamond-anvil cells.

  1. Experimental hingeless rotor characteristics at low advance ratio with thrust. [wind tunnel tests of rotary wing operating at moderate to high lift

    NASA Technical Reports Server (NTRS)

    London, R. J.; Watts, G. A.; Sissingh, G. J.

    1973-01-01

    An experimental investigation to determine the dynamic characteristics of a hingeless rotor operating at moderate to high lift was conducted on a small scale, 7.5-foot diameter, four-bladed hingeless rotor model in a 7 x 10-foot wind tunnel. The primary objective of this research program was the empirical determination of the rotor steady-state and frequency responses to swashplate and body excitations. Collective pitch was set from 0 to 20 degrees, with the setting at a particular advance ratio limited by the cyclic pitch available for hub moment trim. Advance ratio varied from 0.00 to 0.36 for blades with nondimensional first-flap frequencies at 1.15, 1.28 and 1.33 times the rotor rotation frequency. Several conditions were run with the rotor operating in the transition regime. Rotor response at high lift is shown to be generally nonlinear in this region. As a secondary objective an experimental investigation of the rotor response to 4/revolution swashplate excitations at advance ratios of 0.2 to 0.85 and at a nondimensional, first-flap modal frequency of 1.34 was also conducted, using the 7 x 10-foot wind tunnel. It is shown that 4/revolution swashplate inputs are a method for substantially reducing rotor-induced, shafttransmitted vibratory forces.

  2. Detection of admittivity anomaly on high-contrast heterogeneous backgrounds using frequency difference EIT.

    PubMed

    Jang, J; Seo, J K

    2015-06-01

    This paper describes a multiple background subtraction method in frequency difference electrical impedance tomography (fdEIT) to detect an admittivity anomaly from a high-contrast background conductivity distribution. The proposed method expands the use of the conventional weighted frequency difference EIT method, which has been used limitedly to detect admittivity anomalies in a roughly homogeneous background. The proposed method can be viewed as multiple weighted difference imaging in fdEIT. Although the spatial resolutions of the output images by fdEIT are very low due to the inherent ill-posedness, numerical simulations and phantom experiments of the proposed method demonstrate its feasibility to detect anomalies. It has potential application in stroke detection in a head model, which is highly heterogeneous due to the skull.

  3. The propagation characteristics of electromagnetic waves through plasma in the near-field region of low-frequency loop antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, DongLin, E-mail: donglinliu@stu.xidian.edu.cn; Li, XiaoPing; Xie, Kai

    2015-10-15

    A high-speed vehicle flying through the atmosphere between 100 and 20 km may suffer from a “communication blackout.” In this paper, a low frequency system with an on-board loop antenna to receive signals is presented as a potential blackout mitigation method. Because the plasma sheath is in the near-field region of the loop antenna, the traditional scattering matrix method that is developed for the far-field region may overestimate the electromagnetic (EM) wave's attenuation. To estimate the EM wave's attenuation in the near-field region, EM interference (EMI) shielding theory is introduced. Experiments are conducted, and the results verify the EMI shielding theory'smore » effectiveness. Simulations are also conducted with different plasma parameters, and the results obtained show that the EM wave's attenuation in the near-field region is far below than that in the far-field region. The EM wave's attenuation increases with the increase in electron density and decreases with the increase in collision frequency. The higher the frequency, the larger is the EM wave's attenuation. During the entire re-entry phase of a RAM-C module, the EM wave's attenuations are below 10 dB for EM waves with a frequency of 1 MHz and below 1 dB for EM waves with a frequency of 100 kHz. Therefore, the low frequency systems (e.g., Loran-C) may provide a way to transmit some key information to high-speed vehicles even during the communication “blackout” period.« less

  4. Measurement and analysis of electron-neutral collision frequency in the calibrated cutoff probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, K. H.; Seo, B. H.; Kim, J. H.

    2016-03-15

    As collisions between electrons and neutral particles constitute one of the most representative physical phenomena in weakly ionized plasma, the electron-neutral (e-n) collision frequency is a very important plasma parameter as regards understanding the physics of this material. In this paper, we measured the e-n collision frequency in the plasma using a calibrated cutoff-probe. A highly accurate reactance spectrum of the plasma/cutoff-probe system, which is expected based on previous cutoff-probe circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], is obtained using the calibrated cutoff-probe method, and the e-n collision frequency is calculated based on the cutoff-probe circuitmore » model together with the high-frequency conductance model. The measured e-n collision frequency (by the calibrated cutoff-probe method) is compared and analyzed with that obtained using a Langmuir probe, with the latter being calculated from the measured electron-energy distribution functions, in wide range of gas pressure.« less

  5. Dew Point Calibration System Using a Quartz Crystal Sensor with a Differential Frequency Method.

    PubMed

    Lin, Ningning; Meng, Xiaofeng; Nie, Jing

    2016-11-18

    In this paper, the influence of temperature on quartz crystal microbalance (QCM) sensor response during dew point calibration is investigated. The aim is to present a compensation method to eliminate temperature impact on frequency acquisition. A new sensitive structure is proposed with double QCMs. One is kept in contact with the environment, whereas the other is not exposed to the atmosphere. There is a thermal conductivity silicone pad between each crystal and a refrigeration device to keep a uniform temperature condition. A differential frequency method is described in detail and is applied to calibrate the frequency characteristics of QCM at the dew point of -3.75 °C. It is worth noting that frequency changes of two QCMs were approximately opposite when temperature conditions were changed simultaneously. The results from continuous experiments show that the frequencies of two QCMs as the dew point moment was reached have strong consistency and high repeatability, leading to the conclusion that the sensitive structure can calibrate dew points with high reliability.

  6. Conduction properties of thin films from a water soluble carbon nanotube/hemicellulose complex

    NASA Astrophysics Data System (ADS)

    Shao, Dongkai; Yotprayoonsak, Peerapong; Saunajoki, Ville; Ahlskog, Markus; Virtanen, Jorma; Kangas, Veijo; Volodin, Alexander; Van Haesendonck, Chris; Burdanova, Maria; Mosley, Connor D. W.; Lloyd-Hughes, James

    2018-04-01

    We have examined the conductive properties of carbon nanotube based thin films, which were prepared via dispersion in water by non-covalent functionalization of the nanotubes with xylan, a type of hemicellulose. Measurements of low temperature conductivity, Kelvin probe force microscopy, and high frequency (THz) conductivity elucidated the intra-tube and inter-tube charge transport processes in this material. The measurements show excellent conductive properties of the as prepared thin films, with bulk conductivity up to 2000 S cm-1. The transport results demonstrate that the hemicellulose does not seriously interfere with the inter-tube conductance.

  7. Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte.

    PubMed

    Arya, Anil; Sharma, A L

    2018-04-25

    In this paper, we have studied the structural, microstructural, electrical, dielectric properties and ion dynamics of a sodium-ion-conducting solid polymer electrolyte film comprising PEO 8 -NaPF 6 +  x wt. % succinonitrile. The structural and surface morphology properties have been investigated, respectively using x-ray diffraction and field emission scanning electron microscopy. The complex formation was examined using Fourier transform infrared spectroscopy, and the fraction of free anions/ion pairs obtained via deconvolution. The complex dielectric permittivity and loss tangent has been analyzed across the whole frequency window, and enables us to estimate the DC conductivity, dielectric strength, double layer capacitance and relaxation time. The presence of relaxing dipoles was determined by the addition of succinonitrile (wt./wt.) and the peak shift towards high frequency indicates the decrease of relaxation time. Further, relations among various relaxation times ([Formula: see text]) have been elucidated. The complex conductivity has been examined across the whole frequency window; it obeys the Universal Power Law, and displays strong dependency on succinonitrile content. The sigma representation ([Formula: see text]) was introduced in order to explore the ion dynamics by highlighting the dispersion region in the Cole-Cole plot ([Formula: see text]) in the lower frequency window; increase in the semicircle radius indicates a decrease of relaxation time. This observation is accompanied by enhancement in ionic conductivity and faster ion transport. A convincing, logical scheme to justify the experimental data has been proposed.

  8. Effect of multi-walled carbon nanotubes aspect ratio and temperature on the dielectric behavior of alternating alkene-carbon monoxide polyketone nanocomposites

    NASA Astrophysics Data System (ADS)

    Abu-Surrah, Adnan S.; Abdul Jawad, Saadi; Al-Ramahi, Esraa; Hallak, Awni B.; Khattari, Z.

    2015-04-01

    New alternating poly(propylene-alt-carbon monoxide/ethylene-alt-carbon monoxide) (PECO)/multiwalled carbon nanotubes (MWCNTs) composites have been prepared. Dielectric permittivity, electric modulus and ac conductivity of the isolated materials were investigated as a function of fiber aspect ratio, frequency and temperature. For aspect ratio of 30 and 200, a transition from insulator to semiconductor was observed at frequency 1×104. However, for high aspect ratio sample (660), no transition was observed and the conductivity is frequency independent in the measured frequency range of 10-106 Hz. The conductivity increases from about 1×10-4 for the sample that contain fibers of aspect ratio 30 and reaches 5×10-2 (Ω m)-1 for aspect ratio was 660. This behavior can be modeled by a circuit that consists of a contact resistance in series with a parallel combination of resistance (R) and capacitance (C). The calculated activation energy for sample filled with fibers having aspect ratio 30 is about 0.26 eV and decreases to about 0.16 eV when the aspect ratio is 660.

  9. Ac conductivity and dielectric properties of bulk tin phthalocyanine dichloride (SnPcCl 2)

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Farid, A. M.; Abd El-Rahman, K. F.; Ali, H. A. M.

    2008-07-01

    The ac conductivity, σac( ω), has been measured for bulk tin phthalocyanine dichloride (SnPcCl 2) in the form of compressed pellet with evaporated ohmic Au electrodes in a temperature range 303-403 K. Ac conductivity, σac( ω), is found to vary as ωs in the frequency range 42 Hz-5×10 6 Hz. At low range of frequency, s<1 and it decreases with the increase in temperature indicating a dominant hopping process. At high range of frequency, s is found to be equal to ≈1.09 and is temperature independent. The dielectric constant, ε1, and dialectic loss, ε2, have been determined for bulk SnPcCl 2. Both ε1 and ε2 decrease with the increase in frequency and increase with the increase in temperature. The Cole-Cole types have been used to determine some parameters such as; the macroscopic relaxation time ( τo), the molecular relaxation time ( τ), the activation energy for relaxation ( Eo) and the distribution parameter ( α). The temperature dependence of τ is expressed by a thermally activated process with the activation energy of 0.299 eV.

  10. Electrochemical characterization of high frequency stimulation electrodes: role of electrode material and stimulation parameters on electrode polarization

    NASA Astrophysics Data System (ADS)

    Ghazavi, Atefeh; Cogan, Stuart F.

    2018-06-01

    Objective. With recent interest in kilohertz frequency electrical stimulation for nerve conduction block, understanding the electrochemistry and role of electrode material is important for assessing the safety of these stimulus protocols. Here we describe an approach to determining electrode polarization in response to continuous kilohertz frequency sinusoidal current waveforms. We have also investigated platinum, iridium oxide, and titanium nitride as coatings for high frequency electrodes. The current density distribution at 50 kHz at the electrode–electrolyte interface was also modeled to demonstrate the importance of the primary current distribution in supporting charge injection at high frequencies. Approach. We determined electrode polarization in response to sinusoidal currents with frequencies in the 1–50 kHz range and current amplitudes from 100 to 500 µA and 1–5 mA, depending on the electrode area. The current density distribution at the interface was modeled using the finite element method (FEM). Main results. At low frequencies, 1–5 kHz, polarization on the platinum electrode was significant, exceeding the water oxidation potential for high amplitude (5 mA) waveforms. At frequencies of 20 kHz or higher, the polarization was less than 300 mV from the electrode open circuit potential. The choice of electrode material did not play a significant role in electrode polarization at frequencies higher than 10 kHz. The current density distribution modeled at 50 kHz is non-uniform and this non-uniformity persists throughout charge delivery. Significance. At high frequencies (>10 kHz) electrode double-layer charging is the principal mechanism of charge-injection and selection of the electrode material has little effect on polarization, with platinum, iridium oxide, and titanium nitride exhibiting similar behavior. High frequency stimulation is dominated by a highly nonuniform primary current distribution.

  11. ELECTRIC IMPEDANCE OF ASTERIAS EGGS

    PubMed Central

    Cole, Kenneth S.; Cole, Robert H.

    1936-01-01

    The alternating current resistance and capacity of suspensions of unfertilized eggs of Asterias forbesi have been measured at frequencies from one thousand to sixteen million cycles per second. The plasma membrane of the egg has a static capacity of 1.10µf/cm.2 which is practically independent of frequency. The suspensions show a capacity dependent on frequency at low frequencies which may be attributable to surface conductance. The specific resistance of the cytoplasm is between 136 and 225 ohm cm. (4 to 7 times sea water), indicating a relatively high concentration of non-electrolytes. At frequencies above one million cycles there is definite evidence of another element of which the nucleus is presumably a part. PMID:19872951

  12. Overview on the standardization in the field of electromagnetic compatibility

    NASA Astrophysics Data System (ADS)

    Goldberg, Georges

    1989-04-01

    Standardization in the domain of electromagnetic compatibility (EMC) is discussed, with specific reference to the standards of the International Electrotechnical Commission, the Comite International Special des Perturbations Radioelectriques, and the Comite Europeen de Normalisation Electrotechnique. EMC fields considered include radiocommunications, telecommunications, biological effects, and data transmission. Standards are presented for such electromagnetic disturbances as low-frequency, high-frequency, conduction, and radiation phenomena.

  13. Effect of confinement on anharmonic phonon scattering and thermal conductivity in pristine silicon nanowires

    NASA Astrophysics Data System (ADS)

    Rashid, Zahid; Zhu, Liyan; Li, Wu

    2018-02-01

    The effect of confinement on the anharmonic phonon scattering rates and the consequences thereof on the thermal transport properties in ultrathin silicon nanowires with a diameter of 1-4 nm have been characterized using atomistic simulations and the phonon Boltzmann transport equation. The phonon density of states (PDOS) for ultrathin nanowires approaches a constant value in the vicinity of the Γ point and increases with decreasing diameter, which indicates the increasing importance of the low-frequency phonons as heat carriers. The anharmonic phonon scattering becomes dramatically enhanced with decreasing thickness of the nanowires. In the thinnest nanowire, the scattering rates for phonons above 1 THz are one order of magnitude higher than those in the bulk Si. Below 1 THz, the increase in scattering rates is even much more appreciable. Our numerical calculations revealed that the scattering rates for transverse (longitudinal) acoustic modes follow √{ω } (1 /√{ω } ) dependence at the low-frequency limit, whereas those for the degenerate flexural modes asymptotically approach a constant value. In addition, the group velocities of phonons are reduced compared with bulk Si except for low-frequency phonons (<1 -2 THz depending on the thickness of the nanowires). The increased scattering rates combined with reduced group velocities lead to a severely reduced thermal conductivity contribution from the high-frequency phonons. Although the thermal conductivity contributed by those phonons with low frequencies is instead increased mainly due to the increased PDOS, the total thermal conductivity is still reduced compared to that of the bulk. This work reveals an unexplored mechanism to understand the measured ultralow thermal conductivity of silicon nanowires.

  14. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  15. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  16. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  17. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  18. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  19. Dielectric and AC conductivity studies on SrBi4Ti4O15

    NASA Astrophysics Data System (ADS)

    Jose, Roshan; Saravanan, K. Venkata

    2018-05-01

    The four layered SrBi4Ti4O15 ceramics which belong to the aurivillius family of oxide was prepared by conventional solid state reaction technique. Analysis of the dielectric data as a function of temperature and frequency revealed normal phase transition. The frequency dependent ac conductivity follows Jonscher's universal power law. Frequency exponent (n), pre-exponential factor (A), bulk dc conductivity (σdc), and hopping frequency (ωp) were determined from the fitting curves. The variation of frequency exponent with temperature indicates that large polaron hopping mechanism up to curie-temperature, then its changes to small polaron hopping. The activation energies were calculated from ac conductivity, bulk dc conductivity and hopping frequency. The activation energies revealed that conductivity had contributions from migrations of oxygen vacancies, bismuth ion vacancies and strontium ion vacancies.

  20. Additive manufacturing and analysis of high frequency interconnects for microwave devices

    NASA Astrophysics Data System (ADS)

    Harper, Elicia K.

    Wire bond interconnects have been the main approach to interconnecting microelectronic devices within a package. Conventional wirebonding however offers little control of the impedance of the interconnect and also introduces parasitic inductance that can degrade performance at microwave frequencies. The size and compactness of microchips is often an issue when it comes to attaching wirebonds to the microchip or other components within a microwave module. This work demonstrates the use of additive manufacturing for printing interconnects directly between bare die microchips and other components within a microwave module. A test structure was developed consisting of a GaAs microchip sandwiched between two alumina blocks patterned with coplanar waveguides (CPW). A printed dielectric ink is used to fill the gap between the alumina CPW blocks and the GaAs chip. Conductive interconnects are printed on top of the dielectric bridge material to connect the CPW traces to the bonding pads on the GaAs microchip. Simulations of these structures were modeled in the electromagnetics simulation tool by ANSYS, high frequency structure simulation (HFSS), to optimize the printed interconnects at 1-40 GHz (ANSYS Inc., Canonsburg, PA). The dielectric constant and loss tangent of the simulated dielectric was varied along with the dimensions of the conductive interconnects. The best combination of dielectric properties and interconnect dimensions was chosen for impedance matching by analyzing the insertion losses and return losses. A dielectric ink, which was chosen based on the simulated results, was experimentally printed between the two CPW blocks and the GaAs chip and subsequently cured. The conductive interconnects were then printed with an aerosol jet printer, connecting the CPW traces to the bonding pads on the GaAs microchip. The experimental prototype was then measured with a network analyzer and the measured data were compared to simulations. Results show good agreement between the simulated and measured S-parameters. This work demonstrates the potential for using additive manufacturing technology to create impedance- matched interconnects between high frequency ICs and other module components such as high frequency CPW transmission lines.

  1. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morawski, Ireneusz; Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław; Spiegelberg, Richard

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. Themore » high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.« less

  2. Anomalous frequency-dependent ionic conductivity of lesion-laden human-brain tissue

    NASA Astrophysics Data System (ADS)

    Emin, David; Akhtari, Massoud; Fallah, Aria; Vinters, Harry V.; Mathern, Gary W.

    2017-10-01

    We study the effect of lesions on our four-electrode measurements of the ionic conductivity of (˜1 cm3) samples of human brain excised from patients undergoing pediatric epilepsy surgery. For most (˜94%) samples, the low-frequency ionic conductivity rises upon increasing the applied frequency. We attributed this behavior to the long-range (˜0.4 mm) diffusion of solvated sodium cations before encountering intrinsic impenetrable blockages such as cell membranes, blood vessels, and cell walls. By contrast, the low-frequency ionic conductivity of some (˜6%) brain-tissue samples falls with increasing applied frequency. We attribute this unusual frequency-dependence to the electric-field induced liberation of sodium cations from traps introduced by the unusually severe pathology observed in samples from these patients. Thus, the anomalous frequency-dependence of the ionic conductivity indicates trap-producing brain lesions.

  3. Evaluation of a multi-Kw, high frequency transformer for space applications

    NASA Astrophysics Data System (ADS)

    Roth, Mary Ellen

    1994-08-01

    Various NASA studies have shown that high power (multi-kW and higher) electrical systems for various aerospace applications favor high frequency distribution systems, due to the improved safety and weight factors associated with those systems. Other favorable characteristics include low EMI, minimal wiring and ease of system parameter sensing and control of a single phase system. In aerospace power systems, as in terrestrial AC distribution systems, transformers are needed to provide voltage changes, isolation and the resetting of ground. Under NASA contract NAS3-21948 a multi-kW high frequency transformer was designed, fabricated and tested by Thermal Technology Lab, Inc. of Buffalo, New York. 'The goals of this program included the determination of the relationships between transformer weight, efficiency and operating frequency; low internal temperatures and reduced specific weight; and the validation of these new design concepts through experimentation and the fabrication and testing of transformers and their insulation systems.' The transformer was delivered to NASA-Lewis, where an evaluation program was conducted in Lewis' High Power High Frequency Component Test Facility. The transformer was tested in both atmosphere and under vacuum conditions. This paper will discuss the design of the transformer, the evaluation program and test results, the failures experienced and conclusions.

  4. High-frequency ultrasonic methods for determining corrosion layer thickness of hollow metallic components.

    PubMed

    Liu, Hongwei; Zhang, Lei; Liu, Hong Fei; Chen, Shuting; Wang, Shihua; Wong, Zheng Zheng; Yao, Kui

    2018-05-16

    Corrosion in internal cavity is one of the most common problems occurs in many hollow metallic components, such as pipes containing corrosive fluids and high temperature turbines in aircraft. It is highly demanded to non-destructively detect the corrosion inside hollow components and determine the corrosion extent from the external side. In this work, we present two high-frequency ultrasonic non-destructive testing (NDT) technologies, including piezoelectric pulse-echo and laser-ultrasonic methods, for detecting corrosion of Ni superalloy from the opposite side. The determination of corrosion layer thickness below ∼100 µm has been demonstrated by both methods, in comparison with X-CT and SEM. With electron microscopic examination, it is found that with multilayer corrosion structure formed over a prolonged corrosion time, the ultrasonic NDT methods can only reliably reveal outer corrosion layer thickness because of the resulting acoustic contrast among the multiple layers due to their respective different mechanical parameters. A time-frequency signal analysis algorithm is employed to effectively enhance the high frequency ultrasonic signal contrast for the piezoelectric pulse-echo method. Finally, a blind test on a Ni superalloy turbine blade with internal corrosion is conducted with the high frequency piezoelectric pulser-receiver method. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Evaluation of a Multi-kw, High Frequency Transformer for Space Applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen

    1994-01-01

    Various NASA studies have shown that high power (multi-kW and higher) electrical systems for various aerospace applications favor high frequency distribution systems, due to the improved safety and weight factors associated with those systems. Other favorable characteristics include low EMI, minimal wiring and ease of system parameter sensing and control of a single phase system. In aerospace power systems, as in terrestrial AC distribution systems, transformers are needed to provide voltage changes, isolation and the resetting of ground. Under NASA contract NAS3-21948 a multi-kW high frequency transformer was designed, fabricated and tested by Thermal Technology Lab, Inc. of Buffalo, New York. 'The goals of this program included the determination of the relationships between transformer weight, efficiency and operating frequency; low internal temperatures and reduced specific weight; and the validation of these new design concepts through experimentation and the fabrication and testing of transformers and their insulation systems.' The transformer was delivered to NASA-Lewis, where an evaluation program was conducted in Lewis' High Power High Frequency Component Test Facility. The transformer was tested in both atmosphere and under vacuum conditions. This paper will discuss the design of the transformer, the evaluation program and test results, the failures experienced and conclusions.

  6. Thin and Broadband Two-Layer Microwave Absorber in 4-12 GHz with Developed Flaky Cobalt Material

    NASA Astrophysics Data System (ADS)

    Gill, Neeraj; Singh, Jaydeep; Puthucheri, Smitha; Singh, Dharmendra

    2018-03-01

    Microwave absorbing materials (MAMs) in the frequency range of 2.0-18.0 GHz are essential for the stealth and communication applications. Researchers came up with effective MAMs for the higher frequency regions, i.e., 8.0-18.0 GHz, while absorbers with comparable properties in the lower frequency band are still not in the limelight. Designing a MAM for the lower frequency range is a critical task. It is known that the factors governing the absorption in this frequency predominantly depend on the permeability and conductivity of the material, whereas the shape anisotropy of the particles can initiate different absorption mechanisms like multiple internal reflections, phase cancellations, surface charge polarization and enhanced conductivity that can promote the microwave absorption towards lower frequencies. But the material alone may not serve the purpose of getting broad absorption bandwidth. With the effective use of advanced electromagnetic technique like multi-layering this problem may be solved. Therefore, in this paper, a material with shape anisotropy (cobalt flakes with high shape anisotropy) has been prepared and a two-layer structure is developed which gives the absorption bandwidth in 4.17-12.05 GHz at a coating thickness of 2.66 mm.

  7. Thin and Broadband Two-Layer Microwave Absorber in 4-12 GHz with Developed Flaky Cobalt Material

    NASA Astrophysics Data System (ADS)

    Gill, Neeraj; Singh, Jaydeep; Puthucheri, Smitha; Singh, Dharmendra

    2018-05-01

    Microwave absorbing materials (MAMs) in the frequency range of 2.0-18.0 GHz are essential for the stealth and communication applications. Researchers came up with effective MAMs for the higher frequency regions, i.e., 8.0-18.0 GHz, while absorbers with comparable properties in the lower frequency band are still not in the limelight. Designing a MAM for the lower frequency range is a critical task. It is known that the factors governing the absorption in this frequency predominantly depend on the permeability and conductivity of the material, whereas the shape anisotropy of the particles can initiate different absorption mechanisms like multiple internal reflections, phase cancellations, surface charge polarization and enhanced conductivity that can promote the microwave absorption towards lower frequencies. But the material alone may not serve the purpose of getting broad absorption bandwidth. With the effective use of advanced electromagnetic technique like multi-layering this problem may be solved. Therefore, in this paper, a material with shape anisotropy (cobalt flakes with high shape anisotropy) has been prepared and a two-layer structure is developed which gives the absorption bandwidth in 4.17-12.05 GHz at a coating thickness of 2.66 mm.

  8. Cavity design for high-frequency axion dark matter detectors

    DOE PAGES

    Stern, I.; Chisholm, A. A.; Hoskins, J.; ...

    2015-12-30

    In this paper, in an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 μeV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Finally, multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.

  9. Ultrafast electron diffraction with megahertz MeV electron pulses from a superconducting radio-frequency photoinjector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, L. W.; Lin, L.; Huang, S. L.

    We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.

  10. Enhanced dual-frequency pattern scheme based on spatial-temporal fringes method

    NASA Astrophysics Data System (ADS)

    Wang, Minmin; Zhou, Canlin; Si, Shuchun; Lei, Zhenkun; Li, Xiaolei; Li, Hui; Li, YanJie

    2018-07-01

    One of the major challenges of employing a dual-frequency phase-shifting algorithm for phase retrieval is its sensitivity to noise. Yun et al proposed a dual-frequency method based on the Fourier transform profilometry, yet the low-frequency lobes are close to each other for accurate band-pass filtering. In the light of this problem, a novel dual-frequency pattern based on the spatial-temporal fringes (STF) method is developed in this paper. Three fringe patterns with two different frequencies are required. The low-frequency phase is obtained from two low-frequency fringe patterns by the STF method, so the signal lobes can be extracted accurately as they are far away from each other. The high-frequency phase is retrieved from another fringe pattern without the impact of the DC component. Simulations and experiments are conducted to demonstrate the excellent precision of the proposed method.

  11. A high frequency electromagnetic impedance imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systemsmore » for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.« less

  12. Pressure effect on phonon frequencies in some transition metals: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Kazanc, S.; Ozgen, S.

    2005-08-01

    It is important to determine the atomic lattice vibrations of metallic materials, under high-pressure conditions, due to its effects on material properties such as thermal, electrical and optical conductions. In this work, we have investigated the changes of acoustic phonon frequencies with hydrostatic pressure for Cu, Ni, Al, Ag and Au transition metals, using molecular dynamics (MD) simulations based on embedded atom method (EAM). For this aim, we have adopted the embedded atom potential proposed by Sutton and Chen. The phonon frequencies have been calculated from the dynamical matrix for [1 0 0], [1 1 0] and [1 1 1] high symmetry directions of the Brillouin zone. The obtained results show that the hydrostatic pressure causes an increment in phonon frequencies, and this rising do not depend linearly on the increasing pressure.

  13. Dielectric Study of the Physical State of Electrolytes and Water Within Bacillus cereus Spores

    PubMed Central

    Carstensen, Edwin L.; Marquis, Robert E.; Gerhardt, Philipp

    1971-01-01

    Dielectric measurements revealed that dormant spores of Bacillus cereus have extremely low conductivities at high frequencies (50 MHz) and so must contain remarkably low concentrations of mobile ions both within the core and in the surrounding integuments. Activation, germination, and outgrowth were all accompanied by increases in conductivity of the cells and their suspending medium, and this result indicated that intracellular electrolytes had become ionized and leaked from the spores. High-frequency dielectric constants of spores were consistent with normal states for cell water. These values increased during successive stages of development from dormant spore to vegetative bacillus, and they could be directly related to increases in cell water content. In all, the results refuted a model of the dormant spore involving freely mobile, ionized electrolytes and supported a model involving electrostatically bound electrolytes. PMID:4998245

  14. Concepts for a theoretical and experimental study of lifting rotor random loads and vibrations (further experiments with progressing/regressing rotor flapping modes), Phase 7-C

    NASA Technical Reports Server (NTRS)

    Hohenemser, K. H.; Crews, S. T.

    1973-01-01

    The experiments with progressing/regressing forced rotor flapping modes have been extended in several directions and the data processing method has been considerably refined. The 16 inch hingeless 2-bladed rotor model was equipped with a new set of high precision blades which removed previously encountered tracking difficulties at high advance ratio, so that tests up to .8 rotor advance ratio could be conducted. In addition to data with 1.20 blade natural flapping frequency data at 1.10 flapping frequency were obtained. Outside the wind tunnel, tests with a ground plate located at different distances below the rotor were conducted while recording the dynamic downflow at a station .2R below the rotor plane with a hot wire anemometer.

  15. Combined use of frequency-domain electromagnetic and electrical resistivity surveys to delineate near-lake groundwater flow in the semi-arid Nebraska Sand Hills, USA

    USGS Publications Warehouse

    Ong, John B.; Lane, John W.; Zlotnik, Vitaly A.; Halihan, Todd; White, Eric A.

    2010-01-01

    A frequency-domain electromagnetic (FDEM) survey can be used to select locations for the more quantitative and labor-intensive electrical resistivity surveys. The FDEM survey rapidly characterized the groundwater-flow directions and configured the saline plumes caused by evaporation from several groundwater-dominated lakes in the Nebraska Sand Hills, USA. The FDEM instrument was mounted on a fiberglass cart and towed by an all-terrain vehicle, covering about 25 km/day. Around the saline lakes, areas with high electrical conductivity are consistent with the regional and local groundwater flow directions. The efficacy of this geophysical approach is attributed to: the high contrast in electrical conductivity between various groundwater zones; the shallow location of the saline zones; minimal cultural interference; and relative homogeneity of the aquifer materials.

  16. Developments of Highly Multiplexed, Multi-chroic Pixels for Balloon-Borne Platforms

    NASA Astrophysics Data System (ADS)

    Aubin, F.; Hanany, S.; Johnson, B. R.; Lee, A.; Suzuki, A.; Westbrook, B.; Young, K.

    2018-02-01

    We present our work to develop and characterize low thermal conductance bolometers that are part of sinuous antenna multi-chroic pixels (SAMP). We use longer, thinner and meandered bolometer legs to achieve 9 pW/K thermal conductance bolometers. We also discuss the development of inductor-capacitor chips operated at 4 K to extend the multiplexing factor of the frequency domain multiplexing to 105, an increase of 60% compared to the factor currently demonstrated for this readout system. This technology development is motivated by EBEX-IDS, a balloon-borne polarimeter designed to characterize the polarization of foregrounds and to detect the primordial gravity waves through their B-mode signature on the polarization of the cosmic microwave background. EBEX-IDS will operate 20,562 transition edge sensor bolometers spread over 7 frequency bands between 150 and 360 GHz. Balloon and satellite platforms enable observations at frequencies inaccessible from the ground and with higher instantaneous sensitivity. This development improves the readiness of the SAMP and frequency domain readout technologies for future satellite applications.

  17. Penetration of Nonstationary Ionospheric Electric Fields into Lower Atmospheric Layers in the Global Electric Circuit Model

    NASA Astrophysics Data System (ADS)

    Morozov, V. N.

    2018-01-01

    The problem of the penetration of nonstationary ionospheric electric fields into the lower atmospheric layers is considered based on the model of the global electric circuit in the Earth's atmosphere. For the equation of the electric field potential, a solution that takes into account exponential variation in the electrical conductivity with height has been obtained. Analysis of the solution made it possible to reveal three cases of the dependence of the solution on height. The first case (the case of high frequencies) corresponds to the Coulomb approximation, when the electrical conductivity of the atmosphere can be neglected. In the case of low frequencies (when the frequency of changes in the ionosphere potential is less than the quantity reciprocal to the time of electric relaxation of the atmosphere), a quasi-stationary regime, in which the variation in the electric potential of the atmosphere is determined by the electric conduction currents, occurs. In the third case, due to the increase in the electrical conductivity of the atmosphere, two spherical regions appear: with the Coulomb approximation in the lower region and conduction currents in the upper one. For these three cases, formulas for estimating the electric field strength near the Earth's surface have been obtained.

  18. Parametric analysis of hollow conductor parallel and coaxial transmission lines for high frequency space power distribution

    NASA Technical Reports Server (NTRS)

    Jeffries, K. S.; Renz, D. D.

    1984-01-01

    A parametric analysis was performed of transmission cables for transmitting electrical power at high voltage (up to 1000 V) and high frequency (10 to 30 kHz) for high power (100 kW or more) space missions. Large diameter (5 to 30 mm) hollow conductors were considered in closely spaced coaxial configurations and in parallel lines. Formulas were derived to calculate inductance and resistance for these conductors. Curves of cable conductance, mass, inductance, capacitance, resistance, power loss, and temperature were plotted for various conductor diameters, conductor thickness, and alternating current frequencies. An example 5 mm diameter coaxial cable with 0.5 mm conductor thickness was calculated to transmit 100 kW at 1000 Vac, 50 m with a power loss of 1900 W, an inductance of 1.45 micron and a capacitance of 0.07 micron-F. The computer programs written for this analysis are listed in the appendix.

  19. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  20. Measurements of the microwave conductivity of the organic superconductor ET2 (IAuI)

    NASA Astrophysics Data System (ADS)

    Tanner, D. B.; Jacobsen, C. S.; Williams, J. M.; Wang, H. H.

    The microwave conductivity of ET2(IAuI), which is superconducting below 4 K, has been measured between 20 and 300 K. The measurements were done by cavity perturbation at 35 GHz for electric field along the highly conducting direction. The samples were in the skin-depth limit. The room temperature conductivity is quite low, approximately 6 mu/cm. With a decrease in temperature the conductivity increases as T sup -2 reaching nearly 900 mu/cm at 20 K. These values are rather close to extrapolations of the frequency-dependent conductivity determined from far-infrared experiments.

  1. Experiment and theoretical study of the propagation of high power microwave pulse in air breakdown environment

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Ren, A.; Zhang, Y. S.

    1991-01-01

    In the study of the propagation of high power microwave pulse, one of the main concerns is how to minimize the energy loss of the pulse before reaching the destination. In the very high power region, one has to prevent the cutoff reflection caused by the excessive ionization in the background air. A frequency auto-conversion process which can lead to reflectionless propagation of powerful EM pulses in self-generated plasmas is studied. The theory shows that under the proper conditions the carrier frequency, omega, of the pulse will indeed shift upward with the growth of plasma frequency, omega(sub pe). Thus, the plasma during breakdown will always remain transparent to the pulse (i.e., omega greater than omega(sub pe)). A chamber experiment to demonstrate the frequency auto-conversion during the pulse propagation through the self-generated plasma is then conducted in a chamber. The detected frequency shift is compared with the theoretical result calculated y using the measured electron density distribution along the propagation path of the pulse. Good agreement between the theory and the experiment results is obtained.

  2. Negative Dielectric Constant Material Based on Ion Conducting Materials

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2017-01-01

    Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly (benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.

  3. Negative Dielectric Constant Material Based on Ion Conducting Materials

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor)

    2014-01-01

    Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.

  4. Ionospheric modifications in high frequency heating experiments

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer P.

    2015-01-01

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  5. Harbour porpoises react to low levels of high frequency vessel noise

    PubMed Central

    Dyndo, Monika; Wiśniewska, Danuta Maria; Rojano-Doñate, Laia; Madsen, Peter Teglberg

    2015-01-01

    Cetaceans rely critically on sound for navigation, foraging and communication and are therefore potentially affected by increasing noise levels from human activities at sea. Shipping is the main contributor of anthropogenic noise underwater, but studies of shipping noise effects have primarily considered baleen whales due to their good hearing at low frequencies, where ships produce most noise power. Conversely, the possible effects of vessel noise on small toothed whales have been largely ignored due to their poor low-frequency hearing. Prompted by recent findings of energy at medium- to high-frequencies in vessel noise, we conducted an exposure study where the behaviour of four porpoises (Phocoena phocoena) in a net-pen was logged while they were exposed to 133 vessel passages. Using a multivariate generalised linear mixed-effects model, we show that low levels of high frequency components in vessel noise elicit strong, stereotyped behavioural responses in porpoises. Such low levels will routinely be experienced by porpoises in the wild at ranges of more than 1000 meters from vessels, suggesting that vessel noise is a, so far, largely overlooked, but substantial source of disturbance in shallow water areas with high densities of both porpoises and vessels. PMID:26095689

  6. Remote sensing based on hyperspectral data analysis

    NASA Astrophysics Data System (ADS)

    Sharifahmadian, Ershad

    In remote sensing, accurate identification of far objects, especially concealed objects is difficult. In this study, to improve object detection from a distance, the hyperspecral imaging and wideband technology are employed with the emphasis on wideband radar. As the wideband data includes a broad range of frequencies, it can reveal information about both the surface of the object and its content. Two main contributions are made in this study: 1) Developing concept of return loss for target detection: Unlike typical radar detection methods which uses radar cross section to detect an object, it is possible to enhance the process of detection and identification of concealed targets using the wideband radar based on the electromagnetic characteristics --conductivity, permeability, permittivity, and return loss-- of materials. During the identification process, collected wideband data is evaluated with information from wideband signature library which has already been built. In fact, several classes (e.g. metal, wood, etc.) and subclasses (ex. metals with high conductivity) have been defined based on their electromagnetic characteristics. Materials in a scene are then classified based on these classes. As an example, materials with high electrical conductivity can be conveniently detected. In fact, increasing relative conductivity leads to a reduction in the return loss. Therefore, metals with high conductivity (ex. copper) shows stronger radar reflections compared with metals with low conductivity (ex. stainless steel). Thus, it is possible to appropriately discriminate copper from stainless steel. 2) Target recognition techniques: To detect and identify targets, several techniques have been proposed, in particular the Multi-Spectral Wideband Radar Image (MSWRI) which is able to localize and identify concealed targets. The MSWRI is based on the theory of robust capon beamformer. During identification process, information from wideband signature library is utilized. The WB signature library includes such parameters as conductivity, permeability, permittivity, and return loss at different frequencies for possible materials related to a target. In the MSWRI approach, identification procedure is performed by calculating the RLs at different selected frequencies. Based on similarity of the calculated RLs and RL from WB signature library, targets are detected and identified. Based on the simulation and experimental results, it is concluded that the MSWRI technique is a promising approach for standoff target detection.

  7. Dielectric relaxation dynamics and AC conductivity scaling of metal-organic framework (MOF-5) based polymer electrolyte nanocomposites incorporated with ionic liquid

    NASA Astrophysics Data System (ADS)

    Dutta, Rituraj; Kumar, A.

    2017-10-01

    Dielectric relaxation dynamics and AC conductivity scaling of a metal-organic framework (MOF-5) based poly (vinylidene fluoride-co-hexafluoropropylene) (PVdf-HFP) incorporated with 1-Butyl-3-methylimidazolium hexafluorophosphate have been studied over a frequency range of 40 Hz-5 MHz and in the temperature range of 300 K-380 K. High values of dielectric permittivity (~{{\\varepsilon }\\prime} ) having strong dispersion are obtained at low frequency because of interfacial polarization. The real part of the dielectric modulus spectra (M‧) shows no prominent peak, whereas the imaginary part (M″) shows certain peaks, with a reduction in relaxation time (τ) that can be attributed to a non-Debye relaxation mechanism. The spectra also depict both concentration- and temperature-independent scaling behavior. The power law dependent variation of AC conductivity follows the jump relaxation model and reveals activated ion hopping over diffusion barriers. The value of the frequency exponent is observed to decrease with increasing concentration of ionic liquid, indicating the forward hopping of ions in the relaxation process. The AC conductivity scaling curves at different temperatures also depict the temperature-independent relaxation dynamics.

  8. Non-destructive evaluation techniques, high temperature ceramic component parts for gas turbines

    NASA Technical Reports Server (NTRS)

    Reiter, H.; Hirsekorn, S.; Lottermoser, J.; Goebbels, K.

    1984-01-01

    This report concerns studies conducted on various tests undertaken on material without destroying the material. Tests included: microradiographic techniques, vibration analysis, high-frequency ultrasonic tests with the addition of evaluation of defects and structure through analysis of ultrasonic scattering data, microwave tests and analysis of sound emission.

  9. Transferring Data from Smartwatch to Smartphone through Mechanical Wave Propagation

    PubMed Central

    Kim, Seung-Chan; Lim, Soo-Chul

    2015-01-01

    Inspired by the mechanisms of bone conduction transmission, we present a novel sensor and actuation system that enables a smartwatch to securely communicate with a peripheral touch device, such as a smartphone. Our system regards hand structures as a mechanical waveguide that transmits particular signals through mechanical waves. As a signal, we used high-frequency vibrations (18.0–20.0 kHz) so that users cannot sense the signals either tactually or audibly. To this end, we adopted a commercial surface transducer, which is originally developed as a bone-conduction actuator, for mechanical signal generation. At the receiver side, a piezoelement was adopted for picking up the transferred mechanical signals. Experimental results have shown that the proposed system can successfully transfer data using mechanical waves. We also validate dual-frequency actuations under which high-frequency signals (18.0–20.0 kHz) are generated along with low-frequency (up to 250 Hz) haptic vibrations. The proposed method has advantages in terms of security in that it does not reveal the signals outside the body, meaning that it is not possible for attackers to eavesdrop on the signals. To further illustrate the possible application spaces, we conclude with explorations of the proposed approach. PMID:26343674

  10. Contributions of tidal lung inflation to human R-R interval and arterial pressure fluctuations

    NASA Technical Reports Server (NTRS)

    Koh, J.; Brown, T. E.; Beightol, L. A.; Eckberg, D. L.

    1998-01-01

    We studied the effects of mechanical lung inflation on respiratory frequency R-R interval and arterial pressure fluctuations in nine healthy young adults undergoing elective orthopedic surgery. We conducted this research to define the contribution of pulmonary and thoracic stretch receptor input to respiratory sinus arrhythmia. We compared fast Fourier transform spectral power during three modes of ventilation: (1) spontaneous, frequency-controlled (0.25 Hz) breathing, (2) intermittent positive pressure ventilation (0.25 Hz, with a tidal volume of 8 ml/kg) and (3) high frequency jet ventilation (5.0 Hz, 2.5 kg/cm2), after sedation and vecuronium paralysis. Mean R-R intervals, arterial pressures and arterial blood gas levels were comparable during all three breathing conditions. Respiratory frequency systolic pressure spectral power was comparable during spontaneous breathing and conventional mechanical ventilation, but was significantly reduced during high frequency jet ventilation (P < 0.05). Respiratory frequency R-R interval spectral power (used as an index of respiratory sinus arrhythmia) declined dramatically with sedation and muscle paralysis (P < 0.05), but was greater during conventional mechanical, than high frequency jet ventilation (P < 0.05). These results suggest that although phasic inputs from pulmonary and thoracic stretch receptors make a statistically significant contribution to respiratory sinus arrhythmia, that contribution is small.

  11. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djara, V.; Cherkaoui, K.; Negara, M. A.

    2015-11-28

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g}more » measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.« less

  12. Design and fabrication of metal-insulator-metal diode for high frequency applications

    NASA Astrophysics Data System (ADS)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2017-02-01

    Metal-insulator-metal (MIM) diodes play significant role in high speed electronics where high frequency rectification is needed. Quantum based tunneling mechanism helps MIM diodes to rectify at high frequency signals. Rectenna, antenna coupled MIM diodes are becoming popular due to their potential use as IR detectors and energy harvesters. Because of small active area, MIM diodes could easily be incorporated into integrated circuits (IC's). The objective of the work is to design and develop MIM diodes for high frequency rectification. In this work, thin insulating layer of ZnO was fabricated using Langmuir-Blodgett (LB) technique which facilitates ultrathin thin, uniform and pinhole free fabrication of insulating layer. The ZnO layer was synthesized from organic precursor of zinc acetate layer. The optimization in the LB technique of fabrication process led to fabricate MIM diodes with high non-linearity and sensitivity. Moreover, the top and bottom electrodes as well as active area of the diodes were patterned using UV-tunneling conduction mechanism. The highest sensitivity of the diode was measured around 37 (A/W), and the rectification ratio was found around 36 under low applied bias at +/-100 mV.

  13. The effects of experimentally induced conductive hearing loss on spectral and temporal aspects of sound transmission through the ear.

    PubMed

    Eric Lupo, J; Koka, Kanthaiah; Thornton, Jennifer L; Tollin, Daniel J

    2011-02-01

    Conductive hearing loss (CHL) is known to produce hearing deficits, including deficits in sound localization ability. The differences in sound intensities and timing experienced between the two tympanic membranes are important cues to sound localization (ILD and ITD, respectively). Although much is known about the effect of CHL on hearing levels, little investigation has been conducted into the actual impact of CHL on sound location cues. This study investigated effects of CHL induced by earplugs on cochlear microphonic (CM) amplitude and timing and their corresponding effect on the ILD and ITD location cues. Acoustic and CM measurements were made in 5 chinchillas before and after earplug insertion, and again after earplug removal using pure tones (500 Hz to 24 kHz). ILDs in the unoccluded condition demonstrated position and frequency dependence where peak far-lateral ILDs approached 30 dB for high frequencies. Unoccluded ear ITD cues demonstrated positional and frequency dependence with increased ITD cue for both decreasing frequency (±420 μs at 500 Hz, ±310 μs for 1-4 kHz) and increasingly lateral sound source locations. Occlusion of the ear canal with foam plugs resulted in a mild, frequency-dependent conductive hearing loss of 10-38 dB (mean 31 ± 3.9 dB) leading to a concomitant frequency dependent increase in ILDs at all source locations. The effective ITDs increased in a frequency dependent manner with ear occlusion as a direct result of the acoustic properties of the plugging material, the latter confirmed via acoustical measurements using a model ear canal with varying volumes of acoustic foam. Upon ear plugging with acoustic foam, a mild CHL is induced. Furthermore, the CHL induced by acoustic foam results in substantial changes in the magnitudes of both the ITD and ILD cues to sound location. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. The effects of experimentally induced conductive hearing loss on spectral and temporal aspects of sound transmission through the ear

    PubMed Central

    Lupo, J. Eric; Koka, Kanthaiah; Thornton, Jennifer L.; Tollin, Daniel J.

    2010-01-01

    Conductive hearing loss (CHL) is known to produce hearing deficits, including deficits in sound localization ability. The differences in sound intensities and timing experienced between the two tympanic membranes are important cues to sound localization (ILD and ITD, respectively). Although much is known about the effect of CHL on hearing levels, little investigation has been conducted into the actual impact of CHL on sound location cues. This study investigated effects of CHL induced by earplugs on cochlear microphonic (CM) amplitude and timing and their corresponding effect on the ILD and ITD location cues. Acoustic and CM measurements were made in 5 chinchillas before and after earplug insertion, and again after earplug removal using pure tones (500 Hz to 24 kHz). ILDs in the unoccluded condition demonstrated position and frequency dependence where peak far-lateral ILDs approached 30 dB for high frequencies. Unoccluded ear ITD cues demonstrated positional and frequency dependence with increased ITD cue for both decreasing frequency (± 420 µs at 500 Hz, ± 310 µs for 1–4 kHz ) and increasingly lateral sound source locations. Occlusion of the ear canal with foam plugs resulted in a mild, frequency-dependent conductive hearing loss of 10–38 dB (mean 31 ± 3.9 dB) leading to a concomitant frequency dependent increase in ILDs at all source locations. The effective ITDs increased in a frequency dependent manner with ear occlusion as a direct result of the acoustic properties of the plugging material, the latter confirmed via acoustical measurements using a model ear canal with varying volumes of acoustic foam. Upon ear plugging with acoustic foam, a mild CHL is induced. Furthermore, the CHL induced by acoustic foam results in substantial changes in the magnitudes of both the ITD and ILD cues to sound location. PMID:21073935

  15. The relationship between journal use in a medical library and citation use.

    PubMed Central

    Tsay, M Y

    1998-01-01

    The purpose of the study was to investigate the relationship between library journal use and journal citation use in the medical sciences. The six-month journal use study was conducted in the Library of the Veterans General Hospital in Taipei. The data on citation frequency and impact factors were obtained from Journal Citation Reports, 1993 microfiche edition. The study explored the use, citation, and impact factor data, especially for heavily used, highly cited, or high-impact-factor journals. The correlations between frequency of use and citation frequency and between frequency of use and impact factor were determined by using the Spearman rank and Pearson correlation tests. The same comparisons were also made within four subject categories: clinical medicine journals, life science journals, hybrid journals publishing both clinical medicine and life science papers, and journals that publish neither clinical medicine nor life science articles. The results of the study showed that there is a significant correlation between frequency of use and citation frequency, and between frequency of use and impact factor for all titles. There is also a significant correlation between frequency of use and citation frequency and between frequency of use and impact factor for journals that publish either clinical medicine or life science articles, or both. However, the correlation is not significant for other journals. PMID:9549010

  16. High Thermal Conductivity of Copper Matrix Composite Coatings with Highly-Aligned Graphite Nanoplatelets

    PubMed Central

    Tagliaferri, Vincenzo; Ucciardello, Nadia

    2017-01-01

    Nanocomposite coatings with highly-aligned graphite nanoplatelets in a copper matrix were successfully fabricated by electrodeposition. For the first time, the disposition and thermal conductivity of the nanofiller has been evaluated. The degree of alignment and inclination of the filling materials has been quantitatively evaluated by polarized micro-Raman spectroscopy. The room temperature values of the thermal conductivity were extracted for the graphite nanoplatelets by the dependence of the Raman G-peak frequency on the laser power excitation. Temperature dependency of the G-peak shift has been also measured. Most remarkable is the global thermal conductivity of 640 ± 20 W·m−1·K−1 (+57% of copper) obtained for the composite coating by the flash method. Our experimental results are accounted for by an effective medium approximation (EMA) model that considers the influence of filler geometry, orientation, and thermal conductivity inside a copper matrix. PMID:29068424

  17. Frequency dependence of electrical properties of polyvinylidene fluoride/graphite electrode waste/natural carbon black composite

    NASA Astrophysics Data System (ADS)

    Insiyanda, D. R.; Indayaningsih, N.; Prihandoko, B.; Subhan, A.; Khaerudini, D. S.; Widodo, H.; Destyorini, F.; Chaer, A.

    2018-03-01

    Polyvinylidene fluoride (PVdF) is a semi-crystalline thermoplastic material with remarkably high piezoelectric coefficient and an attractive polymer matrix for micro-composite with superior mechanical and electrical properties. The conductive filler is obtained from Graphite Electrode Waste (GEW) and Natural Carbon Black (NCB). The variation of composite content (%) of PVdF/NCB/GEW were 100/0/0, 95/5/0, 95/0/5, 95/2.5/2.5. This experiment employed dry dispersion method for material mixing. The materials were then moulded using hot press machine with compression parameters of P = 5.5 MPa, T = 150 °C, t = 60 minutes, A = 5×5×(0.2 - 0.4) cm3. The electrical conductivity properties of pure PVdF, as well as PVdF/GEW, PVdF/NCB, and PVdF/NCB/GEW composites were investigated in a frequency range of 100 to 100000 Hz. The PVdF/GEW sample obtained the highest electrical conductivity. It is concluded that GEW and NCB can be incorporated into PVdF as a conductive filler to increase the conductivity of conductive material composite without solvent.

  18. Dielectric properties of highly resistive GaN crystals grown by ammonothermal method at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Krupka, Jerzy; Zajåc, Marcin; Kucharski, Robert; Gryglewski, Daniel

    2016-03-01

    Permittivity, the dielectric loss tangent and conductivity of semi-insulating Gallium Nitride crystals have been measured as functions of frequency from 10 GHz to 50 GHz and temperature from 295 to 560 K employing quasi TE0np mode dielectric resonator technique. Crystals were grown using ammonothermal method. Two kinds of doping were used to obtain high resistivity crystals; one with deep acceptors in form of transition metal ions, and the other with shallow Mg acceptors. The sample compensated with transition metal ions exhibited semi-insulating behavior in the whole temperature range. The sample doped with Mg acceptors remained semi-insulating up to 390 K. At temperatures exceeding 390 K the conductivity term in the total dielectric loss tangent of Mg compensated sample becomes dominant and it increases exponentially with activation energy of 1.14 eV. It has been proved that ammonothermal method with appropriate doping allows growth of high quality, temperature stable semi-insulating GaN crystals.

  19. Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Arya, Anil; Sharma, A. L.

    2018-04-01

    In this paper, we have studied the structural, microstructural, electrical, dielectric properties and ion dynamics of a sodium-ion-conducting solid polymer electrolyte film comprising PEO8-NaPF6+  x wt. % succinonitrile. The structural and surface morphology properties have been investigated, respectively using x-ray diffraction and field emission scanning electron microscopy. The complex formation was examined using Fourier transform infrared spectroscopy, and the fraction of free anions/ion pairs obtained via deconvolution. The complex dielectric permittivity and loss tangent has been analyzed across the whole frequency window, and enables us to estimate the DC conductivity, dielectric strength, double layer capacitance and relaxation time. The presence of relaxing dipoles was determined by the addition of succinonitrile (wt./wt.) and the peak shift towards high frequency indicates the decrease of relaxation time. Further, relations among various relaxation times ({{τ }{{\\varepsilon \\prime}}}>~{{τ }tanδ }>{{τ }z}>{{τ }m} ) have been elucidated. The complex conductivity has been examined across the whole frequency window; it obeys the Universal Power Law, and displays strong dependency on succinonitrile content. The sigma representation ({{σ }\\prime\\prime}~versus~{{σ }\\prime} ) was introduced in order to explore the ion dynamics by highlighting the dispersion region in the Cole–Cole plot ({{\\varepsilon }\\prime\\prime}~versus~{{\\varepsilon }\\prime} ) in the lower frequency window; increase in the semicircle radius indicates a decrease of relaxation time. This observation is accompanied by enhancement in ionic conductivity and faster ion transport. A convincing, logical scheme to justify the experimental data has been proposed.

  20. Nonequilibrium Simulations of Ion Dynamics in Ionomer Melts

    NASA Astrophysics Data System (ADS)

    Frischknecht, Amalie

    Ionomers, polymers containing a small fraction of covalently bound ionic groups, are of interest as possible electrolytes in batteries. However, to date ionomers do not have sufficiently high conductivities for practical application, most likely because the ions tend to form aggregates, leading to slow ion transport. To build a better understanding of the relationships among ionomer chemistry, morphology, and ion transport, we have performed a series of molecular dynamics simulations and connected aspects of these simulations with experiment. In previous work using both atomistic and coarse-grained models, we showed that precise ionomers (with a fixed spacing between ionic groups along the polymer backbone) exhibit a range of ionic aggregate morphologies, from discrete clusters to percolated aggregates. In this talk I will describe recent simulations of our coarse-grained ionomer melts in an applied electric field. From a constant applied field, we are able to extract the ion mobilities and hence conductivities. We find that ionomers with percolated ionic aggregate morphologies have higher ion mobilities and hence higher conductivities. Application of an oscillating electric field enables us to calculate the frequency-dependent conductivity of the model ionomer melts. The real part of the conductivity has a high frequency peak associated with plasma oscillations, and a very broad low frequency peak associated with ion motions in ionic aggregates. I will end with comments on the connections to atomistic simulations and to experimental probes of ion dynamics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. An electrohydrodynamic flow in ac electrowetting.

    PubMed

    Lee, Horim; Yun, Sungchan; Ko, Sung Hee; Kang, Kwan Hyoung

    2009-12-17

    In ac electrowetting, hydrodynamic flows occur within a droplet. Two distinct flow patterns were observed, depending on the frequency of the applied electrical signal. The flow at low-frequency range was explained in terms of shape oscillation and a steady streaming process in conjunction with contact line oscillation. The origin of the flow at high-frequency range has not yet been explained. We suggest that the high-frequency flow originated mainly from the electrothermal effect, in which electrical charge is generated due to the gradient of electrical conductivity and permittivity, which is induced by the Joule heating of fluid medium. To support our argument, we analyzed the flow field numerically while considering the electrical body force generated by the electrothermal effect. We visualized the flow pattern and measured the flow velocity inside the droplet. The numerical results show qualitative agreement with experimental results with respect to electric field and frequency dependence of flow velocity. The effects of induced-charge electro-osmosis, natural convection, and the Marangoni flow are discussed.

  2. Development and Application of Wide Bandwidth Magneto-Resistive Sensor Based Eddy Current Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Simpson, John

    2010-01-01

    The integration of magneto-resistive sensors into eddy current probes can significantly expand the capabilities of conventional eddy current nondestructive evaluation techniques. The room temperature solid-state sensors have typical bandwidths in the megahertz range and resolutions of tens of microgauss. The low frequency sensitivity of magneto-resistive sensors has been capitalized upon in previous research to fabricate very low frequency eddy current sensors for deep flaw detection in multilayer conductors. In this work a modified probe design is presented to expand the capabilities of the device. The new probe design incorporates a dual induction source enabling operation from low frequency deep flaw detection to high frequency high resolution near surface material characterization. Applications of the probe for the detection of localized near surface conductivity anomalies are presented. Finite element modeling of the probe is shown to be in good agreement with experimental measurements.

  3. Adjustable, High Voltage Pulse Generator with Isolated Output for Plasma Processing

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Miller, Kenneth E.; Prager, James; Slobodov, Ilia

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. has developed a high voltage pulse generator with isolated output for etch, sputtering, and ion implantation applications within the materials science and semiconductor processing communities. The output parameters are independently user adjustable: output voltage (0 - 2.5 kV), pulse repetition frequency (0 - 100 kHz), and duty cycle (0 - 100%). The pulser can drive loads down to 200 Ω. Higher voltage pulsers have also been tested. The isolated output allows the pulse generator to be connected to loads that need to be biased. These pulser generators take advantage modern silicon carbide (SiC) MOSFETs. These new solid-state switches decrease the switching and conduction losses while allowing for higher switching frequency capabilities. This pulse generator has applications for RF plasma heating; inductive and arc plasma sources; magnetron driving; and generation of arbitrary pulses at high voltage, high current, and high pulse repetition frequency. This work was supported in part by a DOE SBIR.

  4. Generation of Artificial Acoustic-Gravity Waves and Traveling Ionospheric Disturbances in HF Heating Experiments

    NASA Astrophysics Data System (ADS)

    Pradipta, R.; Lee, M. C.; Cohen, J. A.; Watkins, B. J.

    2015-10-01

    We report the results of our ionospheric HF heating experiments to generate artificial acoustic-gravity waves (AGW) and traveling ionospheric disturbances (TID), which were conducted at the High-frequency Active Auroral Research Program facility in Gakona, Alaska. Based on the data from UHF radar, GPS total electron content, and ionosonde measurements, we found that artificial AGW/TID can be generated in ionospheric modification experiments by sinusoidally modulating the power envelope of the transmitted O-mode HF heater waves. In this case, the modulation frequency needs to be set below the characteristic Brunt-Vaisala frequency at the relevant altitudes. We avoided potential contamination from naturally-occurring AGW/TID of auroral origin by conducting the experiments during geomagnetically quiet time period. We determine that these artificial AGW/TID propagate away from the edge of the heated region with a horizontal speed of approximately 160 m/s.

  5. Three-dimensional broadband ground-plane cloak made of metamaterials

    PubMed Central

    Ma, Hui Feng; Cui, Tie Jun

    2010-01-01

    Since invisibility cloaks were first suggested by transformation optics theory, there has been much work on the theoretical analysis and design of various types and a few experimental verifications at microwave and optical frequencies within two-dimensional limits. Here, we realize the first practical implementation of a fully 3D broadband and low-loss ground-plane cloak at microwave frequencies. The cloak, realized by drilling inhomogeneous holes in multi-layered dielectric plates, can conceal a 3D object located under a curved conducting plane from all viewing angles by imitating the reflection of a flat conducting plane. We also designed and realized, using non-resonant metamaterials, a high-gain lens antenna that can produce narrow-beam plane waves in the near-field region in a broad frequency band. The antenna constitutes the transmitter of the measurement system and is essential for the measurement of cloaking behaviour. PMID:20975696

  6. AC conductivity and dielectric behavior of bulk Furfurylidenemalononitrile

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, H. A. M.

    2012-06-01

    AC conductivity and dielectric behavior for bulk Furfurylidenemalononitrile have been studied over a temperature range (293-333 K) and frequency range (50-5×106 Hz). The frequency dependence of ac conductivity, σac, has been investigated by the universal power law, σac(ω)=Aωs. The variation of the frequency exponent (s) with temperature was analyzed in terms of different conduction mechanisms, and it was found that the correlated barrier hopping (CBH) model is the predominant conduction mechanism. The temperature dependence of σac(ω) showed a linear increase with the increase in temperature at different frequencies. The ac activation energy was determined at different frequencies. Dielectric data were analyzed using complex permittivity and complex electric modulus for bulk Furfurylidenemalononitrile at various temperatures.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khader, S. Abdul, E-mail: khadersku@gmail.com; Sankarappa, T., E-mail: sankarappa@rediffmail.com; Muneeswaran, M.

    The Particulate nano-composites of ferrite and ferroelectric phases having the general formula (x) Mg{sub 0.25}Cu{sub 0.25}Zn{sub 0.5}Fe{sub 2}O{sub 4} + (1-x) BaTiO{sub 3} (x=15%, 30% and 45%) were synthesized by sintering mixtures of highly ferroelectric BaTiO{sub 3} (BT) and highly magneto-strictive magnetic component Mg{sub 0.25}Cu{sub 0.25}Zn{sub 0.5}Fe{sub 2}O{sub 4}(MCZF). The presence of constituent phases of ferrite, ferroelectric and their composites were probed and confirmed by X-ray diffraction (XRD) studies. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). The variation of dielectric constant and dissipation factor as a function of frequency from 100 Hzmore » to 1 MHz at room temperature were carried out using a Hioki LCR Hi-Tester. The dielectric constant and dielectric loss were found to decrease rapidly in the low frequency region and became almost constant in the high frequency region. The electrical conductivity deduced from the measured dielectric data has been thoroughly analyzed and found that the conduction mechanism in these composites is in conformity with small polaron hopping model. The ferroelectric properties of synthesized magneto-electric nano-composites were measured using P-E loop tracer.« less

  8. [INVITED] Coupling of polarisation of high frequency electric field and electronic heat conduction in laser created plasma

    NASA Astrophysics Data System (ADS)

    Gamaly, Eugene G.; Rode, Andrei V.

    2016-08-01

    Powerful short laser pulse focused on a surface swiftly transforms the solid into the thermally and electrically inhomogeneous conductive plasma with the large temperature and dielectric permeability gradients across the focal spot. The laser-affected spot becomes thermally inhomogeneous with where temperature has maximum in the centre and gradually decreasing to the boundaries of the spot in accord to the spatial intensity distribution of the Gaussian pulse. Here we study the influence of laser polarisation on ionization and absorption of laser radiation in the focal spot. In this paper we would like to discuss new effect in thermally inhomogeneous plasma under the action of imposed high frequency electric field. We demonstrate that high-frequency (HF) electric field is coupled with the temperature gradient generating the additional contribution to the conventional electronic heat flow. The additional heat flow strongly depends on the polarisation of the external field. It appears that effect has maximum when the imposed electric field is collinear to the thermal gradient directed along the radius of a circular focal spot. Therefore, the linear polarised field converts the circular laser affected spot into an oval with the larger oval's axis parallel to the field direction. We compare the developed theory to the available experiments, discuss the results and future directions.

  9. Ultra-high thermal effusivity materials for resonant ambient thermal energy harvesting.

    PubMed

    Cottrill, Anton L; Liu, Albert Tianxiang; Kunai, Yuichiro; Koman, Volodymyr B; Kaplan, Amir; Mahajan, Sayalee G; Liu, Pingwei; Toland, Aubrey R; Strano, Michael S

    2018-02-14

    Materials science has made progress in maximizing or minimizing the thermal conductivity of materials; however, the thermal effusivity-related to the product of conductivity and capacity-has received limited attention, despite its importance in the coupling of thermal energy to the environment. Herein, we design materials that maximize the thermal effusivity by impregnating copper and nickel foams with conformal, chemical-vapor-deposited graphene and octadecane as a phase change material. These materials are ideal for ambient energy harvesting in the form of what we call thermal resonators to generate persistent electrical power from thermal fluctuations over large ranges of frequencies. Theory and experiment demonstrate that the harvestable power for these devices is proportional to the thermal effusivity of the dominant thermal mass. To illustrate, we measure persistent energy harvesting from diurnal frequencies, extracting as high as 350 mV and 1.3 mW from approximately 10 °C diurnal temperature differences.

  10. Calibrated complex impedance of CHO cells and E. coli bacteria at GHz frequencies using scanning microwave microscopy

    NASA Astrophysics Data System (ADS)

    Tuca, Silviu-Sorin; Badino, Giorgio; Gramse, Georg; Brinciotti, Enrico; Kasper, Manuel; Oh, Yoo Jin; Zhu, Rong; Rankl, Christian; Hinterdorfer, Peter; Kienberger, Ferry

    2016-04-01

    The application of scanning microwave microscopy (SMM) to extract calibrated electrical properties of cells and bacteria in air is presented. From the S 11 images, after calibration, complex impedance and admittance images of Chinese hamster ovary cells and E. coli bacteria deposited on a silicon substrate have been obtained. The broadband capabilities of SMM have been used to characterize the bio-samples between 2 GHz and 20 GHz. The resulting calibrated cell and bacteria admittance at 19 GHz were Y cell = 185 μS + j285 μS and Y bacteria = 3 μS + j20 μS, respectively. A combined circuitry-3D finite element method EMPro model has been developed and used to investigate the frequency response of the complex impedance and admittance of the SMM setup. Based on a proposed parallel resistance-capacitance model, the equivalent conductance and parallel capacitance of the cells and bacteria were obtained from the SMM images. The influence of humidity and frequency on the cell conductance was experimentally studied. To compare the cell conductance with bulk water properties, we measured the imaginary part of the bulk water loss with a dielectric probe kit in the same frequency range resulting in a high level of agreement.

  11. The water quality of the River Enborne, UK: insights from high-frequency monitoring

    NASA Astrophysics Data System (ADS)

    Halliday, Sarah; Skeffington, Richard; Wade, Andrew; Bowes, Mike; Gozzard, Emma; Palmer-Felgate, Elizabeth; Newman, Johnathan; Jarvie, Helen; Loewenthal, Matt

    2014-05-01

    The River Enborne is a rural lowland catchment, impacted by agricultural runoff, and septic tank and sewage treatment works (STWs) discharges. Between November 2009 and February 2012, the river was instrumented with in situ analytical equipment to take hourly measurements of total reactive phosphorus (TRP), using a Systea Micromac C; nitrate, using a Hach Lange Nitratax; and pH, chlorophyll, dissolved oxygen, conductivity, turbidity and water temperature, using a YSI 6600 Multi-parameter sonde. In addition, weekly 'grab samples' were also collected and analysed for a wide range of chemical determinands including major ions, nutrients, and trace elements. The catchment land use is largely agricultural, with wheat the dominant crop, and the average population density is 123 persons per sq. km. The river water is largely derived from calcareous groundwater, with a mean calcium concentration of 68.5 mg/l, and high nitrogen and phosphorus concentrations, with mean nitrate and TRP concentrations of 3.96 mg/l-N and 0.17 mg/l-P respectively. A mass-balance for the catchment demonstrated that agricultural fertiliser is the dominant source of annual loads of both nitrogen and phosphorus, accounting for 77 % and 84 % respectively. However, the concentration data show that sewage effluent discharges have a disproportionate effect on the river nitrogen and phosphorus dynamics, with the diurnal STW discharge signal discernable in the high-frequency nutrient dynamics. The nutrient dynamics and correlation structure of the data indicate a substantial contribution of groundwater and agricultural runoff to stream nitrate concentrations, whereas discharges from septic tank systems and sewage treatment works are a more important source of phosphorus. The high-frequency turbidity and conductivity dynamics reveal key information about the seasonal changes controlling the system dynamics, with marked differences in diurnal conductivity dynamics at the onset of riparian shading linked to the decreased importance of the photosynthetically-driven cycle of bicarbonate concentration. Only 4 % of the phosphorus input and 9 % of the nitrogen input is exported from the catchment by the river, highlighting the importance of catchment process understanding in predicting nutrient concentrations. High-frequency monitoring will be a key to developing this vital process understanding.

  12. Influence of reactivation on the electrochemical performances of activated carbon based on coconut shell.

    PubMed

    Geng, Xin; Li, Lixiang; Zhang, Meiling; An, Baigang; Zhu, Xiaoming

    2013-12-01

    Coconut shell-based activated carbon (AC) were prepared by CO2 activation, and then the ACs with higher mesopore ratio were obtained by steam activation and by impregnating iron catalyst followed by steam activation, respectively. The AC with the highest mesopore ratio (AChmr) shows superior capacitive behavior, power output and high-frequency performance in supercapacitors. The results should attribute to the connection of its wide micropores and mesopores larger than 3 nm, which is more favorable for fast ionic transportation. The pore size distribution exhibits that the mesopore ratios of the ACs are significantly increased by reactivation of steam or catalyst up to 75% and 78%, respectively. As evidenced by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic measurements, the AChmr shows superior capacitive behaviors, conductivity and performance of electrolytic ionic transportation. The response current densities are evidently enhanced through the cyclic voltammery test at 50 mV/sec scan rate. The electrochemical impedance spectroscopy demonstrates that the conductivity and ion transport performance of the ACs are improved. The specific capacitances of the ACs were increased from 140 to 240 F/g at 500 mA/g current density. The AChmr can provide much higher power density while still maintaining good energy density, and demonstrate excellent high-frequency performances. The pore structure and conductivity of the AChmr also improve the cycleability and self-discharge of supercapacitors. Such AChmr exhibits a great potential in supercapacitors, particularly for applications where high power output and good high-frequency capacitive performances are required. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  13. Dew Point Calibration System Using a Quartz Crystal Sensor with a Differential Frequency Method

    PubMed Central

    Lin, Ningning; Meng, Xiaofeng; Nie, Jing

    2016-01-01

    In this paper, the influence of temperature on quartz crystal microbalance (QCM) sensor response during dew point calibration is investigated. The aim is to present a compensation method to eliminate temperature impact on frequency acquisition. A new sensitive structure is proposed with double QCMs. One is kept in contact with the environment, whereas the other is not exposed to the atmosphere. There is a thermal conductivity silicone pad between each crystal and a refrigeration device to keep a uniform temperature condition. A differential frequency method is described in detail and is applied to calibrate the frequency characteristics of QCM at the dew point of −3.75 °C. It is worth noting that frequency changes of two QCMs were approximately opposite when temperature conditions were changed simultaneously. The results from continuous experiments show that the frequencies of two QCMs as the dew point moment was reached have strong consistency and high repeatability, leading to the conclusion that the sensitive structure can calibrate dew points with high reliability. PMID:27869746

  14. [Comparative evaluation of mastoidoplasty results in application of various plastic materials].

    PubMed

    Zaporoshchenko, A Iu; Kravchenko, S V

    2015-01-01

    The results of surgical treatment of 62 patients, suffering chronic purulent middle otitis, were analyzed. The structure of mastoid processus and attic constitutes a base for choice of middle ear surgical sanation. Sanation operation with preservation or reconstruction of external acoustical meatus posterior wall was finished with combined mastoidoplasty using autobone, spongioid bone bioimplant Tutoplast or bioceramic material "Sintekost". Achievement of a steady sanating effect have promoted in late postoperative period a trustworthy lowering of the perception threshold of the bone--conducted sounds as on vocal, and also on high frequencies, while of the air--conducted sounds--on vocal frequencies. This permits in perspective to perform a hearing--improving operations with good functional result.

  15. On the correct choice of equivalent circuit for fitting bulk impedance data of ionic/electronic conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernández, Miguel A.; Masó, Nahum; West, Anthony R.

    Bulk conductivity data of ionically and electronically conducting solid electrolytes and electronic ceramics invariably show a frequency dependence that cannot be modelled by a single-valued resistor. To model this, common practice is to add a constant phase element (CPE) in parallel with the bulk resistance. To fit experimental data on a wide variety of materials, however, it is also essential to include the limiting, high frequency permittivity of the material in the equivalent circuit. Failure to do so can lead to incorrect values for the sample resistance and CPE parameters and to an inappropriate circuit for materials that are electricallymore » heterogeneous.« less

  16. Conduction band edge effective mass of La-doped BaSnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Allen, S., E-mail: allen@itst.ucsb.edu; Law, Ka-Ming; Raghavan, Santosh

    2016-06-20

    BaSnO{sub 3} has attracted attention as a promising material for applications requiring wide band gap, high electron mobility semiconductors, and moreover possesses the same perovskite crystal structure as many functional oxides. A key parameter for these applications and for the interpretation of its properties is the conduction band effective mass. We measure the plasma frequency of La-doped BaSnO{sub 3} thin films by glancing incidence, parallel-polarized resonant reflectivity. Using the known optical dielectric constant and measured electron density, the resonant frequency determines the band edge electron mass to be 0.19 ± 0.01. The results allow for testing band structure calculations and transport models.

  17. Thermal conductance of metal–diamond interfaces at high pressure

    DOE PAGES

    Hohensee, Gregory T.; Wilson, R. B.; Cahill, David G.

    2015-03-06

    The thermal conductance of interfaces between metals and diamond, which has a comparatively high Debye temperature, is often greater than can be accounted for by two phonon-processes. The high pressures achievable in a diamond anvil cell can significantly extend the metal phonon density of states to higher frequencies, and can also suppress extrinsic effects by greatly stiffening interface bonding. Here we report time-domain thermoreflectance measurements of metal-diamond interface thermal conductance up to 50 GPa in the DAC for Pb, Au 0.95Pd 0.05, Pt, and Al films deposited on Type 1A natural [100] and Type 2A synthetic [110] diamond anvils. Inmore » all cases, the thermal conductances increase weakly or saturate to similar values at high pressure. Lastly, our results suggest that anharmonic conductance at metal-diamond interfaces is controlled by partial transmission processes, where a diamond phonon that inelastically scatters at the interface absorbs or emits a metal phonon.« less

  18. Low substrate temperature fabrication of high-performance metal oxide thin-film by magnetron sputtering with target self-heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, W. F.; Institute of Materials Research and Engineering, Agency for Science, Technology and Research; Liu, Z. G.

    2013-03-18

    Al-doped ZnO (AZO) films with high transmittance and low resistivity were achieved on low temperature substrates by radio frequency magnetron sputtering using a high temperature target. By investigating the effect of target temperature (T{sub G}) on electrical and optical properties, the origin of electrical conduction is verified as the effect of the high T{sub G}, which enhances crystal quality that provides higher mobility of electrons as well as more effective activation for the Al dopants. The optical bandgap increases from 3.30 eV for insulating ZnO to 3.77 eV for conducting AZO grown at high T{sub G}, and is associated withmore » conduction-band filling up to 1.13 eV due to the Burstein-Moss effect.« less

  19. Behavioral self-concept as predictor of teen drinking behaviors.

    PubMed

    Dudovitz, Rebecca N; Li, Ning; Chung, Paul J

    2013-01-01

    Adolescence is a critical developmental period for self-concept (role identity). Cross-sectional studies link self-concept's behavioral conduct domain (whether teens perceive themselves as delinquent) with adolescent substance use. If self-concept actually drives substance use, then it may be an important target for intervention. In this study, we used longitudinal data from 1 school year to examine whether behavioral self-concept predicts teen drinking behaviors or vice versa. A total of 291 students from a large, predominantly Latino public high school completed a confidential computerized survey in the fall and spring of their 9th grade year. Survey measures included the frequency of alcohol use, binge drinking and at-school alcohol use in the previous 30 days; and the Harter Self-Perception Profile for Adolescents behavioral conduct subscale. Multiple regressions were performed to test whether fall self-concept predicted the frequency and type of spring drinking behavior, and whether the frequency and type of fall drinking predicted spring self-concept. Fall behavioral self-concept predicted both the frequency and type of spring drinking. Students with low versus high fall self-concept had a predicted probability of 31% versus 20% for any drinking, 20% versus 8% for binge drinking and 14% versus 4% for at-school drinking in the spring. However, neither the frequency nor the type of fall drinking significantly predicted spring self-concept. Low behavioral self-concept may precede or perhaps even drive adolescent drinking. If these results are confirmed, then prevention efforts might be enhanced by targeting high-risk teens for interventions that help develop a healthy behavioral self-concept. Copyright © 2013 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  20. Leisure time physical activity and sedentary behavior and substance use among in-school adolescents in eight African countries.

    PubMed

    Peltzer, Karl

    2010-12-01

    Physical inactivity leads to higher morbidity and mortality from chronic non-communicable diseases. In high income countries, studies have measured school population level physical activity and substance use, but comparable data are lacking from most African countries. To study the relationship between self-reported leisure time physical activity frequency and sedentary behavior and alcohol, tobacco, and other drug use behaviors among school children. A cross-sectional survey was conducted with the total sample of 24,593 school children aged 13 to 15 years from nationally representative samples from eight African countries. Univariate and multivariate analyses were conducted to assess the relationship between physical activity frequency, six measures of alcohol, tobacco, and other drug use, socioeconomic status, and mental health variables. In all, only 14.2% of the school children were frequently physically active (5 days and more in a week, at least 60 min/day) during leisure time; this was significantly higher among boys than girls. Ugandan and Kenyan school children were most physically active (17.7% and 16.0%, respectively), and Zambian and Senegalese the least (9.0% and 10.9%, respectively). Frequency of alcohol consumption and higher socioeconomic status were significantly associated with leisure time physical activity, while tobacco, illicit drug use, and mental health variables were not. Leisure time sedentary behavior of five and more hours spent sitting on a usual day were highly associated with all substance use variables. These findings suggest that leisure time physical activity frequency is associated with frequency of alcohol use and not with tobacco and illicit drug use, and leisure time sedentary behavior is highly associated with alcohol, tobacco, and drug use among adolescents.

  1. Kapitza thermal resistance studied by high-frequency photothermal radiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horny, Nicolas; Chirtoc, Mihai; Hamaoui, Georges

    2016-07-18

    Kapitza thermal resistance is determined using high-frequency photothermal radiometry (PTR) extended for modulation up to 10 MHz. Interfaces between 50 nm thick titanium coatings and silicon or stainless steel substrates are studied. In the used configuration, the PTR signal is not sensitive to the thermal conductivity of the film nor to its optical absorption coefficient, thus the Kapitza resistance is directly determined from single thermal parameter fits. Results of thermal resistances show the significant influence of the nature of the substrate, as well as of the presence of free electrons at the interface.

  2. Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor.

    PubMed

    Kulkarni, Girish S; Zhong, Zhaohui

    2012-02-08

    Nanosensors based on the unique electronic properties of nanotubes and nanowires offer high sensitivity and have the potential to revolutionize the field of Point-of-Care (POC) medical diagnosis. The direct current (dc) detection of a wide array of organic and inorganic molecules has been demonstrated on these devices. However, sensing mechanism based on measuring changes in dc conductance fails at high background salt concentrations, where the sensitivity of the devices suffers from the ionic screening due to mobile ions present in the solution. Here, we successfully demonstrate that the fundamental ionic screening effect can be mitigated by operating single-walled carbon nanotube field effect transistor as a high-frequency biosensor. The nonlinear mixing between the alternating current excitation field and the molecular dipole field can generate mixing current sensitive to the surface-bound biomolecules. Electrical detection of monolayer streptavidin binding to biotin in 100 mM buffer solution is achieved at a frequency beyond 1 MHz. Theoretical modeling confirms improved sensitivity at high frequency through mitigation of the ionic screening effect. The results should promise a new biosensing platform for POC detection, where biosensors functioning directly in physiologically relevant condition are desired. © 2012 American Chemical Society

  3. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    NASA Astrophysics Data System (ADS)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.; Santhakumar, Vijayalakshmi

    2013-12-01

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (EGABA). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (gGABA-extra) and experimentally identified, seizure-induced changes in gGABA-extra and EGABA influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40-100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30-40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing gGABA-extra reduced the frequency and coherence of FS-BC firing when EGABA was shunting (-74 mV), but failed to alter average FS-BC frequency when EGABA was depolarizing (-54 mV). When FS-BCs were activated by biologically based dendritic synaptic inputs, enhancing gGABA-extra reduced the frequency and coherence of FS-BC firing when EGABA was shunting and increased average FS-BC firing when EGABA was depolarizing. Shifting EGABA from shunting to depolarizing potentials consistently increased network frequency to and above high gamma frequencies (>80 Hz). Since gamma oscillations may contribute to learning and memory processing [Fell et al., Nat. Neurosci. 4, 1259 (2001); Jutras et al., J. Neurosci. 29, 12521 (2009); Wang, Physiol. Rev. 90, 1195 (2010)], our demonstration that network oscillations are modulated by extrasynaptic inhibition in FS-BCs suggests that neuroactive compounds that act on extrasynaptic GABA receptors could impact memory formation by modulating hippocampal gamma oscillations. The simulation results indicate that the depolarized FS-BC GABA reversal, observed after experimental seizures, together with enhanced spillover extrasynaptic GABA currents are likely to promote generation of focal high frequency activity associated with epileptic networks.

  4. Spectral Induced Polarization monitoring of the groundwater physico-chemical parameters daily variations for stream-groundwater interactions

    NASA Astrophysics Data System (ADS)

    Jougnot, Damien; Camerlynck, Christian; Robain, Henri; Tallec, Gaëlle; Ribolzi, Olivier; Gaillardet, Jérôme

    2017-04-01

    During the last decades, geophysical methods have been attracting an increasing interest in hydrology and environmental sciences given their sensitivity to parameters of interests and their non-intrusive nature. The Spectral Induced Polarization (SIP) is a low frequency electro-magnetic method that allows the characterization of the subsurface through its complex electrical conductivity. It reports the modulus of the conductivity and the phase between an injected current and a measured voltage over a rather large frequency range (from few millihertz to few tens of kilohertz). The real part of the conductivity is sensitive to lithological (porosity, specific surface area) and hydrological (water saturation, water salinity) parameters, while the imaginary part is linked to electrochemical polarizations, that have been shown to be largely influenced by the chemistry of the pore water. In the present contribution, we aim at better characterizing the exchanges between a stream and the surrounding groundwater using the SIP method and its sensitivity to pore water changes over time. Two sites from the OZCAR Research Infrastructure (French Critical Zone observatories) have been chosen for this study: the Houay Pano catchment (Laos) and the Orgeval catchment (France). These two sites have a good existing infrastructure and have been already studied extensively in terms of hydrology, geophysics, and hydrochemistry. They constitute perfect experimental sites to develop novel methodologies for the assessment of stream-groundwater exchanges. We propose to obtain a vertical description of the changes in complex electrical conductivity with depth based on SIP soundings undertaken with the multi-channel system SIP Fuchs III. We conducted a high-frequency monitoring close to a river stream (one vertical profiles every 30 min). In parallel, a high frequency monitoring of the physico-chemical parameters (temperature, conductivity, ionic concentrations) in the river stream has been performed. Relating the daily fluctuations of the groundwater complex conductivity and the river physico-chemical parameters could therefore establish a new proxy to characterize stream-groundwater interactions. In parallel to the field measurements, laboratory experiments have been conducted on soil samples from the two sites. These measurements provide a better understanding of the complex conductivity signature of the samples submitted to saturation and pore water physico-chemical changes. This work is in progress but the first results already show that the method has a real interest for the monitoring of daily variations of the physico-chemistry properties of the groundwater and their relations to those of the stream.

  5. Automated surface-scanning detection of pathogenic bacteria on fresh produce

    NASA Astrophysics Data System (ADS)

    Horikawa, Shin; Du, Songtao; Liu, Yuzhe; Chen, I.-Hsuan; Xi, Jianguo; Crumpler, Michael S.; Sirois, Donald L.; Best, Steve R.; Wikle, Howard C.; Chin, Bryan A.

    2017-05-01

    This paper investigates the effects of surface-scanning detector position on the resonant frequency and signal amplitude of a wireless magnetoelastic (ME) biosensor for direct pathogen detection on solid surfaces. The experiments were conducted on the surface of a flat polyethylene (PE) plate as a model study. An ME biosensor (1 mm × 0.2 mm × 30 μm) was placed on the PE surface, and a surface-scanning detector was brought close and aligned to the sensor for wireless resonant frequency measurement. The position of the detector was accurately controlled by using a motorized three-axis translation system (i.e., controlled X, Y, and Z positions). The results showed that the resonant frequency variations of the sensor were -125 to +150 Hz for X and Y detector displacements of +/-600 μm and Z displacements of +100 to +500 μm. These resonant frequency variations were small compared to the sensor's initial resonant frequency (< 0.007% of 2.2 MHz initial resonant frequency) measured at the detector home position, indicating high accuracy of the measurement. In addition, the signal amplitude was, as anticipated, found to decrease exponentially with increasing detection distance (i.e., Z distance). Finally, additional experiments were conducted on the surface of cucumbers. Similar results were obtained.

  6. Single- and multi-frequency detection of surface displacements via scanning probe microscopy.

    PubMed

    Romanyuk, Konstantin; Luchkin, Sergey Yu; Ivanov, Maxim; Kalinin, Arseny; Kholkin, Andrei L

    2015-02-01

    Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.

  7. Design of a New Built-in UHF Multi-Frequency Antenna Sensor for Partial Discharge Detection in High-Voltage Switchgears.

    PubMed

    Zhang, Xiaoxing; Cheng, Zheng; Gui, Yingang

    2016-07-26

    In this study a new built-in ultrahigh frequency (UHF) antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD) detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor.

  8. Design of a New Built-in UHF Multi-Frequency Antenna Sensor for Partial Discharge Detection in High-Voltage Switchgears

    PubMed Central

    Zhang, Xiaoxing; Cheng, Zheng; Gui, Yingang

    2016-01-01

    In this study a new built-in ultrahigh frequency (UHF) antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD) detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor. PMID:27472331

  9. Recent Efforts in Advanced High Frequency Communications at the Glenn Research Center in Support of NASA Mission

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation will discuss research and technology development work at the NASA Glenn Research Center in advanced frequency communications in support of NASAs mission. An overview of the work conducted in-house and also in collaboration with academia, industry, and other government agencies (OGA) in areas such as antenna technology, power amplifiers, radio frequency (RF) wave propagation through Earths atmosphere, ultra-sensitive receivers, among others, will be presented. In addition, the role of these and other related RF technologies in enabling the NASA next generation space communications architecture will be also discussed.

  10. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  11. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, Eric A.; Fisher, Walter G.

    1998-01-01

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time.

  12. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, E.A.; Fisher, W.G.

    1998-04-28

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time. 12 figs.

  13. Dielectric relaxation of gamma irradiated muscovite mica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Navjeet; Singh, Mohan, E-mail: mohansinghphysics@gmail.com; Singh, Lakhwant

    2015-03-15

    Highlights: • The present article reports the effect of gamma irradiation on the dielectric relaxation characteristics of muscovite mica. • Dielectric and electrical relaxations have been analyzed in the framework of dielectric permittivity, electric modulus and Cole–Cole formalisms. • The frequency dependent electrical conductivity has been rationalized using Johnsher’s universal power law. • The experimentally measured electric modulus and conductivity data have been fitted using Havriliak–Negami dielectric relaxation function. - Abstract: In the present research, the dielectric relaxation of gamma irradiated muscovite mica was studied in the frequency range of 0.1 Hz–10 MHz and temperature range of 653–853 K, usingmore » the dielectric permittivity, electric modulus and conductivity formalisms. The dielectric constants (ϵ′ and ϵ′′) are found to be high for gamma irradiated muscovite mica as compared to the pristine sample. The frequency dependence of the imaginary part of complex electric modulus (M′′) and dc conductivity data conforms Arrhenius law with single value of activation energy for pristine sample and two values of activation energy for gamma irradiated mica sample. The experimentally assessed electric modulus and conductivity information have been interpreted by the Havriliak–Negami dielectric relaxation explanation. Using the Cole–Cole framework, an analysis of real and imaginary characters of the electric modulus for pristine and gamma irradiated sample was executed which reflects the non-Debye relaxation mechanism.« less

  14. Optimetrics for Precise Navigation

    NASA Technical Reports Server (NTRS)

    Yang, Guangning; Heckler, Gregory; Gramling, Cheryl

    2017-01-01

    Optimetrics for Precise Navigation will be implemented on existing optical communication links. The ranging and Doppler measurements are conducted over communication data frame and clock. The measurement accuracy is two orders of magnitude better than TDRSS. It also has other advantages of: The high optical carrier frequency enables: (1) Immunity from ionosphere and interplanetary Plasma noise floor, which is a performance limitation for RF tracking; and (2) High antenna gain reduces terminal size and volume, enables high precision tracking in Cubesat, and in deep space smallsat. High Optical Pointing Precision provides: (a) spacecraft orientation, (b) Minimal additional hardware to implement Precise Optimetrics over optical comm link; and (c) Continuous optical carrier phase measurement will enable the system presented here to accept future optical frequency standard with much higher clock accuracy.

  15. Fast Rise Time and High Voltage Nanosecond Pulses at High Pulse Repetition Frequency

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Picard, Julian; Hashim, Akel

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is conducting research to decrease the rise time and increase the output voltage of the EHT Nanosecond Pulser product line, which allows for independently, user-adjustable output voltage (0 - 20 kV), pulse width (20 - 500 ns), and pulse repetition frequency (0 - 100 kHz). The goals are to develop higher voltage pulses (50 - 60 kV), decrease the rise time from 20 to below 10 ns, and maintain the high pulse repetition capabilities. These new capabilities have applications to pseudospark generation, corona production, liquid discharges, and nonlinear transmission line driving for microwave production. This work is supported in part by the US Navy SBIR program.

  16. Electrical and magnetic properties of rock and soil

    USGS Publications Warehouse

    Scott, J.H.

    1983-01-01

    Field and laboratory measurements have been made to determine the electrical conductivity, dielectric constant, and magnetic permeability of rock and soil in areas of interest in studies of electromagnetic pulse propagation. Conductivity is determined by making field measurements of apparent resisitivity at very low frequencies (0-20 cps), and interpreting the true resistivity of layers at various depths by curve-matching methods. Interpreted resistivity values are converted to corresponding conductivity values which are assumed to be applicable at 10^2 cps, an assumption which is considered valid because the conductivity of rock and soil is nearly constant at frequencies below 10^2 cps. Conductivity is estimated at higher frequencies (up to 10^6 cps) by using statistical correlations of three parameters obtained from laboratory measurements of rock and soil samples: conductivity at 10^2 cps, frequency and conductivity measured over the range 10^2 to 10^6 cps. Conductivity may also be estimated in this frequency range by using field measurements of water content and correlations of laboratory sample measurements of the three parameters: water content, frequency, and conductivity measured over the range 10^2 to 10^6 cps. This method is less accurate because nonrandom variation of ion concentration in natural pore water introduces error. Dielectric constant is estimated in a similar manner from field-derived conductivity values applicable at 10^2 cps and statistical correlations of three parameters obtained from laboratory measurements of samples: conductivity measured at 10^2 cps, frequency, and dielectric constant measured over the frequency range 10^2 to 10^6 cps. Dielectric constant may also be estimated from field measurements of water content and correlations of laboratory sample measurements of the three parameters: water content, frequency, and dielectric constant measured from 10^2 to 10^6 cps, but again, this method is less accurate because of variation of ion concentration of pore water. Special laboratory procedures are used to measure conductivity and dielectric constant of rock and soil samples. Electrode polarization errors are minimized by using an electrode system that is electrochemically reversible-with ions in pore water.

  17. Very Low Frequency Breakdown Properties of Electrical Insulation Materials at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Sauers, I.; Tuncer, E.; Polizos, G.; James, D. R.; Ellis, A. R.; Pace, M. O.

    2010-04-01

    For long cables or equipment with large capacitance it is not always possible to conduct high voltage withstand tests at 60 Hz due to limitations in charging currents of the power supply. Very low frequency (typically at a frequency of 0.1 Hz) has been used for conventional cables as a way of getting around the charging current limitation. For superconducting grid applications the same issues apply. However there is very little data at cryogenic temperatures on how materials perform at low frequency compared to 60 Hz and whether higher voltages should be applied when performing a high voltage acceptability test. Various materials including G10 (fiberglass reinforced plastic or FRP), Cryoflex™ (a tape insulation used in some high temperature superconducting cables), kapton (commonly used polyimide), polycarbonate, and polyetherimide, and in liquid nitrogen alone have been tested using a step method for frequencies of 60 Hz, 0.1 Hz, and dc. The dwell time at each step was chosen so that the aging factor would be the same in both the 60 Hz and 0.1 Hz tests. The data indicated that, while there is a small frequency dependence for liquid nitrogen, there are significant differences for the solid materials studied. Breakdown data for these materials and for model cables will be shown and discussed.

  18. Increased frequency of social interaction is associated with enjoyment enhancement and reward system activation

    PubMed Central

    Kawamichi, Hiroaki; Sugawara, Sho K.; Hamano, Yuki H.; Makita, Kai; Kochiyama, Takanori; Sadato, Norihiro

    2016-01-01

    Positive social interactions contribute to the sense that one’s life has meaning. Enjoyment of feelings associated through social interaction motivates humans to build social connections according to their personal preferences. Therefore, we hypothesized that social interaction itself activates the reward system in a manner that depends upon individual interaction preferences. To test this hypothesis, we conducted a functional magnetic resonance imaging (fMRI) study in which 38 participants played a virtual ball-toss game in which the number of ball tosses to the participant was either similar to (normal-frequency condition) or higher than (high-frequency condition) the number of tosses to the other players. Participants reported greater-than-anticipated enjoyment during the high-frequency condition, suggesting that receiving a social reward led to unexpected positive feelings. Consistent with this, the high-frequency condition produced stronger activation in the ventral striatum, which is part of the reward system, and the precuneus, representing positive self-image, which might be translated to social reward. Furthermore, ventral striatal activation covaried with individual participants’ preference for interactions with others. These findings suggest that an elevated frequency of social interaction is represented as a social reward, which might motivate individuals to promote social interaction in a manner that is modulated by personal preference. PMID:27090501

  19. Increased frequency of social interaction is associated with enjoyment enhancement and reward system activation.

    PubMed

    Kawamichi, Hiroaki; Sugawara, Sho K; Hamano, Yuki H; Makita, Kai; Kochiyama, Takanori; Sadato, Norihiro

    2016-04-19

    Positive social interactions contribute to the sense that one's life has meaning. Enjoyment of feelings associated through social interaction motivates humans to build social connections according to their personal preferences. Therefore, we hypothesized that social interaction itself activates the reward system in a manner that depends upon individual interaction preferences. To test this hypothesis, we conducted a functional magnetic resonance imaging (fMRI) study in which 38 participants played a virtual ball-toss game in which the number of ball tosses to the participant was either similar to (normal-frequency condition) or higher than (high-frequency condition) the number of tosses to the other players. Participants reported greater-than-anticipated enjoyment during the high-frequency condition, suggesting that receiving a social reward led to unexpected positive feelings. Consistent with this, the high-frequency condition produced stronger activation in the ventral striatum, which is part of the reward system, and the precuneus, representing positive self-image, which might be translated to social reward. Furthermore, ventral striatal activation covaried with individual participants' preference for interactions with others. These findings suggest that an elevated frequency of social interaction is represented as a social reward, which might motivate individuals to promote social interaction in a manner that is modulated by personal preference.

  20. On-chip microfluid induced by oscillation of microrobot for noncontact cell transportation

    NASA Astrophysics Data System (ADS)

    Feng, Lin; Liang, Shuzhang; Zhou, Xiangcong; Yang, Jianlei; Jiang, Yonggang; Zhang, Deyuan; Arai, Fumihito

    2017-11-01

    The importance of cell manipulation and cultivation is increasing rapidly in various fields, such as drug discovery, regenerative medicine, and investigation of new energy sources. This paper presents a method to transport cells in a microfluidic chip without contact. A local vortex was generated when high-frequency oscillation of a microtool was induced in a microfluidic chip. The vortex was controlled by tuning the tool's oscillation parameters, such as the oscillation amplitude and frequency. The cells were then transported in the chip based on the direction of the tool's movement, and their position, posture, and trajectories were controlled. Bovine oocyte manipulations, that is, transportation and rotation, were conducted to demonstrate the capability of the proposed method, without any contact by the microrobot with high-frequency oscillation.

  1. High-frequency guided ultrasonic waves for hidden defect detection in multi-layered aircraft structures.

    PubMed

    Masserey, Bernard; Raemy, Christian; Fromme, Paul

    2014-09-01

    Aerospace structures often contain multi-layered metallic components where hidden defects such as fatigue cracks and localized disbonds can develop, necessitating non-destructive testing. Employing standard wedge transducers, high frequency guided ultrasonic waves that penetrate through the complete thickness were generated in a model structure consisting of two adhesively bonded aluminium plates. Interference occurs between the wave modes during propagation along the structure, resulting in a frequency dependent variation of the energy through the thickness with distance. The wave propagation along the specimen was measured experimentally using a laser interferometer. Good agreement with theoretical predictions and two-dimensional finite element simulations was found. Significant propagation distance with a strong, non-dispersive main wave pulse was achieved. The interaction of the high frequency guided ultrasonic waves with small notches in the aluminium layer facing the sealant and on the bottom surface of the multilayer structure was investigated. Standard pulse-echo measurements were conducted to verify the detection sensitivity and the influence of the stand-off distance predicted from the finite element simulations. The results demonstrated the potential of high frequency guided waves for hidden defect detection at critical and difficult to access locations in aerospace structures from a stand-off distance. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Experimental and numerical study of a dual configuration for a flapping tidal current generator.

    PubMed

    Kim, Jihoon; Quang Le, Tuyen; Hwan Ko, Jin; Ebenezer Sitorus, Patar; Hartarto Tambunan, Indra; Kang, Taesam

    2015-07-30

    In this study, we conduct experimental and consecutive numerical analyses of a flapping tidal current generator with a mirror-type dual configuration with front-swing and rear-swing flappers. An experimental analysis of a small-scale prototype is conducted in a towing tank, and a numerical analysis is conducted by means of two-dimensional computational fluid dynamics simulations with an in-house code. An experimental study with a controller to determine the target arm angle shows that the resultant arm angle is dependent on the input arm angle, the frequency, and the applied load, while a high pitch is obtained simply with a high input arm angle. Through a parametric analysis conducted while varying these factors, a high applied load and a high input arm angle were found to be advantageous. Moreover, the optimal reduced frequency was found to be 0.125 in terms of the power extraction. In consecutive numerical investigations with the kinematics selected from the experiments, it was found that a rear-swing flapper contributes to the total amount of power more than a front-swing flapper with a distance of two times the chord length and with a 90° phase difference between the two. The high contribution stems from the high power generated by the rear-swing flapper, which mimics the tail fin movement of a dolphin along a flow, compared to a plunge system or a front-swing system, which mimics the tail fin movement of a dolphin against a flow. It is also due to the fact that the shed vorticities of the front-swing flapper slightly affect negatively or even positively the power performance of the rear-swing system at a given distance and phase angle.

  3. A deterministic (non-stochastic) low frequency method for geoacoustic inversion.

    PubMed

    Tolstoy, A

    2010-06-01

    It is well known that multiple frequency sources are necessary for accurate geoacoustic inversion. This paper presents an inversion method which uses the low frequency (LF) spectrum only to estimate bottom properties even in the presence of expected errors in source location, phone depths, and ocean sound-speed profiles. Matched field processing (MFP) along a vertical array is used. The LF method first conducts an exhaustive search of the (five) parameter search space (sediment thickness, sound-speed at the top of the sediment layer, the sediment layer sound-speed gradient, the half-space sound-speed, and water depth) at 25 Hz and continues by retaining only the high MFP value parameter combinations. Next, frequency is slowly increased while again retaining only the high value combinations. At each stage of the process, only those parameter combinations which give high MFP values at all previous LF predictions are considered (an ever shrinking set). It is important to note that a complete search of each relevant parameter space seems to be necessary not only at multiple (sequential) frequencies but also at multiple ranges in order to eliminate sidelobes, i.e., false solutions. Even so, there are no mathematical guarantees that one final, unique "solution" will be found.

  4. Dielectric and conductivity studies of Co-Cu mixed ferrite

    NASA Astrophysics Data System (ADS)

    Parveez, Asiya; Shekhawat, M. S.; Nayeem, Firdous; Mohd. Shariff, S.; Sinha, R. R.; Khader, S. Abdul

    2018-05-01

    Nanoparticles of Co-Cu mixed ferrite having the basic composition Co1-xCuxFe2O4(x=0, 0.2, 0.4, 0.6, 0.8 and 1.0) were synthesized using nitrate-citrate combustion method. Structural, dielectric and a.c conductivity of nanopowders, which are sintered at 900°C were studied. Powder X-ray diffraction studies confirmed phase and their nanocrystalline nature. The peaks observed in the XRD spectrum indicated single phase spinel cubic structure for the synthesized samples. Surface morphology of the samples has been investigated using High ResolutionScanning Electron Microscope. The dielectric constant (ɛ') and dielectric loss factor (ɛ″) of nanocrystalline Co-Cu mixed ferrites were investigated as a function of frequency and Cu+2 concentration at room temperature over the frequency range 100 Hz to 1 MHz using Hioki make LCR Hi-Tester 3250. Synthesized mixed ferrites exhibited usual dielectric dispersion, dependence of ɛ' and ɛ″ with the frequency of the alternating applied electric field is in accordance with the Maxwell-Wagner type interfacial polarization. The electrical conductivity (σac) deduced from the measured dielectric data has been thoroughly analyzed and found that the conduction mechanism in Co1-xCuxFe2O4 mixed nanoferrites are in conformity with the electron hopping model.

  5. Team-level flexibility, work–home spillover, and health behavior

    PubMed Central

    Moen, Phyllis; Fan, Wen; Kelly, Erin L.

    2013-01-01

    Drawing on two waves of survey data conducted six months apart in 2006, this study examined the impacts of a team-level flexibility initiative (ROWE – Results Only Work Environment) on changes in the work-home spillover and health behavior of employees at the Midwest headquarters of a large US corporation. Using cluster analysis, we identified three distinct baseline spillover constellations: employees with high negative spillover, high positive spillover, and low overall spillover. Within-team spillover measures were highly intercorrelated, suggesting that work teams as well as individuals have identifiable patterns of spillover. Multilevel analyses showed ROWE reduced individual- and team-level negative work-home spillover but not positive work-home spillover or spillover from home-to-work. ROWE also promoted employees’ health behaviors: increasing the odds of quitting smoking, decreasing smoking frequency, and promoting perceptions of adequate time for healthy meals. Trends suggest that ROWE also decreased the odds of excessive drinking and improved sleep adequacy and exercise frequency. Some health behavior effects were mediated via reduced individual-level negative work-home spillover (exercise frequency, adequate time for sleep) and reduced team-level negative work-home spillover (smoking frequency, exercise frequency, and adequate time for sleep). While we found no moderating effects of gender, ROWE especially improved the exercise frequency of singles and reduced the smoking frequency of employees with low overall spillover at baseline. PMID:23517706

  6. Multiple-frequency continuous wave ultrasonic system for accurate distance measurement

    NASA Astrophysics Data System (ADS)

    Huang, C. F.; Young, M. S.; Li, Y. C.

    1999-02-01

    A highly accurate multiple-frequency continuous wave ultrasonic range-measuring system for use in air is described. The proposed system uses a method heretofore applied to radio frequency distance measurement but not to air-based ultrasonic systems. The method presented here is based upon the comparative phase shifts generated by three continuous ultrasonic waves of different but closely spaced frequencies. In the test embodiment to confirm concept feasibility, two low cost 40 kHz ultrasonic transducers are set face to face and used to transmit and receive ultrasound. Individual frequencies are transmitted serially, each generating its own phase shift. For any given frequency, the transmitter/receiver distance modulates the phase shift between the transmitted and received signals. Comparison of the phase shifts allows a highly accurate evaluation of target distance. A single-chip microcomputer-based multiple-frequency continuous wave generator and phase detector was designed to record and compute the phase shift information and the resulting distance, which is then sent to either a LCD or a PC. The PC is necessary only for calibration of the system, which can be run independently after calibration. Experiments were conducted to test the performance of the whole system. Experimentally, ranging accuracy was found to be within ±0.05 mm, with a range of over 1.5 m. The main advantages of this ultrasonic range measurement system are high resolution, low cost, narrow bandwidth requirements, and ease of implementation.

  7. Team-level flexibility, work-home spillover, and health behavior.

    PubMed

    Moen, Phyllis; Fan, Wen; Kelly, Erin L

    2013-05-01

    Drawing on two waves of survey data conducted six months apart in 2006, this study examined the impacts of a team-level flexibility initiative (ROWE--results only work environment) on changes in the work-home spillover and health behavior of employees at the Midwest headquarters of a large U.S. corporation. Using cluster analysis, we identified three distinct baseline spillover constellations: employees with high negative spillover, high positive spillover, and low overall spillover. Within-team spillover measures were highly intercorrelated, suggesting that work teams as well as individuals have identifiable patterns of spillover. Multilevel analyses showed ROWE reduced individual- and team-level negative work-home spillover but not positive work-home spillover or spillover from home-to-work. ROWE also promoted employees' health behaviors: increasing the odds of quitting smoking, decreasing smoking frequency, and promoting perceptions of adequate time for healthy meals. Trends suggest that ROWE also decreased the odds of excessive drinking and improved sleep adequacy and exercise frequency. Some health behavior effects were mediated via reduced individual-level negative work-home spillover (exercise frequency, adequate time for sleep) and reduced team-level negative work-home spillover (smoking frequency, exercise frequency, and adequate time for sleep). While we found no moderating effects of gender, ROWE especially improved the exercise frequency of singles and reduced the smoking frequency of employees with low overall spillover at baseline. Copyright © 2013. Published by Elsevier Ltd.

  8. High-Resolution Faraday Rotation and Electron-Phonon Coupling in Surface States of the Bulk-Insulating Topological Insulator Cu_{0.02}Bi_{2}Se_{3}.

    PubMed

    Wu, Liang; Tse, Wang-Kong; Brahlek, M; Morris, C M; Aguilar, R Valdés; Koirala, N; Oh, S; Armitage, N P

    2015-11-20

    We have utilized time-domain magnetoterahertz spectroscopy to investigate the low-frequency optical response of the topological insulator Cu_{0.02}Bi_{2}Se_{3} and Bi_{2}Se_{3} films. With both field and frequency dependence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both materials. The small amount of Cu incorporated into the Cu_{0.02}Bi_{2}Se_{3} induces a true bulk insulator with only a single type of conduction with a total sheet carrier density of ~4.9×10^{12}/cm^{2} and mobility as high as 4000 cm^{2}/V·s. This is consistent with conduction from two virtually identical topological surface states (TSSs) on the top and bottom of the film with a chemical potential ~145 meV above the Dirac point and in the bulk gap. The CR broadens at high fields, an effect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis of the zero-field Drude conductance. In contrast, in normal Bi_{2}Se_{3} films, two conduction channels were observed, and we developed a self-consistent analysis method to distinguish the dominant TSSs and coexisting trivial bulk or two-dimensional electron gas states. Our high-resolution Faraday rotation spectroscopy on Cu_{0.02}Bi_{2}Se_{3} paves the way for the observation of quantized Faraday rotation under experimentally achievable conditions to push the chemical potential in the lowest Landau level.

  9. Assessment of Multi-frequency Electromagnetic Induction for Determining Soil Moisture Patterns at the Hillslope Scale

    NASA Astrophysics Data System (ADS)

    Tromp-van Meerveld, I.; McDonnell, J.

    2009-05-01

    We present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the Panola (GA, USA) hillslope. We address the following questions regarding the applicability of EM measurements for hillslope hydrological investigations: (1) Can EM be used for soil moisture measurements in areas with shallow soils?; (2) Can EM represent the temporal and spatial patterns of soil moisture throughout the year?; and (3) can multiple frequencies be used to extract additional information content from the EM approach and explain the depth profile of soil moisture? We found that the apparent conductivity measured with the multi-frequency GEM-300 was linearly related to soil moisture measured with an Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7290, 9090, 11250, and 14010 Hz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition, the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the Aqua-pro soil moisture measurements.

  10. Estimating discharge and non-point source nitrate loading to streams from three end-member pathways using high-frequency water quality and streamflow data

    NASA Astrophysics Data System (ADS)

    Miller, M. P.; Tesoriero, A. J.; Hood, K.; Terziotti, S.; Wolock, D.

    2017-12-01

    The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency specific conductance and nitrate data to estimate time-variable watershed-scale nitrate loading from three end-member pathways - dilute quickflow, concentrated quickflow, and slowflow groundwater - to two streams in central Wisconsin. Time-variable nitrate loads from the three pathways were estimated for periods of up to two years in a groundwater-dominated and a quickflow-dominated stream, using only streamflow and in-stream water quality data. The dilute and concentrated quickflow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quickflow contributed less than 5% of the nitrate load at both sites, whereas 89±5% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84±13% of the nitrate load at the quickflow-dominated stream was from concentrated quickflow. Concentrated quickflow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to non-point source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.

  11. Home food and activity assessment. Development and validation of an instrument for diverse families of young children.

    PubMed

    Boles, Richard E; Burdell, Alexandra; Johnson, Susan L; Gavin, William J; Davies, Patricia L; Bellows, Laura L

    2014-09-01

    The purpose of this study was to refine and psychometrically test an instrument measuring the home food and activity environment of geographically and economically diverse families of preschool aged children. Caregivers of preschool aged children (n = 83) completed a modified self-report questionnaire. Reliably trained researchers conducted independent observations on 25 randomly selected homes. Agreement statistics were conducted at the item level (154 total items) to determine reliability. Frequency counts were calculated to identify item availability. Results showed Kappa statistics were high (.67-1.00) between independent researchers but varied between researchers and parents resulting in 85 items achieving criterion validity (Kappa >.60). Analyses of reliable items revealed the presence in the home of a high frequency of unhealthy snack foods, high fat milk and low frequency of availability of fruits/vegetables and low fat milk. Fifty-two percent of the homes were arranged with a television in the preschool child's bedroom. Physical Activity devices also were found to have high frequency availability. Families reporting lower education reported higher levels of sugar sweetened beverages and less low-fat dairy (p < .05) compared with higher education families. Low-income families (<$27K per year) reported significantly fewer Physical Activity devices (p < .001) compared with higher income families. Hispanic families reported significantly higher numbers of Sedentary Devices (p < .05) compared with non-Hispanic families. There were no significant differences between demographic comparisons on available fruits/vegetables, meats, whole grains, and regular fat dairy. A modified home food and activity instrument was found to reliably identify foods and activity devices with geographically and economically diverse families. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Simulating cartilage conduction sound to estimate the sound pressure level in the external auditory canal

    NASA Astrophysics Data System (ADS)

    Shimokura, Ryota; Hosoi, Hiroshi; Nishimura, Tadashi; Iwakura, Takashi; Yamanaka, Toshiaki

    2015-01-01

    When the aural cartilage is made to vibrate it generates sound directly into the external auditory canal which can be clearly heard. Although the concept of cartilage conduction can be applied to various speech communication and music industrial devices (e.g. smartphones, music players and hearing aids), the conductive performance of such devices has not yet been defined because the calibration methods are different from those currently used for air and bone conduction. Thus, the aim of this study was to simulate the cartilage conduction sound (CCS) using a head and torso simulator (HATS) and a model of aural cartilage (polyurethane resin pipe) and compare the results with experimental ones. Using the HATS, we found the simulated CCS at frequencies above 2 kHz corresponded to the average measured CCS from seven subjects. Using a model of skull bone and aural cartilage, we found that the simulated CCS at frequencies lower than 1.5 kHz agreed with the measured CCS. Therefore, a combination of these two methods can be used to estimate the CCS with high accuracy.

  13. Small polaronic hole hopping mechanism and Maxwell-Wagner relaxation in NdFeO3

    NASA Astrophysics Data System (ADS)

    Ahmad, I.; Akhtar, M. J.; Younas, M.; Siddique, M.; Hasan, M. M.

    2012-10-01

    In the modern micro-electronics, transition metal oxides due to their colossal values of dielectric permittivity possess huge potential for the development of capacitive energy storage devices. In the present work, the dielectric permittivity and the effects of temperature and frequency on the electrical transport properties of polycrystalline NdFeO3, prepared by solid state reaction method, are discussed. Room temperature Mossbauer spectrum confirms the phase purity, octahedral environment for Fe ion, and high spin state of Fe3+ ion. From the impedance spectroscopic measurements, three relaxation processes are observed, which are related to grains, grain boundaries (gbs), and electrode-semiconductor contact in the measured temperature and frequency ranges. Decrease in resistances and relaxation times of the grains and grain boundaries with temperature confirms the involvement of thermally activated conduction mechanisms. Same type of charge carriers (i.e., small polaron hole hopping) have been found responsible for conduction and relaxation processes through the grain and grain boundaries. The huge value of the dielectric constant (˜8 × 103) at high temperature and low frequency is correlated to the Maxwell-Wagner relaxation due to electrode-sample contact.

  14. Intermediate conductance calcium-activated potassium channels modulate summation of parallel fiber input in cerebellar Purkinje cells.

    PubMed

    Engbers, Jordan D T; Anderson, Dustin; Asmara, Hadhimulya; Rehak, Renata; Mehaffey, W Hamish; Hameed, Shahid; McKay, Bruce E; Kruskic, Mirna; Zamponi, Gerald W; Turner, Ray W

    2012-02-14

    Encoding sensory input requires the expression of postsynaptic ion channels to transform key features of afferent input to an appropriate pattern of spike output. Although Ca(2+)-activated K(+) channels are known to control spike frequency in central neurons, Ca(2+)-activated K(+) channels of intermediate conductance (KCa3.1) are believed to be restricted to peripheral neurons. We now report that cerebellar Purkinje cells express KCa3.1 channels, as evidenced through single-cell RT-PCR, immunocytochemistry, pharmacology, and single-channel recordings. Furthermore, KCa3.1 channels coimmunoprecipitate and interact with low voltage-activated Cav3.2 Ca(2+) channels at the nanodomain level to support a previously undescribed transient voltage- and Ca(2+)-dependent current. As a result, subthreshold parallel fiber excitatory postsynaptic potentials (EPSPs) activate Cav3 Ca(2+) influx to trigger a KCa3.1-mediated regulation of the EPSP and subsequent after-hyperpolarization. The Cav3-KCa3.1 complex provides powerful control over temporal summation of EPSPs, effectively suppressing low frequencies of parallel fiber input. KCa3.1 channels thus contribute to a high-pass filter that allows Purkinje cells to respond preferentially to high-frequency parallel fiber bursts characteristic of sensory input.

  15. Investigation of high sensitivity radio-frequency readout circuit based on AlGaN/GaN high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Yu; Tan, Ren-Bing; Sun, Jian-Dong; Li, Xin-Xing; Zhou, Yu; Lü, Li; Qin, Hua

    2015-10-01

    An AlGaN/GaN high electron mobility transistor (HEMT) device is prepared by using a semiconductor nanofabrication process. A reflective radio-frequency (RF) readout circuit is designed and the HEMT device is assembled in an RF circuit through a coplanar waveguide transmission line. A gate capacitor of the HEMT and a surface-mounted inductor on the transmission line are formed to generate LC resonance. By tuning the gate voltage Vg, the variations of gate capacitance and conductance of the HEMT are reflected sensitively from the resonance frequency and the magnitude of the RF reflection signal. The aim of the designed RF readout setup is to develop a highly sensitive HEMT-based detector. Project supported by the National Natural Science Foundation of China (Grant No. 61107093), the Suzhou Science and Technology Project, China (Grant No. ZXG2012024), and the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2012243).

  16. Optical and Radio Frequency Refractivity Fluctuations from High Resolution Point Sensors: Sea Breezes and Other Observations

    DTIC Science & Technology

    2007-03-01

    velocity and direction along with vertical velocities are derived from the measured time of flight for the ultrasonic signals (manufacture’s...data set. To prevent aliasing a wave must be sample at least twice per period so the Nyquist frequency is sn ff 2 = . 3. Sampling Requirements...an order of magnitude or more. To refine models or conduct climatologically studies for Cn2 requires direct measurements to identify the underlying

  17. Assessment of the Microbiological Quality of Groundwater in Three Regions of the Valencian Community (Spain)

    PubMed Central

    Llopis-González, Agustín; Sánchez, Adriana L.; Requena, Pedro Martí; Suárez-Varela, María Morales

    2014-01-01

    Urban groundwater development was traditionally constrained by concerns about its quality. This study was conducted in the regions of La Ribera Alta and Ribera Baja and La Plana de Requena-Utiel of the Valencian Community (Valencia, Spain) where population density, demand for drinking water and agricultural activities are high. Groundwater bodies (GWBs) are regarded as management areas within each territory, and were used to establish protection policies. This study analyzed eleven GWBs. We used two databases with microbiological measurements from 154 wells over a 7-year period (2004–2011), risk factors and groundwater information. Wells were grouped according to frequency of microbiological contamination using E. coli measurements, category <1, or wells with low-frequency microbiological contamination and high-frequency wells or category 1–100, according to World Health Organization (WHO) quality criteria of drinking water. Of all wells, 18.12% showed high-frequency microbiological contamination with a majority distribution in the Ribera Alta region (26.98%, p < 0.001). No significant differences were found between the two risk categories for flow, static level, well depth and distance from population centres. This paper reveals that the vulnerability classes established by the Geological and Mining Institute of Spain (IGME) do not match the microbiological results, and that only eight wells with high-frequency contamination coincide with the high vulnerability areas. PMID:24859678

  18. Generation of Shear Alfvén Waves by Repetitive High Power Microwave Pulses Near the Electron Plasma Frequency - A laboratory study of a ``Virtual Antenna''

    NASA Astrophysics Data System (ADS)

    Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos

    2015-11-01

    ELF / ULF waves are important in terrestrial radio communications but difficult to launch using ground-based structures due to their enormous wavelengths. In spite of this generation of such waves by field-aligned ionospheric heating modulation was first demonstrated using the HAARP facility. In the future heaters near the equator will be constructed and laboratory experiments on cross-field wave propagation could be key to the program's success. Here we report a detailed laboratory study conducted on the Large Plasma Device (LaPD) at UCLA. In this experiment, ten rapid pulses of high power microwaves (250 kW X-band) near the plasma frequency were launched transverse to the background field, and were modulated at a variable fraction (0.1-1.0) of fci. Along with bulk electron heating and density modification, the microwave pulses generated a population of fast electrons. The field-aligned current carried by the fast electrons acted as an antenna that radiated shear Alfvén waves. It was demonstrated that a controllable arbitrary frequency (f

  19. A reconfigurable frequency-selective surface for dual-mode multi-band filtering applications

    NASA Astrophysics Data System (ADS)

    Majidzadeh, Maryam; Ghobadi, Changiz; Nourinia, Javad

    2017-03-01

    A reconfigurable single-layer frequency-selective surface (FSS) with dual-mode multi-band modes of operation is presented. The proposed structure is printed on a compact 10 × 10 mm2 FR4 substrate with the thickness of 1.6 mm. A simple square loop is printed on the front side while another one along with two defected vertical arms is deployed on the backside. To realise the reconfiguration, two pin diodes are embedded on the backside square loop. Suitable insertion of conductive elements along with pin diodes yields in dual-mode multi-band rejection of applicable in service frequency ranges. The first operating mode due to diodes' 'ON' state provides rejection of 2.4 GHz WLAN in 2-3 GHz, 5.2/5.8 GHz WLAN and X band in 5-12 GHz, and a part of Ku band in 13.9-16 GHz. In diodes 'OFF' state, the FSS blocks WLAN in 4-7.3 GHz, X band in 8-12.7 GHz as well as part of Ku band in 13.7-16.7 GHz. As well, high attenuation of incident waves is observed by a high shielding effectiveness (SE) in the blocked frequency bands. Also, a stable behaviour against different polarisations and angles of incidence is obtained. Comprehensive studies are conducted on a fabricated prototype to assess its performance from which encouraging results are obtained.

  20. AC electrified jets in a flow-focusing device: Jet length scaling

    PubMed Central

    García-Sánchez, Pablo; Alzaga-Gimeno, Javier; Baret, Jean-Christophe

    2016-01-01

    We use a microfluidic flow-focusing device with integrated electrodes for controlling the production of water-in-oil drops. In a previous work, we reported that very long jets can be formed upon application of AC fields. We now study in detail the appearance of the long jets as a function of the electrical parameters, i.e., water conductivity, signal frequency, and voltage amplitude. For intermediate frequencies, we find a threshold voltage above which the jet length rapidly increases. Interestingly, this abrupt transition vanishes for high frequencies of the signal and the jet length grows smoothly with voltage. For frequencies below a threshold value, we previously reported a transition from a well-behaved uniform jet to highly unstable liquid structures in which axisymmetry is lost rather abruptly. These liquid filaments eventually break into droplets of different sizes. In this work, we characterize this transition with a diagram as a function of voltage and liquid conductivity. The electrical response of the long jets was studied via a distributed element circuit model. The model allows us to estimate the electric potential at the tip of the jet revealing that, for any combination of the electrical parameters, the breakup of the jet occurs at a critical value of this potential. We show that this voltage is around 550 V for our device geometry and choice of flow rates. PMID:27375826

  1. AC electrified jets in a flow-focusing device: Jet length scaling.

    PubMed

    Castro-Hernández, Elena; García-Sánchez, Pablo; Alzaga-Gimeno, Javier; Tan, Say Hwa; Baret, Jean-Christophe; Ramos, Antonio

    2016-07-01

    We use a microfluidic flow-focusing device with integrated electrodes for controlling the production of water-in-oil drops. In a previous work, we reported that very long jets can be formed upon application of AC fields. We now study in detail the appearance of the long jets as a function of the electrical parameters, i.e., water conductivity, signal frequency, and voltage amplitude. For intermediate frequencies, we find a threshold voltage above which the jet length rapidly increases. Interestingly, this abrupt transition vanishes for high frequencies of the signal and the jet length grows smoothly with voltage. For frequencies below a threshold value, we previously reported a transition from a well-behaved uniform jet to highly unstable liquid structures in which axisymmetry is lost rather abruptly. These liquid filaments eventually break into droplets of different sizes. In this work, we characterize this transition with a diagram as a function of voltage and liquid conductivity. The electrical response of the long jets was studied via a distributed element circuit model. The model allows us to estimate the electric potential at the tip of the jet revealing that, for any combination of the electrical parameters, the breakup of the jet occurs at a critical value of this potential. We show that this voltage is around 550 V for our device geometry and choice of flow rates.

  2. TH-AB-209-09: Quantitative Imaging of Electrical Conductivity by VHF-Induced Thermoacoustics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patch, S; Hull, D; See, W

    Purpose: To demonstrate that very high frequency (VHF) induced thermoacoustics has the potential to provide quantitative images of electrical conductivity in Siemens/meter, much as shear wave elastography provides tissue stiffness in kPa. Quantitatively imaging a large organ requires exciting thermoacoustic pulses throughout the volume and broadband detection of those pulses because tomographic image reconstruction preserves frequency content. Applying the half-wavelength limit to a 200-micron inclusion inside a 7.5 cm diameter organ requires measurement sensitivity to frequencies ranging from 4 MHz down to 10 kHz, respectively. VHF irradiation provides superior depth penetration over near infrared used in photoacoustics. Additionally, VHF signalmore » production is proportional to electrical conductivity, and prostate cancer is known to suppress electrical conductivity of prostatic fluid. Methods: A dual-transducer system utilizing a P4-1 array connected to a Verasonics V1 system augmented by a lower frequency focused single element transducer was developed. Simultaneous acquisition of VHF-induced thermoacoustic pulses by both transducers enabled comparison of transducer performance. Data from the clinical array generated a stack of 96-images with separation of 0.3 mm, whereas the single element transducer imaged only in a single plane. In-plane resolution and quantitative accuracy were measured at isocenter. Results: The array provided volumetric imaging capability with superior resolution whereas the single element transducer provided superior quantitative accuracy. Combining axial images from both transducers preserved resolution of the P4-1 array and improved image contrast. Neither transducer was sensitive to frequencies below 50 kHz, resulting in a DC offset and low-frequency shading over fields of view exceeding 15 mm. Fresh human prostates were imaged ex vivo and volumetric reconstructions reveal structures rarely seen in diagnostic images. Conclusion: Quantitative whole-organ thermoacoustic tomography will be feasible by sparsely interspersing transducer elements sensitive to the low end of the ultrasonic range.« less

  3. Evaluation of thin discontinuities in planar conducting materials using the diffraction of electromagnetic field

    NASA Astrophysics Data System (ADS)

    Savin, A.; Novy, F.; Fintova, S.; Steigmann, R.

    2017-08-01

    The current stage of nondestructive evaluation techniques imposes the development of new electromagnetic (EM) methods that are based on high spatial resolution and increased sensitivity. In order to achieve high performance, the work frequencies must be either radifrequencies or microwaves. At these frequencies, at the dielectric/conductor interface, plasmon polaritons can appear, propagating between conductive regions as evanescent waves. In order to use the evanescent wave that can appear even if the slits width is much smaller that the wavwelength of incident EM wave, a sensor with metamaterial (MM) is used. The study of the EM field diffraction against the edge of long thin discontinuity placed under the inspected surface of a conductive plate has been performed using the geometrical optics principles. This type of sensor having the reception coils shielded by a conductive screen with a circular aperture placed in the front of reception coil of emission reception sensor has been developed and “transported” information for obtaining of magnified image of the conductive structures inspected. This work presents a sensor, using MM conical Swiss roll type that allows the propagation of evanescent waves and the electromagnetic images are magnified. The test method can be successfully applied in a variety of applications of maxim importance such as defect/damage detection in materials used in automotive and aviation technologies. Applying this testing method, spatial resolution can be improved.

  4. The use of fault reporting of medical equipment to identify latent design flaws.

    PubMed

    Flewwelling, C J; Easty, A C; Vicente, K J; Cafazzo, J A

    2014-10-01

    Poor device design that fails to adequately account for user needs, cognition, and behavior is often responsible for use errors resulting in adverse events. This poor device design is also often latent, and could be responsible for "No Fault Found" (NFF) reporting, in which medical devices sent for repair by clinical users are found to be operating as intended. Unresolved NFF reports may contribute to incident under reporting, clinical user frustration, and biomedical engineering technologist inefficacy. This study uses human factors engineering methods to investigate the relationship between NFF reporting frequency and device usability. An analysis of medical equipment maintenance data was conducted to identify devices with a high NFF reporting frequency. Subsequently, semi-structured interviews and heuristic evaluations were performed in order to identify potential usability issues. Finally, usability testing was conducted in order to validate that latent usability related design faults result in a higher frequency of NFF reporting. The analysis of medical equipment maintenance data identified six devices with a high NFF reporting frequency. Semi-structured interviews, heuristic evaluations and usability testing revealed that usability issues caused a significant portion of the NFF reports. Other factors suspected to contribute to increased NFF reporting include accessory issues, intermittent faults and environmental issues. Usability testing conducted on three of the devices revealed 23 latent usability related design faults. These findings demonstrate that latent usability related design faults manifest themselves as an increase in NFF reporting and that devices containing usability related design faults can be identified through an analysis of medical equipment maintenance data. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarvainen, O., E-mail: olli.tarvainen@jyu.fi; Orpana, J.; Kronholm, R.

    2016-09-15

    The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system andmore » the cavity behavior of the plasma chamber cannot be separated. A preferable approach to study the effect of the cavity properties of the plasma chamber on extracted beam currents is to adjust the cavity dimensions. The results of such cavity tuning experiments conducted with the JYFL 14 GHz ECRIS are reported here. The cavity properties were adjusted by inserting a conducting tuner rod axially into the plasma chamber. The extracted beam currents of oxygen charge states O{sup 3+}–O{sup 7+} were recorded at various tuner positions and frequencies in the range of 14.00–14.15 GHz. It was observed that the tuner position affects the beam currents of high charge state ions up to several tens of percent. In particular, it was found that at some tuner position / frequency combinations the plasma exhibited “mode-hopping” between two operating regimes. The results improve the understanding of the role of plasma chamber cavity properties on ECRIS performances.« less

  6. Feasibility study of a swept frequency electromagnetic probe (SWEEP) using inductive coupling for the determination of subsurface conductivity of the earth and water prospecting in arid regions

    NASA Technical Reports Server (NTRS)

    Latorraca, G. A.; Bannister, L. H.

    1974-01-01

    Techniques developed for electromagnetic probing of the lunar interior, and techniques developed for the generation of high power audio frequencies were combined to make practical a magnetic inductive coupling system for the rapid measurement of ground conductivity profiles which are helpful when prospecting for the presence and quality of subsurface water. A system which involves the measurement of the direction, intensity, and time phase of the magnetic field observed near the surface of the earth at a distance from a horizontal coil energized so as to create a field that penetrates the earth was designed and studied to deduce the conductivity and stratification of the subsurface. Theoretical studies and a rudimentary experiment in an arid region showed that the approach is conceptually valid and that this geophysical prospecting technique can be developed for the economical exploration of subterranean water resources.

  7. Eddy current imaging for electrical characterization of silicon solar cells and TCO layers

    NASA Astrophysics Data System (ADS)

    Hwang, Byungguk; Hillmann, Susanne; Schulze, Martin; Klein, Marcus; Heuer, Henning

    2015-03-01

    Eddy Current Testing has been mainly used to determine defects of conductive materials and wall thicknesses in heavy industries such as construction or aerospace. Recently, high frequency Eddy Current imaging technology was developed. This enables the acquirement of information of different depth level in conductive thin-film structures by realizing proper standard penetration depth. In this paper, we summarize the state of the art applications focusing on PV industry and extend the analysis implementing achievements by applying spatially resolved Eddy Current Testing. The specific state of frequency and complex phase angle rotation demonstrates diverse defects from front to back side of silicon solar cells and characterizes homogeneity of sheet resistance in Transparent Conductive Oxide (TCO) layers. In order to verify technical feasibility, measurement results from the Multi Parameter Eddy Current Scanner, MPECS are compared to the results from Electroluminescence.

  8. Development of a conductivity-based photothermal absorbance detection microchip using polyelectrolytic gel electrodes.

    PubMed

    Chun, Honggu; Dennis, Patty J; Ferguson Welch, Erin R; Alarie, Jean Pierre; Jorgenson, James W; Ramsey, J Michael

    2017-11-10

    The development and application of polyelectrolytic gel electrodes (PGEs) for a microfluidic photothermal absorbance detection system is described. The PGEs are used to measure changes in conductivity based on heat generation by analytes absorbing light and changing the solution viscosity. The PGEs are suitable for direct contact conductivity measurements since they do not degrade with exposure to high electric fields. Both a 2-electrode system with DC voltages and a 3-electrode system with AC voltages were investigated. Experimental factors including excitation voltage, excitation frequency, laser modulation frequency, laser power, and path length were tested. The limits of detection for the 3-electrode and 2-electrode systems are 500nM and 0.55nM for DABSYL-tagged glucosamine, respectively. In addition, an electrokinetic separation of a potassium, DABSYL-tagged glucosamine, Rhodamine 6G, and Rhodamine B mixture was demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Level of Automation and Failure Frequency Effects on Simulated Lunar Lander Performance

    NASA Technical Reports Server (NTRS)

    Marquez, Jessica J.; Ramirez, Margarita

    2014-01-01

    A human-in-the-loop experiment was conducted at the NASA Ames Research Center Vertical Motion Simulator, where instrument-rated pilots completed a simulated terminal descent phase of a lunar landing. Ten pilots participated in a 2 x 2 mixed design experiment, with level of automation as the within-subjects factor and failure frequency as the between subjects factor. The two evaluated levels of automation were high (fully automated landing) and low (manual controlled landing). During test trials, participants were exposed to either a high number of failures (75% failure frequency) or low number of failures (25% failure frequency). In order to investigate the pilots' sensitivity to changes in levels of automation and failure frequency, the dependent measure selected for this experiment was accuracy of failure diagnosis, from which D Prime and Decision Criterion were derived. For each of the dependent measures, no significant difference was found for level of automation and no significant interaction was detected between level of automation and failure frequency. A significant effect was identified for failure frequency suggesting failure frequency has a significant effect on pilots' sensitivity to failure detection and diagnosis. Participants were more likely to correctly identify and diagnose failures if they experienced the higher levels of failures, regardless of level of automation

  10. Dependence of cavitation, chemical effect, and mechanical effect thresholds on ultrasonic frequency.

    PubMed

    Thanh Nguyen, Tam; Asakura, Yoshiyuki; Koda, Shinobu; Yasuda, Keiji

    2017-11-01

    Cavitation, chemical effect, and mechanical effect thresholds were investigated in wide frequency ranges from 22 to 4880kHz. Each threshold was measured in terms of sound pressure at fundamental frequency. Broadband noise emitted from acoustic cavitation bubbles was detected by a hydrophone to determine the cavitation threshold. Potassium iodide oxidation caused by acoustic cavitation was used to quantify the chemical effect threshold. The ultrasonic erosion of aluminum foil was conducted to estimate the mechanical effect threshold. The cavitation, chemical effect, and mechanical effect thresholds increased with increasing frequency. The chemical effect threshold was close to the cavitation threshold for all frequencies. At low frequency below 98kHz, the mechanical effect threshold was nearly equal to the cavitation threshold. However, the mechanical effect threshold was greatly higher than the cavitation threshold at high frequency. In addition, the thresholds of the second harmonic and the first ultraharmonic signals were measured to detect bubble occurrence. The threshold of the second harmonic approximated to the cavitation threshold below 1000kHz. On the other hand, the threshold of the first ultraharmonic was higher than the cavitation threshold below 98kHz and near to the cavitation threshold at high frequency. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Maturation of Mechanical Impedance of the Skin-Covered Skull: Implications for Soft Band Bone-Anchored Hearing Systems Fitted in Infants and Young Children.

    PubMed

    Mackey, Allison R; Hodgetts, William E; Scott, Dylan; Small, Susan A

    2016-01-01

    Little is known about the maturational changes in the mechanical properties of the skull and how they might contribute to infant-adult differences in bone conduction hearing sensitivity. The objective of this study was to investigate the mechanical impedance of the skin-covered skull for different skull positions and contact forces for groups of infants, young children, and adults. These findings provide a better understanding of how changes in mechanical impedance might contribute to developmental changes in bone conduction hearing, and might provide insight into how fitting and output verification protocols for bone-anchored hearing systems (BAHS) could be adapted for infants and young children. Seventy-seven individuals participated in the study, including 63 infants and children (ages 1 month to 7 years) and 11 adults. Mechanical impedance magnitude for the forehead and temporal bone was collected for contact forces of 2, 4, and 5.4 N using an impedance head, a BAHS transducer, and a specially designed holding device. Mechanical impedance magnitude was determined across frequency using a stepped sine sweep from 100 to 10,000 Hz, and divided into low- and high-frequency sets for analysis. Mechanical impedance magnitude was lowest for the youngest infants and increased throughout maturation in the low frequencies. For high frequencies, the youngest infants had the highest impedance, but only for a temporal bone placement. Impedance increased with increasing contact force for low frequencies for each age group and for both skull positions. The effect of placement was significant for high frequencies for each contact force and for each age group, except for the youngest infants. Our findings show that mechanical impedance properties change systematically up to 7 years old. The significant age-related differences in mechanical impedance suggest that infant-adult differences in bone conduction thresholds may be related, at least in part, to properties of the immature skull and overlying skin and tissues. These results have important implications for fitting the soft band BAHS on infants and young children. For example, verification of output force form a BAHS on a coupler designed with adult values may not be appropriate for infants. This may also hold true for transducer calibration when assessing bone conduction hearing thresholds in infants for different skull locations. The results have two additional clinical implications for fitting soft band BAHSs. First, parents should be counseled to maintain sufficient and consistent tightness so that the output from the BAHS does not change as the child moves around during everyday activities. Second, placement of a BAHS on the forehead versus the temporal bone results in changes in mechanical impedance which may contribute to a decrease in signal level at the cochlea as it has been previously demonstrated that bone conduction thresholds are poorer at the forehead compared with a temporal placement.

  12. Assessment of multi-frequency electromagnetic induction for determining soil moisture patterns at the hillslope scale

    NASA Astrophysics Data System (ADS)

    Tromp-van Meerveld, H. J.; McDonnell, J. J.

    2009-04-01

    SummaryHillslopes are fundamental landscape units, yet represent a difficult scale for measurements as they are well-beyond our traditional point-scale techniques. Here we present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the hillslope scale. We test the new multi-frequency GEM-300 for spatially distributed soil moisture measurements at the well-instrumented Panola hillslope. EM-based apparent conductivity measurements were linearly related to soil moisture measured with the Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7.290, 9.090, 11.250, and 14.010 kHz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the soil moisture measurements.

  13. Elementary and Junior High School Teachers' Promotion of Self-Determination in Taiwan

    ERIC Educational Resources Information Center

    Chao, Pen-Chiang; Chou, Yu-Chi

    2017-01-01

    The purpose of this study was to conduct a national survey, aiming to (a)explore how self-determination instruction is implemented by elementary and junior high school teachers; (b)examine the frequency with which the components of self-determination are taught; and (c)investigate whether teachers' gender, class setting, and teaching experience…

  14. 75 FR 5575 - Taking and Importing Marine Mammals; Navy Training Activities Conducted in the Gulf of Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... present in the area to sound from various active tactical sonar sources or to pressure from underwater... utilizing mid- and high frequency active sonar sources and explosive detonations. These sonar and explosive...

  15. Nanoengineered Thermal Materials Based on Carbon Nanotube Array Composites

    NASA Technical Reports Server (NTRS)

    Li, Jun; Meyyappan, Meyya; Dangelo, Carols

    2012-01-01

    State-of-the-art integrated circuits (ICs) for microprocessors routinely dissipate power densities on the order of 50 W/cm2. This large power is due to the localized heating of ICs operating at high frequencies and must be managed for future high-frequency microelectronic applications. As the size of components and devices for ICs and other appliances becomes smaller, it becomes more difficult to provide heat dissipation and transport for such components and devices. A thermal conductor for a macro-sized thermal conductor is generally inadequate for use with a microsized component or device, in part due to scaling problems. A method has been developed for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler-composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place, and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.

  16. Using social cognitive theory to explain discretionary, "leisure-time" physical exercise among high school students.

    PubMed

    Winters, Eric R; Petosa, Rick L; Charlton, Thomas E

    2003-06-01

    To examine whether knowledge of high school students' actions of self-regulation, and perceptions of self-efficacy to overcome exercise barriers, social situation, and outcome expectation will predict non-school related moderate and vigorous physical exercise. High school students enrolled in introductory Physical Education courses completed questionnaires that targeted selected Social Cognitive Theory variables. They also self-reported their typical "leisure-time" exercise participation using a standardized questionnaire. Bivariate correlation statistic and hierarchical regression were conducted on reports of moderate and vigorous exercise frequency. Each predictor variable was significantly associated with measures of moderate and vigorous exercise frequency. All predictor variables were significant in the final regression model used to explain vigorous exercise. After controlling for the effects of gender, the psychosocial variables explained 29% of variance in vigorous exercise frequency. Three of four predictor variables were significant in the final regression equation used to explain moderate exercise. The final regression equation accounted for 11% of variance in moderate exercise frequency. Professionals who attempt to increase the prevalence of physical exercise through educational methods should focus on the psychosocial variables utilized in this study.

  17. The effects of leading-edge serrations on reducing flow unsteadiness about airfoils, an experimental and analytical investigation

    NASA Technical Reports Server (NTRS)

    Schwind, R. G.; Allen, H. J.

    1973-01-01

    High frequency surface pressure measurements were obtained from wind-tunnel tests over the Reynolds number range 1.2 times one million to 6.2 times one million on a rectangular wing of NACA 63-009 airfoil section. Measurements were also obtained with a wide selection of leading-edge serrations added to the basic airfoil. Under a two-dimensional laminar bubble very close to the leading edge of the basic airfoil there is a large apatial peak in rms pressure. Frequency analysis of the pressure signals in this region show a large, high-frequency energy peak which is interpreted as an oscillation in size and position of the bubble. The serrations divide the bubble into segments and reduce the peak rms pressures. A low Reynolds number flow visualization test on a hydrofoil in water was also conducted. A von Karman vortex street was found trailing from the rear of the foil. Its frequency is at a much lower Strouhal number than in the high Reynolds number experiment, and is related to the trailing-edge and boundary-layer thicknesses.

  18. New equivalent-electrical circuit model and a practical measurement method for human body impedance.

    PubMed

    Chinen, Koyu; Kinjo, Ichiko; Zamami, Aki; Irei, Kotoyo; Nagayama, Kanako

    2015-01-01

    Human body impedance analysis is an effective tool to extract electrical information from tissues in the human body. This paper presents a new measurement method of impedance using armpit electrode and a new equivalent circuit model for the human body. The lowest impedance was measured by using an LCR meter and six electrodes including armpit electrodes. The electrical equivalent circuit model for the cell consists of resistance R and capacitance C. The R represents electrical resistance of the liquid of the inside and outside of the cell, and the C represents high frequency conductance of the cell membrane. We propose an equivalent circuit model which consists of five parallel high frequency-passing CR circuits. The proposed equivalent circuit represents alpha distribution in the impedance measured at a lower frequency range due to ion current of the outside of the cell, and beta distribution at a high frequency range due to the cell membrane and the liquid inside cell. The calculated values by using the proposed equivalent circuit model were consistent with the measured values for the human body impedance.

  19. Temperature dependent dielectric and conductivity studies of polyvinyl alcohol-ZnO nanocomposite films by impedance spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemalatha, K. S.; Damle, R.; Rukmani, K., E-mail: rukmani9909@yahoo.co.in

    2015-10-21

    Dielectric and conductivity behaviors of nano ZnO doped polyvinyl alcohol (PVA) composites for various concentrations of dopant were investigated using impedance spectroscopy for a wide range of temperatures (303 K–423 K) and frequencies (5 Hz–30 MHZ). The dielectric properties of host polymer matrix have been improved by the addition of nano ZnO and are found to be highly temperature dependent. Anomalous dielectric behavior was observed in the frequency range of 2.5 MHz–5 MHz. Increase in dielectric permittivity and dielectric loss was observed with respect to temperature. The Cole-Cole plot could be modeled by low resistance regions in a high resistance matrix and the lowest resistance wasmore » observed for the 10 mol. % films. The imaginary part of the electric modulus showed asymmetric peaks with the relaxation following Debye nature below and non-Debye nature above the peaks. The ac conductivity is found to obey Jonscher's power law, whereas the variation of dc conductivity with temperature was found to follow Arrhenius behavior. Two different activation energy values were obtained from Arrhenius plot indicating that two conduction mechanisms are involved in the composite films. Fitting the ac conductivity data to Jonscher's law indicates that large polaron assisted tunneling is the most likely conduction mechanism in the composites. Maximum conductivity is observed at 423 K for all the samples and it is optimum for 10 mol. % ZnO doped PVA composite film. Significant increase in dc and ac conductivities in these composite films makes them a potential candidate for application in electronic devices.« less

  20. Dielectric and impedance study of praseodymium substituted Mg-based spinel ferrites

    NASA Astrophysics Data System (ADS)

    Farid, Hafiz Muhammad Tahir; Ahmad, Ishtiaq; Ali, Irshad; Ramay, Shahid M.; Mahmood, Asif; Murtaza, G.

    2017-07-01

    Spinel ferrites with nominal composition MgPryFe2-yO4 (y = 0.00, 0.025, 0.05, 0.075, 0.10) were prepared by sol-gel method. Temperature dependent DC electrical conductivity and drift mobility were found in good agreement with each other, reflecting semiconducting behavior. The dielectric properties of all the samples as a function of frequency (1 MHz-3 GHz) were measured at room temperature. The dielectric constant and complex dielectric constant of these samples decreased with the increase of praseodymium concentration. In the present spinel ferrite, Cole-Cole plots were used to separate the grain and grain boundary's effects. The substitution of praseodymium ions in Mg-based spinel ferrites leads to a remarkable rise of grain boundary's resistance as compared to the grain's resistance. As both AC conductivity and Cole-Cole plots are the functions of concentration, they reveal the dominant contribution of grain boundaries in the conduction mechanism. AC activation energy was lower than dc activation energy. Temperature dependence normalized AC susceptibility of spinel ferrites reveals that MgFe2O4 exhibits multi domain (MD) structure with high Curie temperature while on substitution of praseodymium, MD to SD transitions occurs. The low values of conductivity and low dielectric loss make these materials best candidate for high frequency application.

  1. Design of ultra-thin high frequency trilayer conducting polymer micro-actuators for tactile feedback interfaces

    NASA Astrophysics Data System (ADS)

    Ebrahimi Takalloo, Saeedeh; Seifi, Hasti; Madden, John D. W.

    2017-04-01

    Fast actuation of conducting polymer trilayers has been achieved by reducing the thickness of the device to as little as 6 μm. Reducing size also reduces force and displacement. Here the tradeoffs between speed of response, force and deformation angle are explored, and related to an example application - a tactile feedback interface that aims to make use of the very high sensitivity of our fingertip skin to vibrations of about 150 Hz. In general, the actuation rate in these devices is limited by the speed of charging, and by inertia. Here we use an established transmission line model to simulate charging speed. By making use of the empirical relationship between strain and charge, and using beam bending theory, the extent of charging enables estimation of the degree of actuator deformation and the forces that can be generated. In seeking to achieve non-resonant actuation at frequencies of 150 Hz or more, while also generating the forces and displacements needed for tactile stimulation, it is found that electronic and ionic conductivities of the conducting polymer electrodes needs to be on the order of 24,000 S/m and 0.04 S/m, respectively. These values along with the required dimensions appear to be feasible.

  2. A closed form slug test theory for high permeability aquifers.

    PubMed

    Ostendorf, David W; DeGroot, Don J; Dunaj, Philip J; Jakubowski, Joseph

    2005-01-01

    We incorporate a linear estimate of casing friction into the analytical slug test theory of Springer and Gelhar (1991) for high permeability aquifers. The modified theory elucidates the influence of inertia and casing friction on consistent, closed form equations for the free surface, pressure, and velocity fluctuations for overdamped and underdamped conditions. A consistent, but small, correction for kinetic energy is included as well. A characteristic velocity linearizes the turbulent casing shear stress so that an analytical solution for attenuated, phase shifted pressure fluctuations fits a single parameter (damping frequency) to transducer data from any depth in the casing. Underdamped slug tests of 0.3, 0.6, and 1 m amplitudes at five transducer depths in a 5.1 cm diameter PVC well 21 m deep in the Plymouth-Carver Aquifer yield a consistent hydraulic conductivity of 1.5 x 10(-3) m/s. The Springer and Gelhar (1991) model underestimates the hydraulic conductivity for these tests by as much as 25% by improperly ascribing smooth turbulent casing friction to the aquifer. The match point normalization of Butler (1998) agrees with our fitted hydraulic conductivity, however, when friction is included in the damping frequency. Zurbuchen et al. (2002) use a numerical model to establish a similar sensitivity of hydraulic conductivity to nonlinear casing friction.

  3. Initial segment Kv2.2 channels mediate a slow delayed rectifier and maintain high frequency action potential firing in medial nucleus of the trapezoid body neurons

    PubMed Central

    Johnston, Jamie; Griffin, Sarah J; Baker, Claire; Skrzypiec, Anna; Chernova, Tatanya; Forsythe, Ian D

    2008-01-01

    The medial nucleus of the trapezoid body (MNTB) is specialized for high frequency firing by expression of Kv3 channels, which minimize action potential (AP) duration, and Kv1 channels, which suppress multiple AP firing, during each calyceal giant EPSC. However, the outward K+ current in MNTB neurons is dominated by another unidentified delayed rectifier. It has slow kinetics and a peak conductance of ∼37 nS; it is half-activated at −9.2 ± 2.1 mV and half-inactivated at −35.9 ± 1.5 mV. It is blocked by several non-specific potassium channel antagonists including quinine (100 μm) and high concentrations of extracellular tetraethylammonium (TEA; IC50 = 11.8 mm), but no specific antagonists were found. These characteristics are similar to recombinant Kv2-mediated currents. Quantitative RT-PCR showed that Kv2.2 mRNA was much more prevalent than Kv2.1 in the MNTB. A Kv2.2 antibody showed specific staining and Western blots confirmed that it recognized a protein ∼110 kDa which was absent in brainstem tissue from a Kv2.2 knockout mouse. Confocal imaging showed that Kv2.2 was highly expressed in axon initial segments of MNTB neurons. In the absence of a specific antagonist, Hodgkin–Huxley modelling of voltage-gated conductances showed that Kv2.2 has a minor role during single APs (due to its slow activation) but assists recovery of voltage-gated sodium channels (Nav) from inactivation by hyperpolarizing interspike potentials during repetitive AP firing. Current-clamp recordings during high frequency firing and characterization of Nav inactivation confirmed this hypothesis. We conclude that Kv2.2-containing channels have a distinctive initial segment location and crucial function in maintaining AP amplitude by regulating the interspike potential during high frequency firing. PMID:18511484

  4. Temperature and frequency response of conductivity in Ag2S doped chalcogenide glassy semiconductor

    NASA Astrophysics Data System (ADS)

    Ojha, Swarupa; Das, Anindya Sundar; Roy, Madhab; Bhattacharya, Sanjib

    2018-06-01

    The electric conductivity of chalcogenide glassy semiconductor xAg2S-(1-x)(0.5S-0.5Te) has been presented here as a function of temperature and frequency. Formation of different nanocrystallites has been confirmed from X-ray diffraction study. It is also noteworthy that average size of nanocrystallites decreases with the increase of dislocation density. Dc conductivity data have been interpreted using Mott's model and Greaves's model in low and high temperature regions respectively. Ac conductivity above the room temperature has been analyzed using Meyer-Neldel (MN) conduction rule. It is interestingly noted that Correlated Barrier Hopping (CBH) model is the most appropriate conduction mechanism for x = 0.35, where pairs of charge carrier are considered to hop over the potential barrier between the sites via thermal activation. To interpret experimental data for x = 0.45, modified non-overlapping small polaron tunnelling (NSPT) model is supposed to be appropriate model due to tunnelling through grain boundary. The conductivity spectra at various temperatures have been analyzed using Almond-West Formalism (power law model). Scaling of conductivity spectra reveals that electrical relaxation process of charge carriers (polaron) is temperature independent but depends upon the composition of the present chalcogenide glassy system.

  5. Irregular menses linked to vomiting in a nonclinical sample: findings from the National Eating Disorders Screening Program in high schools.

    PubMed

    Austin, S Bryn; Ziyadeh, Najat J; Vohra, Sameer; Forman, Sara; Gordon, Catherine M; Prokop, Lisa A; Keliher, Anne; Jacobs, Douglas

    2008-05-01

    Using data from an eating disorders screening initiative conducted in high schools across the United States, we examined the relationship between vomiting frequency and irregular menses in a nonclinical sample of adolescent females. A self-report questionnaire was administered to students from U.S. high schools participating in the National Eating Disorders Screening Program in 2000. The questionnaire included items on frequency of vomiting for weight control in the past 3 months, other eating disorder symptoms, frequency of menses, height, and weight. Multivariable regression analyses were conducted using data from 2791 girls to estimate the risk of irregular menses (defined as menses less often than monthly) associated with vomiting frequency, adjusting for other eating disorder symptoms, weight status, age, race/ethnicity, and school clusters. Girls who vomited to control their weight one to three times per month were one and a half times more likely (risk ratio [RR] = 1.6; 95% confidence interval [CI] = 1.2-2.2), and girls who vomited once per week or more often were more than three times more likely (RR = 3.2; 95% CI = 2.3-4.4), to experience irregular menses than were girls who did not report vomiting for weight control. Vomiting for weight control remained a strong predictor of irregular menses even when overweight and underweight participants were excluded. Our study adds to the evidence that vomiting may have a direct effect on hormonal function in adolescent girls, and that vomiting for weight control may be a particularly deleterious component of eating disorders.

  6. Low level of alcohol drinking among two generations of non-Western immigrants in Oslo: a multi-ethnic comparison

    PubMed Central

    2012-01-01

    Background Alcohol drinking is a risk factor for harm and disease. A low level of drinking among non-Western immigrants may lead to less alcohol-related harm and disease. The first aim of this study was to describe frequency of drinking in two generations of immigrants in Oslo, contrasting the result to drinking frequency among ethnic Norwegians. The second aim was to study how frequency of drinking among adult immigrants was associated with social interaction with their own countrymen and ethnic Norwegians, acculturation, age, gender, socioeconomic factors and the Muslim faith. Method The Oslo Health Study (HUBRO) was conducted during the period 2000 to 2002 and consisted of three separate surveys: a youth study (15-16-year-olds, a total of 7343 respondents, response rate 88.3%); adult cohorts from 30 to 75 years old (18,770 respondents, response rate 46%); the five largest immigrant groups in Oslo (aged 20–60 years, a total of 3019 respondents, response rate 39.7%). Based on these three surveys, studies of frequency of drinking in the previous year (four categories) were conducted among 15-16-year-olds and their parents’ generation, 30-60-year-old Iranians, Pakistanis, Turks and ethnic Norwegians. A structural equation model with drinking frequency as outcome was established for the adult immigrants. Results Adults and youth of ethnic Norwegian background reported more frequent alcohol use than immigrants with backgrounds from Iran, Turkey and Pakistan. Iranians reported a higher drinking frequency than Turks and Pakistanis. In the structural equation model high drinking frequency was associated with high host culture competence and social interaction, while high own culture competence was associated with low drinking frequency. Adult first-generation immigrants with a longer stay in Norway, those of a higher age, and females drank alcohol less frequently, while those with a higher level of education and work participation drank more frequently. Muslim immigrants reported a significantly lower drinking frequency than non-Muslims, although this did not apply to Iranians. Conclusions The existence and growth in Western societies of immigrant groups with low-level alcohol consumption contributed to a lower level of consumption at the population level. This may imply reduced drinking and alcohol-related harm and disease even among ethnic Norwegians. PMID:22824456

  7. Low level of alcohol drinking among two generations of non-Western immigrants in Oslo: a multi-ethnic comparison.

    PubMed

    Amundsen, Ellen J

    2012-07-23

    Alcohol drinking is a risk factor for harm and disease. A low level of drinking among non-Western immigrants may lead to less alcohol-related harm and disease. The first aim of this study was to describe frequency of drinking in two generations of immigrants in Oslo, contrasting the result to drinking frequency among ethnic Norwegians. The second aim was to study how frequency of drinking among adult immigrants was associated with social interaction with their own countrymen and ethnic Norwegians, acculturation, age, gender, socioeconomic factors and the Muslim faith. The Oslo Health Study (HUBRO) was conducted during the period 2000 to 2002 and consisted of three separate surveys: a youth study (15-16-year-olds, a total of 7343 respondents, response rate 88.3%); adult cohorts from 30 to 75 years old (18,770 respondents, response rate 46%); the five largest immigrant groups in Oslo (aged 20-60 years, a total of 3019 respondents, response rate 39.7%). Based on these three surveys, studies of frequency of drinking in the previous year (four categories) were conducted among 15-16-year-olds and their parents' generation, 30-60-year-old Iranians, Pakistanis, Turks and ethnic Norwegians. A structural equation model with drinking frequency as outcome was established for the adult immigrants. Adults and youth of ethnic Norwegian background reported more frequent alcohol use than immigrants with backgrounds from Iran, Turkey and Pakistan. Iranians reported a higher drinking frequency than Turks and Pakistanis. In the structural equation model high drinking frequency was associated with high host culture competence and social interaction, while high own culture competence was associated with low drinking frequency. Adult first-generation immigrants with a longer stay in Norway, those of a higher age, and females drank alcohol less frequently, while those with a higher level of education and work participation drank more frequently. Muslim immigrants reported a significantly lower drinking frequency than non-Muslims, although this did not apply to Iranians. The existence and growth in Western societies of immigrant groups with low-level alcohol consumption contributed to a lower level of consumption at the population level. This may imply reduced drinking and alcohol-related harm and disease even among ethnic Norwegians.

  8. Obtaining high-energy responses of nonlinear piezoelectric energy harvester by voltage impulse perturbations

    NASA Astrophysics Data System (ADS)

    Lan, Chunbo; Tang, Lihua; Qin, Weiyang

    2017-07-01

    Nonlinear energy harvesters have attracted wide research attentions to achieve broadband performances in recent years. Nonlinear structures have multiple solutions in certain frequency region that contains high-energy and low-energy orbits. It is effectively the frequency region of capturing a high-energy orbit that determines the broadband performance. Thus, maintaining large-amplitude high-energy-orbit oscillations is highly desired. In this paper, a voltage impulse perturbation approach based on negative resistance is applied to trigger high-energy-orbit responses of piezoelectric nonlinear energy harvesters. First, the mechanism of the voltage impulse perturbation and the implementation of the synthetic negative resistance circuit are discussed in detail. Subsequently, numerical simulation and experiment are conducted and the results demonstrate that the high-energy-orbit oscillations can be triggered by the voltage impulse perturbation method for both monostable and bistable configurations given various scenarios. It is revealed that the perturbation levels required to trigger and maintain high-energy-orbit oscillations are different for various excitation frequencies in the region where multiple solutions exist. The higher gain in voltage output when high-energy-orbit oscillations are captured is accompanied with the demand of a higher voltage impulse perturbation level.

  9. Using time-frequency analysis to determine time-resolved detonation velocity with microwave interferometry.

    PubMed

    Kittell, David E; Mares, Jesus O; Son, Steven F

    2015-04-01

    Two time-frequency analysis methods based on the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used to determine time-resolved detonation velocities with microwave interferometry (MI). The results were directly compared to well-established analysis techniques consisting of a peak-picking routine as well as a phase unwrapping method (i.e., quadrature analysis). The comparison is conducted on experimental data consisting of transient detonation phenomena observed in triaminotrinitrobenzene and ammonium nitrate-urea explosives, representing high and low quality MI signals, respectively. Time-frequency analysis proved much more capable of extracting useful and highly resolved velocity information from low quality signals than the phase unwrapping and peak-picking methods. Additionally, control of the time-frequency methods is mainly constrained to a single parameter which allows for a highly unbiased analysis method to extract velocity information. In contrast, the phase unwrapping technique introduces user based variability while the peak-picking technique does not achieve a highly resolved velocity result. Both STFT and CWT methods are proposed as improved additions to the analysis methods applied to MI detonation experiments, and may be useful in similar applications.

  10. Design of High Efficiency High Power Electron Accelerator Systems Based on Normal Conducting RF Technology for Energy and Environmental Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgashev, Valery; Tantawi, Sami

    The goal of this project was to perform engineering design studies of three extremely high efficiency electron accelerators with the following parameters [1]: 2 MeV output beam energy and 1 MW average beam power; 10 MeV output energy and 10 MW; 10 MeV output energy and 1 MW. These linacs are intended for energy and environmental applications [2]. We based our designs on normal conducting radio-frequency technology. We have successfully reached this goal where we show rf-to-beam efficiency of 96.7 %, 97.2 %, and 79.6 % for these linacs.

  11. Frequency-specific hearing outcomes in pediatric type I tympanoplasty.

    PubMed

    Kent, David T; Kitsko, Dennis J; Wine, Todd; Chi, David H

    2014-02-01

    Middle ear disease is the primary cause of hearing loss in children and has a significant impact on language development and academic performance. Multiple prognostic factors have previously been examined, but there is little published data regarding frequency-specific hearing outcomes. To examine the relationship between type I tympanoplasty in a pediatric population and frequency-specific hearing changes, as well as the relationship between several prognostic factors and graft retention. Retrospective medical chart review (February 2006 to October 2011) of 492 consecutive pediatric otolaryngology patients undergoing type I tympanoplasty for tympanic membrane (TM) perforation of any etiology at a tertiary-care pediatric otolaryngology practice. Type I tympanoplasty. Preoperative and postoperative audiometric data were collected for patients undergoing successful TM repair. It was hypothesized before data collection that conductive hearing would improve at all frequencies with no significant change in sensorineural hearing. Data collected included air conduction at 250 to 8000 Hz, speech reception thresholds, bone conduction at 500 to 4000 Hz, and air-bone gap at 500 to 4000 Hz. Demographic data obtained included sex, age, size, mechanism, location of perforation, and operative repair technique. Of 492 patients, 320 were excluded; results were thus examined for 172 patients. Surgery was successful for 73.8% of patients. Perforation size was significantly associated with repair success (mean [SD] surgical success rate of 38.6% [15.3%] vs surgical failure rate of 31.4% [15.0%]; P < .01); however, mean (SD) age (9.02 [3.89] years [surgical success] vs 8.52 [3.43] years [surgical failure]; P > .05) and repair technique (medial [73.08%] vs lateral [76.47%] graft success; P > .99) were not. Air conduction significantly improved from 250 to 2000 Hz (P < .001), did not significantly improve at 4000 Hz (P = .08), and there was a nonsignificant decline at 8000 Hz (P = .12). Speech reception threshold significantly improved (20 vs 15 dB; P < .001). This large review found an association of TM perforation size with surgical success and an improvement in speech reception threshold, air conduction at 250 to 2000 Hz, air-bone gap at 500 to 2000 Hz, and worsening bone conduction at 4000 Hz. Patients with high-frequency hearing loss due to TM perforation should not anticipate significant recovery from type I tympanoplasty. Hearing loss at higher frequencies may require postoperative hearing rehabilitation.

  12. Low-temperature thermal transport and thermopower of monolayer transition metal dichalcogenide semiconductors

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Tan, Yaohua; Klimeck, Gerhard; Shi, Junxia

    2017-10-01

    We study the low temperature thermal conductivity of single-layer transition metal dichalcogenides (TMDCs). In the low temperature regime where heat is carried primarily through transport of electrons, thermal conductivity is linked to electrical conductivity through the Wiedemann-Franz law (WFL). Using a k.p Hamiltonian that describes the K and K{\\prime} valley edges, we compute the zero-frequency electric (Drude) conductivity using the Kubo formula to obtain a numerical estimate for the thermal conductivity. The impurity scattering determined transit time of electrons which enters the Drude expression is evaluated within the self-consistent Born approximation. The analytic expressions derived show that low temperature thermal conductivity (1) is determined by the band gap at the valley edges in monolayer TMDCs and (2) in presence of disorder which can give rise to the variable range hopping regime, there is a distinct reduction. Additionally, we compute the Mott thermopower and demonstrate that under a high frequency light beam, a valley-resolved thermopower can be obtained. A closing summary reviews the implications of results followed by a brief discussion on applicability of the WFL and its breakdown in context of the presented calculations.

  13. Role of the Ionosphere in the Generation of Large-Amplitude Ulf Waves at High Latitudes

    NASA Astrophysics Data System (ADS)

    Tulegenov, B.; Guido, T.; Streltsov, A. V.

    2014-12-01

    We present results from the statistical study of ULF waves detected by the fluxgate magnetometer in Gakona, Alaska during several experimental campaigns conducted at the High Frequency Active Auroral Research Program (HAARP) facility in years 2011-2013. We analyzed frequencies of ULF waves recorded during 26 strongly disturbed geomagnetic events (substorms) and compared them with frequencies of ULF waves detected during magnetically quite times. Our analysis demonstrates that the frequency of the waves carrying most of the power almost in all these events is less than 1 mHz. We also analyzed data from the ACE satellite, measuring parameters of the solar wind in the L1 Lagrangian point between Earth and Sun, and found that in several occasions there is a strong correlation between oscillations of the magnetic field in the solar wind and oscillations detected on the ground. We also found several cases when there is no correlation between signals detected on ACE and on the ground. This finding suggests that these frequencies correspond to the fundamental eigenfrequency of the coupled magnetosphere-ionosphere system. The low frequency of the oscillations is explained by the effect of the ionosphere, where the current is carried by ions through highly collisional media. The amplitude of these waves can reach significant magnitude when the system is driven by the external driver (for example, the solar wind) with this particular frequency. When the frequency of the driver does not match the frequency of the system, the waves still are observed, but their amplitudes are much smaller.

  14. Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound.

    PubMed

    Suo, Dingjie; Govind, Bala; Zhang, Shengqi; Jing, Yun

    2018-03-01

    Through the introduction of multi-frequency sonication in High Intensity Focused Ultrasound (HIFU), enhancement of efficiency has been noted in several applications including thrombolysis, tissue ablation, sonochemistry, and sonoluminescence. One key experimental observation is that multi-frequency ultrasound can help lower the inertial cavitation threshold, thereby improving the power efficiency. However, this has not been well corroborated by the theory. In this paper, a numerical investigation on the inertial cavitation threshold of microbubbles (MBs) under multi-frequency ultrasound irradiation is conducted. The relationships between the cavitation threshold and MB size at various frequencies and in different media are investigated. The results of single-, dual and triple frequency sonication show reduced inertial cavitation thresholds by introducing additional frequencies which is consistent with previous experimental work. In addition, no significant difference is observed between dual frequency sonication with various frequency differences. This study, not only reaffirms the benefit of using multi-frequency ultrasound for various applications, but also provides a possible route for optimizing ultrasound excitations for initiating inertial cavitation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Zhaojun; Jiang, Song; Liu, Kefu

    2014-07-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%.

  16. Record-high specific conductance and water temperature in San Francisco Bay during water year 2015

    USGS Publications Warehouse

    Work, Paul A.; Downing-Kunz, Maureen; Livsey, Daniel N.

    2017-02-22

    The San Francisco estuary is commonly defined to include San Francisco Bay (bay) and the adjacent Sacramento–San Joaquin River Delta (delta). The U.S. Geological Survey (USGS) has operated a high-frequency (15-minute sampling interval) water-quality monitoring network in San Francisco Bay since the late 1980s (Buchanan and others, 2014). This network includes 19 stations at which sustained measurements have been made in the bay; currently, 8 stations are in operation (fig. 1). All eight stations are equipped with specific conductance (which can be related to salinity) and water-temperature sensors. Water quality in the bay constantly changes as ocean tides force seawater in and out of the bay, and river inflows—the most significant coming from the delta—vary on time scales ranging from those associated with storms to multiyear droughts. This monitoring network was designed to observe and characterize some of these changes in the bay across space and over time. The data demonstrate a high degree of variability in both specific conductance and temperature at time scales from tidal to annual and also reveal longer-term changes that are likely to influence overall environmental health in the bay.In water year (WY) 2015 (October 1, 2014, through September 30, 2015), as in the preceding water year (Downing-Kunz and others, 2015), the high-frequency measurements revealed record-high values of specific conductance and water temperature at several stations during a period of reduced freshwater inflow from the delta and other tributaries because of persistent, severe drought conditions in California. This report briefly summarizes observations for WY 2015 and compares them to previous years that had different levels of freshwater inflow.

  17. Transmit beamforming for optimal second-harmonic generation.

    PubMed

    Hoilund-Kaupang, Halvard; Masoy, Svein-Erik

    2011-08-01

    A simulation study of transmit ultrasound beams from several transducer configurations is conducted to compare second-harmonic imaging at 3.5 MHz and 11 MHz. Second- harmonic generation and the ability to suppress near field echoes are compared. Each transducer configuration is defined by a chosen f-number and focal depth, and the transmit pressure is estimated to not exceed a mechanical index of 1.2. The medium resembles homogeneous muscle tissue with nonlinear elasticity and power-law attenuation. To improve computational efficiency, the KZK equation is utilized, and all transducers are circular-symmetric. Previous literature shows that second-harmonic generation is proportional to the square of the transmit pressure, and that transducer configurations with different transmit frequencies, but equal aperture and focal depth in terms of wavelengths, generate identical second-harmonic fields in terms of shape. Results verify this for a medium with attenuation f1. For attenuation f1.1, deviations are found, and the high frequency subsequently performs worse than the low frequency. The results suggest that high frequencies are less able to suppress near-field echoes in the presence of a heterogeneous body wall than low frequencies.

  18. Synthesis, characterization and AC conductivity studies of silver doped conducting polyaniline/graphene/SrTiO3 composites

    NASA Astrophysics Data System (ADS)

    Vinay, K.; Shivakumar, K.; Ravikiran, Y. T.; Revanasiddappa, M.

    2018-05-01

    The present work is an investigation of ac conduction behaviour and dielectric response of Polyaniline/Ag/Graphene/SrTiO3 (PAGS) composite prepared by in-situ chemical oxidative interfacial polymerization using (NH4)2S2O8 as an oxidising agent at 0-5°C. The structural characterization of the samples was examined using FT-IR and XRD techniques. The ac conductivity and dielectric response of synthesized polymer composites were investigated at room temperature in the frequency range varying from 5 × 101 - 5 × 106 Hz using HIOKI make 3532-50 LCR Hi-tester. The ac conductivity increases with increase in frequency and follows the regular trend, the real dielectric constant (ɛ') and imaginary dielectric constant (ɛ'') decreases with increase in frequency and exhibits almost zero dielectric loss at higher frequencies, which suggests that the composite is a lossless material at frequencies beyond 3Hz.

  19. [Frequency and variables associated with perceived devaluation-discrimination in victims of the armed conflict in Colombia].

    PubMed

    Campo-Arias, Adalberto; Ospino, Anyelly C; Sanabria, Adriana R; Guerra, Valeria M; Caamaño, Beatriz H; Herazo, Edwin

    2017-11-21

    There is no information on frequency of perceived devaluation-discrimination in victims of the armed conflict in Colombia. The aim of this study was thus to determine the frequency of perceived devaluation-discrimination and associated variables among victims of the armed conflict in municipalities in the Department of Magdalena, Colombia. A cross-sectional study was conducted among victims enrolled in the Program for Psychosocial Care and Comprehensive Healthcare for Victims. Depressive symptoms were quantified with four dichotomous items (three or more were classified as high level of depressive symptoms), and perceived devaluation-discrimination was quantified with six dichotomous items (two or more were classified as high perceived devaluation-discrimination). A total of 943 adults participated (M = 47.9; SD = 14.2); 67.4%, women; 109 (11.6%) reported high level of depressive symptoms and 217 (23%) showed high perceived devaluation-discrimination. High perceived devaluation-discrimination was associated with high level of depressive symptoms (OR = 6.47; 95%CI: 4.23-9.88). In conclusion, one-fourth of the victims of the armed conflict in Magdalena reported high perceived devaluation-discrimination, which was significantly associated with high level of depressive symptoms.

  20. Sounding of Groundwater Through Conductive Media in Mars Analog Environments Using Transient Electromagnetics and Low Frequency GPR.

    NASA Astrophysics Data System (ADS)

    Jernsletten, J. A.; Heggy, E.

    2004-05-01

    INTRODUCTION: This study compares the use of (diffusive) Transient Electromagnetics (TEM) for sounding of subsurface water in conductive Mars analog environments to the use of (propagative) Ground-Penetrating Radar (GPR) for the same purpose. We show data from three field studies: 1) Radar sounding data (GPR) from the Nubian aquifer, Bahria Oasis, Egypt; 2) Diffusive sounding data (TEM) from Pima County, Arizona; and 3) Shallower sounding data using the Fast-Turnoff TEM method from Peña de Hierro in the Rio Tinto area, Spain. The latter is data from work conducted under the auspices of the Mars Analog Research and Technology Experiment (MARTE). POTENTIAL OF TEM: A TEM survey was carried out in Pima County, Arizona, in January 2003. Data was collected using 100 m Tx loops, a ferrite-cored magnetic coil Rx antenna, and a sounding frequency of 16 Hz. The dataset has ~500 m depth of investigation, shows a ~120 m depth to the water table (confirmed by several USGS test wells in the area), and a conductive (~20-40 Ω m) clay-rich soil above the water table. The Rio Tinto Fast-Turnoff TEM data was collected using 40 m Tx loops, 10 m Rx loops, and a 32 Hz sounding frequency. Note ~200 m depth of investigation and a conductive high at ~80 m depth (interpreted as water table). Data was also collected using 20 m Tx loops (10 m Rx loops) in other parts of the area. Note ~50 m depth of investigation and a conductive high at ~15 m depth (interpreted as subsurface water flow under mine tailings matching surface flows seen coming out from under the tailings, and shown on maps). Both of these interpretations were roughly confirmed by preliminary results from the MARTE ground truth drilling campaign carried out in September and October 2003. POTENTIAL OF GPR: A GPR experiment was carried out in February 2003 in the Bahria Oasis in the western Egyptian desert, using a 2 MHz monostatic GPR, mapping the Nubian Aquifer at depths of 100-900 m, beneath a thick layer of homogenous marine sedimentary quaternary and tertiary structures constituted mainly of highly resistive dry porous dolomite, illinite, limestone and sandstone, given a reasonable knowledge of the local geoelectrical properties of the crust. The GPR was able to map the first interface between the dolomitic limestone and the gravel, while the detection of the deep subsurface water table remains uncertain due to the uncertainties arising from some instrumentational and geoelectrical problems. In locations were the water table was at shallower depths (less then 200 m), but with the presence of very thin layers (less than 0.5 m) of reddish dry clays, the technique failed to probe the moist interface and to map any significant stratigraphy. CONCLUSIONS: GPR excels in resolution, productivity (logistical efficiency) and is well suited for the shallower applications, but is more sensitive to highly conductive layers (result of wave propagation and higher frequencies), and achieves considerably smaller depths of investigation than TEM. The (diffusive) TEM method uses roughly two orders of magnitude lower sounding frequencies than GPR, is less sensitive to highly conductive layers, achieves considerably deeper depths of investigation, and is more suitable for sounding very deep subsurface water. Compared with GPR, TEM suffers for very shallow applications in terms of resolution and logistical efficiency. Fast-Turnoff TEM, with its very early measured time windows, achieves higher resolution than conventional TEM in shallow applications, and somewhat bridges the gap between GPR and TEM in terms of depths of investigation and suitable applications.

  1. Narrow-band far-infrared interference filters with high-T c, superconducting reflectors

    NASA Astrophysics Data System (ADS)

    Schönberger, R.; Prückl, A.; Pechen, E. V.; Anzin, V. B.; Brunner, B.; Renk, K. F.

    1994-10-01

    We report on experiments showing that high-T c, superconductors are well suitable for constructing of high-quality far-infrared Fabry-Perot interference filters in the terahertz frequency range. In an interference filter we use two plane-parallel MgO plates with YBa 2 Cu 3 O 7 thin films as partly transparent reflectors on adjacent surfaces. For the first-order main resonances adjusted to frequencies around 2 THz a quality factor of ≅200 and a peak-transmissivity of 0˜.5 have been reached. Study of the filters with YBa 2 Cu 3 O 7 films of different thickness indicate the possibility of reaching still higher selectivity. An analysis of the filter characteristics delivered the dynamical conductivity of the high-T c films.

  2. O' Connell bridge inspection by means of Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Santos Assuncao, Sonia, ,, Dr

    2016-04-01

    Ground Penetrating Radar (GPR) is a well-known technique successfully applied in different areas. In structural inspection the methodology may expose information about structural arrangement and pathologies. GPR emits high frequency electromagnetic impulses allowing to detect changes on the electromagnetic properties: electrical conductivity, dielectric constant and magnetic permeability. The central frequency of the each antenna is characterized by a specific resolution and penetration depth. Therefore, different scales of structures can be analysed. High frequency antennas output high resolution images/signals about the shallowest elements such as rebar and the thickness of the first layer. On the other hand, intermediate or lower frequency antennas locate deeper structures, such as the thickness of the arch. The compilation of distinct frequencies gives a better understanding and a more accurate detection of elements in the inner structure. O'Connell Bridge (1877) is one of 24 bridges along River Liffey and one the most famous historical structures in Dublin. It is composed by sandstones and granite and covered by asphalt which represents a suitable structure to evaluate by means of GPR. The lack of inner structural information, especially the thickness of the layer, presence of reinforcement or other metallic elements of support required, at least, a dual frequency analysis of the bridge. In this case, it was applied the (200 MHz and 600 MHz) Multi-Channel Stream EM combined with 1.6 GHz GSSI high frequency antenna. The inspection of bridges by means of GPR may provide not exclusively interesting structural data but historical information and the state of conservation.

  3. Task 2 - Limits for High-Frequency Conducted Susceptibility Testing - CS114 (NRC-HQ-60-14-D-0015)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Richard Thomas; Ewing, Paul D.; Moses, Rebecca J.

    2015-09-01

    A principal focus of Task 2 under this project was for ORNL to evaluate the basis for susceptibility testing against high-frequency conducted interference and to establish recommendations to resolve concerns about the severity of test limits for the conducted susceptibility (CS) test, CS114, from MIL-STD-461. The primary concern about the test limit has been characterized by the EPRI EMI Working Group in the following terms: Demonstrating compliance with the CS114 test limits recommended in TR-102323 has proven to be problematic, even for components that have been tested to commercial standards and demonstrated proper operation in industrial applications [6]. Specifically, EPRImore » notes that the CS114 limits approved in regulatory documents are significantly higher than those invoked by the US military and similar commercial standards in the frequency range below 200 kHz. For this task, ORNL evaluated the original approach to establishing the test limit, EPRI technical findings from a review of the limit, and the regulatory basis through which the currently approved limits were accepted. Based on this analysis, strategies have been developed regarding changes to the CS114 limit that can resolve the technical concerns raised by the industry. Guided by the principles that reasonable assurance of safety must not be compromised but excessive conservatism should be reduced, recommendations on a suitable basis for a revised limit have been developed and can be incorporated into the planned Revision 2 of RG 1.180.« less

  4. Size effects in the thermal conductivity of gallium oxide (β-Ga{sub 2}O{sub 3}) films grown via open-atmosphere annealing of gallium nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szwejkowski, Chester J.; Giri, Ashutosh; Donovan, Brian F.

    2015-02-28

    Gallium nitride (GaN) is a widely used semiconductor for high frequency and high power devices due to of its unique electrical properties: a wide band gap, high breakdown field, and high electron mobility. However, thermal management has become a limiting factor regarding efficiency, lifetime, and advancement of GaN devices and GaN-based applications. In this work, we study the thermal conductivity of beta-phase gallium oxide (β-Ga{sub 2}O{sub 3}) thin films, a component of typical gate oxides used in such devices. We use time domain thermoreflectance to measure the thermal conductivity of a variety of polycrystalline β-Ga{sub 2}O{sub 3} films of differentmore » thicknesses grown via open atmosphere annealing of the surfaces of GaN films on sapphire substrates. We show that the measured effective thermal conductivity of these β-Ga{sub 2}O{sub 3} films can span 1.5 orders of magnitude, increasing with an increased film thickness, which is indicative of the relatively large intrinsic thermal conductivity of the β-Ga{sub 2}O{sub 3} grown via this technique (8.8 ± 3.4 W m{sup −1} K{sup −1}) and large mean free paths compared to typical gate dielectrics commonly used in GaN device contacts. By conducting time domain thermoreflectance (TDTR) measurements with different metal transducers (Al, Au, and Au with a Ti wetting layer), we attribute this variation in effective thermal conductivity to a combination of size effects in the β-Ga{sub 2}O{sub 3} film resulting from phonon scattering at the β-Ga{sub 2}O{sub 3}/GaN interface and thermal transport across the β-Ga{sub 2}O{sub 3}/GaN interface. The measured thermal properties of open atmosphere-grown β-Ga{sub 2}O{sub 3} and its interface with GaN set the stage for thermal engineering of gate contacts in high frequency GaN-based devices.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majetich, Sara

    In the proposed research program we will investigate the time- and frequency-dependent behavior of ordered nanoparticle assemblies, or nanoparticle crystals. Magnetostatic interactions are long-range and anisotropic, and this leads to complex behavior in nanoparticle assemblies, particularly in the time- and frequency-dependent properties. We hypothesize that the high frequency performance of composite materials has been limited because of the range of relaxation times; if a composite is a dipolar ferromagnet at a particular frequency, it should have the advantages of a single phase material, but without significant eddy current power losses. Arrays of surfactant-coated monodomain magnetic nanoparticles can exhibit long-range magneticmore » order that is stable over time. The magnetic domain size and location of domain walls is governed not by structural grain boundaries but by the shape of the array, due to the local interaction field. Pores or gaps within an assembly pin domain walls and limit the domain size. Measurements of the magnetic order parameter as a function of temperature showed that domains can exist at high temoerature, and that there is a collective phase transition, just as in an exchange-coupled ferromagnet. Dipolar ferromagnets are not merely of fundamental interest; they provide an interesting alternative to exchange-based ferromagnets. Dipolar ferromagnets made with high moment metallic particles in an insulating matrix could have high permeability without large eddy current losses. Such nanocomposites could someday replace the ferrites now used in phase shifters, isolators, circulators, and filters in microwave communications and radar applications. We will investigate the time- and frequency-dependent behavior of nanoparticle crystals with different magnetic core sizes and different interparticle barrier resistances, and will measure the magnetic and electrical properties in the DC, low frequency (0.1 Hz - 1 kHz), moderate frequency (10 Hz - 500 MHz), and high frequency (up to 20 GHz) regimes. Our results will demonstrate whether a DC dipolar ferromagnet shows collective frequency-dependent reponse similar to that of an exchange-based ferromagnet, and will provide data for comparison of optimal nanocomposite properties with those of ferrites used in high frequency applications. Both the magnetic and electronic response of the composites will be examined in order to determine the frequency range where hopping conductivity leads to significant eddy current power losses. In the high frequency regime we will look for evidence of spin wave quantization and the resulting decrease in non-linear spin wave processes that could affect the performance of high frequency magnetic devices.« less

  6. Effect of Cigarette Smoking and Passive Smoking on Hearing Impairment: Data from a Population–Based Study

    PubMed Central

    Chang, Jiwon; Ryou, Namhyung; Jun, Hyung Jin; Hwang, Soon Young; Song, Jae-Jun; Chae, Sung Won

    2016-01-01

    Objectives In the present study, we aimed to determine the effect of both active and passive smoking on the prevalence of the hearing impairment and the hearing thresholds in different age groups through the analysis of data collected from the Korea National Health and Nutrition Examination Survey (KNHANES). Study Design Cross-sectional epidemiological study. Methods The KNHANES is an ongoing population study that started in 1998. We included a total of 12,935 participants aged ≥19 years in the KNHANES, from 2010 to 2012, in the present study. Pure-tone audiometric (PTA) testing was conducted and the frequencies tested were 0.5, 1, 2, 3, 4, and 6 kHz. Smoking status was categorized into three groups; current smoking group, passive smoking group and non-smoking group. Results In the current smoking group, the prevalence of speech-frequency bilateral hearing impairment was increased in ages of 40−69, and the rate of high frequency bilateral hearing impairment was elevated in ages of 30−79. When we investigated the impact of smoking on hearing thresholds, we found that the current smoking group had significantly increased hearing thresholds compared to the passive smoking group and non-smoking groups, across all ages in both speech-relevant and high frequencies. The passive smoking group did not have an elevated prevalence of either speech-frequency bilateral hearing impairment or high frequency bilateral hearing impairment, except in ages of 40s. However, the passive smoking group had higher hearing thresholds than the non-smoking group in the 30s and 40s age groups. Conclusion Current smoking was associated with hearing impairment in both speech-relevant frequency and high frequency across all ages. However, except in the ages of 40s, passive smoking was not related to hearing impairment in either speech-relevant or high frequencies. PMID:26756932

  7. Stability Estimation of ABWR on the Basis of Noise Analysis

    NASA Astrophysics Data System (ADS)

    Furuya, Masahiro; Fukahori, Takanori; Mizokami, Shinya; Yokoya, Jun

    In order to investigate the stability of a nuclear reactor core with an oxide mixture of uranium and plutonium (MOX) fuel installed, channel stability and regional stability tests were conducted with the SIRIUS-F facility. The SIRIUS-F facility was designed and constructed to provide a highly accurate simulation of thermal-hydraulic (channel) instabilities and coupled thermalhydraulics-neutronics instabilities of the Advanced Boiling Water Reactors (ABWRs). A real-time simulation was performed by modal point kinetics of reactor neutronics and fuel-rod thermal conduction on the basis of a measured void fraction in a reactor core section of the facility. A time series analysis was performed to calculate decay ratio and resonance frequency from a dominant pole of a transfer function by applying auto regressive (AR) methods to the time-series of the core inlet flow rate. Experiments were conducted with the SIRIUS-F facility, which simulates ABWR with MOX fuel installed. The variations in the decay ratio and resonance frequency among the five common AR methods are within 0.03 and 0.01 Hz, respectively. In this system, the appropriate decay ratio and resonance frequency can be estimated on the basis of the Yule-Walker method with the model order of 30.

  8. Multiferroic properties of microwave sintered PbFe12-xO19-δ

    NASA Astrophysics Data System (ADS)

    Prathap, S.; Madhuri, W.

    2017-05-01

    The effect of iron deficiency on the structural, electrical, ferroelectric and magnetic properties of nano PbFe12-xO19-δ (where x=0.0, 0.25, 0.50, 0.75, 1.0) hexaferrites prepared by sol-gel auto combustion and processed by microwaves are investigated. X-ray analysis confirms single phase magneto-plumbite phase formation. The surface morphology is studied from Field Emission Scanning Electron Microscope. Further, optical properties are investigated using Fourier Transform Infrared spectra and UV-visible spectra. AC electrical conductivity is estimated as a function of temperature and frequency in the range of room temperature (RT) to 500 °C and 100 Hz to 5MHz. AC electrical conduction analysis shows that conduction is mainly due to small polaron hopping mechanism. The variation of polarization with applied electric field exhibits hysteresis loop confirming the ferroelectric nature. The initial permeability studies with varying temperature reveals that the Curie transition temperature for the present series is around 400 °C. Variation of initial permeability with frequency ranging from 100 to 5 MHz shows a constant value (except for x=0.0) opening avenues for high frequency applications.

  9. Structural, dielectric and ferroelectric studies of (x) Mg0.25Cu0.25Zn0.5Fe2O4 + (1-x) BaTiO3 magnetoelectric nano-composites

    NASA Astrophysics Data System (ADS)

    Khader, S. Abdul; Muneeswaran, M.; Giridharan, N. V.; Sankarappa, T.

    2016-05-01

    The Particulate nano-composites of ferrite and ferroelectric phases having the general formula (x) Mg0.25Cu0.25Zn0.5Fe2O4 + (1-x) BaTiO3 (x=15%, 30% and 45%) were synthesized by sintering mixtures of highly ferroelectric BaTiO3 (BT) and highly magneto-strictive magnetic component Mg0.25Cu0.25Zn0.5Fe2O4(MCZF). The presence of constituent phases of ferrite, ferroelectric and their composites were probed and confirmed by X-ray diffraction (XRD) studies. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). The variation of dielectric constant and dissipation factor as a function of frequency from 100 Hz to 1 MHz at room temperature were carried out using a Hioki LCR Hi-Tester. The dielectric constant and dielectric loss were found to decrease rapidly in the low frequency region and became almost constant in the high frequency region. The electrical conductivity deduced from the measured dielectric data has been thoroughly analyzed and found that the conduction mechanism in these composites is in conformity with small polaron hopping model. The ferroelectric properties of synthesized magneto-electric nano-composites were measured using P-E loop tracer.

  10. Effect of orthorhombic distortion on dielectric and piezoelectric properties of CaBi4Ti4O15 ceramics

    NASA Astrophysics Data System (ADS)

    Tanwar, Amit; Sreenivas, K.; Gupta, Vinay

    2009-04-01

    High temperature bismuth layered piezoelectric and ferroelectric ceramics of CaBi4Ti4O15 (CBT) have been prepared using the solid state route. The formation of single phase material with orthorhombic structure was verified from x-ray diffraction and Raman spectroscopy. The orthorhombic distortion present in the CBT ceramic sintered at 1200 °C was found to be maximum. A sharp phase transition from ferroelectric to paraelectric was observed in the temperature dependent dielectric studies of all CBT ceramics. The Curie's temperature (Tc=790 °C) was found to be independent of measured frequency. The behavior of ac conductivity as a function of frequency (100 Hz-1 MHz) at low temperatures (<500 °C) follows the power law and is attributed to hopping conduction. The presence of large orthorhombic distortion in the CBT ceramic sintered at 1200 °C results in high dielectric constant, low dielectric loss, and high piezoelectric coefficient (d33). The observed results indicate the important role of orthorhombic distortion in determining the improved property of multicomponent ferroelectric material.

  11. A novel dual-frequency imaging method for intravascular ultrasound applications.

    PubMed

    Qiu, Weibao; Chen, Yan; Wong, Chi-Man; Liu, Baoqiang; Dai, Jiyan; Zheng, Hairong

    2015-03-01

    Intravascular ultrasound (IVUS), which is able to delineate internal structures of vessel wall with fine spatial resolution, has greatly enriched the knowledge of coronary atherosclerosis. A novel dual-frequency imaging method is proposed in this paper for intravascular imaging applications. A probe combined two ultrasonic transducer elements with different center frequencies (36 MHz and 78 MHz) is designed and fabricated with PMN-PT single crystal material. It has the ability to balance both imaging depth and resolution, which are important imaging parameters for clinical test. A dual-channel imaging platform is also proposed for real-time imaging, and this platform has been proven to support programmable processing algorithms, flexible imaging control, and raw RF data acquisition for IVUS applications. Testing results show that the -6 dB axial and lateral imaging resolutions of low-frequency ultrasound are 78 and 132 μm, respectively. In terms of high-frequency ultrasound, axial and lateral resolutions are determined to be as high as 34 and 106 μm. In vitro intravascular imaging on healthy swine aorta is conducted to demonstrate the performance of the dual-frequency imaging method for IVUS applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Influence of kidney disease on drug disposition: An assessment of industry studies submitted to the FDA for new chemical entities 1999-2010.

    PubMed

    Matzke, Gary R; Dowling, Thomas C; Marks, Samantha A; Murphy, John E

    2016-04-01

    In 1998, the United States Food and Drug Administration (FDA) released the first guidance for industry regarding pharmacokinetic (PK) studies in renally impaired patients. This study aimed to determine if the FDA renal PK guidance influenced the frequency and rigor of renal studies conducted for new chemical entities (NCEs). FDA-approved package inserts (APIs) and clinical pharmacology review documents were analyzed for 194 NCEs approved from 1999 to 2010. Renal studies were conducted in 71.6% of NCEs approved from 1999 to 2010, a significant increase over the 56.3% conducted from 1996 to 1997 (P = .0242). Renal studies were more likely to be completed in highly renally excreted drugs (fe ≥ 30%) compared with drugs with low renal excretion, fe < 30% (89.6% vs 65.8%, P = .0015). PK studies to assess the impact of dialysis were conducted for 31.7% of NCEs that had a renal study: a greater proportion of high fe NCEs were studied (44.2% vs 26.0%, P = .0335). No significant change in frequency or rigor of PK studies was detected over time. The majority of NCEs (76.3%) with a renal study provided specific dosing recommendations in the API. The adoption of the 1998 FDA guidance has resulted in improved availability of PK and drug-dosing recommendations, particularly for high fe drugs. © 2015, The American College of Clinical Pharmacology.

  13. Frequency dependent ac transport of films of close-packed carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Endo, A.; Katsumoto, S.; Matsuda, K.; Norimatsu, W.; Kusunoki, M.

    2018-03-01

    We have measured low-temperature ac impedance of films of closely-packed, highly-aligned carbon nanotubes prepared by thermal decomposition of silicon carbide wafers. The measurement was performed on films with the thickness (the length of the nanotubes) ranging from 6.5 to 65 nm. We found that the impedance rapidly decreases with the frequency. This can be interpreted as resulting from the electric transport via capacitive coupling between adjacent nanotubes. We also found numbers of sharp spikes superposed on frequency vs. impedance curves, which presumably represent resonant frequencies seen in the calculated conductivity of random capacitance networks. Capacitive coupling between the nanotubes was reduced by the magnetic field perpendicular to the films at 8.2 mK, resulting in the transition from negative to positive magnetoresistance with an increase of the frequency.

  14. Effects of Filtering on Experimental Blast Overpressure Measurements.

    PubMed

    Alphonse, Vanessa D; Kemper, Andrew R; Duma, Stefan M

    2015-01-01

    When access to live-fire test facilities is limited, experimental studies of blast-related injuries necessitate the use of a shock tube or Advanced Blast Simulator (ABS) to mimic free-field blast overpressure. However, modeling blast overpressure in a laboratory setting potentially introduces experimental artifacts in measured responses. Due to the high sampling rates required to capture a blast overpressure event, proximity to alternating current (AC-powered electronics) and poorly strain-relieved or unshielded wires can result in artifacts in the recorded overpressure trace. Data in this study were collected for tests conducted on an empty ABS (“Empty Tube”) using high frequency pressure sensors specifically designed for blast loading rates (n=5). Additionally, intraocular overpressure data (“IOP”) were collected for porcine eyes potted inside synthetic orbits located inside the ABS using an unshielded miniature pressure sensor (n=3). All tests were conducted at a 30 psi static overpressure level. A 4th order phaseless low pass Butterworth software filter was applied to the data. Various cutoff frequencies were examined to determine if the raw shock wave parameters values could be preserved while eliminating noise and artifacts. A Fast Fourier Transform (FFT) was applied to each test to examine the frequency spectra of the raw and filtered signals. Shock wave parameters (time of arrival, peak overpressure, positive duration, and positive impulse) were quantified using a custom MATLAB® script. Lower cutoff frequencies attenuated the raw signal, effectively decreasing the peak overpressure and increasing the positive duration. Rise time was not preserved the filtered data. A CFC 6000 filter preserved the remaining shock wave parameters within ±2.5% of the average raw values for the Empty Tube test data. A CFC 7000 filter removed experimental high-frequency artifacts and preserved the remaining shock wave parameters within ±2.5% of the average raw values for test IOP test data. Though the region of interest of the signals examined in the current study did not contain extremely high frequency content, it is possible that live-fire testing may produce shock waves with higher frequency content. While post-processing filtering can remove experimental artifacts, special care should be taken to minimize or eliminate the possibility of recording these artifacts in the first place.

  15. Efficient dynamic coherence transfer relying on offset locking using optical phase-locked loop

    NASA Astrophysics Data System (ADS)

    Xie, Weilin; Dong, Yi; Bretenaker, Fabien; Shi, Hongxiao; Zhou, Qian; Xia, Zongyang; Qin, Jie; Zhang, Lin; Lin, Xi; Hu, Weisheng

    2018-01-01

    We design and experimentally demonstrate a highly efficient coherence transfer based on composite optical phaselocked loop comprising multiple feedback servo loops. The heterodyne offset-locking is achieved by conducting an acousto-optic frequency shifter in combination with the current tuning and the temperature controlling of the semiconductor laser. The adaptation of the composite optical phase-locked loop enables the tight coherence transfer from a frequency comb to a semiconductor laser in a fully dynamic manner.

  16. [Research on electricity frequency property of blood].

    PubMed

    Hu, Maoqing; Huang, Hua; Yuan, Zirun; Chen, Huaiqing; Den, Lihua

    2006-02-01

    On the basis of our previous work, the electric frequency property of human blood in different components, in physiological state and in pathological state (diabetes) are tested and analyzed in the range of 1Hz-20MHz progressively. Among the different components of blood; the lowest electrical impedance is serum; the plasma and the whole blood gradually become larger, the blood corpuscle is the largest one. Otherwise, the negative phase of serum is the largest, the plasma and the whole blood are lower, and the blood corpuscle is the lowest. Here, the question is why the effect of the electric capacity of serum and plasma is the biggest in the condition of no cell and cell membrane; diabetes mellitus is an endocrine disorder in which blood changes obviously, the electric frequency property of the blood of diabetic patients changes markedly; the electrical impedance of blood decreases (more obviously with low frequency), the negative phase increases (more obviously with high frequency). These indicate that the increase of electric conductivity in diabetic patients' blood is due to electric capacitance conductivity that is related to the changes of cell membrane, deformation abilities and aggregation of RBC. Related experiments demonstrate again that with the progressing of research in the electric frequency property of blood, we may use the theory and method of electricity to examine some important characters of blood in a different way, and so to corroborate other tests and analyses.

  17. Ultrahigh Thermal Conductive yet Superflexible Graphene Films.

    PubMed

    Peng, Li; Xu, Zhen; Liu, Zheng; Guo, Yan; Li, Peng; Gao, Chao

    2017-07-01

    Electrical devices generate heat at work. The heat should be transferred away immediately by a thermal manager to keep proper functions, especially for high-frequency apparatuses. Besides high thermal conductivity (K), the thermal manager material requires good foldability for the next generation flexible electronics. Unfortunately, metals have satisfactory ductility but inferior K (≤429 W m -1 K -1 ), and highly thermal-conductive nonmetallic materials are generally brittle. Therefore, fabricating a foldable macroscopic material with a prominent K is still under challenge. This study solves the problem by folding atomic thin graphene into microfolds. The debris-free giant graphene sheets endow graphene film (GF) with a high K of 1940 ± 113 W m -1 K -1 . Simultaneously, the microfolds render GF superflexible with a high fracture elongation up to 16%, enabling it more than 6000 cycles of ultimate folding. The large-area multifunctional GFs can be easily integrated into high-power flexible devices for highly efficient thermal management. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.

    2013-12-15

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shiftmore » in GABA reversal potential (E{sub GABA}). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g{sub GABA-extra}) and experimentally identified, seizure-induced changes in g{sub GABA-extra} and E{sub GABA} influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g{sub GABA-extra} reduced the frequency and coherence of FS-BC firing when E{sub GABA} was shunting (−74 mV), but failed to alter average FS-BC frequency when E{sub GABA} was depolarizing (−54 mV). When FS-BCs were activated by biologically based dendritic synaptic inputs, enhancing g{sub GABA-extra} reduced the frequency and coherence of FS-BC firing when E{sub GABA} was shunting and increased average FS-BC firing when E{sub GABA} was depolarizing. Shifting E{sub GABA} from shunting to depolarizing potentials consistently increased network frequency to and above high gamma frequencies (>80 Hz). Since gamma oscillations may contribute to learning and memory processing [Fell et al., Nat. Neurosci. 4, 1259 (2001); Jutras et al., J. Neurosci. 29, 12521 (2009); Wang, Physiol. Rev. 90, 1195 (2010)], our demonstration that network oscillations are modulated by extrasynaptic inhibition in FS-BCs suggests that neuroactive compounds that act on extrasynaptic GABA receptors could impact memory formation by modulating hippocampal gamma oscillations. The simulation results indicate that the depolarized FS-BC GABA reversal, observed after experimental seizures, together with enhanced spillover extrasynaptic GABA currents are likely to promote generation of focal high frequency activity associated with epileptic networks.« less

  19. Poor adherence to treatment associated with a high recurrence in a bipolar disorder outpatient sample.

    PubMed

    Gutiérrez-Rojas, Luis; Jurado, Dolores; Martínez-Ortega, José María; Gurpegui, Manuel

    2010-12-01

    We analyzed the association of previous course-of-illness and other variables of clinical interest with a high frequency of both depressive or (hypo)manic episodes controlling for the effect of socio-demographic characteristics. A total of 108 outpatients with a DSM-IV diagnosis of bipolar disorder (BD) were recruited. A retrospective and naturalistic study was conducted to examine the number of affective episodes and their relationship with socio-demographic, clinical and course-of-illness variables, including adherence to medication, type of medication used and the use of addictive substances. The episode frequency was estimated as the number of "major instances" of depression, hypomania and mania during the illness. To classify the patients into two groups (higher and lower-episode frequency), we used the statistical criterion of median split. Results were analyzed with logistic regression models to control for the effects of potential confounders. A high episode frequency (nine or more episodes) was associated with age (36-55years), delay in diagnosis, poor adherence to medication and current use of antipsychotic medication. In addition, a high frequency of manic episodes (four or more) was associated with female sex, age (>36years) and a manic onset of the illness, whereas a high frequency of depressive episodes (five or more) was associated with delay in diagnosis and poor adherence to medication. Cross-sectional study design. Avoiding delay in diagnosis and enhancing treatment adherence might be important targets for reducing recurrences in BD. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Numerical Investigation of the Microscopic Heat Current Inside a Nanofluid System Based on Molecular Dynamics Simulation and Wavelet Analysis.

    PubMed

    Jia, Tao; Gao, Di

    2018-04-03

    Molecular dynamics simulation is employed to investigate the microscopic heat current inside an argon-copper nanofluid. Wavelet analysis of the microscopic heat current inside the nanofluid system is conducted. The signal of the microscopic heat current is decomposed into two parts: one is the approximation part; the other is the detail part. The approximation part is associated with the low-frequency part of the signal, and the detail part is associated with the high-frequency part of the signal. Both the probability distributions of the high-frequency and the low-frequency parts of the signals demonstrate Gaussian-like characteristics. The curves fit to data of the probability distribution of the microscopic heat current are established, and the parameters including the mean value and the standard deviation in the mathematical formulas of the curves show dramatic changes for the cases before and after adding copper nanoparticles into the argon base fluid.

  1. Fabrication of (NH4)2S passivated GaAs metal-insulator-semiconductor devices using low-frequency plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jaouad, A.; Aimez, V.; Aktik, Ç.; Bellatreche, K.; Souifi, A.

    2004-05-01

    Metal-insulator-semiconductor (MIS) capacitors were fabricated on n-GaAs(100) substrate using (NH4)2S surface passivation and low-frequency plasma-enhanced chemical vapor deposited silicon nitride as gate insulators. The electrical properties of the fabricated MIS capacitors were analyzed using high-frequency capacitance-voltage and conductance-voltage measurements. The high concentration of hydrogen present during low-frequency plasma deposition of silicon nitride enhances the passivation of GaAs surface, leading to the unpinning of the Fermi level and to a good modulation of the surface potential by gate voltage. The electrical properties of the insulator-semiconductor interface are improved after annealing at 450 °C for 60 s, as a significant reduction of the interface fixed charges and of the interface states density is put into evidence. The minimum interface states density was found to be about 3×1011 cm-2 eV-1, as estimated by the Terman method. .

  2. Multi-frequency Electromagnetic Induction Survey for Archaeological Prospection: Approach and Results in Han Hangu Pass and Xishan Yang in China

    NASA Astrophysics Data System (ADS)

    Tang, Panpan; Chen, Fulong; Jiang, Aihui; Zhou, Wei; Wang, Hongchao; Leucci, Giovanni; de Giorgi, Lara; Sileo, Maria; Luo, Rupeng; Lasaponara, Rosa; Masini, Nicola

    2018-04-01

    This study presents the potential of multi-frequency electromagnetic induction (EMI) in archaeology. EMI is currently less employed for archaeological prospection with respect to other geophysical techniques. It is capable of identifying shallow subsurface relics by simultaneously measuring the apparent electrical conductivity (ECa) and apparent magnetic susceptibility (MSa). Moreover, frequency sounding is able to quantify the depths and vertical shapes of buried structures. In this study, EMI surveys with five frequencies were performed at two heritage sites with different geological conditions: Han Hangu Pass characterized by cinnamon soil and Xishan Yang by sandy loams. In the first site, high ECa values were observed with variations in depth correlated to archaeological remains. Moreover, electromagnetic anomalies related to an ancient road and five kiln caves were identified. In the second site, an ancient tomb, indicating extremely low ECa and high MSa, was discovered. Its electromagnetic properties are attributed to the cavity and ferroferric oxides.

  3. SOAC - State-of-the-Art Car Engineering Tests at Department of Transportation High Speed Ground Test Center : Volume 5. Structural, Voltage, and Radio Frequency Interference Tests

    DOT National Transportation Integrated Search

    1975-01-01

    The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...

  4. Resonance frequency control of RF normal conducting cavity using gradient estimator of reflected power

    NASA Astrophysics Data System (ADS)

    Leewe, R.; Shahriari, Z.; Moallem, M.

    2017-10-01

    Control of the natural resonance frequency of an RF cavity is essential for accelerator structures due to their high cavity sensitivity to internal and external vibrations and the dependency of resonant frequency on temperature changes. Due to the relatively high radio frequencies involved (MHz to GHz), direct measurement of the resonant frequency for real-time control is not possible by using conventional microcontroller hardware. So far, all operational cavities are tuned using phase comparison techniques. The temperature dependent phase measurements render this technique labor and time intensive. To eliminate the phase measurement, reduce man hours and speed up cavity start up time, this paper presents a control theme that relies solely on the reflected power measurement. The control algorithm for the nonlinear system is developed through Lyapunov's method. The controller stabilizes the resonance frequency of the cavity using a nonlinear control algorithm in combination with a gradient estimation method. Experimental results of the proposed system on a test cavity show that the resonance frequency can be tuned to its optimum operating point while the start up time of a single cavity and the accompanied man hours are significantly decreased. A test result of the fully commissioned control system on one of TRIUMF's DTL tanks verifies its performance under real environmental conditions.

  5. Radio frequency reflectometry and charge sensing of a precision placed donor in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hile, Samuel J., E-mail: samhile@gmail.com; House, Matthew G.; Peretz, Eldad

    2015-08-31

    We compare charge transitions on a deterministic single P donor in silicon using radio frequency reflectometry measurements with a tunnel coupled reservoir and DC charge sensing using a capacitively coupled single electron transistor (SET). By measuring the conductance through the SET and comparing this with the phase shift of the reflected radio frequency (RF) excitation from the reservoir, we can discriminate between charge transfer within the SET channel and tunneling between the donor and reservoir. The RF measurement allows observation of donor electron transitions at every charge degeneracy point in contrast to the SET conductance signal where charge transitions aremore » only observed at triple points. The tunnel coupled reservoir has the advantage of a large effective lever arm (∼35%), allowing us to independently extract a neutral donor charging energy ∼62 ± 17 meV. These results demonstrate that we can replace three terminal transistors by a single terminal dispersive reservoir, promising for high bandwidth scalable donor control and readout.« less

  6. Polyethylene oxide-polytetrahydrofurane-PEDOT conducting interpenetrating polymer networks for high speed actuators

    NASA Astrophysics Data System (ADS)

    Plesse, C.; Khaldi, A.; Wang, Q.; Cattan, E.; Teyssié, D.; Chevrot, C.; Vidal, F.

    2011-12-01

    In recent years, numerous studies on electro-active polymer (EAP) actuators have been reported. One promising technology is the elaboration of electronic conducting polymer-based actuators with interpenetrating polymer network (IPNs) architecture. In this study, the synthesis and characterisation of conducting IPNs for actuator applications is described. The IPNs are synthesised from polyethylene oxide (PEO) and polytetrahydrofurane (PTHF) networks in which the conducting polymer (poly(3,4-ethylenedioxythiophene)) is incorporated. In a first step, PEO/PTHF IPNs were prepared via an 'in situ' process using poly(ethylene glycol) methacrylate and dimethacrylate and hydroxytelechelic PTHF as starting materials. The IPN mechanical properties were examined by DMA and tensile strength tests. N-ethylmethylimidazolium bis(trifluoromethanesulfonyl)imide (EMITFSI) swollen PEO/PTHF IPNs show ionic conductivities up to 10-3 S cm-1 at 30 °C. In a second step, the conducting IPN actuators were prepared by oxidative polymerisation of 3,4-ethylenedioxithiophene (EDOT) using FeCl3 as an oxidising agent within the PEO/PTHF IPN host matrix. The frequency response performance of the bending conducting IPN actuator was then evaluated. The resulting actuator exhibits a mechanical resonance frequency of up to 125 Hz with 0.75% strain for an applied potential of ± 5 V.

  7. How is sound conducted to the cochlea in toothed whales?

    NASA Astrophysics Data System (ADS)

    Zosuls, Aleks; Mountain, David C.; Ketten, Darlene R.

    2015-12-01

    Toothed whales (Odontocetes) typically have small occluded ear canals and sea water has a characteristic impedance that is much more similar to the impedance of soft tissues of the head than is the case for the air-tissue interface in terrestrial mammals. This makes it plausible that significant acoustic energy is being transmitted to their middle ear by tissue conduction. In addition, some authors have proposed that sound reaches the cochlea via bone conduction rather than via the tympanic membrane. To address these issues, we have developed a method to measure stapes velocity in response to vibrational stimulation at arbitrary locations on heads and ears harvested from stranded animals. Stapes velocity was measured with a Laser Doppler Velocimeter at the footplate with the cochlea drained. In all species tested, the transfer function of stapes velocity referenced to actuator velocity showed a high-pass characteristic. The corner frequency varied with species and experiment between 4 kHz and 60 kHz. This is similar to what is seen in odontocete audiograms but the cutoff slope is typically steeper than in the audiograms. There was no indication of high frequency cutoff within our measurement range. Disrupting the ossicles and fat bodies affected the transfer functions.

  8. Volumetric abnormalities of the brain in a rat model of recurrent headache.

    PubMed

    Jia, Zhihua; Tang, Wenjing; Zhao, Dengfa; Hu, Guanqun; Li, Ruisheng; Yu, Shengyuan

    2018-01-01

    Voxel-based morphometry is used to detect structural brain changes in patients with migraine. However, the relevance of migraine and structural changes is not clear. This study investigated structural brain abnormalities based on voxel-based morphometry using a rat model of recurrent headache. The rat model was established by infusing an inflammatory soup through supradural catheters in conscious male rats. Rats were subgrouped according to the frequency and duration of the inflammatory soup infusion. Tactile sensory testing was conducted prior to infusion of the inflammatory soup or saline. The periorbital tactile thresholds in the high-frequency inflammatory soup stimulation group declined persistently from day 5. Increased white matter volume was observed in the rats three weeks after inflammatory soup stimulation, brainstem in the in the low-frequency inflammatory soup-infusion group and cortex in the high-frequency inflammatory soup-infusion group. After six weeks' stimulation, rats showed gray matter volume changes. The brain structural abnormalities recovered after the stimulation was stopped in the low-frequency inflammatory soup-infused rats and persisted even after the high-frequency inflammatory soup stimulus stopped. The changes of voxel-based morphometry in migraineurs may be the result of recurrent headache. Cognition, memory, and learning may play an important role in the chronification of migraines. Reducing migraine attacks has the promise of preventing chronicity of migraine.

  9. Across-plane thermal characterization of films based on amplitude-frequency profile in photothermal technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shen; Wang, Xinwei, E-mail: xwang3@iastate.edu

    2014-10-15

    This work develops an amplitude method for the photothermal (PT) technique to analyze the amplitude of the thermal radiation signal from the surface of a multilayered film sample. The thermal conductivity of any individual layer in the sample can be thereby determined. Chemical vapor deposited SiC film samples (sample 1 to 3: 2.5 to 3.5 μm thickness) with different ratios of Si to C and thermally oxidized SiO{sub 2} film (500 nm thickness) on silicon substrates are studied using the amplitude method. The determined thermal conductivity based on the amplitude method is 3.58, 3.59, and 2.59 W/m⋅K for sample 1more » to 3 with ±10% uncertainty. These results are verified by the phase shift method, and sound agreement is obtained. The measured thermal conductivity (k) of SiC is much lower than the value of bulk SiC. The large k reduction is caused by the structure difference revealed by Raman spectroscopy. For the SiO{sub 2} film, the thermal conductivity is measured to be 1.68 ± 0.17 W/m⋅K, a little higher than that obtained by the phase shift method: 1.31 ± 0.06 W/m⋅K. Sensitivity analysis of thermal conductivity and interfacial resistance is conducted for the amplitude method. Its weak-sensitivity to the thermal contact resistance, enables the amplitude method to determine the thermal conductivity of a film sample with little effect from the interface thermal resistance between the film and substrate. The normalized amplitude ratio at a high frequency to that at a low frequency provides a reliable way to evaluate the effusivity ratio of the film to that of the substrate.« less

  10. Improved frequency/voltage converters for fast quartz crystal microbalance applications.

    PubMed

    Torres, R; García, J V; Arnau, A; Perrot, H; Kim, L To Thi; Gabrielli, C

    2008-04-01

    The monitoring of frequency changes in fast quartz crystal microbalance (QCM) applications is a real challenge in today's instrumentation. In these applications, such as ac electrogravimetry, small frequency shifts, in the order of tens of hertz, around the resonance of the sensor can occur up to a frequency modulation of 1 kHz. These frequency changes have to be monitored very accurately both in magnitude and phase. Phase-locked loop techniques can be used for obtaining a high performance frequency/voltage converter which can provide reliable measurements. Sensitivity higher than 10 mVHz, for a frequency shift resolution of 0.1 Hz, with very low distortion in tracking both the magnitude and phase of the frequency variations around the resonance frequency of the sensor are required specifications. Moreover, the resonance frequency can vary in a broad frequency range from 5 to 10 MHz in typical QCM sensors, which introduces an additional difficulty. A new frequency-voltage conversion system based on a double tuning analog-digital phase-locked loop is proposed. The reported electronic characterization and experimental results obtained with conducting polymers prove its reliability for ac-electrogravimetry measurements and, in general, for fast QCM applications.

  11. Improved frequency/voltage converters for fast quartz crystal microbalance applications

    NASA Astrophysics Data System (ADS)

    Torres, R.; García, J. V.; Arnau, A.; Perrot, H.; Kim, L. To Thi; Gabrielli, C.

    2008-04-01

    The monitoring of frequency changes in fast quartz crystal microbalance (QCM) applications is a real challenge in today's instrumentation. In these applications, such as ac electrogravimetry, small frequency shifts, in the order of tens of hertz, around the resonance of the sensor can occur up to a frequency modulation of 1kHz. These frequency changes have to be monitored very accurately both in magnitude and phase. Phase-locked loop techniques can be used for obtaining a high performance frequency/voltage converter which can provide reliable measurements. Sensitivity higher than 10mV/Hz, for a frequency shift resolution of 0.1Hz, with very low distortion in tracking both the magnitude and phase of the frequency variations around the resonance frequency of the sensor are required specifications. Moreover, the resonance frequency can vary in a broad frequency range from 5to10MHz in typical QCM sensors, which introduces an additional difficulty. A new frequency-voltage conversion system based on a double tuning analog-digital phase-locked loop is proposed. The reported electronic characterization and experimental results obtained with conducting polymers prove its reliability for ac-electrogravimetry measurements and, in general, for fast QCM applications.

  12. Alcohol marketing in televised international football: frequency analysis.

    PubMed

    Adams, Jean; Coleman, James; White, Martin

    2014-05-20

    Alcohol marketing includes sponsorship of individuals, organisations and sporting events. Football (soccer) is one of the most popular spectator sports worldwide. No previous studies have quantified the frequency of alcohol marketing in a high profile international football tournament. The aims were to determine: the frequency and nature of visual references to alcohol in a representative sample of EURO2012 matches broadcast in the UK; and if frequency or nature varied between matches broadcast on public service and commercial channels, or between matches that did and did not feature England. Eight matches selected by stratified random sampling were recorded. All visual references to alcohol were identified using a tool with high inter-rater reliability. 1846 visual references to alcohol were identified over 1487 minutes of broadcast--an average of 1.24 references per minute. The mean number of references per minute was higher in matches that did vs did not feature England (p = 0.004), but did not differ between matches broadcast on public service vs commercial channels (p = 0.92). The frequency of visual references to alcohol was universally high and higher in matches featuring the only UK home team--England--suggesting that there may be targeting of particularly highly viewed matches. References were embedded in broadcasts, and not particular to commercial channels including paid-for advertising. New UK codes-of-conduct on alcohol marketing at sporting events will not reduce the level of marketing reported here.

  13. RF Path and Absorption Loss Estimation for Underwater Wireless Sensor Networks in Different Water Environments

    PubMed Central

    Qureshi, Umair Mujtaba; Shaikh, Faisal Karim; Aziz, Zuneera; Shah, Syed M. Zafi S.; Sheikh, Adil A.; Felemban, Emad; Qaisar, Saad Bin

    2016-01-01

    Underwater Wireless Sensor Network (UWSN) communication at high frequencies is extremely challenging. The intricacies presented by the underwater environment are far more compared to the terrestrial environment. The prime reason for such intricacies are the physical characteristics of the underwater environment that have a big impact on electromagnetic (EM) signals. Acoustics signals are by far the most preferred choice for underwater wireless communication. Because high frequency signals have the luxury of large bandwidth (BW) at shorter distances, high frequency EM signals cannot penetrate and propagate deep in underwater environments. The EM properties of water tend to resist their propagation and cause severe attenuation. Accordingly, there are two questions that need to be addressed for underwater environment, first what happens when high frequency EM signals operating at 2.4 GHz are used for communication, and second which factors affect the most to high frequency EM signals. To answer these questions, we present real-time experiments conducted at 2.4 GHz in terrestrial and underwater (fresh water) environments. The obtained results helped in studying the physical characteristics (i.e., EM properties, propagation and absorption loss) of underwater environments. It is observed that high frequency EM signals can propagate in fresh water at a shallow depth only and can be considered for a specific class of applications such as water sports. Furthermore, path loss, velocity of propagation, absorption loss and the rate of signal loss in different underwater environments are also calculated and presented in order to understand why EM signals cannot propagate in sea water and oceanic water environments. An optimal solk6ution for underwater communication in terms of coverage distance, bandwidth and nature of communication is presented, along with possible underwater applications of UWSNs at 2.4 GHz. PMID:27322263

  14. RF Path and Absorption Loss Estimation for Underwater Wireless Sensor Networks in Different Water Environments.

    PubMed

    Qureshi, Umair Mujtaba; Shaikh, Faisal Karim; Aziz, Zuneera; Shah, Syed M Zafi S; Sheikh, Adil A; Felemban, Emad; Qaisar, Saad Bin

    2016-06-16

    Underwater Wireless Sensor Network (UWSN) communication at high frequencies is extremely challenging. The intricacies presented by the underwater environment are far more compared to the terrestrial environment. The prime reason for such intricacies are the physical characteristics of the underwater environment that have a big impact on electromagnetic (EM) signals. Acoustics signals are by far the most preferred choice for underwater wireless communication. Because high frequency signals have the luxury of large bandwidth (BW) at shorter distances, high frequency EM signals cannot penetrate and propagate deep in underwater environments. The EM properties of water tend to resist their propagation and cause severe attenuation. Accordingly, there are two questions that need to be addressed for underwater environment, first what happens when high frequency EM signals operating at 2.4 GHz are used for communication, and second which factors affect the most to high frequency EM signals. To answer these questions, we present real-time experiments conducted at 2.4 GHz in terrestrial and underwater (fresh water) environments. The obtained results helped in studying the physical characteristics (i.e., EM properties, propagation and absorption loss) of underwater environments. It is observed that high frequency EM signals can propagate in fresh water at a shallow depth only and can be considered for a specific class of applications such as water sports. Furthermore, path loss, velocity of propagation, absorption loss and the rate of signal loss in different underwater environments are also calculated and presented in order to understand why EM signals cannot propagate in sea water and oceanic water environments. An optimal solk6ution for underwater communication in terms of coverage distance, bandwidth and nature of communication is presented, along with possible underwater applications of UWSNs at 2.4 GHz.

  15. Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs.

    PubMed

    Durán, Vicente; Schnébelin, Cȏme; Guillet de Chatellus, Hugues

    2018-05-28

    We propose and characterize experimentally a new source of optical frequency combs for performing multi-heterodyne spectrometry. This comb modality is based on a frequency-shifting loop seeded with a continuous-wave (CW) monochromatic laser. The comb lines are generated by successive passes of the CW laser through an acousto-optic frequency shifter. We report the generation of frequency combs with more than 1500 mutually coherent lines, without resorting to non-linear broadening phenomena or external electronic modulation. The comb line spacing is easily reconfigurable from tens of MHz down to the kHz region. We first use a single acousto-optic frequency comb to conduct self-heterodyne interferometry with a high frequency resolution (500 kHz). By increasing the line spacing to 80 MHz, we demonstrate molecular spectroscopy on the sub-millisecond time scale. In order to reduce the detection bandwidth, we subsequently implement an acousto-optic dual-comb spectrometer with the aid of two mutually coherent frequency shifting loops. In each architecture, the potentiality of acousto-optic frequency combs for spectroscopy is validated by spectral measurements of hydrogen cyanide in the near-infrared region.

  16. Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs

    NASA Astrophysics Data System (ADS)

    Durán, Vicente; Schnébelin, Cȏme; Guillet de Chatellus, Hugues

    2018-05-01

    We propose and characterize experimentally a new source of optical frequency combs for performing multi-heterodyne spectrometry. This comb modality is based on a frequency shifting loop seeded with a CW monochromatic laser. The comb lines are generated by successive passes of the CW laser through an acousto-optic frequency shifter. We report the generation of frequency combs with more than 1500 mutually coherent lines, without resorting to non-linear broadening phenomena or external electronic modulation. The comb line spacing is easily reconfigurable from tens of MHz down to the kHz region. We first use a single acousto-optic frequency comb to conduct self-heterodyne interferometry with a high frequency resolution (500 kHz). By increasing the line spacing to 80 MHz, we demonstrate molecular spectroscopy on the sub-millisecond time scale. In order to reduce the detection bandwidth, we subsequently implement an acousto-optic dual-comb spectrometer with the aid of two mutually coherent frequency shifting loops. In each architecture, the potentiality of acousto-optic frequency combs for spectroscopy is validated by spectral measurements of hydrogen cyanide in the near-infrared region.

  17. Air Ground Data Link VHF Airline Communications and Reporting System (ACARS) Preliminary Test Report

    DOT National Transportation Integrated Search

    1995-02-01

    An effort was conducted to determine actual ground-to-air, and air-to-ground : performance of the Airline Communications and Reporting system (ACARS), Very : High Frequency (VHF) Data Link System. Parameters of system throughput, error : rates, and a...

  18. Association Between Portable Music Player Use and Hearing Loss Among Children of School Age in the Netherlands.

    PubMed

    le Clercq, Carlijn M P; Goedegebure, André; Jaddoe, Vincent W V; Raat, Hein; Baatenburg de Jong, Robert J; van der Schroeff, Marc P

    2018-06-14

    Portable music player use may have harmful effects on hearing. The magnitude and effect of frequent music exposure, especially at younger ages, on hearing are unclear. To examine the prevalence of noise-induced hearing loss in a 9- to 11-year-old population and associations with portable music player use and sociodemographic factors. A cross-sectional study within an ongoing, prospective, birth cohort study within Rotterdam, the Netherlands was conducted. Between ages 9 and 11 years, 5355 children underwent their first audiometric evaluation. Children were excluded if they had missing or failed tympanometry results. The study was conducted from April 16, 2012, to October 25, 2015. Portable music player (PMP) use and sociodemographic factors assessed via parental questionnaires. Hearing acuity measured by pure-tone audiometry at 0.5 to 8 kHz. Possible noise-induced hearing loss was contingent on a high-frequency notch and/or high-frequency hearing loss in the audiogram, or reported hearing-related symptoms. The final sample included 3116 participants who were a mean (interquartile range) age of 9.7 (9.6-9.9) years and equally distributed between boys (1550 [49.7%]) and girls (1566 [50.3%]). Of these, 1244 (39.9%) reported no PMP use, 577 (18.5%) reported use 1 or 2 days per week, 254 (8.2%) reported use 3 or more days per week, and for 1041 (33.4%), PMP use was not reported. Audiometric notches and high-frequency hearing loss were present in 443 (14.2%) of all children; 140 (4.5%) fulfilled the criteria of a notch, 238 (7.6%) of high-frequency hearing loss, and 65 (2.1%) of both. Of the cohort, 52 (1.7%) showed bilateral impairment. Hearing-related symptoms were reported for 232 (11.3%) of the respondents, and 831 (40.0%) of the respondents used portable music players. Portable music player use was associated with high-frequency hearing loss (odds ratio [OR], 2.88; 95% CI, 1.36-6.980 for 1 or 2 days per week and OR, 2.74; 95% CI, 1.22-6.96 for ≥3 days per week), but listening time and duration were not. There was no association of music exposure with high-frequency notches. In this study, 14.2% of school-aged children showed audiometric notches or high-frequency hearing loss. This hearing impairment is already present prior to exposure to known noise hazards, such as club and concert attendance, and may have lifelong consequences. Repeated measurements are needed to confirm the association of portable music player use with hearing impairment in children.

  19. The whole number axis integer linear transformation reversible information hiding algorithm on wavelet domain

    NASA Astrophysics Data System (ADS)

    Jiang, Zhuo; Xie, Chengjun

    2013-12-01

    This paper improved the algorithm of reversible integer linear transform on finite interval [0,255], which can realize reversible integer linear transform in whole number axis shielding data LSB (least significant bit). Firstly, this method use integer wavelet transformation based on lifting scheme to transform the original image, and select the transformed high frequency areas as information hiding area, meanwhile transform the high frequency coefficients blocks in integer linear way and embed the secret information in LSB of each coefficient, then information hiding by embedding the opposite steps. To extract data bits and recover the host image, a similar reverse procedure can be conducted, and the original host image can be lossless recovered. The simulation experimental results show that this method has good secrecy and concealment, after conducted the CDF (m, n) and DD (m, n) series of wavelet transformed. This method can be applied to information security domain, such as medicine, law and military.

  20. Electrical conductivity and modulus formulation in zinc modified bismuth boro-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Dhankhar, Sunil; Kundu, R. S.; Dult, Meenakshi; Murugavel, S.; Punia, R.; Kishore, N.

    2016-09-01

    The ac conductivity of zinc modified tellurium based quaternary glasses having composition 60 TeO2-10 B2O3-(30 - x) Bi2O3-x ZnO; x = 10, 15, 20, 25 and 30 has been investigated in the frequency range 10-1-105 Hz and in temperature range 483-593 K. Frequency and temperature dependent ac conductivity found to obey Jonscher power law modified by Almond-West. DC conductivity, crossover frequency and frequency exponent have been estimated from the fitting of the experimental data of conductivity with Jonscher power law modified by Almond-West. The ac conductivity and its frequency exponent have been analyzed by various theoretical models. In presently studied glasses ac conduction takes place via tunneling of overlapping large polaron tunneling. Activation energy is found to be increased with increase in zinc content and dc conduction takes place via variable range hopping proposed by Mott with some modification suggested by Punia et al. The value of the stretched exponent ( β) obtained by fitting of M^' ' }} reveals the presence of non-Debye type relaxation. Scaling spectra of ac conductivity and electric modulus collapse into a single master curve for all compositions and temperatures, reveals the presence of composition and temperature independent conduction and relaxation process in these glasses. Activation energy of conduction ( W) and electric modulus ( E R ) are nearly equal, indicating that polaron have to overcome the same energy barrier during conduction as well as relaxation processes.

  1. Heart rate variabilty changes during first week of acclimatization to 3500 m altitude in Indian military personnel.

    PubMed

    Bhaumik, G; Dass, D; Bhattacharyya, D; Sharma, Y K; Singh, S B

    2013-01-01

    Acute exposure to hypobaric hypoxia induces the changes in autonomic control of heart rate. Due to emergencies or war like conditions, rapid deployment of Indian military personnel into high altitude frequently occurs. Rapid deployment to high altitude soldiers are at risk of developing high altitude sickness. The present study was conducted to evaluate the acute exposure to high altitude hypobaric hypoxia (3500 m altitude) on the autonomic nervous control of heart rate in Indian military personnel during first week of acclimatization Indices of heart rate variability (viz; R-R interval, total power, low frequency, high frequency, ratio of low to high frequency) and pulse arterial oxygen saturation were measured at sea level and 3500m altitude. Power spectrum of heart rate variability was quantified by low frequency (LF: 0.04-0.15 Hz) and high frequency (HF: 0.15-0.5 Hz) widths. The ratio of LF to HF was also assessed as an index of the sympathovagal balance. Mean R-R interval decreased significantly on day 2 on induction to altitude which tended to increase on day 5. Total power (TP) decreased high altitude and tended to recover within a week. Both HF and LF power showed decrement at 3500m in comparison to sea level. The ratio of LF to HF (LF/HF) at 3500m was significantly higher at 3500m. SpO2 values decreased significantly (P < 0.05) at high altitude on day-2 which increased on day-5. We conclude that autonomic control of the heart rate measured by heart rate variability was altered on acute induction to 3500m which showed a significant decrease in parasympathetic tone and increase in sympathetic tone, then acclimatization seems to be characterized by progressive shift toward a higher parasympathetic tone.

  2. Conduction mechanism in bismuth silicate glasses containing titanium

    NASA Astrophysics Data System (ADS)

    Dult, Meenakshi; Kundu, R. S.; Murugavel, S.; Punia, R.; Kishore, N.

    2014-11-01

    Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO2-(60-x)Bi2O3-40SiO2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10-1 Hz to 10 MHz and in the temperature range 623-703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σdc), so called crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti3+ and Ti4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses.

  3. Use of Kramers-Kronig relations to extract the conductivity of high-[ital T][sub [ital c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D.; Richards, P.L.

    1993-05-01

    In principle the conductivity of the cuprate superconductors can be obtained from reflectivity measurements using the Kramers-Kronig-transform technique. However, at low temperatures and for frequencies below [similar to]300 cm[sup [minus]1] the reflectivities of materials such as YBa[sub 2]Cu[sub 3]O[sub 7] are close to unity. Uncertainty in the precise signal level corresponding to unity reflectivity and a lack of knowledge of the reflectivity below the lowest measured frequency cause this method to become unreliable. To address this problem we have used a bolometric technique and a resonant technique to obtain accurate submillimeter and microwave data for the residual losses in epitaxialmore » thin films of YBa[sub 2]Cu[sub 3]O[sub 7] at low temperatures. The Kramers-Kronig analysis of our data is in good agreement with results from fitting our data to simple weakly coupled grain and two-fluid models for the [ital a]-[ital b] plane conductivity. However, below 450 cm[sup [minus]1] it is in disagreement with some published results of other workers obtained from Kramers-Kronig analysis of reflectivity data. To understand this discrepancy we analyze how the conductivity determined by the Kramers-Kronig-transform technique depends on some commonly used low-frequency extrapolations of reflectivity data.« less

  4. Examination of the neighborhood activation theory in normal and hearing-impaired listeners.

    PubMed

    Dirks, D D; Takayanagi, S; Moshfegh, A; Noffsinger, P D; Fausti, S A

    2001-02-01

    Experiments were conducted to examine the effects of lexical information on word recognition among normal hearing listeners and individuals with sensorineural hearing loss. The lexical factors of interest were incorporated in the Neighborhood Activation Model (NAM). Central to this model is the concept that words are recognized relationally in the context of other phonemically similar words. NAM suggests that words in the mental lexicon are organized into similarity neighborhoods and the listener is required to select the target word from competing lexical items. Two structural characteristics of similarity neighborhoods that influence word recognition have been identified; "neighborhood density" or the number of phonemically similar words (neighbors) for a particular target item and "neighborhood frequency" or the average frequency of occurrence of all the items within a neighborhood. A third lexical factor, "word frequency" or the frequency of occurrence of a target word in the language, is assumed to optimize the word recognition process by biasing the system toward choosing a high frequency over a low frequency word. Three experiments were performed. In the initial experiments, word recognition for consonant-vowel-consonant (CVC) monosyllables was assessed in young normal hearing listeners by systematically partitioning the items into the eight possible lexical conditions that could be created by two levels of the three lexical factors, word frequency (high and low), neighborhood density (high and low), and average neighborhood frequency (high and low). Neighborhood structure and word frequency were estimated computationally using a large, on-line lexicon-based Webster's Pocket Dictionary. From this program 400 highly familiar, monosyllables were selected and partitioned into eight orthogonal lexical groups (50 words/group). The 400 words were presented randomly to normal hearing listeners in speech-shaped noise (Experiment 1) and "in quiet" (Experiment 2) as well as to an elderly group of listeners with sensorineural hearing loss in the speech-shaped noise (Experiment 3). The results of three experiments verified predictions of NAM in both normal hearing and hearing-impaired listeners. In each experiment, words from low density neighborhoods were recognized more accurately than those from high density neighborhoods. The presence of high frequency neighbors (average neighborhood frequency) produced poorer recognition performance than comparable conditions with low frequency neighbors. Word frequency was found to have a highly significant effect on word recognition. Lexical conditions with high word frequencies produced higher performance scores than conditions with low frequency words. The results supported the basic tenets of NAM theory and identified both neighborhood structural properties and word frequency as significant lexical factors affecting word recognition when listening in noise and "in quiet." The results of the third experiment permit extension of NAM theory to individuals with sensorineural hearing loss. Future development of speech recognition tests should allow for the effects of higher level cognitive (lexical) factors on lower level phonemic processing.

  5. Large-amplitude ULF waves at high latitudes

    NASA Astrophysics Data System (ADS)

    Guido, T.; Tulegenov, B.; Streltsov, A. V.

    2014-11-01

    We present results from the statistical study of ULF waves detected by the fluxgate magnetometer in Gakona, Alaska during several experimental campaigns conducted at the High Frequency Active Auroral Research Program (HAARP) facility in years 2011-2013. We analyzed frequencies of ULF waves recorded during 26 strongly disturbed geomagnetic events (substorms) and compared them with frequencies of ULF waves detected during magnetically quiet times. Our analysis demonstrates that the frequency of the waves carrying most of the power in almost all these events is less than 1 mHz. We also analyzed data from the ACE satellite, measuring parameters of the solar wind in the L1 Lagrangian point between Earth and Sun, and found that in several occasions there is a strong correlation between oscillations of the magnetic field in the solar wind and oscillations detected on the ground. We also found several cases when there is no correlation between signals detected on ACE and on the ground. This finding suggests that these frequencies correspond to the fundamental eigenfrequency of the coupled magnetosphere-ionosphere system, and the amplitude of these waves can reach significant magnitude when the system is driven by the external driver (for example, the solar wind) with this particular frequency. When the frequency of the driver does not match the frequency of the system, the waves still are observed, but their amplitudes are much smaller.

  6. Mitigation of divertor heat flux by high-frequency ELM pacing with non-fuel pellet injection in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bortolon, A.; Maingi, R.; Mansfield, D. K.

    Experiments have been conducted on DIII-D investigating high repetition rate injection of non-fuel pellets as a tool for pacing Edge Localized Modes (ELMs) and mitigating their transient divertor heat loads. Effective ELM pacing was obtained with injection of Li granules in different H-mode scenarios, at frequencies 3–5 times larger than the natural ELM frequency, with subsequent reduction of strike-point heat flux. However, in scenarios with high pedestal density (~6 × 10 19 m –3), the magnitude of granule triggered ELMs shows a broad distribution, in terms of stored energy loss and peak heat flux, challenging the effectiveness of ELM mitigation.more » Furthermore, transient heat-flux deposition correlated with granule injections was observed far from the strike-points. As a result, field line tracing suggest this phenomenon to be consistent with particle loss into the mid-plane far scrape-off layer, at toroidal location of the granule injection.« less

  7. Mitigation of divertor heat flux by high-frequency ELM pacing with non-fuel pellet injection in DIII-D

    DOE PAGES

    Bortolon, A.; Maingi, R.; Mansfield, D. K.; ...

    2017-03-23

    Experiments have been conducted on DIII-D investigating high repetition rate injection of non-fuel pellets as a tool for pacing Edge Localized Modes (ELMs) and mitigating their transient divertor heat loads. Effective ELM pacing was obtained with injection of Li granules in different H-mode scenarios, at frequencies 3–5 times larger than the natural ELM frequency, with subsequent reduction of strike-point heat flux. However, in scenarios with high pedestal density (~6 × 10 19 m –3), the magnitude of granule triggered ELMs shows a broad distribution, in terms of stored energy loss and peak heat flux, challenging the effectiveness of ELM mitigation.more » Furthermore, transient heat-flux deposition correlated with granule injections was observed far from the strike-points. As a result, field line tracing suggest this phenomenon to be consistent with particle loss into the mid-plane far scrape-off layer, at toroidal location of the granule injection.« less

  8. Hotspots in research on the measurement of medical students' clinical competence from 2012-2016 based on co-word analysis.

    PubMed

    Chang, Xing; Zhou, Xin; Luo, Linzhi; Yang, Chengjia; Pan, Hui; Zhang, Shuyang

    2017-09-12

    This study aimed to identify hotspots in research on clinical competence measurements from 2012 to 2016. The authors retrieved literature published between 2012 and 2016 from PubMed using selected medical subject headings (MeSH) terms. They used BibExcel software to generate high-frequency MeSH terms and identified hotspots by co-word analysis and cluster analysis. The authors searched 588 related articles and identified 31 high-frequency MeSH terms. In addition, they obtained 6 groups of high-frequency MeSH terms that reflected the domain hotspots. This study identified 6 hotspots of domain research, including studies on influencing factors and perception evaluation, improving and developing measurement tools, feedback measurement, measurement approaches based on computer simulation, the measurement of specific students in different learning phases, and the measurement of students' communication ability. All of these research topics could provide useful information for educators and researchers to continually conduct in-depth studies.

  9. Low frequency complex dielectric (conductivity) response of dilute clay suspensions: Modeling and experiments.

    PubMed

    Hou, Chang-Yu; Feng, Ling; Seleznev, Nikita; Freed, Denise E

    2018-09-01

    In this work, we establish an effective medium model to describe the low-frequency complex dielectric (conductivity) dispersion of dilute clay suspensions. We use previously obtained low-frequency polarization coefficients for a charged oblate spheroidal particle immersed in an electrolyte as the building block for the Maxwell Garnett mixing formula to model the dilute clay suspension. The complex conductivity phase dispersion exhibits a near-resonance peak when the clay grains have a narrow size distribution. The peak frequency is associated with the size distribution as well as the shape of clay grains and is often referred to as the characteristic frequency. In contrast, if the size of the clay grains has a broad distribution, the phase peak is broadened and can disappear into the background of the canonical phase response of the brine. To benchmark our model, the low-frequency dispersion of the complex conductivity of dilute clay suspensions is measured using a four-point impedance measurement, which can be reliably calibrated in the frequency range between 0.1 Hz and 10 kHz. By using a minimal number of fitting parameters when reliable information is available as input for the model and carefully examining the issue of potential over-fitting, we found that our model can be used to fit the measured dispersion of the complex conductivity with reasonable parameters. The good match between the modeled and experimental complex conductivity dispersion allows us to argue that our simplified model captures the essential physics for describing the low-frequency dispersion of the complex conductivity of dilute clay suspensions. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Characterization of soil behavior using electromagnetic wave-based technique

    NASA Astrophysics Data System (ADS)

    Dong, Xiaobo

    A 2.2 mm open-ended coaxial probe is selected to explore the broadband measurement of complex permittivity ranging from kHz up to GHz. The measurements are conducted in three different frequency ranges, i.e., high frequency (HF, 500 MHz ˜ 20 GHz), medium frequency (MF, 10 MHz ˜ 1 GHz), and low frequency (LF, 1 kHz ˜ 15 MHz), in view of pertinent aperture admittance models, feasible measurement principles, and required calibrations for system biases. These considerations are discussed and described in turn from the high frequency measurements to low frequency tests. Verification of the associated measurement techniques in the three operating frequency regimes is provided by experiments on pure ethanol and methanol liquids as well as on NaCl solutions of different concentrations. These testing techniques are also applied to measure the broadband dielectric spectrum of kaolinite slurry; simple analyses focusing on subtracting the influence of DC conductivity and multiple relaxations are presented. A complex permittivity spectrum from 1 kHz to 3 GHz is measured in kaolinite sediment of different structures using the slim-form open-ended coaxial probe. The sediment structure is manipulated by changing the pore-fluid pH. When the pH is below the isoelectrical point of the edge surface, IEPedge, the structure of face-to-edge (EF) flocculation is promoted in voluminous sediment (Group A samples). A higher dielectric constant due to bulk water polarization is measured because of the higher water content. As the pH is increased to greater than IEP edge, dense sediment with face-to-face (FF) aggregation is produced (Group B samples) and a lower dielectric constant is obtained. In bound water and spatial polarization, higher relaxation strength and longer relaxation time are observed in the Group B samples, which can be attributed to more negatively charged surfaces and denser packing. Fluid conductivity dominates the global conductivity of the sediment in the Group A samples so that the beta value, i.e., the ratio between the conductivities of the sediment and the fluid, is smaller than 1. The beta value is greater than 1 in the Group B samples owing to an overcompensation of surface conduction. Sedimentation behavior of two kaolinite samples with distinct fabric associations is characterized using mechanical and electromagnetic wave-based techniques. The two different fabric formations, the edge-to-face (EF) flocculated structure (i.e., sample A) and the dispersed and deflocculated structure (i.e., sample B), were regulated by changing the pH of the pore fluid and are produced. The anisotropy of shear wave velocity and DC conductivity was not observed in the sediment of sample A because of EF isotropic fabric associations but it was detected in sample B as a result of face-to-face (FF) aggregation. An open card-house structure of the sample A sediment results in a higher relaxation strength of the bulk water, Deltakappaw owing to a higher water content; the smaller Deltakappaw measured in the sample B sediment indicates denser packing. In both samples, sediment consolidation gives rise to a decrease in the bulk-water relaxation strength but an increase in the bound-water relaxation strength owing to increasing particle content. In response to sediment consolidation, the sediment conductivity of sample A continuously decreases because of the reduced contribution from the fluid conductivity. In sample B, the surface conduction via the overlapped double layer overcompensates such a decreased contribution so that the sediment conductivity increases with increasing particle content. The slim-form open-ended coaxial probe is also used to conduct a local dielectric measurement. The measured results, i.e. dielectric relaxation strength of bulk water, Deltakappaw, and the DC conductivity of the saturated sample, sigmamix, are jointly used to characterize the spatial variability of different specimens including glass beads, sand and mica samples, and kaolinte sediments with two different fabric associations. The pore distribution along the sample depth can be reflected from the measured Deltakappaw, and the local porosity can be estimated based on the mixing rules. The directional feature of the interconnected pores is captured in the totruosity which is derived from the measured sigmamix. In the kaolinite sediments, the ratio between the sediment and the pore-fluid conductivity not only reveals the spatial variability of the sediment packing but also the relative contribution of the fluid conductivity and surface conduction to the global sediment conductivity.

  11. Reversible Nerve Conduction Block Using Kilohertz Frequency Alternating Current

    PubMed Central

    Kilgore, Kevin L.; Bhadra, Niloy

    2013-01-01

    Objectives The features and clinical applications of balanced-charge kilohertz frequency alternating currents (KHFAC) are reviewed. Preclinical studies of KHFAC block have demonstrated that it can produce an extremely rapid and reversible block of nerve conduction. Recent systematic analysis and experimentation utilizing KHFAC block has resulted in a significant increase in interest in KHFAC block, both scientifically and clinically. Materials and Methods We review the history and characteristics of KHFAC block, the methods used to investigate this type of block, the experimental evaluation of block, and the electrical parameters and electrode designs needed to achieve successful block. We then analyze the existing clinical applications of high frequency currents, comparing the early results with the known features of KHFAC block. Results Although many features of KHFAC block have been characterized, there is still much that is unknown regarding the response of neural structures to rapidly fluctuating electrical fields. The clinical reports to date do not provide sufficient information to properly evaluate the mechanisms that result in successful or unsuccessful treatment. Conclusions KHFAC nerve block has significant potential as a means of controlling nerve activity for the purpose of treating disease. However, early clinical studies in the use of high frequency currents for the treatment of pain have not been designed to elucidate mechanisms or allow direct comparisons to preclinical data. We strongly encourage the careful reporting of the parameters utilized in these clinical studies, as well as the development of outcome measures that could illuminate the mechanisms of this modality. PMID:23924075

  12. Characterization of conductive Al-doped ZnO thin films for plasmonic applications

    NASA Astrophysics Data System (ADS)

    Masouleh, F. F.; Sinno, I.; Buckley, R. G.; Gouws, G.; Moore, C. P.

    2018-02-01

    Highly conductive and transparent Al-doped zinc oxide films were produced by RF magnetron sputtering for plasmonic applications in the infrared region of the spectrum. These films were characterized using Fourier transform infrared spectroscopy, the Hall effect, Rutherford backscattering spectroscopy and spectral data analysis. Analysis of the results shows a carrier concentration of up to 2.6 × 1020 cm-3, as well as transmission over 80% near the plasma frequency where plasmonic properties are expected. The plasma frequency was calculated from the spectroscopy measurements and subsequent data analysis, and was in agreement with the results from the Hall effect measurements and the free electron gas (Drude) model. Based on these results, the Al-doped zinc oxide thin films are well-suited for plasmonic applications in the infrared region.

  13. Effect of a magnetic field on the permittivity of 80%La0.7Sr0.3MnO3/20%GeO2 composite

    NASA Astrophysics Data System (ADS)

    Kabirov, Yu. V.; Gavrilyachenko, V. G.; Bogatin, A. S.; Sitalo, E. I.; Yatsenko, V. K.

    2018-01-01

    The dielectric properties of a magnetoresistive conducting two-phase 80%La0.7Sr0.3MnO3/20%GeO2 (wt %) composite have been studied near the percolation threshold in magnetic fields from 0 to 15 kOe at frequencies of the measurement field from 5 kHz to 1 MHz. The samples have inductive impedances; i.e., their permittivities can be considered negative due to a high conductivity in this frequency range. The permittivity increases in magnitude in magnetic field, and the values of the magnetodielectric coefficient reach 23% at room temperature. The reasons for the effect of magnetic field on the dielectric permittivity of samples are discussed.

  14. Broadband EIT borehole measurements with high phase accuracy using numerical corrections of electromagnetic coupling effects

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zimmermann, E.; Huisman, J. A.; Treichel, A.; Wolters, B.; van Waasen, S.; Kemna, A.

    2013-08-01

    Electrical impedance tomography (EIT) is gaining importance in the field of geophysics and there is increasing interest for accurate borehole EIT measurements in a broad frequency range (mHz to kHz) in order to study subsurface properties. To characterize weakly polarizable soils and sediments with EIT, high phase accuracy is required. Typically, long electrode cables are used for borehole measurements. However, this may lead to undesired electromagnetic coupling effects associated with the inductive coupling between the double wire pairs for current injection and potential measurement and the capacitive coupling between the electrically conductive shield of the cable and the electrically conductive environment surrounding the electrode cables. Depending on the electrical properties of the subsurface and the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. The aim of this paper is to develop numerical corrections for these phase errors. To this end, the inductive coupling effect was modeled using electronic circuit models, and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 0.8 mrad in the frequency range up to 10 kHz was achieved. The corrections were also applied to field EIT measurements made using a 25 m long EIT borehole chain with eight electrodes and an electrode separation of 1 m. The results of a 1D inversion of these measurements showed that the correction methods increased the measurement accuracy considerably. It was concluded that the proposed correction methods enlarge the bandwidth of the field EIT measurement system, and that accurate EIT measurements can now be made in the mHz to kHz frequency range. This increased accuracy in the kHz range will allow a more accurate field characterization of the complex electrical conductivity of soils and sediments, which may lead to the improved estimation of saturated hydraulic conductivity from electrical properties. Although the correction methods have been developed for a custom-made EIT system, they also have potential to improve the phase accuracy of EIT measurements made with commercial systems relying on multicore cables.

  15. Anisotropic electrodynamics of type-II Weyl semimetal candidate WTe 2

    DOE PAGES

    Frenzel, A. J.; Homes, C. C.; Gibson, Q. D.; ...

    2017-06-30

    We investigated the ab-plane optical properties of single crystals of WTe 2 for light polarized parallel and perpendicular to the W-chain axis over a broad range of frequency and temperature. At far-infrared frequencies, we observed a striking dependence of the reflectance edge on light polarization, corresponding to anisotropy of the carrier effective masses. We quantitatively studied the temperature dependence of the plasma frequency, revealing a modest increase of the effective mass anisotropy in the ab plane upon cooling. We also found strongly anisotropic interband transitions persisting to high photon energies. These results were analyzed by comparison with ab initio calculations.more » The calculated and measured plasma frequencies agree to within 10% for both polarizations, while the calculated interband conductivity shows excellent agreement with experiment.« less

  16. Soil salinisation and irrigation management of date palms in a Saharan environment.

    PubMed

    Haj-Amor, Zied; Ibrahimi, Mohamed-Khaled; Feki, Nissma; Lhomme, Jean-Paul; Bouri, Salem

    2016-08-01

    The continuance of agricultural production in regions of the world with chronic water shortages depends upon understanding how soil salinity is impacted by irrigation practises such as water salinity, irrigation frequency and amount of irrigation. A two-year field study was conducted in a Saharan oasis of Tunisia (Lazala Oasis) to determine how the soil electrical conductivity was affected by irrigation of date palms with high saline water. The study area lacked a saline shallow water table. Field results indicate that, under current irrigation practises, soil electrical conductivity can build up to levels which exceed the salt tolerance of date palm trees. The effects of irrigation practises on the soil electrical conductivity were also evaluated using model simulations (HYDRUS-1D) of various irrigation regimes with different frequencies, different amounts of added water and different water salinities. The comparison between the simulated and observed results demonstrated that the model gave an acceptable estimation of water and salt dynamics in the soil profile, as indicated by the small values of root mean square error (RMSE) and the high values of the Nash-Sutcliffe model efficiency coefficient (NSE). The simulations demonstrated that, under field conditions without saline shallow groundwater, saline irrigation water can be used to maintain soil electrical conductivity and soil water content at safe levels (soil electrical conductivity <4 dS m(-1) and soil water content >0.04 cm(3) cm(-3)) if frequent irrigations with small amounts of water (90 % of the evapotranspiration requirements) were applied throughout the year.

  17. Dielectric relaxation behavior of colloidal suspensions of palladium nanoparticle chains dispersed in PVP/EG solution.

    PubMed

    Chen, Zhen; Zhao, Kong-Shuang; Guo, Lin; Feng, Cai-Hong

    2007-04-28

    Dielectric measurements were carried out on colloidal suspensions of palladium nanoparticle chains dispersed in poly(vinyl pyrrolidone)/ethylene glycol (PVP/EG) solution with different particle volume fractions, and dielectric relaxation with relaxation time distribution and small relaxation amplitude was observed in the frequency range from 10(5) to 10(7) Hz. By means of the method based on logarithmic derivative of the dielectric constant and a numerical Kramers-Kronig transform method, two dielectric relaxations were confirmed and dielectric parameters were determined from the dielectric spectra. The dielectric parameters showed a strong dependence on the volume fraction of palladium nanoparticle chain. Through analyzing limiting conductivity at low frequency, the authors found the conductance percolation phenomenon of the suspensions, and the threshold volume fraction is about 0.18. It was concluded from analyzing the dielectric parameters that the high frequency dielectric relaxation results from interfacial polarization and the low frequency dielectric relaxation is a consequence of counterion polarization. They also found that the dispersion state of the palladium nanoparticle chain in PVP/EG solution is dependent on the particle volume fraction, and this may shed some light on a better application of this kind of materials.

  18. Dielectric investigation of the sliding charge-density wave in Tl0.3MoO3

    NASA Astrophysics Data System (ADS)

    Ramanujachary, K. V.; Collins, B. T.; Greenblatt, M.; Gerhardt, R.; Rietman, E. A.

    1988-10-01

    We have investigated the low-frequency complex conductivity of the charge-density-wave condensate in Tl0.3MoO3, in the temperature range 40-90 K, by the measurement of admittance sampled in the frequency interval 5 Hz-13 MHz. The observed response can be characterized in terms of a simple Debye relaxation model with a distribution of relaxation times by analogy with the reported behavior of its isostructural analog K0.3MoO3. Despite qualitative similarities with the general trends observed in K0.3MoO3, the relaxational response in Tl0.3MoO3 differed significantly in detail. Both the mean relaxation times (τ0) and static dielectric constants (ɛ0) are shown to have Arrhenius temperature dependence with activation energies of 743 and 152 K, respectively. For applied dc biases above the threshold field (ET) for nonlinear conduction, the response shows structure at frequencies that resemble ``washboard'' characteristics of a moving charge condensate. From the values of the high-frequency real and imaginary parts of the dielectric constants, the existence of yet another relaxation process is proposed.

  19. Magnetoacoustic Tomography with Magnetic Induction for Electrical Conductivity based Tissue imaging

    NASA Astrophysics Data System (ADS)

    Mariappan, Leo

    Electrical conductivity imaging of biological tissue has attracted considerable interest in recent years owing to research indicating that electrical properties, especially electrical conductivity and permittivity, are indicators of underlying physiological and pathological conditions in biological tissue. Also, the knowledge of electrical conductivity of biological tissue is of interest to researchers conducting electromagnetic source imaging and in design of devices that apply electromagnetic energy to the body such as MRI. So, the need for a non-invasive, high resolution impedance imaging method is highly desired. To address this need we have studied the magnetoacoustic tomography with magnetic induction (MAT-MI) method. In MAT-MI, the object is placed in a static and a dynamic magnetic field giving rise to ultrasound waves. The dynamic field induces eddy currents in the object, and the static field leads to generation of acoustic vibrations from Lorentz force on the induced currents. The acoustic vibrations are at the same frequency as the dynamic magnetic field, which is chosen to match the ultrasound frequency range. These ultrasound signals can be measured by ultrasound probes and are used to reconstruct MAT-MI acoustic source images using possible ultrasound imaging approaches .The reconstructed high spatial resolution image is indicative of the object's electrical conductivity contrast. We have investigated ultrasound imaging methods to reliably reconstruct the MAT-MI image under the practical conditions of limited bandwidth and transducer geometry. The corresponding imaging algorithm, computer simulation and experiments are developed to test the feasibility of these different methods. Also, in experiments, we have developed a system with the strong static field of an MRI magnet and a strong pulsed magnetic field to evaluate MAT-MI in biological tissue imaging. It can be seen from these simulations and experiments that conductivity boundary images with millimeter resolution can be reliably reconstructed with MAT-MI. Further, to estimate the conductivity distribution throughout the object, we reconstruct a vector source image corresponding to the induced eddy currents. As the current source is uniformly present throughout the object, we are able to reliably estimate the internal conductivity distribution for a more complete imaging. From the computer simulations and experiments it can be seen that MAT-MI method has the potential to be a clinically applicable, high resolution, non-invasive method for electrical conductivity imaging.

  20. Structure, temperature and frequency dependent electrical conductivity of oxidized and reduced electrochemically exfoliated graphite

    NASA Astrophysics Data System (ADS)

    Radoń, Adrian; Włodarczyk, Patryk; Łukowiec, Dariusz

    2018-05-01

    The article presents the influence of reduction by hydrogen in statu nascendi and modification by hydrogen peroxide on the structure and electrical conductivity of electrochemically exfoliated graphite. It was confirmed that the electrochemical exfoliation can be used to produce oxidized nanographite with an average number of 25 graphene layers. The modified electrochemical exfoliated graphite and reduced electrochemical exfoliated graphite were characterized by high thermal stability, what was associated with removing of labile oxygen-containing groups. The presence of oxygen-containing groups was confirmed using Fourier-transform infrared spectroscopy. Influence of chemical modification by hydrogen and hydrogen peroxide on the electrical conductivity was determined in wide frequency (0.1 Hz-10 kHz) and temperature range (-50 °C-100 °C). Material modified by hydrogen peroxide (0.29 mS/cm at 0 °C) had the lowest electrical conductivity. This can be associated with oxidation of unstable functional groups and was also confirmed by analysis of Raman spectra. The removal of oxygen-containing functional groups by hydrogen in statu nascendi resulted in a 1000-fold increase in the electrical conductivity compared to the electrochemical exfoliated graphite.

  1. Irregular Menses Linked to Vomiting in a Nonclinical Sample: Findings from the National Eating Disorders Screening Program in High Schools

    PubMed Central

    Austin, S. Bryn; Ziyadeh, Najat J.; Vohra, Sameer; Forman, Sara; Gordon, Catherine M.; Prokop, Lisa A.; Keliher, Anne; Jacobs, Douglas

    2011-01-01

    Purpose Using data from an eating disorders screening initiative conducted in high schools across the United States, we examined the relationship between vomiting frequency and irregular menses in a nonclinical sample of adolescent females. Methods A self-report questionnaire was administered to students from U.S. high schools participating in the National Eating Disorders Screening Program in 2000. The questionnaire included items on frequency of vomiting for weight control in the past 3 months, other eating disorder symptoms, frequency of menses, height, and weight. Multivariable regression analyses were conducted using data from 2791 girls to estimate the risk of irregular menses (defined as menses less often than monthly) associated with vomiting frequency, adjusting for other eating disorder symptoms, weight status, age, race/ethnicity, and school clusters. Results Girls who vomited to control their weight one to three times per month were one and a half times more likely (risk ratio [RR] = 1.6; 95% confidence interval [CI] = 1.2–2.2), and girls who vomited once per week or more often were more than three times more likely (RR = 3.2; 95% CI = 2.3–4.4), to experience irregular menses than were girls who did not report vomiting for weight control. Vomiting for weight control remained a strong predictor of irregular menses even when overweight and underweight participants were excluded. Conclusions Our study adds to the evidence that vomiting may have a direct effect on hormonal function in adolescent girls, and that vomiting for weight control may be a particularly deleterious component of eating disorders. PMID:18407039

  2. Survey of Ionospheric Pc3-5 ULF Wave Signatures in SuperDARN High Time Resolution Data

    NASA Astrophysics Data System (ADS)

    Shi, X.; Ruohoniemi, J. M.; Baker, J. B. H.; Lin, D.; Bland, E. C.; Hartinger, M. D.; Scales, W. A.

    2018-05-01

    Ionospheric signatures of ultralow frequency (ULF) wave in the Pc3-5 band (1.7-40.0 mHz) were surveyed using ˜6-s resolution data from Super Dual Auroral Radar Network (SuperDARN) radars in the Northern Hemisphere from 2010 to 2016. Numerical experiments were conducted to derive wave period-dependent thresholds for automated detection of ULF waves using the Lomb-Scargle periodogram technique. The spatial occurrence distribution, frequency characteristics, seasonal effects, solar wind condition, and geomagnetic activity level dependence have been studied. Pc5 wave events were found to dominate at high and polar latitudes with a most probable frequency of 2.08 ± 0.07 mHz, while Pc3-4 waves were relatively more common at midlatitudes on the nightside with a most probable frequency of 11.39 ± 0.14 mHz. At high latitudes, the occurrence rate of Pc4-5 waves maximizes in the dusk sector and during winter. These events tend to occur during low geomagnetic activity and northward interplanetary magnetic field. For the category of radially bounded but longitudinally extended Pc4 events in the duskside ionosphere, an internal driving source is suggested. At midlatitudes, the poloidal Pc3-4 occurrence rate maximizes premidnight and during equinox. This tendency becomes more prominent with increasing auroral electrojet (AE) index and during southward interplanetary magnetic field, which suggests that many of these events are Pi2 and Pc3-4 pulsations associated with magnetotail dynamics during active geomagnetic intervals. The overall occurrence rate of Pc3-5 wave events is lowest in summer, which suggests that the ionospheric conductivity plays a role in controlling ULF wave occurrence.

  3. The response of phospholipid-encapsulated microbubbles to chirp-coded excitation: Implications for high-frequency nonlinear imaging

    PubMed Central

    Shekhar, Himanshu; Doyley, Marvin M.

    2013-01-01

    The current excitation strategy for harmonic and subharmonic imaging (HI and SHI) uses short sine-bursts. However, alternate pulsing strategies may be useful for enhancing nonlinear emissions from ultrasound contrast agents. The goal of this study was to corroborate the hypothesis that chirp-coded excitation can improve the performance of high-frequency HI and SHI. A secondary goal was to understand the mechanisms that govern the response of ultrasound contrast agents to chirp-coded and sine-burst excitation schemes. Numerical simulations and acoustic measurements were conducted to evaluate the response of a commercial contrast agent (Targestar-P®) to chirp-coded and sine-burst excitation (10 MHz frequency, peak pressures 290 kPa). The results of the acoustic measurements revealed an improvement in signal-to-noise ratio by 4 to 14 dB, and a two- to threefold reduction in the subharmonic threshold with chirp-coded excitation. Simulations conducted with the Marmottant model suggest that an increase in expansion-dominated radial excursion of microbubbles was the mechanism responsible for the stronger nonlinear response. Additionally, chirp-coded excitation detected the nonlinear response for a wider range of agent concentrations than sine-bursts. Therefore, chirp-coded excitation could be a viable approach for enhancing the performance of HI and SHI. PMID:23654417

  4. The response of phospholipid-encapsulated microbubbles to chirp-coded excitation: implications for high-frequency nonlinear imaging.

    PubMed

    Shekhar, Himanshu; Doyley, Marvin M

    2013-05-01

    The current excitation strategy for harmonic and subharmonic imaging (HI and SHI) uses short sine-bursts. However, alternate pulsing strategies may be useful for enhancing nonlinear emissions from ultrasound contrast agents. The goal of this study was to corroborate the hypothesis that chirp-coded excitation can improve the performance of high-frequency HI and SHI. A secondary goal was to understand the mechanisms that govern the response of ultrasound contrast agents to chirp-coded and sine-burst excitation schemes. Numerical simulations and acoustic measurements were conducted to evaluate the response of a commercial contrast agent (Targestar-P(®)) to chirp-coded and sine-burst excitation (10 MHz frequency, peak pressures 290 kPa). The results of the acoustic measurements revealed an improvement in signal-to-noise ratio by 4 to 14 dB, and a two- to threefold reduction in the subharmonic threshold with chirp-coded excitation. Simulations conducted with the Marmottant model suggest that an increase in expansion-dominated radial excursion of microbubbles was the mechanism responsible for the stronger nonlinear response. Additionally, chirp-coded excitation detected the nonlinear response for a wider range of agent concentrations than sine-bursts. Therefore, chirp-coded excitation could be a viable approach for enhancing the performance of HI and SHI.

  5. High precision optical measurement of displacement and simultaneous determinations of piezoelectric coefficients

    NASA Astrophysics Data System (ADS)

    Gamboa, Bryan M.; Malladi, Madhuri; Vadlamani, Ramya; Guo, Ruyan; Bhalla, Amar

    2016-09-01

    PZT are also well known for their applications in Micro Electrical Mechanical Systems (MEMS). It is necessary to study the piezoelectric coefficients of the materials accurately in order to design a sensor as an example, which defines their strain dependent applications. Systematic study of the electro mechanic displacement measurement was conducted and compared using a white light fiber optic sensor, a heterodyne laser Doppler vibrometer, and a homodyne laser interferometry setup. Frequency dependent measurement is conducted to evaluate displacement values well below and near the piezoelectric resonances. UHF-120 ultra-high frequency Vibrometer is used to measure the longitudinal piezoelectric displacement or x33 and the MTI 2000 FotonicTM Sensor is used to measure the transverse piezoelectric displacement or x11 over 100Hz to 2MHz. A Multiphysics Finite Element Analysis method, COMSOL, is also adopted in the study to generate a three dimensional electromechanical coupled model based on experimentally determined strains x33 and x11 as a function of frequency of the electric field applied. The full family of piezoelectric coefficients of the poled electronic ceramic PZT, d33, d31, and d15, can be then derived, upon satisfactory simulation of the COMSOL. This is achieved without the usual need of preparation of piezoelectric resonators of fundamental longitudinal, transversal, and shear modes respectively.

  6. An Objective Estimation of Air-Bone-Gap in Cochlear Implant Recipients with Residual Hearing Using Electrocochleography.

    PubMed

    Koka, Kanthaiah; Saoji, Aniket A; Attias, Joseph; Litvak, Leonid M

    2017-01-01

    Although, cochlear implants (CI) traditionally have been used to treat individuals with bilateral profound sensorineural hearing loss, a recent trend is to implant individuals with residual low-frequency hearing. Notably, many of these individuals demonstrate an air-bone gap (ABG) in low-frequency, pure-tone thresholds following implantation. An ABG is the difference between audiometric thresholds measured using air conduction (AC) and bone conduction (BC) stimulation. Although, behavioral AC thresholds are straightforward to assess, BC thresholds can be difficult to measure in individuals with severe-to-profound hearing loss because of vibrotactile responses to high-level, low-frequency stimulation and the potential contribution of hearing in the contralateral ear. Because of these technical barriers to measuring behavioral BC thresholds in implanted patients with residual hearing, it would be helpful to have an objective method for determining ABG. This study evaluated an innovative technique for measuring electrocochleographic (ECochG) responses using the cochlear microphonic (CM) response to assess AC and BC thresholds in implanted patients with residual hearing. Results showed high correlations between CM thresholds and behavioral audiograms for AC and BC conditions, thereby demonstrating the feasibility of using ECochG as an objective tool for quantifying ABG in CI recipients.

  7. Parametric Investigation of Laser Doppler Microphones

    NASA Astrophysics Data System (ADS)

    Daoud, M.; Naguib, A.

    2002-11-01

    The concept of a Laser Doppler Microphone (LDM) is based on utilizing the Doppler frequency shift of a focused laser beam to measure the unsteady velocity of the center point of a flexible polymer diaphragm that is mounted on top of a hole and subjected to the unsteady pressure. Time integration of the velocity signal yields a time series of the diaphragm displacement, which can be converted to pressure from knowledge of the sensor's deflection sensitivity. In our APS/DFD presentation last year, the stringent frequency resolution requirement of these new sensors and methods to meet this requirement were discussed. Here, the dependence of the sensor characteristics (sensitivity, bandwidth, and noise floor) on various significant parameters is investigated in detail by calibrating the sensor in a plane wave tube in the frequency range of 50 - 5000 Hz. Parameters investigated include sensor diaphragm material and thickness, sensor size, damping of the diaphragm motion and laser beam spot size. The results shed light on the operating limits of the new sensor and demonstrate its ability to conduct high-spatial-resolution measurements in typical high-Reynolds-number test facilities. Moreover, calibrated LDM sensors were used to conduct measurements in a separating/reattaching flow and the results are compared to classical electret-type microphones with a similar sensing diameter.

  8. Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging

    NASA Astrophysics Data System (ADS)

    Flores Orozco, Adrián; Kemna, Andreas; Oberdörster, Christoph; Zschornack, Ludwig; Leven, Carsten; Dietrich, Peter; Weiss, Holger

    2012-08-01

    Broadband spectral induced polarization (SIP) measurements were conducted at a former hydrogenation plant in Zeitz (NE Germany) to investigate the potential of SIP imaging to delineate areas with different BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations. Conductivity images reveal a poor correlation with the distribution of contaminants; whereas phase images exhibit two main anomalies: low phase shift values (< 5 mrad) for locations with high BTEX concentrations, including the occurrence of free-phase product (BTEX concentrations > 1.7 g/l), and higher phase values for lower BTEX concentrations. Moreover, the spectral response of the areas with high BTEX concentration and free-phase products reveals a flattened spectrum in the low frequencies (< 40 Hz), while areas with lower BTEX concentrations exhibit a response characterized by a frequency peak. The SIP response was modelled using a Debye decomposition to compute images of the median relaxation-time. Consistent with laboratory studies, we observed an increase in the relaxation-time associated with an increase in BTEX concentrations. Measurements were also collected in the time domain (TDIP), revealing imaging results consistent with those obtained for frequency domain (SIP) measurements. Results presented here demonstrate the potential of the SIP imaging method to discriminate source and plume of dissolved contaminants at BTEX contaminated sites.

  9. Electrical conductivity and dielectric relaxation of 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl)acetonitrile

    NASA Astrophysics Data System (ADS)

    El-Menyawy, E. M.; Zedan, I. T.; Nawar, H. H.

    2014-03-01

    The electrical and dielectric properties of the synthesized 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl)acetonitrile (AHNA) have been studied. The direct and alternating current (DC and AC) conductivities and complex dielectric constant were investigated in temperature range 303-403 K. The AC conductivity and dielectric properties of AHNA were investigated over frequency range 100 Hz-5 MHz. From DC and AC measurements, electrical conduction is found to be a thermally activated process. The frequency-dependent AC conductivity obeys Jonscher's universal power law in which the frequency exponent decreases with increasing temperature. The correlated barrier hopping (CBH) is the predominant model for describing the charge carrier transport in which the electrical parameters are evaluated. The activation energy is found to decrease with increasing frequency. The behaviors of dielectric and dielectric loss are discussed in terms of a polarization mechanism. The dielectric loss shows frequency power law from which the maximum barrier height is determined as 0.19 eV in terms of the Guintini model.

  10. Survey of Pc3-5 ULF velocity oscillations in SuperDARN THEMIS-mode data: Occurrence statistics and driving mechanisms

    NASA Astrophysics Data System (ADS)

    Shi, X.; Ruohoniemi, J. M.; Baker, J. B.; Lin, D.; Bland, E. C.; Hartinger, M.; Scales, W.

    2017-12-01

    Ultra-low frequency (ULF: 1 mHz-10 Hz) waves are believed to play an important role in the energization and transport of plasma within the magnetosphere-ionosphere system, as well as the transfer of energy from the solar wind. Most previous statistical studies of ionospheric ULF waves using Super Dual Auroral Radar Network (SuperDARN) data have been constrained to the Pc5 band ( 1-7 mHz) and/or one or two radars covering a limited range of latitudes. This is partially due to lack of a database cataloging high time resolution data and an efficient way to identify wave events. In this study, we conducted a comprehensive survey of ULF wave signatures in the Pc3-5 band using 6 s resolution data from all SuperDARN radars in the northern hemisphere operating in THEMIS-mode from 2010 to 2016. Numerical experiments were conducted to derive dynamic thresholds for automated detection of ULF waves at different frequencies using the Lomb-Scargle periodogram technique. The spatial occurrence distribution, frequency characteristics, seasonal effects, solar wind condition and geomagnetic activity level dependence have been studied. We found Pc5 events dominate at high latitudes with a most probable frequency of 2 mHz while Pc3-4 are relatively more common at mid-latitudes on the nightside with a most probable frequency of 11 mHz. At high latitudes the occurrence rate of poloidal Pc3-5 peaks in the dusk sector and in winter while at mid-latitudes the poloidal Pc3-4 occurrence rate peaks at pre-midnight. This pre-midnight occurrence peak becomes more prominent with increasing AE index value, in equinox and during southward IMF, which suggests many of these events are most likely Pi2 pulsations associated with magnetotail dynamics during active geomagnetic intervals.

  11. Initial results of stimulated radiation measurements during the HAARP campaign of September 2017

    NASA Astrophysics Data System (ADS)

    Yellu, A. D.; Scales, W. A.; Mahmoudian, A.; Siefring, C.; Bernhardt, P.

    2018-02-01

    Initial results of stimulated electromagnetic radiation observed during an ionosphere heating experiment conducted at the High-Frequency Active Auroral Program (HAARP) facility are reported. The frequency of the pump wave used in the heating is in the neighborhood of the third harmonic of the electron cyclotron frequency, and of interest are simulated electromagnetic emissions (SEEs) within ? kHz of the heating frequency known as narrowband SEE (NSEE) and the commonly known wideband SEE (WSEE) which occur within ? kHz of the pump wave frequency. With the transmit power maintained at maximum, and all other conditions of the experiment invariable, the characteristics of NSEE and WSEE as time progresses from the time the transmitter is switched on are detailed in the results. The dependence of the characteristics of the NSEE and WSEE with temporal evolution into the heating cycle are observed to be fundamentally different.

  12. Liquid Droplet Dynamics in Gravity Compensating High Magnetic Field

    NASA Technical Reports Server (NTRS)

    Bojarevics, V.; Easter, S.; Pericleous, K.

    2012-01-01

    Numerical models are used to investigate behavior of liquid droplets suspended in high DC magnetic fields of various configurations providing microgravity-like conditions. Using a DC field it is possible to create conditions with laminar viscosity and heat transfer to measure viscosity, surface tension, electrical and thermal conductivities, and heat capacity of a liquid sample. The oscillations in a high DC magnetic field are quite different for an electrically conducting droplet, like liquid silicon or metal. The droplet behavior in a high magnetic field is the subject of investigation in this paper. At the high values of magnetic field some oscillation modes are damped quickly, while others are modified with a considerable shift of the oscillating droplet frequencies and the damping constants from the non-magnetic case.

  13. Growth of magnesium diboride films on 2 inch diameter copper discs by hybrid physical–chemical vapor deposition

    DOE PAGES

    Withanage, Wenura K.; Xi, X. X.; Nassiri, Alireza; ...

    2017-02-16

    Here, magnesium diboride (MgB 2) coating is a potential candidate to replace bulk niobium (Nb) for superconducting radio frequency cavities due to the appealing superconducting properties of MgB 2. MgB 2 coating on copper may allow cavity operation near 20–25 K as a result of the high transition temperature (T c) of MgB 2 and excellent thermal conductivity of Cu. We have grown MgB 2 films on 2 inch diameter Cu discs by hybrid physical–chemical vapor deposition for radio frequency characterization. Structural and elemental analyses showed a uniform MgB 2 coating on top of a Mg–Cu alloy layer with occasionalmore » intrusion of Mg–Cu alloy regions. High T c values of around 37 K and high critical current density (J c) on the order of 107 A cm –2 at zero field were observed. Radio frequency measurements at 11.4 GHz confirmed a high T c and showed a quality factor (Q 0) much higher than for Cu and close to that of Nb.« less

  14. Growth of magnesium diboride films on 2 inch diameter copper discs by hybrid physical–chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Withanage, Wenura K.; Xi, X. X.; Nassiri, Alireza

    Here, magnesium diboride (MgB 2) coating is a potential candidate to replace bulk niobium (Nb) for superconducting radio frequency cavities due to the appealing superconducting properties of MgB 2. MgB 2 coating on copper may allow cavity operation near 20–25 K as a result of the high transition temperature (T c) of MgB 2 and excellent thermal conductivity of Cu. We have grown MgB 2 films on 2 inch diameter Cu discs by hybrid physical–chemical vapor deposition for radio frequency characterization. Structural and elemental analyses showed a uniform MgB 2 coating on top of a Mg–Cu alloy layer with occasionalmore » intrusion of Mg–Cu alloy regions. High T c values of around 37 K and high critical current density (J c) on the order of 107 A cm –2 at zero field were observed. Radio frequency measurements at 11.4 GHz confirmed a high T c and showed a quality factor (Q 0) much higher than for Cu and close to that of Nb.« less

  15. Growth of magnesium diboride films on 2 inch diameter copper discs by hybrid physical–chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Withanage, Wenura K.; Xi, X. X.; Nassiri, Alireza

    Magnesium diboride (MgB2) coating is a potential candidate to replace bulk niobium (Nb) for superconducting radio frequency cavities due to the appealing superconducting properties of MgB2. MgB2 coating on copper may allow cavity operation near 20–25 K as a result of the high transition temperature (T c) of MgB2 and excellent thermal conductivity of Cu. We have grown MgB2 films on 2 inch diameter Cu discs by hybrid physical–chemical vapor deposition for radio frequency characterization. Structural and elemental analyses showed a uniform MgB2 coating on top of a Mg–Cu alloy layer with occasional intrusion of Mg–Cu alloy regions. High Tmore » c values of around 37 K and high critical current density (J c) on the order of 107 A cm-2 at zero field were observed. Radio frequency measurements at 11.4 GHz confirmed a high T c and showed a quality factor (Q 0) much higher than for Cu and close to that of Nb.« less

  16. Topside enhancements of the ionline in response to high-power HF-radio wave pumping at high latitudes

    NASA Astrophysics Data System (ADS)

    Rexer, Theresa; Gustavsson, Björn; Grydeland, Tom; Rietveld, Mike; Leyser, Thomas; Brändström, Urban; Sergienko, Tima

    2017-04-01

    A high power, high frequency heating experiment of the polar ionosphere was conducted in Tromsø, Norway in March 2016. The wave-plasma interactions were observed with the European Incoherent SCATer UHF radar co-located with the heating facility. HF pulses in a 3 minute ON 3 minute OFF cycles were transmitted, sweeping frequencies in 10 and 20 kHz steps from just below to just above the 3rd and 4th multiples of the F-region gyro-frequency. Several interesting features have been found in the radar measurements of the backscatter from the heated plasma. In agreement with current theory we observed an enhanced ionline near the HF reflection height on the bottom-side of the F layer. Simultaneously, a less intense, but clearly visible, ionline enhancement was observed approximately 100 km above this bottom-side enhancement for several 3 minute sweep pulses. We present the observations and discuss the top-side enhanced ion-line in relation to Z and L-mode propagation through the F-region peak.

  17. A wide bandgap silicon carbide (SiC) gate driver for high-temperature and high-voltage applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamichhane, Ranjan; Ericson, Milton Nance; Frank, Steven Shane

    2014-01-01

    Limitations of silicon (Si) based power electronic devices can be overcome with Silicon Carbide (SiC) because of its remarkable material properties. SiC is a wide bandgap semiconductor material with larger bandgap, lower leakage currents, higher breakdown electric field, and higher thermal conductivity, which promotes higher switching frequencies for high power applications, higher temperature operation, and results in higher power density devices relative to Si [1]. The proposed work is focused on design of a SiC gate driver to drive a SiC power MOSFET, on a Cree SiC process, with rise/fall times (less than 100 ns) suitable for 500 kHz tomore » 1 MHz switching frequency applications. A process optimized gate driver topology design which is significantly different from generic Si circuit design is proposed. The ultimate goal of the project is to integrate this gate driver into a Toyota Prius plug-in hybrid electric vehicle (PHEV) charger module. The application of this high frequency charger will result in lighter, smaller, cheaper, and a more efficient power electronics system.« less

  18. Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system

    NASA Astrophysics Data System (ADS)

    Punia, R.; Kundu, R. S.; Dult, Meenakshi; Murugavel, S.; Kishore, N.

    2012-10-01

    The ac conductivity of bismuth zinc vanadate glasses with compositions 50V2O5. xBi2O3. (50-x) ZnO has been studied in the frequency range 10-1 Hz to 2 MHz and in temperature range 333.16 K to 533.16 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of bismuth zinc vanadate glass system. The dc conductivity (σdc), crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. It has been observed that mobility of charge carriers and ac conductivity in case of zinc vanadate glass system increases with increase in Bi2O3 content. In order to determine the conduction mechanism, the ac conductivity and its frequency exponent have been analyzed in the frame work of various theoretical models based on classical hopping over barriers and quantum mechanical tunneling. The ac conduction takes place via tunneling of overlapping large polarons in all the compositions of presently studied vanadate glasses. The fitting of experimental data of ac conductivity with overlapping large polarons tunneling model has also been done. The parameters; density of states at Fermi level (N(EF)), activation energy associated with charge transfer between the overlapping sites (WHO), inverse localization length (α) and polaron radius (rp) obtained from fitting of this model with experimental data are reasonable.

  19. Parametric nanomechanical amplification at very high frequency.

    PubMed

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  20. Grating formation by a high power radio wave in near-equator ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rohtash; Sharma, A. K.; Tripathi, V. K.

    2011-11-15

    The formation of a volume grating in the near-equator regions of ionosphere due to a high power radio wave is investigated. The radio wave, launched from a ground based transmitter, forms a standing wave pattern below the critical layer, heating the electrons in a space periodic manner. The thermal conduction along the magnetic lines of force inhibits the rise in electron temperature, limiting the efficacy of heating to within a latitude of few degrees around the equator. The space periodic electron partial pressure leads to ambipolar diffusion creating a space periodic density ripple with wave vector along the vertical. Suchmore » a volume grating is effective to cause strong reflection of radio waves at a frequency one order of magnitude higher than the maximum plasma frequency in the ionosphere. Linearly mode converted plasma wave could scatter even higher frequency radio waves.« less

  1. New Research on MEMS Acoustic Vector Sensors Used in Pipeline Ground Markers

    PubMed Central

    Song, Xiaopeng; Jian, Zeming; Zhang, Guojun; Liu, Mengran; Guo, Nan; Zhang, Wendong

    2015-01-01

    According to the demands of current pipeline detection systems, the above-ground marker (AGM) system based on sound detection principle has been a major development trend in pipeline technology. A novel MEMS acoustic vector sensor for AGM systems which has advantages of high sensitivity, high signal-to-noise ratio (SNR), and good low frequency performance has been put forward. Firstly, it is presented that the frequency of the detected sound signal is concentrated in a lower frequency range, and the sound attenuation is relatively low in soil. Secondly, the MEMS acoustic vector sensor structure and basic principles are introduced. Finally, experimental tests are conducted and the results show that in the range of 0°∼90°, when r = 5 m, the proposed MEMS acoustic vector sensor can effectively detect sound signals in soil. The measurement errors of all angles are less than 5°. PMID:25609046

  2. Instability-driven frequency decoupling between structure dynamics and wake fluctuations

    NASA Astrophysics Data System (ADS)

    Jin, Yaqing; Kim, Jin-Tae; Chamorro, Leonardo P.

    2018-04-01

    Flow-induced dynamics of flexible structures is, in general, significantly modulated by periodic vortex shedding. Experiments and numerical simulations suggest that the frequencies associated with the dominant motions of structures are highly coupled with those of the wake under low-turbulence uniform flow. Here we present experimental evidence that demonstrates a significant decoupling between the dynamics of simple structures and wake fluctuations for various geometries, Reynolds numbers, and mass ratios. High-resolution particle tracking velocimetry and hot-wire anemometry are used to quantitatively characterize the dynamics of the structures and wake fluctuations; a complementary planar particle image velocimetry measurement is conducted to illustrate distinctive flow patterns. Results show that for structures with directional stiffness, von Kármán vortex shedding might dominate the wake of bodies governed by natural-frequency motion. This phenomenon can be a consequence of Kelvin-Helmholtz instability, where the structural characteristics of the body dominate the oscillations.

  3. AC conductivity studies of La doped Ba0.5Sr0.5TiO3

    NASA Astrophysics Data System (ADS)

    D'Souza, Slavia Deeksha; Rohith, Kotla Surya; Bhatnagar, Anil K.; Kumar, A. Sendil

    2017-05-01

    Ferroelectric material with high dielectric constant of Ba0.5Sr0.5TiO3 is synthesized through Solid State Reaction and fraction of Lanthanum is substituted to introduce hole concentration. XRay Diffraction shows all the samples are stabilized in cubic crystal structure. With La doped samples the Cole-Cole plot is modified and AC conductivity increases at higher temperatures as well as higher frequencies compared to undoped sample.

  4. State-plane analysis of parallel resonant converter

    NASA Technical Reports Server (NTRS)

    Oruganti, R.; Lee, F. C.

    1985-01-01

    A method for analyzing the complex operation of a parallel resonant converter is developed, utilizing graphical state-plane techniques. The comprehensive mode analysis uncovers, for the first time, the presence of other complex modes besides the continuous conduction mode and the discontinuous conduction mode and determines their theoretical boundaries. Based on the insight gained from the analysis, a novel, high-frequency resonant buck converter is proposed. The voltage conversion ratio of the new converter is almost independent of load.

  5. Active Mechanisms of Vibration Encoding and Frequency Filtering in Central Mechanosensory Neurons.

    PubMed

    Azevedo, Anthony W; Wilson, Rachel I

    2017-10-11

    To better understand biophysical mechanisms of mechanosensory processing, we investigated two cell types in the Drosophila brain (A2 and B1 cells) that are postsynaptic to antennal vibration receptors. A2 cells receive excitatory synaptic currents in response to both directions of movement: thus, twice per vibration cycle. The membrane acts as a low-pass filter, so that voltage and spiking mainly track the vibration envelope rather than individual cycles. By contrast, B1 cells are excited by only forward or backward movement, meaning they are sensitive to vibration phase. They receive oscillatory synaptic currents at the stimulus frequency, and they bandpass filter these inputs to favor specific frequencies. Different cells prefer different frequencies, due to differences in their voltage-gated conductances. Both Na + and K + conductances suppress low-frequency synaptic inputs, so cells with larger voltage-gated conductances prefer higher frequencies. These results illustrate how membrane properties and voltage-gated conductances can extract distinct stimulus features into parallel channels. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Alterations in HPA-axis and autonomic nervous system functioning in childhood anxiety disorders point to a chronic stress hypothesis.

    PubMed

    Dieleman, Gwendolyn C; Huizink, Anja C; Tulen, Joke H M; Utens, Elisabeth M W J; Creemers, Hanneke E; van der Ende, Jan; Verhulst, Frank C

    2015-01-01

    It is of debate whether or not childhood anxiety disorders (AD) can be captured by one taxonomic construct. This study examined whether perceived arousal (PA), autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis measures can distinguish children with different primary diagnoses of clinical anxiety disorders (AD) from each other, and from a general population reference group (GP). The study sample consisted of 152 AD children (comparing separation anxiety disorder, generalized anxiety disorder, social phobia and specific phobia), aged 8- to 12-years, and 200 same-aged reference children. HPA-axis functioning was measured by a diurnal cortisol profile. ANS functioning was measured by continuous measures of skin conductance level in rest and during a mental arithmetic task and high frequency heart rate variability in rest. PA was assessed by a questionnaire. The AD sample showed lower high frequency heart rate variability during rest, heightened anticipatory PA, higher basal and reactive skin conductance levels and lower basal HPA-axis functioning compared to the GP sample. The existence of three or more clinical disorders, i.e. a high clinical 'load', was associated with lower basal HPA-axis functioning, higher skin conductance level and lower posttest PA. Specific phobia could be discerned from social phobia and separation anxiety disorder on higher skin conductance level. Our findings indicated that children with AD have specific psychophysiological characteristics, which resemble the psychophysiological characteristics of chronic stress. A high clinical 'load' is associated with an altered ANS and HPA-axis functioning. Overall, ANS and HPA-axis functioning relate to AD in general, accept for specific phobia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Thermal conductivity calculation of nano-suspensions using Green-Kubo relations with reduced artificial correlations.

    PubMed

    Muraleedharan, Murali Gopal; Sundaram, Dilip Srinivas; Henry, Asegun; Yang, Vigor

    2017-04-20

    The presence of artificial correlations associated with Green-Kubo (GK) thermal conductivity calculations is investigated. The thermal conductivity of nano-suspensions is calculated by equilibrium molecular dynamics (EMD) simulations using GK relations. Calculations are first performed for a single alumina (Al 2 O 3 ) nanoparticle dispersed in a water medium. For a particle size of 1 nm and volume fraction of 9%, results show enhancements as high as 235%, which is much higher than the Maxwell model predictions. When calculations are done with multiple suspended particles, no such anomalous enhancement is observed. This is because the vibrations in alumina crystal can act as low frequency perturbations, which can travel long distances through the surrounding water medium, characterized by higher vibration frequencies. As a result of the periodic boundaries, they re-enter the system resulting in a circular resonance of thermal fluctuations between the alumina particle and its own image, eventually leading to artificial correlations in the heat current autocorrelation function (HCACF), which when integrated yields abnormally high thermal conductivities. Adding more particles presents 'obstacles' with which the fluctuations interact and get dissipated, before they get fed back to the periodic image. A systematic study of the temporal evolution of HCACF indicates that the magnitude and oscillations of artificial correlations decrease substantially with increase in the number of suspended nanoparticles.

  8. Parameter dependence of high-frequency nonlinear oscillations and intrinsic chaos in short GaAs/(Al, Ga)As superlattices

    NASA Astrophysics Data System (ADS)

    Essen, Jonathan; Ruiz-Garcia, Miguel; Jenkins, Ian; Carretero, Manuel; Bonilla, Luis L.; Birnir, Björn

    2018-04-01

    We explore the design parameter space of short (5-25 period), n-doped, Ga/(Al,Ga)As semiconductor superlattices (SSLs) in the sequential resonant tunneling regime. We consider SSLs at cool (77 K) and warm (295 K) temperatures, simulating the electronic response to variations in (a) the number of SSL periods, (b) the contact conductivity, and (c) the strength of disorder (aperiodicities). Our analysis shows that the chaotic dynamical phases exist on a number of sub-manifolds of codimension zero within the design parameter space. This result provides an encouraging guide towards the experimental observation of high-frequency intrinsic dynamical chaos in shorter SSLs.

  9. Lithium monosilicide (LiSi), a low-dimensional silicon-based material prepared by high pressure synthesis: NMR and vibrational spectroscopy and electrical properties characterization

    NASA Astrophysics Data System (ADS)

    Stearns, Linda A.; Gryko, Jan; Diefenbacher, Jason; Ramachandran, Ganesh K.; McMillan, Paul F.

    2003-06-01

    Lithium monosilicide (LiSi) was formed at high pressures and high temperatures (1.0-2.5 GPa and 500-700°C) in a piston-cylinder apparatus. This compound was previously shown to have an unusual structure based on 3-fold coordinated silicon atoms arranged into interpenetrating sheets. In the present investigation, lowered synthesis pressures permitted recovery of large (150-200 mg) quantities of sample for structural studies via NMR spectroscopy ( 29Si and 7Li), Raman spectroscopy and electrical conductivity measurements. The 29Si chemical shift occurs at -106.5 ppm, intermediate between SiH 4 and Si(Si(CH 3) 3) 4, but lies off the trend established by the other alkali monosilicides (NaSi, KSi, RbSi, CsSi), that contain isolated Si 44- anions. Raman spectra show a strong peak at 508 cm -1 due to symmetric Si-Si stretching vibrations, at lower frequency than for tetrahedrally coordinated Si frameworks, due to the longer Si-Si bonds in the 3-coordinated silicide. Higher frequency vibrations occur due to asymmetric stretching. Electrical conductivity measurements indicate LiSi is a narrow-gap semiconductor ( Eb˜0.057 eV). There is a rapid increase in conductivity above T=450 K, that might be due to the onset of Li + mobility.

  10. Effects of fidarestat, an aldose reductase inhibitor, on nerve conduction velocity and bladder function in streptozotocin-treated female rats.

    PubMed

    Zotova, Elena G; Christ, George J; Zhao, Weixin; Tar, Moses; Kuppam, Srini D; Arezzo, Joseph C

    2007-01-01

    The effects of fidarestat, an aldose reductase inhibitor (ARI), were assessed on nerve conduction velocity (NCV) in somatic nerves and on multiple measures of bladder function in rats made hyperglycemic with streptozotocin (STZ) and in age-matched controls. Nerve conduction velocity was recorded at baseline and at 10, 20, 30, and 50 days after confirmation of the STZ-induced hyperglycemia in all rats (N=47); bladder function was assessed in a representative subset of rats (N=20) at Day 50. Caudal NCV was markedly slowed by STZ, and this effect was significantly reversed by fidarestat. The initial deficit and treatment-related improvement were especially evident for responses driven by high-frequency repetitive stimulation. Of the 11 parameters of bladder activity assessed, four measures-bladder capacity, micturition volume, micturition frequency, and bladder weight-were significantly different in the control and STZ-treated groups. These deficits were not affected by fidarestat. At Day 50, the induced deficits in bladder function were highly correlated with caudal NCV (r values ranging from 0.70 to 0.96; P values ranging from .02 to <.0001). These results suggested that fidarestat improved the slowing of somatic nerve NCV in hyperglycemic rats, but it was not effective in reversing associated bladder dysfunction, in spite of the highly significant correlation between these two diabetes-induced deficits. Possible explanations for this dissociation are discussed.

  11. Doppler lidar wind measurement with the edge technique

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Gentry, Bruce M.

    1992-01-01

    The edge technique is a new and powerful method for measuring small frequency shifts. Range resolved lidar measurements of winds can be made with high accuracy and high vertical resolution using the edge technique to measure the Doppler shift of an atmospheric backscattered signal from a pulsed laser. The edge technique can be used at near-infrared or visible wavelengths using well developed solid state lasers and detectors with various edge filters. In the edge technique, the laser frequency is located on the steep slope of the spectral response function of a high resolution optical filter. Due to the steep slope of the edge, very small frequency shifts cause large changes in measured signal. The frequency of the outgoing laser pulse is determined by measuring its location on the edge of the filter. This is accomplished by sending a small portion of the beam to the edge detection setup where the incoming light is split into two channels - an edge filter and an energy monitor channel. The energy monitor signal is used to normalize the edge filter signal for magnitude. The laser return backscattered from the atmosphere is collected by a telescope and directed through the edge detection setup to determine its frequency (location on the edge) in a similar manner for each range element. The Doppler shift, and thus the wind, is determined from a differential measurement of the frequency of the outgoing laser pulse and the frequency of the laser return backscattered from the atmosphere. We have conducted simulations of the performance of an edge lidar system using an injection seeded pulsed Nd:YAG laser at 1.06 microns. The central fringe of a Fabry-Perot etalon is used as a high resolution edge filter to measure the shift of the aerosol return.

  12. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple

    NASA Astrophysics Data System (ADS)

    Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei

    2017-07-01

    With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

  13. High-Resolution Structural Monitoring of Ionospheric Absorption Events

    DTIC Science & Technology

    2013-07-01

    ionospheric plasma conductivity 5 . This results in enhanced absorption of the cosmic high frequency (HF; typically 10 – 60 MHz) radio background ...7 riometry. Incorporation of an outrigger site, to enable treatment of the unknown structure of the celestial background and the effects of...riometry. Incorporation of an outrigger site, to enable treatment of the unknown structure of the celestial background and the effects of confusion

  14. A singlechip-computer-controlled conductivity meter based on conductance-frequency transformation

    NASA Astrophysics Data System (ADS)

    Chen, Wenxiang; Hong, Baocai

    2005-02-01

    A portable conductivity meter controlled by singlechip computer was designed. The instrument uses conductance-frequency transformation method to measure the conductivity of solution. The circuitry is simple and reliable. Another feature of the instrument is that the temperature compensation is realised by changing counting time of the timing counter. The theoretical based and the usage of temperature compensation are narrated.

  15. A large coaxial reflection cell for broadband dielectric characterization of coarse-grained materials

    NASA Astrophysics Data System (ADS)

    Bore, Thierry; Bhuyan, Habibullah; Bittner, Tilman; Murgan, Vignesh; Wagner, Norman; Scheuermann, Alexander

    2018-01-01

    Knowledge of the frequency-dependent electromagnetic properties of coarse-grained materials is imperative for the successful application of high frequency electromagnetic measurement techniques for near and subsurface monitoring. This paper reports the design, calibration and application of a novel one-port large coaxial cell for broadband complex permittivity measurements of civil engineering materials. It was designed to allow the characterization of heterogeneous material with large aggregate dimensions (up to 28 mm) over a frequency range from 1 MHz-860 MHz. In the first step, the system parameters were calibrated using the measured scattering function in a perfectly known dielectric material in an optimization scheme. In the second step, the method was validated with measurements made on standard liquids. Then the performance of the cell was evaluated on a compacted coarse-grained soil. The dielectric spectra were obtained by means of fitting the measured scattering function using a transverse electromagnetic mode propagation model considering the frequency-dependent complex permittivity. Two scenarios were systematically analyzed and compared. The first scenario consisted of a broadband generalized dielectric relaxation model with two Cole-Cole type relaxation processes related to the interaction of the aqueous phase and the solid phase, a constant high frequency contribution as well as an apparent direct current conductivity term. The second scenario relied on a three-phase theoretical mixture equation which was used in a forward approach in order to calibrate the model. Both scenarios provide almost identical results for the broadband effective complex relative permittivity. The combination of both scenarios suggests the simultaneous estimation of water content, density, bulk and pore water conductivity for road base materials for in situ applications.

  16. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    NASA Astrophysics Data System (ADS)

    Bai, Xianchen; Yang, Jianhua; Zhang, Jiande

    2012-08-01

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  17. Wedding ring shaped excitation coil

    DOEpatents

    MacLennan, Donald A.; Tsai, Peter

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency.

  18. High-Frequency Oscillations Recorded on the Scalp of Patients With Epilepsy Using Tripolar Concentric Ring Electrodes.

    PubMed

    Besio, Walter G; Martínez-Juárez, Iris E; Makeyev, Oleksandr; Gaitanis, John N; Blum, Andrew S; Fisher, Robert S; Medvedev, Andrei V

    2014-01-01

    Epilepsy is the second most prevalent neurological disorder ([Formula: see text]% prevalence) affecting [Formula: see text] million people worldwide with up to 75% from developing countries. The conventional electroencephalogram is plagued with artifacts from movements, muscles, and other sources. Tripolar concentric ring electrodes automatically attenuate muscle artifacts and provide improved signal quality. We performed basic experiments in healthy humans to show that tripolar concentric ring electrodes can indeed record the physiological alpha waves while eyes are closed. We then conducted concurrent recordings with conventional disc electrodes and tripolar concentric ring electrodes from patients with epilepsy. We found that we could detect high frequency oscillations, a marker for early seizure development and epileptogenic zone, on the scalp surface that appeared to become more narrow-band just prior to seizures. High frequency oscillations preceding seizures were present in an average of 35.5% of tripolar concentric ring electrode data channels for all the patients with epilepsy whose seizures were recorded and absent in the corresponding conventional disc electrode data. An average of 78.2% of channels that contained high frequency oscillations were within the seizure onset or irritative zones determined independently by three epileptologists based on conventional disc electrode data and videos.

  19. Structural, electrical and magnetic characteristics of improper multiferroic: GdFeO3

    NASA Astrophysics Data System (ADS)

    Sahoo, Sushrisangita; Mahapatra, P. K.; Choudhary, R. N. P.; Nandagoswami, M. L.; Kumar, Ashok

    2016-06-01

    Studies of dielectric, impedance, conductivity, magnetic and magneto-electric (ME) properties of GdFeO3 ceramics fabricated by chemical method are reported here. The synthesized powder is phase-pure and crystallizes in the orthorhombic crystal structure. Below 50 °C, the impedance has only grain contribution, while at higher temperatures, it has both grain and grain boundary contributions. Based on the depression angle of the Nyquist plot, the inhomogeneity of the sample is estimated. The capacitance data reveal that at low temperatures, the sample behaves as a leaky capacitor while at higher temperatures the sample shows the effect of the diffusion of thermally excited charge carriers across a barrier. In the low-frequency domain, the dielectric characteristics were explained on the basis of the Maxwell-Wagner mechanism, while in the high-frequency range those were correlated to the grain effect. The frequency dependent characteristic of the tangent loss is explained as a combined contribution from the Debye-like relaxation and dc conductivity related mechanism at higher temperatures. The temperature dependence of the dielectric characteristic and data are found to fit with two Gaussian peaks centered at 148 °C and 169 °C. While the first peak is explained on the basis of the Maxwell-Wagner mechanism, the second has its origin in magnetic reordering and the shifting of Gd3+ ions along the c-axis. The magnetic reordering also results in a sharp decrease of conductivity between 169 °C and 243 °C. The frequency dependent ac conductivity is explained on the basis of the correlated barrier hopping model and the quantum mechanical hopping model for the different frequency domain. The existence of P-E and M-H loops support its improper ferroelectric behavior and canted anti-ferromagnetism respectively. The ME coefficient of the sample is found to be 1.78 mV cm-1 Oe-1.

  20. Spectral induced polarization of the three-phase system CO2 - brine - sand under reservoir conditions

    NASA Astrophysics Data System (ADS)

    Börner, Jana H.; Herdegen, Volker; Repke, Jens-Uwe; Spitzer, Klaus

    2017-01-01

    The spectral complex conductivity of a water-bearing sand during interaction with carbon dioxide (CO2) is influenced by multiple, simultaneous processes. These processes include partial saturation due to the replacement of conductive pore water with CO2 and chemical interaction of the reactive CO2 with the bulk fluid and the grain-water interface. We present a laboratory study on the spectral induced polarization of water-bearing sands during exposure to and flow-through by CO2. Conductivity spectra were measured successfully at pressures up to 30 MPa and 80 °C during active flow and at steady-state conditions concentrating on the frequency range between 0.0014 and 100 Hz. The frequency range between 0.1 and 100 Hz turned out to be most indicative for potential monitoring applications. The presented data show that the impact of CO2 on the electrolytic conductivity may be covered by a model for pore-water conductivity, which depends on salinity, pressure and temperature and has been derived from earlier investigations of the pore-water phase. The new data covering the three-phase system CO2-brine-sand further show that chemical interaction causes a reduction of surface conductivity by almost 20 per cent, which could be related to the low pH-value in the acidic environment due to CO2 dissolution and the dissociation of carbonic acid. The quantification of the total CO2 effect may be used as a correction during monitoring of a sequestration in terms of saturation. We show that this leads to a correct reconstruction of fluid saturation from electrical measurements. In addition, an indicator for changes of the inner surface area, which is related to mineral dissolution or precipitation processes, can be computed from the imaginary part of conductivity. The low frequency range between 0.0014 and 0.1 Hz shows additional characteristics, which deviate from the behaviour at higher frequencies. A Debye decomposition approach is applied to isolate the feature dominating the data at low frequencies. We conclude from our study that electrical conductivity is not only a highly sensitive indicator for CO2 saturation in pore space. When it is measured in its full spectral and complex form it contains additional information on the chemical state of the system, which holds the potential of getting access to both saturation and interface properties with one monitoring method.

  1. Fractional calculus applied to the analysis of spectral electrical conductivity of clay-water system.

    PubMed

    Korosak, Dean; Cvikl, Bruno; Kramer, Janja; Jecl, Renata; Prapotnik, Anita

    2007-06-16

    The analysis of the low-frequency conductivity spectra of the clay-water mixtures is presented. The frequency dependence of the conductivity is shown to follow the power-law with the exponent n=0.67 before reaching the frequency-independent part. When scaled with the value of the frequency-independent part of the spectrum the conductivity spectra for samples at different water content values are shown to fit to a single master curve. It is argued that the observed conductivity dispersion is a consequence of the anomalously diffusing ions in the clay-water system. The fractional Langevin equation is then used to describe the stochastic dynamics of the single ion. The results indicate that the experimentally observed dielectric properties originate in anomalous ion transport in clay-water system characterized with time-dependent diffusion coefficient.

  2. Development of high frequency and wide bandwidth Johnson noise thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crossno, Jesse; Liu, Xiaomeng; Kim, Philip

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law abovemore » T ∼ 100 K.« less

  3. A High-Resolution Study of Quasiperiodic Radio Emissions Observed by the Galileo Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Christopher, I.; Granroth, L. J.

    2001-01-01

    We have conducted a study of quasiperiodic emission observed by the plasma wave instrument on board the Galileo spacecraft. These emissions appear as broadband bursts with dominant periods ranging from 10 min to over 40 min. For these emissions we have explicitly analyzed the high-resolution (waveform) data to determine the presence of impulsive, solitary signatures. Our investigations have indicated that the broadband bursts, as well as the background more narrowband continuum emission, are composed of a highly turbulent spectrum. Within the broadband burst, however, there are higher-frequency components present, but no impulsive electrostatic signatures. Also significantly, the broadband bursts show no low-frequency dispersion. We conclude that the bursts are consistent with a distant, electromagnetic source, probably in the near-Jupiter vicinity.

  4. Spike propagation through the dorsal root ganglia in an unmyelinated sensory neuron: a modeling study

    PubMed Central

    Sundt, Danielle; Gamper, Nikita

    2015-01-01

    Unmyelinated C-fibers are a major type of sensory neurons conveying pain information. Action potential conduction is regulated by the bifurcation (T-junction) of sensory neuron axons within the dorsal root ganglia (DRG). Understanding how C-fiber signaling is influenced by the morphology of the T-junction and the local expression of ion channels is important for understanding pain signaling. In this study we used biophysical computer modeling to investigate the influence of axon morphology within the DRG and various membrane conductances on the reliability of spike propagation. As expected, calculated input impedance and the amplitude of propagating action potentials were both lowest at the T-junction. Propagation reliability for single spikes was highly sensitive to the diameter of the stem axon and the density of voltage-gated Na+ channels. A model containing only fast voltage-gated Na+ and delayed-rectifier K+ channels conducted trains of spikes up to frequencies of 110 Hz. The addition of slowly activating KCNQ channels (i.e., KV7 or M-channels) to the model reduced the following frequency to 30 Hz. Hyperpolarization produced by addition of a much slower conductance, such as a Ca2+-dependent K+ current, was needed to reduce the following frequency to 6 Hz. Attenuation of driving force due to ion accumulation or hyperpolarization produced by a Na+-K+ pump had no effect on following frequency but could influence the reliability of spike propagation mutually with the voltage shift generated by a Ca2+-dependent K+ current. These simulations suggest how specific ion channels within the DRG may contribute toward therapeutic treatments for chronic pain. PMID:26334005

  5. A CMOS-Compatible, Low-Noise ISFET Based on High Efficiency Ion-Modulated Lateral-Bipolar Conduction

    PubMed Central

    Chang, Sheng-Ren; Chen, Hsin

    2009-01-01

    Ion-sensitive, field-effect transistors (ISFET) have been useful biosensors in many applications. However, the signal-to-noise ratio of the ISFET is limited by its intrinsic, low-frequency noise. This paper presents an ISFET capable of utilizing lateral-bipolar conduction to reduce low-frequency noise. With a particular layout design, the conduction efficiency is further enhanced. Moreover, the ISFET is compatible with the standard CMOS technology. All materials above the gate-oxide are removed by simple, die-level post-CMOS process, allowing ions to modulate the lateral-bipolar current directly. By varying the gate-to-bulk voltage, the operation mode of the ISFET is controlled effectively, so is the noise performance measured and compared. Finally, the biasing conditions preferable for different low-noise applications are identified. Under the identified biasing condition, the signal-to-noise ratio of the ISFET as a pH sensor is proved to be improved by more than five times. PMID:22408508

  6. Dielectric relaxation and electrical conductivity in Bi 5NbO 10 oxygen ion conductors prepared by a modified sol-gel process

    NASA Astrophysics Data System (ADS)

    Hou, Jungang; Vaish, Rahul; Qu, Yuanfang; Krsmanovic, Dalibor; Varma, K. B. R.; Kumar, R. V.

    Crystalline Bi 5NbO 10 nanoparticles have been achieved through a modified sol-gel process using a mixture of ethylenediamine and ethanolamine as a solvent. The Bi 5NbO 10 nanoparticles were characterized by X-ray diffraction (XRD), differential scanning calorimetry/thermogravimetry (DSC/TG), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and Raman spectroscopy. The results showed that well-dispersed 5-60 nm Bi 5NbO 10 nanoparticles were prepared through heat-treating the precursor at 650 °C and the high density pellets were obtained at temperatures lower than those commonly employed. The frequency and temperature dependence of the dielectric constant and the electrical conductivity of the Bi 5NbO 10 solid solutions were investigated in the 0.1 Hz to 1 MHz frequency range. Two distinct relaxation mechanisms were observed in the plots of dielectric loss and the imaginary part of impedance (Z″) versus frequency in the temperature range of 200-350 °C. The dielectric constant and the loss in the low frequency regime were electrode dependent. The ionic conductivity of Bi 5NbO 10 solid solutions at 700 °C is 2.86 Ω -1 m -1 which is in same order of magnitude for Y 2O 3-stabilized ZrO 2 ceramics at same temperature. These results suggest that Bi 5NbO 10 is a promising material for an oxygen ion conductor.

  7. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

    USGS Publications Warehouse

    Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez

    2012-01-01

    Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.

  8. The analysis of soil characteristics near the animal feed and fertiliser mill using the Bartington

    NASA Astrophysics Data System (ADS)

    Azhari, Adinda Syifa; Agustine, Eleonora; Fitriani, Dini

    2017-07-01

    Industrial activities have the potential to make pollution in agricultural land, the waste contains poisonous material and it is dangerous for the environment. In general, waste from factory is dumped directly into the river, but in the current study an object that is going to be conscientious is soil on around mill. There are three sampling sites are around fertilizer plants, feed mills and original uncontaminated soil. This research has been conducted to assess the impact of pollution resulting from the two mills for the environment. Physical parameter that used is magnetic susceptibility. Sampling was conducted using the method of magnetic susceptibility of rock to see the value of low frequency (lf) and shows Frequency Dependent (fd%) using the MS2B Bartington. The results from this study is at a location close to the fertilizer plant at a depth of 0-5 cm has a value susceptibility low frequency ( lf)=187.1 - 494.8, fd (%)=1.37 - 2:46, at a depth of 6-10 cm susceptibility value of low frequency (lf)=211 - 832.7,fd (%)=1.04 - 5.37. Results in the area of animal feed mill at a depth of 0-5 cm value susceptibility low frequency (lf)=111.9 - 325.7, fd (%)=0.8 - 3.57, at a depth of 6-10 cm value susceptibility low frequency (lf)=189.2 to 386.8,fd (%)=0.33 - 3.7. Results in the original soil at a depth of 0-5 cm susceptibility value of low frequency (lf)=1188.7 - 2237.8,fd (%)=2.75 - 4.65, at a depth of 6-10 cm value susceptibility low frequency (lf)=977.7 - 2134.7,fd (%)=3.06 - 6.21. The highest value was in the arealf original, shows the area has a high mineral content andlf lows were in the area near the factory fodder it is caused by high pollution, resulting in lower mineral content in the soil.

  9. Dielectric and impedance spectral characteristics of bulk ZnIn2Se4

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Attia, A. A.; Salem, G. F.; Ali, H. A. M.; Ismail, M. I.

    2014-02-01

    The frequency and temperature dependence of ac conductivity, dielectric constant and dielectric loss of ZnIn2Se4 in a pellet form were investigated in the frequency range of 102-106 Hz and temperature range of 293-356 K. The behavior of ac conductivity was interpreted by the correlated barrier hopping (CBH) model. Temperature dependence of ac conductivity indicates that ac conduction is a thermally activated process. The density of localized states N(EF) and ac activation energy were estimated for various frequencies. Dielectric constant and dielectric loss showed a decrease with increasing frequency and an increase with increasing in temperature. The frequency dependence of real and imaginary parts of the complex impedance was investigated. The relaxation time decreases with the increase in temperature. The impedance spectrum exhibits the appearance of the single semicircular arc. The radius of semicircular arcs decreases with increasing temperature which suggests a mechanism of temperature-dependent on relaxation.

  10. Nonlinear current-voltage characteristics and enhanced negative differential conductance in graphene field effect transistors.

    PubMed

    Wang, Lin; Chen, Xiaoshuang; Hu, Yibin; Yu, Anqi; Lu, Wei

    2014-11-07

    Recent observations of the negative differential conductance (NDC) phenomenon in graphene field-effect transistors (FET) open up new opportunities for their application in graphene-based fast switches, frequency multipliers and, most importantly, in high frequency oscillators up to the terahertz regime. Unlike conventional two-terminal NDC devices that rely on resonant tunneling and inter-valley transferring, in the present work, it has been shown that the universal NDC phenomenon of graphene-based FETs originates from their intrinsic nonlinear carrier transport under a strong electric field. The operation of graphene-NDC devices depends strongly on the interface between graphene and dielectric materials, the scattering-limited carrier mobility, and on the saturation velocity. To reveal such NDC behavior, the output characteristics of GFET are investigated rigorously, with both an analytical model and self-consistent transport equation, and with a multi-electrical parameter simulation. It is demonstrated that the contact-induced doping effect plays an important role in the operational efficiency of graphene-based NDC devices, rather than the ambipolar behavior associated with the competition between electron and hole conductances. In the absence of a NDC regime or beyond one, ambipolar transport starts at Vds > 2Vgs at the drain end, and as the dielectric layer begins to thin down, the kink-like saturation output characteristic is enhanced by the quantum capacitance contribution. These observations reveal the intrinsic mechanism of the NDC effect and open up new opportunities for the performance improvement of GFETs in future high-frequency applications, beyond the current paradigm based on two-terminal diodes.

  11. Better Resolved Low Frequency Dispersions by the Apt Use of Kramers-Kronig Relations, Differential Operators, and All-In-1 Modeling

    PubMed Central

    van Turnhout, J.

    2016-01-01

    The dielectric spectra of colloidal systems often contain a typical low frequency dispersion, which usually remains unnoticed, because of the presence of strong conduction losses. The KK relations offer a means for converting ε′ into ε″ data. This allows us to calculate conduction free ε″ spectra in which the l.f. dispersion will show up undisturbed. This interconversion can be done on line with a moving frame of logarithmically spaced ε′ data. The coefficients of the conversion frames were obtained by kernel matching and by using symbolic differential operators. Logarithmic derivatives and differences of ε′ and ε″ provide another option for conduction free data analysis. These difference-based functions actually derived from approximations to the distribution function, have the additional advantage of improving the resolution power of dielectric studies. A high resolution is important because of the rich relaxation structure of colloidal suspensions. The development of all-in-1 modeling facilitates the conduction free and high resolution data analysis. This mathematical tool allows the apart-together fitting of multiple data and multiple model functions. It proved also useful to go around the KK conversion altogether. This was achieved by the combined approximating ε′ and ε″ data with a complex rational fractional power function. The all-in-1 minimization turned out to be also highly useful for the dielectric modeling of a suspension with the complex dipolar coefficient. It guarantees a secure correction for the electrode polarization, so that the modeling with the help of the differences ε′ and ε″ can zoom in on the genuine colloidal relaxations. PMID:27242997

  12. Vapor phase polymerization deposition of conducting polymer/graphene nanocomposites as high performance electrode materials.

    PubMed

    Yang, Yajie; Li, Shibin; Zhang, Luning; Xu, Jianhua; Yang, Wenyao; Jiang, Yadong

    2013-05-22

    In this paper, we report chemical vapor phase polymerization (VPP) deposition of novel poly(3,4-ethylenedioxythiophene) (PEDOT)/graphene nanocomposites as solid tantalum electrolyte capacitor cathode films. The PEDOT/graphene films were successfully prepared on porous tantalum pentoxide surface as cathode films through the VPP procedure. The results indicated that the high conductivity nature of PEDOT/graphene leads to the decrease of cathode films resistance and contact resistance between PEDOT/graphene and carbon paste. This nanocomposite cathode film based capacitor showed ultralow equivalent series resistance (ESR) ca. 12 mΩ and exhibited better capacitance-frequency performance than the PEDOT based capacitor. The leakage current investigation revealed that the device encapsulation process does not influence capacitor leakage current, indicating the excellent mechanical strength of PEDOT-graphene films. The graphene showed a distinct protection effect on the dielectric layer from possible mechanical damage. This high conductivity and mechanical strength graphene based conducting polymer nanocomposites indicated a promising application future for organic electrode materials.

  13. AC transport in p-Ge/GeSi quantum well in high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drichko, I. L.; Malysh, V. A.; Smirnov, I. Yu.

    2014-08-20

    The contactless surface acoustic wave technique is implemented to probe the high-frequency conductivity of a high-mobility p-Ge/GeSi quantum well structure in the regime of integer quantum Hall effect (IQHE) at temperatures 0.3–5.8 K and magnetic fields up to 18 T. It is shown that, in the IQHE regime at the minima of conductivity, holes are localized and ac conductivity is of hopping nature and can be described within the “two-site” model. The analysis of the temperature and magnetic-field-orientation dependence of the ac conductivity at odd filing factors enables us to determine the effective hole g-factor, |g{sub zz}|≈4.5. It is shownmore » that the in-plane component of the magnetic field leads to a decrease in the g-factor as well as increase in the cyclotron mass, which is explained by orbital effects in the complex valence band of germanium.« less

  14. Tidal Wave Reflectance, Evolution and Distortion in Elkhorn Slough, CA

    DTIC Science & Technology

    2013-03-01

    School O1 Lunisolar diurnal Tidal Constituent ONR Office of Naval Research p Pressure Rhfm High-Frequency Motion Tidal Reflection Coefficient RIVET ...2012 an experiment at the New River Inlet, known as the River and Inlet Dynamics experiment ( RIVET ) was conducted. RIVET 2 is currently scheduled for

  15. What Beginning Special Educators Need to Know about Conducting Functional Behavioral Assessments

    ERIC Educational Resources Information Center

    Lewis, Timothy J.; Hatton, Heather L.; Jorgenson, Courtney; Maynard, Deanna

    2017-01-01

    New--and often veteran--teachers find managing significant inappropriate student behavior a formidable challenge. Although more severe inappropriate behaviors, such as aggression, often receive attention in the professional literature, survey research has shown that the high frequency of milder inappropriate behaviors (e.g., disruptions,…

  16. Assessment of the effects of Hirsutella minnesotensis on Soybean Cyst Nematode and growth of soybean

    USDA-ARS?s Scientific Manuscript database

    Hirsutella minnesotensis is a fungal endoparasite of nematodes juvenile and parasitizes soybean cyst nematodes (SCN) with high frequency. In this study, the effects of two H. minnesotensis isolates on population and distribution of SCN and growth of soybean were evaluated. Experiments were conducted...

  17. Land Managers' Perceptions of Risk Recreation in the Northern Rockies.

    ERIC Educational Resources Information Center

    Allen, Stewart D.

    This survey was conducted to determine the frequency of participation in high-risk recreation activities in the Northern Rocky Mountains and to identify how wildland managers perceive the presence of these sports and the problems associated with them. Managers rated perceived risk, management difficulty, and appropriateness given management…

  18. Air Land Sea Bulletin

    DTIC Science & Technology

    2014-11-01

    conducting multi-Service and joint force operations. Status: Current TACTICAL RADIOS Multi-Service Communications Procedures for Tactical Radios in a Joint...Techniques, and Proce- dures Package for Ultra High Frequency Military Satellite Communications Distribution Restricted 9 AUG 13 ATP 6-02.90 MCRP 3... Communicating within the Information Environment......................................................................30 IN HOUSE Current ALSA MTTP

  19. Cyanotoxin occurrence associated with cyanoHAB events on an inland reservoir

    EPA Science Inventory

    A monitoring approach combining wet chemistry and high frequency (HF) water quality sensors was employed to improve our understanding of the ecology of an inland reservoir with a history of cyanoHAB events. The study was conducted with samples collected from Lake Harsha, is a mul...

  20. High Temperature Superconductor/Semiconductor Hybrid Microwave Devices and Circuits

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Miranda, Felix A.

    1999-01-01

    Contents include following: film deposition technique; laser ablation; magnetron sputtering; sequential evaporation; microwave substrates; film characterization at microwave frequencies; complex conductivity; magnetic penetration depth; surface impedance; planar single-mode filters; small antennas; antenna arrays phase noise; tunable oscillations; hybrid superconductor/semiconductor receiver front ends; and noise modeling.

Top