NASA Astrophysics Data System (ADS)
Isobe, Takanori; Kitahara, Tadayuki; Fukutani, Kazuhiko; Shimada, Ryuichi
Variable frequency induction heating has great potential for industrial heating applications due to the possibility of achieving heating distribution control; however, large-scale induction heating with variable frequency has not yet been introduced for practical use. This paper proposes a high frequency soft-switching inverter for induction heating that can achieve variable frequency operation. One challenge of variable frequency induction heating is increasing power electronics ratings. This paper indicates that its current source type dc-link configuration and soft-switching characteristics can make it possible to build a large-scale system with variable frequency capability. A 90-kVA 150-1000Hz variable frequency experimental power supply for steel strip induction heating was developed. Experiments confirmed the feasibility of variable frequency induction heating with proposed converter and the advantages of variable frequency operation.
NASA Astrophysics Data System (ADS)
Xiao, Zhili; Tan, Chao; Dong, Feng
2017-08-01
Magnetic induction tomography (MIT) is a promising technique for continuous monitoring of intracranial hemorrhage due to its contactless nature, low cost and capacity to penetrate the high-resistivity skull. The inter-tissue inductive coupling increases with frequency, which may lead to errors in multi-frequency imaging at high frequency. The effect of inter-tissue inductive coupling was investigated to improve the multi-frequency imaging of hemorrhage. An analytical model of inter-tissue inductive coupling based on the equivalent circuit was established. A set of new multi-frequency decomposition equations separating the phase shift of hemorrhage from other brain tissues was derived by employing the coupling information to improve the multi-frequency imaging of intracranial hemorrhage. The decomposition error and imaging error are both decreased after considering the inter-tissue inductive coupling information. The study reveals that the introduction of inter-tissue inductive coupling can reduce the errors of multi-frequency imaging, promoting the development of intracranial hemorrhage monitoring by multi-frequency MIT.
Optimum Construction of Heating Coil for Domestic Induction Cooker
NASA Astrophysics Data System (ADS)
Sinha, Dola; Bandyopadhyay, Atanu; Sadhu, Pradip Kumar; Pal, Nitai
2010-10-01
The design and optimization of the parameters of heating coil is very important for the analytical analysis of high frequency inverter fed induction cooker. Moreover, accurate prediction of high frequency winding loss (i.e., losses due to skin and proximity effects) is necessary as the induction cooker used in power electronics applications. At high frequency current penetration in the induction coil circuit is very difficult for conducting wire due to skin-effect. To eradicate the skin effect heating coil is made up of bundle conductor i.e., litz wire. In this paper inductances and AC resistances of a litz-wire are calculated and optimized by considering the input parameters like wire type, shape, number of strand, number of spiral turn, number of twist per feet of heating coil and operating frequency. A high frequency half bridge series resonant mirror inverter circuit is used in this paper and taking the optimum values of inductance and ac resistance the circuit is simulated through PSPICE simulations. It has been noticed that the results are feasible enough for real implementation.
NASA Astrophysics Data System (ADS)
Jung, Tae-Uk; Kim, Myung-Hwan; Yoo, Jin-Hyung
2018-05-01
Current fed dual active bridge converters for photovoltaic generation may typically require a given leakage or extra inductance in order to provide proper control of the currents. Therefore, the many researches have been focused on the leakage inductance control of high frequency transformer to integrate an extra inductor. In this paper, an asymmetric winding arrangement to get the controlled leakage inductance for the high frequency transformer is proposed to improve the efficiency of the current fed dual active bridge converter. In order to accurate analysis, a coupled electromagnetic analysis model of transformer connected with high frequency switching circuit is used. A design optimization procedure for high efficiency is also presented using design analysis model, and it is verified by the experimental result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, S. K.; Chang, H. Y.
To elucidate plasma nonuniformity in high frequency capacitive discharges, Langmuir probe and B-dot probe measurements were carried out in the radial direction in a cylindrical capacitive discharge driven at 90 MHz with argon pressures of 50 and 400 mTorr. Through the measurements, a significant inductive electric field (i.e., time-varying magnetic field) was observed at the radial edge, and it was found that the inductive electric field creates strong plasma nonuniformity at high pressure operation. The plasma nonuniformity at high pressure operation is physically similar to the E-H mode transition typically observed in inductive discharges. This result agrees well with themore » theories of electromagnetic effects in large area and/or high frequency capacitive discharges.« less
NASA Astrophysics Data System (ADS)
Razzak, M. Abdur; Takamura, Shuichi; Uesugi, Yoshihiko; Ohno, Noriyasu
A radio frequency (rf) inductive discharge in atmospheric pressure range requires high voltage in the initial startup phase and high power during the steady state sustainment phase. It is, therefore, necessary to inject high rf power into the plasma ensuring the maximum use of the power source, especially where the rf power is limited. In order to inject the maximum possible rf power into the plasma with a moderate rf power source of few kilowatts range, we employ the immittance conversion topology by converting a constant voltage source into a constant current source to generate efficient rf discharge by inductively coupled plasma (ICP) technique at a gas pressure with up to one atmosphere in argon. A novel T-LCL immittance circuit is designed for constant-current high-power operation, which is practically very important in the high-frequency range, to provide high effective rf power to the plasma. The immittance conversion system combines the static induction transistor (SIT)-based radio frequency (rf) high-power inverter circuit and the immittance conversion elements including the rf induction coil. The basic properties of the immittance circuit are studied by numerical analysis and verified the results by experimental measurements with the inductive plasma as a load at a relatively high rf power of about 4 kW. The performances of the immittance circuit are also evaluated and compared with that of the conventional series resonance circuit in high-pressure induction plasma generation. The experimental results reveal that the immittance conversion circuit confirms injecting higher effective rf power into the plasma as much as three times than that of the series resonance circuit under the same operating conditions and same dc supply voltage to the inverter, thereby enhancing the plasma heating efficiency to generate efficient rf inductive discharges.
NASA Astrophysics Data System (ADS)
Pivac, Ivan; Barbir, Frano
2016-09-01
The results of electrochemical impedance spectroscopy of proton exchange membrane (PEM) fuel cells may exhibit inductive phenomena at low frequencies. The occurrence of inductive features at high frequencies is explained by the cables and wires of the test system. However, explanation of inductive loop at low frequencies requires a more detailed study. This review paper discusses several possible causes of such inductive behavior in PEM fuel cells, such as side reactions with intermediate species, carbon monoxide poisoning, and water transport, also as their equivalent circuit representations. It may be concluded that interpretation of impedance spectra at low frequencies is still ambiguous, and that better equivalent circuit models are needed with clearly defined physical meaning of each of the circuit elements.
Modernization of gas-turbine engines with high-frequency induction motors
NASA Astrophysics Data System (ADS)
Abramovich, B. N.; Sychev, Yu A.; Kuznetsov, P. A.
2018-03-01
Main tendencies of growth of electric energy consumption in general and mining industries were analyzed in the paper. A key role of electric drive in this process was designated. A review about advantages and disadvantages of unregulated gearboxes with mechanical units that are commonly used in domestically produced gas-turbine engines was made. This review allows one to propose different gas-turbine engines modernization schemes with the help of PWM-driven high-frequency induction motors. Induction motors with the double rotor winding were examined. A simulation of high-frequency induction motors with double rotor windings in Matlab-Simulink software was carried out based on equivalent circuit parameters. Obtained characteristics of new motors were compared with serially produced analogues. After the simulation, results were implemented in the real prototype.
NASA Astrophysics Data System (ADS)
Park, Keun; Lee, Sang-Ik
2010-03-01
High-frequency induction is an efficient, non-contact means of heating the surface of an injection mold through electromagnetic induction. Because the procedure allows for the rapid heating and cooling of mold surfaces, it has been recently applied to the injection molding of thin-walled parts or micro/nano-structures. The present study proposes a localized heating method involving the selective use of mold materials to enhance the heating efficiency of high-frequency induction heating. For localized induction heating, a composite injection mold of ferromagnetic material and paramagnetic material is used. The feasibility of the proposed heating method is investigated through numerical analyses in terms of its heating efficiency for localized mold surfaces and in terms of the structural safety of the composite mold. The moldability of high aspect ratio micro-features is then experimentally compared under a variety of induction heating conditions.
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1990-01-01
Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1990-01-01
Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.
Induction magnetometer using a high-Tc superconductor coil
NASA Astrophysics Data System (ADS)
Sasada, Ichiro
2010-05-01
An induction magnetometer consisting of a search coil and an inverting operational amplifier is simple in structure and in signal transferring mechanism from the magnetic field input to the voltage output. Because this magnetometer is based on Faraday's law of induction, it has a lower cutoff frequency r/(2πL), where r is the resistance of the coil and L is its inductance. An attempt has been made to lower the cutoff frequency of the induction magnetometer by using a high-Tc superconductor coil. With a pancake coil (inner diameter ≈18 cm and outer diameter ≈23 cm, 92 turns, 3.23 mH) made of a Bismuth strontium calcium copper oxide (BSCCO) superconductor tape of 5 mm in width and 0.23 mm in thickness, the cutoff frequency achieved was 1.7 Hz which is much lower than that obtained with a bulky copper search coil which is typically in the range of 10-20 Hz. In the experiment, an inverting amplifier was made with a complementary metal-oxide semiconductor operational amplifier and was immersed in liquid nitrogen together with a BSCCO high-Tc superconducting coil. Discussion is made on the resolution of the induction magnetometer using a high-Tc superconductor search coil.
Performance of High-frequency High-flux Magnetic Cores at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Gerber, Scott S.; Hammoud, Ahmad; Elbuluk, Malik E.; Patterson, Richard L.
2002-01-01
Three magnetic powder cores and one ferrite core, which are commonly used in inductor and transformer design for switch mode power supplies, were selected for investigation at cryogenic temperatures. The powder cores are Molypermalloy Core (MPC), High Flux Core (HFC), and Kool Mu Core (KMC). The performance of four inductors utilizing these cores has been evaluated as a function of temperature from 20 C to -180 C. All cores were wound with the same wire type and gauge to obtain equal values of inductance at room temperature. Each inductor was evaluated in terms of its inductance, quality (Q) factor, resistance, and dynamic hysteresis characteristics (B-H loop) as a function of temperature and frequency. Both sinusoidal and square wave excitations were used in these investigations. Measured data obtained on the inductance showed that both the MPC and the HFC cores maintain a constant inductance value, whereas with the KMC and ferrite core hold a steady value in inductance with frequency but decrease as temperature is decreased. All cores exhibited dependency, with varying degrees, in their quality factor and resistance on test frequency and temperature. Except for the ferrite, all cores exhibited good stability in the investigated properties with temperature as well as frequency. Details of the experimental procedures and test results are presented and discussed in the paper.
Coil design considerations for a high-frequency electromagnetic induction sensing instrument
NASA Astrophysics Data System (ADS)
Sigman, John B.; Barrowes, Benjamin E.; Wang, Yinlin; Bennett, Hollis J.; Simms, Janet E.; Yule, Donald E.; O'Neill, Kevin; Shubitidze, Fridon
2016-05-01
Intermediate electrical conductivity (IEC) materials (101S/m < σ < 104S/m), such as carbon fiber (CF), have recently been used to make smart bombs. In addition, homemade improvised explosive devices (IED) can be produced with low conducting materials (10-4S/m < σ < 1S/m), such as Ammonium Nitrate (AN). To collect unexploded ordnance (UXO) from military training ranges and thwart deadly IEDs, the US military has urgent need for technology capable of detection and identification of subsurface IEC objects. Recent analytical and numerical studies have showed that these targets exhibit characteristic quadrature response peaks at high induction frequencies (100kHz - 15MHz, the High Frequency Electromagnetic Induction (HFEMI) band), and they are not detectable with traditional ultra wideband (UWB) electromagnetic induction (EMI) metal detectors operating between 100Hz - 100kHz. Using the HFEMI band for induction sensing is not so simple as driving existing instruments at higher frequencies, though. At low frequency, EMI systems use more wire turns in transmit and receive coils to boost signal-to-noise ratios (SNR), but at higher frequencies, the transmitter current has non-uniform distribution along the coil length. These non-uniform currents change the spatial distribution of the primary magnetic field and disturb axial symmetry and thwart established approaches for inferring subsurface metallic object properties. This paper discusses engineering tradeoffs for sensing with a broader band of frequencies ever used for EMI sensing, with particular focus on coil geometries.
Nakamura, Michiyuki; Nolan, Marvin L.
1988-01-01
A frequency domain sensing system is disclosed for sensing the position of a high energy beam of charged particles traveling within a housing which comprises a plurality of sensors positioned in the wall of the housing radially around the axis of the beam. Each of the sensors further comprises a first electrode of predetermined shape received in a bore in the housing to define a fixed capacitance and an inductance structure attached to the electrode to provide an inductance for the sensing means which will provide an LC circuit which will resonate at a predetermined frequency known to exist in the beam of charged particles. The sensors are further provided with tuning apparatus associated with the inductance structure to vary the amount of the inductance to thereby tune the sensors to the predetermined frequency prior to transmission of the signal to signal detection circuitry.
Power supplies for dual-frequency induction melting of metals
NASA Astrophysics Data System (ADS)
Lusgin, V. I.; Koptyakov, A. S.; Petrov, A. U.; Zinovev, K. A.; Kamaev, D. A.
2018-02-01
The article discusses the benefits of multi frequency induction melting in the production of synthetic cast iron, structural (electric circuit) principles of dual frequency Power supplies of melting systems. The ways of electric power regulation of low frequency and high frequency components of the current in the inductor sections of furnace are demonstrated, namely power rescheduling at the metal melting stage, alloying stage and decarburizing of synthetic cast iron.
High Resolution Switching Mode Inductance-to-Frequency Converter with Temperature Compensationti
Matko, Vojko; Milanović, Miro
2014-01-01
This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal's natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85–100 μH to 2–560 kHz. PMID:25325334
NASA Astrophysics Data System (ADS)
Liu, Ying; Yan, Shuying; Yang, Fuguang; Li, Dongliang; Tang, Jianian; Liu, Guoxuan; Lin, Shiwan; Niu, Sufang; Yang, Yali
2017-12-01
An high-frequency protocol for induction of callus from anther explants of Ricinus communis was described. When anther explants of R. communis was cultured directly onto medium containing 6-benzylaminopurine (BA) induced formation of only poor quality callus that had a low induction frequency of anther callus (10.67%). However, treating the anther explants with high concentrations (7.5-120 mg/L) of BA solution for short time periods (5-80 min) helped to improve the induction frequency and enhance the quality of the callus formation significantly. The best callus induction (41.25%) was observed when anther explants were treated with 15 mg/L BA solution for 10 min before being inoculated onto hormone-free Murashige and Skoog (MS) medium for 30 days. In order to further optimize the culture system, after treated with 15 mg/L BA for 10 min, anther explants were inoculated on the hormone-free MS medium contained concentrations of sodium nitroprusside (SNP). The results showed that SNP significantly promoted the response of callus induction, especially when 8 mg/L SNP was applied, the the highest percentage of callus induction (60.37%) were gained.
Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters
NASA Astrophysics Data System (ADS)
Tan, Ting; Yan, Zhimiao
2017-03-01
The performance of cantilever-beam piezoelectric energy harvester is usually analyzed with pure resistive circuit. The optimal performance of such a vibration-based energy harvesting system is limited by narrow bandwidth around its modified natural frequency. For broadband piezoelectric energy harvesting, series and parallel inductive-resistive circuits are introduced. The electromechanical coupled distributed parameter models for such systems under harmonic base excitations are decoupled with modified natural frequency and electrical damping to consider the coupling effect. Analytical solutions of the harvested power and tip displacement for the electromechanical decoupled model are confirmed with numerical solutions for the coupled model. The optimal performance of piezoelectric energy harvesting with inductive-resistive circuits is revealed theoretically as constant maximal power at any excitation frequency. This is achieved by the scenarios of matching the modified natural frequency with the excitation frequency and equating the electrical damping to the mechanical damping. The inductance and load resistance should be simultaneously tuned to their optimal values, which may not be applicable for very high electromechanical coupling systems when the excitation frequency is higher than their natural frequencies. With identical optimal performance, the series inductive-resistive circuit is recommended for relatively small load resistance, while the parallel inductive-resistive circuit is suggested for relatively large load resistance. This study provides a simplified optimization method for broadband piezoelectric energy harvesters with inductive-resistive circuits.
Variable-frequency inverter controls torque, speed, and braking in ac induction motors
NASA Technical Reports Server (NTRS)
Nola, F. J.
1974-01-01
Dc to ac inverter provides optimum frequency and voltage to ac induction motor, in response to different motor-load and speed requirements. Inverter varies slip frequency of motor in proportion to required torque. Inverter protects motor from high current surges, controls negative slip to apply braking, and returns energy stored in momentum of load to dc power source.
NASA Technical Reports Server (NTRS)
Jeffries, K. S.; Renz, D. D.
1984-01-01
A parametric analysis was performed of transmission cables for transmitting electrical power at high voltage (up to 1000 V) and high frequency (10 to 30 kHz) for high power (100 kW or more) space missions. Large diameter (5 to 30 mm) hollow conductors were considered in closely spaced coaxial configurations and in parallel lines. Formulas were derived to calculate inductance and resistance for these conductors. Curves of cable conductance, mass, inductance, capacitance, resistance, power loss, and temperature were plotted for various conductor diameters, conductor thickness, and alternating current frequencies. An example 5 mm diameter coaxial cable with 0.5 mm conductor thickness was calculated to transmit 100 kW at 1000 Vac, 50 m with a power loss of 1900 W, an inductance of 1.45 micron and a capacitance of 0.07 micron-F. The computer programs written for this analysis are listed in the appendix.
Mission Assessment of the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD)
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Polzin, Kurt A.
2008-01-01
Pulsed inductive thrusters have typically been considered for future, high-power, missions requiring nuclear electric propulsion. These high-power systems, while promising equivalent or improved performance over state-of-the-art propulsion systems, presently have no planned missions for which they are well suited. The ability to efficiently operate an inductive thruster at lower energy and power levels may provide inductive thrusters near term applicability and mission pull. The Faraday Accelerator with Radio-frequency Assisted Discharge concept demonstrated potential for a high-efficiency, low-energy pulsed inductive thruster. The added benefits of energy recapture and/or pulse compression are shown to enhance the performance of the pulsed inductive propulsion system, yielding a system that con compete with and potentially outperform current state-of-the-art electric propulsion technologies. These enhancements lead to mission-level benefits associated with the use of a pulsed inductive thruster. Analyses of low-power near to mid-term missions and higher power far-term missions are undertaken to compare the performance of pulsed inductive thrusters with that delivered by state-of-the-art and development-level electric propulsion systems.
High-Performance Power-Semiconductor Packages
NASA Technical Reports Server (NTRS)
Renz, David; Hansen, Irving; Berman, Albert
1989-01-01
A 600-V, 50-A transistor and 1,200-V, 50-A diode in rugged, compact, lightweight packages intended for use in inverter-type power supplies having switching frequencies up to 20 kHz. Packages provide low-inductance connections, low loss, electrical isolation, and long-life hermetic seal. Low inductance achieved by making all electrical connections to each package on same plane. Also reduces high-frequency losses by reducing coupling into inherent shorted turns in packaging material around conductor axes. Stranded internal power conductors aid conduction at high frequencies, where skin effect predominates. Design of packages solves historical problem of separation of electrical interface from thermal interface of high-power semiconductor device.
LONGITUDINAL IMPEDANCE OF THE SQUID GIANT AXON
Cole, Kenneth S.; Baker, Richard F.
1941-01-01
Longitudinal alternating current impedance measurements have been made on the squid giant axon over the frequency range from 30 cycles per second to 200 kc. per second. Large sea water electrodes were used and the inter-electrode length was immersed in oil. The impedance at high frequency was approximately as predicted theoretically on the basis of the poorly conducting dielectric characteristics of the membrane previously determined. For the large majority of the axons, the impedance reached a maximum at a low frequency and the reactance then vanished at a frequency between 150 and 300 cycles per second. Below this frequency, the reactance was inductive, reaching a maximum and then approaching zero as the frequency was decreased. The inductive reactance is a property of the axon and requires that it contain an inductive structure. The variation of the impedance with interpolar distance indicates that the inductance is in the membrane. The impedance characteristics of the membrane as calculated from the measured longitudinal impedance of the axon may be expressed by an equivalent membrane circuit containing inductance, capacity, and resistance. For a square centimeter of membrane the capacity of 1 µf with dielectric loss is shunted by the series combination of a resistance of 400 ohms and an inductance of one-fifth henry. PMID:19873252
CFAVC scheme for high frequency series resonant inverter-fed domestic induction heating system
NASA Astrophysics Data System (ADS)
Nagarajan, Booma; Reddy Sathi, Rama
2016-01-01
This article presents the investigations on the constant frequency asymmetric voltage cancellation control in the AC-AC resonant converter-fed domestic induction heating system. Conventional fixed frequency control techniques used in the high frequency converters lead to non-zero voltage switching operation and reduced output power. The proposed control technique produces higher output power than the conventional fixed-frequency control strategies. In this control technique, zero-voltage-switching operation is maintained during different duty cycle operation for reduction in the switching losses. Complete analysis of the induction heating power supply system with asymmetric voltage cancellation control is discussed in this article. Simulation and experimental study on constant frequency asymmetric voltage cancellation (CFAVC)-controlled full bridge series resonant inverter is performed. Time domain simulation results for the open and closed loop of the system are obtained using MATLAB simulation tool. The simulation results prove the control of voltage and power in a wide range. PID controller-based closed loop control system achieves the voltage regulation of the proposed system for the step change in load. Hardware implementation of the system under CFAVC control is done using the embedded controller. The simulation and experimental results validate the performance of the CFAVC control technique for series resonant-based induction cooking system.
Li, Yalong; Jones, Edward A.; Wang, Fred
2016-10-13
Arm inductor in a modular multilevel converter (MMC) is used to limit the circulating current and dc short circuit fault current. The circulating current in MMC is dominated by second-order harmonic, which can be largely reduced with circulating current suppressing control. By analyzing the mechanism of the circulating current suppressing control, it is found that the circulating current at switching frequency becomes the main harmonic when suppression control is implemented. Unlike the second-order harmonic that circulates only within the three phases, switching frequency harmonic also flows through the dc side and may further cause high-frequency dc voltage harmonic. This articlemore » develops the theoretical relationship between the arm inductance and switching frequency circulating current, which can be used to guide the arm inductance selection. The experimental results with a downscaled MMC prototype verify the existence of the switching frequency circulating current and its relationship with arm inductance.« less
Inductance position sensor for pneumatic cylinder
NASA Astrophysics Data System (ADS)
Ripka, Pavel; Chirtsov, Andrey; Mirzaei, Mehran; Vyhnanek, Jan
2018-04-01
The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.
An analytical model for inductively coupled implantable biomedical devices with ferrite rods.
Theilmann, P T; Asbeck, P M
2009-02-01
Using approximations applicable to near field coupled implants simplified expressions for the complex mutual inductance of coaxial aligned coils with and without a cylindrical ferrite rod are derived. Experimental results for ferrite rods of various sizes and permeabilities are presented to verify the accuracy of this expression. An equivalent circuit model for the inductive link between an implant and power coil is then presented and used to investigate how ferrite size, permeability and loss affect the power available to the implant device. Enhancements in coupling provided by high frequency, low permeability nickel zinc rods are compared with low frequency high permeability manganese zinc rods.
Investigation of self-excited induction generators for wind turbine applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, E.; Butterfield, C.P.; Sallan, J.
2000-02-28
The use of squirrel-cage induction machines in wind generation is widely accepted as a generator of choice. The squirrel-cage induction machine is simple, reliable, cheap, lightweight, and requires very little maintenance. Generally, the induction generator is connected to the utility at constant frequency. With a constant frequency operation, the induction generator operates at practically constant speed (small range of slip). The wind turbine operates in optimum efficiency only within a small range of wind speed variation. The variable-speed operation allows an increase in energy captured and reduces both the torque peaks in the drive train and the power fluctuations sentmore » to the utility. In variable-speed operation, an induction generator needs an interface to convert the variable frequency output of the generator to the fixed frequency at the utility. This interface can be simplified by using a self-excited generator because a simple diode bridge is required to perform the ac/dc conversion. The subsequent dc/ac conversion can be performed using different techniques. The use of a thyristor bridge is readily available for large power conversion and has a lower cost and higher reliability. The firing angle of the inverter bridge can be controlled to track the optimum power curve of the wind turbine. With only diodes and thyristors used in power conversion, the system can be scaled up to a very high voltage and high power applications. This paper analyzes the operation of such a system applied to a 1/3-hp self-excited induction generator. It includes the simulations and tests performed for the different excitation configurations.« less
Influence of the aging process on the dealloying activity of an induction salt bath
NASA Astrophysics Data System (ADS)
Simonenko, A. N.
1992-12-01
The process of dealloying of the surface of high-alloy steels in heating in induction salt baths with a graphite crucible is neutralized by the process of carburizing and electrochemical interaction in a high-frequency electromagnetic field.
An integrated signal conditioner for high-frequency inductive position sensors
NASA Astrophysics Data System (ADS)
Rahal, Mohamad; Demosthenous, Andreas
2010-01-01
This paper describes the design, implementation and evaluation of a signal conditioner application-specific integrated circuit (ASIC) for high-frequency inductive non-contact position sensors. These sensors employ a radio frequency technology based on an antenna planar arrangement and a resonant target, have a high inherent resolution (0.1% of antenna length) and can measure target position over a wide distance range (<0.1 mm to >10 m). However, due to the relatively high-frequency excitation (1 MHz typically) and to the specific layouts of these sensors, there is unwanted capacitive coupling between the transmitter and receiver coils; this type of distortion reduces linearity and resolution. The ASIC, which is the first generation of its kind for this type of sensor, employs a differential mixer topology which suppresses the capacitive coupling offsets. The system architecture and circuit details are presented. The ASIC was fabricated in a 0.6 µm high-voltage CMOS technology occupying an area of 8 mm2. It dissipates about 30 mA from a 24 V power supply. The ASIC was tested with a high-frequency inductive position sensor (with an antenna length of 10.8 cm). The measured input-referred offset due to transmitter crosstalk is on average about 22 µV over a wide phase difference variation (-99° to +117°) between the transmitter and demodulating signals.
Induction salt bath for electrolytic boronizing
NASA Astrophysics Data System (ADS)
Simonenko, A. N.
1983-08-01
The induction salt bath ISV-ÉB is intended for electrolytic and nonelectrolytic boronizing and for heating steel parts to be hardened in toolrooms of engineering plants equipped with high-frequency installations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Anurag; Seo, Jin Seok; Kim, Tae Hyung
2015-08-15
Controlling time averaged ion energy distribution (IED) is becoming increasingly important in many plasma material processing applications for plasma etching and deposition. The present study reports the evolution of ion energy distributions with radio frequency (RF) powers in a pulsed dual frequency inductively discharge and also investigates the effect of duty ratio. The discharge has been sustained using two radio frequency, low (P{sub 2 MHz} = 2 MHz) and high (P{sub 13.56 MHz} = 13.56 MHz) at a pressure of 10 mTorr in argon (90%) and CF{sub 4} (10%) environment. The low frequency RF powers have been varied from 100 to 600 W, whereas the high frequency powers frommore » 200 to 1200 W. Typically, IEDs show bimodal structure and energy width (energy separation between the high and low energy peaks) increases with increasing P{sub 13.56 MHz}; however, it shows opposite trends with P{sub 2 MHz}. It has been observed that IEDs bimodal structure tends to mono-modal structure and energy peaks shift towards low energy side as duty ratio increases, keeping pulse power owing to mode transition (capacitive to inductive) constant.« less
Frequency-tunable superconducting resonators via nonlinear kinetic inductance
NASA Astrophysics Data System (ADS)
Vissers, M. R.; Hubmayr, J.; Sandberg, M.; Chaudhuri, S.; Bockstiegel, C.; Gao, J.
2015-08-01
We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Qi > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition, it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.
High-Precision Hysteresis Sensing of the Quartz Crystal Inductance-to-Frequency Converter
Matko, Vojko; Milanović, Miro
2016-01-01
A new method for the automated measurement of the hysteresis of the temperature-compensated inductance-to-frequency converter with a single quartz crystal is proposed. The new idea behind this method is a converter with two programmable analog switches enabling the automated measurement of the converter hysteresis, as well as the temperature compensation of the quartz crystal and any other circuit element. Also used is the programmable timing control device that allows the selection of different oscillating frequencies. In the proposed programmable method two different inductances connected in series to the quartz crystal are switched in a short time sequence, compensating the crystal’s natural temperature characteristics (in the temperature range between 0 and 50 °C). The procedure allows for the measurement of the converter hysteresis at various values of capacitance connected in parallel with the quartz crystal for the converter sensitivity setting at selected inductance. It, furthermore, enables the measurement of hysteresis at various values of inductance at selected parallel capacitance (sensitivity) connected to the quartz crystal. The article shows that the proposed hysteresis measurement of the converter, which converts the inductance in the range between 95 and 100 μH to a frequency in the range between 1 and 200 kHz, has only 7 × 10−13 frequency instability (during the temperature change between 0 and 50 °C) with a maximum 1 × 10−11 hysteresis frequency difference. PMID:27367688
Variable speed induction motor operation from a 20-kHz power bus
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1989-01-01
Induction motors are recognized for their simple rugged construction. To date, however, their application to variable speed or servo drives was hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation of frequency and voltage allows independent control of rotor and stator flux, full four quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yalong; Jones, Edward A.; Wang, Fred
Arm inductor in a modular multilevel converter (MMC) is used to limit the circulating current and dc short circuit fault current. The circulating current in MMC is dominated by second-order harmonic, which can be largely reduced with circulating current suppressing control. By analyzing the mechanism of the circulating current suppressing control, it is found that the circulating current at switching frequency becomes the main harmonic when suppression control is implemented. Unlike the second-order harmonic that circulates only within the three phases, switching frequency harmonic also flows through the dc side and may further cause high-frequency dc voltage harmonic. This articlemore » develops the theoretical relationship between the arm inductance and switching frequency circulating current, which can be used to guide the arm inductance selection. The experimental results with a downscaled MMC prototype verify the existence of the switching frequency circulating current and its relationship with arm inductance.« less
Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santavicca, Daniel F., E-mail: daniel.santavicca@unf.edu; Adams, Jesse K.; Grant, Lierd E.
2016-06-21
We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires asmore » inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.« less
Frequency-tunable superconducting resonators via nonlinear kinetic inductance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vissers, M. R.; Hubmayr, J.; Sandberg, M.
2015-08-10
We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Q{sub i} > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition,more » it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.« less
NASA Astrophysics Data System (ADS)
Delefortrie, Samuël; Saey, Timothy; Van De Vijver, Ellen; De Smedt, Philippe; Missiaen, Tine; Demerre, Ine; Van Meirvenne, Marc
2014-01-01
Subsurface investigation in the Belgian intertidal zone is severely complicated due to high heterogeneity and tides. Near-surface geophysical techniques can offer assistance since they allow fast surveying and collection of high spatial density data and frequency domain electromagnetic induction (EMI) was chosen for archaeological prospection on the Belgian shore. However, in the intertidal zone the effects of extreme salinity compromise validity of low-induction-number (LIN) approximated EMI data. In this paper, the effects of incursion of seawater on multi-receiver EMI data are investigated by means of survey results, field observations, cone penetration tests and in-situ electrical conductivity measurements. The consequences of LIN approximation breakdown were researched. Reduced depth of investigation of the quadrature-phase (Qu) response and a complex interpretation of the in-phase response were confirmed. Nonetheless, a high signal-to-noise ratio of the Qu response and viable data with regard to shallow subsurface investigation were also evidenced, allowing subsurface investigation in the intertidal zone.
A multi-frequency impedance analysing instrument for eddy current testing
NASA Astrophysics Data System (ADS)
Yin, W.; Dickinson, S. J.; Peyton, A. J.
2006-02-01
This paper presents the design of a high-performance multi-frequency impedance analysing instrument (MFIA) for eddy current testing which has been developed primarily for monitoring a steel production process using an inductive sensor. The system consists of a flexible multi-frequency waveform generator and a voltage/current measurement unit. The impedance of the sensor is obtained by cross-spectral analysis of the current and voltage signals. The system contains high-speed digital-to-analogue, analogue-to-digital converters and dual DSPs with one for control and interface and one dedicated to frequency-spectra analysis using fast Fourier transformation (FFT). The frequency span of the signal that can be analysed ranges from 1 kHz to 8 MHz. The system also employs a high-speed serial port interface (USB) to communicate with a personal computer (PC) and to allow for fast transmission of data and control commands. Overall, the system is capable of delivering over 250 impedance spectra per second. Although the instrument has been developed mainly for use with an inductive sensor, the system is not restricted to inductive measurement. The flexibility of the design architecture is demonstrated with capacitive and resistive measurements by using appropriate input circuitry. Issues relating to optimizing the phase of the spectra components in the excitation waveform are also discussed.
Survey of Inductive Communication Systems
DOT National Transportation Integrated Search
1975-04-01
A survey is made of various inductive systems proposed for low frequency train communication. It is found that thick dielectric jackets or coaxial and metallic shields may be required to reduce the environmental effects that lead to high attenuation....
Inductive Interference in Rapid Transit Signaling Systems. Volume 1. Theory and Background.
DOT National Transportation Integrated Search
1986-05-01
This report describes the mechanism of inductive interference to audio frequency (AF) signaling systems used in rail transit operations, caused by rail transit vehicles with chopper propulsion control. Choppers are switching circuits composed of high...
Heat-power working regimes of a high-frequency (0.44 MHz) 1000-kW induction plasmatron
NASA Astrophysics Data System (ADS)
Gorbanenko, V. M.; Farnasov, G. A.; Lisafin, A. B.
2015-12-01
The energy working regimes of a superpower high-frequency induction (HFI) plasmatron with a high-frequency (HF) generator are studied. The HFI plasmatron with a power of 1000 kVA and a working frequency of 440 kHz, in which air is used as a plasma-forming gas, can be used for treatment of various oxide powder materials. The energy regimes substantially influence finish products and their costs. Various working regimes of the HFI plasma unit and the following characteristics are studied: the dependence of the vibration power on the anode power, the dependence of the power losses on the anode power at various of plasma-forming gas flow rates, and the coefficients of efficiency of the plasmatron and the HFI-plasma unit at various powers. The effect of the plasma-forming gas flow rate on the bulk temperature is determined.
Smart Sensor for Online Detection of Multiple-Combined Faults in VSD-Fed Induction Motors
Garcia-Ramirez, Armando G.; Osornio-Rios, Roque A.; Granados-Lieberman, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.
2012-01-01
Induction motors fed through variable speed drives (VSD) are widely used in different industrial processes. Nowadays, the industry demands the integration of smart sensors to improve the fault detection in order to reduce cost, maintenance and power consumption. Induction motors can develop one or more faults at the same time that can be produce severe damages. The combined fault identification in induction motors is a demanding task, but it has been rarely considered in spite of being a common situation, because it is difficult to identify two or more faults simultaneously. This work presents a smart sensor for online detection of simple and multiple-combined faults in induction motors fed through a VSD in a wide frequency range covering low frequencies from 3 Hz and high frequencies up to 60 Hz based on a primary sensor being a commercially available current clamp or a hall-effect sensor. The proposed smart sensor implements a methodology based on the fast Fourier transform (FFT), RMS calculation and artificial neural networks (ANN), which are processed online using digital hardware signal processing based on field programmable gate array (FPGA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Min-Hyong; Chung, Chin-Wook
2008-10-13
A mode transition from an inductive mode to a helicon mode is observed in a solenoidal inductive discharge immersed in a weak dc magnetic field. The measured electron temperature and the plasma density at the reactor radial boundary show a sudden increase when the magnetic field strength reaches the critical value and the electron cyclotron frequency exceeds the rf driving frequency. These increases are due to the electron heating by the helicon wave. Such increases in the temperature and the density are not observed at the plasma center because the helicon wave cannot propagate to the center of the solenoidalmore » type reactor unless the magnetic field is very high. These results show that the transition of the discharge from the inductive to the helicon mode occurs at the critical magnetic field strength.« less
Lee, Hyung-Min; Ghovanloo, Maysam
2014-01-01
In this paper, we present a fully integrated active voltage doubler in CMOS technology using offset-controlled high speed comparators for extending the range of inductive power transmission to implantable microelectronic devices (IMD) and radio-frequency identification (RFID) tags. This active voltage doubler provides considerably higher power conversion efficiency (PCE) and lower dropout voltage compared to its passive counterpart and requires lower input voltage than active rectifiers, leading to reliable and efficient operation with weakly coupled inductive links. The offset-controlled functions in the comparators compensate for turn-on and turn-off delays to not only maximize the forward charging current to the load but also minimize the back current, optimizing PCE in the high frequency (HF) band. We fabricated the active voltage doubler in a 0.5-μm 3M2P std. CMOS process, occupying 0.144 mm2 of chip area. With 1.46 V peak AC input at 13.56 MHz, the active voltage doubler provides 2.4 V DC output across a 1 kΩ load, achieving the highest PCE = 79% ever reported at this frequency. In addition, the built-in start-up circuit ensures a reliable operation at lower voltages. PMID:23853321
NASA Technical Reports Server (NTRS)
Jordan, Jennifer L.; Ponchak, George E.; Spry, David J.; Neudeck, Philip G.
2018-01-01
Wireless sensors placed in high temperature environments, such as aircraft engines, are desirable to reduce the mass and complexity of routing wires. While communication with the sensors is straight forward, providing power wirelessly is still a challenge. This paper introduces an inductive wireless power transfer circuit incorporating SiC Schottky diodes and its operation from room temperature (25 C) to 500 C.
Tang, Wei; Newton, Ronald J
2006-02-01
Mevalonate kinase (MK) catalyzes a step in the isoprenoid biosynthetic pathway, which leads to a huge number of compounds that play important roles in plant growth and development. Here, we report on changes in MK activity in white pine (Pinus strobus L.) during plant regeneration by adventitious shoot organogenesis from cotyledons of mature embryos, including nodular callus induction, shoot formation and rooting. Nodular calli were induced from Pinus strobus (PS) embryos by culture in nodular callus induction medium in a 0-, 8- or 16-h photoperiod. Mevalonate kinase activity peaked in nodular calli after three weeks of culture on nodular callus induction medium in a 16-h photoperiod, whereas frequency of nodular callus formation peaked after 4 weeks of culture on nodular callus induction medium in darkness. During adventitious shoot formation, MK activity peaked in shoots derived from dark-grown nodular calli after 3 weeks on bud formation medium, and frequency of shoot formation was highest in dark-grown nodular calli cultured on bud formation medium for 4 weeks. During rooting, MK activity peaked 2 weeks after transfer of adventitious shoots to rooting medium and rooting frequency was highest in adventitious shoots after 3 weeks on rooting medium. Although during nodular callus induction in darkness MK activity was inversely related to frequency of nodular callus formation, MK activity was highly correlated with frequency of shoot formation and with rooting frequency. The observed increase in MK activity preceding rooting suggests that MK could serve as a marker for rooting of white pine shoots in vitro.
Ion plating with an induction heating source
NASA Technical Reports Server (NTRS)
Spalvins, T.; Brainard, W. A.
1976-01-01
Induction heating is introduced as an evaporation heat source in ion plating. A bare induction coil without shielding can be directly used in the glow discharge region with no arcing. The only requirement is to utilize an rf inductive generator with low operating frequency of 75 kHz. Mechanical simplicity of the ion plating apparatus and ease of operation is a great asset for industrial applications; practically any metal such as nickel, iron, and the high temperature refractories can be evaporated and ion plated.
Radiation induction of drug resistance in RIF-1: Correlation of tumor and cell culture results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moulder, J.E.; Hopwood, L.E.; Volk, D.M.
1991-02-01
The RIF-1 tumor line contains cells that are resistant to various anti-neoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), adriamycin (ADR), and etoposide (VP16). The frequency of these drug-resistant cells is increased after irradiation. The frequency of drug-resistant cells and the magnitude of radiation-induced drug resistance are different in cell culture than in tumors. The dose-response and expression time relationships for radiation induction of drug resistance observed in RIF-1 tumors are unusual.We hypothesize that at high radiation doses in vivo, we are selecting for cells that are both drug resistant and radiation resistant due to microenvironmental factors, whereas at low radiationmore » doses in vivo and all radiation doses in vitro, we are observing true mutants. These studies indicate that there can be significant differences in drug-resistance frequencies between tumors and their cell lines of origin, and that radiation induction of drug resistance depends significantly on whether the induction is done in tumors or in cell culture. These results imply that theories about the induction of drug resistance that are based on cell culture studies may be inapplicable to the induction of drug resistance in tumors.« less
Computational hydrodynamics and optical performance of inductively-coupled plasma adaptive lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortazavi, M.; Urzay, J., E-mail: jurzay@stanford.edu; Mani, A.
2015-06-15
This study addresses the optical performance of a plasma adaptive lens for aero-optical applications by using both axisymmetric and three-dimensional numerical simulations. Plasma adaptive lenses are based on the effects of free electrons on the phase velocity of incident light, which, in theory, can be used as a phase-conjugation mechanism. A closed cylindrical chamber filled with Argon plasma is used as a model lens into which a beam of light is launched. The plasma is sustained by applying a radio-frequency electric current through a coil that envelops the chamber. Four different operating conditions, ranging from low to high powers andmore » induction frequencies, are employed in the simulations. The numerical simulations reveal complex hydrodynamic phenomena related to buoyant and electromagnetic laminar transport, which generate, respectively, large recirculating cells and wall-normal compression stresses in the form of local stagnation-point flows. In the axisymmetric simulations, the plasma motion is coupled with near-wall axial striations in the electron-density field, some of which propagate in the form of low-frequency traveling disturbances adjacent to vortical quadrupoles that are reminiscent of Taylor-Görtler flow structures in centrifugally unstable flows. Although the refractive-index fields obtained from axisymmetric simulations lead to smooth beam wavefronts, they are found to be unstable to azimuthal disturbances in three of the four three-dimensional cases considered. The azimuthal striations are optically detrimental, since they produce high-order angular aberrations that account for most of the beam wavefront error. A fourth case is computed at high input power and high induction frequency, which displays the best optical properties among all the three-dimensional simulations considered. In particular, the increase in induction frequency prevents local thermalization and leads to an axisymmetric distribution of electrons even after introduction of spatial disturbances. The results highlight the importance of accounting for spatial effects in the numerical computations when optical analyses of plasma lenses are pursued in this range of operating conditions.« less
Variable speed induction motor operation from a 20-kHz power bus
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1989-01-01
Induction motors are recognized for their simple rugged construction to date, however, their application to variable speed or servo drives has been hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation offrequency and voltage allows independent control of rotor and stator flux, full four-quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.
The induction, stimulation, and persistence of sister chromatid exchanges (SCE's) and high SCE frequency cells (HFC's) was measured in peripheral lymphocytes of women with breast cancer before chemotherapy and on multiple occasions during and after therapy. Chemotherapy consisted...
High frequency power distribution system
NASA Technical Reports Server (NTRS)
Patel, Mikund R.
1986-01-01
The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George
2015-03-11
Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulationmore » improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.« less
High frequency inductive lamp and power oscillator
MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.
2001-01-01
A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.
Performance testing of a high frequency link converter for Space Station power distribution system
NASA Technical Reports Server (NTRS)
Sul, S. K.; Alan, I.; Lipo, T. A.
1989-01-01
The testing of a brassboard version of a 20-kHz high-frequency ac voltage link prototype converter dynamics for Space Station application is presented. The converter is based on a three-phase six-pulse bridge concept. The testing includes details of the operation of the converter when it is driving an induction machine source/load. By adapting a field orientation controller (FOC) to the converter, four-quadrant operation of the induction machine from the converter has been achieved. Circuit modifications carried out to improve the performance of the converter are described. The performance of two 400-Hz induction machines powered by the converter with simple V/f regulation mode is reported. The testing and performance results for the converter utilizing the FOC, which provides the capability for rapid torque changes, speed reversal, and four-quadrant operation, are reported.
Power Electronic Transformer based Three-Phase PWM AC Drives
NASA Astrophysics Data System (ADS)
Basu, Kaushik
A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common-mode voltage suppression at the load end, 3) High quality output voltage waveform (comparable to conventional space vector PWM modulated two level inverter) and 4) Minimization of output voltage loss, common-mode voltage switching and distortion of the load current waveform due to leakage inductance commutation. All of the proposed topologies along with the proposed control schemes have been analyzed and simulated in MATLABSimulink. A hardware prototype has been fabricated and tested. The simulation and experimental results verify the operation and advantages of the proposed topologies and their control.
Electroacoustic Performance of Direct-Input Hearing Aids with FM Amplification Systems.
ERIC Educational Resources Information Center
Thibodeau, Linda M.
1990-01-01
The electroacoustic performance of 18 direct-input and two inductive-coupling hearing aids was compared when operating with two different frequency modulation (FM) systems. The most significant differences occurred in full-on gain, equivalent-input noise, and frequency response, as opposed to high frequency average saturation sound pressure level…
NASA Astrophysics Data System (ADS)
Zhu, Xiaomin; Cheng, Ping; Chen, Mingming; Ding, Guifu
2018-03-01
There have been significant efforts to boost the inductance value by adopting the sandwich structures using permalloy magnetic shielding layers. However, this structure will introduce high ac conductor losses and high eddy currents. In order to solve these problems, patterned permalloy can solve this problem effectively. According to the simulation results based on the application of finite element method in the frequency domain, the optimum permalloy pattern is which the blank of the permalloy are perpendicular to the coil inside. The double-layer planar inductor has a size of l5×1.5×0.1mm consisted of 13-turn spiral Cu coil for each layer and a 20μm-thick patterned permalloy magnetic shielding layer. The inductor shows a higher inductance than the traditional planar inductor. The patterned permalloy made the inductor more stable in high frequency than the none-patterned. And the inductor has an inductance of 1.3μH and quality factor of 2.8 at 1.5MHz, with an inductance per unit of 578nH/mm2, which is much higher than that in the reported literatures.
Inductive displacement sensors with a notch filter for an active magnetic bearing system.
Chen, Seng-Chi; Le, Dinh-Kha; Nguyen, Van-Sum
2014-07-15
Active magnetic bearing (AMB) systems support rotating shafts without any physical contact, using electromagnetic forces. Each radial AMB uses two pairs of electromagnets at opposite sides of the rotor. This allows the rotor to float in the air gap, and the machine to operate without frictional losses. In active magnetic suspension, displacement sensors are necessary to detect the radial and axial movement of the suspended object. In a high-speed rotating machine equipped with an AMB, the rotor bending modes may be limited to the operating range. The natural frequencies of the rotor can cause instability. Thus, notch filters are a useful circuit for stabilizing the system. In addition, commercial displacement sensors are sometimes not suitable for AMB design, and cannot filter the noise caused by the natural frequencies of rotor. Hence, implementing displacement sensors based on the AMB structure is necessary to eliminate noises caused by natural frequency disturbances. The displacement sensor must be highly sensitive in the desired working range, and also exhibit a low interference noise, high stability, and low cost. In this study, we used the differential inductive sensor head and lock-in amplifier for synchronous demodulation. In addition, an active low-pass filter and a notch filter were used to eliminate disturbances, which caused by natural frequencies. As a consequence, the inductive displacement sensor achieved satisfactory linearity, high sensitivity, and disturbance elimination. This sensor can be easily produced for AMB applications. A prototype of these displacement sensors was built and tested.
Direct reading inductance meter
NASA Technical Reports Server (NTRS)
Kolby, R. B. (Inventor)
1977-01-01
A direct reading inductance meter comprised of a crystal oscillator and an LC tuned oscillator is presented. The oscillators function respectively to generate a reference frequency, f(r), and to generate an initial frequency, f(0), which when mixed produce a difference equal to zero. Upon connecting an inductor of small unknown value in the LC circuit to change its resonant frequency to f(x), a difference frequency (f(r)-f(x)) is produced that is very nearly a linear function of the inductance of the inductor. The difference frequency is measured and displayed on a linear scale in units of inductance.
NASA Astrophysics Data System (ADS)
Wang, Yao; Wen, Yumei; Song, Fapeng; Li, Ping; Yu, Shumin
2018-04-01
The authors reported laminated multilayer magnetic planar inductors for sensitive magnetic field detection, which consist of two serially connected sandwich planar inductors (i.e., FeCuNbSiB/micro planar coil/FeCuNbSiB/micro planar coil/FeCuNbSiB). When ac current is applied to coils, the greatly increased inductance by the incorporated high permeability magnetic material and enlarged mutual-inductance among coils significantly improve the sensor sensitivity to the dc magnetic field. The demagnetizing field is also found to affect the performance severely when the shape and the number of magnetic layers vary. The investigation indicates that the proposed laminate can provide an inductance ratio of 665% at the frequency of 1 kHz. By connecting the sensor with a capacitor, the sensor output with varying dc magnetic fields is obtained by tuning the resonant frequency shift. The study indicates that the proposed sensor can provide a sensitivity of about 3.57 kHz/Oe with a resolution of 28 nT between 2 Oe and 60 Oe, which outperforms most of the magnetic sensors with frequency shifting output.
NASA Astrophysics Data System (ADS)
Hoekstra, Robert J.; Kushner, Mark J.
1996-03-01
Inductively coupled plasma (ICP) reactors are being developed for low gas pressure (<10s mTorr) and high plasma density ([e]≳1011 cm-3) microelectronics fabrication. In these reactors, the plasma is generated by the inductively coupled electric field while an additional radio frequency (rf) bias is applied to the substrate. One of the goals of these systems is to independently control the magnitude of the ion flux by the inductively coupled power deposition, and the acceleration of ions into the substrate by the rf bias. In high plasma density reactors the width of the sheath above the wafer may be sufficiently thin that ions are able to traverse it in approximately 1 rf cycle, even at 13.56 MHz. As a consequence, the ion energy distribution (IED) may have a shape typically associated with lower frequency operation in conventional reactive ion etching tools. In this paper, we present results from a computer model for the IED incident on the wafer in ICP etching reactors. We find that in the parameter space of interest, the shape of the IED depends both on the amplitude of the rf bias and on the ICP power. The former quantity determines the average energy of the IED. The latter quantity controls the width of the sheath, the transit time of ions across the sheath and hence the width of the IED. In general, high ICP powers (thinner sheaths) produce wider IEDs.
Radiation induction of drug resistance in RIF-1 tumors and tumor cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopwood, L.E.; Moulder, J.E.
1989-11-01
The RIF-1 tumor cell line contains a small number of cells (1-20 per 10(6) cells) that are resistant to various single antineoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), and adriamycin (ADR). For 5FU the frequency of drug resistance is lower for tumor-derived cells than for cells from cell culture; for MTX the reverse is true, and for ADR there is no difference. In vitro irradiation at 5 Gy significantly increased the frequency of drug-resistant cells for 5FU, MTX, and ADR. In vivo irradiation at 3 Gy significantly increased the frequency of drug-resistant cells for 5FU and MTX, but not formore » ADR. The absolute risk for in vitro induction of MTX, 5FU, and ADR resistance, and for in vivo induction of 5FU resistance, was 1-3 per 10(6) cells per Gy; but the absolute risk for in vivo induction of MTX resistance was 54 per 10(6) cells per Gy. The frequency of drug-resistant cells among individual untreated tumors was highly variable; among individual irradiated tumors the frequency of drug-resistant cells was significantly less variable. These studies provide supporting data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be due to radiation-induced drug resistance.« less
Note: A calibration method to determine the lumped-circuit parameters of a magnetic probe.
Li, Fuming; Chen, Zhipeng; Zhu, Lizhi; Liu, Hai; Wang, Zhijiang; Zhuang, Ge
2016-06-01
This paper describes a novel method to determine the lumped-circuit parameters of a magnetic inductive probe for calibration by using Helmholtz coils with high frequency power supply (frequency range: 10 kHz-400 kHz). The whole calibration circuit system can be separated into two parts: "generator" circuit and "receiver" circuit. By implementing the Fourier transform, two analytical lumped-circuit models, with respect to these separated circuits, are constructed to obtain the transfer function between each other. Herein, the precise lumped-circuit parameters (including the resistance, inductance, and capacitance) of the magnetic probe can be determined by fitting the experimental data to the transfer function. Regarding the fitting results, the finite impedance of magnetic probe can be used to analyze the transmission of a high-frequency signal between magnetic probes, cables, and acquisition system.
Study of Variable Frequency Induction Heating in Steel Making Process
NASA Astrophysics Data System (ADS)
Fukutani, Kazuhiko; Umetsu, Kenji; Itou, Takeo; Isobe, Takanori; Kitahara, Tadayuki; Shimada, Ryuichi
Induction heating technologies have been the standard technologies employed in steel making processes because they are clean, they have a high energy density, they are highly the controllable, etc. However, there is a problem in using them; in general, frequencies of the electric circuits have to be kept fixed to improve their power factors, and this constraint makes the processes inflexible. In order to overcome this problem, we have developed a new heating technique-variable frequency power supply with magnetic energy recovery switching. This technique helps us in improving the quality of steel products as well as the productivity. We have also performed numerical calculations and experiments to evaluate its effect on temperature distributions on heated steel plates. The obtained results indicate that the application of the technique in steel making processes would be advantageous.
Numerical Simulation of Induction Channel Furnace to Investigate Efficiency for low Frequencies
NASA Astrophysics Data System (ADS)
Hang, N. Tran Thi; Lüdtke, U.
2018-05-01
The foundry industry worldwide commonly uses induction channel furnaces to heat and melt alloys. The operating frequency is one of the main issues when constructing an efficient channel furnace. It is possible to choose operating frequencies lower than 50 Hz using a modern IGBT power converter. This work shows the simulation results using ANSYS with the goal of finding the best electrical frequency necessary to operate the induction furnace. First, a two-dimensional model is used to calculate the efficiency depending on frequency. Then, the channel model is extended to a more realistic three-dimensional model. Finally, the influence of frequency, inductor profile, and several components of the induction channel furnace are discussed.
Switching transients in high-frequency high-power converters using power MOSFET's
NASA Technical Reports Server (NTRS)
Sloane, T. H.; Owen, H. A., Jr.; Wilson, T. G.
1979-01-01
The use of MOSFETs in a high-frequency high-power dc-to-dc converter is investigated. Consideration is given to the phenomena associated with the paralleling of MOSFETs and to the effect of stray circuit inductances on the converter circuit performance. Analytical relationships between various time constants during the turning-on and turning-off intervals are derived which provide estimates of plateau and peak levels during these intervals.
NASA Astrophysics Data System (ADS)
Bandurkin, I. V.; Kaminsky, A. K.; Perelstein, E. A.; Peskov, N. Yu.; Savilov, A. V.; Sedykh, S. N.
2012-08-01
The possibility of using frequency multiplication in order to obtain high-power short-wavelength radiation from a free-electron maser (FEM) with a Bragg resonator has been studied. Preliminary experiments with an LIU-3000 (JINR) linear induction accelerator demonstrate the operation of a frequency-multiplying FEM at megawatt power in the 6- and 4-mm wave bands on the second and third harmonic, respectively.
NASA Astrophysics Data System (ADS)
Sturman, V. I.
2018-01-01
This paper studies spatial distribution and temporal dynamics of power frequency electric and magnetic fields in Saint-Petersburg. It was determined that sanitary-protection and exclusion zones of the standard size high-voltage transmission lines (HVTL) do not always ensure maximum allowable limits of the electrical field depression. A dependence of the electric field strength on meteorological factors was defined. A series of sources create a city-wide background for magnetic fields. That said, the heavier the man-caused load is, the higher the mean values of magnetic induction are. Abnormally high values of magnetic induction are explained by the influence of underground electric cables.
Jamieson, Graham A.; Burgess, Adrian P.
2014-01-01
Altered state theories of hypnosis posit that a qualitatively distinct state of mental processing, which emerges in those with high hypnotic susceptibility following a hypnotic induction, enables the generation of anomalous experiences in response to specific hypnotic suggestions. If so then such a state should be observable as a discrete pattern of changes to functional connectivity (shared information) between brain regions following a hypnotic induction in high but not low hypnotically susceptible participants. Twenty-eight channel EEG was recorded from 12 high susceptible (highs) and 11 low susceptible (lows) participants with their eyes closed prior to and following a standard hypnotic induction. The EEG was used to provide a measure of functional connectivity using both coherence (COH) and the imaginary component of coherence (iCOH), which is insensitive to the effects of volume conduction. COH and iCOH were calculated between all electrode pairs for the frequency bands: delta (0.1–3.9 Hz), theta (4–7.9 Hz) alpha (8–12.9 Hz), beta1 (13–19.9 Hz), beta2 (20–29.9 Hz) and gamma (30–45 Hz). The results showed that there was an increase in theta iCOH from the pre-hypnosis to hypnosis condition in highs but not lows with a large proportion of significant links being focused on a central-parietal hub. There was also a decrease in beta1 iCOH from the pre-hypnosis to hypnosis condition with a focus on a fronto-central and an occipital hub that was greater in high compared to low susceptibles. There were no significant differences for COH or for spectral band amplitude in any frequency band. The results are interpreted as indicating that the hypnotic induction elicited a qualitative change in the organization of specific control systems within the brain for high as compared to low susceptible participants. This change in the functional organization of neural networks is a plausible indicator of the much theorized “hypnotic-state.” PMID:25104928
Oscillator or Amplifier With Wide Frequency Range
NASA Technical Reports Server (NTRS)
Kleinberg, L.; Sutton, J.
1987-01-01
Inductive and capacitive effects synthesized with feedback circuits. Oscillator/amplifier resistively tunable over wide frequency range. Feedback circuits containing operational amplifiers, resistors, and capacitors synthesize electrical effects of inductance and capacitance in parallel between input terminals. Synthetic inductance and capacitance, and, therefore, resonant frequency of input admittance, adjusted by changing potentiometer setting.
NASA Astrophysics Data System (ADS)
Tang, Panpan; Chen, Fulong; Jiang, Aihui; Zhou, Wei; Wang, Hongchao; Leucci, Giovanni; de Giorgi, Lara; Sileo, Maria; Luo, Rupeng; Lasaponara, Rosa; Masini, Nicola
2018-04-01
This study presents the potential of multi-frequency electromagnetic induction (EMI) in archaeology. EMI is currently less employed for archaeological prospection with respect to other geophysical techniques. It is capable of identifying shallow subsurface relics by simultaneously measuring the apparent electrical conductivity (ECa) and apparent magnetic susceptibility (MSa). Moreover, frequency sounding is able to quantify the depths and vertical shapes of buried structures. In this study, EMI surveys with five frequencies were performed at two heritage sites with different geological conditions: Han Hangu Pass characterized by cinnamon soil and Xishan Yang by sandy loams. In the first site, high ECa values were observed with variations in depth correlated to archaeological remains. Moreover, electromagnetic anomalies related to an ancient road and five kiln caves were identified. In the second site, an ancient tomb, indicating extremely low ECa and high MSa, was discovered. Its electromagnetic properties are attributed to the cavity and ferroferric oxides.
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Nakano, Yudai; Ando, Akira
2017-07-01
A radiofrequency (rf) inductively-coupled plasma source is operated with a frequency-tuning impedance matching system, where the rf frequency is variable in the range of 20-50 MHz and the maximum power is 100 W. The source consists of a 45 mm-diameter pyrex glass tube wound by an rf antenna and a solenoid providing a magnetic field strength in the range of 0-200 Gauss. A reflected rf power for no plasma case is minimized at the frequency of ˜25 MHz, whereas the frequency giving the minimum reflection with the high density plasma is about 28 MHz, where the density jump is observed when minimizing the reflection. A high density argon plasma above 1× {{10}12} cm-3 is successfully obtained in the source for the rf power of 50-100 W, where it is observed that an external magnetic field of a few tens of Gauss yields the highest plasma density in the present configuration. The frequency-tuning plasma source is applied to a compact and high-speed silicon etcher in an Ar-SF6 plasma; then the etching rate of 8~μ m min-1 is obtained for no bias voltage to the silicon wafer, i.e. for the case that a physical ion etching process is eliminated.
Ground EMI: designing the future trends in shallow depth surveying
NASA Astrophysics Data System (ADS)
Thiesson, J.; Schamper, C.; Simon, F. X.; Tabbagh, A.
2017-12-01
In theory, electromagnetic induction phenomena are driven by three fundamental properties (conductivity, susceptibility, permittivity). Since the 1930's, the developments of EMI prospecting were based on assumptions (Low frequency VS High frequency, low/high induction number). The design of the devices was focused on specific aims (diffusive/propagative, mapping/sounding) and, in the last thirty years the progressive transition from analog to numeric electronics completely enhanced the potency of measurements (multi-channeling, automatic positioning) a) as it did in model computation. In the field of metric sized devices for lower depths of investigation, the measurements have been first restricted to electrical conductivity. However, the measurement of the magnetic susceptibility proved to be possible thanks to in phase and quadrature separation, and the last developed commercially available multi-frequency and/or multi-receivers devices permit, thanks to accurate calibration, the measurements of the three properties with various geometries or frequencies simultaneously. The aims of this study is to present theoretical results in order to give hints for designing a device which can be optimal to evaluate the three properties and their frequency dependence.
High frequency inductive lamp and power oscillator
MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang
2000-01-01
A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.
Aerospace induction motor actuators driven from a 20-kHz power link
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1990-01-01
Aerospace electromechanical actuators utilizing induction motors are under development in sizes up to 40 kW. While these actuators have immediate application to the Advanced Launch System (ALS) program, several potential applications are currently under study including the Advanced Aircraft Program. Several recent advances developed for the Space Station Freedom have allowed induction motors to be selected as a first choice for such applications. Among these technologies are bi-directional electronics and high frequency power distribution techniques. Each of these technologies are discussed with emphasis on their impact upon induction motor operation.
2017-01-01
A key goal of HIV-1 vaccine development is the induction of broadly neutralizing antibodies (bnAbs) targeted to the vulnerable regions of the HIV envelope. BnAbs develop overtime in ∼50%of HIV-1-infected individuals. However, to date, no vaccines have induced bnAbs and few or none of these vaccine-elicited HIV-1 antibodies carry the high frequencies of V(D)J mutations characteristic of bnAbs. Do the high frequencies of mutations characteristic of naturally induced bnAbs represent a fundamental barrier to the induction of bnAbs by vaccines? Recent studies suggest that high frequencies of V(D)J mutations can be achieved by serial vaccination strategies. Rather, it appears that, in the absence of HIV-1 infection, physiologic immune tolerance controls, including a germinal center process termed affinity reversion, may limit vaccine-driven bnAb development by clonal elimination or selecting for mutations incompatible with bnAb activity. PMID:28630077
Capacitively-coupled inductive sensor
Ekdahl, Carl A.
1984-01-01
A capacitively coupled inductive shunt current sensor which utilizes capacitive coupling between flanges having an annular inductive channel formed therein. A voltage dividing capacitor is connected between the coupling capacitor and ground to provide immediate capacitive division of the output signal so as to provide a high frequency response of the current pulse to be detected. The present invention can be used in any desired outer conductor such as the outer conductor of a coaxial transmission line, the outer conductor of an electron beam transmission line, etc.
Ardila-Rey, Jorge Alfredo; Rojas-Moreno, Mónica Victoria; Martínez-Tarifa, Juan Manuel; Robles, Guillermo
2014-02-19
Partial discharge (PD) detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges.
Note: A pulsed laser ion source for linear induction accelerators
NASA Astrophysics Data System (ADS)
Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.
2015-01-01
We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 108 W/cm2. The laser-produced plasma supplied a large number of Cu+ ions (˜1012 ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm2 from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.
Induction launcher design considerations
NASA Technical Reports Server (NTRS)
Driga, M. D.; Weldon, W. F.
1989-01-01
New concepts in the design of induction accelerators and their power supplies for space and military applications are discussed. Particular attention is given to a piecewise-rising-frequency power supply in which each elementary generator (normal compulsator or rising frequency generator) has a different base frequency. A preliminary design of a coaxial induction accelerator for a hypersonic real gas facility is discussed to illustrate the concepts described.
Elbouchikhi, Elhoussin; Choqueuse, Vincent; Benbouzid, Mohamed
2016-07-01
Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Spatiotemporal analysis of brightness induction
McCourt, Mark E.
2011-01-01
Brightness induction refers to a class of visual illusions in which the perceived intensity of a region of space is influenced by the luminance of surrounding regions. These illusions are significant because they provide insight into the neural organization of the visual system. A novel quadrature-phase motion cancelation technique was developed to measure the magnitude of the grating induction brightness illusion across a wide range of spatial frequencies, temporal frequencies and test field heights. Canceling contrast is greatest at low frequencies and declines with increasing frequency in both dimensions, and with increasing test field height. Canceling contrast scales as the product of inducing grating spatial frequency and test field height (the number of inducing grating cycles per test field height). When plotted using a spatial axis which indexes this product, the spatiotemporal induction surfaces for four test field heights can be described as four partially overlapping sections of a single larger surface. These properties of brightness induction are explained in the context of multiscale spatial filtering. The present study is the first to measure the magnitude of grating induction as a function of temporal frequency. Taken in conjunction with several other studies (Blakeslee & McCourt, 2008; Robinson & de Sa, 2008; Magnussen & Glad, 1975) the results of this study illustrate that at least one form of brightness induction is very much faster than that reported by DeValois et al. (1986) and Rossi and Paradiso (1996), and are inconsistent with the proposition that brightness induction results from a slow “filling in” process. PMID:21763339
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.
2011-01-01
Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. While there are many coil geometries that can be employed to inductively accelerate a plasma, in this paper the discussion is limit to planar geometries where the coil take the shape of a flat spiral. A recent review of the developmental history of planar-geometry pulsed inductive thrusters can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT) and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD).
Arefin, Md Shamsul; Redouté, Jean-Michel; Yuce, Mehmet Rasit
2016-04-01
This paper presents an interface circuit for capacitive and inductive MEMS biosensors using an oscillator and a charge pump based frequency-to-voltage converter. Frequency modulation using a differential crossed coupled oscillator is adopted to sense capacitive and inductive changes. The frequency-to-voltage converter is designed with a negative feedback system and external controlling parameters to adjust the sensitivity, dynamic range, and nominal point for the measurement. The sensitivity of the frequency-to-voltage converter is from 13.28 to 35.96 mV/MHz depending on external voltage and charging current. The sensitivity ranges of the capacitive and inductive interface circuit are 17.08 to 54.4 mV/pF and 32.11 to 82.88 mV/mH, respectively. A capacitive MEMS based pH sensor is also connected with the interface circuit to measure the high acidic gastric acid throughout the digestive tract. The sensitivity for pH from 1 to 3 is 191.4 mV/pH with 550 μV(pp) noise. The readout circuit is designed and fabricated using the UMC 0.18 μm CMOS technology. It occupies an area of 0.18 mm (2) and consumes 11.8 mW.
NASA Astrophysics Data System (ADS)
Jain, P.; Recchia, M.; Cavenago, M.; Fantz, U.; Gaio, E.; Kraus, W.; Maistrello, A.; Veltri, P.
2018-04-01
Neutral beam injection (NBI) for plasma heating and current drive is necessary for International Thermonuclear Experimental reactor (ITER) tokamak. Due to its various advantages, a radio frequency (RF) driven plasma source type was selected as a reference ion source for the ITER heating NBI. The ITER relevant RF negative ion sources are inductively coupled (IC) devices whose operational working frequency has been chosen to be 1 MHz and are characterized by high RF power density (˜9.4 W cm-3) and low operational pressure (around 0.3 Pa). The RF field is produced by a coil in a cylindrical chamber leading to a plasma generation followed by its expansion inside the chamber. This paper recalls different concepts based on which a methodology is developed to evaluate the efficiency of the RF power transfer to hydrogen plasma. This efficiency is then analyzed as a function of the working frequency and in dependence of other operating source and plasma parameters. The study is applied to a high power IC RF hydrogen ion source which is similar to one simplified driver of the ELISE source (half the size of the ITER NBI source).
NASA Technical Reports Server (NTRS)
Christensen, J. L.; Herbert, A. L.
1973-01-01
Inductive loop has been added to commercially available call system fitted with earphone receiver. System transmits high frequency signals to nurse's receiver to announce patient's need for help without disturbing others.
The efficiency of photovoltaic cells exposed to pulsed laser light
NASA Technical Reports Server (NTRS)
Lowe, R. A.; Landis, G. A.; Jenkins, P.
1993-01-01
Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.
Suppressing beam-centroid motion in a long-pulse linear induction accelerator
NASA Astrophysics Data System (ADS)
Ekdahl, Carl; Abeyta, E. O.; Archuleta, R.; Bender, H.; Broste, W.; Carlson, C.; Cook, G.; Frayer, D.; Harrison, J.; Hughes, T.; Johnson, J.; Jacquez, E.; McCuistian, B. Trent; Montoya, N.; Nath, S.; Nielsen, K.; Rose, C.; Schulze, M.; Smith, H. V.; Thoma, C.; Tom, C. Y.
2011-12-01
The second axis of the dual-axis radiography of hydrodynamic testing (DARHT) facility produces up to four radiographs within an interval of 1.6μs. It does this by slicing four micropulses out of a 2-μs long electron beam pulse and focusing them onto a bremsstrahlung converter target. The 1.8-kA beam pulse is created by a dispenser cathode diode and accelerated to more than 16 MeV by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for multipulse flash radiography. High-frequency motion, such as from beam-breakup (BBU) instability, would blur the individual spots. Low-frequency motion, such as produced by pulsed-power variation, would produce spot-to-spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it. Using the methods discussed, we have reduced beam motion at the accelerator exit to less than 2% of the beam envelope radius for the high-frequency BBU, and less than 1/3 of the envelope radius for the low-frequency sweep.
An Induction Heating Method with Traveling Magnetic Field for Long Structure Metal
NASA Astrophysics Data System (ADS)
Sekine, Takamitsu; Tomita, Hideo; Obata, Shuji; Saito, Yukio
A novel dismantlable adhesion method for recycling operation of interior materials is proposed. This method is applied a high frequency induction heating and a thermoplastic adhesive. For an adhesion of interior material to long steel stud, a conventional spiral coil as like IH cooking heater gives inadequateness for uniform heating to the stud. Therefore, we have proposed an induction heating method with traveling magnetic field for perfect long structures bonding. In this paper, we describe on the new adhesion method using the 20kHz, three-phase 200V inverter and linear induction coil. From induction heating characteristics to thin steel plates and long studs, the method is cleared the usefulness for uniform heating to long structures.
NASA Technical Reports Server (NTRS)
Lowitz, Amy E.; Brown, Ari David; Stevenson, Thomas R.; Timbie, Peter T.; Wollack, Edward J.
2014-01-01
Kinetic inductance detectors (KIDs) are a promising technology for low-noise, highly-multiplexible mm- and submm-wave detection. KIDs have a number of advantages over other detector technologies, which make them an appealing option in the cosmic microwave background B-mode anisotropy search, including passive frequency domain multiplexing and relatively simple fabrication, but have suffered from challenges associated with noise control. Here we describe design and fabrication of a 20-pixel prototype array of lumped element molybdenum KIDs. We show Q, frequency and temperature measurements from the array under dark conditions. We also present evidence for a double superconducting gap in molybdenum.
Note: A pulsed laser ion source for linear induction accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H., E-mail: bamboobbu@hotmail.com; School of Physics, Peking University, Beijing 100871; Zhang, K.
2015-01-15
We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 10{sup 8} W/cm{sup 2}. The laser-produced plasma supplied a large number of Cu{sup +} ions (∼10{sup 12} ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm{sup 2} from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.
Effects of a chirped bias voltage on ion energy distributions in inductively coupled plasma reactors
NASA Astrophysics Data System (ADS)
Lanham, Steven J.; Kushner, Mark J.
2017-08-01
The metrics for controlling reactive fluxes to wafers for microelectronics processing are becoming more stringent as feature sizes continue to shrink. Recent strategies for controlling ion energy distributions to the wafer involve using several different frequencies and/or pulsed powers. Although effective, these strategies are often costly or present challenges in impedance matching. With the advent of matching schemes for wide band amplifiers, other strategies to customize ion energy distributions become available. In this paper, we discuss results from a computational investigation of biasing substrates using chirped frequencies in high density, electronegative inductively coupled plasmas. Depending on the frequency range and chirp duration, the resulting ion energy distributions exhibit components sampled from the entire frequency range. However, the chirping process also produces transient shifts in the self-generated dc bias due to the reapportionment of displacement and conduction with frequency to balance the current in the system. The dynamics of the dc bias can also be leveraged towards customizing ion energy distributions.
NASA Astrophysics Data System (ADS)
Kai, Chen; Sheng, Jin; Wang, Shun
2017-09-01
A new type of electromagnetic (EM) receiver has been developed by integrating four capacitive electrodes and a triaxial induction coil with an advanced data logger for tunnel exploration. The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of surface-tunnel-borehole EM detection for deep ore deposit mapping. The use of capacitive electrodes enables us to record the electrical field (E-field) signals from hard rock surfaces, which are high-resistance terrains. A compact triaxial induction coil integrates three independent induction coils for narrow-tunnel exploration applications. A low-time-drift-error clock source is developed for tunnel applications where GPS signals are unavailable. The three main components of our tunnel EM receiver are: (1) four capacitive electrodes for measuring the E-field signal without digging in hard rock regions; (2) a triaxial induction coil sensor for audio-frequency magnetotelluric and controlled-source audio-frequency magnetotelluric signal measurements; and (3) a data logger that allows us to record five-component MT signals with low noise levels, low time-drift-error for the clock source, and high dynamic range. The proposed tunnel EM receiver was successfully deployed in a mine that exhibited with typical noise characteristics. [Figure not available: see fulltext. Caption: The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of the surface-tunnel-borehole EM (STBEM) detection for deep ore deposit mapping. The use of a capacitive electrode enables us to record the electrical field (E-field) signals from hard rock surfaces. A compact triaxial induction coil integrated three induction coils, for narrow-tunnel applications.
Choi, Soon Gang; Wang, Qian; Jia, Jingjing; Chikina, Maria; Pincas, Hanna; Dolios, Georgia; Sasaki, Kazuki; Wang, Rong; Minamino, Naoto; Salton, Stephen R J; Sealfon, Stuart C
2016-09-30
Reproductive function is controlled by the pulsatile release of hypothalamic gonadotropin-releasing hormone (GnRH), which regulates the expression of the gonadotropins luteinizing hormone and FSH in pituitary gonadotropes. Paradoxically, Fshb gene expression is maximally induced at lower frequency GnRH pulses, which provide a very low average concentration of GnRH stimulation. We studied the role of secreted factors in modulating gonadotropin gene expression. Inhibition of secretion specifically disrupted gonadotropin subunit gene regulation but left early gene induction intact. We characterized the gonadotrope secretoproteome and global mRNA expression at baseline and after Gα s knockdown, which has been found to increase Fshb gene expression (1). We identified 1077 secreted proteins or peptides, 19 of which showed mRNA regulation by GnRH or/and Gα s knockdown. Among several novel secreted factors implicated in Fshb gene regulation, we focused on the neurosecretory protein VGF. Vgf mRNA, whose gene has been implicated in fertility (2), exhibited high induction by GnRH and depended on Gα s In contrast with Fshb induction, Vgf induction occurred preferentially at high GnRH pulse frequency. We hypothesized that a VGF-derived peptide might regulate Fshb gene induction. siRNA knockdown or extracellular immunoneutralization of VGF augmented Fshb mRNA induction by GnRH. GnRH stimulated the secretion of the VGF-derived peptide NERP1. NERP1 caused a concentration-dependent decrease in Fshb gene induction. These findings implicate a VGF-derived peptide in selective regulation of the Fshb gene. Our results support the concept that signaling specificity from the cell membrane GnRH receptor to the nuclear Fshb gene involves integration of intracellular signaling and exosignaling regulatory motifs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Wang, Qian; Jia, Jingjing; Chikina, Maria; Pincas, Hanna; Dolios, Georgia; Sasaki, Kazuki; Wang, Rong; Minamino, Naoto; Sealfon, Stuart C.
2016-01-01
Reproductive function is controlled by the pulsatile release of hypothalamic gonadotropin-releasing hormone (GnRH), which regulates the expression of the gonadotropins luteinizing hormone and FSH in pituitary gonadotropes. Paradoxically, Fshb gene expression is maximally induced at lower frequency GnRH pulses, which provide a very low average concentration of GnRH stimulation. We studied the role of secreted factors in modulating gonadotropin gene expression. Inhibition of secretion specifically disrupted gonadotropin subunit gene regulation but left early gene induction intact. We characterized the gonadotrope secretoproteome and global mRNA expression at baseline and after Gαs knockdown, which has been found to increase Fshb gene expression (1). We identified 1077 secreted proteins or peptides, 19 of which showed mRNA regulation by GnRH or/and Gαs knockdown. Among several novel secreted factors implicated in Fshb gene regulation, we focused on the neurosecretory protein VGF. Vgf mRNA, whose gene has been implicated in fertility (2), exhibited high induction by GnRH and depended on Gαs. In contrast with Fshb induction, Vgf induction occurred preferentially at high GnRH pulse frequency. We hypothesized that a VGF-derived peptide might regulate Fshb gene induction. siRNA knockdown or extracellular immunoneutralization of VGF augmented Fshb mRNA induction by GnRH. GnRH stimulated the secretion of the VGF-derived peptide NERP1. NERP1 caused a concentration-dependent decrease in Fshb gene induction. These findings implicate a VGF-derived peptide in selective regulation of the Fshb gene. Our results support the concept that signaling specificity from the cell membrane GnRH receptor to the nuclear Fshb gene involves integration of intracellular signaling and exosignaling regulatory motifs. PMID:27466366
Van De Vijver, Ellen; Van Meirvenne, Marc; Vandenhaute, Laura; Delefortrie, Samuël; De Smedt, Philippe; Saey, Timothy; Seuntjens, Piet
2015-07-01
In environmental assessments, the characterization of urban soils relies heavily on invasive investigation, which is often insufficient to capture their full spatial heterogeneity. Non-invasive geophysical techniques enable rapid collection of high-resolution data and provide a cost-effective alternative to investigate soil in a spatially comprehensive way. This paper presents the results of combining multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar to characterize a former garage site contaminated with petroleum hydrocarbons. The sensor combination showed the ability to identify and accurately locate building remains and a high-density soil layer, thus demonstrating the high potential to investigate anthropogenic disturbances of physical nature. In addition, a correspondence was found between an area of lower electrical conductivity and elevated concentrations of petroleum hydrocarbons, suggesting the potential to detect specific chemical disturbances. We conclude that the sensor combination provides valuable information for preliminary assessment of urban soils.
Kelsoe, Garnett; Haynes, Barton F
2018-05-01
A key goal of HIV-1 vaccine development is the induction of broadly neutralizing antibodies (bnAbs) targeted to the vulnerable regions of the HIV envelope. BnAbs develop over time in ∼50% of HIV-1-infected individuals. However, to date, no vaccines have induced bnAbs and few or none of these vaccine-elicited HIV-1 antibodies carry the high frequencies of V(D)J mutations characteristic of bnAbs. Do the high frequencies of mutations characteristic of naturally induced bnAbs represent a fundamental barrier to the induction of bnAbs by vaccines? Recent studies suggest that high frequencies of V(D)J mutations can be achieved by serial vaccination strategies. Rather, it appears that, in the absence of HIV-1 infection, physiologic immune tolerance controls, including a germinal center process termed affinity reversion, may limit vaccine-driven bnAb development by clonal elimination or selecting for mutations incompatible with bnAb activity. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
Planar Lithographed Superconducting LC Resonators for Frequency-Domain Multiplexed Readout Systems
NASA Astrophysics Data System (ADS)
Rotermund, K.; Barch, B.; Chapman, S.; Hattori, K.; Lee, A.; Palaio, N.; Shirley, I.; Suzuki, A.; Tran, C.
2016-07-01
Cosmic microwave background (CMB) polarization experiments are increasing the number of transition edge sensor (TES) bolometers to increase sensitivity. In order to maintain low thermal loading of the sub-Kelvin stage, the frequency-domain multiplexing (FDM) factor has to increase accordingly. FDM is achieved by placing TES bolometers in series with inductor-capacitor (LC) resonators, which select the readout frequency. The multiplexing factor can be raised with a large total readout bandwidth and small frequency spacing between channels. The inductance is kept constant to maintain a uniform readout bandwidth across detectors, while the maximum acceptable value is determined by bolometer stability. Current technology relies on commercially available ceramic chip capacitors. These have high scatter in their capacitance thereby requiring large frequency spacing. Furthermore, they have high equivalent series resistance (ESR) at higher frequencies and are time consuming and tedious to hand assemble via soldering. A solution lies in lithographed, planar spiral inductors (currently in use by some experiments) combined with interdigitated capacitors on a silicon (Si) substrate. To maintain reasonable device dimensions, we have reduced trace and gap widths of the LCs to 4 \\upmu m. We increased the inductance from 16 to 60 \\upmu H to achieve a higher packing density, a requirement for FDM systems with large multiplexing factors. Additionally, the Si substrate yields low ESR values across the entire frequency range and lithography makes mass production of LC pairs possible. We reduced mutual inductance between inductors by placing them in a checkerboard pattern with the capacitors, thereby increasing physical distances between adjacent inductors. We also reduce magnetic coupling of inductors with external sources by evaporating a superconducting ground plane onto the backside of the substrate. We report on the development of lithographed LCs in the 1-5 MHz range for use with FDM systems. These resonators will be used by CMB polarization experiments such as Polarbear-2, Simons Array, and SPT-3G. Existing FDM systems have multiplexing factors up to 16× . We report the extension to 40× , i.e., Polarbear-2, and 68× , i.e., SPT-3G. We present the design criteria of Polarbear-2's LC circuits, the fabrication techniques, and the testing. Concerns such as yield, accuracy in frequency, loss, and mutual inductance between spatially neighboring channels will be discussed.
Characterization of embroidered inductors
NASA Astrophysics Data System (ADS)
Roh, Jung-Sim; Chi, Yong-Seung; Lee, Jae-Hee; Nam, Sangwook; Kang, Tae Jin
2010-11-01
As the demand for wearable intelligent textile systems continues to expand, it is now essential to achieve a high-level of electronic circuit integration into textiles. By applying a commercial yarn manufacturing technique and a computer numerical control (CNC) embroidery process, metal composite embroidery yarns (MCEYs) comprised of three strands of fine metal filaments and polyester filaments, and embroidered circuits have been successfully produced. Using MCEYs, circular and square spiral inductors were embroidered on a textile substrate. Their inductive characteristics, i.e. inductance, self-resonance frequency, and quality factor, were investigated under three different environments, i.e. in free space, on a human body, and with a metal fabric ground. Their inductive characteristics could be easily modified by adjusting the circuit design. The validity of the MCEY inductors was demonstrated with Wheeler's formula and design equations for the MCEY inductors were proposed. When in contact with the human body, the self-resonance frequency of the circuit decreased but the inductance was not affected. Although the inductance and maximum quality factor decreased with a metal ground, the inductor gave a stable performance irrespective of the environment. The results also suggest that MCEY embroidery is a simple and eco-friendly process for producing flexible, light-weight, wearable circuitries in various designs.
Desantana, Josimari M; Santana-Filho, Valter J; Sluka, Kathleen A
2008-04-01
To investigate whether repeated administration of modulating frequency transcutaneous electric nerve stimulation (TENS) prevents development of analgesic tolerance. Knee joint inflammation (3% carrageenan and kaolin) was induced in rats. Either mixed or alternating frequency was administered daily (20min) for 2 weeks to the inflamed knee under light halothane anesthesia (1%-2%). Laboratory. Adult male Sprague-Dawley rats (N=36). Mixed- (4Hz and 100Hz) or alternating- (4Hz on 1 day; 100Hz on the next day) frequency TENS at sensory intensity and 100micros pulse duration. Paw and joint withdrawal thresholds to mechanical stimuli were assessed before induction of inflammation, and before and after daily application of TENS. The reduced paw and joint withdrawal thresholds that occur 24 hours after the induction of inflammation were significantly reversed by the first administration of TENS when compared with sham treatment or to the condition before TENS treatment, which was observed through day 9. By the tenth day, repeated daily administration of either mixed- or alternating-frequency TENS did not reverse the decreased paw and joint withdrawal thresholds. These data suggest that repeated administration of modulating frequency TENS leads to a development of opioid tolerance. However, this tolerance effect is delayed by approximately 5 days compared with administration of low- or high-frequency TENS independently. Clinically, we can infer that a treatment schedule of repeated daily TENS administration will result in a tolerance effect. Moreover, modulating low and high frequency TENS seems to produce a better analgesic effect and tolerance is slower to develop.
Ardila-Rey, Jorge Alfredo; Rojas-Moreno, Mónica Victoria; Martínez-Tarifa, Juan Manuel; Robles, Guillermo
2014-01-01
Partial discharge (PD) detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges. PMID:24556674
Variable-frequency synchronous motor drives for electric vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chalmers, B.J.; Musaba, L.; Gosden, D.F.
1996-07-01
The performance capability envelope of a variable-frequency, permanent-magnet synchronous motor drive with field weakening is dependent upon the product of maximum current and direct-axis inductance. To obtain a performance characteristic suitable for a typical electric vehicle drive, in which short-term increase of current is applied, it is necessary to design an optimum value of direct-axis inductance. The paper presents an analysis of a hybrid motor design which uses a two-part rotor construction comprising a surface-magnet part and an axially laminated reluctance part. This arrangement combines the properties of all other types of synchronous motor and offers a greater choice ofmore » design variables. It is shown that the desired form of performance may be achieved when the high-inductance axis of the reluctance part is arranged to lead the magnet axis by 90{degree} (elec.).« less
Variable-frequency synchronous motor drives for electric vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chalmers, B.J.; Musaba, L.; Gosden, D.F.
1995-12-31
The performance capability envelope of a variable-frequency, permanent-magnet synchronous motor drive with field weakening is dependent upon the product of maximum current and direct-axis inductance. To obtain a performance characteristic suitable for a typical electric vehicle drive, in which short-term increase of current is applied, it is necessary to design an optimum value of direct-axis inductance. The paper presents an analysis of a hybrid motor design which uses a two-part rotor construction comprising a surface-magnet part and an axially-laminated reluctance part. This arrangement combines the properties of all other types of synchronous motor and offers a greater choice of designmore » variables. It is shown that the desired form of performance may be achieved when the high-inductance axis of the reluctance part is arranged to lead the magnet axis by 90{degree} (elec.).« less
Francescangeli, Ermelinda; Grassi, Silvarosa; Pettorossi, Vito E; Goracci, Gianfrancesco
2002-11-01
LysoPAF acetyltransferase (lysoPAF-AT) and PAF-synthesizing phosphocholinetransferase (PAF-PCT) are the two enzymes which catalyze the final reactions for the synthesis of PAF. Their activities, assayed in the homogenate of rat brain stem slices and under their optimal conditions, increased 5 min after high frequency stimulation of vestibular afferents, inducing LTP in the medial vestibular nuclei. The activity of phosphatidylcholine-synthesizing phosphocholinetransferase, was not affected. Sixty minutes from the induction of LTP, PAF-PCT activity, but not that of lysoPAF-AT, was still significantly higher with respect to 5 min test stimulated control. We used AP-5 to verify whether this increase was strictly dependent upon LTP induction, which requires NMDA receptor activation. In AP-5 treated slices, lysoPAF-acetyltransferase and PAF-synthesizing phosphocholinetransferase activities increased, but they were reduced after high frequency stimulation under AP-5. In conclusion, we have demonstrated that the activities of PAF-synthesizing enzymes are activated soon after the induction of LTP and that this effect is linked to the activation of NMDA-receptors. We suggest that the enzyme activation by AP-5, preventing LTP, might be due to glutamate enhancement but, in neurons showing LTP and under normal conditions, the activation of potentiation mechanisms is critical for the enhancement of enzyme activities.
Application of sub-micrometer patterned permalloy thin film in tunable radio frequency inductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, B.M. Farid; Divan, Ralu; Rosenmann, Daniel
Electrical tunable meander line inductor using coplanar waveguide structures with patterned permalloy (Py) thin film has been designed and implemented in this paper. High resistivity Si substrate is used to reduce the dielectric loss from the substrate. Inductor is implemented with a 60 nm thick Py deposited and patterned on top of the gold meander line, and Py film is patterned with dimension of 440 nm 10 lm to create the shape anisotropy field, which in turn increases the FMR frequency. Compared to a regular meanderline inductor without the application of sub-micrometer patterned Py thin film, the inductance density hasmore » been increased to 20% for the implemented inductor with patterned Py. Measured FMR frequency of the patterned Py is 4.51 GHz without the application of any external magnetic field. This has enabled the inductor application in the practical circuit boards, where the large external magnet is unavailable. Inductance tunability of the implemented inductor is demonstrated by applying a DC current. Applied DC current creates a magnetic field along the hard axis of the patterned Py thin film, which changes the magnetic moment of the thin film and thus, decreases the inductance of the line. Measured results show that the inductance density of the inductor can be varied 5% by applying 300 mA DC current, larger inductance tunability is achievable by increasing the thickness of Py film. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4918766]« less
Modeling of power control schemes in induction cooking devices
NASA Astrophysics Data System (ADS)
Beato, Alessio; Conti, Massimo; Turchetti, Claudio; Orcioni, Simone
2005-06-01
In recent years, with remarkable advancements of power semiconductor devices and electronic control systems, it becomes possible to apply the induction heating technique for domestic use. In order to achieve the supply power required by these devices, high-frequency resonant inverters are used: the force commutated, half-bridge series resonant converter is well suited for induction cooking since it offers an appropriate balance between complexity and performances. Power control is a key issue to attain efficient and reliable products. This paper describes and compares four power control schemes applied to the half-bridge series resonant inverter. The pulse frequency modulation is the most common control scheme: according to this strategy, the output power is regulated by varying the switching frequency of the inverter circuit. Other considered methods, originally developed for induction heating industrial applications, are: pulse amplitude modulation, asymmetrical duty cycle and pulse density modulation which are respectively based on variation of the amplitude of the input supply voltage, on variation of the duty cycle of the switching signals and on variation of the number of switching pulses. Each description is provided with a detailed mathematical analysis; an analytical model, built to simulate the circuit topology, is implemented in the Matlab environment in order to obtain the steady-state values and waveforms of currents and voltages. For purposes of this study, switches and all reactive components are modelled as ideal and the "heating-coil/pan" system is represented by an equivalent circuit made up of a series connected resistance and inductance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, G.; Johnson, B. R.; Abitbol, M. H.
Aluminum lumped-element kinetic inductance detectors (LEKIDs) sensitive to millimeter-wave photons have been shown to exhibit high quality factors, making them highly sensitive and multiplexable. The superconducting gap of aluminum limits aluminum LEKIDs to photon frequencies above 100 GHz. Manganese-doped aluminum (Al-Mn) has a tunable critical temperature and could therefore be an attractive material for LEKIDs sensitive to frequencies below 100 GHz if the internal quality factor remains sufficiently high when manganese is added to the film. To investigate, we measured some of the key properties of Al-Mn LEKIDs. A prototype eight-element LEKID array was fabricated using a 40 nm thickmore » film of Al-Mn deposited on a 500 μm thick high-resistivity, float-zone silicon substrate. The manganese content was 900 ppm, the measured T c = 694 ± 1mK, and the resonance frequencies were near 150 MHz. Using measurements of the forward scattering parameter S 21 at various bath temperatures between 65 and 250 mK, we determined that the Al-Mn LEKIDs we fabricated have internal quality factors greater than 2 × 10 5, which is high enough for millimeter-wave astrophysical observations. In the dark conditions under which these devices were measured, the fractional frequency noise spectrum shows a shallow slope that depends on bath temperature and probe tone amplitude, which could be two-level system noise. In conclusion, the anticipated white photon noise should dominate this level of low-frequency noise when the detectors are illuminated with millimeter-waves in future measurements. The LEKIDs responded to light pulses from a 1550 nm light-emitting diode, and we used these light pulses to determine that the quasiparticle lifetime is 60 μs.« less
Jones, G.; Johnson, B. R.; Abitbol, M. H.; ...
2017-05-29
Aluminum lumped-element kinetic inductance detectors (LEKIDs) sensitive to millimeter-wave photons have been shown to exhibit high quality factors, making them highly sensitive and multiplexable. The superconducting gap of aluminum limits aluminum LEKIDs to photon frequencies above 100 GHz. Manganese-doped aluminum (Al-Mn) has a tunable critical temperature and could therefore be an attractive material for LEKIDs sensitive to frequencies below 100 GHz if the internal quality factor remains sufficiently high when manganese is added to the film. To investigate, we measured some of the key properties of Al-Mn LEKIDs. A prototype eight-element LEKID array was fabricated using a 40 nm thickmore » film of Al-Mn deposited on a 500 μm thick high-resistivity, float-zone silicon substrate. The manganese content was 900 ppm, the measured T c = 694 ± 1mK, and the resonance frequencies were near 150 MHz. Using measurements of the forward scattering parameter S 21 at various bath temperatures between 65 and 250 mK, we determined that the Al-Mn LEKIDs we fabricated have internal quality factors greater than 2 × 10 5, which is high enough for millimeter-wave astrophysical observations. In the dark conditions under which these devices were measured, the fractional frequency noise spectrum shows a shallow slope that depends on bath temperature and probe tone amplitude, which could be two-level system noise. In conclusion, the anticipated white photon noise should dominate this level of low-frequency noise when the detectors are illuminated with millimeter-waves in future measurements. The LEKIDs responded to light pulses from a 1550 nm light-emitting diode, and we used these light pulses to determine that the quasiparticle lifetime is 60 μs.« less
Bhaumik, G; Dass, D; Bhattacharyya, D; Sharma, Y K; Singh, S B
2013-01-01
Acute exposure to hypobaric hypoxia induces the changes in autonomic control of heart rate. Due to emergencies or war like conditions, rapid deployment of Indian military personnel into high altitude frequently occurs. Rapid deployment to high altitude soldiers are at risk of developing high altitude sickness. The present study was conducted to evaluate the acute exposure to high altitude hypobaric hypoxia (3500 m altitude) on the autonomic nervous control of heart rate in Indian military personnel during first week of acclimatization Indices of heart rate variability (viz; R-R interval, total power, low frequency, high frequency, ratio of low to high frequency) and pulse arterial oxygen saturation were measured at sea level and 3500m altitude. Power spectrum of heart rate variability was quantified by low frequency (LF: 0.04-0.15 Hz) and high frequency (HF: 0.15-0.5 Hz) widths. The ratio of LF to HF was also assessed as an index of the sympathovagal balance. Mean R-R interval decreased significantly on day 2 on induction to altitude which tended to increase on day 5. Total power (TP) decreased high altitude and tended to recover within a week. Both HF and LF power showed decrement at 3500m in comparison to sea level. The ratio of LF to HF (LF/HF) at 3500m was significantly higher at 3500m. SpO2 values decreased significantly (P < 0.05) at high altitude on day-2 which increased on day-5. We conclude that autonomic control of the heart rate measured by heart rate variability was altered on acute induction to 3500m which showed a significant decrease in parasympathetic tone and increase in sympathetic tone, then acclimatization seems to be characterized by progressive shift toward a higher parasympathetic tone.
Modelling high frequency phenomena in the rotor of induction motors under no-load test conditions
NASA Astrophysics Data System (ADS)
Boglietti, Aldo; Bottauscio, Oriano; Chiampi, Mario; Lazzari, Mario
2003-01-01
The paper aims to deep the electromagnetic phenomena in the rotor of induction motors produced during the no-load test by the high-order harmonics of the spatial distribution of magnetic flux. The analysis is carried out by a flux driven finite element procedure, which can take into account the hysteresis of magnetic material, the induced currents in rotor cage and the eddy currents in the laminations. The computed results, including losses and local waveforms of electrical and magnetic quantities, are finally discussed.
Development of very small-diameter, inductively coupled magnetized plasma device
NASA Astrophysics Data System (ADS)
Kuwahara, D.; Mishio, A.; Nakagawa, T.; Shinohara, S.
2013-10-01
In order to miniaturize a high-density, inductively coupled magnetized plasma or helicon plasma to be applied to, e.g., an industrial application and an electric propulsion field, small helicon device has been developed. The specifications of this device along with the experimental results are described. We have succeeded in generating high-density (˜1019 m-3) plasmas using quartz tubes with very small diameters of 10 and 20 mm, with a radio frequency power ˜1200 and 700 W, respectively, in the presence of the magnetic field less than 1 kG.
Development of very small-diameter, inductively coupled magnetized plasma device.
Kuwahara, D; Mishio, A; Nakagawa, T; Shinohara, S
2013-10-01
In order to miniaturize a high-density, inductively coupled magnetized plasma or helicon plasma to be applied to, e.g., an industrial application and an electric propulsion field, small helicon device has been developed. The specifications of this device along with the experimental results are described. We have succeeded in generating high-density (~10(19) m(-3)) plasmas using quartz tubes with very small diameters of 10 and 20 mm, with a radio frequency power ~1200 and 700 W, respectively, in the presence of the magnetic field less than 1 kG.
NASA Astrophysics Data System (ADS)
Yamada, Y.; Ishino, H.; Kibayashi, A.; Kida, Y.; Hidehira, N.; Komatsu, K.; Hazumi, M.; Sato, N.; Sakai, K.; Yamamori, H.; Hirayama, F.; Kohjiro, S.
2018-04-01
We present the development of a frequency-domain multiplexing readout of kinetic inductance detectors (KIDs) for pulse signals with a self-trigger system. The KIDs consist of an array of superconducting resonators that have different resonant frequencies individually, allowing us to read out multiple channels in the frequency domain with a single wire using a microwave-frequency comb. The energy deposited to the resonators break Cooper pairs, changing the kinetic inductance and, hence, the amplitude and the phase of the probing microwaves. For some applications such as X-ray detections, the deposited energy is detected as a pulse signal shaped by the time constants of the quasiparticle lifetime, the resonator quality factor, and the ballistic phonon lifetime in the substrate, ranging from microseconds to milliseconds. A readout system commonly used converts the frequency-domain data to the time-domain data. For the short pulse signals, the data rate may exceed the data transfer bandwidth, as the short time constant pulses require us to have a high sampling rate. In order to overcome this circumstance, we have developed a KID readout system that contains a self-trigger system to extract relevant signal data and reduces the total data rate with a commercial off-the-shelf FPGA board. We have demonstrated that the system can read out pulse signals of 15 resonators simultaneously with about 10 Hz event rate by irradiating α particles from ^{241} Am to the silicon substrate on whose surface aluminum KID resonators are formed.
NASA Astrophysics Data System (ADS)
Che, George
The inductance of a conductor expresses its tendency to oppose a change in current flowing through it. For superconductors, in addition to the familiar magnetic inductance due to energy stored in the magnetic field generated by this current, kinetic inductance due to inertia of charge carriers is a significant and often dominant contribution to total inductance. Devices based on modifying the kinetic inductance of thin film superconductors have widespread application to millimeter-wave astronomy. Lithographically patterning such a film into a high quality factor resonator produces a high sensitivity photodetector known as a kinetic inductance detector (KID), which is sensitive to frequencies above the superconducting energy gap of the chosen material. Inherently multiplexable in the frequency domain and relatively simple to fabricate, KIDs pave the way to the large format focal plane array instruments necessary to conduct the next generation of cosmic microwave background (CMB), star formation, and galaxy evolution studies. In addition, non-linear kinetic inductance can be exploited to develop traveling wave kinetic inductance parametric amplifiers (TKIPs) based on superconducting delay lines to read out these instruments. I present my contributions to both large and small scale collaborative efforts to develop KID arrays, spectrometers integrated with KIDs, and TKIPs. I optimize a dual polarization TiN KID absorber for the next generation Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry, which is designed to investigate the role magnetic fields play in star formation. As part of an effort to demonstrate aluminum KIDs on sky for CMB polarimetry, I fabricate devices for three design variants. SuperSpec and WSpec are respectively the on-chip and waveguide implementations of a filter bank spectrometer concept designed for survey spectroscopy of high redshift galaxies. I provide a robust tool for characterizing the performance of all SuperSpec devices and demonstrate basic functionality of the first WSpec prototype. As part of an effort to develop the first W-Band (75-110 GHz) TKIP, I construct a cryogenic waveguide feedthrough, which enhances the Astronomical Instrumentation Laboratory's capability to test W-Band devices in general. These efforts contribute to the continued maturation of these kinetic inductance technologies, which will usher in a new era of millimeter-wave astronomy.
Pulsed laser illumination of photovoltaic cells
NASA Technical Reports Server (NTRS)
Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.
1995-01-01
In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.
Pulsed laser illumination of photovoltaic cells
NASA Technical Reports Server (NTRS)
Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.
1994-01-01
In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. Both the radio-frequency (RF) and induction FEL provide FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL pulse format.
Experimental setup for the measurement of induction motor cage currents
NASA Astrophysics Data System (ADS)
Bottauscio, Oriano; Chiampi, Mario; Donadio, Lorenzo; Zucca, Mauro
2005-04-01
An experimental setup for measurement of the currents flowing in the rotor bars of induction motors during synchronous no-load tests is described in the paper. The experimental verification of the high-frequency phenomena in the rotor cage is fundamental for a deep insight of the additional loss estimation by numerical methods. The attention is mainly focused on the analysis and design of the transducers developed for the cage current measurement.
Gomes, Ana L.; Kinchesh, Paul; Kersemans, Veerle; Allen, Philip D.; Smart, Sean C.
2016-01-01
Purpose To develop an MRI-compatible resistive heater, using high frequency alternating current (AC), for temperature maintenance of anaesthetised animals. Materials and Methods An MRI-compatible resistive electrical heater was formed from narrow gauge wire connected to a high frequency (10–100 kHz) AC power source. Multiple gradient echo images covering a range of echo times, and pulse-acquire spectra were acquired with the wire heater powered using high frequency AC or DC power sources and without any current flowing in order to assess the sensitivity of the MRI acquisitions to the presence of current flow through the heater wire. The efficacy of temperature maintenance using the AC heater was assessed by measuring rectal temperature immediately following induction of general anaesthesia for a period of 30 minutes in three different mice. Results Images and spectra acquired in the presence and absence of 50–100 kHz AC through the wire heater were indistinguishable, whereas DC power created field shifts and lineshape distortions. Temperature lost during induction of anaesthesia was recovered within approximately 20 minutes and a stable temperature was reached as the mouse’s temperature approached the set target. Conclusion The AC-powered wire heater maintains adequate heat input to the animal to maintain body temperature, and does not compromise image quality. PMID:27806062
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayadev, T.S.
1976-02-01
The application of induction generators in Wind Energy Conversion Systems (WECS) is described. The conventional induction generator, which is an induction machine with a squirrel cage rotor, had been used in large wind power plants in Europe, but has not caught much attention until now by designers of large systems in this country. The induction generator with a squirrel cage rotor is described and useful design techniques to build induction generators for wind energy application are outlined. The Double Output Induction Generator (DOIG) - so called because power is fed into the grid from the stator, as well as themore » rotor is described. It is a wound rotor induction machine with power electronics to convert rotor slip frequency power to that of line frequency.« less
Modelling switching-time effects in high-frequency power conditioning networks
NASA Technical Reports Server (NTRS)
Owen, H. A.; Sloane, T. H.; Rimer, B. H.; Wilson, T. G.
1979-01-01
Power transistor networks which switch large currents in highly inductive environments are beginning to find application in the hundred kilohertz switching frequency range. Recent developments in the fabrication of metal-oxide-semiconductor field-effect transistors in the power device category have enhanced the movement toward higher switching frequencies. Models for switching devices and of the circuits in which they are imbedded are required to properly characterize the mechanisms responsible for turning on and turning off effects. Easily interpreted results in the form of oscilloscope-like plots assist in understanding the effects of parametric studies using topology oriented computer-aided analysis methods.
DeSantana, Josimari M.; Santana-Filho, Valter J.; Sluka, Kathleen A.
2009-01-01
Objective To investigate whether repeated administration of modulating frequency transcutaneous electric nerve stimulation (TENS) prevents development of analgesic tolerance. Design Knee joint inflammation (3% carrageenan and kaolin) was induced in rats. Either mixed or alternating frequency was administered daily (20min) for 2 weeks to the inflamed knee under light halothane anesthesia (1%–2%). Setting Laboratory. Animals Adult male Sprague-Dawley rats (N=36). Intervention Mixed- (4Hz and 100Hz) or alternating- (4Hz on 1 day; 100Hz on the next day) frequency TENS at sensory intensity and 100μs pulse duration. Main Outcome Measures Paw and joint withdrawal thresholds to mechanical stimuli were assessed before induction of inflammation, and before and after daily application of TENS. Results The reduced paw and joint withdrawal thresholds that occur 24 hours after the induction of inflammation were significantly reversed by the first administration of TENS when compared with sham treatment or to the condition before TENS treatment, which was observed through day 9. By the tenth day, repeated daily administration of either mixed- or alternating-frequency TENS did not reverse the decreased paw and joint withdrawal thresholds. Conclusions These data suggest that repeated administration of modulating frequency TENS leads to a development of opioid tolerance. However, this tolerance effect is delayed by approximately 5 days compared with administration of low- or high-frequency TENS independently. Clinically, we can infer that a treatment schedule of repeated daily TENS administration will result in a tolerance effect. Moreover, modulating low and high frequency TENS seems to produce a better analgesic effect and tolerance is slower to develop. PMID:18374009
Surface Fatigue Resistance with Induction Hardening
NASA Technical Reports Server (NTRS)
Townsend, Dennis; Turza, Alan; Chapman, Mike
1996-01-01
Induction hardening has been used for some years to harden the surface and improve the strength and service life of gears and other components. Many applications that employ induction hardening require a relatively long time to finish the hardening process and controlling the hardness of the surface layer and its depth often was a problem. Other surface hardening methods, ie., carbonizing, take a very long time and tend to cause deformations of the toothing, whose elimination requires supplementary finishing work. In double-frequency induction hardening, one uses a low frequency for the preheating of the toothed wheel and a much higher frequency for the purpose of rapidly heating the surface by way of surface hardening.
Multilevel DC Link Inverter for Brushless Permanent Magnet Motors with Very Low Inductance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, G.J.
2001-10-29
Due to their long effective air gaps, permanent magnet motors tend to have low inductance. The use of ironless stator structure in present high power PM motors (several tens of kWs) reduces the inductance even further (< 100 {micro}H). This low inductance imposes stringent current regulation demands for the inverter to obtain acceptable current ripple. An analysis of the current ripple for these low inductance brushless PM motors shows that a standard inverter with the most commonly used IGBT switching devices cannot meet the current regulation demands and will produce unacceptable current ripples due to the IGBT's limited switching frequency.more » This paper introduces a new multilevel dc link inverter, which can dramatically reduce the current ripple for brushless PM motor drives. The operating principle and design guidelines are included.« less
Coherent inductive communications link for biomedical applications
NASA Technical Reports Server (NTRS)
Hogrefe, Arthur F. (Inventor); Radford, Wade E. (Inventor)
1985-01-01
A two-way coherent inductive communications link between an external transceiver and an internal transceiver located in a biologically implanted programmable medical device. Digitally formatted command data and programming data is transmitted to the implanted medical device by frequency shift keying the inductive communications link. Internal transceiver is powered by the inductive field between internal and external transceivers. Digitally formatted data is transmitted to external transceiver by internal transceiver amplitude modulating inductive field. Immediate verification of the establishment of a reliable communications link is provided by determining existence of frequency lock and bit phase lock between internal and external transceivers.
NASA Astrophysics Data System (ADS)
Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan
2017-05-01
In this work, we investigate a method proposed for vessel detection and coil powering in an all-surface inductive heating system composed of outer squircle coils. Besides conventional circular coils, coils with different shapes such as outer squircle coils are used for and enable efficient all-surface inductive heating. Validity of the method, which relies on measuring inductance and resistance values of a loaded coil at different frequencies, is experimentally demonstrated for a coil with shape different from conventional circular coil. Simple setup was constructed with a small coil to model an all-surface inductive heating system. Inductance and resistance maps were generated by measuring coil's inductance and resistance values at different frequencies loaded by a plate made of different materials and located at various positions. Results show that in an induction hob for various coil geometries it is possible to detect a vessel's presence, to identify its material type and to specify its position on the hob surface by considering inductance and resistance of the coil measured on at least two different frequencies. The studied method is important in terms of enabling safe, efficient and user flexible heating in an all-surface inductive heating system by automatically detecting the vessel's presence and powering on only the coils that are loaded by the vessel with predetermined current levels.
A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing
NASA Astrophysics Data System (ADS)
Shao, Si-Yu; Sun, Wen-Jun; Yan, Ru-Qiang; Wang, Peng; Gao, Robert X.
2017-11-01
Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by-layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierarchical representations, which are suitable for fault classification, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.
Method and apparatus for radio frequency ceramic sintering
Hoffman, Daniel J.; Kimrey, Jr., Harold D.
1993-01-01
Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents.
Method and apparatus for radio frequency ceramic sintering
Hoffman, D.J.; Kimrey, H.D. Jr.
1993-11-30
Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents. 6 figures.
Markovian modeling of classical thermal noise in two inductively coupled wire loops
NASA Astrophysics Data System (ADS)
Gillespie, Daniel T.
1997-03-01
Continuous Markov process theory is used to model classical thermal noise in two wire loops of resistances R1 and R2 , self-inductances L1 and L2 , and absolute temperature T, which are coupled through their mutual inductance M. It is shown that even though the currents I1 (t) and I2 (t) in the two loops become progressively noisier as M increases from 0 toward its upper bound (L1 L2 )1/2 , the fluctuation-dissipation, Nyquist, and conductance formulas all remain unchanged. But changes do occur in the spectral density functions of the currents Ii (t). Exact formulas for those functions are developed, and two special cases are examined in detail. (i) In the identical loop case (R1 =R2 =R and L1 =L2 =L), the M=0 'knee' at frequency R/2πL in the spectral density function of Ii (t), below which that function has slope 0 and above which it has slope -2, is found to split when M>0 into two knees at frequencies R/[2π(L+/-M)]. The noise remains white, but surprisingly slightly suppressed, at frequencies below R/[2π(L+M)], and it remains 1/f2 at frequencies above R/[2π(L-M)]. In between the two knee frequencies a rough '1/f-type' noise behavior is exhibited. The sum and difference currents I+/- (t)≡I1 (t)+/-I2 (t) are found to behave like thermal currents in two uncoupled loops with resistances R, self-inductances (L+/-M), and temperatures 2T. In the limit M-->L, I+ (t) approaches the thermal current in a loop of resistance R and self-inductance L at temperature T, while I- (t) approaches (4kT/R)1/2 times Gaussian white noise. (ii) In the weakly coupled highly dissimilar loop case (R1 <
Approximate analytical solution for induction heating of solid cylinders
Jankowski, Todd Andrew; Pawley, Norma Helen; Gonzales, Lindsey Michal; ...
2015-10-20
An approximate solution to the mathematical model for induction heating of a solid cylinder in a cylindrical induction coil is presented here. The coupled multiphysics model includes equations describing the electromagnetic field in the heated object, a heat transfer simulation to determine temperature of the heated object, and an AC circuit simulation of the induction heating power supply. A multiple-scale perturbation method is used to solve the multiphysics model. The approximate analytical solution yields simple closed-form expressions for the electromagnetic field and heat generation rate in the solid cylinder, for the equivalent impedance of the associated tank circuit, and formore » the frequency response of a variable frequency power supply driving the tank circuit. The solution developed here is validated by comparing predicted power supply frequency to both experimental measurements and calculated values from finite element analysis for heating of graphite cylinders in an induction furnace. The simple expressions from the analytical solution clearly show the functional dependence of the power supply frequency on the material properties of the load and the geometrical characteristics of the furnace installation. In conclusion, the expressions developed here provide physical insight into observations made during load signature analysis of induction heating.« less
Q factor of megahertz LC circuits based on thin films of YBaCuO high-temperature superconductor
NASA Astrophysics Data System (ADS)
Masterov, D. V.; Pavlov, S. A.; Parafin, A. E.
2008-05-01
High-frequency properties of resonant structures based on thin films of YBa2Cu3O7 δ high-temperature superconductor are studied experimentally in the frequency range 30 100 MHz. The structures planar induction coils with a self-capacitance fabricated on neodymium gallate and lanthanum aluminate substrates. The unloaded Q factor of the circuits exceeds 2 × 105 at 77 K and 40 MHz. Possible loss mechanisms that determine the Q factor of the superconducting resonant structures in the megahertz range are considered.
Design and Optimization of a 3-Coil Inductive Link for Efficient Wireless Power Transmission.
Kiani, Mehdi; Jow, Uei-Ming; Ghovanloo, Maysam
2011-07-14
Inductive power transmission is widely used to energize implantable microelectronic devices (IMDs), recharge batteries, and energy harvesters. Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key parameters in wireless links, which affect the energy source specifications, heat dissipation, power transmission range, and interference with other devices. To improve the PTE, a 4-coil inductive link has been recently proposed. Through a comprehensive circuit based analysis that can guide a design and optimization scheme, we have shown that despite achieving high PTE at larger coil separations, the 4-coil inductive links fail to achieve a high PDL. Instead, we have proposed a 3-coil inductive power transfer link with comparable PTE over its 4-coil counterpart at large coupling distances, which can also achieve high PDL. We have also devised an iterative design methodology that provides the optimal coil geometries in a 3-coil inductive power transfer link. Design examples of 2-, 3-, and 4-coil inductive links have been presented, and optimized for 13.56 MHz carrier frequency and 12 cm coupling distance, showing PTEs of 15%, 37%, and 35%, respectively. At this distance, the PDL of the proposed 3-coil inductive link is 1.5 and 59 times higher than its equivalent 2- and 4-coil links, respectively. For short coupling distances, however, 2-coil links remain the optimal choice when a high PDL is required, while 4-coil links are preferred when the driver has large output resistance or small power is needed. These results have been verified through simulations and measurements.
Op-amp gyrator simulates high Q inductor
NASA Technical Reports Server (NTRS)
Sutherland, W. C.
1977-01-01
Gyrator circuit consisting of dual operational amplifier and four resistors inverts impedance of capacitor to simulate inductor. Synthetic inductor has high Q factor, good stability, wide bandwidth, and easily determined value of inductance that is independent of frequency. It readily lends itself to integrated-circuit applications, including filter networks.
NASA Astrophysics Data System (ADS)
He, Ming; Wang, Qiang; Liu, Xin'an; Shi, Chunyang; Liu, Tie; He, Jicheng
2017-04-01
For further lowering inclusions and improving the quality of steel, a new electromagnetic steel-teeming technology based on electromagnetic induction heating was proposed. To assess the proposed technology, an experimental platform that imitates the actual production condition of steelmakers was established. High temperature experiments were performed to investigate the melting length of Fe-C alloy under different power and frequency conditions. The heating effect was analyzed, and the method of magnetic shielding to reduce the power loss of power supply was put forward. The results show that when the power is 40 kW and frequency is 25 kHz, the melting length of the Fe-C alloy is 89.2 mm in 120 s, which meets the requirements of steel teeming. In addition, when magnetic shielding material is installed under the induction coil, the power loss is reduced by about 64 %, effectively improving the heating effect of power supply.
NASA Astrophysics Data System (ADS)
Beggan, C.; Gabillard, T.; Swan, A.; Flower, S. M.; Thomson, A. W.
2012-12-01
In June 2012, the British Geological Survey Geomagnetism team installed two high frequency (100 Hz) induction coil magnetometers at the Eskdalemuir Observatory, in the Scottish Borders of the United Kingdom. The induction coils permit us to measure the very rapid changes of the magnetic field. The Eskdalemuir Observatory is one of the longest running geophysical sites in the UK (beginning operation in 1904) and is located in a rural valley with a quiet magnetic environment. The data output from the induction coils are digitized and logged onsite before being collected once per hour and sent to the Edinburgh office via the Internet. We intend to run the coils as a long term experiment. We present initial results from first five months of data. Analysis of spectrograms and power spectral density plots in the frequency band of 3-40 Hz from the coils show diffuse bands of peak power around 7.8 Hz, 14.3 Hz, 20.8 Hz, 27 Hz, 34 Hz and 39Hz related to the global Schumann resonances. We also detect a strong narrow peak at 25 Hz, which is a harmonic of the UK electrical power system. There are a number of features in the data that we wish to investigate, including the diurnal and seasonal variation of the Schumann resonances. For example, it has been suggested that lightning activity is related to climate variability in the tropics and that perhaps Madden-Julian Oscillations (MJO) or El Niño Southern Oscillation (ENSO)-like correlations are detectable within the data. On longer timescales, we will look for solar cycle and climate variations. We also wish to note that the data is freely available on request to the community.
Terhune, Devin Blair; Cardeña, Etzel; Lindgren, Magnus
2011-10-01
Spontaneous dissociative alterations in awareness and perception among highly suggestible individuals following a hypnotic induction may result from disruptions in the functional coordination of the frontal-parietal network. We recorded EEG and self-reported state dissociation in control and hypnosis conditions in two sessions with low and highly suggestible participants. Highly suggestible participants reliably experienced greater state dissociation and exhibited lower frontal-parietal phase synchrony in the alpha2 frequency band during hypnosis than low suggestible participants. These findings suggest that highly suggestible individuals exhibit a disruption of the frontal-parietal network that is only observable following a hypnotic induction. Copyright © 2011 Society for Psychophysiological Research.
Detection of NMR signals with a radio-frequency atomic magnetometer.
Savukov, I M; Seltzer, S J; Romalis, M V
2007-04-01
We demonstrate detection of proton NMR signals with a radio-frequency (rf) atomic magnetometer tuned to the NMR frequency of 62 kHz. High-frequency operation of the atomic magnetometer makes it relatively insensitive to ambient magnetic field noise. We obtain magnetic field sensitivity of 7 fT/Hz1/2 using only a thin aluminum shield. We also derive an expression for the fundamental sensitivity limit of a surface inductive pick-up coil as a function of frequency and find that an atomic rf magnetometer is intrinsically more sensitive than a coil of comparable size for frequencies below about 50 MHz.
Cold rolled Fe-6.5 wt. % Si alloy foils with high magnetic induction
NASA Astrophysics Data System (ADS)
Fang, X. S.; Liang, Y. F.; Ye, F.; Lin, J. P.
2012-05-01
Fe-6.5 wt. % Si alloy foils with 95 mm in width and 0.30 mm in thickness were successfully fabricated by cold rolling process. Excellent magnetic properties (Hc = 20.4 A/m, µm = 22 200, and Bs = 1.69 T) were obtained after annealing at the temperature of 1273 K for 1.5 h. This high magnetic induction is considered to be due to the formation of {hk0}<001> textures. Cut cores from this material have a very low iron loss at frequencies from 400 Hz to 10 kHz.
Repetitive transcranial magnetic stimulation modulates the impact of a negative mood induction
Lacomblé, Lylis; Meyer, Thomas; Schutter, Dennis J.L.G.; Gielkens, Tom; Becker, Eni S.; Tendolkar, Indira; van Eijndhoven, Philip
2017-01-01
Abstract High frequency repetitive Transcranial Magnetic Stimulation (rTMS) over the left dorsolateral prefrontal cortex (DLPFC) has been found to alleviate depressive symptoms. However, the mechanisms driving these effects are still poorly understood. In the current study, we tested the idea that this intervention protects against negative mood shifts following emotional provocation. We furthermore explored changes in EEG activity (frontal alpha asymmetry) and effects on attentional processing (emotional Stroop). To this end, 23 healthy individuals participated in two sessions separated by one week, whereby they once received 15 min of 10Hz rTMS stimulation (1500 pulses) at 110% of the individual motor threshold, and once sham stimulation. Then, negative mood was induced using sad movie clips. The results revealed a significantly stronger mood decline following rTMS compared to sham stimulation. No changes were observed in frontal alpha asymmetry and attentional processing. Our findings are at odds with the view that high frequency rTMS over the left DLPFC directly protects against the induction of negative mood, but rather suggest that it enhances the effects of emotional provocation. Possibly, in healthy young individuals, this stimulation protocol heightens susceptibility to mood induction procedures in general. PMID:28008080
New application of superconductors: High sensitivity cryogenic light detectors
NASA Astrophysics Data System (ADS)
Cardani, L.; Bellini, F.; Casali, N.; Castellano, M. G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.
2017-02-01
In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs) that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2×2 cm2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement.
Schormans, Matthew; Valente, Virgilio; Demosthenous, Andreas
2016-08-04
Inductive powering for implanted medical devices, such as implantable biosensors, is a safe and effective technique that allows power to be delivered to implants wirelessly, avoiding the use of transcutaneous wires or implanted batteries. Wireless powering is very sensitive to a number of link parameters, including coil distance, alignment, shape, and load conditions. The optimum drive frequency of an inductive link varies depending on the coil spacing and load. This paper presents an optimum frequency tracking (OFT) method, in which an inductive power link is driven at a frequency that is maintained at an optimum value to ensure that the link is working at resonance, and the output voltage is maximised. The method is shown to provide significant improvements in maintained secondary voltage and system efficiency for a range of loads when the link is overcoupled. The OFT method does not require the use of variable capacitors or inductors. When tested at frequencies around a nominal frequency of 5 MHz, the OFT method provides up to a twofold efficiency improvement compared to a fixed frequency drive. The system can be readily interfaced with passive implants or implantable biosensors, and lends itself to interfacing with designs such as distributed implanted sensor networks, where each implant is operating at a different frequency.
Near Surface Investigation of Agricultural Soils using a Multi-Frequency Electromagnetic Sensor
NASA Astrophysics Data System (ADS)
Sadatcharam, K.; Unc, A.; Krishnapillai, M.; Cheema, M.; Galagedara, L.
2017-12-01
Electromagnetic induction (EMI) sensors have been used as precision agricultural tools over decades. They are being used to measure spatiotemporal variability of soil properties and soil stratification in the sense of apparent electrical conductivity (ECa). We mapped the ECa variability by horizontal coplanar (HCP) and by vertical coplanar (VCP) orientation of a multi-frequency EMI sensor and identified its interrelation with physical properties of soil. A broadband, multi-frequency handheld EMI sensor (GEM-2) was used on a loamy sand soil cultivated with silage-corn in western Newfoundland, Canada. Log and line spaced, three frequency ranges (weak, low, and high), based on the factory calibration were tested using HCP and VCP orientation to produce spatiotemporal data of ECa. In parallel, we acquired data on soil moisture content, texture and bulk density. We then assessed the statistical significance of the relationship between ECa and soil physical properties. The test site had three areas of distinct soil properties corresponding to the elevation, in particular. The same spatial variability was also identified by ECa mapping at different frequencies and the two modes of coil orientations. Data analysis suggested that the high range frequency (38 kHz (log-spaced) and 49 kHz (line-spaced)) for both HCP and VCP orientations produced accurate ECa maps, better than the weak and low range frequencies tested. Furthermore, results revealed that the combined effects of soil texture, moisture content and bulk density affect ECameasurements as obtained by both frequencies and two coil orientations. Keywords: Apparent electrical conductivity, Electromagnetic induction, Horizontal coplanar, Soil properties, Vertical coplanar
Poli, F. M.; Andre, R. G.; Bertelli, N.; ...
2015-10-30
One of the goals of the National Spherical Torus Experiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) is the demonstration of fully non-inductive start-up, current ramp-up and sustainment. This work discusses predictive simulations where the available heating and current drive systems are combined to maximize the non-inductive current and minimize the solenoidal contribution. Radio-frequency waves at harmonics higher than the ion cyclotron resonance (high-harmonic fast waves (HHFW)) and neutral beam injection are used to ramp the plasma current non-inductively starting from an initial Ohmic plasma. An interesting synergy is observed in the simulations between the HHFW andmore » electron cyclotron (EC) wave heating. Furthermore, time-dependent simulations indicate that, depending on the phasing of the HHFW antenna, EC wave heating can significantly increase the effectiveness of the radio-frequency power, by heating the electrons and increasing the current drive efficiency, thus relaxing the requirements on the level of HHFW power that needs to be absorbed in the core plasma to drive the same amount of fast-wave current.« less
Starter for inductively coupled plasma tube
Hull, Donald E.; Bieniewski, Thomas M.
1988-01-01
A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation.
Microwave Properties of Superconductors Close to the Superconductor-Insulator Transition.
Feigel'man, M V; Ioffe, L B
2018-01-19
Strongly disordered pseudogapped superconductors are expected to display arbitrarily high values of kinetic inductance close to the superconductor-insulator transition (SIT), which make them attractive for the implementation of large dissipationless inductance. We develop the theory of the collective modes in these superconductors and discuss associated dissipation at microwave frequencies. We obtain the collective mode spectra dependence on the disorder level and conclude that collective modes become a relevant source of dissipation and noise in the outer proximity of the SIT.
Microwave Properties of Superconductors Close to the Superconductor-Insulator Transition
NASA Astrophysics Data System (ADS)
Feigel'man, M. V.; Ioffe, L. B.
2018-01-01
Strongly disordered pseudogapped superconductors are expected to display arbitrarily high values of kinetic inductance close to the superconductor-insulator transition (SIT), which make them attractive for the implementation of large dissipationless inductance. We develop the theory of the collective modes in these superconductors and discuss associated dissipation at microwave frequencies. We obtain the collective mode spectra dependence on the disorder level and conclude that collective modes become a relevant source of dissipation and noise in the outer proximity of the SIT.
A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas
2016-02-29
development a tightly coupled magneto-hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State... thermodynamic variable. This choice allows one to hide the non-linearity of the gas (total) thermal conductivity κ and can partially alle- 2 viate numerical
Method and apparatus for monitoring the rotating frequency of de-energized induction motors
Mikesell, H.E.; Lucy, E.
1998-02-03
The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor. 6 figs.
Method and apparatus for monitoring the rotating frequency of de-energized induction motors
Mikesell, Harvey E.; Lucy, Eric
1998-01-01
The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, B.M. Farid; Divan, Ralu; Rosenmann, Daniel
2015-01-01
A well designed frequency tunable phase shifter using patterned Py with different thickness has been demonstrated. Phase shifter is implemented with a slow wave coplanar wave guide (CPW)transmission line, where the signal line has alternate short narrow and wide sections. Py is patterned on the top of narrow section for high inductance density, and inter-digital capacitor is implemented in wide section for high capacitance density. Compared with phase shifter using regular CPW, the dimension of the developed phase shifter has been reduced from 14.86 mm to4.70 mm at 2 GHz. Phase shifter based on 100 nm and 200 nm thickmore » patterned Py with the same dimensions (14lm10lm) are implemented and investigated comprehensively. FMR frequency of 3.2 GHz and 3.6 GHz without any external magnetic field has been achieved for100 nm and 200 nm thick Py film, respectively. Thicker Py has increased inductance density from 1067.2 nH/m to 1193.2 nH/m while the center frequency of the phase shifter has been shifted to 1.80 GHz. Frequency tunability of the phase shifter has been also demonstrated withDC current. The phase shifter can provide 90phase shift continuously from 2 GHz to 1.80 GHz with DC current from 0 mA to 150 mA. The design concept has great potential in design arbitrary tunable RF components such as filters and couplers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopwood, L.E.; Davies, B.M.; Moulder, J.E.
1990-09-01
RIF-1 tumors contain a small number of cells (1 to 100 per 10(6) cells) that are resistant to 5-fluorouracil, methotrexate, or adriamycin. The frequency of drug-resistant cells among individual untreated tumors is highly variable. Radiation, delivered in vivo at doses of 3 to 12 Gy, increases the frequency of methotrexate- and 5-fluorouracil-resistant cells, but not the frequency of adriamycin-resistant cells. The magnitude of induction of 5-fluorouracil and methotrexate resistance shows a complex dependence on the radiation dose and on the interval between irradiation and assessment of drug resistance. For a dose of 3 Gy, induced 5-fluorouracil and methotrexate resistance ismore » seen only after an interval of 5 to 7 days, whereas for a dose of 12 Gy, high levels of induced resistance are observed 1 to 3 days after irradiation. The maximum absolute risk for induction of resistance is 4 per 10(4) cells per Gy for methotrexate, and 3 per 10(6) cells per Gy for 5-fluorouracil. These results indicate that tumor hypoxia may play a role in the increased levels of drug resistance seen after irradiation, and that both genetic and environmental factors may influence radiation-induction of drug resistance. These studies provide essential data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be caused by radiation-induced drug resistance.« less
Design and construction of high-frequency magnetic probe system on the HL-2A tokamak
NASA Astrophysics Data System (ADS)
Liang, S. Y.; Ji, X. Q.; Sun, T. F.; Xu, Yuan; Lu, J.; Yuan, B. S.; Ren, L. L.; Yang, Q. W.
2017-12-01
A high-frequency magnetic probe system is designed, calibrated and constructed on the HL-2A tokamak. To investigate the factors which affect the probe frequency response, the inductance and capacitance in the probe system are analyzed using an equivalent circuit. Suitable sizes and turn number of the coil, and the length of transmission cable are optimized based on the theory and detailed test in the calibration. To deal with the frequency response limitation and bake-out, the ceramic grooved technique is used and the probe is wound with a bare copper wire. A cascade filter is manufactured with a suitable bandwidth as well as a good phase consistency between channels. The system has been used in the experiment to measure high frequency (≤300 kHz) magnetohydrodynamic fluctuations, which can meet the requirement of physical analysis on HL-2A.
Eddy current imaging with an atomic radio-frequency magnetometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wickenbrock, Arne, E-mail: wickenbr@uni-mainz.de; Leefer, Nathan; Blanchard, John W.
2016-05-02
We use a radio-frequency {sup 85}Rb alkali-vapor cell magnetometer based on a paraffin-coated cell with long spin-coherence time and a small, low-inductance driving coil to create highly resolved conductivity maps of different objects. We resolve sub-mm features in conductive objects, we characterize the frequency response of our technique, and by operating at frequencies up to 250 kHz we are able to discriminate between differently conductive materials based on the induced response. The method is suited to cover a wide range of driving frequencies and can potentially be used for detecting non-metallic objects with low DC conductivity.
High-frequency magnetodielectric response in yttrium iron garnet at room temperature
NASA Astrophysics Data System (ADS)
Zhu, Jie; Liu, Yuan; Jia, Longfei; Zhang, Baoshan; Yang, Yi; Tang, Dongming
2018-05-01
Magnetic and dielectric properties of Yttrium Iron Garnet are measured over a frequency ranging from 0.5 GHz to 10 GHz with a magnetic field applied parallel to the propagation direction of the microwave. At the same time, the magnetodielectric phenomena are detected quantitatively. The maximum amplitude of the magnetodielectric coefficient is acquired at the ferromagnetic resonance frequency, and the value is up to 1.2% with the magnetic field of 1500 Oe applied. The phenomena have been explained by the Faraday's electromagnetic induction of the precession of the magnetic moments in the electromagnetic field at the ferromagnetic resonance frequency.
Evaluation of half wave induction motor drive for use in passenger vehicles
NASA Technical Reports Server (NTRS)
Hoft, R. G.; Kawamura, A.; Goodarzi, A.; Yang, G. Q.; Erickson, C. L.
1985-01-01
Research performed at the University of Missouri-Columbia to devise and design a lower cost inverter induction motor drive for electrical propulsion of passenger vehicles is described. A two phase inverter motor system is recommended. The new design is predicted to provide comparable vehicle performance, improved reliability and a cost advantage for a high production vehicle, decreased total rating of the power semiconductor switches, and a somewhat simpler control hardware compared to the conventional three phase bridge inverter motor drive system. The major disadvantages of the two phase inverter motor drive are that it is larger and more expensive than a three phase machine, the design of snubbers for the power leakage inductances produce higher transient voltages, and the torque pulsations are relatively large because of the necessity to limit the inverter switching frequency to achieve high efficiency.
Development of induction current acquisition device based on ARM
NASA Astrophysics Data System (ADS)
Ji, Yanju; Liu, Xiyang; Huang, Wanyu; Yao, Jiang; Yuan, Guiyang; Hui, Luan; Guan, Shanshan
2018-03-01
We design an induction current acquisition device based on ARM in order to realize high resolution and high sampling rate of acquisition for the induction current in wire-loop. Considering its characteristics of fast attenuation and small signal amplitude, we use the method of multi-path fusion for noise suppression. In the paper, the design is carried out from three aspects of analog circuit and device selection, independent power supply structure and the electromagnetic interference suppression of high frequency. DMA and ping-pong buffer, as a new data transmission technology, solves real time storage problem of massive data. The performance parameters of ARM acquisition device are tested. The comparison test of ARM acquisition device and cRIO acquisition device is performed at different time constants. The results show that it has 120dB dynamic range, 47kHz bandwidth, 96kHz sampling rate, 5μV the smallest resolution, and its average error value is not more than 4%, which proves the high accuracy and stability of the device.
Geophysical Interpretation of Induction Arrows Observed at Jeju Island, Korea
NASA Astrophysics Data System (ADS)
Yang, J.; Choi, H.
2015-12-01
Jeju Island, a volcanic island located on the continental margin in the southern end of the Korean Peninsula, has been paid a special attention to geological and geophysical society for a long time due to its tectonic importance associated with the volcanism of the island. In this study, we try to interpret induction arrows observed at the island that have been estimated from broad-band magnetotelluric (MT) data and existing magnetovariational data, which are sensitive to lateral conductivity distribution of the Earth. Overall pattern of observed induction arrows is clearly frequency-dependent: perpendicular to nearby coastline of the observation site for higher frequencies than 0.1 Hz but rotating toward south or southeastern direction for lower frequency than 0.01 Hz. Furthermore, induction arrows at frequencies lower than 0.001 Hz, which derived from the existing magnetovariational data, point to the south or the southeast as well. In order to examine whether observed induction arrows can be explained by only surrounding seas, 3-D MT modeling considering seas surrounding the island is carried out. The results demonstrate that induction arrows at higher frequencies than 0.01 Hz can be explained well by the surrounding seas but for lower frequencies than 0.01 Hz there are significant discrepancies between observed and calculated arrows. This strongly implies the existence of deep-seated conductor located beneath the farther south of the island, namely, the East China Sea. The existence of this deep-seated conductor can be supported by other previous geophysical studies, which is likely to be caused by mantle upwelling derived from shear traction of horizontal mantle flow in tensional back arc of Kyushu Island, Japan.
The resistance of high frequency inductive welded pipe to grooving corrosion in salt water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duran, C.; Triess, E.; Herbsleb, G.
1986-09-01
When exposed to neutral, salt-containing waters, electric resistant welded pipe in carbon and low alloy steels with increased sulfur contents may suffer preferential corrosion attack in the weld area. Because of its appearance, this type of corrosion is called grooving corrosion. The susceptibility to grooving corrosion may be determined and quantitatively described by means of an accelerated potentiostatic exposure test. The importance of type, concentration, and temperature of the electrolytic solution; potential; test duration; and the sulfur content of the steel in the accelerated corrosion test and the susceptibility of steels to grooving corrosion are described. Line pipe in highmore » frequency inductive (HFI) welded carbon and low alloy steels are resistant to grooving corrosion particularly because of their low sulfur content.« less
Salma, U; Rahman, M S M; Islam, S; Haque, N; Jubair, T A; Haque, A K M F; Mukti, I J
2008-06-15
The influence of media composition on callus induction and subsequent regeneration of Rauwolfia serpentina L. Benth has been studied. High frequency (96.43%) callus induction was obtained when nodal segments from in vitro raised shoots were cultured on MS medium supplemented with 0.5 mg L(-1) BA and 2.0 mg L(-1) NAA. The callus differentiated into adventitious shoots when it was subcultured on MS medium supplemented with 2.0 mg L(-1) BA with 0.2 mg L(-1) NAA. Regenerated shoots were best rooted on half-strength MS medium with 1.0 mg L(-1) each of IBA and IAA.
Variable-Speed Induction Motor Drives for Aircraft Environmental Control Compressors
NASA Technical Reports Server (NTRS)
Mildice, J. W.; Hansen, I. G.; Schreiner, K. E.; Roth, M. E.
1996-01-01
New, more-efficient designs for aircraft jet engines are not capable of supplying the large quantities of bleed air necessary to provide pressurization and air conditioning for the environmental control systems (ECS) of the next generation of large passenger aircraft. System analysis and engineering have determined that electrically-driven ECS can help to maintain the improved fuel efficiencies; and electronic controllers and induction motors are now being developed in a NASA/NPD SBIR Program to drive both types of ECS compressors. Previous variable-speed induction motor/controller system developments and publications have primarily focused on field-oriented control, with large transient reserve power, for maximum acceleration and optimum response in actuator and robotics systems. The application area addressed herein is characterized by slowly-changing inputs and outputs, small reserve power capability for acceleration, and optimization for maximum efficiency. This paper therefore focuses on the differences between this case and the optimum response case, and shows the development of this new motor/controller approach. It starts with the creation of a new set of controller requirements. In response to those requirements, new control algorithms are being developed and implemented in an embedded computer, which is integrated into the motor controller closed loop. Buffered logic outputs are used to drive the power switches in a resonant-technology, power processor/motor-controller, at switching/resonant frequencies high enough to support efficient high-frequency induction motor operation at speeds up to 50,000-RPA
High performance protection circuit for power electronics applications
NASA Astrophysics Data System (ADS)
Tudoran, Cristian D.; Dǎdârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan
2015-12-01
In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a "sensor" or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.
Ragert, Patrick; Kalisch, Tobias; Bliem, Barbara; Franzkowiak, Stephanie; Dinse, Hubert R
2008-01-23
Long-term potentiation (LTP) and long-term depression (LTD) play important roles in mediating activity-dependent changes in synaptic transmission and are believed to be crucial mechanisms underlying learning and cortical plasticity. In human subjects, however, the lack of adequate input stimuli for the induction of LTP and LTD makes it difficult to study directly the impact of such protocols on behavior. Using tactile high- and low-frequency stimulation protocols in humans, we explored the potential of such protocols for the induction of perceptual changes. We delivered tactile high-frequency and low-frequency stimuli (t-HFS, t-LFS) to skin sites of approximately 50 mm2 on the tip of the index finger. As assessed by 2-point discrimination, we demonstrate that 20 minutes of t-HFS improved tactile discrimination, while t-LFS impaired performance. T-HFS-effects were stable for at least 24 hours whereas t-LFS-induced changes recovered faster. While t-HFS changes were spatially very specific with no changes on the neighboring fingers, impaired tactile performance after t-LFS was also observed on the right middle-finger. A central finding was that for both t-LFS and t-HFS perceptual changes were dependent on the size of the stimulated skin area. No changes were observed when the stimulated area was very small (< 1 mm2) indicating special requirements for spatial summation. Our results demonstrate differential effects of such protocols in a frequency specific manner that might be related to LTP- and LTD-like changes in human subjects.
NASA Astrophysics Data System (ADS)
Brunke, Heinz-Peter; Widmer-Schnidrig, Rudolf; Korte, Monika
2017-11-01
For frequencies above 30 mHz the instrument intrinsic noise level of typical fluxgate magnetometers used at geomagnetic observatories usually masks ambient magnetic field variations on magnetically quiet days. This is especially true for stations located at middle and low latitudes, where variations are generally smaller than at high latitudes. INTERMAGNET has set a minimum quality standard for definitive 1 s data. Natural field variations referred to as pulsations (Pc-1, Pc-2, Pi-1) fall in this band. Usually their intensity is so small that they rarely surpass the instrumental noise of fluxgate magnetometers. Moreover, high-quality magnetic field observations in the band 30 mHz-0.5 Hz contain interesting information, e.g., for the study of ionospheric electron interactions with electromagnetic ion cyclotron plasma waves. We propose a method to improve 1 Hz observatory data by merging data from the proven and tested fluxgate magnetometers currently in use with induction coil magnetometers into a single data stream. We show how measurements of both instruments can be combined without information loss or phase distortion. The result is a time series of the magnetic field vector components, combining the benefits of both instruments: long-term stability (fluxgate) and low noise at high frequencies (induction coil). This new data stream fits perfectly into the data management procedures of INTERMAGNET and meets the requirements defined in the definitive 1 s data standard. We describe the applied algorithm and validate the result by comparing power spectra of the fluxgate magnetometer output with the merged signal. Daily spectrograms from the Niemegk observatory show that the resulting data series reveal information at frequencies above 30 mHz that cannot be seen in raw fluxgate data.
Analysis, design, and control of a transcutaneous power regulator for artificial hearts.
Qianhong Chen; Siu Chung Wong; Tse, C K; Xinbo Ruan
2009-02-01
Based on a generic transcutaneous transformer model, a remote power supply using a resonant topology for use in artificial hearts is analyzed and designed for easy controllability and high efficiency. The primary and secondary windings of the transcutaneous transformer are positioned outside and inside the human body, respectively. In such a transformer, the alignment and gap may change with external positioning. As a result, the coupling coefficient of the transcutaneous transformer is also varying, and so are the two large leakage inductances and the mutual inductance. Resonant-tank circuits with varying resonant-frequency are formed from the transformer inductors and external capacitors. For a given range of coupling coefficients, an operating frequency corresponding to a particular coupling coefficient can be found, for which the voltage transfer function is insensitive to load. Prior works have used frequency modulation to regulate the output voltage under varying load and transformer coupling. The use of frequency modulation may require a wide control frequency range which may extend well above the load insensitive frequency. In this paper, study of the input-to-output voltage transfer function is carried out, and a control method is proposed to lock the switching frequency at just above the load insensitive frequency for optimized efficiency at heavy loads. Specifically, operation at above resonant of the resonant circuits is maintained under varying coupling-coefficient. Using a digital-phase-lock-loop (PLL), zero-voltage switching is achieved in a full-bridge converter which is also programmed to provide output voltage regulation via pulsewidth modulation (PWM). A prototype transcutaneous power regulator is built and found to to perform excellently with high efficiency and tight regulation under variations of the alignment or gap of the transcutaneous transformer, load and input voltage.
Development of RF Sensor Based on Two-cell SQUID
2012-07-01
according to (8) is proportional to the reduced drive detuning, ωp0 is the resonant frequency for small oscillations, i.e. the plasma frequency of the...0/2 Φ= cnc IRπω (16) where Rn is the normal resistance of the Josephson junction in the SQUID, and L the inductance of the...17.7 μA, normal resistance 110.9 Ω, plasma frequency ωp 124 GHz and characteristic frequency 948 GHz. While the loop inductance of SQUID was 60 pH
A fully analytic treatment of resonant inductive coupling in the far field
NASA Astrophysics Data System (ADS)
Sedwick, Raymond J.
2012-02-01
For the application of resonant inductive coupling for wireless power transfer, fabrication of flat spiral coils using ribbon wire allows for analytic expressions of the capacitance and inductance of the coils and therefore the resonant frequency. The expressions can also be used in an approximate way for the analysis of coils constructed from cylindrical wire. Ribbon wire constructed from both standard metals as well as high temperature superconducting material is commercially available, so using these derived expressions as a basis, a fully analytic treatment is presented that allows for design trades to be made for hybrid designs incorporating either technology. The model is then extended to analyze the performance of the technology as applied to inductively coupled communications, which has been demonstrated as having an advantage in circumstances where radiated signals would suffer unacceptable levels of attenuation.
Defect characterization by inductive heated thermography
NASA Astrophysics Data System (ADS)
Noethen, Matthias; Meyendorf, Norbert
2012-05-01
During inductive-thermographic inspection, an eddy current of high intensity is induced into the inspected material and the thermal response is detected by an infrared camera. Anomalies in the surface temperature during and after inductive heating correspond to inhomogeneities in the material. A finite element simulation of the surface crack detection process using active thermography with inductive heating has been developed. The simulation model is based on the finite element software ANSYS. The simulation tool was tested and used for investigations on steel components with different longitudinal orientated cracks, varying in shape, width and height. This paper focuses on surface connected longitudinal orientated cracks in austenitic steel. The results show that depending on the excitation frequency the temperature distribution of the material under test are different and a possible way to measure the depth of the crack will be discussed.
Comparison of single and consecutive dual frequency induction surface hardening of gear wheels
NASA Astrophysics Data System (ADS)
Barglik, J.; Ducki, K.; Kukla, D.; Mizera, J.; Mrówka-Nowotnik, G.; Sieniawski, J.; Smalcerz, A.
2018-05-01
Mathematical modelling of single and consecutive dual - frequency induction surface hardening systems are presented and compared. The both models are solved by the 3D FEM-based professional software supported by a number of own numerical procedures. The methodology is illustrated with some examples of surface induction hardening of a gear wheel made of steel 41Cr4. The computations are in a good accordance with experiments provided on the laboratory stand.
Detection of broken rotor bar faults in induction motor at low load using neural network.
Bessam, B; Menacer, A; Boumehraz, M; Cherif, H
2016-09-01
The knowledge of the broken rotor bars characteristic frequencies and amplitudes has a great importance for all related diagnostic methods. The monitoring of motor faults requires a high resolution spectrum to separate different frequency components. The Discrete Fourier Transform (DFT) has been widely used to achieve these requirements. However, at low slip this technique cannot give good results. As a solution for these problems, this paper proposes an efficient technique based on a neural network approach and Hilbert transform (HT) for broken rotor bar diagnosis in induction machines at low load. The Hilbert transform is used to extract the stator current envelope (SCE). Two features are selected from the (SCE) spectrum (the amplitude and frequency of the harmonic). These features will be used as input for neural network. The results obtained are astonishing and it is capable to detect the correct number of broken rotor bars under different load conditions. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Songyuan; Goldie, D. J.; Withington, S.; Thomas, C. N.
2018-01-01
We have solved numerically the diffusive Usadel equations that describe the spatially varying superconducting proximity effect in Ti-Al thin-film bi- and trilayers with thickness values that are suitable for kinetic inductance detectors (KIDs) to operate as photon detectors with detection thresholds in the frequency range of 50-90 GHz. Using Nam’s extension of the Mattis-Bardeen calculation of the superconductor complex conductivity, we show how to calculate the surface impedance for the spatially varying case, and hence the surface impedance quality factor. In addition, we calculate energy-and spatially-averaged quasiparticle lifetimes at temperatures well-below the transition temperature and compare to calculation in Al. Our results for the pair-breaking threshold demonstrate differences between bilayers and trilayers with the same total film thicknesses. We also predict high quality factors and long multilayer-averaged quasiparticle recombination times compared to thin-film Al. Our calculations give a route for designing KIDs to operate in this scientifically-important frequency regime.
New Technique of High-Performance Torque Control Developed for Induction Machines
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.
2003-01-01
Two forms of high-performance torque control for motor drives have been described in the literature: field orientation control and direct torque control. Field orientation control has been the method of choice for previous NASA electromechanical actuator research efforts with induction motors. Direct torque control has the potential to offer some advantages over field orientation, including ease of implementation and faster response. However, the most common form of direct torque control is not suitable for the highspeed, low-stator-flux linkage induction machines designed for electromechanical actuators with the presently available sample rates of digital control systems (higher sample rates are required). In addition, this form of direct torque control is not suitable for the addition of a high-frequency carrier signal necessary for the "self-sensing" (sensorless) position estimation technique. This technique enables low- and zero-speed position sensorless operation of the machine. Sensorless operation is desirable to reduce the number of necessary feedback signals and transducers, thus improving the reliability and reducing the mass and volume of the system. This research was directed at developing an alternative form of direct torque control known as a "deadbeat," or inverse model, solution. This form uses pulse-width modulation of the voltage applied to the machine, thus reducing the necessary sample and switching frequency for the high-speed NASA motor. In addition, the structure of the deadbeat form allows the addition of the high-frequency carrier signal so that low- and zero-speed sensorless operation is possible. The new deadbeat solution is based on using the stator and rotor flux as state variables. This choice of state variables leads to a simple graphical representation of the solution as the intersection of a constant torque line with a constant stator flux circle. Previous solutions have been expressed only in complex mathematical terms without a method to clearly visualize the solution. The graphical technique allows a more insightful understanding of the operation of the machine under various conditions.
First Stage of a Highly Reliable Reusable Launch System
NASA Technical Reports Server (NTRS)
Kloesel, Kurt J.; Pickrel, Jonathan B.; Sayles, Emily L.; Wright, Michael; Marriott, Darin; Holland, Leo; Kuznetsov, Stephen
2009-01-01
Electromagnetic launch assist has the potential to provide a highly reliable reusable first stage to a space access system infrastructure at a lower overall cost. This paper explores the benefits of a smaller system that adds the advantages of a high specific impulse air-breathing stage and supersonic launch speeds. The method of virtual specific impulse is introduced as a tool to emphasize the gains afforded by launch assist. Analysis shows launch assist can provide a 278-s virtual specific impulse for a first-stage solid rocket. Additional trajectory analysis demonstrates that a system composed of a launch-assisted first-stage ramjet plus a bipropellant second stage can provide a 48-percent gross lift-off weight reduction versus an all-rocket system. The combination of high-speed linear induction motors and ramjets is identified, as the enabling technologies and benchtop prototypes are investigated. The high-speed response of a standard 60 Hz linear induction motor was tested with a pulse width modulated variable frequency drive to 150 Hz using a 10-lb load, achieving 150 mph. A 300-Hz stator-compensated linear induction motor was constructed and static-tested to 1900 lbf average. A matching ramjet design was developed for use on the 300-Hz linear induction motor.
Understanding Artifacts in Impedance Spectroscopy
Veal, B. W.; Baldo, P. M.; Paulikas, A. P.; ...
2014-11-22
Four-terminal measurements of impedance spectra have long been troubled by the presence of high frequency artifacts that typically indicate unphysically large inductive behavior. In this paper, we follow up on the observation of Fleig et al., that voltage and current are necessarily measured in different locations of the potentiostat circuit, and that, typically, the electrometer input is a virtual ground. In this case, the capacitance of coaxial cables that connect sample electrodes to the potentiostat provides a high frequency conduction path to ground, so that some of the current that passes through the sample bypasses the electrometer. In four-electrode measurements,more » this mechanism produces the observed inductive artifacts. We examine a variety of simulated samples, with calculations compared to measurements of relevant circuits, to quantitatively investigate the nature of the artifacts. Model results agree with measurements when the leakage capacitances are properly included in the circuit analyses. With understanding of the origin of the inductive artifacts, the four-electrode method can be effectively utilized, enabling a combination of two-, three- and four-electrode measurements to be used to best advantage. Finally, using this combination of electrode configurations, temperature dependent measurements of SrTiO 3, Y 2O 3-stabilized ZrO 2, and In 2O 3 films deposited on YSZ substrates are presented.« less
Repetitive transcranial magnetic stimulation modulates the impact of a negative mood induction.
Möbius, Martin; Lacomblé, Lylis; Meyer, Thomas; Schutter, Dennis J L G; Gielkens, Tom; Becker, Eni S; Tendolkar, Indira; van Eijndhoven, Philip
2017-04-01
High frequency repetitive Transcranial Magnetic Stimulation (rTMS) over the left dorsolateral prefrontal cortex (DLPFC) has been found to alleviate depressive symptoms. However, the mechanisms driving these effects are still poorly understood. In the current study, we tested the idea that this intervention protects against negative mood shifts following emotional provocation. We furthermore explored changes in EEG activity (frontal alpha asymmetry) and effects on attentional processing (emotional Stroop). To this end, 23 healthy individuals participated in two sessions separated by one week, whereby they once received 15 min of 10Hz rTMS stimulation (1500 pulses) at 110% of the individual motor threshold, and once sham stimulation. Then, negative mood was induced using sad movie clips. The results revealed a significantly stronger mood decline following rTMS compared to sham stimulation. No changes were observed in frontal alpha asymmetry and attentional processing. Our findings are at odds with the view that high frequency rTMS over the left DLPFC directly protects against the induction of negative mood, but rather suggest that it enhances the effects of emotional provocation. Possibly, in healthy young individuals, this stimulation protocol heightens susceptibility to mood induction procedures in general. © The Author (2016). Published by Oxford University Press.
Instabilities of the force-free current configurations
NASA Astrophysics Data System (ADS)
Berseth, V.; Indenbom, M. V.; van der Beek, C. J.; Erb, A.; Walker, E.; Flükiger, R.; Benoit, W.
1996-03-01
Using the magneto-optic technique, it is shown that inductively induced force-free current configurations in high purity YBa2Cu3O7-δ single crystals become unstable above a certain well-defined amplitude and frequency of the variation of the applied perpendicular field.
Dantsker, Eugene; Clarke, John
2000-01-01
The present invention comprises a high-transition-temperature superconducting device having low-magnitude low-frequency noise-characteristics in magnetic fields comprising superconducting films wherein the films have a width that is less than or equal to a critical width, w.sub.C, which depends on an ambient magnetic field. For operation in the Earth's magnetic field, the critical width is about 6 micrometers (.mu.m). When made with film widths of about 4 .mu.m an inventive high transition-temperature, superconducting quantum interference device (SQUID) excluded magnetic flux vortices up to a threshold ambient magnetic field of about 100 microTesla (.mu.T). SQUIDs were fabricated having several different film strip patterns. When the film strip width was kept at about 4 .mu.m, the SQUIDs exhibited essentially no increase in low-frequency noise, even when cooled in static magnetic fields of magnitude up to 100 .mu.T. Furthermore, the mutual inductance between the inventive devices and a seven-turn spiral coil was at least 85% of that for inductive coupling to a conventional SQUID.
High-Speed, high-power, switching transistor
NASA Technical Reports Server (NTRS)
Carnahan, D.; Ohu, C. K.; Hower, P. L.
1979-01-01
Silicon transistor rate for 200 angstroms at 400 to 600 volts combines switching speed of transistors with ruggedness, power capacity of thyristor. Transistor introduces unique combination of increased power-handling capability, unusally low saturation and switching losses, and submicrosecond switching speeds. Potential applications include high power switching regulators, linear amplifiers, chopper controls for high frequency electrical vehicle drives, VLF transmitters, RF induction heaters, kitchen cooking ranges, and electronic scalpels for medical surgery.
New sample cell configuration for wide-frequency dielectric spectroscopy: DC to radio frequencies.
Nakanishi, Masahiro; Sasaki, Yasutaka; Nozaki, Ryusuke
2010-12-01
A new configuration for the sample cell to be used in broadband dielectric spectroscopy is presented. A coaxial structure with a parallel plate capacitor (outward parallel plate cell: OPPC) has made it possible to extend the frequency range significantly in comparison with the frequency range of the conventional configuration. In the proposed configuration, stray inductance is significantly decreased; consequently, the upper bound of the frequency range is improved by two orders of magnitude from the upper limit of conventional parallel plate capacitor (1 MHz). Furthermore, the value of capacitance is kept high by using a parallel plate configuration. Therefore, the precision of the capacitance measurement in the lower frequency range remains sufficiently high. Finally, OPPC can cover a wide frequency range (100 Hz-1 GHz) with an appropriate admittance measuring apparatus such as an impedance or network analyzer. The OPPC and the conventional dielectric cell are compared by examining the frequency dependence of the complex permittivity for several polar liquids and polymeric films.
Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki
2010-02-01
Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10(-4)-10(-3) Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.
NASA Astrophysics Data System (ADS)
Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki
2010-02-01
Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100to900W and from 48to23kHz, respectively. The working pressure is about 10-4-10-3Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.
Passmore, Brandon; Cole, Zach; Whitaker, Bret; Barkley, Adam; McNutt, Ty; Lostetter, Alexander
2016-08-02
A multichip power module directly connecting the busboard to a printed-circuit board that is attached to the power substrate enabling extremely low loop inductance for extreme environments such as high temperature operation. Wire bond interconnections are taught from the power die directly to the busboard further enabling enable low parasitic interconnections. Integration of on-board high frequency bus capacitors provide extremely low loop inductance. An extreme environment gate driver board allows close physical proximity of gate driver and power stage to reduce overall volume and reduce impedance in the control circuit. Parallel spring-loaded pin gate driver PCB connections allows a reliable and reworkable power module to gate driver interconnections.
Starter for inductively coupled plasma tube
Hull, D.E.; Bieniewski, T.M.
1988-08-23
A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initiate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation. 1 fig.
Multimode and multistate ladder oscillator and frequency recognition device
NASA Technical Reports Server (NTRS)
Aumann, Herbert M. (Inventor)
1976-01-01
A ladder oscillator composed of capacitive and inductive impedances connected together to form a ladder network which has a chosen number N oscillation modes at N different frequencies. Each oscillation mode is characterized by a unique standing wave voltage pattern along the nodes of the ladder oscillator, with the mode in which the ladder oscillator is oscillating being determinable from the amplitudes or phase of the oscillations at the nodes. A logic circuit may be connected to the nodes of the oscillator to compare the phases of selected nodes and thereby determine which mode the oscillator is oscillating in. A ladder oscillator composed of passive capacitive and inductive impedances can be utilized as a frequency recognition device, since the passive ladder oscillator will display the characteristic standing wave patterns if an input signal impressed upon the ladder oscillator is close to one of the mode frequencies of the oscillator. A CL ladder oscillator having series capacitive impedances and shunt inductive impedances can exhibit sustained and autonomous oscillations if active nonlinear devices are connected in parallel with the shunt inductive impedances. The active CL ladder oscillator can be synchronized to input frequencies impressed upon the oscillator, and will continue to oscillate after the input signal has been removed at a mode frequency which is, in general, nearest to the input signal frequency. Autonomous oscillations may also be obtained as desired from the active CL ladder oscillator at the mode frequencies.
Relative Estimation of Water Content for Flat-Type Inductive-Based Oil Palm Fruit Maturity Sensor
Misron, Norhisam; Aliteh, Nor Aziana; Harun, Noor Hasmiza; Tashiro, Kunihisa; Sato, Toshiro; Wakiwaka, Hiroyuki
2016-01-01
The paper aims to study the sensor that identifies the maturity of oil palm fruit bunches by using a flat-type inductive concept based on a resonant frequency technique. Conventionally, a human grader is used to inspect the ripeness of the oil palm fresh fruit bunch (FFB) which can be inconsistent and inaccurate. There are various new methods that are proposed with the intention to grade the ripeness of the oil palm FFB, but none has taken the inductive concept. In this study, the resonance frequency of the air coil is investigated. Samples of oil palm FFB are tested with frequencies ranging from 20 Hz to 10 MHz and the results obtained show a linear relationship between the graph of the resonance frequency (MHz) against time (Weeks). It is observed that the resonance frequencies obtained for Week 10 (pre-mature) and Week 18 (mature) are around 8.5 MHz and 9.8 MHz, respectively. These results are compared with the percentage of the moisture content. Hence, the inductive method of the oil palm fruit maturity sensor can be used to detect the change in water content for ripeness detection of the oil palm FFB. PMID:28036040
Relative Estimation of Water Content for Flat-Type Inductive-Based Oil Palm Fruit Maturity Sensor.
Misron, Norhisam; Aliteh, Nor Aziana; Harun, Noor Hasmiza; Tashiro, Kunihisa; Sato, Toshiro; Wakiwaka, Hiroyuki
2016-12-28
The paper aims to study the sensor that identifies the maturity of oil palm fruit bunches by using a flat-type inductive concept based on a resonant frequency technique. Conventionally, a human grader is used to inspect the ripeness of the oil palm fresh fruit bunch (FFB) which can be inconsistent and inaccurate. There are various new methods that are proposed with the intention to grade the ripeness of the oil palm FFB, but none has taken the inductive concept. In this study, the resonance frequency of the air coil is investigated. Samples of oil palm FFB are tested with frequencies ranging from 20 Hz to 10 MHz and the results obtained show a linear relationship between the graph of the resonance frequency (MHz) against time (Weeks). It is observed that the resonance frequencies obtained for Week 10 (pre-mature) and Week 18 (mature) are around 8.5 MHz and 9.8 MHz, respectively. These results are compared with the percentage of the moisture content. Hence, the inductive method of the oil palm fruit maturity sensor can be used to detect the change in water content for ripeness detection of the oil palm FFB.
Yu, Yeh-Wei; Xiao, Shuai; Cheng, Chih-Yuan; Sun, Ching-Cherng
2016-05-16
A simple method to decode the stored phase signal of volume holographic data storage with adequate wave aberration tolerance is highly demanded. We proposed and demonstrated a one-shot scheme to decode a binary-phase encoding signal through double-frequency-grating based shearing interferometry (DFGSI). The lateral shearing amount is dependent on the focal length of the collimated lens and the frequency difference between the gratings. Diffracted waves with phase encoding were successfully decoded through experimentation. An optical model for the DFGSI was built to analyze phase-error induction and phase-difference control by shifting the double-frequency grating longitudinally and laterally, respectively. The optical model was demonstrated experimentally. Finally, a high aberration tolerance of the DFGSI was demonstrated using the optical model.
NASA Astrophysics Data System (ADS)
Mr., J. Ravi Kumar; Banakara, Basavaraja, Dr.
2017-08-01
This paper presents electromagnetic and thermal behavior of Induction Motor (IM) through the modeling and analysis by applying multiphysics coupled Finite Element Analysis (FEA). Therefore prediction of the magnetic flux, electromagnetic torque, stator and rotor losses and temperature distribution inside an operating electric motor are the most important issues during its design. Prediction and estimation of these parameters allows design engineers to decide capability of the machine for the proposed load, temperature rating and its application for which it is being designed ensuring normal motor operation at rated conditions. In this work, multiphysics coupled electromagnetic - thermal modeling and analysis of induction motor at rated and high frequency has carried out applying Arkkio’s torque method. COMSOL Multiphysics software is used for modeling and finite element analysis of IM. Transient electromagnetic torque, magnetic field distribution, speed-torque characteristics of IM were plotted and studied at different frequencies. This proposed work helps in the design and prediction of accurate performance of induction motor specific to various industrial drive applications. Results obtained are also validated with experimental analysis. The main purpose of this model is to use it as an integral part of the design aiming to system optimization of Variable Speed Drive (VSD) and its components using coupled simulations.
Manipulation of heart rate variability can modify response to anger-inducing stimuli.
Francis, Heather M; Penglis, Kathryn M; McDonald, Skye
2016-10-01
Research suggests that heart rate variability (HRV) is a physiological indicator of the flexibility of the autonomic nervous system and can provide an objective measure of an individual's ability to appropriately match emotional responses to environmental demands. The present study investigated whether angry response to emotional stimuli was related to HRV, and whether manipulation of HRV using biofeedback could change the anger response in a healthy adult population. Fifty-eight participants received HRV biofeedback (n = 29) or an active control condition (n = 29). HRV measures included standard deviation of normal-to-normal intervals (SDNN), low-frequency (LF) and high-frequency (HF) power, and was recorded across three sessions: baseline, training, and anger induction. The anger induction procedure resulted in increased subjective experience of anger, as well as physiological changes. The biofeedback group had higher HRV than active controls both during the training session (SDNN and LF HRV) and during anger induction (LF HRV). HRV during anger induction was significantly associated with self-reported emotional response for participants receiving biofeedback but not for active controls. Results provide support for HRV as an index of emotion regulation, specifically anger. Further research is needed to determine whether long-term HRV biofeedback can have a lasting effect on managing anger.
Noise Reduction of 1sec Geomagnetic Observatory Data without Information Loss
NASA Astrophysics Data System (ADS)
Brunke, Heinz-Peter; Korte, Monika; Rudolf, Widmer-Schnidrig
2017-04-01
Traditional fluxgate magnetometers used at geomagnetic observatories are optimized towards long-term stability. Typically, such instruments can only resolve background geomagnetic field variations up to a frequency of approximately 0.04 Hz and are limited by instrumental self-noise above this frequency. However, recently the demand for low noise 1 Hz observatory data has increased. IAGA has defined a standard for definitive 1sec data. Induction coils have low noise at these high frequencies, but lack long-term stability. We present a method to numerically combine the data from a three axis induction coil system with a typical low-drift observatory fluxgate magnetometer. The resulting data set has a reduced noise level above 0.04 Hz while maintaining the long term stability of the fluxgate magnetometer. Numerically we fit a spline to the fluxgate data. But in contrast to such a low pass filtering process, our method reduces the noise level at high frequencies without any loss of information. In order to experimentally confirm our result, we compared it to a very low noise scalar magnetometer: an optically pumped potassium magnetometer. In the frequency band from [0.03Hz to 0.5Hz] we found an rms-noise reduction from 80pT for the unprocessed fluxgate data to about 25pT for the processed data. We show how our method improves geomagnetic 1 sec observatory data for, e.g., the study of magnetospheric pulsations and EMIC waves.
Gajšek, Peter; Ravazzani, Paolo; Grellier, James; Samaras, Theodoros; Bakos, József; Thuróczy, György
2016-01-01
We aimed to review the findings of exposure assessment studies done in European countries on the exposure of the general public to low frequency electric and magnetic fields (EMFs) of various frequencies. The study shows that outdoor average extremely low frequency magnetic fields (ELF-MF) in public areas in urban environments range between 0.05 and 0.2 µT in terms of flux densities, but stronger values (of the order of a few µT) may occur directly beneath high-voltage power lines, at the walls of transformer buildings, and at the boundary fences of substations. In the indoor environment, high values have been measured close to several domestic appliances (up to the mT range), some of which are held close to the body, e.g., hair dryers, electric shavers. Common sources of exposure to intermediate frequencies (IF) include induction cookers, compact fluorescent lamps, inductive charging systems for electric cars and security or anti-theft devices. No systematic measurement surveys or personal exposimetry data for the IF range have been carried out and only a few reports on measurements of EMFs around such devices are mentioned. According to the available European exposure assessment studies, three population exposure categories were classified by the authors regarding the possible future risk analysis. This classification should be considered a crucial advancement for exposure assessment, which is a mandatory step in any future health risk assessment of EMFs exposure. PMID:27598182
Gajšek, Peter; Ravazzani, Paolo; Grellier, James; Samaras, Theodoros; Bakos, József; Thuróczy, György
2016-09-01
We aimed to review the findings of exposure assessment studies done in European countries on the exposure of the general public to low frequency electric and magnetic fields (EMFs) of various frequencies. The study shows that outdoor average extremely low frequency magnetic fields (ELF-MF) in public areas in urban environments range between 0.05 and 0.2 µT in terms of flux densities, but stronger values (of the order of a few µT) may occur directly beneath high-voltage power lines, at the walls of transformer buildings, and at the boundary fences of substations. In the indoor environment, high values have been measured close to several domestic appliances (up to the mT range), some of which are held close to the body, e.g., hair dryers, electric shavers. Common sources of exposure to intermediate frequencies (IF) include induction cookers, compact fluorescent lamps, inductive charging systems for electric cars and security or anti-theft devices. No systematic measurement surveys or personal exposimetry data for the IF range have been carried out and only a few reports on measurements of EMFs around such devices are mentioned. According to the available European exposure assessment studies, three population exposure categories were classified by the authors regarding the possible future risk analysis. This classification should be considered a crucial advancement for exposure assessment, which is a mandatory step in any future health risk assessment of EMFs exposure.
Automatic NMR field-frequency lock-pulsed phase locked loop approach.
Kan, S; Gonord, P; Fan, M; Sauzade, M; Courtieu, J
1978-06-01
A self-contained deuterium frequency-field lock scheme for a high-resolution NMR spectrometer is described. It is based on phase locked loop techniques in which the free induction decay signal behaves as a voltage-controlled oscillator. By pulsing the spins at an offset frequency of a few hundred hertz and using a digital phase-frequency discriminator this method not only eliminates the usual phase, rf power, offset adjustments needed in conventional lock systems but also possesses the automatic pull-in characteristics that dispense with the use of field sweeps to locate the NMR line prior to closure of the lock loop.
Negative Dielectric Constant Material Based on Ion Conducting Materials
NASA Technical Reports Server (NTRS)
Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)
2017-01-01
Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly (benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.
Negative Dielectric Constant Material Based on Ion Conducting Materials
NASA Technical Reports Server (NTRS)
Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor)
2014-01-01
Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.
NASA Technical Reports Server (NTRS)
Caroglanian, Armen
1991-01-01
A frequency selective surface (FSS) composed of apertures in a metallic sheet is known as the inductive FSS. The infinite inductive FSS theory is derived and the aperture fields are solved by a spectral domain formulation with method of moments solution. Both full domain and subsectional basis functions are studied. A locally planar technique (LPT) is used to determine the forward scattered field from a generally shaped inductive FSS with arbitrary illumination.
Alumina ceramic based high-temperature performance of wireless passive pressure sensor
NASA Astrophysics Data System (ADS)
Wang, Bo; Wu, Guozhu; Guo, Tao; Tan, Qiulin
2016-12-01
A wireless passive pressure sensor equivalent to inductive-capacitive (LC) resonance circuit and based on alumina ceramic is fabricated by using high temperature sintering ceramic and post-fire metallization processes. Cylindrical copper spiral reader antenna and insulation layer are designed to realize the wireless measurement for the sensor in high temperature environment. The high temperature performance of the sensor is analyzed and discussed by studying the phase-frequency and amplitude-frequency characteristics of reader antenna. The average frequency change of sensor is 0.68 kHz/°C when the temperature changes from 27°C to 700°C and the relative change of twice measurements is 2.12%, with high characteristic of repeatability. The study of temperature-drift characteristic of pressure sensor in high temperature environment lays a good basis for the temperature compensation methods and insures the pressure signal readout accurately.
Induction heating using induction coils in series-parallel circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsen, Marc Rollo; Geren, William Preston; Miller, Robert James
A part is inductively heated by multiple, self-regulating induction coil circuits having susceptors, coupled together in parallel and in series with an AC power supply. Each of the circuits includes a tuning capacitor that tunes the circuit to resonate at the frequency of AC power supply.
Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations.
Stark, Eran; Roux, Lisa; Eichler, Ronny; Senzai, Yuta; Royer, Sebastien; Buzsáki, György
2014-07-16
High-frequency ripple oscillations, observed most prominently in the hippocampal CA1 pyramidal layer, are associated with memory consolidation. The cellular and network mechanisms underlying the generation, frequency control, and spatial coherence of the rhythm are poorly understood. Using multisite optogenetic manipulations in freely behaving rodents, we found that depolarization of a small group of nearby pyramidal cells was sufficient to induce high-frequency oscillations, whereas closed-loop silencing of pyramidal cells or activation of parvalbumin- (PV) or somatostatin-immunoreactive interneurons aborted spontaneously occurring ripples. Focal pharmacological blockade of GABAA receptors abolished ripples. Localized PV interneuron activation paced ensemble spiking, and simultaneous induction of high-frequency oscillations at multiple locations resulted in a temporally coherent pattern mediated by phase-locked interneuron spiking. These results constrain competing models of ripple generation and indicate that temporally precise local interactions between excitatory and inhibitory neurons support ripple generation in the intact hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.
Pyramidal Cell-Interneuron Interactions Underlie Hippocampal Ripple Oscillations
Stark, Eran; Roux, Lisa; Eichler, Ronny; Senzai, Yuta; Royer, Sebastien; Buzsáki, György
2015-01-01
SUMMARY High-frequency ripple oscillations, observed most prominently in the hippocampal CA1 pyramidal layer, are associated with memory consolidation. The cellular and network mechanisms underlying the generation, frequency control, and spatial coherence of the rhythm are poorly understood. Using multisite optogenetic manipulations in freely behaving rodents, we found that depolarization of a small group of nearby pyramidal cells was sufficient to induce high-frequency oscillations, whereas closed-loop silencing of pyramidal cells or activation of parvalbumin-(PV) or somatostatin-immunoreactive interneurons aborted spontaneously occurring ripples. Focal pharmacological blockade of GABAA receptors abolished ripples. Localized PV inter-neuron activation paced ensemble spiking, and simultaneous induction of high-frequency oscillations at multiple locations resulted in a temporally coherent pattern mediated by phase-locked inter-neuron spiking. These results constrain competing models of ripple generation and indicate that temporally precise local interactions between excitatory and inhibitory neurons support ripple generation in the intact hippocampus. PMID:25033186
Efficient Power Network Analysis with Modeling of Inductive Effects
NASA Astrophysics Data System (ADS)
Zeng, Shan; Yu, Wenjian; Hong, Xianlong; Cheng, Chung-Kuan
In this paper, an efficient method is proposed to accurately analyze large-scale power/ground (P/G) networks, where inductive parasitics are modeled with the partial reluctance. The method is based on frequency-domain circuit analysis and the technique of vector fitting [14], and obtains the time-domain voltage response at given P/G nodes. The frequency-domain circuit equation including partial reluctances is derived, and then solved with the GMRES algorithm with rescaling, preconditioning and recycling techniques. With the merit of sparsified reluctance matrix and iterative solving techniques for the frequency-domain circuit equations, the proposed method is able to handle large-scale P/G networks with complete inductive modeling. Numerical results show that the proposed method is orders of magnitude faster than HSPICE, several times faster than INDUCTWISE [4], and capable of handling the inductive P/G structures with more than 100, 000 wire segments.
Utilization of Induction Bonding for Automated Fabrication of TIGR
NASA Technical Reports Server (NTRS)
Hinkley, Jeffrey A.; Johnston, Norman J.; Hulcher, A. Bruce; Marchello, Joseph M.; Messier, Bernadette C.
1999-01-01
A laboratory study of magnetic induction heat bonding of titanium foil and graphite fiber reinforced polymer prepreg tape, TiGr, demonstrated that the process is a viable candidate for low cost fabrication of aircraft structure made of this new material form. Data were obtained on weld bonding of PIXA and PETI-5 prepreg to titanium. Both the foil and honeycomb forms of titanium were investigated. The process relies on magnetic susceptor heating of titanium, not on high frequency heating of graphite fiber. The experiments showed that with a toroid magnet configuration, good weld bonds might be obtained with heating times of a few seconds. These results suggest the potential is good for the induction heating process to achieve acceptable commercial production rates.
High output lamp with high brightness
Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.
2002-01-01
An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.
Pulsed Laser Illumination of Photovoltaic Cells
NASA Technical Reports Server (NTRS)
Yater, Jane A.; Lowe, Roland; Jenkins, Philip; Landis, Geoffrey A.
1994-01-01
In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. The induction FEL and the radio-frequency (RF) FEL both produce pulsed rather than continuous output. In this work, we investigate cell response to pulsed laser light which simulates the RF FEL format, producing 50 ps pulses at a frequency of 78 MHz. A variety of Si, GaAs, CaSb and CdInSe2 (CIS) solar cells are tested at average incident powers between 4 mW/sq cm and 425 mW/sq cm. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced by using a pulsed laser source compared to constant illumination at the same wavelength. Because the pulse separation is less than or approximately equal to the minority carrier lifetime, the illumination conditions are effectively those of a continuous wave laser. The time dependence of the voltage and current response of the cells are also measured using a sampling oscilloscope equipped with a high frequency voltage probe and current transformer. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments shows that the RF FEL pulse format yields much more efficient photovoltaic conversion of light than does an induction FEL pulse format.
NASA Astrophysics Data System (ADS)
Jakubowicz, J.; Adamek, G.; Sopata, M.; Koper, J. K.; Siwak, P.
2017-12-01
The paper presents the results of nanocrystalline powder tantalum consolidation using hot pressing. The authors used two different heating techniques during hot pressing: high-frequency induction heating (HFIH) and pulse plasma sintering (PPS). A comparison of the structure, microstructure, mechanical properties and corrosion resistance of the bulk nanocrystalline tantalum obtained in both techniques was performed. The nanocrystalline powder was made to start from the microcrystalline one using the high-energy ball milling process. The nanocrystalline powder was hot-pressed at 1000 °C, whereas, for comparison, the microcrystalline powder was hot pressed up to 1500 °C for proper consolidation. The authors found that during hot pressing, the powder partially reacts with the graphite die covered by boron nitride, which facilitated punches and powder displacement in the die during densification. Tantalum carbide and boride in the nanocrystalline material was found, which can improve the mechanical properties. The hardness of the HFIH and PPS nanocrystalline tantalum was as high as 625 and 615 HV, respectively. The microstructure was more uniform in the PPS nanomaterial. The corrosion resistance in both cases deteriorated, in comparison to the microcrystalline material, while the PPS material corrosion resistance was slightly better than that of the HFIH one.
Lee, Hyung-Min; Ghovanloo, Maysam
2011-01-01
We present an active full-wave rectifier with offset-controlled high speed comparators in standard CMOS that provides high power conversion efficiency (PCE) in high frequency (HF) range for inductively powered devices. This rectifier provides much lower dropout voltage and far better PCE compared to the passive on-chip or off-chip rectifiers. The built-in offset-control functions in the comparators compensate for both turn-on and turn-off delays in the main rectifying switches, thus maximizing the forward current delivered to the load and minimizing the back current to improve the PCE. We have fabricated this active rectifier in a 0.5-μm 3M2P standard CMOS process, occupying 0.18 mm2 of chip area. With 3.8 V peak ac input at 13.56 MHz, the rectifier provides 3.12 V dc output to a 500 Ω load, resulting in the PCE of 80.2%, which is the highest measured at this frequency. In addition, overvoltage protection (OVP) as safety measure and built-in back telemetry capabilities have been incorporated in our design using detuning and load shift keying (LSK) techniques, respectively, and tested. PMID:22174666
Alabovskiĭ, V V; Gotovskiĭ, M Iu; Vinokurov, A A; Maslov, O V
2013-01-01
The results of analysis of the literature publications suggest the necessity of experimental studies aimed at investigation of modulating effect of low-frequency magnetic fields on endocrine organs. The present study was carried out using 200 outbred white male rats (body weight 200-220 g). Corticosterone was measured in blood sera following the application of a low-frequency magnetic field (20 and 53 Hz with induction from 0.4 to 6 mT) generated by a Mini-Expert-T apparatus for induction magnetic therapy during 30 minutes. It was shown that the application of the alternating magnetic field to the adrenal region of the rats in the selected frequency and induction ranges caused a significant increase in the serum corticosterone levels. The results of the present study on the hormonal activity of rat adrenals give reason to consider the influence of the alternating magnetic fields as being modulatory. Analysis of the data thus obtained has demonstrated the non-linear dependence of glucocorticoid activity of the rat adrenal glands on the induction strength of the alternating magnetic field.
NASA Astrophysics Data System (ADS)
Tseng, V. F.-G.; Xie, H.
2015-11-01
This paper presents a frequency detection based inductive eddy current sensing mechanism to simultaneously sense the piston position and tilt angle of the mirror plate of large vertical displacement micromirrors that exhibit piston scan ranges above 100 μm. This is accomplished by sensing the inductance change, and thus resonant frequency shift, of two microfabricated sensing coils packaged underneath the mirror plate. For demonstration purpose, the coils were paired with discrete circuit components to oscillate at 11.9 MHz and 12.5 MHz, respectively. The piston position and tilt angle of the mirror plate could be simultaneously monitored over a 500 μm piston scan range, achieving a maximum piston sensitivity of 4.15 kHz/μm with a piston sensing resolution of 96 nm and a maximum tilt angle sensitivity of 60.5 kHz/° with a tilt angle sensing resolution of 0.0013°. Analytical modeling of the coil inductance change via image theory was also conducted, showing that the sensor sensitivity and resolution could be improved by increasing the coil oscillation frequency and decreasing the coil size.
NASA Astrophysics Data System (ADS)
Pivac, Ivan; Šimić, Boris; Barbir, Frano
2017-10-01
Representation of fuel cell processes by equivalent circuit models, involving resistance and capacitance elements representing activation losses on both anode and cathode in series with resistance representing ohmic losses, cannot capture and explain the inductive loop that may show up at low frequencies in Nyquist diagram representation of the electrochemical impedance spectra. In an attempt to explain the cause of the low-frequency inductive loop and correlate it with the processes within the fuel cell electrodes, a novel equivalent circuit model of a Proton Exchange Membrane (PEM) fuel cell has been proposed and experimentally verified here in detail. The model takes into account both the anode and the cathode, and has an additional resonant loop on each side, comprising of a resistance, capacitance and inductance in parallel representing the processes within the catalyst layer. Using these additional circuit elements, more accurate and better fits to experimental impedance data in the wide frequency range at different current densities, cell temperatures, humidity of gases, air flow stoichiometries and backpressures were obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume, E-mail: david.martinez@uib.es
Ideal magnetohydrodynamics (MHD) provides an accurate description of low-frequency Alfvén waves in fully ionized plasmas. However, higher-frequency waves in many plasmas of the solar atmosphere cannot be correctly described by ideal MHD and a more accurate model is required. Here, we study the properties of small-amplitude incompressible perturbations in both the low- and the high-frequency ranges in plasmas composed of several ionized species. We use a multi-fluid approach and take into account the effects of collisions between ions and the inclusion of Hall’s term in the induction equation. Through the analysis of the corresponding dispersion relations and numerical simulations, wemore » check that at high frequencies ions of different species are not as strongly coupled as in the low-frequency limit. Hence, they cannot be treated as a single fluid. In addition, elastic collisions between the distinct ionized species are not negligible for high-frequency waves, since an appreciable damping is obtained. Furthermore, Coulomb collisions between ions remove the cyclotron resonances and the strict cutoff regions, which are present when collisions are not taken into account. The implications of these results for the modeling of high-frequency waves in solar plasmas are discussed.« less
High performance protection circuit for power electronics applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tudoran, Cristian D., E-mail: cristian.tudoran@itim-cj.ro; Dădârlat, Dorin N.; Toşa, Nicoleta
2015-12-23
In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as anmore » external, independent protection circuit.« less
Microwave Kinetic Inductance Detector with Selective Polarization Coupling
NASA Technical Reports Server (NTRS)
Wollack, Edward; U-yen, Kongpop; Stevenson, Thomas; Brown, Ari; Moseley, Samuel; Hsieh, Wen-Ting
2013-01-01
A conventional low-noise detector requires a technique to both absorb incident power and convert it to an electrical signal at cryogenic temperatures. This innovation combines low-noise detector and readout functionality into one device while maintaining high absorption, controlled polarization sensitivity, and broadband detection capability. The resulting far-infrared detectors can be read out with a simple approach, which is compact and minimizes thermal loading. The proposed microwave kinetic inductance detector (MKID) consists of three basic elements. The first is the absorptive section in which the incident power is coupled to a superconducting resonator at far-infrared frequency above its superconducting critical frequency (where superconductor becomes normal conductor). This absorber's shape effectively absorbs signals in the desired polarization state and is resonant at the radio frequency (RF) used for readout of the device. Control over the metal film used in the absorber allows realization of structures with either a 50% broadband or 100% resonance absorptance over a 30% fractional bandwidth. The second element is a microwave resonator - which is realized from the thin metal films used to make the absorber as transmission lines - whose resonance frequency changes due to a variation in its kinetic inductance. The resonator's kinetic inductance is a function of the power absorbed by the device. A low-loss dielectric (mono-crystalline silicon) is used in a parallel-plate transmission line structure to realize the desired superconducting resonators. There is negligible coupling among the adjacent elements used to define the polarization sensitivity of each detector. The final component of the device is a microwave transmission line, which is coupled to the resonator, and allows detection of changes in resonance frequency for each detector in the focal plane array. The spiral shape of the detector's absorber allows incident power with two polarizations to couple to the detector equally. A stepped impedance resonator was used that allows the incident power absorbed in the detecting membrane area to be uniformly distributed in the detector's transmission line at the RF readout frequency. This maximizes the sensitivity of the detector. The signal is read out via a frequency multiplexing technique that requires a minimum number of interface transmission lines for readout. This reduces the packaging complexity and coupling to the device's thermal environment.
High Frequency Plasma Generators for Ion Thrusters
NASA Technical Reports Server (NTRS)
Divergilio, W. F.; Goede, H.; Fosnight, V. V.
1981-01-01
The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.
Temperature and frequency characteristics of low-loss MnZn ferrite in a wide temperature range
NASA Astrophysics Data System (ADS)
Sun, Ke; Lan, Zhongwen; Yu, Zhong; Xu, Zhiyong; Jiang, Xiaona; Wang, Zihui; Liu, Zhi; Luo, Ming
2011-05-01
A low-loss Mn0.7Zn0.24Fe2.06O4 ferrite has been prepared by a solid-state reaction method. The MnZn ferrite has a high initial permeability, μi (3097), a high saturation induction, Bs (526 mT), a high Curie temperature, Tc (220 °C), and a low core loss, PL (≤ 415 kW/m3) in a wide temperature (25-120 °C) and frequency (10-100 kHz) range. As the temperature increases, an initial decrease followed by a subsequent increase of hysteresis loss, Ph, and eddy current loss, Pe is observed. Both Ph and Pe increase with increasing frequency. When f ≥ 300 kHz, a residual loss, Pr, appears. Pe increases with increasing temperature and frequency. The temperature and frequency dependence of Ph can be explained by irreversible domain wall movements, Pe by the skin effect, and Pr by domain wall resonance, respectively.
Geophysical Surveys for Locating Buried Utilities, Lake Pontchartrain Levees, New Orleans
2014-06-01
4 Figure 3. GPR concepts...this study. Electromagnetic (EM) induction, magnetic, and ground penetrating radar ( GPR ) geophysical methods were evaluated to determine which...surveys GPR is a ground-based geophysical instrument that transmits high- frequency EM pulses into the subsurface. The GPR system consists of a
NASA Astrophysics Data System (ADS)
Gerasimov, A.; Kirpichnikov, A.; Sabirova, F.; Gainullin, R.
2017-11-01
On the basis of theoretical analysis of distributions of the conductivity, current density and specific power of heat release in the high-frequency induction discharge, a law of crowding of maxima of these values has been established.
The influence of low-frequency magnetic field on plasma antioxidant capacity and heart rate.
Ciejka, Elzbieta B; Goraca, Anna
2009-01-01
Low-frequency magnetic field is widely applied as magnetotherapy in physiotherapeutic treatment. Recognition of positive and negative effects of the magnetic field has been the subject of numerous studies. Experimental studies concern, among others, the effect of this field on the heart rate and plasma antioxidant capacity. The aim of the study was to check whether a time-variable magnetic field of constant frequency and induction affects the heart rate and plasma antioxidant capacity. The tests were performed on Spraque-Dawley rats exposed to the magnetic field of the following parameters: frequency - 40 Hz, induction - 7 mT, time of exposure - 30 and 60 minutes. The measurements of ECG and plasma antioxidant capacity expressed in the number of reduced iron ions were performed on experimental animals: before, after a single exposure and after 14 days of exposure. A significant decrease of the heart rate was observed after 14 days of exposure. A variable magnetic field of the parameters: frequency - 40 Hz, induction - 7 mT and exposure time of 14 days caused an increase of the organism antioxidant defence, whereas a variable magnetic field of the frequency of 40 Hz, induction - 7 mT and exposure time 60 minutes for 14 days caused a significant decrease of the organism antioxidant defence. The exposure time affects heart rate, plasma antioxidant capacity and the organism defense ability against free radicals.
Variable frequency inverter for ac induction motors with torque, speed and braking control
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1975-01-01
A variable frequency inverter was designed for driving an ac induction motor which varies the frequency and voltage to the motor windings in response to varying torque requirements for the motor so that the applied voltage amplitude and frequency are of optimal value for any motor load and speed requirement. The slip frequency of the motor is caused to vary proportionally to the torque and feedback is provided so that the most efficient operating voltage is applied to the motor. Winding current surge is limited and a controlled negative slip causes motor braking and return of load energy to a dc power source.
Towards High-Frequency Shape Memory Alloy Actuators Incorporating Liquid Metal Energy Circuits
NASA Astrophysics Data System (ADS)
Hartl, Darren; Mingear, Jacob; Bielefeldt, Brent; Rohmer, John; Zamarripa, Jessica; Elwany, Alaa
2017-12-01
Large shape memory alloy (SMA) actuators are currently limited to applications with low cyclic actuation frequency requirements due to their generally poor heat transfer rates. This limitation can be overcome through the use of distributed body heating methods such as induction heating or by accelerated cooling methods such as forced convection in internal cooling channels. In this work, a monolithic SMA beam actuator containing liquid gallium-indium alloy-filled channels is fabricated through additive manufacturing. These liquid metal channels enable a novel multi-physical thermal control system, allowing for increased heating and cooling rates to facilitate an increased cyclic actuation frequency. Liquid metal flowing in the channels performs the dual tasks of inductively heating the surrounding SMA material and then actively cooling the SMA via forced internal fluid convection. A coupled thermoelectric model, implemented in COMSOL, predicts a possible fivefold increase in the cyclic actuation frequency due to these increased thermal transfer rates when compared to conventional SMA forms having external heating coils and being externally cooled via forced convection. The first ever experimental prototype SMA actuator of this type is described and, even at much lower flow rates, is shown to exhibit a decrease in cooling time of 40.9%.
Parameters assessment of the inductively-coupled circuit for wireless power transfer
NASA Astrophysics Data System (ADS)
Isaev, Yu N.; Vasileva, O. V.; Budko, A. A.; Lefebvre, S.
2017-02-01
In this paper, a wireless power transfer model through the example of inductively-coupled coils of irregular shape in software package COMSOL Multiphysics is studied. Circuit parameters, such as inductance, coil resistance and self-capacitance were defined through electromagnetic energy by the finite-element method. The study was carried out according to Helmholtz equation. Spatial distribution of current per unit depending on frequency and the coupling coefficient for analysis of resonant frequency and spatial distribution of the vector magnetic potential at different distances between coils were presented. The resulting algorithm allows simulating the wireless power transfer between the inductively coupled coils of irregular shape with the assessment of the optimal parameters.
Ultra-high vacuum compatible induction-heated rod casting furnace
NASA Astrophysics Data System (ADS)
Bauer, A.; Neubauer, A.; Münzer, W.; Regnat, A.; Benka, G.; Meven, M.; Pedersen, B.; Pfleiderer, C.
2016-06-01
We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.
Ultra-high vacuum compatible induction-heated rod casting furnace.
Bauer, A; Neubauer, A; Münzer, W; Regnat, A; Benka, G; Meven, M; Pedersen, B; Pfleiderer, C
2016-06-01
We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.
Audio-frequency analysis of inductive voltage dividers based on structural models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avramov, S.; Oldham, N.M.; Koffman, A.D.
1994-12-31
A Binary Inductive Voltage Divider (BIVD) is compared with a Decade Inductive Voltage Divider (DIVD) in an automatic IVD bridge. New detection and injection circuitry was designed and used to evaluate the IVDs with either the input or output tied to ground potential. In the audio frequency range the DIVD and BIVD error patterns are characterized for both in-phase and quadrature components. Differences between results obtained using a new error decomposition scheme based on structural modeling, and measurements using conventional IVD standards are reported.
Apparatus for characterizing conductivity of superconducting materials
Doss, J.D.
1993-12-07
Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples. 10 figures.
Apparatus and method for characterizing conductivity of materials
Doss, J.D.
1988-04-13
Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples. 8 figs.
ERIC Educational Resources Information Center
Rana, K. P. S.; Kumar, Vineet; Mendiratta, Jatin
2017-01-01
One of the most elementary concepts in freshmen Electrical Engineering subject comprises the Resistance-Inductance-Capacitance (RLC) circuit fundamentals, that is, their time and frequency domain responses. For a beginner, generally, it is difficult to understand and appreciate the step and the frequency responses, particularly the resonance. This…
Miyake, Wakako; Oda, Yutaka; Ikeda, Yuko; Hagihira, Satoshi; Iwaki, Hiroyoshi; Asada, Akira
2010-06-01
To examine the relationships between effect-site concentrations and electroencephalographic parameters after the induction of general anesthesia with midazolam. Twenty-four patients with American Society of Anesthesiologists status I or II were randomly allocated to receive either an intravenous (i.v.) bolus of midazolam 0.2 mg kg(-1) (small-dose group, n = 12) or 0.3 mg kg(-1) (large-dose group, n = 12) for induction of general anesthesia in a double-blind experimental design. The bispectral index (BIS), 95% spectral edge frequency (SEF95), spectral power density, and plasma concentrations of midazolam were measured for 60 min following the induction of general anesthesia. Plasma and simulated effect-site concentrations of midazolam were significantly higher in the large-dose group than in the small-dose group (P = 0.005 and <0.001, respectively). There was a correlation between the relative beta ratio and BIS (r (2) = 0.30, P < 0.001; n = 168); however, effect-site concentrations of midazolam showed no association with BIS, relative beta ratio, or SEF95 (r (2) = 0.07, 0.11 and 0.01, respectively; n = 168). The electroencephalographic spectral power density in the beta-band (>/=13 and <30 Hz) was significantly increased after induction and was significantly larger in the large-dose group than in the small-dose group (P = 0.009). Following the induction of general anesthesia with i.v. midazolam 0.2 or 0.3 mg kg(-1), the BIS was positively correlated with the relative beta ratio. Despite a rapid decrease in the plasma and effect-site concentrations of midazolam, the average BIS remained >60 for 60 min after induction, reflecting an increased power of the electroencephalographic high-frequency band.
Chirped-Pulse Millimeter-Wave Spectroscopy of Rydberg-Rydberg Transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prozument, Kirill; Colombo, Anthony P.; Zhou Yan
2011-09-30
Transitions between Rydberg states of Ca atoms, in a pulsed, supersonic atomic beam, are directly detected by chirped-pulse millimeter-wave spectroscopy. Broadband, high-resolution spectra with accurate relative intensities are recorded instantly. Free induction decay (FID) of atoms, polarized by the chirped pulse, at their Rydberg-Rydberg transition frequencies, is heterodyne detected, averaged in the time domain, and Fourier transformed into the frequency domain. Millimeter-wave transient nutations are observed, and the possibility of FID evolving to superradiance is discussed.
The ETA-II induction linac as a high-average-power FEL driver
NASA Astrophysics Data System (ADS)
Nexsen, W. E.; Atkinson, D. P.; Barrett, D. M.; Chen, Y.-J.; Clark, J. C.; Griffith, L. V.; Kirbie, H. C.; Newton, M. A.; Paul, A. C.; Sampayan, S.; Throop, A. L.; Turner, W. C.
1990-10-01
The Experimental Test Accelerator II (ETA-II) is the first induction linac designed specifically to FEL requirements. It is primarily intended to demonstrate induction accelerator technology for high-average-power, high-brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high-vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switches allows high-average-power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 MeV energy, 2 kA current, 20 ns pulse width and a brightness of 1 × 108 A/(m rad)2 at the wiggler with a pulse repetition frequency (prf) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 MeV energy, 3 kA current, 50 ns pulse width and a brightness of 1 × 108 A/(m rad)2 with a 5 kHz prf for 0.5 s. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements.
ALLTEM Multi-Axis Electromagnetic Induction System Demonstration and Validation
2012-08-01
threshold T-high higher threshold TMGS Tensor Magnetic Gradiometer System TOI target of interest Tx ALLTEM transmitter USGS U.S. Geological...the Tensor Magnetic Gradiometer System ( TMGS ) and two prototype EMI instruments, the Very Early Time-domain ElectroMagnetic (VETEM) system and the...project one prototype magnetic system, the TMGS , and two prototype EMI instruments, VETEM and the High Frequency Sounder, were evaluated. Subsequent
Spatial structure of the magnetic field induced by an infrasonic wave in the oceanic waveguide
NASA Astrophysics Data System (ADS)
Semkin, S. V.; Smagin, V. P.
2012-05-01
The magnetic field generated by an acoustic wave propagating in the oceanic waveguide has been considered. The effect of the self-induction factor on the spatial structure of this field has been studied. It has been indicated that there exists a frequency range where it is necessary to take into consideration self-induction. It has been indicated that the induced field is most substantial at frequencies when only the first normal mode exists. The dependences of the induced field on the depth, frequency, and geomagnetic field direction have been obtained and analyzed for this frequency range.
NASA Astrophysics Data System (ADS)
Velayudhan, C.; Bundell, J. H.
This paper investigates a variable-speed, constant-frequency double output induction generator which is capable of absorbing the mechanical energy from a fixed pitch wind turbine and converting it into electrical energy at constant grid voltage and frequency. Rotor power at varying voltage and frequency is either fed to electronically controlled resistances and used as heat energy or is rectified, inverted by a controllable line-commutated inverter and returned to the grid. Optimal power tracking is by means of an adaptive controller which controls the developed torque of the generator by monitoring the shaft speed.
Oida, Takenori; Kobayashi, Tetsuo
2013-01-01
Ultra-low field magnetic resonance imaging (ULF-MRI) has attracted attention because of its low running costs and minimum patient exposure. An optically pumped atomic magnetometer (OPAM) is a magnetic sensor with high sensitivity in the low frequency range, which does not require a cryogenic cooling system. In an effort to develop a ULF-MRI, we attempted to measure the free induction decay MR signals with an OPAM. We successfully detected the MR signals by combining an OPAM and a flux transformer, demonstrating the feasibility of the proposed system.
Clock recovery PLL with gated PFD for NRZ ON-OFF Modulated Signals in a retinal implant system.
Brendler, Christian; Aryan, Naser Pour; Rieger, Viola; Rothermel, Albrecht
2013-01-01
A Clock Recovery Phase Locked Loop with Gated Phase Frequency Detector (GPLL) for NRZ ON-OFF Modulated Signals with low data transmission rates for an inductively powered subretinal implant system is presented. Low data transmission rate leads to a long absence of inductive powering in the system when zeros are transmitted. Consequently there is no possibility to extract any clock in these pauses, thus the digital circuitry can not work any more. Compared to a commonly used PLL for clock extraction, no certain amount of data transitions is needed. This is achieved by having two operating modes. In one mode the GPLL tracks the HF input signal. In the other, the GPLL is an adjustable oscillator oscillating at the last used frequency. The proposed GPLL is fabricated and measured using a 350 nm High Voltage CMOS technology.
NASA Astrophysics Data System (ADS)
Zeisberger, M.; Klupsch, Th.; Michalke, W.
1995-02-01
We report on a systematic mutual induction measurement of the complex AC penetration depth λ of a sputtered high-quality GdBa 2Cu 3O 7-δ film in the mixed state by a very small coil system arranged near the sample surface. The complex penetration depth λ( B, T, ω) for DC inductions B ⩽ 0.65 T (perpendicular to the film), for temperatures 36 K ⩽ T ⩽ 81 K, and for frequencies 1 kHz ⩽ ω/2 π ⩽ 500 kHz was determined from the measured signal by a novel inversion scheme. The results are consistent with theoretical predictions based upon single vortex pinning. The Labusch parameter α, the flux creep relaxation time τ, as well as the effective activation energy U are simulateneously determined.
NASA Technical Reports Server (NTRS)
Latorraca, G. A.; Bannister, L. H.
1974-01-01
Techniques developed for electromagnetic probing of the lunar interior, and techniques developed for the generation of high power audio frequencies were combined to make practical a magnetic inductive coupling system for the rapid measurement of ground conductivity profiles which are helpful when prospecting for the presence and quality of subsurface water. A system which involves the measurement of the direction, intensity, and time phase of the magnetic field observed near the surface of the earth at a distance from a horizontal coil energized so as to create a field that penetrates the earth was designed and studied to deduce the conductivity and stratification of the subsurface. Theoretical studies and a rudimentary experiment in an arid region showed that the approach is conceptually valid and that this geophysical prospecting technique can be developed for the economical exploration of subterranean water resources.
NASA Astrophysics Data System (ADS)
Oku, Hideki; Narita, Kiyomi; Shiraishi, Takashi; Ide, Satoshi; Tanaka, Kazuhiro
2012-01-01
A 25-Gbps high-sensitivity optical receiver with a 10-Gbps photodiode (PD) using inductive input coupling has been demonstrated for optical interconnects. We introduced the inductive input coupling technique to achieve the 25-Gbps optical receiver using a 10-Gbps PD. We implemented an input inductor (Lin) between the PD and trans-impedance amplifier (TIA), and optimized inductance to enhance the bandwidth and reduce the input referred noise current through simulation with the RF PD-model. Near the resonance frequency of the tank circuit formed by PD capacitance, Lin, and TIA input capacitance, the PD photo-current through Lin into the TIA is enhanced. This resonance has the effects of enhancing the bandwidth at TIA input and reducing the input equivalent value of the noise current from TIA. We fabricated the 25-Gbps optical receiver with the 10-Gbps PD using an inductive input coupling technique. Due to the application of an inductor, the receiver bandwidth is enhanced from 10 GHz to 14.2 GHz. Thanks to this wide-band and low-noise performance, we were able to improve the sensitivity at an error rate of 1E-12 from non-error-free to -6.5 dBm. These results indicate that our technique is promising for cost-effective optical interconnects.
MacNeil, Sasha; Deschênes, Sonya S; Caldwell, Warren; Brouillard, Melanie; Dang-Vu, Thien-Thanh; Gouin, Jean-Philippe
2017-12-01
High-frequency heart rate variability (HF-HRV) reactivity was proposed as a vulnerability factor for stress-induced sleep disturbances. Its effect may be amplified among individuals with high trait worry or sleep reactivity. This study evaluated whether HF-HRV reactivity to a worry induction, sleep reactivity, and trait worry predict increases in sleep disturbances in response to academic stress, a naturalistic stressor. A longitudinal study following 102 undergraduate students during an academic semester with well-defined periods of lower and higher academic stress was conducted. HF-HRV reactivity to a worry induction, trait worry using the Penn State Worry Questionnaire, and sleep reactivity using the Ford Insomnia Stress Reactivity Test were measured during the low stress period. Sleep disturbances using the Pittsburgh Sleep Quality Index were assessed twice during the lower stress period and three times during the higher stress period. Greater reductions in HF-HRV in response to the worry induction predicted increases in sleep disturbances from the lower to the higher academic stress period. Trait worry moderated this association: individuals with both higher trait worry and greater HF-HRV reactivity to worry had larger increases in stress-related sleep disturbances over time, compared to participants with lower trait worry and HF-HRV reactivity. A similar, but marginally significant effect was found for sleep reactivity. This study supports the role of HF-HRV reactivity as a vulnerability factor for stress-induced sleep disturbances. The combination of high trait worry and high HF-HRV reactivity to worry might identify a subgroup of individuals most vulnerable to stress-related sleep disturbances.
NASA Astrophysics Data System (ADS)
Barai, A.; Watson, S.; Griffiths, H.; Patz, R.
2012-08-01
Measurement of the electrical conductivity of biological tissues as a function of frequency, often termed ‘bioelectrical impedance spectroscopy (BIS)’, provides valuable information on tissue structure and composition. In implementing BIS though, there can be significant practical difficulties arising from the electrode-sample interface which have likely limited its deployment in industrial applications. In magnetic induction spectroscopy (MIS) these difficulties are eliminated through the use of fully non-contacting inductive coupling between the sensors and sample. However, inductive coupling introduces its own set of technical difficulties, primarily related to the small magnitudes of the induced currents and their proportionality with frequency. This paper describes the design of a practical MIS system incorporating new, highly-phase-stable electronics and compares its performance with that of electrode-based BIS in measurements on biological samples including yeast suspensions in saline (concentration 50-400 g l-1) and solid samples of potato, cucumber, tomato, banana and porcine liver. The shapes of the MIS spectra were in good agreement with those for electrode-based BIS, with a residual maximum discrepancy of 28%. The measurement precision of the MIS was 0.05 S m-1 at 200 kHz, improving to 0.01 S m-1 at a frequency of 20 MHz, for a sample volume of 80 ml. The data-acquisition time for each MIS measurement was 52 s. Given the value of spectroscopic conductivity information and the many advantages of obtaining these data in a non-contacting manner, even through electrically-insulating packaging materials if necessary, it is concluded that MIS is a technique with considerable potential for monitoring bio-industrial processes and product quality.
Alius, Manuela G; Pané-Farré, Christiane A; Von Leupoldt, Andreas; Hamm, Alfons O
2013-05-01
Although respiratory symptoms are relevant for diagnosis and etiology of panic disorder, anxiety responses and breathing behavior evoked by induction of dyspnea have rarely been studied. Therefore, dyspnea sensations and affective evaluations evoked by inspiratory resistive loads of different intensities were first assessed in 23 individuals with high versus 24 participants with low anxiety sensitivity (AS). High AS participants with high fear of suffocation rated loads of the same physical intensity as more unpleasant and reported more intense feelings of dyspnea and more respiratory and panic symptoms than low AS individuals. In the second experiment assessing physiological responses to physically comparable loads, high suffocation fear participants showed an increase in minute ventilation to compensate for fear-induced air hunger. This ventilation behavior results in increased frequency of dyspnea sensations, thus increasing fear of suffocation. Copyright © 2013 Society for Psychophysiological Research.
Kang, Qi; Shen, Qirui; Zhang, Ping; Wang, Honghai; Sun, Yan; Shen, Dazhong
2018-02-20
Quartz crystal microbalance (QCM) is an important tool to detect in real time the mass change at the nanogram level. However, for a QCM operated in the liquid phase, the Sauerbrey equation is usually disturbed by the changes in liquid properties and the longitudinal wave effect. Herein, we report another unfound associated high-frequency resonance (HFR) model for the QCM, with the intensity 2 orders of magnitude higher than that of the fundamental peak in the liquid phase. The HFR model exhibits obvious impact on the response of QCM in the thickness-shear model (TSM), especially for overtones. The frequency of HFR peak is decreased dramatically with increasing conductivity or permittivity of the liquid phase, resulting in considerable additional frequency shifts in the TSM as baseline drift. Compared to that with a faraway HFR peak, the overlapping of HFR peak to a TSM overtone results in the frequency shifts of ±50-70 kHz with its intensity enhancement by 3 orders of magnitude in the later. The HFR behavior is explained by an equivalent circuit model including leading wire inductance, liquid inductance, and static capacitance of QCM. Taking into account the HFR model, the positive frequency shifts of the QCM at high overtones during the cell adhesion process is understandable. Combining the TSM and HFR is an effective way to improve the stability of QCM and provides more reliable information from the responses of QCM. The HFR may have potential application in chemical and biological sensors.
Giant magneto-impedance and magneto-inductive effects in amorphous alloys
NASA Astrophysics Data System (ADS)
Panina, L. V.; Mohri, K.; Bushida, K.; Noda, M.
1994-11-01
Recent experiments have discovered giant and sensitive magneto-impedance and magneto-inductive effects in FeCoSiB amorphous wires. These effects include a sensitive change in an ac wire voltage with the application of a small dc longitudinal magnetic field. At low frequencies (1-10 kHz) the inductive voltage drops by 50% for a field of 2 Oe (25%/Oe) reflecting a strong field dependence of the circumferential permeability. At higher frequencies (0.1-10 MHz) when the skin effect is essential, the amplitude of the total wire voltage decreases by 40%-60% for fields of 3-10 Oe (about 10%/Oe). These effects exhibit no hysteresis for the variation of an applied field and can be obtained even in wires of 1 mm length and a few micrometer diameter. These characteristics are very useful to constitute a highly sensitive microsensor head to detect local fields of the order of 10(exp -5) Oe. In this paper, we review recently obtained experimental results on magneto-inductive and magneto-impedance effects and present a detailed discussion for their mechanism, developing a general approach in terms of ac complex impedance in a magnetic conductor. In the case of a strong skin effect the total wire impedance depends on the circumferential permeability through the penetration depth, resulting in the giant magneto-impedance effect.
Asgarian, Farzad; Sodagar, Amir M
2009-01-01
A novel noncoherent BPSK demodulator is presented for inductively powered biomedical devices. Differential Manchester encoding technique is used and data demodulation is based on pulse width measurement method. In addition to ultra low power consumption, high data rate without increasing the carrier frequency is achieved with the outstanding data-rate-to-carrier-frequency ratio of 100%. The proposed demodulator is especially appropriate for biomedical applications where high speed data transfer is required, e.g., cochlear implants and visual prostheses. The circuit is designed in a 0.18-mum standard CMOS technology and consumes as low as 232 microW@1.8V at a data rate of 10 Mbps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvetsov, N. K., E-mail: elmash@em.ispu.ru
2016-11-15
The results of calculations of the increase in losses in an induction motor with frequency control and different forms of the supply voltage are presented. The calculations were performed by an analytic method based on harmonic analysis of the supply voltage as well as numerical calculation of the electromagnetic processes by the finite-element method.
Khalil, Khalil Abdelrazek; Sherif, El-Sayed M; Nabawy, A M; Abdo, Hany S; Marzouk, Wagih W; Alharbi, Hamad F
2016-05-20
TiC nanofibers reinforced Al matrix composites were produced by High Frequency Induction Heat Sintering (HFIHS).The titanium carbide nanofibers with an average diameter of 90 nm are first prepared by electrospinning technique and high temperature calcination process. A composite solution containing polyacrylonitrile and titanium isopropoxide is first electrospun into the nanofibers, which are subsequently stabilized and then calcined to produce the desired TiC nanofibers. The X-ray diffraction pattern and transmission electron microscopy results show that the main phase of the as-synthesized nanofibers is titanium carbide. The TiC nanofibers is then mixed with the aluminum powders and introduced into high frequency induction heat sintering (HFIHS) to produce composites of TiC nanofibers reinforced aluminum matrix. The potential application of the TiC nanofibers reinforced aluminum matrix composites was systematically investigated. 99.5% relative density and around 85 HV (833 MPa) Vickers hardness of the Al reinforced with 5 wt % TiC nanofiber has been obtained. Furthermore, the sample of Al contains 5 wt % TiC, has the highest value of compression and yield strength of about 415 and 350 MPa, respectively. The ductility of the Al/5 wt % TiC showed increasing with increasing the TiC contents.
Critical heat flux test apparatus
Welsh, Robert E.; Doman, Marvin J.; Wilson, Edward C.
1992-01-01
An apparatus for testing, in situ, highly irradiated specimens at high temperature transients is provided. A specimen, which has a thermocouple device attached thereto, is manipulated into test position in a sealed quartz heating tube by a robot. An induction coil around a heating portion of the tube is powered by a radio frequency generator to heat the specimen. Sensors are connected to monitor the temperatures of the specimen and the induction coil. A quench chamber is located below the heating portion to permit rapid cooling of the specimen which is moved into this quench chamber once it is heated to a critical temperature. A vacuum pump is connected to the apparatus to collect any released fission gases which are analyzed at a remote location.
A study of carburetor/induction system icing in general aviation accidents
NASA Technical Reports Server (NTRS)
Obermayer, R. W.; Roe, W. T.
1975-01-01
An assessment of the frequency and severity of carburetor/induction icing in general-aviation accidents was performed. The available literature and accident data from the National Transportation Safety Board were collected. A computer analysis of the accident data was performed. Between 65 and 90 accidents each year involve carburetor/induction system icing as a probable cause/factor. Under conditions conducive to carburetor/induction icing, between 50 and 70 percent of engine malfunction/failure accidents (exclusive of those due to fuel exhaustion) are due to carburetor/induction system icing. Since the evidence of such icing may not remain long after an accident, it is probable that the frequency of occurrence of such accidents is underestimated; therefore, some extrapolation of the data was conducted. The problem of carburetor/induction system icing is particularly acute for pilots with less than 1000 hours of total flying time. The severity of such accidents is about the same as any accident resulting from a forced landing or precautionary landing. About 144 persons, on the average, are exposed to death and injury each year in accidents involving carburetor/induction icing as a probable cause/factor.
Vitee, Nandini; Ramiah, Harikrishnan; Chong, Wei-Keat; Tan, Gim-Heng; Kanesan, Jeevan; Reza, Ahmed Wasif
2014-01-01
A low-power wideband mixer is designed and implemented in 0.13 µm standard CMOS technology based on resistive feedback current-reuse (RFCR) configuration for the application of cognitive radio receiver. The proposed RFCR architecture incorporates an inductive peaking technique to compensate for gain roll-off at high frequency while enhancing the bandwidth. A complementary current-reuse technique is used between transconductance and IF stages to boost the conversion gain without additional power consumption by reusing the DC bias current of the LO stage. This downconversion double-balanced mixer exhibits a high and flat conversion gain (CG) of 14.9 ± 1.4 dB and a noise figure (NF) better than 12.8 dB. The maximum input 1-dB compression point (P1dB) and maximum input third-order intercept point (IIP3) are -13.6 dBm and -4.5 dBm, respectively, over the desired frequency ranging from 50 MHz to 10 GHz. The proposed circuit operates down to a supply headroom of 1 V with a low-power consumption of 3.5 mW.
NASA Astrophysics Data System (ADS)
El-Danaf, Ehab A.; Baig, Muneer; Almajid, Abdulhakim A.; Soliman, Mahmoud S.
2014-08-01
Mechanical Attrition of metallic powders induces severe plastic deformation and consequently reduces the average grain size. Powders of 99.7 Al (45μm particle size), cryomilled for 7 hrs having a crystal size of ~ 20 nm, were consolidated by high frequency induction sintering under a constant pressure of 50 MPa and at two temperatures of 500 and 550 °C for two sintering dwell times of 1 and 3 minutes at a constant heating rate of 400 °C/min. The bright field TEM image and X-ray line broadening technique, for the cryomilled powders, were used to measure-the crystallite size. Simple compression at an initial strain rate of 10-4 s-1 was conducted at room temperature, 373 and 473 K, and the yield strength was documented and correlated with the sintering parameters. The as-received 99.7 Al powders-consolidated using one of the sintering parameters was used as a reference material to compare the mechanical properties. Hardness, density and crystal size of the consolidated sample, that gave the highest yield and fracture strength, were measured.
Li, Mingzhou; Schiano, Jeffrey L; Samra, Jenna E; Shetty, Kiran K; Brey, William W
2011-10-01
Resistive and hybrid (resistive/superconducting) magnets provide substantially higher magnetic fields than those available in low-temperature superconducting magnets, but their relatively low spatial homogeneity and temporal field fluctuations are unacceptable for high resolution NMR. While several techniques for reducing temporal fluctuations have demonstrated varying degrees of success, this paper restricts attention to methods that utilize inductive measurements and feedback control to actively cancel the temporal fluctuations. In comparison to earlier studies using analog proportional control, this paper shows that shaping the controller frequency response results in significantly higher reductions in temporal fluctuations. Measurements of temporal fluctuation spectra and the frequency response of the instrumentation that cancels the temporal fluctuations guide the controller design. In particular, we describe a sampled-data phase-lead-lag controller that utilizes the internal model principle to selectively attenuate magnetic field fluctuations caused by the power supply ripple. We present a quantitative comparison of the attenuation in temporal fluctuations afforded by the new design and a proportional control design. Metrics for comparison include measurements of the temporal fluctuations using Faraday induction and observations of the effect that the fluctuations have on nuclear resonance measurements. Copyright © 2011. Published by Elsevier Inc.
Li, Bin; Chen, Lianping; Li, Li
2017-01-01
In this article, we propose a novel detection method for underwater moving targets by detecting their extremely low frequency (ELF) emissions with inductive sensors. The ELF field source of the targets is modeled by a horizontal electric dipole at distances more than several times of the targets’ length. The formulas for the fields produced in air are derived with a three-layer model (air, seawater and seafloor) and are evaluated with a complementary numerical integration technique. A proof of concept measurement is presented. The ELF emissions from a surface ship were detected by inductive electronic and magnetic sensors as the ship was leaving a harbor. ELF signals are of substantial strength and have typical characteristic of harmonic line spectrum, and the fundamental frequency has a direct relationship with the ship’s speed. Due to the high sensitivity and low noise level of our sensors, it is capable of resolving weak ELF signals at long distance. In our experiment, a detection distance of 1300 m from the surface ship above the sea surface was realized, which shows that this method would be an appealing complement to the usual acoustic detection and magnetic anomaly detection capability. PMID:28788097
Doss, James D.
1991-01-01
Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples.
Electromagnetic induction imaging with a radio-frequency atomic magnetometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deans, Cameron; Marmugi, Luca, E-mail: l.marmugi@ucl.ac.uk; Hussain, Sarah
2016-03-07
We report on a compact, tunable, and scalable to large arrays imaging device, based on a radio-frequency optically pumped atomic magnetometer operating in magnetic induction tomography modality. Imaging of conductive objects is performed at room temperature, in an unshielded environment and without background subtraction. Conductivity maps of target objects exhibit not only excellent performance in terms of shape reconstruction but also demonstrate detection of sub-millimetric cracks and penetration of conductive barriers. The results presented here demonstrate the potential of a future generation of imaging instruments, which combine magnetic induction tomography and the unmatched performance of atomic magnetometers.
High-frequency high-voltage high-power DC-to-DC converters
NASA Astrophysics Data System (ADS)
Wilson, T. G.; Owen, H. A., Jr.; Wilson, P. M.
1981-07-01
The current and voltage waveshapes associated with the power transitor and the power diode in an example current-or-voltage step-up (buck-boost) converter were analyzed to highlight the problems and possible tradeoffs involved in the design of high voltage high power converters operating at switching frequencies in the range of 100 Khz. Although the fast switching speeds of currently available power diodes and transistors permit converter operation at high switching frequencies, the resulting time rates of changes of current coupled with parasitic inductances in series with the semiconductor switches, produce large repetitive voltage transients across the semiconductor switches, potentially far in excess of the device voltage ratings. The need is established for semiconductor switch protection circuitry to control the peak voltages appearing across the semiconductor switches, as well as to provide the waveshaping action require for a given semiconductor device. The possible tradeoffs, as well as the factors affecting the tradeoffs that must be considered in order to maximize the efficiency of the converters are enumerated.
High-frequency high-voltage high-power DC-to-DC converters
NASA Technical Reports Server (NTRS)
Wilson, T. G.; Owen, H. A., Jr.; Wilson, P. M.
1981-01-01
The current and voltage waveshapes associated with the power transitor and the power diode in an example current-or-voltage step-up (buck-boost) converter were analyzed to highlight the problems and possible tradeoffs involved in the design of high voltage high power converters operating at switching frequencies in the range of 100 Khz. Although the fast switching speeds of currently available power diodes and transistors permit converter operation at high switching frequencies, the resulting time rates of changes of current coupled with parasitic inductances in series with the semiconductor switches, produce large repetitive voltage transients across the semiconductor switches, potentially far in excess of the device voltage ratings. The need is established for semiconductor switch protection circuitry to control the peak voltages appearing across the semiconductor switches, as well as to provide the waveshaping action require for a given semiconductor device. The possible tradeoffs, as well as the factors affecting the tradeoffs that must be considered in order to maximize the efficiency of the converters are enumerated.
NASA Astrophysics Data System (ADS)
Seyboldt, Christoph; Liewald, Mathias
2017-10-01
Current research activities at the Institute for Metal Forming Technology (IFU) of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. As part of the research project "Hybrid interaction during and after thixoforging of multi-material systems", which is founded by the German Research Foundation (DFG), a thixoforging process for producing hybrid components with cohesive metal-to-metal connections is developed. In this context, this paper deals with the numerical simulation of the inductive heating process of hybrid semi-finished materials, consisting of two different aluminium alloys. By reason of the skin effect that leads to inhomogeneous temperature distributions during inductive heating processes, the aluminium alloy with the higher melting point is thereby assembled in the outer side and the alloy with the lower melting point is assembled in the core of the semi-finished material. In this way, the graded heat distribution can be adapted to the used materialś flow properties that are heavily heat dependent. Without this graded heat distribution a proper forming process in the semi-solid state will not be possible. For numerically modelling the inductive heating system of the institute, a coupling of the magnetostatic and the thermal solver was realized by using Ansys Workbench. While the electromagnetic field and its associated heat production rate were solved in a frequency domain, the temperature development was solved in the time based domain. The numerical analysis showed that because of the high thermal conductivity of the aluminium, which leads to a rapid temperature equalization in the semi-finished material, the heating process has to be fast and with a high frequency for produce most heat in the outer region of the material. Finally, the obtained numerical results were validated with experimental heating tests.
Song, Ming-Ke; Cui, Yong-Yao; Zhang, Wei-Wei; Zhu, Liang; Lu, Yang; Chen, Hong-Zhuan
2009-09-11
A large amount of in vitro studies demonstrate suppression of M-current in hippocampal neurons by Kv7/M channel blocker results in depolarization of membrane potential and release of neurotransmitters, such as acetylcholine and glutamate, suggesting that Kv7/M channel may play important roles in regulating synaptic plasticity. In the present study, we examined the in vivo effect of Kv7/M channel inhibition on the long-term potentiation (LTP) induction at basal dendrites in hippocampal CA1 area of urethane-anaesthetized rats. The Kv7/M channel was inhibited by intraperitoneal injection of XE991 (10mg/kg) and the LTP of field excitatory postsynaptic potential (fEPSP) was induced by supra-threshold high frequency stimulation (S1 HFS). A weak protocol which was just below the threshold for evoking LTP was used as sub-threshold high frequency stimulation (S2 HFS). XE991 did not significantly alter the slope of fEPSP and the magnitude of LTP induced by S1 HFS, suggesting that Kv7/M channel inhibition had little or no effect on glutamatergic transmission under basal conditions. However, XE991 could make S2 HFS evoke LTP even after the application of the muscarinic cholinergic (mACh) receptor antagonist scopolamine, suggesting that Kv7/M channel inhibition lowered the threshold for LTP induction and the effect was independent of muscarinic activation. Based on the above findings, we concluded that the facilitating effect of XE991 on LTP induction is not mediated by its ability to enhance the release of acetylcholine; therefore, Kv7/M channel blockers may provide a therapeutic benefit to cholinergic deficiency-related cognitive impairment, e.g., Alzheimer's disease.
Development and Application of Wide Bandwidth Magneto-Resistive Sensor Based Eddy Current Probe
NASA Technical Reports Server (NTRS)
Wincheski, Russell A.; Simpson, John
2010-01-01
The integration of magneto-resistive sensors into eddy current probes can significantly expand the capabilities of conventional eddy current nondestructive evaluation techniques. The room temperature solid-state sensors have typical bandwidths in the megahertz range and resolutions of tens of microgauss. The low frequency sensitivity of magneto-resistive sensors has been capitalized upon in previous research to fabricate very low frequency eddy current sensors for deep flaw detection in multilayer conductors. In this work a modified probe design is presented to expand the capabilities of the device. The new probe design incorporates a dual induction source enabling operation from low frequency deep flaw detection to high frequency high resolution near surface material characterization. Applications of the probe for the detection of localized near surface conductivity anomalies are presented. Finite element modeling of the probe is shown to be in good agreement with experimental measurements.
Glass Fiber Used in Light Communications.
1980-11-05
narrow pulse width is extended about 4 millimicroseconds/ kilometer, the gallium arsenide emptying into the laser is extended about 0.1...glass for the core forms quartz glass fiber. Possibly the use of the chemical vapour deposition method can make low ref racting glass for the...directly from the vapour phase and reaches a very high optical homogeneity. When the temperature of the high frequency induction plasma flame is very
LTP Induction Modifies Functional Relationship among Hippocampal Neurons
ERIC Educational Resources Information Center
Yun, Sung H.; Lee, Deok S.; Lee, Hyunjung; Baeg, Eun H.; Kim, Yun B.; Jung, Min W.
2007-01-01
To obtain evidence linking long-term potentiation (LTP) and memory, we examined whether LTP induction modifies functional relationship among neurons in the rat hippocampus. In contrast to neurons in low-frequency stimulated or AP5-treated slices, LTP induction altered "functional connectivity," as defined by the degree of synchronous firing, among…
Relative effectiveness of HZE iron-56 particles for the induction of cytogenetic damage in vivo
NASA Technical Reports Server (NTRS)
Brooks, A.; Bao, S.; Rithidech, K.; Couch, L. A.; Braby, L. A.
2001-01-01
One of the risks of prolonged manned space flight is the exposure of astronauts to radiation from galactic cosmic rays, which contain heavy ions such as (56)Fe. To study the effects of such exposures, experiments were conducted at the Brookhaven National Laboratory by exposing Wistar rats to high-mass, high-Z, high-energy (HZE) particles using the Alternating Gradient Synchrotron (AGS). The biological effectiveness of (56)Fe ions (1000 MeV/nucleon) relative to low-LET gamma rays and high-LET alpha particles for the induction of chromosome damage and micronuclei was determined. The mitotic index and the frequency of chromosome aberrations were evaluated in bone marrow cells, and the frequency of micronuclei was measured in cells isolated from the trachea and the deep lung. A marked delay in the entry of cells into mitosis was induced in the bone marrow cells that decreased as a function of time after the exposure. The frequencies of chromatid aberrations and micronuclei increased as linear functions of dose. The frequency of chromosome aberrations induced by HZE particles was about 3.2 times higher than that observed after exposure to (60)Co gamma rays. The frequency of micronuclei in rat lung fibroblasts, lung epithelial cells, and tracheal epithelial cells increased linearly, with slopes of 7 x 10(-4), 12 x 10(-4), and 11 x 10(-4) micronuclei/binucleated cell cGy(-1), respectively. When genetic damage induced by radiation from (56)Fe ions was compared to that from exposure to (60)Co gamma rays, (56)Fe-ion radiation was between 0.9 and 3.3 times more effective than (60)Co gamma rays. However, the HZE-particle exposures were only 10-20% as effective as radon in producing micronuclei in either deep lung or tracheal epithelial cells. Using microdosimetric techniques, we estimated that 32 cells were hit by delta rays for each cell that was traversed by the primary HZE (56)Fe particle. These calculations and the observed low relative effectiveness of the exposure to HZE particles suggest that at least part of the cytogenetic damage measured was caused by the delta rays. Much of the energy deposited by the primary HZE particles may result in cell killing and may therefore be "wasted" as far as production of detectable micronuclei is concerned. The role of wasted energy in studies of cancer induction may be important in risk estimates for exposure to HZE particles.
Analysis of shielded CPW discontinuities with air-bridges
NASA Technical Reports Server (NTRS)
Dib, N. I.; Katehi, P. B.; Ponchak, George E.
1992-01-01
The effect of air-bridges on the performance of various coplanar waveguides (CPW) discontinuities is studied. Specifically, the coupled open-end CPW's and the short-end shunt CPW stub discontinuities are considered. The high frequency effect of the air-bridge is evaluated using a hybrid technique. At first, the frequency dependent equivalent circuit of the planar discontinuity without the air-bridge is derived using the Space Domain Integral Equation (SDIE) method. Then, the circuit is modified by incorporating the air-bridge's parasitic inductance and capacitance which are evaluated using a simple quasi-static model. The frequency response of each discontinuity with and without the air-bridge is studied and the scattering parameters are plotted in the frequency range 30-50 GHz for typical CPW dimensions.
Torque shudder protection device and method
King, Robert D.; De Doncker, Rik W. A. A.; Szczesny, Paul M.
1997-01-01
A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency.
Torque shudder protection device and method
King, R.D.; Doncker, R.W.A.A. De.; Szczesny, P.M.
1997-03-11
A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency. 5 figs.
Tunable ohmic environment using Josephson junction chains
NASA Astrophysics Data System (ADS)
Rastelli, Gianluca; Pop, Ioan M.
2018-05-01
We propose a scheme to implement a tunable, wide frequency-band dissipative environment using a double chain of Josephson junctions. The two parallel chains consist of identical superconducting quantum interference devices (SQUIDs), with magnetic-flux tunable inductance, coupled to each other at each node via a capacitance much larger than the junction capacitance. Thanks to this capacitive coupling, the system sustains electromagnetic modes with a wide frequency dispersion. The internal quality factor of the modes is maintained as high as possible, and the damping is introduced by a uniform coupling of the modes to a transmission line, itself connected to an amplification and readout circuit. For sufficiently long chains, containing several thousands of junctions, the resulting admittance is a smooth function versus frequency in the microwave domain, and its effective dissipation can be continuously monitored by recording the emitted radiation in the transmission line. We show that by varying in situ the SQUIDs' inductance, the double chain can operate as a tunable ohmic resistor in a frequency band spanning up to 1 GHz, with a resistance that can be swept through values comparable to the resistance quantum Rq=h /(4 e2) ≃6.5 kΩ . We argue that the circuit complexity is within reach using current Josephson junction technology.
NASA Astrophysics Data System (ADS)
Wang, Pan-Pan; Yu, Qiang; Hu, Yong-Jun; Miao, Chang-Xin
2017-11-01
Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estimation cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the frequencies of the fundamental and fault characteristic components with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.
The ETA-2 induction linac as a high average power FEL driver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nexsen, W.E.; Atkinson, D.P.; Barrett, D.M.
1989-10-16
The Experimental Test Accelerator-II (ETA-II) is the first induction linac designed specifically to FEL requirements. It primarily is intended to demonstrate induction accelerator technology for high average power, high brightness electron beams, and will be used to drive a 140 and 250 GHz microwave FEL for plasma heating experiments in the Microwave Tokamak Experiment (MTX) at LLNL. Its features include high vacuum design which allows the use of an intrinsically bright dispenser cathode, induction cells designed to minimize BBU growth rate, and careful attention to magnetic alignment to minimize radial sweep due to beam corkscrew. The use of magnetic switchesmore » allows high average power operation. At present ETA-II is being used to drive 140 GHz plasma heating experiments. These experiments require nominal beam parameters of 6 Mev energy, 2kA current, 20ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} at the wiggler with a pulse repetition frequency (PRF) of 0.5 Hz. Future 250 GHz experiments require beam parameters of 10 Mev energy, 3kA current, 50ns pulse width and a brightness of 1 {times} 10{sup 8} A/(m-rad){sup 2} with a 5 kHz PRF for 0.5 sec. In this paper we discuss the present status of ETA-II parameters and the phased development program necessary to satisfy these future requirements. 13 refs., 9 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brueziere, J.; Chauvin, E.; Piroux, J.C.
2013-07-01
AREVA has more than 30 years experience in operating industrial HLW (High Level radioactive Waste) vitrification facilities (AVM - Marcoule Vitrification Facility, R7 and T7 facilities). This vitrification technology was based on borosilicate glasses and induction-heating. AVM was the world's first industrial HLW vitrification facility to operate in-line with a reprocessing plant. The glass formulation was adapted to commercial Light Water Reactor fission products solutions, including alkaline liquid waste concentrates as well as platinoid-rich clarification fines. The R7 and T7 facilities were designed on the basis of the industrial experience acquired in the AVM facility. The AVM vitrification process wasmore » implemented at a larger scale in order to operate the R7 and T7 facilities in-line with the UP2 and UP3 reprocessing plants. After more than 30 years of operation, outstanding record of operation has been established by the R7 and T7 facilities. The industrial startup of the CCIM (Cold Crucible Induction Melter) technology with enhanced glass formulation was possible thanks to the close cooperation between CEA and AREVA. CCIM is a water-cooled induction melter in which the glass frit and the waste are melted by direct high frequency induction. This technology allows the handling of highly corrosive solutions and high operating temperatures which permits new glass compositions and a higher glass production capacity. The CCIM technology has been implemented successfully at La Hague plant.« less
Adjustable, High Voltage Pulse Generator with Isolated Output for Plasma Processing
NASA Astrophysics Data System (ADS)
Ziemba, Timothy; Miller, Kenneth E.; Prager, James; Slobodov, Ilia
2015-09-01
Eagle Harbor Technologies (EHT), Inc. has developed a high voltage pulse generator with isolated output for etch, sputtering, and ion implantation applications within the materials science and semiconductor processing communities. The output parameters are independently user adjustable: output voltage (0 - 2.5 kV), pulse repetition frequency (0 - 100 kHz), and duty cycle (0 - 100%). The pulser can drive loads down to 200 Ω. Higher voltage pulsers have also been tested. The isolated output allows the pulse generator to be connected to loads that need to be biased. These pulser generators take advantage modern silicon carbide (SiC) MOSFETs. These new solid-state switches decrease the switching and conduction losses while allowing for higher switching frequency capabilities. This pulse generator has applications for RF plasma heating; inductive and arc plasma sources; magnetron driving; and generation of arbitrary pulses at high voltage, high current, and high pulse repetition frequency. This work was supported in part by a DOE SBIR.
Microwave conductance properties of aligned multiwall carbon nanotube textile sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Brian L.; Martinez, Patricia; Zakhidov, Anvar A.
2015-07-06
Understanding the conductance properties of multi-walled carbon nanotube (MWNT) textile sheets in the microwave regime is essential for their potential use in high-speed and high-frequency applications. To expand current knowledge, complex high-frequency conductance measurements from 0.01 to 50 GHz and across temperatures from 4.2 K to 300 K and magnetic fields up to 2 T were made on textile sheets of highly aligned MWNTs with strand alignment oriented both parallel and perpendicular to the microwave electric field polarization. Sheets were drawn from 329 and 520 μm high MWNT forests that resulted in different DC resistance anisotropy. For all samples, themore » microwave conductance can be modeled approximately by a shunt capacitance in parallel with a frequency-independent conductance, but with no inductive contribution. Finally, this is consistent with diffusive Drude conduction as the primary transport mechanism up to 50 GHz. Further, it is found that the microwave conductance is essentially independent of both temperature and magnetic field.« less
Tunable sub-gap radiation detection with superconducting resonators
NASA Astrophysics Data System (ADS)
Dupré, O.; Benoît, A.; Calvo, M.; Catalano, A.; Goupy, J.; Hoarau, C.; Klein, T.; Le Calvez, K.; Sacépé, B.; Monfardini, A.; Levy-Bertrand, F.
2017-04-01
We have fabricated planar amorphous indium oxide superconducting resonators ({T}{{c}}˜ 2.8 K) that are sensitive to frequency-selective radiation in the range of 7-10 GHz. Those values lay far below twice the superconducting gap that is worth about 200 GHz. The photon detection consists in a shift of the fundamental resonance frequency. We show that the detected frequency can be adjusted by modulating the total length of the superconducting resonator. We attribute those observations to the excitation of higher-order resonance modes. The coupling between the fundamental lumped and the higher order distributed resonance is due to the kinetic inductance nonlinearity with current. These devices, that we have called sub-gap kinetic inductance detectors, are to be distinguished from the standard kinetic inductance detectors in which quasi-particles are generated when incident light breaks down Cooper pairs.
Self-reflection of extremely short light pulses in nonlinear optical waveguides
NASA Astrophysics Data System (ADS)
Kurasov, Alexander E.; Kozlov, Sergei A.
2004-07-01
An equation describing the generation of reflected radiation during the propagation of high-intensity extremely short pulses in a nonlinear optical waveguide is derived. The phenomena taking place during the strong self-inducted changes of the temporal structure of the forward wave are studied. It is shown that the duration of the backward pulse is much greater than the duration of the forward pulse and that the main part of the energy of the backward wave is carried by lower frequencies than the central frequency of the forward wave.
NASA Astrophysics Data System (ADS)
Kondo, Takahiro; Ohta, Masayuki; Ito, Tsuyohito; Okada, Shigefumi
2013-09-01
Effects of a rotating magnetic field (RMF) on the electron energy distribution function (EEDF) and on the electron density are investigated with the aim of controlling the radical composition of inductively coupled plasmas. By adjusting the RMF frequency and generation power, the desired electron density and electron energy shift are obtained. Consequently, the amount and fraction of high-energy electrons, which are mostly responsible for direct dissociation processes of raw molecules, will be controlled externally. This controllability, with no electrode exposed to plasma, will enable us to control radical components and their flux during plasma processing.
ERIC Educational Resources Information Center
Bonsi, Paola; De Persis, Cristiano; Calabresi, Paolo; Bernardi, Giorgio; Pisani, Antonio
2004-01-01
Current evidence appoints a central role to cholinergic interneurons in modulating striatal function. Recently, a long-term potentiation (LTP) of synaptic transmission has been reported to occur in these neurons. The relationship between the pattern of cortico/thalamostriatal fibers stimulation, the consequent changes in the intracellular calcium…
Doss, J.D.
1991-05-14
Apparatus and method for noncontact, radio-frequency shielding current characterization of materials is disclosed. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples. 10 figures.
[Different responses of DD/He and CC57BR/Mv mice to fasting].
Baginskaia, N V; Vasil'eva, E D; Il'nitskaia, S I; Kaledin, V I
2004-03-01
Reaction to fasting of 2 mice strains differing in their sensitivity to spontaneous and induced hepatocarcinogenesis, has been investigated. It was shown that mice of both strains displayed similar stress reaction after 3-day fasting manifested in increase in blood corticosterone level; and decrease in testosterone level. At the same time, both strains demonstrated opposite changes at tissue- and enzyme levels in the liver. It was shown that DD/He mice, highly sensitive to induction of liver tumors, were characterized by significant increase in tyrosine aminotransferase (TAT) activity and reduction of lipid droplets in hepatocytes. CC57BR/Mv mice, demonstrating high frequency of spontaneous hepatomas and insensitive to induction of such tumors, were characterized by a decrease in the TAT activity and fatty infiltration of the liver.
Schormans, Matthew; Valente, Virgilio; Demosthenous, Andreas
2015-01-01
Inductive powering for implanted medical devices is a commonly employed technique, that allows for implants to avoid more dangerous methods such as the use of transcutaneous wires or implanted batteries. However, wireless powering in this way also comes with a number of difficulties and conflicting requirements, which are often met by using designs based on compromise. In particular, one aspect common to most inductive power links is that they are driven with a fixed frequency, which may not be optimal depending on factors such as coupling and load. In this paper, a method is proposed in which an inductive power link is driven by a frequency that is maintained at an optimum value f(opt), to ensure that the link is in resonance. In order to maintain this resonance, a phase tracking technique is employed at the primary side of the link; this allows for compensation of changes in coil separation and load. The technique is shown to provide significant improvements in maintained secondary voltage and efficiency for a range of loads when the link is overcoupled.
Examining the Effects of New Teacher Induction
ERIC Educational Resources Information Center
Wechsler, Marjorie E.; Caspary, Kyra; Humphrey, Daniel C.; Matsko, Kavita Kapadia
2012-01-01
The objective of this research is to explore comprehensively the effect of induction on new teachers. Through a mixed-method design, the authors examine both the inputs of induction (i.e., the types of support provided for new teachers, its content, and frequency) and a variety of outcomes (i.e., teacher efficacy, teacher-reported growth, teacher…
Electric Drive Study. Volume 1
1987-12-21
CONDITIONER HIGH VOLTAGE DC ICONDITIONER 3 ,300-50 VOLT5), dCONTROL! Figure 5-4. Typical AC Drive System 20 system usable with an induction motor. The...controlling component in an AC drive is the motor power conditioner . This component changes the high voltage DC power to controlled AC power of...selected voltage and frequency which is applied to the drive motors. Since the vehicle gains stored energy as it is accelerated, the motor power conditioner
NASA Astrophysics Data System (ADS)
O'Toole, M. D.; Marsh, L. A.; Davidson, J. L.; Tan, Y. M.; Armitage, D. W.; Peyton, A. J.
2015-03-01
Biological tissues have a complex impedance, or bio-impedance, profile which changes with respect to frequency. This is caused by dispersion mechanisms which govern how the electromagnetic field interacts with the tissue at the cellular and molecular level. Measuring the bio-impedance spectra of a biological sample can potentially provide insight into the sample’s properties and its cellular structure. This has obvious applications in the medical, pharmaceutical and food-based industrial domains. However, measuring the bio-impedance spectra non-destructively and in a way which is practical at an industrial scale presents substantial challenges. The low conductivity of the sample requires a highly sensitive instrument, while the demands of industrial-scale operation require a fast high-throughput sensor of rugged design. In this paper, we describe a multi-frequency magnetic induction spectroscopy (MIS) system suitable for industrial-scale, non-contact, spectroscopic bio-impedance measurement over a bandwidth of 156 kHz-2.5 MHz. The system sensitivity and performance are investigated using calibration and known reference samples. It is shown to yield rapid and consistently sensitive results with good long-term stability. The system is then used to obtain conductivity spectra of a number of biological test samples, including yeast suspensions of varying concentration and a range of agricultural produce, such as apples, pears, nectarines, kiwis, potatoes, oranges and tomatoes.
Electromechanical systems with transient high power response operating from a resonant AC link
NASA Technical Reports Server (NTRS)
Burrows, Linda M.; Hansen, Irving G.
1992-01-01
The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant AC link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control in all four operating quadrants. Incorporating the AC link allows the converter in these systems to switch at the zero crossing of every half cycle of the AC waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed by LeRC and General Dynamics Space Systems Division under contract to NASA. A description of a single motor, electromechanical actuation system is presented. Then, focus is on a conceptual design for an AC electric vehicle. This design incorporates an induction motor/generator together with a flywheel for peak energy storage. System operation and implications along with the associated circuitry are addressed. Such a system would greatly improve all-electric vehicle ranges over the Federal Urban Driving Cycle (FUD).
NASA Technical Reports Server (NTRS)
Wu, H.; Sachs, R. K.; Yang, T. C.
1998-01-01
PURPOSE: To develop a biophysical model that explains the sizes of radiation-induced hprt deletions. METHODS: Key assumptions: (1) Deletions are produced by two DSB that are closer than an interaction distance at the time of DSB induction; (2) Interphase chromatin is modelled by a biphasic random walk distribution; and (3) Misrejoining of DSB from two separate tracks dominates at low-LET and misrejoining of DSB from a single track dominates at high-LET. RESULTS: The size spectra for radiation-induced total deletions of the hprt gene are calculated. Comparing with the results of Yamada and coworkers for gamma-irradiated human fibroblasts the study finds that an interaction distance of 0.75 microm will fit both the absolute frequency and the size spectrum of the total deletions. It is also shown that high-LET radiations produce, relatively, more total deletions of sizes below 0.5 Mb. The model predicts an essential gene to be located between 2 and 3 Mb from the hprt locus towards the centromere. Using the same assumptions and parameters as for evaluating mutation frequencies, a frequency of intra-arm chromosome deletions is calculated that is in agreement with experimental data. CONCLUSIONS: Radiation-induced total-deletion mutations of the human hprt gene and intrachange chromosome aberrations share a common mechanism for their induction.
NASA Astrophysics Data System (ADS)
Chang, Y.-Y.; Cornell, B.; Aralis, T.; Bumble, B.; Golwala, S. R.
2018-04-01
We present a status update on the development of a phonon-mediated particle detector using kinetic inductance detector (KID). The design is intended for O(1) kg substrate, using O(102) KIDs on a single readout line, to image the athermal phonon distribution at < 1 mm position resolution and O(10) eV energy resolution. The design specification is set by the need to improve position reconstruction fidelity while maintaining low energy threshold for future rare-event searches such as for low-mass dark matter. We report on the design, which shows negligible crosstalk and > 95% inductor current uniformity, using the coplanar waveguide feedline, ground shield, and a new class of KIDs with symmetric coplanar stripline (sCPS) inductor. The multiplexing is designed upon the frequency-geometry relation we develop for the sCPS KIDs. We introduce the fabrications of the Nb RF assessment prototypes and the high phonon collection efficiency Al-Nb devices. We achieve ≲ 0.07% frequency displacement on a 80-KID RF assessment prototype, and the result indicates that we may place more than 180 resonances in our 0.4 GHz readout band with minimal frequency misordering. The coupling quality factors are ˜ 105 as designed. Finally, we update our work in progress in fabricating the O(102) KID, bi-material, O(1) kg detectors, and the expected position and energy resolutions.
Measurements of intermediate-frequency electric and magnetic fields in households
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aerts, Sam, E-mail: sam.aerts@intec.ugent.be
Historically, assessment of human exposure to electric and magnetic fields has focused on the extremely-low-frequency (ELF) and radiofrequency (RF) ranges. However, research on the typically emitted fields in the intermediate-frequency (IF) range (300 Hz to 1 MHz) as well as potential effects of IF fields on the human body remains limited, although the range of household appliances with electrical components working in the IF range has grown significantly (e.g., induction cookers and compact fluorescent lighting). In this study, an extensive measurement survey was performed on the levels of electric and magnetic fields in the IF range typically present in residencesmore » as well as emitted by a wide range of household appliances under real-life circumstances. Using spot measurements, residential IF field levels were found to be generally low, while the use of certain appliances at close distance (20 cm) may result in a relatively high exposure. Overall, appliance emissions contained either harmonic signals, with fundamental frequencies between 6 kHz and 300 kHz, which were sometimes accompanied by regions in the IF spectrum of rather noisy, elevated field strengths, or much more capricious spectra, dominated by 50 Hz harmonics emanating far in the IF domain. The maximum peak field strengths recorded at 20 cm were 41.5 V/m and 2.7 A/m, both from induction cookers. Finally, none of the appliance emissions in the IF range exceeded the exposure summation rules recommended by the International Commission on Non-Ionizing Radiation Protection guidelines and the International Electrotechnical Commission (IEC 62233) standard at 20 cm and beyond (maximum exposure quotients EQ{sub E} 1.0 and {sub E}Q{sub H} 0.13). - Highlights: • Survey of residential electric and magnetic fields at intermediate frequencies (IF). • IF-EF and -MF emitted by 280 household appliances were characterised. • Strongest emitters were induction cookers, CFLs, LCD-TVs, and microwave ovens. • No emissions exceeded ICNIRP limits (highest exposure quotient was 1.00).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Min; Muljadi, Eduard; Jang, Gilsoo
This paper proposes a disturbance-adaptive short-term frequency support scheme of a doubly fed induction generator (DFIG) that can improve the frequency-supporting capability while ensuring stable operation. In the proposed scheme, the output of the additional control loop is determined as the product of the frequency deviation and adaptive gain, which is modified depending on the rate of change of frequency (ROCOF) and rotor speed. To achieve these objectives, the adaptive gain is set to be high during the early stage of a disturbance, when the ROCOF and rotor speed are high. Until the frequency nadir (FN), the gain decreases withmore » the ROCOF and rotor speed. After the FN, the gain decreases only with the rotor speed. The simulation results demonstrate that the proposed scheme improves the FN and maximum ROCOF while ensuring the stable operation of a DFIG under various wind conditions irrespective of the disturbance conditions by adaptively changing the control gain with the ROCOF and rotor speed, even if the wind speed decreases and a consecutive disturbance occurs.« less
Revil, A
2013-01-01
A model combining low-frequency complex conductivity and high-frequency permittivity is developed in the frequency range from 1 mHz to 1 GHz. The low-frequency conductivity depends on pore water and surface conductivities. Surface conductivity is controlled by the electrical diffuse layer, the outer component of the electrical double layer coating the surface of the minerals. The frequency dependence of the effective quadrature conductivity shows three domains. Below a critical frequency fp, which depends on the dynamic pore throat size Λ, the quadrature conductivity is frequency dependent. Between fp and a second critical frequency fd, the quadrature conductivity is generally well described by a plateau when clay minerals are present in the material. Clay-free porous materials with a narrow grain size distribution are described by a Cole-Cole model. The characteristic frequency fd controls the transition between double layer polarization and the effect of the high-frequency permittivity of the material. The Maxwell-Wagner polarization is found to be relatively negligible. For a broad range of frequencies below 1 MHz, the effective permittivity exhibits a strong dependence with the cation exchange capacity and the specific surface area. At high frequency, above the critical frequency fd, the effective permittivity reaches a high-frequency asymptotic limit that is controlled by the two Archie's exponents m and n like the low-frequency electrical conductivity. The unified model is compared with various data sets from the literature and is able to explain fairly well a broad number of observations with a very small number of textural and electrochemical parameters. It could be therefore used to interpret induced polarization, induction-based electromagnetic methods, and ground penetrating radar data to characterize the vadose zone. PMID:23576823
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyewon; Hwang, Min; Muljadi, Eduard
In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less
Lee, Hyewon; Hwang, Min; Muljadi, Eduard; ...
2017-04-18
In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less
ELECTROMAGNETIC AND ELECTROSTATIC GENERATORS: ANNOTATED BIBLIOGRAPHY.
generator with split poles, ultrasonic-frequency generator, unipolar generator, single-phase micromotors , synchronous motor, asynchronous motor...asymmetrical rotor, magnetic circuit, dc micromotors , circuit for the automatic control of synchronized induction motors, induction torque micromotors , electric
A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Haijun; Yang, Wenhai; Li, Zhixiu
2014-01-15
We presented a low-noise, high-gain photodetector based on the bootstrap structure and the L-C (inductance and capacitance) combination. Electronic characteristics of the photodetector, including electronic noise, gain and frequency response, and dynamic range, were verified through a single-frequency Nd:YVO{sub 4} laser at 1064 nm with coherent output. The measured shot noise of 50 μW laser was 13 dB above the electronic noise at the analysis frequency of 2 MHz, and 10 dB at 3 MHz. And a maximum clearance of 28 dB at 2 MHz was achieved when 1.52 mW laser was illuminated. In addition, the photodetector showed excellent linearitiesmore » for both DC and AC amplifications in the laser power range between 12.5 μW and 1.52 mW.« less
An improved model to predict bandwidth enhancement in an inductively tuned common source amplifier.
Reza, Ashif; Misra, Anuraag; Das, Parnika
2016-05-01
This paper presents an improved model for the prediction of bandwidth enhancement factor (BWEF) in an inductively tuned common source amplifier. In this model, we have included the effect of drain-source channel resistance of field effect transistor along with load inductance and output capacitance on BWEF of the amplifier. A frequency domain analysis of the model is performed and a closed-form expression is derived for BWEF of the amplifier. A prototype common source amplifier is designed and tested. The BWEF of amplifier is obtained from the measured frequency response as a function of drain current and load inductance. In the present work, we have clearly demonstrated that inclusion of drain-source channel resistance in the proposed model helps to estimate the BWEF, which is accurate to less than 5% as compared to the measured results.
CMOS single-stage input-powered bridge rectifier with boost switch and duty cycle control
NASA Astrophysics Data System (ADS)
Radzuan, Roskhatijah; Mohd Salleh, Mohd Khairul; Hamzah, Mustafar Kamal; Ab Wahab, Norfishah
2017-06-01
This paper presents a single-stage input-powered bridge rectifier with boost switch for wireless-powered devices such as biomedical implants and wireless sensor nodes. Realised using CMOS process technology, it employs a duty cycle switch control to achieve high output voltage using boost technique, leading to a high output power conversion. It has only six external connections with the boost inductance. The input frequency of the bridge rectifier is set at 50 Hz, while the switching frequency is 100 kHz. The proposed circuit is fabricated on a single 0.18-micron CMOS die with a space area of 0.024 mm2. The simulated and measured results show good agreement.
Off-resonance frequency operation for power transfer in a loosely coupled air core transformer
Scudiere, Matthew B
2012-11-13
A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.
Induction heating apparatus and methods of operation thereof
Richardson, John G.
2006-08-01
Methods of operation of an induction melter include providing material within a cooled crucible proximate an inductor. A desired electromagnetic flux skin depth for heating the material within the crucible may be selected, and a frequency of an alternating current for energizing the inductor and for producing the desired skin depth may be selected. The alternating current frequency may be adjusted after energizing the inductor to maintain the desired electromagnetic flux skin depth. The desired skin depth may be substantially maintained as the temperature of the material varies. An induction heating apparatus includes a sensor configured to detect changes in at least one physical characteristic of a material to be heated in a crucible, and a controller configured for selectively varying a frequency of an alternating current for energizing an inductor at least partially in response to changes in the physical characteristic to be detected by the sensor.
Heikkilä, Janne; Hynynen, Kullervo
2006-04-01
Many noninvasive ultrasound techniques have been developed to explore mechanical properties of soft tissues. One of these methods, Localized Harmonic Motion Imaging (LHMI), has been proposed to be used for ultrasound surgery monitoring. In LHMI, dynamic ultrasound radiation-force stimulation induces displacements in a target that can be measured using pulse-echo imaging and used to estimate the elastic properties of the target. In this initial, simulation study, the use of a one-dimensional phased array is explored for the induction of the tissue motion. The study compares three different dual-frequency and amplitude-modulated single-frequency methods for the inducing tissue motion. Simulations were computed in a homogeneous soft-tissue volume. The Rayleigh integral was used in the simulations of the ultrasound fields and the tissue displacements were computed using a finite-element method (FEM). The simulations showed that amplitude-modulated sonication using a single frequency produced the largest vibration amplitude of the target tissue. These simulations demonstrate that the properties of the tissue motion are highly dependent on the sonication method and that it is important to consider the full three-dimensional distribution of the ultrasound field for controlling the induction of tissue motion.
Stable Adaptive Inertial Control of a Doubly-Fed Induction Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Moses; Muljadi, Eduard; Hur, Kyeon
2016-11-01
This paper proposes a stable adaptive inertial control scheme of a doubly-fed induction generator. The proposed power reference is defined in two sections: the deceleration period and the acceleration period. The power reference in the deceleration period consists of a constant and the reference for maximum power point tracking (MPPT) operation. The latter contributes to preventing a second frequency dip (SFD) in this period because its reduction rate is large at the early stage of an event but quickly decreases with time. To improve the frequency nadir (FN), the constant value is set to be proportional to the rotor speedmore » prior to an event. The reference ensures that the rotor speed converges to a stable operating region. To accelerate the rotor speed while causing a small SFD, when the rotor speed converges, the power reference is reduced by a small amount and maintained until it meets the MPPT reference. The results show that the scheme causes a small SFD while improving the FN and the rate of change of frequency in any wind conditions, even in a grid that has a high penetration of wind power.« less
Johannes, Amélie; Zollhoefer, Bernd; Eujen, Ulrike; Kredel, Markus; Rauch, Stefan; Roewer, Norbert; Muellenbach, Ralf M
2013-04-01
Oxygenation during high-frequency oscillatory ventilation is secured by a high level of mean airway pressure. Our objective was to identify a pressure difference between the airway opening of the respiratory circuit and the trachea during application of different oscillatory frequencies. Six female Pietrain pigs (57.1 ± 3.6 kg) were first ventilated in a conventional mechanical ventilation mode. Subsequently, the animals were switched to high-frequency oscillatory ventilation by setting mean airway opening pressure 5 cmH(2)O above the one measured during controlled mechanical ventilation. Measurements at the airway opening and at tracheal levels were performed in healthy lungs and after induction of acute lung injury by surfactant depletion. During high-frequency oscillatory ventilation, the airway opening pressure was set at a constant level. The pressure amplitude was fixed at 90 cmH(2)O. Starting from an oscillatory frequency of 3 Hz, the frequency was increased in steps of 3 Hz to 15 Hz and then decreased accordingly. At each frequency, measurements were performed in the trachea through a side-lumen of the endotracheal tube and the airway opening pressure was recorded. The pressure difference was calculated. At every oscillatory frequency, a pressure loss towards the trachea could be shown. This pressure difference increased with higher oscillatory frequencies (3 Hz 2.2 ± 2.1 cmH(2)O vs. 15 Hz 7.5 ± 1.8 cmH(2)O). The results for healthy and injured lungs were similar. Tracheal pressures decreased with higher oscillatory frequencies. This may lead to pulmonary derecruitment. This has to be taken into consideration when increasing oscillatory frequencies and differentiated pressure settings are mandatory.
Adaptive Gain-based Stable Power Smoothing of a DFIG
Muljadi, Eduard; Lee, Hyewon; Hwang, Min; ...
2017-11-01
In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combinationmore » with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. Here, the simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less
Adaptive Gain-based Stable Power Smoothing of a DFIG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Lee, Hyewon; Hwang, Min
In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combinationmore » with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. Here, the simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less
Fidzinski, Pawel; Wawra, Matthias; Bartsch, Julia; Heinemann, Uwe; Behr, Joachim
2012-01-09
The subiculum (Sub) as a part of the hippocampal formation is thought to play a functional role in learning and memory. In addition to its major input from CA1 pyramidal cells, the subiculum receives input from the entorhinal cortex (EC) via the temporoammonic pathway. Thus far, synaptic plasticity in the subiculum was mainly investigated at CA1-Sub synapses. According to their spiking pattern, pyramidal cells in the subiculum were classified as bursting cells and non-bursting cells. In the present study, we demonstrate that subicular bursting cells show input-specific forms of long-term potentiation (LTP). At CA1-Sub synapses, bursting cells have been shown to express a presynaptic NMDA receptor-dependent LTP that depends on the activation of a cAMP-PKA cascade (Wozny et al., Journal of Physiology 2008). In contrast, at EC-Sub synapses the induction of LTP in bursting cells shows a high induction-threshold and relies on the activation of postsynaptic NMDA receptors, postsynaptic depolarization and postsynaptic Ca(2+) influx. Each form of LTP is input-specific and fails to induce heterosynaptic plasticity. Taken together, our data suggest that distinct, input-specific mechanisms govern high frequency-induced LTP at subicular bursting cells' synapses. Copyright © 2011 Elsevier B.V. All rights reserved.
Lumped element kinetic inductance detectors based on two-gap MgB2 thin films
NASA Astrophysics Data System (ADS)
Yang, C.; Niu, R. R.; Guo, Z. S.; Cai, X. W.; Chu, H. M.; Yang, K.; Wang, Y.; Feng, Q. R.; Gan, Z. Z.
2018-01-01
Lumped element kinetic inductance detectors (LEKIDs) are made from a single layer superconducting thin film. Because of their low noise and highly multiplexibility, LEKIDs provide a sensitive technology for the detection of millimeter and submillimeter waves. In this work, a 5-pixel 50-nm-thick MgB2 array is made. The microwave properties of the array are measured under dark conditions. We show that the loaded quality factor Q of the resonant circuit is 30 000 at 7.5 K, which is comparable to that of lower-operating-temperature (usually several hundred mK) LEKIDs made from superconductors such as Al and Nb. Moreover, the temperature dependence of resonance frequency gives the two-gap character of MgB2, Δπ (0) = 2.58 meV and Δσ (0) = 8.26 meV. The gap frequency (f = 2Δ/h) indicates that MgB2 LEKIDs have a promising application on terahertz detection.
Optimum Design of LLC Resonant Converter using Inductance Ratio (Lm/Lr)
NASA Astrophysics Data System (ADS)
Palle, Kowstubha; Krishnaveni, K.; Ramesh Reddy, Kolli
2017-06-01
The main benefits of LLC resonant dc/dc converter over conventional series and parallel resonant converters are its light load regulation, less circulating currents, larger bandwidth for zero voltage switching, and less tuning of switching frequency for controlled output. An unique analytical tool, called fundamental harmonic approximation with peak gain adjustment is used for designing the converter. In this paper, an optimum design of the converter is proposed by considering three different design criterions with different values of inductance ratio (Lm/Lr) to achieve good efficiency at high input voltage. The optimum design includes the analysis in operating range, switching frequency range, primary side losses of a switch and stability. The analysis is carried out with simulation using the software tools like MATLAB and PSIM. The performance of the optimized design is demonstrated for a design specification of 12 V, 5 A output operating with an input voltage range of 300-400 V using FSFR 2100 IC of Texas instruments.
A Kalman Filter Based Technique for Stator Turn-Fault Detection of the Induction Motors
NASA Astrophysics Data System (ADS)
Ghanbari, Teymoor; Samet, Haidar
2017-11-01
Monitoring of the Induction Motors (IMs) through stator current for different faults diagnosis has considerable economic and technical advantages in comparison with the other techniques in this content. Among different faults of an IM, stator and bearing faults are more probable types, which can be detected by analyzing signatures of the stator currents. One of the most reliable indicators for fault detection of IMs is lower sidebands of power frequency in the stator currents. This paper deals with a novel simple technique for detecting stator turn-fault of the IMs. Frequencies of the lower sidebands are determined using the motor specifications and their amplitudes are estimated by a Kalman Filter (KF). Instantaneous Total Harmonic Distortion (ITHD) of these harmonics is calculated. Since variation of the ITHD for the three-phase currents is considerable in case of stator turn-fault, the fault can be detected using this criterion, confidently. Different simulation results verify high performance of the proposed method. The performance of the method is also confirmed using some experiments.
Radiation-induced mitotic and meiotic aneuploidy in the yeast Saccharomyces cerevisiae.
Parry, J M; Sharp, D; Tippins, R S; Parry, E M
1979-06-01
A number of genetic systems are described which in yeast may be used to monitor the induction of chromosome aneuploidy during both mitotic and meiotic cell division. Using these systems we have been able to demonstrate the induction of both monosomic and trisomic cells in mitotically dividing cells and disomic spores in meiotically dividing cells after both UV light and X-ray exposure. The frequency of UV-light-induced monosomic colonies were reduced by post-treatment with photoreactivity light and both UV-light- and X-ray-induced monosomic colonies were reduced by liquid holding post-treatment under non-nutrient conditions. Both responses indicate an involvement of DNA-repair mechanisms in the removal of lesions which may lead to monosomy in yeast. This was further confirmed by the response of an excision-defective yeast strain which showed considerably increased sensitivity to the induction of monosomic colonies by UV-light treatment at low doses. Yeast cultures irradiated at different stages of growth showed variation in their responses to both UV-light and X-rays, cells at the exponential phase of growth show maximum sensitivity to the induction of monosomic colonies at low doses whereas stationary phase cultures showed maximum induction of monosomic colonies at high does. The frequencies of X-ray-induced chromosome aneuploidy during meiosis leading to the production of disomic spores was shown to be dependent upon the stage of meiosis at which the yeast cells were exposed to radiation. Cells which had proceeded beyond the DNA synthetic stage of meiosis were shown to produce disomic spores at considerably lower radiation doses than those cells which had only recently been inoculated into sporulation medium. The results obtained suggest that the yeast sustem may be suitable for the study of sensitivities of the various stages of meiotic cell division to the induction of chromosome aneuploidy after radiation exposure.
Fadeev, V S; Shimshilashvili, Kh R; Gaponenko, A K
2008-09-01
The induction, regeneration, and biolistic sensitivities of different genotypes of common wheat (Triticum aestivum L.) have been determined in order to develop an efficient system for transformation of Russian cultivars of spring wheat. Short-term (two days) cold treatment (4 degrees C) has been demonstrated to distinctly increase the frequency of morphogenetic callus induction. The optimal phytohormonal composition of the nutrient medium ensuring an in vitro regeneration rate of the common wheat cultivar Lada as high as 90% has been determined. The optimal temporal parameters of genetic transformation of wheat plants (10-14 days of culturing after initiation of a morphogenetic callus) have been determined for two transformation methods: biolistic without precipitated DNA and transformation with the plasmid psGFP-BAR. Analysis of the transient expression of the gfp gene has confirmed that 14 days of culturing is the optimal duration.
Arun Dominic, D; Chelliah, Thanga Raj
2014-09-01
To obtain high dynamic performance on induction motor drives (IMD), variable voltage and variable frequency operation has to be performed by measuring speed of rotation and stator currents through sensors and fed back them to the controllers. When the sensors are undergone a fault, the stability of control system, may be designed for an industrial process, is disturbed. This paper studies the negative effects on a 12.5 hp induction motor drives when the field oriented control system is subjected to sensor faults. To illustrate the importance of this study mine hoist load diagram is considered as shaft load of the tested machine. The methods to recover the system from sensor faults are discussed. In addition, the various speed sensorless schemes are reviewed comprehensively. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Dielectric method of high-resolution gas hydrate estimation
NASA Astrophysics Data System (ADS)
Sun, Y. F.; Goldberg, D.
2005-02-01
In-situ dielectric properties of natural gas hydrate are measured for the first time in the Mallik 5L-38 Well in the Mackenzie Delta, Canada. The average dielectric constant of the hydrate zones is 9, ranging from 5 to 20. The average resistivity is >5 ohm.m in the hydrate zones, ranging from 2 to 10 ohm.m at a 1.1 GHz dielectric tool frequency. The dielectric logs show similar trends with sonic and induction resistivity logs, but exhibits inherently higher vertical resolution (<5 cm). The average in-situ hydrate saturation in the well is about 70%, ranging from 20% to 95%. The dielectric estimates are overall in agreement with induction estimates but the induction log tends to overestimate hydrate content up to 15%. Dielectric estimates could be used as a better proxy of in-situ hydrate saturation in modeling hydrate dynamics. The fine-scale structure in hydrate zones could help reveal hydrate formation history.
Sounding of Europa's interior using multi-frequency electromagnetic induction from a Europa orbiter
NASA Astrophysics Data System (ADS)
Khurana, K. K.; Kivelson, M. G.; Russell, C. T.
2000-12-01
Magnetic field observations from Galileo have shown that Europa induces a strong response to the varying field of Jupiter's magnetosphere. These observations are consistent with a global conductor located close to the surface. Khurana et al. [1998] and Kivelson et al. [1999] have shown that a moon-wide ocean with a conductivity similar to the Earth's ocean and having a thickness of at least 6 km could produce the observed induction signature. Many other geological and geophysical observations are consistent with this interpretation (See Pappalardo et al. [1999] for further details.). The magnetic induction signature at a single frequency can also be explained with a model in which the conducting layer is thinner (thicker) but has higher (lower) conductivity. The initial work relied on the variations of the time varying field at the synodic rotation period of Jupiter (as seen in the rest frame of the moon) to infer the interior structure of Europa. We have extended the initial analysis by showing that the spectrum of the primary field contains several other important frequencies. We single out one frequency-corresponding to the orbital period of Europa-for further examination. We show that by modeling the induction response at this frequency in addition to the previously used synodic frequency for a range of ocean shell thicknesses and conductivities, the ocean conductivity and the thickness of the ocean at Europa can be determined uniquely. We discuss how the measurements from an orbiting spacecraft can be decomposed into the internal (which is the secondary field) and external (the primary imposed field) components not only for the steady field but also for the varying field.
Performance Analysis of Three-Phase Induction Motor with AC Direct and VFD
NASA Astrophysics Data System (ADS)
Kumar, Dinesh
2018-03-01
The electrical machine analysis and performance calculation is a very important aspect of efficient drive system design. The development of power electronics devices and power converters provide smooth speed control of Induction Motors by changing the frequency of input supply. These converters, on one hand are providing a more flexible speed control that also leads to problems of harmonics and their associated ailments like pulsating torque, distorted current and voltage waveforms, increasing losses etc. This paper includes the performance analysis of three phase induction motor with three-phase AC direct and variable frequency drives (VFD). The comparison has been concluded with respect to various parameters. MATLAB-SIMULINKTM is used for the analysis.
NASA Astrophysics Data System (ADS)
Igarashi, Hironobu; Sato, Takashi; Miyamoto, Kazunori; Kurokawa, Kousuke
The photovoltaic generation system must have protection device and islanding detection devices to connect with utility line of the electric power company. It is regulated in the technological requirement guideline and the electric equipment technology standard that the country provides. The islanding detection device detected purpose install for blackout due to the accident occurrence of the earth fault and the short-circuit in the utility line. When the islanding detection device detects the power blackout, it is necessary to stop the photovoltaic generation system immediately. If the photovoltaic generation system is not stopped immediately, electricity comes to charge the utility power line very at risk. We had already known that the islanding detection device can't detect the islanding phenomenon, if is there the induction motor in the loads. Authors decided to investigate the influence that the induction motors gave to the islanding detection device. The result was the load condition that the induction motors changed generator the voltage is restraining. Moreover, it was clarified that the time of the islanding was long compared with the load condition of not changing into the state of the generator. The value changes into the reactance of the induction motors according to the frequency change after the supply of electric power line stops. The frequency after the supply of electric power line stops changes for the unbalance the reactive power by the effect of the power rate constancy control with PLL of the power conditioner. However, the induction motors is also to the changing frequency, makes amends for the amount of reactive power, and the change in the frequency after the supply of electric power line stops as a result is controlled. When the frequency changed after the supply of electric power line stopped, it was clarified of the action on the direction where it made amends from the change of the constant for the amount of an invalid electric power, and the possession of the characteristic in which the continuance of the individual operation was promoted.
Constant Switching Frequency DTC for Matrix Converter Fed Speed Sensorless Induction Motor Drive
NASA Astrophysics Data System (ADS)
Mir, Tabish Nazir; Singh, Bhim; Bhat, Abdul Hamid
2018-05-01
The paper presents a constant switching frequency scheme for speed sensorless Direct Torque Control (DTC) of Matrix Converter fed Induction Motor Drive. The use of matrix converter facilitates improved power quality on input as well as motor side, along with Input Power Factor control, besides eliminating the need for heavy passive elements. Moreover, DTC through Space Vector Modulation helps in achieving a fast control over the torque and flux of the motor, with added benefit of constant switching frequency. A constant switching frequency aids in maintaining desired power quality of AC mains current even at low motor speeds, and simplifies input filter design of the matrix converter, as compared to conventional hysteresis based DTC. Further, stator voltage estimation from sensed input voltage, and subsequent stator (and rotor) flux estimation is done. For speed sensorless operation, a Model Reference Adaptive System is used, which emulates the speed dependent rotor flux equations of the induction motor. The error between conventionally estimated rotor flux (reference model) and the rotor flux estimated through the adaptive observer is processed through PI controller to generate the rotor speed estimate.
The detection of brain oedema with frequency-dependent phase shift electromagnetic induction.
González, César A; Rubinsky, Boris
2006-06-01
The spectroscopic distribution of inductive phase shift in the brain as a function of the relative volume of oedema was evaluated with theoretical and experimental methods in the frequency range 1 to 8 MHz. The theoretical study employed a simple mathematical model of electromagnetic induction in tissue and brain tissue data available from the literature to calculate the phase shift as a function of oedema in the bulk of the brain. Experimental data were generated from bulk measurements of ex vivo homogenized pig brain tissue mixed with various volumes of physiological saline in a volume sample typical of the human brain. There is good agreement between the analytical and the experimental results. Detectable changes in phase shift begin from a frequency of about 3 MHz to 4 MHz in the tested compositions and volume. The phase shift increases with frequency and fluid content. The results suggest that measuring phase shift in the bulk of the brain has the potential for becoming a robust means for non-contact detection of oedema in the brain.
Magnetic dipole discharges. II. Cathode and anode spot discharges and probe diagnostics
NASA Astrophysics Data System (ADS)
Stenzel, R. L.; Urrutia, J. M.; Ionita, C.; Schrittwieser, R.
2013-08-01
The high current regime of a magnetron-type discharge has been investigated. The discharge uses a permanent magnet as a cold cathode which emits secondary electrons while the chamber wall or a grounded electrode serves as the anode. As the discharge voltage is increased, the magnet develops cathode spots, which are short duration arcs that provide copious electrons to increase the discharge current dramatically. Short (1 μs), high current (200 A) and high voltage (750 V) discharge pulses are produced in a relaxation instability between the plasma and a charging capacitor. Spots are also observed on a negatively biased plane Langmuir probe. The probe current pulses are as large as those on the magnet, implying that the high discharge current does not depend on the cathode surface area but on the properties of the spots. The fast current pulses produce large inductive voltages, which can reverse the electrical polarity of the magnet and temporarily operate it as an anode. The discharge current may also oscillate at the frequency determined by the charging capacitor and the discharge circuit inductance. Each half cycle of high-current current pulses exhibits a fast (≃10 ns) current rise when a spot is formed. It induces high frequency (10-100 MHz) transients and ringing oscillations in probes and current circuits. Most probes behave like unmatched antennas for the electromagnetic pulses of spot discharges. Examples are shown to distinguish the source of oscillations and some rf characteristics of Langmuir probes.
Impedance matched, high-power, rf antenna for ion cyclotron resonance heating of a plasma
Baity, Jr., Frederick W.; Hoffman, Daniel J.; Owens, Thomas L.
1988-01-01
A resonant double loop radio frequency (rf) antenna for radiating high-power rf energy into a magnetically confined plasma. An inductive element in the form of a large current strap, forming the radiating element, is connected between two variable capacitors to form a resonant circuit. A real input impedance results from tapping into the resonant circuit along the inductive element, generally near the midpoint thereof. The impedance can be matched to the source impedance by adjusting the separate capacitors for a given tap arrangement or by keeping the two capacitances fixed and adjustng the tap position. This results in a substantial reduction in the voltage and current in the transmission system to the antenna compared to unmatched antennas. Because the complete circuit loop consisting of the two capacitors and the inductive element is resonant, current flows in the same direction along the entire length of the radiating element and is approximately equal in each branch of the circuit. Unidirectional current flow permits excitation of low order poloidal modes which penetrate more deeply into the plasma.
Diamond deposition using a planar radio frequency inductively coupled plasma
NASA Astrophysics Data System (ADS)
Bozeman, S. P.; Tucker, D. A.; Stoner, B. R.; Glass, J. T.; Hooke, W. M.
1995-06-01
A planar radio frequency inductively coupled plasma has been used to deposit diamond onto scratched silicon. This plasma source has been developed recently for use in large area semiconductor processing and holds promise as a method for scale up of diamond growth reactors. Deposition occurs in an annulus which coincides with the area of most intense optical emission from the plasma. Well-faceted diamond particles are produced when the substrate is immersed in the plasma.
Long-term modifications of synaptic efficacy in the human inferior and middle temporal cortex
NASA Technical Reports Server (NTRS)
Chen, W. R.; Lee, S.; Kato, K.; Spencer, D. D.; Shepherd, G. M.; Williamson, A.
1996-01-01
The primate temporal cortex has been demonstrated to play an important role in visual memory and pattern recognition. It is of particular interest to investigate whether activity-dependent modification of synaptic efficacy, a presumptive mechanism for learning and memory, is present in this cortical region. Here we address this issue by examining the induction of synaptic plasticity in surgically resected human inferior and middle temporal cortex. The results show that synaptic strength in the human temporal cortex could undergo bidirectional modifications, depending on the pattern of conditioning stimulation. High frequency stimulation (100 or 40 Hz) in layer IV induced long-term potentiation (LTP) of both intracellular excitatory postsynaptic potentials and evoked field potentials in layers II/III. The LTP induced by 100 Hz tetanus was blocked by 50-100 microM DL-2-amino-5-phosphonovaleric acid, suggesting that N-methyl-D-aspartate receptors were responsible for its induction. Long-term depression (LTD) was elicited by prolonged low frequency stimulation (1 Hz, 15 min). It was reduced, but not completely blocked, by DL-2-amino-5-phosphonovaleric acid, implying that some other mechanisms in addition to N-methyl-DL-aspartate receptors were involved in LTD induction. LTD was input-specific, i.e., low frequency stimulation of one pathway produced LTD of synaptic transmission in that pathway only. Finally, the LTP and LTD could reverse each other, suggesting that they can act cooperatively to modify the functional state of cortical network. These results suggest that LTP and LTD are possible mechanisms for the visual memory and pattern recognition functions performed in the human temporal cortex.
NASA Astrophysics Data System (ADS)
Ivković, Saša S.; Marković, Marija Z.; Ivković, Dragica Ž.; Cvetanović, Nikola
2017-09-01
Equivalent series resistance (ESR) represents the measurement of total energy loss in a capacitor. In this paper a simple method for measuring the ESR of ceramic capacitors based on the analysis of the oscillations of an LCR circuit is proposed. It is shown that at frequencies under 3300 Hz, the ESR is directly proportional to the period of oscillations. Based on the determined dependence of the ESR on the period, a method is devised and tested for measuring coil inductance. All measurements were performed using the standard equipment found in student laboratories, which makes both methods very suitable for implementation at high school and university levels.
NASA Astrophysics Data System (ADS)
Peterson, David; Coumou, David; Shannon, Steven
2015-11-01
Time resolved electron density measurements in pulsed RF discharges are shown using a hairpin resonance probe using low cost electronics, on par with normal Langmuir probe boxcar mode operation. Time resolution of 10 microseconds has been demonstrated. A signal generator produces the applied microwave frequency; the reflected waveform is passed through a directional coupler and filtered to remove the RF component. The signal is heterodyned with a frequency mixer and rectified to produce a DC signal read by an oscilloscope. At certain points during the pulse, the plasma density is such that the applied frequency is the same as the resonance frequency of the probe/plasma system, creating reflected signal dips. The applied microwave frequency is shifted in small increments in a frequency boxcar routine to determine the density as a function of time. A dc sheath correction is applied for the grounded probe, producing low cost, high fidelity, and highly reproducible electron density measurements. The measurements are made in both inductively and capacitively coupled systems, the latter driven by multiple frequencies where a subset of these frequencies are pulsed. Measurements are compared to previous published results, time resolved OES, and in-line measurement of plasma impedance. This work is supported by the NSF DOE partnership on plasma science, the NSF GOALI program, and MKS Instruments.
High frequency plasma generator for ion thrusters
NASA Technical Reports Server (NTRS)
Goede, H.; Divergilio, W. F.; Fosnight, V. V.; Komatsu, G.
1984-01-01
The results of a program to experimentally develop two new types of plasma generators for 30 cm electrostatic argon ion thrusters are presented. The two plasma generating methods selected for this study were by radio frequency induction (RFI), operating at an input power frequency of 1 MHz, and by electron cyclotron heating (ECH) at an operating frequency of 5.0 GHz. Both of these generators utilize multiline cusp permanent magnet configurations for plasma confinement and beam profile optimization. The program goals were to develop a plasma generator possessing the characteristics of high electrical efficiency (low eV/ion) and simplicity of operation while maintaining the reliability and durability of the conventional hollow cathode plasma sources. The RFI plasma generator has achieved minimum discharge losses of 120 eV/ion while the ECH generator has obtained 145 eV/ion, assuming a 90% ion optical transparency of the electrostatic acceleration system. Details of experimental tests with a variety of magnet configurations are presented.
Sedlik, C; Dadaglio, G; Saron, M F; Deriaud, E; Rojas, M; Casal, S I; Leclerc, C
2000-07-01
Many approaches are currently being developed to deliver exogenous antigen into the major histocompatibility complex class I-restricted antigen pathway, leading to in vivo priming of CD8(+) cytotoxic T cells. One attractive possibility consists of targeting the antigen to phagocytic or macropinocytic antigen-presenting cells. In this study, we demonstrate that strong CD8(+) class I-restricted cytotoxic responses are induced upon intraperitoneal immunization of mice with different peptides, characterized as CD8(+) T-cell epitopes, bound to 1-microm synthetic latex microspheres and injected in the absence of adjuvant. The cytotoxic response induced against a lymphocytic choriomeningitis virus (LCMV) peptide linked to these microspheres was compared to the cytotoxic T-lymphocyte (CTL) response obtained upon immunization with the nonreplicative porcine parvovirus-like particles (PPV:VLP) carrying the same peptide (PPV:VLP-LCMV) previously described (C. Sedlik, M. F. Saron, J. Sarraseca, I. Casal, and C. Leclerc, Proc. Natl. Acad. Sci. USA 94:7503-7508, 1997). We show that the induction of specific CTL activity by peptides bound to microspheres requires CD4(+) T-cell help in contrast to the CTL response obtained with the peptide delivered by viral pseudoparticles. Furthermore, PPV:VLP are 100-fold more efficient than microspheres in generating a strong CTL response characterized by a high frequency of specific T cells of high avidity. Moreover, PPV:VLP-LCMV are able to protect mice against a lethal LCMV challenge whereas microspheres carrying the LCMV epitope fail to confer such protection. This study demonstrates the crucial involvement of the frequency and avidity of CTLs in conferring antiviral protective immunity and highlights the importance of considering these parameters when developing new vaccine strategies.
Sedlik, C.; Dadaglio, G.; Saron, M. F.; Deriaud, E.; Rojas, M.; Casal, S. I.; Leclerc, C.
2000-01-01
Many approaches are currently being developed to deliver exogenous antigen into the major histocompatibility complex class I-restricted antigen pathway, leading to in vivo priming of CD8+ cytotoxic T cells. One attractive possibility consists of targeting the antigen to phagocytic or macropinocytic antigen-presenting cells. In this study, we demonstrate that strong CD8+ class I-restricted cytotoxic responses are induced upon intraperitoneal immunization of mice with different peptides, characterized as CD8+ T-cell epitopes, bound to 1-μm synthetic latex microspheres and injected in the absence of adjuvant. The cytotoxic response induced against a lymphocytic choriomeningitis virus (LCMV) peptide linked to these microspheres was compared to the cytotoxic T-lymphocyte (CTL) response obtained upon immunization with the nonreplicative porcine parvovirus-like particles (PPV:VLP) carrying the same peptide (PPV:VLP-LCMV) previously described (C. Sedlik, M. F. Saron, J. Sarraseca, I. Casal, and C. Leclerc, Proc. Natl. Acad. Sci. USA 94:7503–7508, 1997). We show that the induction of specific CTL activity by peptides bound to microspheres requires CD4+ T-cell help in contrast to the CTL response obtained with the peptide delivered by viral pseudoparticles. Furthermore, PPV:VLP are 100-fold more efficient than microspheres in generating a strong CTL response characterized by a high frequency of specific T cells of high avidity. Moreover, PPV:VLP-LCMV are able to protect mice against a lethal LCMV challenge whereas microspheres carrying the LCMV epitope fail to confer such protection. This study demonstrates the crucial involvement of the frequency and avidity of CTLs in conferring antiviral protective immunity and highlights the importance of considering these parameters when developing new vaccine strategies. PMID:10846055
Seam-weld quality of modern ERW/HFI line pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groeneveld, T.P.; Barnes, C.R.
1991-09-01
This study was undertaken to determine whether the seam-weld quality of modern ERW (electric resistance-welded)/HFI (high-frequency induction) welded pipe has been improved and justifies more widespread use of this type of pipe in critical applications. Wider use of ERW/HFI line pipe in gas-transmission lines would be expected to reduce construction costs. Five recently produced, heavy wall pipes fabricated using high-frequency electric-resistance welding (ERW) processes to make the seam weld and one pipe fabricated using the high-frequency induction (HFI) welding process to make the seam weld were studied. Four of the pipes were Grade X-60, one was Grade X-65, and onemore » was Grade X-70. All of the pipes were produced from microalloyed, controlled-rolled steels, and the weld zones were post-weld normalized. Ultrasonic inspection of the seam welds in the six pipe sections evaluated revealed no indications of defects. The tensile properties of all of the weld zones exceeded the minimum specified yield strengths for the respective grades of pipe and all of the pipes exhibited ductile failures either in the weld zone or in the base metal. Five of the six pipes exhibited ductile failures either in the weld zone or in the base metal. Five of the six pipes exhibited relatively low 85% shear area transition temperatures and relatively high upper-shelf energy absorptions as determined with Charpy V-notch specimens. In addition, for two of the three joints of pipe for which the properties were determined at both ends of the pipe, the tensile and impact properties showed little variation from end-to-end. However, for the other joint of pipe, the impact properties varied substantially from one end to the other.« less
Electric properties of nanostructure (FeCoZr)x(CaF2)(100-x) produced in argon Ar atmosphere
NASA Astrophysics Data System (ADS)
Bondariev, Vitalii; Czarnacka, Karolina; Boiko, Oleksandr
2015-09-01
The paper presents frequency f and temperature Tp dependences of conductivity σ, capacitance Cp and phase shift angle θ for the nanocomposite metal-dielectric (FeCoZr)x(CaF2)(100-x). Samples of nanocomposite were produced by ion-beam sputtering in pure argon Ar atmosphere. Partial pressure of gas Ar in the ion source pAr=1.1×10-1Pa. Contains of metallic phase in tested sample is x = 54.6 at.%. Studies carried out by stand to measuring of AC electrical properties of nanocomposites and semiconductors. The measurements have been performed using alternating current within the frequency range of 50 Hz - 1 MHz for measuring temperatures ranging from 77 K to 373 K. On the frequency-temperature dependence of phase shift angle θ at low frequencies phase shift have capacitive character and at high frequencies - inductive. Position of fmin on the frequency dependence on capacitance Cp corresponds exactly to the resonance frequency fR for which the angle θ crosses zero. Analysis of the results showed that phenomena similar to phenomena in conventional circuit RLC occur in the nanocomposite (CoFeZr)54.6(CaF2)45.4. Jumping recharging between the defects leads to the formation of dipoles and consequently to the increase of permittivity. After a time τ electron returns to the first defect and dipole disappears. The formation of inductance in nanocomposite is associated with return jumps of electrons from defect with negative charge to the defect with positive charge, set by the time, which are characterized by low values of activation energy.
Theoretical and Experimental Estimations of Volumetric Inductive Phase Shift in Breast Cancer Tissue
NASA Astrophysics Data System (ADS)
González, C. A.; Lozano, L. M.; Uscanga, M. C.; Silva, J. G.; Polo, S. M.
2013-04-01
Impedance measurements based on magnetic induction for breast cancer detection has been proposed in some studies. This study evaluates theoretical and experimentally the use of a non-invasive technique based on magnetic induction for detection of patho-physiological conditions in breast cancer tissue associated to its volumetric electrical conductivity changes through inductive phase shift measurements. An induction coils-breast 3D pixel model was designed and tested. The model involves two circular coils coaxially centered and a human breast volume centrally placed with respect to the coils. A time-harmonic numerical simulation study addressed the effects of frequency-dependent electrical properties of tumoral tissue on the volumetric inductive phase shift of the breast model measured with the circular coils as inductor and sensor elements. Experimentally; five female volunteer patients with infiltrating ductal carcinoma previously diagnosed by the radiology and oncology departments of the Specialty Clinic for Women of the Mexican Army were measured by an experimental inductive spectrometer and the use of an ergonomic inductor-sensor coil designed to estimate the volumetric inductive phase shift in human breast tissue. Theoretical and experimental inductive phase shift estimations were developed at four frequencies: 0.01, 0.1, 1 and 10 MHz. The theoretical estimations were qualitatively in agreement with the experimental findings. Important increments in volumetric inductive phase shift measurements were evident at 0.01MHz in theoretical and experimental observations. The results suggest that the tested technique has the potential to detect pathological conditions in breast tissue associated to cancer by non-invasive monitoring. Further complementary studies are warranted to confirm the observations.
Udo, Tomoko; Weinberger, Andrea H.; Grilo, Carlos M.; Brownell, Kelly D.; DiLeone, Ralph J.; Lampert, Rachel; Matlin, Samantha L.; Yanagisawa, Katherine; McKee, Sherry A.
2013-01-01
Summary Eating behaviors are highly cue-dependent. Changes in mood states and exposure to palatable food both increase craving and consumption of food. Vagal activity supports adaptive modulation of physiological arousal and has an important role in cue-induced appetitive behaviors. Using high-frequency heart rate variability (HF HRV), this preliminary study compared vagal activity during positive and negative mood induction, and presentation of preferred high-calorie food items between obese (n = 12; BMI ≥ 30) and non-obese individuals (n = 14; 18.5 < BMI < 30). Participants completed two laboratory sessions (negative vs. positive mood conditions). Following 3-hours of food deprivation, all participants completed a mood induction, and then were exposed to their preferred high-calorie food items. HF HRV was assessed throughout. Obese and non-obese individuals were not significantly different in HF HRV during positive or negative mood induction. Obese individuals showed significantly greater levels of HF HRV during presentation of their preferred high-calorie food items than non-obese individuals, particularly in the positive mood condition. This is the first study to demonstrate increased vagal activity in response to food cues in obese individuals compared with non-obese individuals. Our findings warrant further investigation on the potential role of vagally-mediated cue reactivity in overeating and obesity. PMID:24847667
Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffer, J.; Encalada, N.; Huang, M.
We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.
A Transfer Voltage Simulation Method for Generator Step Up Transformers
NASA Astrophysics Data System (ADS)
Funabashi, Toshihisa; Sugimoto, Toshirou; Ueda, Toshiaki; Ametani, Akihiro
It has been found from measurements for 13 sets of GSU transformers that a transfer voltage of a generator step-up (GSU) transformer involves one dominant oscillation frequency. The frequency can be estimated from the inductance and capacitance values of the GSU transformer low-voltage-side. This observation has led to a new method for simulating a GSU transformer transfer voltage. The method is based on the EMTP TRANSFORMER model, but stray capacitances are added. The leakage inductance and the magnetizing resistance are modified using approximate curves for their frequency characteristics determined from the measured results. The new method is validated in comparison with the measured results.
Hieda, K
1981-11-01
It was investigated whether there was a critical degree of dryness for induction of genetic changes by drying. Saccharomyces cerevisiae cells were dried in air of 0, 33, 53 and 76% relative humidity (RH). The frequencies of mitotic recombination at ade2, of gene conversion at leu1, and of gene mutation at can1 were measured in X2447, XS1473 and S288C strains, respectively. After the cells had been dried at 0% RH for 4 h the frequencies of the genetic changes at ade2, leu1 and can1 were, respectively, 56, 7 and 3.5 times higher than each spontaneous frequency. Induction rates, defined as the frequencies of the induced genetic changes per unit time (1 h) of drying, were greatly decreased with increase in RH. Partial drying in air of 76% RH up to 4 and 8 h induced no genetic change at ade2 and leu1, respectively. It was concluded, therefore, that drying at a certain RH between 53 and 76% gave the critical degree of dryness of cells for the induction of the genetic changes. The water contents of cells (g water per g dry material) were 12% at 53% RH and 21% at 76% RH, whereas the water content of native cells was 212%. Removal of a large amount of cellular water had no effect on the induction of the genetic changes. UV sensitivity of partially dried cells of X2447 for the induction of the genetic change at ade2 drastically increased with decrease in RH between 76 and 53%. The drastic change in the UV sensitivity suggested that photochemical reactivity of DNA of chromosome XV, in which the ade2 locus is located, changed between 76 and 53% RH. It seems that the genetic changes were induced only in the low RH region where DNA in vivo had a different photochemical reactivity.
Electromagnetic interference modeling and suppression techniques in variable-frequency drive systems
NASA Astrophysics Data System (ADS)
Yang, Le; Wang, Shuo; Feng, Jianghua
2017-11-01
Electromagnetic interference (EMI) causes electromechanical damage to the motors and degrades the reliability of variable-frequency drive (VFD) systems. Unlike fundamental frequency components in motor drive systems, high-frequency EMI noise, coupled with the parasitic parameters of the trough system, are difficult to analyze and reduce. In this article, EMI modeling techniques for different function units in a VFD system, including induction motors, motor bearings, and rectifierinverters, are reviewed and evaluated in terms of applied frequency range, model parameterization, and model accuracy. The EMI models for the motors are categorized based on modeling techniques and model topologies. Motor bearing and shaft models are also reviewed, and techniques that are used to eliminate bearing current are evaluated. Modeling techniques for conventional rectifierinverter systems are also summarized. EMI noise suppression techniques, including passive filter, Wheatstone bridge balance, active filter, and optimized modulation, are reviewed and compared based on the VFD system models.
NASA Astrophysics Data System (ADS)
Climente-Alarcon, V.; Antonino-Daviu, J.; Riera-Guasp, M.; Pons-Llinares, J.; Roger-Folch, J.; Jover-Rodriguez, P.; Arkkio, A.
2011-02-01
The present work is focused on the diagnosis of mixed eccentricity faults in induction motors via the study of currents demanded by the machine. Unlike traditional methods, based on the analysis of stationary currents (Motor Current Signature Analysis (MCSA)), this work provides new findings regarding the diagnosis approach proposed by the authors in recent years, which is mainly focused on the fault diagnosis based on the analysis of transient quantities, such as startup or plug stopping currents (Transient Motor Current Signature Analysis (TMCSA)), using suitable time-frequency decomposition (TFD) tools. The main novelty of this work is to prove the usefulness of tracking the transient evolution of high-order eccentricity-related harmonics in order to diagnose the condition of the machine, complementing the information obtained with the low-order components, whose transient evolution was well characterised in previous works. Tracking of high-order eccentricity-related harmonics during the transient, through their associated patterns in the time-frequency plane, may significantly increase the reliability of the diagnosis, since the set of fault-related patterns arising after application of the corresponding TFD tool is very unlikely to be caused by other faults or phenomena. Although there are different TFD tools which could be suitable for the transient extraction of these harmonics, this paper makes use of a Wigner-Ville distribution (WVD)-based algorithm in order to carry out the time-frequency decomposition of the startup current signal, since this is a tool showing an excellent trade-off between frequency resolution at both high and low frequencies. Several simulation results obtained with a finite element-based model and experimental results show the validity of this fault diagnosis approach under several faulty and operating conditions. Also, additional signals corresponding to the coexistence of the eccentricity and other non-fault related phenomena making difficult the diagnosis (fluctuating load torque) are included in the paper. Finally, a comparison with an alternative TFD tool - the discrete wavelet transform (DWT) - applied in previous papers, is also carried out in the contribution. The results are promising regarding the usefulness of the methodology for the reliable diagnosis of eccentricities and for their discrimination against other phenomena.
Joshi, Girish P; Kamali, Amin; Meng, Jin; Rosero, Eric; Gasanova, Irina
2014-03-01
To assess the effects of fentanyl administered before induction of anesthesia on movement and airway responses during desflurane anesthesia via the Laryngeal Mask Airway (LMA). Randomized, double-blinded, controlled trial. Tertiary-care academic center. 100 adult, ASA physical status 1, 2, and 3 patients undergoing ambulatory surgery. Patients were administered fentanyl 1 μg/kg (n=51) or saline (n=49) 3 to 5 minutes before induction with propofol 2-2.5 mg/kg intravenously (IV), followed by LMA placement. Anesthesia was maintained with desflurane titrated to a bispectral index (BIS) of 50-60 and 50% nitrous oxide in oxygen, and fentanyl 25 μg boluses were titrated to respiratory rate. Apnea occurrence and duration of manual ventilation, as well as frequency and severity of movement, coughing, breath holding, and laryngospasm were recorded. Two patients in each group were excluded from analysis. The fentanyl pretreatment group had a higher frequency of apnea (94% vs 64%; P=0.0003) and longer duration of manual ventilation (3 [interquartile range (IQR), 1.5-5] min vs 1 [0-1.5] min; P<0.0001) at induction. In contrast, the fentanyl pretreatment group had a lower frequency of movements (16% vs 51%;P=0.0001). The rates of intraoperative breath holding (6.1% vs 8.5%) and laryngospasm (2% vs 4.3%) in the two groups were similar. All subjects experiencing laryngospasm were smokers. Adjusting for smoking status did not affect the differences noted in apnea, duration of manual ventilation, or movement between groups; however, coughing occurrence was statistically higher in the placebo group (P=0.043). Preinduction fentanyl increased the frequency of apnea at induction and duration of manual ventilation, but reduced the frequency of movements. In addition, it reduced intraoperative coughing in smokers. Copyright © 2014 Elsevier Inc. All rights reserved.
Gapeyev, A B; Lukyanova, N A
2015-01-01
Using a comet assay technique, we investigated protective effects of. extremely high frequency electromagnetic radiation in combination with the damaging effect of X-ray irradiation, the effect of damaging agents hydrogen peroxide and methyl methanesulfonate on DNA in mouse whole blood leukocytes. It was shown that the preliminary exposure of the cells to low intensity pulse-modulated electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20-min exposure, modulation frequencies of 1 and 16 Hz) caused protective effects decreasing the DNA damage by 20-45%. The efficacy of pulse-modulated electromagnetic radiation depended on the type of genotoxic agent and increased in a row methyl methanesulfonate--X-rays--hydrogen peroxide. Continuous electromagnetic radiation was ineffective. The mechanisms of protective effects may be connected with an induction of the adaptive response by nanomolar concentrations of reactive oxygen species formed by pulse-modulated electromagnetic radiation.
Electromechanical systems with transient high power response operating from a resonant ac link
NASA Technical Reports Server (NTRS)
Burrows, Linda M.; Hansen, Irving G.
1992-01-01
The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant ac link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control all four operating quadrants. Incorporating the ac link allows the converter in these systems to switch at the zero crossing of every half cycle of the ac waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed under contract to NASA.
NASA Technical Reports Server (NTRS)
Cahan, Boris D.
1991-01-01
The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.
NASA Technical Reports Server (NTRS)
Cahan, Boris D.
1991-01-01
The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Framgos, William
1999-06-01
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2002-11-20
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex
2000-06-01
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach (Song et al., 1997). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2001-06-10
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
In-duct identification of a rotating sound source with high spatial resolution
NASA Astrophysics Data System (ADS)
Heo, Yong-Ho; Ih, Jeong-Guon; Bodén, Hans
2015-11-01
To understand and reduce the flow noise generation from in-duct fluid machines, it is necessary to identify the acoustic source characteristics precisely. In this work, a source identification technique, which can identify the strengths and positions of the major sound radiators in the source plane, is studied for an in-duct rotating source. A linear acoustic theory including the effects of evanescent modes and source rotation is formulated based on the modal summation method, which is the underlying theory for the inverse source reconstruction. A validation experiment is conducted on a duct system excited by a loudspeaker in static and rotating conditions, with two different speeds, in the absence of flow. Due to the source rotation, the measured pressure spectra reveal the Doppler effect, and the amount of frequency shift corresponds to the multiplication of the circumferential mode order and the rotation speed. Amplitudes of participating modes are estimated at the shifted frequencies in the stationary reference frame, and the modal amplitude set including the effect of source rotation is collected to investigate the source behavior in the rotating reference frame. By using the estimated modal amplitudes, the near-field pressure is re-calculated and compared with the measured pressure. The obtained maximum relative error is about -25 and -10 dB for rotation speeds at 300 and 600 rev/min, respectively. The spatial distribution of acoustic source parameters is restored from the estimated modal amplitude set. The result clearly shows that the position and magnitude of the main sound source can be identified with high spatial resolution in the rotating reference frame.
Noto, M; Nishikawa, J; Tateno, T
2016-03-24
A sound interrupted by silence is perceived as discontinuous. However, when high-intensity noise is inserted during the silence, the missing sound may be perceptually restored and be heard as uninterrupted. This illusory phenomenon is called auditory induction. Recent electrophysiological studies have revealed that auditory induction is associated with the primary auditory cortex (A1). Although experimental evidence has been accumulating, the neural mechanisms underlying auditory induction in A1 neurons are poorly understood. To elucidate this, we used both experimental and computational approaches. First, using an optical imaging method, we characterized population responses across auditory cortical fields to sound and identified five subfields in rats. Next, we examined neural population activity related to auditory induction with high temporal and spatial resolution in the rat auditory cortex (AC), including the A1 and several other AC subfields. Our imaging results showed that tone-burst stimuli interrupted by a silent gap elicited early phasic responses to the first tone and similar or smaller responses to the second tone following the gap. In contrast, tone stimuli interrupted by broadband noise (BN), considered to cause auditory induction, considerably suppressed or eliminated responses to the tone following the noise. Additionally, tone-burst stimuli that were interrupted by notched noise centered at the tone frequency, which is considered to decrease the strength of auditory induction, partially restored the second responses from the suppression caused by BN. To phenomenologically mimic the neural population activity in the A1 and thus investigate the mechanisms underlying auditory induction, we constructed a computational model from the periphery through the AC, including a nonlinear dynamical system. The computational model successively reproduced some of the above-mentioned experimental results. Therefore, our results suggest that a nonlinear, self-exciting system is a key element for qualitatively reproducing A1 population activity and to understand the underlying mechanisms. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
A wireless passive pressure microsensor fabricated in HTCC MEMS technology for harsh environments.
Tan, Qiulin; Kang, Hao; Xiong, Jijun; Qin, Li; Zhang, Wendong; Li, Chen; Ding, Liqiong; Zhang, Xiansheng; Yang, Mingliang
2013-08-02
A wireless passive high-temperature pressure sensor without evacuation channel fabricated in high-temperature co-fired ceramics (HTCC) technology is proposed. The properties of the HTCC material ensure the sensor can be applied in harsh environments. The sensor without evacuation channel can be completely gastight. The wireless data is obtained with a reader antenna by mutual inductance coupling. Experimental systems are designed to obtain the frequency-pressure characteristic, frequency-temperature characteristic and coupling distance. Experimental results show that the sensor can be coupled with an antenna at 600 °C and max distance of 2.8 cm at room temperature. The senor sensitivity is about 860 Hz/bar and hysteresis error and repeatability error are quite low.
A study of the high frequency limitations of series resonant converters
NASA Technical Reports Server (NTRS)
Stuart, T. A.; King, R. J.
1982-01-01
A transformer induced oscillation in series resonant (SR) converters is studied. It may occur in the discontinuous current mode. The source of the oscillation is an unexpected resonant circuit formed by normal resonance components in series with the magnetizing inductance of the output transformers. The methods for achieving cyclic stability are: to use a half bridge SR converter where q0.5. Q should be as close to 1.0 as possible. If 0.5q1.0, the instability will be avoided if psi2/3q-1/3. The second objective was to investigate a power field effect transistor (FET) version of the SR converter capable of operating at frequencies above 100 KHz, to study component stress and losses at various frequencies.
System stability and calibrations for hand-held electromagnetic frequency domain instruments
NASA Astrophysics Data System (ADS)
Saksa, Pauli J.; Sorsa, Joona
2017-05-01
There are a few multiple-frequency domain electromagnetic induction (EMI) hand-held rigid boom systems available for shallow geophysical resistivity investigations. They basically measure secondary field real and imaginary components after the system calibrations. One multiple-frequency system, the EMP-400 Profiler from Geophysical Survey Systems Inc., was tested for system calibrations, stability and various effects present in normal measurements like height variation, tilting, signal stacking and time stability. Results indicated that in test conditions, repeatable high-accuracy imaginary component values can be recorded for near-surface frequency soundings. In test conditions, real components are also stable but vary strongly in normal surveying measurements. However, certain calibration issues related to the combination of user influence and measurement system height were recognised as an important factor in reducing for data errors and for further processing like static offset corrections.
NASA Technical Reports Server (NTRS)
Dragan, O.; Galan, N.; Sirbu, A.; Ghita, C.
1974-01-01
The design and construction of inductive transducers for measuring the vibrations in metal bars at ultrasonic frequencies are discussed. Illustrations of the inductive transducers are provided. The quantitative relations that are useful in designing the transducers are analyzed. Mathematical models are developed to substantiate the theoretical considerations. Results obtained with laboratory equipment in testing specified metal samples are included.
Defining failed induction of labor.
Grobman, William A; Bailit, Jennifer; Lai, Yinglei; Reddy, Uma M; Wapner, Ronald J; Varner, Michael W; Thorp, John M; Leveno, Kenneth J; Caritis, Steve N; Prasad, Mona; Tita, Alan T N; Saade, George; Sorokin, Yoram; Rouse, Dwight J; Blackwell, Sean C; Tolosa, Jorge E
2018-01-01
While there are well-accepted standards for the diagnosis of arrested active-phase labor, the definition of a "failed" induction of labor remains less certain. One approach to diagnosing a failed induction is based on the duration of the latent phase. However, a standard for the minimum duration that the latent phase of a labor induction should continue, absent acute maternal or fetal indications for cesarean delivery, remains lacking. The objective of this study was to determine the frequency of adverse maternal and perinatal outcomes as a function of the duration of the latent phase among nulliparous women undergoing labor induction. This study is based on data from an obstetric cohort of women delivering at 25 US hospitals from 2008 through 2011. Nulliparous women who had a term singleton gestation in the cephalic presentation were eligible for this analysis if they underwent a labor induction. Consistent with prior studies, the latent phase was determined to begin once cervical ripening had ended, oxytocin was initiated, and rupture of membranes had occurred, and was determined to end once 5-cm dilation was achieved. The frequencies of cesarean delivery, as well as of adverse maternal (eg, postpartum hemorrhage, chorioamnionitis) and perinatal (eg, a composite frequency of seizures, sepsis, bone or nerve injury, encephalopathy, or death) outcomes, were compared as a function of the duration of the latent phase (analyzed with time both as a continuous measure and categorized in 3-hour increments). A total of 10,677 women were available for analysis. In the vast majority (96.4%) of women, the active phase had been reached by 15 hours. The longer the duration of a woman's latent phase, the greater her chance of ultimately undergoing a cesarean delivery (P < .001, for time both as a continuous and categorical independent variable), although >40% of women whose latent phase lasted ≥18 hours still had a vaginal delivery. Several maternal morbidities, such as postpartum hemorrhage (P < .001) and chorioamnionitis (P < .001), increased in frequency as the length of latent phase increased. Conversely, the frequencies of most adverse perinatal outcomes were statistically stable over time. The large majority of women undergoing labor induction will have entered the active phase by 15 hours after oxytocin has started and rupture of membranes has occurred. Maternal adverse outcomes become statistically more frequent with greater time in the latent phase, although the absolute increase in frequency is relatively small. These data suggest that cesarean delivery should not be undertaken during the latent phase prior to at least 15 hours after oxytocin and rupture of membranes have occurred. The decision to continue labor beyond this point should be individualized, and may take into account factors such as other evidence of labor progress. Copyright © 2017 Elsevier Inc. All rights reserved.
Band-Pass Amplifier Without Discrete Reactance Elements
NASA Technical Reports Server (NTRS)
Kleinberg, L.
1984-01-01
Inherent or "natural" device capacitance exploited. Band-Pass Circuit has input impedance of equivalent circuit at frequencies much greater than operational-amplifier rolloff frequency. Apparent inductance and capacitance arise from combined effects of feedback and reactive component of amplifier gain in frequency range.
A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils
Li, Jian; Wu, Dan; Han, Yan
2016-01-01
Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent “I-shape” is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation. PMID:27706039
A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils.
Li, Jian; Wu, Dan; Han, Yan
2016-09-30
Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent "I-shape" is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation.
Signal injection as a fault detection technique.
Cusidó, Jordi; Romeral, Luis; Ortega, Juan Antonio; Garcia, Antoni; Riba, Jordi
2011-01-01
Double frequency tests are used for evaluating stator windings and analyzing the temperature. Likewise, signal injection on induction machines is used on sensorless motor control fields to find out the rotor position. Motor Current Signature Analysis (MCSA), which focuses on the spectral analysis of stator current, is the most widely used method for identifying faults in induction motors. Motor faults such as broken rotor bars, bearing damage and eccentricity of the rotor axis can be detected. However, the method presents some problems at low speed and low torque, mainly due to the proximity between the frequencies to be detected and the small amplitude of the resulting harmonics. This paper proposes the injection of an additional voltage into the machine being tested at a frequency different from the fundamental one, and then studying the resulting harmonics around the new frequencies appearing due to the composition between injected and main frequencies.
Signal Injection as a Fault Detection Technique
Cusidó, Jordi; Romeral, Luis; Ortega, Juan Antonio; Garcia, Antoni; Riba, Jordi
2011-01-01
Double frequency tests are used for evaluating stator windings and analyzing the temperature. Likewise, signal injection on induction machines is used on sensorless motor control fields to find out the rotor position. Motor Current Signature Analysis (MCSA), which focuses on the spectral analysis of stator current, is the most widely used method for identifying faults in induction motors. Motor faults such as broken rotor bars, bearing damage and eccentricity of the rotor axis can be detected. However, the method presents some problems at low speed and low torque, mainly due to the proximity between the frequencies to be detected and the small amplitude of the resulting harmonics. This paper proposes the injection of an additional voltage into the machine being tested at a frequency different from the fundamental one, and then studying the resulting harmonics around the new frequencies appearing due to the composition between injected and main frequencies. PMID:22163801
Inductively guided circuits for ultracold dressed atoms
Sinuco-León, German A.; Burrows, Kathryn A.; Arnold, Aidan S.; Garraway, Barry M.
2014-01-01
Recent progress in optics, atomic physics and material science has paved the way to study quantum effects in ultracold atomic alkali gases confined to non-trivial geometries. Multiply connected traps for cold atoms can be prepared by combining inhomogeneous distributions of DC and radio-frequency electromagnetic fields with optical fields that require complex systems for frequency control and stabilization. Here we propose a flexible and robust scheme that creates closed quasi-one-dimensional guides for ultracold atoms through the ‘dressing’ of hyperfine sublevels of the atomic ground state, where the dressing field is spatially modulated by inductive effects over a micro-engineered conducting loop. Remarkably, for commonly used atomic species (for example, 7Li and 87Rb), the guide operation relies entirely on controlling static and low-frequency fields in the regimes of radio-frequency and microwave frequencies. This novel trapping scheme can be implemented with current technology for micro-fabrication and electronic control. PMID:25348163
Apparatus and method for monitoring the presence of a conductive media
DuVall, Bruce W.; Valentine, James W.; Morey, Kenneth O.
1979-01-01
An inductive level sensor has inductively coupled primary and secondary windings. Circuitry drives the primary with an AC signal of constant current magnitude and selected frequency f to induce in the secondary, a voltage signal V of magnitude .vertline.V.vertline., frequency f and phase difference .phi. from the driving signal. Circuitry operates to generate a voltage output signal proportional to .vertline.V.vertline. cos (.phi.-.theta.), where .theta. is a selectively set phase shift factor. By properly and selectively adjusting the frequency f and phase shift factor .theta., an output signal .vertline.V.vertline. cos (.phi.-.theta.) can be provided which self-compensates for changes in mutual inductance caused by operating temperature variations so that an output signal is produced which is substantially linearly proportional to changes in the level of a pool of liquid metal being monitored. Disclosed also is calibration circuitry and circuitry for converting the voltage signal .vertline.V.vertline. cos (.phi.-.theta.) into a current signal.
Surprises of the Transformer as a Coupled Oscillator System
ERIC Educational Resources Information Center
Silva, J. P.; Silvestre, A. J.
2008-01-01
We study a system of two RLC oscillators coupled through a variable mutual inductance. The system is interesting because it exhibits some peculiar features of coupled oscillators: (i) there are two natural frequencies; (ii) in general, the resonant frequencies do not coincide with the natural frequencies; (iii) the resonant frequencies of both…
Effect of Frequency and Spatial-Harmonics on Rotary and Linear Induction Motor Characteristics
DOT National Transportation Integrated Search
1972-03-01
A computer analysis is made of the effect of current and MMF airgap harmonics on the output characteristics of rotary and linear induction motors. The current harmonics accompanying thyristor-control operation are evaluated by Fourier analyzing the p...
Conelea, Christine A.; Ramanujam, Krishnapriya; Walther, Michael R.; Freeman, Jennifer B.; Garcia, Abbe M.
2014-01-01
Stress is the contextual variable most commonly implicated in tic exacerbations. However, research examining associations between tics, stressors, and the biological stress response has yielded mixed results. This study examined whether tics occur at a greater frequency during discrete periods of heightened physiological arousal. Children with co-occurring tic and anxiety disorders (n = 8) completed two stress induction tasks (discussion of family conflict, public speech). Observational (tic frequencies) and physiological (heart rate) data were synchronized using The Observer XT, and tic frequencies were compared across periods of high and low heart rate. Tic frequencies across the entire experiment did not increase during periods of higher heart rate. During the speech task, tic frequencies were significantly lower during periods of higher heart rate. Results suggest that tic exacerbations may not be associated with heightened physiological arousal and highlight the need for further tic research using integrated measurement of behavioral and biological processes. PMID:24662238
Conelea, Christine A; Ramanujam, Krishnapriya; Walther, Michael R; Freeman, Jennifer B; Garcia, Abbe M
2014-03-01
Stress is the contextual variable most commonly implicated in tic exacerbations. However, research examining associations between tics, stressors, and the biological stress response has yielded mixed results. This study examined whether tics occur at a greater frequency during discrete periods of heightened physiological arousal. Children with co-occurring tic and anxiety disorders (n = 8) completed two stress-induction tasks (discussion of family conflict, public speech). Observational (tic frequencies) and physiological (heart rate [HR]) data were synchronized using The Observer XT, and tic frequencies were compared across periods of high and low HR. Tic frequencies across the entire experiment did not increase during periods of higher HR. During the speech task, tic frequencies were significantly lower during periods of higher HR. Results suggest that tic exacerbations may not be associated with heightened physiological arousal and highlight the need for further tic research using integrated measurement of behavioral and biological processes. © The Author(s) 2014.
A Variable Frequency, Mis-Match Tolerant, Inductive Plasma Source
NASA Astrophysics Data System (ADS)
Rogers, Anthony; Kirchner, Don; Skiff, Fred
2014-10-01
Presented here is a survey and analysis of an inductively coupled, magnetically confined, singly ionized Argon plasma generated by a square-wave, variable frequency plasma source. The helicon-style antenna is driven directly by the class ``D'' amplifier without matching network for increased efficiency while maintaining independent control of frequency and applied power at the feed point. The survey is compared to similar data taken using a traditional exciter--power amplifier--matching network source. Specifically, the flexibility of this plasma source in terms of the independent control of electron plasma temperature and density is discussed in comparison to traditional source arrangements. Supported by US DOE Grant DE-FG02-99ER54543.
NASA Astrophysics Data System (ADS)
Beltran, Chris
Future high intensity synchrotrons will have a large space charge effect. It has been demonstrated in the Proton Storage Ring (PSR) at the Los Alamos National Laboratory (LANL) that ferrite inductive inserts can be used to compensate for the longitudinal space charge effect. However, simply installing ferrite inductors in the PSR led to longitudinal instabilities that were not tolerable. It was proposed that heating the ferrite would change the material properties in such a way as to reduce the instability. This proposal was tested in the PSR, and found to be true. This dissertation investigates and describes the complex permeability of the ferrite at room temperature and at an elevated temperature. The derived complex permeability is then used to obtain an impedance at the two temperatures. The impedance is used to determine the amount of space charge compensation supplied by the inductors and predict the growth time and frequency range of the longitudinal instability. The impedance is verified by comparing the experimental growth time and frequency range of the longitudinal instability to theoretical and computer simulated growth times and frequency ranges of the longitudinal instability. Lastly, an approach to mitigating the longitudinal instability that does not involve heating the ferrite is explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoolboom, G.J.; Szabados, B.
The advantages/disadvantages of energy storage devices, which can provide nonpolluting automobile systems are discussed. Four types of storage devices are identified: electrochemical (batteries); hydrogen; electromechanical (flywheels); and molten salt heat storage. A high-speed flywheel with a small permanent magnet motor/generator has more advantages than any of the other systems and might become a real competitor to the internal combustion engine. A flywheel/motor/generator system for automobiles now becomes practical, because of the technological advances in materials, bearings and solid state control circuits. The motor of choice is the squirrel cage induction motor, specially designed for automobile applications. The preferred controller formore » the induction motor is a forced commutated cycloconverter, which transforms a variable voltage/variable frequency source into a controlled variable-voltage/variable-frequency supply. A modulation strategy of the cycloconverter elements is selected to maintain a unity input displacement factor (power factor) under all conditions of loads voltages and frequencies. The system is similar to that of the existing automobile, if only one motor is used: master controller-controller-motor-gears (fixed)-differential-wheels. In the case of two motors, the mechanical differential is replaced by an electric one: master controller-controller-motor-gears (fixed)-wheel. A four-wheel drive vehicle is obtained when four motors with their own controllers are used. 24 refs.« less
NASA Astrophysics Data System (ADS)
Ahmad, Iftikhar; Subhani, Tayyab; Wang, Nannan; Zhu, Yanqiu
2018-05-01
This paper concerns the thermophysical properties of high-frequency induction heat (HFIH) sintered alumina ceramic nanocomposites containing various graphene nanoplatelets (GNP) concentrations. The GNP/alumina nanocomposites demonstrated high densities, fine-grained microstructures, highest fracture toughness and hardness values of 5.7 MPa m1/2 and 18.4 GPa, which found 72 and 8%, superior to the benchmarked monolithic alumina, respectively. We determine the role of GNP in tuning the microstructure and inducing toughening mechanisms in the nanocomposites. The sintered monolithic alumina exhibited thermal conductivity value of 24.8 W/mK; however, steady drops of 2, 15 and 19% were recorded after adding respective GNP contents of 0.25, 0.5 and 1.0 wt.% in the nanocomposites. In addition, a dwindling trend in thermal conductions with increasing temperatures was recorded for all sintered samples. Simulation of experimental results with proven theoretical thermal models showed the dominant role of GNP dispersions, microstructural porosity, elastic modulus and grain size in controlling the thermal transport properties of the GNP/alumina nanocomposites. Thermogravimetric analysis showed that the nanocomposite with up to 0.5 mass% of GNP is thermally stable at the temperatures greater than 875 °C. The GNP/alumina nanocomposites owning a distinctive combination of mechanical and thermal properties are promising contenders for the specific components of the aerospace engine and electronic devices having contact with elevated temperatures.
Wróblewska, Joanna; Gospodarek, Eugenia; Sekowska, Alicja; Mikołajczyk, Dorota; Janicka, Grazyna
2008-12-01
The L-forms of bacteria have not been studied carefully yet, because it is difficult to detect them in Gram stain reactions by light microscopy. They can be cultured on specialized hypertonic medium. We don't find any reports about intentional in vitro induction and assessment of frequency of L-forms of S. epidermidis and S. haemolyticus on the medium. to evaluate the frequency of induction of L-forms by Coagulase Negative Staphylococci. This thesis examines, if the source of isolation from clinical materials has an influence on the frequency of occurrence of cell-wall deficient bacteria. 52 strains of S. epidermidis, 52 strains of S. haemolyticus were analysed. After 13 S. epidermidis and S. haemolyticus strains were isolated from blood, urine, biomaterials, changed surface skin from patients of University Hospital in Bydgoszcz. S. epidermidis and S. haemolyticus strains were tested for induction of L-forms the methods of Owens (1988). It was observed that four (7.7%) strains of and S. haemolyticus transformed into L-forms. S. epidermidis strains isolated from blood induced L-forms (two strains), from urine and biomaterial (one strain). It was observed that strains of S. haemolyticus which have been isolated from blood and urine induced L-forms (three strains and one respectively). This study suggest that L-form induction in S. epidermidis and of S. haemolyticus strains is not correlated with sample origin from which the strains had been isolated. S. epidermidis and S. haemolyticus strains produce L-forms rarely.
Eteng, Akaa Agbaeze; Abdul Rahim, Sharul Kamal; Leow, Chee Yen; Chew, Beng Wah; Vandenbosch, Guy A E
2016-01-01
Q-factor constraints are usually imposed on conductor loops employed as proximity range High Frequency Radio Frequency Identification (HF-RFID) reader antennas to ensure adequate data bandwidth. However, pairing such low Q-factor loops in inductive energy transmission links restricts the link transmission performance. The contribution of this paper is to assess the improvement that is reached with a two-stage design method, concerning the transmission performance of a planar square loop relative to an initial design, without compromise to a Q-factor constraint. The first stage of the synthesis flow is analytical in approach, and determines the number and spacing of turns by which coupling between similar paired square loops can be enhanced with low deviation from the Q-factor limit presented by an initial design. The second stage applies full-wave electromagnetic simulations to determine more appropriate turn spacing and widths to match the Q-factor constraint, and achieve improved coupling relative to the initial design. Evaluating the design method in a test scenario yielded a more than 5% increase in link transmission efficiency, as well as an improvement in the link fractional bandwidth by more than 3%, without violating the loop Q-factor limit. These transmission performance enhancements are indicative of a potential for modifying proximity HF-RFID reader antennas for efficient inductive energy transfer and data telemetry links.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevly, III, Alex J.; McConkey, Joshua S.
In a telemetry system (100) in a high-temperature environment of a combustion turbine engine (10), a wireless power-receiving coil assembly (116) may be affixed to a movable component (104) of the turbine engine. Power-receiving coil assembly (116) may include a radio-frequency transparent housing (130) having an opening (132). A lid (134) may be provided to close the opening of the housing. Lid (134) may be positioned to provide support against a surface (120) of the movable component. An induction coil (133) is disposed in the housing distally away from the lid and encased between a first layer (136) and amore » last layer (140) of a potting adhesive. Lid (134) is arranged to provide vibrational buffering between the surface (120) of the movable component (104) and the layers encasing the induction coil.« less
Analysis of high-k spacer on symmetric underlap DG-MOSFET with Gate Stack architecture
NASA Astrophysics Data System (ADS)
Das, Rahul; Chakraborty, Shramana; Dasgupta, Arpan; Dutta, Arka; Kundu, Atanu; Sarkar, Chandan K.
2016-09-01
This paper shows the systematic study of underlap double gate (U-DG) NMOSFETs with Gate Stack (GS) under the influence of high-k spacers. In highly scaled devices, underlap is used at the Source and Drain side so as to reduce the short channel effects (SCE's), however, it significantly reduces the on current due to the increased channel resistance. To overcome these drawbacks, the use of high-k spacers is projected as one of the remedies. In this paper, the analog performance of the devices is studied on the basis of parameters like transconductance (gm), transconductance generation factor (gm/Id) and intrinsic gain (gmro). The RF performance is analyzed on the merits of intrinsic capacitance (Cgd, Cgs), resistance (Rgd, Rgs), transport delay (τm), inductance (Lsd), cutoff frequency (fT), and the maximum frequency of oscillation (fmax). The circuit performance of the devices are studied by implementing the device as the driver MOSFET in a Single Stage Common Source Amplifier. The Gain Bandwidth Product (GBW) has been analyzed from the frequency response of the circuit.
Electroencephalogram signatures of loss and recovery of consciousness from propofol
Purdon, Patrick L.; Pierce, Eric T.; Mukamel, Eran A.; Prerau, Michael J.; Walsh, John L.; Wong, Kin Foon K.; Salazar-Gomez, Andres F.; Harrell, Priscilla G.; Sampson, Aaron L.; Cimenser, Aylin; Ching, ShiNung; Kopell, Nancy J.; Tavares-Stoeckel, Casie; Habeeb, Kathleen; Merhar, Rebecca; Brown, Emery N.
2013-01-01
Unconsciousness is a fundamental component of general anesthesia (GA), but anesthesiologists have no reliable ways to be certain that a patient is unconscious. To develop EEG signatures that track loss and recovery of consciousness under GA, we recorded high-density EEGs in humans during gradual induction of and emergence from unconsciousness with propofol. The subjects executed an auditory task at 4-s intervals consisting of interleaved verbal and click stimuli to identify loss and recovery of consciousness. During induction, subjects lost responsiveness to the less salient clicks before losing responsiveness to the more salient verbal stimuli; during emergence they recovered responsiveness to the verbal stimuli before recovering responsiveness to the clicks. The median frequency and bandwidth of the frontal EEG power tracked the probability of response to the verbal stimuli during the transitions in consciousness. Loss of consciousness was marked simultaneously by an increase in low-frequency EEG power (<1 Hz), the loss of spatially coherent occipital alpha oscillations (8–12 Hz), and the appearance of spatially coherent frontal alpha oscillations. These dynamics reversed with recovery of consciousness. The low-frequency phase modulated alpha amplitude in two distinct patterns. During profound unconsciousness, alpha amplitudes were maximal at low-frequency peaks, whereas during the transition into and out of unconsciousness, alpha amplitudes were maximal at low-frequency nadirs. This latter phase–amplitude relationship predicted recovery of consciousness. Our results provide insights into the mechanisms of propofol-induced unconsciousness, establish EEG signatures of this brain state that track transitions in consciousness precisely, and suggest strategies for monitoring the brain activity of patients receiving GA. PMID:23487781
ERIC Educational Resources Information Center
Fujii, Satoshi; Yamazaki, Yoshihiko; Goto, Jun-Ichi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko
2016-01-01
We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated by preconditioning low-frequency afferent stimulation (LFS) in the subsequent induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential or the population…
Design of spherical electron gun for ultra high frequency, CW power inductive output tube
NASA Astrophysics Data System (ADS)
Kaushik, Meenu; Joshi, L. M.
2016-03-01
Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.
Design of spherical electron gun for ultra high frequency, CW power inductive output tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaushik, Meenu, E-mail: mkceeri@gmail.com; Joshi, L. M., E-mail: lmj1953@gmail.com; Academy of Scientific and Innovative Research
Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gunmore » has been carried out in CST and TRAK codes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao
2012-06-15
Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 Degree-Sign C) and high ({approx}800 Degree-Sign C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching.more » The furnace was operated up to 1400 Degree-Sign C with a maximum pressure of {approx}1 Multiplication-Sign 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 Degree-Sign C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 Degree-Sign C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni
2012-06-01
Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 deg C) and high ({approx}800 deg C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching.more » The furnace was operated up to 1400 deg C with a maximum pressure of {approx}1 x 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 deg C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 deg C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.« less
Dhakal, Pashupati; Ciovati, Gianluigi; Rigby, Wayne; Wallace, John; Myneni, Ganapati Rao
2012-06-01
Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low (∼120 °C) and high (∼800 °C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 °C with a maximum pressure of ∼1 × 10(-5) Torr and the maximum achievable temperature is estimated to be higher than 2000 °C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 °C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of ∼2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.
Integrated on-chip inductors with electroplated magnetic yokes (invited)
NASA Astrophysics Data System (ADS)
Wang, Naigang; O'Sullivan, Eugene J.; Herget, Philipp; Rajendran, Bipin; Krupp, Leslie E.; Romankiw, Lubomyr T.; Webb, Bucknell C.; Fontana, Robert; Duch, Elizabeth A.; Joseph, Eric A.; Brown, Stephen L.; Hu, Xiaolin; Decad, Gary M.; Sturcken, Noah; Shepard, Kenneth L.; Gallagher, William J.
2012-04-01
Thin-film ferromagnetic inductors show great potential as the energy storage element for integrated circuits containing on-chip power management. In order to achieve the high energy storage required for power management, on-chip inductors require relatively thick magnetic yoke materials (several microns or more), which can be readily deposited by electroplating through a photoresist mask as demonstrated in this paper, the yoke material of choice being Ni45Fe55, whose properties of relatively high moment and electrical resistivity make it an attractive model yoke material for inductors. Inductors were designed with a variety of yoke geometries, and included both single-turn and multi-turn coil designs, which were fabricated on 200 mm silicon wafers in a CMOS back-end-of-line (BEOL) facility. Each inductor consisted of electroplated copper coils enclosed by the electroplated Ni45Fe55 yokes; aspects of the fabrication of the inductors are discussed. Magnetic properties of the electroplated yoke materials are described, including high frequency permeability measurements. The inductance of 2-turn coil inductors, for example, was enhanced up to about 6 times over the air core equivalent, with an inductance density of 130 nH/mm2 being achieved. The resistance of these non-laminated inductors was relatively large at high frequency due to magnetic and eddy current losses but is expected to improve as the yoke material/structure is further optimized, making electroplated yoke-containing inductors attractive for dc-dc power converters.
High efficiency inductive output tubes with intense annular electron beams
NASA Astrophysics Data System (ADS)
Appanam Karakkad, J.; Matthew, D.; Ray, R.; Beaudoin, B. L.; Narayan, A.; Nusinovich, G. S.; Ting, A.; Antonsen, T. M.
2017-10-01
For mobile ionospheric heaters, it is necessary to develop highly efficient RF sources capable of delivering radiation in the frequency range from 3 to 10 MHz with an average power at a megawatt level. A promising source, which is capable of offering these parameters, is a grid-less version of the inductive output tube (IOT), also known as a klystrode. In this paper, studies analyzing the efficiency of grid-less IOTs are described. The basic trade-offs needed to reach high efficiency are investigated. In particular, the trade-off between the peak current and the duration of the current micro-pulse is analyzed. A particle in the cell code is used to self-consistently calculate the distribution in axial and transverse momentum and in total electron energy from the cathode to the collector. The efficiency of IOTs with collectors of various configurations is examined. It is shown that the efficiency of IOTs can be in the 90% range even without using depressed collectors.
Field oriented control of induction motors
NASA Technical Reports Server (NTRS)
Burrows, Linda M.; Zinger, Don S.; Roth, Mary Ellen
1990-01-01
Induction motors have always been known for their simple rugged construction, but until lately were not suitable for variable speed or servo drives due to the inherent complexity of the controls. With the advent of field oriented control (FOC), however, the induction motor has become an attractive option for these types of drive systems. An FOC system which utilizes the pulse population modulation method to synthesize the motor drive frequencies is examined. This system allows for a variable voltage to frequency ratio and enables the user to have independent control of both the speed and torque of an induction motor. A second generation of the control boards were developed and tested with the next point of focus being the minimization of the size and complexity of these controls. Many options were considered with the best approach being the use of a digital signal processor (DSP) due to its inherent ability to quickly evaluate control algorithms. The present test results of the system and the status of the optimization process using a DSP are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moh, C.C.
1962-07-01
Results are summarized from a study on the genetic effects of radiation in coffee as observed in R/sub 1/ plants grown from seeds exposed to x radiation, gamma radiation, or thermal neutrons. A high frequency of morphological mutants was observed in the young plants. Possible reaction mechanisms involved in the induction of the mutants are discussed. (C.H.)
High Frequency Analog LSI Development.
1979-11-12
made to incorporate more optimal values through appropriate series or parallel connection of the four capacitors embedded on chip. The use of SPICE-2...collector of Q4 to about 50Q with some inductive reactance at the output. An external capacitor in series with the chip output serves as a DC block...by Under authority of CE Holland, Head CD Pierson, Jr, Head Advanced Applications Electronics Engineering Division and Sciences Department / f
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudhir, Dass; Bandyopadhyay, M., E-mail: mainak@ter-india.org; Chakraborty, A.
2014-01-15
Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is notmore » present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.« less
Two-dimensional Inductive Position Sensing System
NASA Technical Reports Server (NTRS)
Youngquist, Robert C. (Inventor); Starr, Stanley O. (Inventor)
2015-01-01
A two-dimensional inductive position sensing system uses four drive inductors arranged at the vertices of a parallelogram and a sensing inductor positioned within the parallelogram. The sensing inductor is movable within the parallelogram and relative to the drive inductors. A first oscillating current at a first frequency is supplied to a first pair of the drive inductors located at ends of a first diagonal of the parallelogram. A second oscillating current at a second frequency is supplied to a second pair of the drive inductors located at ends of a second diagonal of the parallelogram. As a result, the sensing inductor generates a first output voltage at the first frequency and a second output voltage at the second frequency. A processor determines a position of the sensing inductor relative to the drive inductors using the first output voltage and the second output voltage.
Lucid Dreaming: Intensity, But Not Frequency, Is Inversely Related to Psychopathology
Aviram, Liat; Soffer-Dudek, Nirit
2018-01-01
Lucid dreaming (LD) is awareness that one is dreaming, during the dream state. However, some define and assess LD relying also on controlling dream events, although control is present only in a subset of lucid dreams. LD has been claimed to represent well-being, and has even been used as a therapeutic agent. Conversely, LD is associated with mixed sleep-wake states, which are related to bizarre cognitions, stress, and psychopathology, and have been construed as arousal permeating and disrupting sleep. We propose that previous conflicting findings regarding relations between LD and both psychopathology and well-being, stem from the non-differentiated assessment of frequency and control. The present study aimed to develop an expansive measure of several LD characteristics (the Frequency and Intensity Lucid Dream questionnaire; FILD), and explore their relations with symptomatology. Undergraduate students (N = 187) self-reported trait LD, psychopathology (depression, anxiety, obsessive-compulsive symptoms, dissociation, and schizotypy), stress, and sleep problems; 2 months later, a subsample (n = 78) reported psychopathology again, and also completed a dream diary each morning for 14 days. Preliminary evidence supports the reliability and validity of the FILD. Items converged into four domains: frequency, intensity (e.g., control, activity, certainty of dreaming), emotional valence, and the use of induction techniques. We report an optimal frequency cutoff score to identify those likely to experience LD within a 2-week period. Whereas LD frequency was unrelated to psychopathology, LD intensity, and positive LD emotions, were inversely associated with several psychopathological symptoms. Use of deliberate induction techniques was positively associated with psychopathology and sleep problems. Additionally, we demonstrated directionality by employing a prospective-longitudinal design, showing that deliberate LD induction predicted an increase in dissociation and schizotypy symptoms across 2 months. We conclude that lucidity should not be considered as necessarily suggestive of well-being; LD may be positive or negative, depending on lucidity characteristics. Additionally, deliberate LD induction may harbor negative long-term risk. PMID:29623062
Lucid Dreaming: Intensity, But Not Frequency, Is Inversely Related to Psychopathology.
Aviram, Liat; Soffer-Dudek, Nirit
2018-01-01
Lucid dreaming (LD) is awareness that one is dreaming, during the dream state. However, some define and assess LD relying also on controlling dream events, although control is present only in a subset of lucid dreams. LD has been claimed to represent well-being, and has even been used as a therapeutic agent. Conversely, LD is associated with mixed sleep-wake states, which are related to bizarre cognitions, stress, and psychopathology, and have been construed as arousal permeating and disrupting sleep. We propose that previous conflicting findings regarding relations between LD and both psychopathology and well-being, stem from the non-differentiated assessment of frequency and control. The present study aimed to develop an expansive measure of several LD characteristics (the Frequency and Intensity Lucid Dream questionnaire; FILD), and explore their relations with symptomatology. Undergraduate students ( N = 187) self-reported trait LD, psychopathology (depression, anxiety, obsessive-compulsive symptoms, dissociation, and schizotypy), stress, and sleep problems; 2 months later, a subsample ( n = 78) reported psychopathology again, and also completed a dream diary each morning for 14 days. Preliminary evidence supports the reliability and validity of the FILD. Items converged into four domains: frequency, intensity (e.g., control, activity, certainty of dreaming), emotional valence, and the use of induction techniques. We report an optimal frequency cutoff score to identify those likely to experience LD within a 2-week period. Whereas LD frequency was unrelated to psychopathology, LD intensity, and positive LD emotions, were inversely associated with several psychopathological symptoms. Use of deliberate induction techniques was positively associated with psychopathology and sleep problems. Additionally, we demonstrated directionality by employing a prospective-longitudinal design, showing that deliberate LD induction predicted an increase in dissociation and schizotypy symptoms across 2 months. We conclude that lucidity should not be considered as necessarily suggestive of well-being; LD may be positive or negative, depending on lucidity characteristics. Additionally, deliberate LD induction may harbor negative long-term risk.
Calculation of the non-inductive current profile in high-performance NSTX plasmas
NASA Astrophysics Data System (ADS)
Gerhardt, S. P.; Fredrickson, E.; Gates, D.; Kaye, S.; Menard, J.; Bell, M. G.; Bell, R. E.; Le Blanc, B. P.; Kugel, H.; Sabbagh, S. A.; Yuh, H.
2011-03-01
The constituents of the current profile have been computed for a wide range of high-performance plasmas in NSTX (Ono et al 2000 Nucl. Fusion 40 557); these include cases designed to maximize the non-inductive fraction, pulse length, toroidal-β or stored energy. In the absence of low-frequency MHD activity, good agreement is found between the reconstructed current profile and that predicted by summing the independently calculated inductive, pressure-driven and neutral beam currents, without the need to invoke any anomalous beam ion diffusion. Exceptions occur, for instance, when there are toroidal Alfvén eigenmode avalanches or coupled m/n = 1/1 + 2/1 kink-tearing modes. In these cases, the addition of a spatially and temporally dependent fast-ion diffusivity can reduce the core beam current drive, restoring agreement between the reconstructed profile and the summed constituents, as well as bringing better agreement between the simulated and measured neutron emission rate. An upper bound on the fast-ion diffusivity of ~0.5-1 m2 s-1 is found in 'MHD-free' discharges, based on the neutron emission, the time rate of change in the neutron signal when a neutral beam is stepped and reconstructed on-axis current density.
NASA Astrophysics Data System (ADS)
Goraj, R.
2015-12-01
In order to estimate the inductive power set in the armature of the high-speed solenoid valve (HSV) during the open loop control (OLC) using pulse width modulation (PWM) an analytical explicit formula has been derived. The simplifications taken both in the geometry and in the physical behavior of the HSV were described. The inductive power was calculated for different boundary conditions and shown as a function of the frequency of the coil current. The power set in the armature was used as an input to the thermal calculation. The thermal calculation had an objective to estimate the time dependent temperature distribution in the armature of the HSV. All the derivation steps were presented and the influence of different boundary conditions was shown and discussed. The increase of the temperature during the heating with inductive power has been evaluated both in the core and on the side surface of the HSV.
An impedance bridge measuring the capacitance ratio in the high frequency range up to 1 MHz
NASA Astrophysics Data System (ADS)
Bee Kim, Dan; Kew Lee, Hyung; Kim, Wan-Seop
2017-02-01
This paper describes a 2-terminal-pair impedance bridge, measuring the capacitance ratio in the high frequency range up to 1 MHz. The bridge was configured with two voltage sources and a phase control unit which enabled the bridge balance by synchronizing the voltage sources with an enhanced phase resolution. Without employing the transformers such as inductive voltage divider, injection and detection transformers, etc, the bridge system is quite simple to set up, and the balance procedure is quick and easy. Using this dual-source coaxial bridge, the 1:1 and 10:1 capacitance ratios were measured with 1 pF-1 nF capacitors in the frequency range from 1 kHz to 1 MHz. The measurement values obtained by the dual-source bridge were then compared with reference values measured using a commercial precision capacitance bridge of AH2700A, the Z-matrix method developed by ourselves, and the 4-terminal-pair coaxial bridge by the Czech Metrological Institute. All the measurements agreed within the reference uncertainty range of an order of 10-6-10-5, proving the bridge ability as a trustworthy tool for measuring the capacitance ratio in the high frequency range.
NASA Technical Reports Server (NTRS)
Lipo, Thomas A.; Sood, Pradeep K.
1987-01-01
Static power conversion systems have traditionally utilized dc current or voltage source links for converting power from one ac or dc form to another since it readily achieves the temporary energy storage required to decouple the input from the output. Such links, however, result in bulky dc capacitors and/or inductors and lead to relatively high losses in the converters due to stresses on the semiconductor switches. The feasibility of utilizing a high frequency sinusoidal voltage link to accomplish the energy storage and decoupling function is examined. In particular, a type of resonant six pulse bridge interface converter is proposed which utilizes zero voltage switching principles to minimize switching losses and uses an easy to implement technique for pulse density modulation to control the amplitude, frequency, and the waveshape of the synthesized low frequency voltage or current. Adaptation of the proposed topology for power conversion to single-phase ac and dc voltage or current outputs is shown to be straight forward. The feasibility of the proposed power circuit and control technique for both active and passive loads are verified by means of simulation and experiment.
Wedding ring shaped excitation coil
MacLennan, Donald A.; Tsai, Peter
2001-01-01
A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency.
Radio-frequency measurements of UNiX compounds (X=Al, Ga, Ge) in high magnetic fields
NASA Astrophysics Data System (ADS)
Alsmadi, A. M.; Alyones, S.; Mielke, C. H.; McDonald, R. D.; Zapf, V.; Altarawneh, M. M.; Lacerda, A.; Chang, S.; Adak, S.; Kothapalli, K.; Nakotte, H.
2009-11-01
We performed radio-frequency (RF) skin-depth measurements of antiferromagnetic UNiX compounds (X=Al, Ga, Ge) in magnetic fields up to 60 T and at temperatures between 1.4 to ~60 K. Magnetic fields are applied along different crystallographic directions and RF penetration-depth was measured using a tunnel-diode oscillator (TDO) circuit. The sample is coupled to the inductive element of a TDO resonant tank circuit, and the shift in the resonant frequency Δ f of the circuit is measured. The UNiX compounds exhibit field-induced magnetic transitions at low temperatures, and those transitions are accompanied by a drastic change in Δ f. The results of our skin-depth measurements were compared with previously published B- T phase diagrams for these three compounds.
Temperature responsive transmitter
NASA Technical Reports Server (NTRS)
Kleinberg, Leonard L. (Inventor)
1987-01-01
A temperature responsive transmitter is provided in which frequency varies linearly with temperature. The transmitter includes two identically biased transistors connected in parallel. A capacitor, which reflects into the common bases to generate negative resistance effectively in parallel with the capacitor, is connected to the common emitters. A crystal is effectively in parallel with the capacitor and the negative resistance. Oscillations occur if the magnitude of the absolute value of the negative resistance is less than the positive resistive impedance of the capacitor and the inductance of the crystal. The crystal has a large linear temperature coefficient and a resonant frequency which is substantially less than the gain-bandwidth product of the transistors to ensure that the crystal primarily determines the frequency of oscillation. A high-Q tank circuit having an inductor and a capacitor is connected to the common collectors to increase the collector current flow which in turn enhances the radiation of the oscillator frequency by the inductor.
NASA Technical Reports Server (NTRS)
Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, M.; Jordan, Robert; Schwartz, Jeffrey L.
2003-01-01
The induction of genomic instability in TK6 human lymphoblasts by exposure to (137)Cs gamma radiation was investigated by measuring the frequency and characteristics of unstable clones isolated approximately 36 generations after exposure. Clones surviving irradiation and control clones were analyzed for 17 characteristics including chromosomal aberrations, growth defects, alterations in response to a second irradiation, and mutant frequencies at the thymidine kinase and Na(+)/K(+) ATPase loci. Putative unstable clones were defined as those that exhibited a significant alteration in one or more characteristics compared to the controls. The frequency and characteristics of the unstable clones were compared in clones exposed to (137)Cs gamma rays or (56)Fe particles. The majority of the unstable clones isolated after exposure to either gamma rays or (56)Fe particles exhibited chromosomal instability. Alterations in growth characteristics, radiation response and mutant frequencies occurred much less often than cytogenetic alterations in these unstable clones. The frequency and complexity of the unstable clones were greater after exposure to (56)Fe particles than to gamma rays. Unstable clones that survived 36 generations after exposure to gamma rays exhibited increases in the incidence of dicentric chromosomes but not of chromatid breaks, whereas unstable clones that survived 36 generations after exposure to (56)Fe particles exhibited increases in both chromatid and chromosome aberrations.
A multiple degree of freedom electromechanical Helmholtz resonator.
Liu, Fei; Horowitz, Stephen; Nishida, Toshikazu; Cattafesta, Louis; Sheplak, Mark
2007-07-01
The development of a tunable, multiple degree of freedom (MDOF) electromechanical Helmholtz resonator (EMHR) is presented. An EMHR consists of an orifice, backing cavity, and a compliant piezoelectric composite diaphragm. Electromechanical tuning of the acoustic impedance is achieved via passive electrical networks shunted across the piezoceramic. For resistive and capacitive loads, the EMHR is a 2DOF system possessing one acoustic and one mechanical DOF. When inductive ladder networks are employed, multiple electrical DOF are added. The dynamics of the multi-energy domain system are modeled using lumped elements and are represented in an equivalent electrical circuit, which is used to analyze the tunable acoustic input impedance of the EMHR. The two-microphone method is used to measure the acoustic impedance of two EMHR designs with a variety of resistive, capacitive, and inductive shunts. For the first design, the data demonstrate that the tuning range of the second resonant frequency for an EMHR with non-inductive shunts is limited by short- and open-circuit conditions, while an inductive shunt results in a 3DOF system possessing an enhanced tuning range. The second design achieves stronger coupling between the Helmholtz resonator and the piezoelectric backplate, and both resonant frequencies can be tuned with different non-inductive loads.
Test Program for Evaluation of Variable Frequency Power Conditioners
DOT National Transportation Integrated Search
1973-08-01
A test program is outlined for variable frequency power conditioners for 3-phase induction motors in vehicle propulsion applications. The Power Conditioner Unit (PCU) performance characteristics are discussed in some detail. Measurement methods, reco...
Experimental Study for Reduction of Noises and Vibrations in Hermetic Type Compressor
NASA Astrophysics Data System (ADS)
Sano, Kiyoshi; Kawahara, Sadao; Akazawa, Teruyuki; Ishii, Noriaki
A brushless DC motor with a permanent magnet rotor has been adopted for a scroll compressor for domestic-use air-conditioners because of a demand for compressor high efficiency. A waveform of the driving voltage in the inverter power supply unit is chopped by the PWM signal. Its duty ratio is increased/decreased to control the DC voltage in order to provide a wide range of rotation frequencies for the compressor. The driving voltage includes the carrier frequency and its harmonic components, which produce an electro-magnetic force in the moter, resulting in high electro-magnetic noise. In the present report, the author clarifies the relationships between the noise and the waveform of driving voltage and frequency response function of the motor. A method to improve the frequency response function by changing the stator shape in order to reduce electro-magnetic noise is presented. Subsequently, the influence on electro-magnetic noise from the waveform of driving voltage is examined. Furthermore, the electro-magnetic noises during inverter driving of an induction motor are presented.
Learning rules for spike timing-dependent plasticity depend on dendritic synapse location.
Letzkus, Johannes J; Kampa, Björn M; Stuart, Greg J
2006-10-11
Previous studies focusing on the temporal rules governing changes in synaptic strength during spike timing-dependent synaptic plasticity (STDP) have paid little attention to the fact that synaptic inputs are distributed across complex dendritic trees. During STDP, propagation of action potentials (APs) back to the site of synaptic input is thought to trigger plasticity. However, in pyramidal neurons, backpropagation of single APs is decremental, whereas high-frequency bursts lead to generation of distal dendritic calcium spikes. This raises the question whether STDP learning rules depend on synapse location and firing mode. Here, we investigate this issue at synapses between layer 2/3 and layer 5 pyramidal neurons in somatosensory cortex. We find that low-frequency pairing of single APs at positive times leads to a distance-dependent shift to long-term depression (LTD) at distal inputs. At proximal sites, this LTD could be converted to long-term potentiation (LTP) by dendritic depolarizations suprathreshold for BAC-firing or by high-frequency AP bursts. During AP bursts, we observed a progressive, distance-dependent shift in the timing requirements for induction of LTP and LTD, such that distal synapses display novel timing rules: they potentiate when inputs are activated after burst onset (negative timing) but depress when activated before burst onset (positive timing). These findings could be explained by distance-dependent differences in the underlying dendritic voltage waveforms driving NMDA receptor activation during STDP induction. Our results suggest that synapse location within the dendritic tree is a crucial determinant of STDP, and that synapses undergo plasticity according to local rather than global learning rules.
Morra, Joshua T.; Glick, Stanley D.; Cheer, Joseph F.
2012-01-01
Patients suffering from amphetamine---induced psychosis display repetitive behaviors, partially alleviated by antipsychotics, which are reminiscent of rodent stereotypies. Due to recent evidence implicating endocannabinoid involvement in brain disorders, including psychosis, we studied the effects of endocannabinoid signaling on neuronal oscillations of rats exhibiting methamphetamine stereotypy. Neuronal network oscillations were recorded with multiple single electrode arrays aimed at the nucleus accumbens of freely moving rats. During the experiments, animals were dosed intravenously with the CB1 receptor antagonist rimonabant (0.3 mg/kg) or vehicle followed by an ascending dose regimen of methamphetamine (0.01, 0.1, 1, and 3 mg/kg; cumulative dosing). The effects of drug administration on stereotypy and local gamma oscillations were evaluated. Methamphetamine treatment significantly increased high frequency gamma oscillations (~ 80 Hz). Entrainment of a subpopulation of nucleus accumbens neurons to high frequency gamma was associated with stereotypy encoding in putative fast-spiking interneurons, but not in putative medium spiny neurons. The observed ability of methamphetamine to induce both stereotypy and high frequency gamma power was potently disrupted following CB1 receptor blockade. The present data suggest that CB1 receptor-dependent mechanisms are recruited by methamphetamine to modify striatal interneuron oscillations that accompany changes in psychomotor state, further supporting the link between endocannabinoids and schizophrenia spectrum disorders. PMID:22609048
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2004-06-16
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 0.1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002, Tseng et al., 2003). Electric and magnetic sensors are being tested and calibrated on sea water and in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
Sub-100 μm scale on-chip inductors with CoZrTa for GHz applications
NASA Astrophysics Data System (ADS)
Xu, Wei; Wu, Hao; Gardner, Donald S.; Sinha, Saurabh; Dastagir, Tawab; Bakkaloglu, Bertan; Cao, Yu; Yu, Hongbin
2011-04-01
On-chip inductors with magnetic material are fabricated with complementary metal-oxide semiconductor processes. The inductors use copper metallization and amorphous CoZrTa thinfilms. Enhancements of 3.5X in inductance and 3X for the quality factor at frequencies as highas 3 GHz have been successfully demonstrated by using a continuous CoZrTa-ring structure in spiral inductors at the 100 μm scale. Further improvement of the frequency response of inductance up to 6 GHz was achieved by micro-patterning the magnetic film. The effect ofincreasing the film thickness on the performance of strip line inductors was measured and modeled. This work demonstrates significantly larger increases in inductance and quality factor atabove 1 GHz as compared to prior efforts, thereby making the added processing cost worthwhile.
Four photon parametric amplification. [in unbiased Josephson junction
NASA Technical Reports Server (NTRS)
Parrish, P. T.; Feldman, M. J.; Ohta, H.; Chiao, R. Y.
1974-01-01
An analysis is presented describing four-photon parametric amplification in an unbiased Josephson junction. Central to the theory is the model of the Josephson effect as a nonlinear inductance. Linear, small signal analysis is applied to the two-fluid model of the Josephson junction. The gain, gain-bandwidth product, high frequency limit, and effective noise temperature are calculated for a cavity reflection amplifier. The analysis is extended to multiple (series-connected) junctions and subharmonic pumping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Punjabi, Sangeeta B., E-mail: p.sangeeta@gmail.com; Department of Physics, University of Mumbai, Kalina, Santacruz; Sahasrabudhe, S. N.
2014-01-15
This paper provides 2D comparative study of results obtained using laminar and turbulent flow model for RF (radio frequency) Inductively Coupled Plasma (ICP) torch. The study was done for the RF-ICP torch operating at 50 kW DC power and 3 MHz frequency located at BARC. The numerical modeling for this RF-ICP torch is done using ANSYS software with the developed User Defined Function. A comparative study is done between laminar and turbulent flow model to investigate how temperature and flow fields change when using different operating conditions such as (a) swirl and no swirl velocity for sheath gas flow rate, (b) variationmore » in sheath gas flow rate, and (c) variation in plasma gas flow rate. These studies will be useful for different material processing applications.« less
NASA Astrophysics Data System (ADS)
Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander
2016-05-01
The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.
A frequency and sensitivity tunable microresonator array for high-speed quantum processor readout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whittaker, J. D., E-mail: jwhittaker@dwavesys.com; Swenson, L. J.; Volkmann, M. H.
Superconducting microresonators have been successfully utilized as detection elements for a wide variety of applications. With multiplexing factors exceeding 1000 detectors per transmission line, they are the most scalable low-temperature detector technology demonstrated to date. For high-throughput applications, fewer detectors can be coupled to a single wire but utilize a larger per-detector bandwidth. For all existing designs, fluctuations in fabrication tolerances result in a non-uniform shift in resonance frequency and sensitivity, which ultimately limits the efficiency of bandwidth utilization. Here, we present the design, implementation, and initial characterization of a superconducting microresonator readout integrating two tunable inductances per detector. Wemore » demonstrate that these tuning elements provide independent control of both the detector frequency and sensitivity, allowing us to maximize the transmission line bandwidth utilization. Finally, we discuss the integration of these detectors in a multilayer fabrication stack for high-speed readout of the D-Wave quantum processor, highlighting the use of control and routing circuitry composed of single-flux-quantum loops to minimize the number of control wires at the lowest temperature stage.« less
NASA Astrophysics Data System (ADS)
Shchukin, V. G.; Popov, V. N.
2017-10-01
One of the perspective ways to improve the operational properties of parts of machines during induction treatment of their surfaces is the modification of the melt by specially prepared nanoscale particles of refractory compounds (carbides, nitrides, carbonitrides, etc.). This approach allows us to increase the number of crystallization centers and to refine the structural components of the solidified metal. The resulting high dispersity and homogeneity of crystalline grains favorably affect the quality of the treated surfaces. 3D numerical simulation of thermophysical processes in the modification of the surface layer of metal in a moving substrate was carried out. It is assumed that the surface of the substrate is covered with a layer of specially prepared nanoscale particles of a refractory compound, which, upon penetration into the melt, are uniformly distributed in it. The possibility of applying a high-frequency electromagnetic field of high power for heating and melting of a metal (iron) for the purpose of its subsequent modification is investigated. The distribution of electromagnetic energy in the metal is described by empirical formulas. Melting of the metal is considered in the Stefan approximation, and upon solidification it is assumed that all nanoparticles serve as centers for volume-sequential crystallization. Calculations were carried out with the following parameters: specific power p0 = 35 and 40 kW/cm2 at frequency f = 440 and 1200 kHz, the substrate velocity V = 0.5-2.5 cm/s, the nanoparticles' size is 50 nm and concentration Np = 2.0 . 109 cm-3. Based on the results obtained in a quasi-stationary formulation, the distribution of the temperature field, the dimensions of the melting and crystallization zones, the change in the solid fraction in the two-phase zone, the area of the treated substrate surface, depending on the speed of its movement and induction heating characteristics were estimated.
Equivalent circuit for the characterization of the resonance mode in piezoelectric systems
NASA Astrophysics Data System (ADS)
Fernández-Afonso, Y.; García-Zaldívar, O.; Calderón-Piñar, F.
2015-12-01
The impedance properties in polarized piezoelectric can be described by electric equivalent circuits. The classic circuit used in the literature to describe real systems is formed by one resistor (R), one inductance (L) and one capacitance C connected in series and one capacity (C0) connected in parallel with the formers. Nevertheless, the equation that describe the resonance and anti-resonance frequencies depends on a complex manner of R, L, C and C0. In this work is proposed a simpler model formed by one inductance (L) and one capacity (C) in series; one capacity (C0) in parallel; one resistor (RP) in parallel and one resistor (RS) in series with other components. Unlike the traditional circuit, the equivalent circuit elements in the proposed model can be simply determined by knowing the experimental values of the resonance frequency fr, anti-resonance frequency fa, impedance module at resonance frequency |Zr|, impedance module at anti-resonance frequency |Za| and low frequency capacitance C0, without fitting the impedance experimental data to the obtained equation.
Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source
NASA Astrophysics Data System (ADS)
Yue, HUA; Jian, SONG; Zeyu, HAO; Chunsheng, REN
2018-06-01
Experimental results of a direct current enhanced inductively coupled plasma (DCE-ICP) source which consists of a typical cylindrical ICP source and a plate-to-grid DC electrode are reported. With the use of this new source, the plasma characteristic parameters, namely, electron density, electron temperature and plasma uniformity, are measured by Langmuir floating double probe. It is found that DC discharge enhances the electron density and decreases the electron temperature, dramatically. Moreover, the plasma uniformity is obviously improved with the operation of DC and radio frequency (RF) hybrid discharge. Furthermore, the nonlinear enhancement effect of electron density with DC + RF hybrid discharge is confirmed. The presented observation indicates that the DCE-ICP source provides an effective method to obtain high-density uniform plasma, which is desirable for practical industrial applications.
Predicting reasoning from memory.
Heit, Evan; Hayes, Brett K
2011-02-01
In an effort to assess the relations between reasoning and memory, in 8 experiments, the authors examined how well responses on an inductive reasoning task are predicted from responses on a recognition memory task for the same picture stimuli. Across several experimental manipulations, such as varying study time, presentation frequency, and the presence of stimuli from other categories, there was a high correlation between reasoning and memory responses (average r = .87), and these manipulations showed similar effects on the 2 tasks. The results point to common mechanisms underlying inductive reasoning and recognition memory abilities. A mathematical model, GEN-EX (generalization from examples), derived from exemplar models of categorization, is presented, which predicts both reasoning and memory responses from pairwise similarities among the stimuli, allowing for additional influences of subtyping and deterministic responding. (c) 2010 APA, all rights reserved.
Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems
NASA Astrophysics Data System (ADS)
Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long
2017-07-01
According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable.
Research of energy characteristics of frequency-regulated electric drive
NASA Astrophysics Data System (ADS)
Arsentiev, O. V.; Arsentiev, G. O.; Dunaev, M. P.
2018-03-01
The paper considers the urgency of the research problems of the inverter as a part of the frequency converter. Experimental studies on the influence of the nature of the load on the structure of the distribution of power consumption are used. The authors described virtual models, allowing for analysis of changes in the cardinality of the inverter-factor when using it on an active-inductive load. According to the results, there are research conclusions to determine the relationship between the current form in the DC- link constant voltage and the mode of operation of the induction motor.
Induced anisotropy in FeCo-based nanocomposites: Early transition metal content dependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, S; DeGeorge, V; Ohodnicki, PR
2014-05-07
Soft magnetic nanocomposites variants of FeCo-based (HTX002) alloys (Fe65Co35)(81+x)B12Nb4-xSi2Cu1, exhibiting high inductions (up to 1.9 T), low losses, and high temperature stability are studied for high frequency inductors and current sensors. For alloys with x 0, 1, 1.5, 2, and 3, we report field induced anisotropy, K-U, after annealing at temperatures of 340-450 degrees C for 1 h in a 2 T transverse magnetic field. The anisotropy field, H-K, measured by AC permeametry on toroidal cores, and by first order reversal curves on square sections of ribbon, decreases with annealing temperature and saturates at high annealing temperatures suggesting a nanostructuremore » related anisotropy mechanism in which the amorphous phase exhibits a higher H-K than the crystalline phase. A high saturation induction nanocrystalline phase and high H-K amorphous phase were achieved by low temperature annealing resulting in a value of K-U exceeding 14 X 10(3) erg/cm(3), more than twice that reported previously for Fe-rich amorphous and nanocomposite alloys. (C) 2014 AIP Publishing LLC.« less
Svaldi, Jennifer; Bender, Caroline; Caffier, Detlef; Ivanova, Viliana; Mies, Nina; Fleischhaker, Christian; Tuschen-Caffier, Brunna
2016-01-01
Previous research has yielded evidence of increased attentional processing of negatively valenced body parts in women with anorexia nervosa (AN), especially for those with high depressive symptomatology. The present study extended previous research by implementing an experimental mood manipulation. In a within-subjects design, female adolescents with AN (n = 12) and an age matched female control group (CG; n = 12) were given a negative and a positive mood induction at a one-week interval. After each mood induction, participants underwent a 3-min mirror exposure, while their eye movements were recorded. After the positive mood induction, both AN and CG participants displayed longer and more frequent gazes towards their self-defined most ugly relative to their self-defined most beautiful body part. However, after the negative mood induction, only females with AN were characterized by increased attention to their most ugly compared to their most beautiful body part, while CG participants' attention distribution was balanced. Furthermore, in the negative (but not in the positive) mood induction condition gaze frequency and duration towards the most ugly body part was significantly stronger in the AN group relative to the CG. The results emphasize the role of negative mood in the maintenance of pathological information processing of the self-body. This increased body-related negativity-bias during negative mood may lead to the persistence and aggravation of AN patients' body image disturbance.
Nishiyama, Tomoki
2016-01-01
The purpose of this study was to compare cardiac sympathetic and parasympathetic balance using heart rate variability (HRV) during induction of anaesthesia between sevoflurane and isoflurane in combination with nitrous oxide. 40 individuals aged from 30 to 60 years, scheduled for general anaesthesia were equally divided into sevoflurane or isoflurane groups. After 100% oxygen inhalation for a few minutes, anaesthesia was induced with nitrous oxide 3 L min-1, oxygen 3 L min-1 and sevoflurane or isoflurane. Sevoflurane or isoflurane concentration was increased by 0.5% every 2 to 3 breaths until 5% was attained for sevoflurane, or 3% for isoflurane. Vecuronium was administered to facilitate tracheal intubation. After intubation, sevoflurane was set to 2% while isoflurane was set to 1% with nitrous oxide with oxygen (1:1) for 5 min. Both sevoflurane and isoflurane provoked a decrease in blood pressure, total power, the low frequency component (LF), and high frequency component (HF) of HRV. Although the heart rate increased during isoflurane anaesthesia, it decreased under sevoflurane. The power of LF and HF also decreased in both groups. LF was higher in the isoflurane group while HF was higher in the sevoflurane group. The LF/HF ratio increased transiently in the isoflurane group, but decreased in the sevoflurane group. Anaesthesia induction with isoflurane-nitrous oxide transiently increased cardiac sympathetic activity, while sevoflurane-nitrous oxide decreased both cardiac sympathetic and parasympathetic activities. The balance of cardiac parasympathetic/sympathetic activity was higher in sevoflurane anaesthesia.
Effective switching frequency multiplier inverter
Su, Gui-Jia [Oak Ridge, TN; Peng, Fang Z [Okemos, MI
2007-08-07
A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.
Tunable, Electrically Small, Inductively Coupled Antenna for Transportable Ionospheric Heating
NASA Astrophysics Data System (ADS)
Esser, Benedikt; Mauch, Daniel; Dickens, James; Mankowski, John; Neuber, Andreas
2018-04-01
An electrically small antenna is evaluated for use as the principle radiating element in a mobile ionospheric heating array. Consisting of a small loop antenna inductively coupled to a capacitively loaded loop, the electrically small antenna provides high efficiency with the capability of being tuned within the range of ionospheric heating. At a factor 60 smaller in area than a High-Frequency Active Auroral Research Program element, this antenna provides a compact, efficient radiating element for mobile ionospheric heating. A prototype antenna at 10 MHz was built to study large-scale feasibility and possible use with photoconductive semiconductor switch-based drivers. Based on the experimental study, the design has been extrapolated to a small 6 × 4 array of antennas. At a total power input of 16.1 MW this array is predicted to provide 3.6-GW effective radiated power typically required for ionospheric heating. Array cross talk is addressed, including effects upon individual antenna port parameters. Tuning within the range of ionospheric heating, 3-10 MHz, is made possible without the use of lossy dielectrics through a large capacitive area suited to tune the antenna. Considerations for high power operation across the band are provided including a method of driving the antenna with a simple switcher requiring no radio frequency cabling. Source matching may be improved via adjustment of the coupling between small loop antenna and capacitively loaded loop improving |S11| from -1 to -21 dB at 3 MHz.
Speeded induction under uncertainty: the influence of multiple categories and feature conjunctions.
Newell, Ben R; Paton, Helen; Hayes, Brett K; Griffiths, Oren
2010-12-01
When people are uncertain about the category membership of an item (e.g., Is it a dog or a dingo?), research shows that they tend to rely only on the dominant or most likely category when making inductions (e.g., How likely is it to befriend me?). An exception has been reported using speeded induction judgments where participants appeared to use information from multiple categories to make inductions (Verde, Murphy, & Ross, 2005). In two speeded induction studies, we found that participants tended to rely on the frequency with which features co-occurred when making feature predictions, independently of category membership. This pattern held whether categories were considered implicitly (Experiment 1) or explicitly (Experiment 2) prior to feature induction. The results converge with other recent work suggesting that people often rely on feature conjunction information, rather than category boundaries, when making inductions under uncertainty.
Design and verification of large-moment transmitter loops for geophysical applications
NASA Astrophysics Data System (ADS)
Sternberg, Ben K.; Dvorak, Steven L.; Feng, Wanjie
2017-01-01
In this paper we discuss the modeling, design and verification of large-moment transmitter (TX) loops for geophysical applications. We first develop two equivalent circuit models for TX loops. We show that the equivalent inductance can be predicted using one of two empirical formulas. The stray capacitance of the loop is then calculated using the measured self-resonant frequency and the loop inductance. We model the losses associated with both the skin effect and the dissipation factor in both of these equivalent circuits. We find that the two equivalent circuit models produce the same results provided that the dissipation factor is small. Next we compare the measured input impedances for three TX loops that were constructed with different wire configurations with the equivalent circuit model. We found excellent agreement between the measured and simulated results after adjusting the dissipation factor. Since the skin effect and dissipation factor yield good agreement with measurements, the proximity effect is negligible in the three TX loops that we tested. We found that the effects of the dissipation factor dominated those of the skin effect when the wires were relatively close together. When the wires were widely separated, then the skin effect was the dominant loss mechanism. We also found that loops with wider wire separations exhibited higher self-resonant frequencies and better high-frequency performance.
NASA Astrophysics Data System (ADS)
Huang, Peter Jen-Hung
This research first proposes a method to merge photovoltaic (PV) cells or PV panels within the internal components DC-DC converters. The purpose of this merged structure is to reconfigure the PV modules between series and parallel connections using high switching frequencies (hundreds of kHz). This leads to multi-levels of voltages and currents that become applied to the output filter of the converter. Further, this research introduces a concept of a switching cell that utilizes the reconfiguration of series and parallel connections in DC-DC converters. The switching occurs at high switching frequency and the switches can be integrated to be within the solar panels or in between the solar cells. The concept is generalized and applied to basic buck and boost topologies. As examples of the new types of converters: reconfigurable PV-buck and PV-boost converter topologies are presented. It is also possible to create other reconfigurable power converters: non-isolated and isolated topologies. Analysis, simulation and experimental verification for the reconfigurable PV-buck and PV-boost converters are presented extensively to illustrate proof of concept. Benefits and drawbacks of the new approach are discussed. The second part of this research proposes to utilize the internal solar cell capacitance and internal solar module wire parasitic inductances to replace the input capacitor and filter inductor in boost derived DC-DC converters for energy harvesting applications. High switching frequency (MHz) hard switched and resonant boost converters are proposed. Their analysis, simulation and experimental prototypes are presented. A specific proof-of-concept application is especially tested for foldable PV panels, which are known for their high internal wire inductance. The experimental converters successfully boost solar module voltage without adding any external input capacitance or filter inductor. Benefits and drawbacks of new proposed PV submodule integrated boost converters are discussed.
Power and stability limitations of resonant tunneling diodes
NASA Technical Reports Server (NTRS)
Kidner, C.; Mehdi, I.; East, J. R.; Haddad, G. I.
1990-01-01
Stability criteria for resonant tunneling diodes are investigated. Details of how extrinsic elements, such as series inductance and parallel capacitance, affect the stability are presented. A GaAs/AlAs/InGaAs/AlAs/GaAs double-barrier diode is investigated, showing the effect of different modes of low-frequency oscillation and the extrinsic circuit required for stabilization. The effect of device stabilization on high-frequency power generation is described. The main conclusions of the paper are: (1) stable resonant tunneling diode operation is difficult to obtain, and (2) the circuit and device conditions required for stable operation greatly reduce the amount of power that can be produced by these devices.
Lightweight, high-frequency transformers
NASA Technical Reports Server (NTRS)
Schwarze, G. E.
1983-01-01
The 25-kVA space transformer was developed under contract by Thermal Technology Laboratory, Buffalo, N. Y. The NASA Lewis transformer technology program attempted to develop the baseline technology. For the 25-kVA transformer the input voltage was chosen as 200 V, the output voltage as 1500 V, the input voltage waveform as square wave, the duty cycle as continuous, the frequency range (within certain constraints) as 10 to 40 kHz, the operating temperatures as 85 deg. and 130 C, the baseplate temperature as 50 C, the equivalent leakage inductance as less than 10 micro-h, the operating environment as space, and the life expectancy as 10 years. Such a transformer can also be used for aircraft, ship and terrestrial applications.
Dynamometer Research Facilities | Wind | NREL
drivetrains by replacing the rotor and blades of a turbine with a powerful motor. The National Renewable -horsepower variable-speed induction motor, with AC grid connections of 120, 240, and 480 volts (V) and a dynamometer features a 3,351-horsepower (hp), 415-amp AC induction motor with variable-frequency drive that
ERIC Educational Resources Information Center
Reali, Florencia; Griffiths, Thomas L.
2009-01-01
The regularization of linguistic structures by learners has played a key role in arguments for strong innate constraints on language acquisition, and has important implications for language evolution. However, relating the inductive biases of learners to regularization behavior in laboratory tasks can be challenging without a formal model. In this…
Collisionless electron heating in inductively coupled discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaing, K.C.; Aydemir, A.Y.
1996-07-01
A kinetic theory of collisionless electron heating is developed for inductively coupled discharges with a finite height L. The novel effect associated with the finite-length system is the resonance between the bounce motion of the electrons and the wave frequency, leading to enhanced heating. The theory is in agreement with results of particle simulations.
Dubourdieu, Sophie; Fréour, Thomas; Dessolle, Lionel; Barrière, Paul
2013-05-01
To compare the efficacy of pulsatile GnRH therapy versus combined gonadotropins for ovulation induction in women with both hypothalamic amenorrhoea and polycystic ovarian syndrome (HA/PCOS) according to their current hypothalamic status. This single-centre, prospective, randomized study was conducted in the Nantes University Hospital, France. Thirty consecutive patients were treated for ovulation induction with either pulsatile GnRH therapy or combined gonadotropins (rFSH+rLH). Frequency of adequate ovarian response (mono- or bi-follicular) and clinical pregnancy rate were then compared between both groups. Ovarian response was similar in both groups with comparable frequency of adequate ovarian response (73% vs 60%), but the clinical pregnancy rate was significantly higher in the pulsatile GnRH therapy group than in the combined gonadotropin group (46% vs 0%). HA/PCOS is a specific subgroup of infertile women. Pulsatile GnRH therapy is an effective and safe method of ovulation induction that can be used successfully in these patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Toward a fully integrated neurostimulator with inductive power recovery front-end.
Mounaïm, Fayçal; Sawan, Mohamad
2012-08-01
In order to investigate new neurostimulation strategies for micturition recovery in spinal cord injured patients, custom implantable stimulators are required to carry-on chronic animal experiments. However, higher integration of the neurostimulator becomes increasingly necessary for miniaturization purposes, power consumption reduction, and for increasing the number of stimulation channels. As a first step towards total integration, we present in this paper the design of a highly-integrated neurostimulator that can be assembled on a 21-mm diameter printed circuit board. The prototype is based on three custom integrated circuits fabricated in High-Voltage (HV) CMOS technology, and a low-power small-scale commercially available FPGA. Using a step-down approach where the inductive voltage is left free up to 20 V, the inductive power and data recovery front-end is fully integrated. In particular, the front-end includes a bridge rectifier, a 20-V voltage limiter, an adjustable series regulator (5 to 12 V), a switched-capacitor step-down DC/DC converter (1:3, 1:2, or 2:3 ratio), as well as data recovery. Measurements show that the DC/DC converter achieves more than 86% power efficiency while providing around 3.9-V from a 12-V input at 1-mA load, 1:3 conversion ratio, and 50-kHz switching frequency. With such efficiency, the proposed step-down inductive power recovery topology is more advantageous than its conventional step-up counterpart. Experimental results confirm good overall functionality of the system.
Radio-frequency measurements of UNiX compounds (X= Al, Ga, Ge) in high magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mielke, Charles H; Mcdonald, David R; Zapf, Vivien
2009-01-01
We performed radio-frequency (RF) skin-depth measurements of antiferromagnetic UNiX compounds (X=Al, Ga, Ge) in magnetic fields up to 60 T and at temperatures between 1.4 to {approx}60 K. Magnetic fields are applied along different crystallographic directions and RF penetration-depth was measured using a tunnel-diode oscillator (TDO) circuit. The sample is coupled to the inductive element of a TDO resonant tank circuit, and the shift in the resonant frequency {Delta}f of the circuit is measured. The UNiX compounds exhibit field-induced magnetic transitions at low temperatures, and those transitions are accompanied by a drastic change in {Delta}f. The results of our skin-depthmore » measurements were compared with previously published B-T phase diagrams for these three compounds.« less
The effect of space radiation on the induction of chromosome damage
NASA Technical Reports Server (NTRS)
George, K.; Wu, H.; Willingham, V.; Cucinotta, F. A.
2001-01-01
To obtain information on the cytogenetic damage caused by space radiation, chromosome exchanges in lymphocytes from crewmembers of long-term Mir missions, and a shorter duration shuttle mission, were examined using fluorescence in situ hybridization. A significant increase in chromosomal aberrations was observed after the long duration flights. The ratio of aberrations identified as complex was higher post-flight for some crewmembers, which is thought to be an indication of exposure to high-LET radiation. Ground-based studies have shown that the frequency of aberrations measured post-flight could be influenced by a mitotic delay in cells damaged by high-LET radiation and this effect could lower biological dose estimates. To counteract this effect, prematurely condensed chromosome (PCC) spreads were collected. Frequencies of aberrations in PCC were compared with those in metaphase spreads.
Gapeev, A B; Romanova, N A; Chemeris, N K
2011-01-01
Using the alkaline single cell gel electrophoresis technique (comet assay), changes in chromatin structure of peripheral blood leukocytes and peritoneal neutrophils have been studied in mice exposed to low-intensity extremely high-frequency electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20 min at 1 h after induction of inflammation) against the background of the systemic inflammatory process. It was revealed that the exposure of mice with the developing inflammation leads to a pronounced decrease in the level of DNA damage to peripheral blood leukocytes and peritoneal neutrophils. It is supposed that the changes in the chromatin structure of lymphoid cells have a genoprotective character in the inflammatory process and can underlie the mechanisms of realization of antiinflammatory effects of the electromagnetic radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hreiche, Raymond; Megarbane, Bruno; Pirnay, Stephane
In humans, asphyxic deaths and severe poisonings have been attributed to high-dosage buprenorphine, a maintenance therapy for heroin addiction. However, in rats, intravenous buprenorphine at doses up to 90 mg kg{sup -1} was not associated with significant effects on arterial blood gases. In contrast, norbuprenorphine, the buprenorphine major cytochrome P450 (CYP) 3A-derived metabolite, is a potent respiratory depressant. Thus, our aim was to study the consequences of CYP3A induction on buprenorphine-associated effects on resting ventilation in rats. We investigated the effects on ventilation of 30 mg kg{sup -1} buprenorphine alone or following cytochrome P450 (CYP) 3A induction with dexamethasone, usingmore » whole body plethysmography (N = 24) and arterial blood gases (N = 12). Randomized animals in 4 groups received sequential intraperitoneal dosing with: (dexamethasone [days 1-3] + buprenorphine [day 4]), (dexamethasone solvent [days 1-3] + buprenorphine [day 4]), (dexamethasone [days 1-3] + buprenorphine solvent [day 4]), or (dexamethasone solvent [days 1-3] + buprenorphine solvent [day 4]). Buprenorphine alone caused a significant rapid and sustained increase in the inspiratory time (P < 0.001), without significant effects on the respiratory frequency, the tidal volume, the minute volume, or arterial blood gases. In dexamethasone-pretreated rats, there was no significant alteration in the respiratory parameters, despite CYP3A induction and significant increase of the ratio of plasma norbuprenorphine-to-buprenorphine concentrations. In conclusion, dexamethasone did not modify the effects of 30 mg kg{sup -1} buprenorphine on rat ventilation. Our results suggest a limited role of drug-mediated CYP3A induction in the occurrence of buprenorphine-attributed respiratory depression in addicts.« less
Cipriano, Jamile L D; Cruz, Ana Cláudia F; Mancini, Karina C; Schmildt, Edilson R; Lopes, José Carlos; Otoni, Wagner C; Alexandre, Rodrigo S
2018-01-01
The aim of this study was to evaluate somatic embryogenesis in juvenile explants of the THB papaya cultivar. Apical shoots and cotyledonary leaves were inoculated in an induction medium composed of different concentrations of 2,4-D (6, 9, 12, 15 and 18 µM) or 4-CPA (19, 22, 25, 28 and 31 µM). The embryogenic calluses were transferred to a maturation medium for 30 days. Histological analysis were done during the induction and scanning electron microscopy after maturing. For both types of auxin, embryogenesis was achieved at higher frequencies with cotyledonary leaves incubated in induction medium than with apical shoots; except for callogenesis. The early-stage embryos (e.g., globular or heart-shape) predominated. Among the auxins, best results were observed in cotyledonary leaves induced with 4-CPA (25 µM). Histological analyses of the cotyledonary leaf-derived calluses confirmed that the somatic embryos (SEs) formed from parenchyma cells, predominantly differentiated via indirect and multicellular origin and infrequently via synchronized embryogenesis. The secondary embryogenesis was observed during induction and maturation phases in papaya THB cultivar. The combination of ABA (0.5 µM) and AC (15 g L-1) in maturation medium resulted in the highest somatic embryogenesis induction frequency (70 SEs callus-1) and the lowest percentage of early germination (4%).
Enhancing Induction Coil Reliability
NASA Astrophysics Data System (ADS)
Kreter, K.; Goldstein, R.; Yakey, C.; Nemkov, V.
2014-12-01
In induction hardening, thermal fatigue is one of the main copper failure modes of induction heat treating coils. There have been papers published that describe this failure mode and others that describe some good design practices. The variables previously identified as the sources of thermal fatigue include radiation from the part surface, frequency, current, concentrator losses, water pressure and coil wall thickness. However, there is very little quantitative data on the factors that influence thermal fatigue in induction coils is available in the public domain. By using finite element analysis software this study analyzes the effect of common design variables of inductor cooling, and quantifies the relative importance of these variables. A comprehensive case study for a single shot induction coil with Fluxtrol A concentrator applied is used for the analysis.
Magnetic-Field-Response Measurement-Acquisition System
NASA Technical Reports Server (NTRS)
Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.
2006-01-01
A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a response inflection. The "transmit-receive-compare" of sequential harmonics is repeated until the inflection is identified. The harmonic producing the amplitude inflection is the sensor resonant frequency. Resonant frequency and response amplitude are stored and then correlated to calibration data.
Hydrogen-Induced Cold Cracking in High-Frequency Induction Welded Steel Tubes
NASA Astrophysics Data System (ADS)
Banerjee, Kumkum
2016-04-01
Detailed investigation was carried out on 0.4C steel tubes used for the telescopic front fork of two-wheelers to establish the root cause for the occurrence of transverse cracks at the weld heat-affected zone of the tubes. Fractographic and microstructural observations provide evidences of delayed hydrogen-induced cracking. The beneficial microstructure for avoiding the transverse cracks was found to be the bainitic-martensitic, while martensitic structure was noted to be deleterious.
Dispersive Readout of a Superconducting Flux Qubit Using a Microstrip SQUID Amplifier
NASA Astrophysics Data System (ADS)
Johnson, J. E.; Hoskinson, E. M.; Macklin, C.; Siddiqi, I.; Clarke, John
2011-03-01
Dispersive techniques for the readout of superconducting qubits offer the possibility of high repetition-rate, quantum non-demolition measurement by avoiding dissipation close to the qubit. To achieve dispersive readout, we couple our three-junction aluminum flux qubit inductively to a 1-2 GHz non-linear oscillator formed by a capacitively shunted DC SQUID. The frequency of this resonator is modulated by the state of the qubit via the flux-dependent inductance of the SQUID. Readout is performed by probing the resonator in the linear (weak drive) regime with a microwave tone and monitoring the phase of the reflected signal. A microstrip SQUID amplifier (MSA) is used to increase the sensitivity of the measurement over that of a HEMT (high electron mobility transistor) amplifier. We report measurements of the performance of our amplification chain. Increased fidelity and reduced measurement backaction resulting from the implementation of the MSA will also be discussed. This work was funded in part by the U.S. Government and by BBN Technologies.
Mutational analysis of the transcriptional activator VirG of Agrobacterium tumefaciens.
Scheeren-Groot, E P; Rodenburg, K W; den Dulk-Ras, A; Turk, S C; Hooykaas, P J
1994-01-01
To find VirG proteins with altered properties, the virG gene was mutagenized. Random chemical mutagenesis of single-stranded DNA containing the Agrobacterium tumefaciens virG gene led with high frequency to the inactivation of the gene. Sequence analysis showed that 29% of the mutants contained a virG gene with one single-base-pair substitution somewhere in the open reading frame. Thirty-nine different mutations that rendered the VirG protein inactive were mapped. Besides these inactive mutants, two mutants in which the vir genes were active even in the absence of acetosyringone were found on indicator plates. A VirG protein with an N54D substitution turned out to be able to induce a virB-lacZ reporter gene to a high level even in the absence of the inducer acetosyringone. A VirG protein with an I77V substitution exhibited almost no induction in the absence of acetosyringone but showed a maximum induction level already at low concentrations of acetosyringone. Images PMID:7961391
Kumar, Nagan Udhaya; Gnanaraj, Muniraj; Sindhujaa, Vajravel; Viji, Maluventhen; Manoharan, Kumariah
2015-09-01
A protocol for high frequency production of somatic embryos was worked out in pigeonpea, Cajanus cajan (L.) Millsp. The protocol involved sequential employment of embryogenic callus cultures, low density cell suspension cultures and a novel microdroplet cell culture system. The microdroplet cell cultures involved culture of a single cell in 10 μI of Murashige and Skoog's medium supplemented with phytohormones, growth factors and phospholipid precursors. By employing the microdroplet cell cultures, single cells in isolation were grown into cell clones which developed somatic embryos. Further, 2,4-dichlorophenoxyacetic acid, kinetin, polyethylene glycol, putrescine, spermine, spermidine, choline chloride, ethanolamine and LiCl were supplemented to the low density cell suspension cultures and microdroplet cell cultures to screen for their cell division and somatic embryogenesis activity. Incubation of callus or the inoculum employed for low density cell suspension cultures and microdroplet cell cultures with polyethylene glycol was found critical for induction of somatic embryogenesis. Somatic embryogenesis at a frequency of 1.19, 3.16 and 6.51 per 10(6) cells was achieved in the callus, low density cell suspension cultures and microdroplet cell cultures, respectively. Advantages of employing microdroplet cell cultures for high frequency production of somatic embryos and its application in genetic transformation protocols are discussed.
Transceiver-Phased Arrays for Human Brain Studies at 7 T
2013-01-01
The paper describes technological advances in high-field (7 T) transceiver-phased arrays developed for magnetic resonance imaging of the human brain. The first part of this work describes an 8-element inductively decoupled split elliptical transceiver-phased array with selectable geometry, which provides an easy and efficient way of compensating for changes in mutual inductive coupling associated with difference in loading due to variability in head shape and size. The second part of the work describes a double-row 16-element (2 × 8) transceiver array to extend the homogeneous transmit B1 profile in the longitudinal direction. Multiplexing eight transmit channels between the two rows of the array provides homogeneous excitation over the entire volume. The final section describes design and construction of a double-tuned 31P/1H 16-element (8 at each frequency) array. The array improves transmission efficiency and B1 homogeneity at 1H frequency in comparison with 31P/1H quadrature transverse electromagnetic volume coil. For 31P studies, the array also improves transmission efficiency (38%), signal-to-noise ratio (SNR) for central brain locations (20%) and provides substantially greater SNR (up to 400%) for peripheral locations. PMID:23516332
NASA Astrophysics Data System (ADS)
Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar
2018-01-01
Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.
NASA Astrophysics Data System (ADS)
Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar
2018-06-01
Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.
Electromagnetic Remote Sensing. Low Frequency Electromagnetics
1989-01-01
biased superconducting point - contact quantum devices", J.Appl.Phys. 41, p.1572, 1970. [40] A.Yariv and H.Winsor, "Proposal for detection of magnetic ... magnetics , electromagnetic induc- tion, electrostatics) 2. Nondestructive testing (electromagnetic induction, neutron tomography, x-ray imaging) 3...Detection of submarines from aircraft or ships ( magnetics , electromagnetic induction) 4. Detection of land vehicles using buried sensors ( magnetics
Chromosomal instability induced by heavy ion irradiation
NASA Technical Reports Server (NTRS)
Limoli, C. L.; Ponnaiya, B.; Corcoran, J. J.; Giedzinski, E.; Morgan, W. F.
2000-01-01
PURPOSE: To establish the dose-response relationship for the induction of chromosomal instability in GM10115 cells exposed to high-energy iron ions (1 GeV/nucleon, mean LET 146 keV/microm) and gold ions (11 GeV/nucleon, mean LET 1450 keV/microm). Past work has established that sparsely ionizing X-rays can induce a long-lived destabilization of chromosomes in a dose-dependent manner at an incidence of approximately 3% per gray. The present investigation assesses the capacity of High-Z and High-energy (HZE) particles to elicit this same endpoint. MATERIALS AND METHODS: Clonal populations derived from single progenitor cells surviving heavy-ion irradiation were analyzed cytogenetically to identify those clones showing a persistent destablization of chromosomes. RESULTS: Dose-response data, with a particular emphasis at low dose (< 1.0 Gy), indicate a frequency of approximately 4% per gray for the induction of chromosomal instability in clones derived from single progenitor cells surviving exposure to iron ions. The induction of chromosomal instability by gold ions was, however, less responsive to applied dose, as the observed incidence of this phenotype varied from 0 to 10% over 1-8 Gy. Both iron and gold ions gave dose-dependent increases in the yield of chromosomal aberrations (both chromosome- and chromatid-type) measured at the first mitosis following irradiation, as well as shoulderless survival curves having D0=0.87 and 1.1 Gy respectively. CONCLUSIONS: Based on the present dose-response data, the relative biological effectiveness of iron ions is 1.3 for the induction of chromosomal instability, and this indicates that heavy ions are only slightly more efficient than X-rays at eliciting this delayed phenotype.
Pimkumwong, Narongrit; Wang, Ming-Shyan
2018-02-01
This paper presents another control method for the three-phase induction motor that is direct torque control based on constant voltage per frequency control technique. This method uses the magnitude of stator flux and torque errors to generate the stator voltage and phase angle references for controlling the induction motor by using constant voltage per frequency control method. Instead of hysteresis comparators and optimum switching table, the PI controllers and space vector modulation technique are used to reduce torque and stator-flux ripples and achieve constant switching frequency. Moreover, the coordinate transformations are not required. To implement this control method, a full-order observer is used to estimate stator flux and overcome the problems from drift and saturation in using pure integrator. The feedback gains are designed by simple manner to improve the convergence of stator flux estimation, especially in low speed range. Furthermore, the necessary conditions to maintain the stability for feedback gain design are introduced. The simulation and experimental results show accurate and stable operation of the introduced estimator and good dynamic response of the proposed control method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Zuckermann, Andreas; Schulz, Uwe; Deuse, Tobias; Ruhpawar, Arjang; Schmitto, Jan D; Beiras-Fernandez, Andres; Hirt, Stephan; Schweiger, Martin; Kopp-Fernandes, Laurenz; Barten, Markus J
2015-01-01
Clinical data relating to rabbit antithymocyte globulin (rATG) induction in heart transplantation are far less extensive than for other immunosuppressants, or indeed for rATG in other indications. This was highlighted by the low grade of evidence and the lack of detailed recommendations for prescribing rATG in the International Society for Heart and Lung Transplantation (ISHLT) guidelines. The heart transplant population includes an increasing frequency of patients on mechanical circulatory support (MCS), often with ongoing infection and/or presensitization, who are at high immunological risk but also vulnerable to infectious complications. The number of patients with renal impairment is also growing due to lengthening waiting times, intensifying the need for strategies that minimize calcineurin inhibitor (CNI) toxicity. Additionally, the importance of donor-specific antibodies (DSA) in predicting graft failure is influencing immunosuppressive regimens. In light of these developments, and in view of the lack of evidence-based prescribing criteria, experts from Germany, Austria, and Switzerland convened to identify indications for rATG induction in heart transplantation and to develop an algorithm for its use based on patient characteristics. PMID:25363471
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tweeton, D.R.; Hanson, J.C.; Friedel, M.J.
1994-01-01
The US Bureau of Mines, The University of Arizona, Sandia National Laboratories, and Zonge Engineering and Research Organization, Inc., conducted cooperative field tests of six electromagnetic (EM) geophysical methods to compare their effectiveness in locating a brine solution simulating in situ leach solution or a high-conductivity plume of contamination. The brine was approximately 160 m below the surface. The testsite was the University's San Xavier experimental mine near Tucson, AZ. Geophysical surveys using surface and surface-borehole, time-domain electromagnetic (TEM) induction; surface controlled-source audiofrequency magnetotellurics (CSAMT); surface-borehole, frequency-domain electromagnetic (FEM) induction; crosshole FEM; and surface magnetic field ellipticity were conducted beforemore » and during brine injection. The surface TEM data showed a broad decrease in resistivity. CSAMT measurements with the conventional orientation did not detect the brine, but measurements with another orientation indicated some decrease in resistivity. The surface-borehole and crosshole methods located a known fracture and other fracture zones inferred from borehole induction logs. Surface magnetic field ellipticity data showed a broad decrease in resistivity at depth following brine injection.« less
Świetlik, D; Białowąs, J; Kusiak, A; Cichońska, D
2018-01-01
An experimental study of computational model of the CA3 region presents cog-nitive and behavioural functions the hippocampus. The main property of the CA3 region is plastic recurrent connectivity, where the connections allow it to behave as an auto-associative memory. The computer simulations showed that CA3 model performs efficient long-term synaptic potentiation (LTP) induction and high rate of sub-millisecond coincidence detection. Average frequency of the CA3 pyramidal cells model was substantially higher in simulations with LTP induction protocol than without the LTP. The entropy of pyramidal cells with LTP seemed to be significantly higher than without LTP induction protocol (p = 0.0001). There was depression of entropy, which was caused by an increase of forgetting coefficient in pyramidal cells simulations without LTP (R = -0.88, p = 0.0008), whereas such correlation did not appear in LTP simulation (p = 0.4458). Our model of CA3 hippocampal formation microcircuit biologically inspired lets you understand neurophysiologic data. (Folia Morphol 2018; 77, 2: 210-220).
Optimisation of micro-perforated cylindrical silencers in linear and nonlinear regimes
NASA Astrophysics Data System (ADS)
Bravo, Teresa; Maury, Cédric; Pinhède, Cédric
2016-02-01
This paper describes analytical and experimental studies conducted to understand the potential of lightweight non-fibrous alternatives to dissipative mufflers for in-duct noise control problems, especially under high sound pressure levels (SPLs) and in the low frequency domain. The cost-efficient multi-modal propagation method has been extended to predict nonlinear effects in the dissipation and the transmission loss (TL) of micro-perforated cylindrical liners with sub-millimetric holes diameter. A validation experiment was performed in a standing wave tube to measure the power dissipated and transmitted by a nonlocally reacting liner under moderate and high SPLs. Although nonlinear effects significantly reduce the dissipation and TL around the liner maximum damping frequency, these power quantities may be enhanced below the half-bandwidth resonance. An optimal value of the in-hole peak particle velocity has been found that maximizes the TL of locally reacting liners at low frequencies. Optimisation studies based on dissipation or TL maximization showed the sensitivity of the liner constituting parameters to variations in the design target range such as the center frequency, the levels of acoustic excitation and the nature of the surface impedance (locally or nonlocally reacting). An analysis is proposed of the deviation observed at low frequencies between the optimum impedance of the locally reacting liner under moderate SPLs and Cremer's optimum impedances.
Morra, Joshua T; Glick, Stanley D; Cheer, Joseph F
2012-09-01
Patients suffering from amphetamine-induced psychosis display repetitive behaviors, partially alleviated by antipsychotics, which are reminiscent of rodent stereotypies. Due to recent evidence implicating endocannabinoid involvement in brain disorders, including psychosis, we studied the effects of endocannabinoid signaling on neuronal oscillations of rats exhibiting methamphetamine stereotypy. Neuronal network oscillations were recorded with multiple single electrode arrays aimed at the nucleus accumbens of freely-moving rats. During the experiments, animals were dosed intravenously with the CB1 receptor antagonist rimonabant (0.3 mg/kg) or vehicle followed by an ascending dose regimen of methamphetamine (0.01, 0.1, 1, and 3 mg/kg; cumulative dosing). The effects of drug administration on stereotypy and local gamma oscillations were evaluated. Methamphetamine treatment significantly increased high frequency gamma oscillations (∼80 Hz). Entrainment of a subpopulation of nucleus accumbens neurons to high frequency gamma was associated with stereotypy encoding in putative fast-spiking interneurons, but not in putative medium spiny neurons. The observed ability of methamphetamine to induce both stereotypy and high frequency gamma power was potently disrupted following CB1 receptor blockade. The present data suggest that CB1 receptor-dependent mechanisms are recruited by methamphetamine to modify striatal interneuron oscillations that accompany changes in psychomotor state, further supporting the link between endocannabinoids and schizophrenia spectrum disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.
McCamant, David W
2011-07-28
This work presents a theoretical treatment of the vibrational line shape generated in a femtosecond stimulated Raman spectroscopy (FSRS) experiment under conditions in which the probed vibration undergoes a significant frequency shift during its free induction decay. This theory is applied to simulate the FSRS lineshapes previously observed in rhodopsin (Kukura et al. Science 2005, 310, 1006). The previously determined relaxation times for formation of the trans-photoproduct of rhodopsin were calculated using an incorrect equation for the time dependence of the observed frequency shifts. Here the data are reanalyzed by calculation of the corrected frequency sweep occurring during the vibrational free induction decay. It is shown that the calculated frequency shifts and general conclusions of the original work are sound but that the coherent vibrational frequency shifts of the C(10), C(11), and C(12) hydrogen-out-of-plane vibrations occur with a 140 fs time constant rather than the previously reported 325 fs time constant. This time constant provides an important constraint for models of the dynamics of the cis to trans isomerization process. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Van Malderen, Stijn J. M.; van Elteren, Johannes T.; Šelih, Vid S.; Vanhaecke, Frank
2018-02-01
This work describes the aliasing effects induced by undersampling the high-frequency signal patterns generated by a laser ablation-inductively coupled plasma-mass spectrometer equipped with a low-dispersion ablation cell and sequential mass analyzer. By characterizing the width of the signal peak generated from a single shot on the sample, critical experimental parameters, such as the laser repetition rate and detector cycle timings for the individual nuclides can be matched so as to avoid these imaging artifacts (spectral skew) induced by an insufficient sampling rate. By increasing the laser repetition rate by a factor 2-3, masses at the end of the mass scan can be sampled at higher sensitivity. Furthermore, the dwell times can be redistributed over the nuclides of interest based on the signal-to-noise ratio to increase the image contrast.
Design of 1 MHz Solid State High Frequency Power Supply
NASA Astrophysics Data System (ADS)
Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal
2017-04-01
High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.
A compact 100 kV high voltage glycol capacitor.
Wang, Langning; Liu, Jinliang; Feng, Jiahuai
2015-01-01
A high voltage capacitor is described in this paper. The capacitor uses glycerol as energy storage medium, has a large capacitance close to 1 nF, can hold off voltages of up to 100 kV for μs charging time. Allowing for low inductance, the capacitor electrode is designed as coaxial structure, which is different from the common structure of the ceramic capacitor. With a steady capacitance at different frequencies and a high hold-off voltage of up to 100 kV, the glycol capacitor design provides a potential substitute for the ceramic capacitors in pulse-forming network modulator to generate high voltage pulses with a width longer than 100 ns.
High-Frequency ac Power-Distribution System
NASA Technical Reports Server (NTRS)
Hansen, Irving G.; Mildice, James
1987-01-01
Loads managed automatically under cycle-by-cycle control. 440-V rms, 20-kHz ac power system developed. System flexible, versatile, and "transparent" to user equipment, while maintaining high efficiency and low weight. Electrical source, from dc to 2,200-Hz ac converted to 440-V rms, 20-kHz, single-phase ac. Power distributed through low-inductance cables. Output power either dc or variable ac. Energy transferred per cycle reduced by factor of 50. Number of parts reduced by factor of about 5 and power loss reduced by two-thirds. Factors result in increased reliability and reduced costs. Used in any power-distribution system requiring high efficiency, high reliability, low weight, and flexibility to handle variety of sources and loads.
Optimal Design of a Traveling-Wave Kinetic Inductance Amplifier Operated in Three-Wave Mixing Mode
NASA Astrophysics Data System (ADS)
Erickson, Robert; Bal, Mustafa; Ku, Ksiang-Sheng; Wu, Xian; Pappas, David
In the presence of a DC bias, an injected pump, of frequency fP, and a signal, of frequency fS, undergo parametric three-way mixing (3WM) within a traveling-wave kinetic inductance (KIT) amplifier, producing an idler product of frequency fI =fP -fS . Periodic frequency stops are engineered into the coplanar waveguide of the device to enhance signal amplification. With fP placed just above the first frequency stop gap, 3WM broadband signal gain is achieved with maximum gain at fS =fP / 2 . Within a theory of the dispersion of traveling waves in the presence of these engineered loadings, which accounts for this broadband signal gain, we show how an optimal frequency-stop design may be constructed to achieve maximum signal amplification. The optimization approach we describe can be applied to the design of other nonlinear traveling-wave parametric amplifiers. This work was supported by the Army Research Office and the Laboratory for Physical Sciences under EAO221146, EAO241777, and the NIST Quantum Initiative. RPE acknowledges Grant 60NANB14D024 from the US Department of Commerce, NIST.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian
The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. Themore » following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on plant parameters and the pump electrical signatures. Additionally, the reactor simulation is being used to generate normal operation data and data with instrumentation faults and process anomalies. A frequency controller was interfaced with the motor power supply in order to vary the electrical supply frequency. The experimental flow control loop was used to generate operational data under varying motor performance characteristics. Coolant leakage events were simulated by varying the bypass loop flow rate. The accuracy of motor power calculation was improved by incorporating the power factor, computed from motor current and voltage in each phase of the induction motor.- A variety of experimental runs were made for steady-state and transient pump operating conditions. Process, vibration, and electrical signatures were measured using a submersible pump with variable supply frequency. High correlation was seen between motor current and pump discharge pressure signal; similar high correlation was exhibited between pump motor power and flow rate. Wide-band analysis indicated high coherence (in the frequency domain) between motor current and vibration signals. - Wide-band operational data from a PWR were acquired from AMS Corporation and used to develop time-series models, and to estimate signal spectrum and sensor time constant. All the data were from different pressure transmitters in the system, including primary and secondary loops. These signals were pre-processed using the wavelet transform for filtering both low-frequency and high-frequency bands. This technique of signal pre-processing provides minimum distortion of the data, and results in a more optimal estimation of time constants of plant sensors using time-series modeling techniques.« less
Methodology for rheological testing of engineered biomaterials at low audio frequencies
NASA Astrophysics Data System (ADS)
Titze, Ingo R.; Klemuk, Sarah A.; Gray, Steven
2004-01-01
A commercial rheometer (Bohlin CVO120) was used to mechanically test materials that approximate vocal-fold tissues. Application is to frequencies in the low audio range (20-150 Hz). Because commercial rheometers are not specifically designed for this frequency range, a primary problem is maintaining accuracy up to (and beyond) the mechanical resonance frequency of the rotating shaft assembly. A standard viscoelastic material (NIST SRM 2490) has been used to calibrate the rheometric system for an expanded frequency range. Mathematically predicted response curves are compared to measured response curves, and an error analysis is conducted to determine the accuracy to which the elastic modulus and the shear modulus can be determined in the 20-150-Hz region. Results indicate that the inertia of the rotating assembly and the gap between the plates need to be known (or determined empirically) to a high precision when the measurement frequency exceeds the resonant frequency. In addition, a phase correction is needed to account for the magnetic inertia (inductance) of the drag cup motor. Uncorrected, the measured phase can go below the theoretical limit of -π. This can produce large errors in the viscous modulus near and above the resonance frequency. With appropriate inertia and phase corrections, +/-10% accuracy can be obtained up to twice the resonance frequency.
REGENERATION AND REACTIVATION OF CARBON ADSORBENTS BY RADIO FREQUENCY INDUCTION HEATING
1. Electrical Properties of Adsorbents: We measured the electric permittivity of four commercially available carbon adsorbents (supplied by Wesvaco Inc) over the radio frequency range (1 to 40 MHz). Westvaco is by far the largest volume supplier of activated carbon...
Langasite, langanite, and langatate bulk-wave Y-cut resonators.
Smythe, R C; Helmbold, R C; Hague, G E; Snow, K A
2000-01-01
Materials in the langasite family are of current interest for both bulk wave and surface wave devices. Piano-convex Y-cut bulk wave resonators have been built and tested on overtones 1 through 9 using LGS (langasite; La(3)Ga(5)SiO(14)), LGN (langanite; La(3)Ga(5.5)Nb(0.5)O(14)), and LGT (langatate; La(3)Ga(5.5)Ta(5.5)O(14)). Frequencies and motional inductances are compared with calculated values, with good agreement except for the motional inductance of LGT. For all three materials, frequency variation is an essentially parabolic function of temperature. For LGN and LGT, reported values of the Q-frequency product are significantly above the classical limit for AT-cut quartz. A maximum 4 f value of 25.6x10(6), where frequency is in megahertz;, was observed for an LGT resonator; for an unplated resonator, 29.2x10(6) was measured. Still higher values are believed possible.
Induced electric fields in workers near low-frequency induction heating machines.
Kos, Bor; Valič, Blaž; Kotnik, Tadej; Gajšek, Peter
2014-04-01
Published data on occupational exposure to induction heating equipment are scarce, particularly in terms of induced quantities in the human body. This article provides some additional information by investigating exposure to two such machines-an induction furnace and an induction hardening machine. Additionally, a spatial averaging algorithm for measured fields we developed in a previous publication is tested on new data. The human model was positioned at distances where measured values of magnetic flux density were above the reference levels. All human exposure was below the basic restriction-the lower bound of the 0.1 top percentile induced electric field in the body of a worker was 0.193 V/m at 30 cm from the induction furnace. © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Sankaran, Kameshwaran; Ritchie, Andrew G.; Peneau, Jarred P.
2012-01-01
Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. A recent review of the developmental history of planar-geometry pulsed inductive thrusters, where the coil take the shape of a flat spiral, can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT)[2, 3] and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD)[4]. There exists a 1-D pulsed inductive acceleration model that employs a set of circuit equations coupled to a one-dimensional momentum equation. The model was originally developed and used by Lovberg and Dailey[2, 3] and has since been nondimensionalized and used by Polzin et al.[5, 6] to define a set of scaling parameters and gain general insight into their effect on thruster performance. The circuit presented in Fig. 1 provides a description of the electrical coupling between the current flowing in the thruster I1 and the plasma current I2. Recently, the model was upgraded to include an equation governing the deposition of energy into various modes present in a pulsed inductive thruster system (acceleration, magnetic flux generation, resistive heating, etc.)[7]. An MHD description of the plasma energy density evolution was tailored to the thruster geometry by assuming only one-dimensional motion and averaging the plasma properties over the spatial dimensions of the current sheet to obtain an equation for the time-evolution of the total energy. The equation set governing the dynamics of the coupled electrodynamic-current sheet system is composed of first-order, coupled ordinary differential equations that can be easily solved numerically without having to resort to much more complex 2-D finite element plasma simulations.
Effect of different methods of pulse width modulation on power losses in an induction motor
NASA Astrophysics Data System (ADS)
Gulyaev, Alexander; Fokin, Dmitrii; Shuharev, Sergey; Ten, Evgenii
2017-10-01
We consider the calculation of modulation power losses in a system “induction motor-inverter” for various pulse width modulation (PWM) methods of the supply voltage. Presented values of modulation power losses are the result of modeling a system “DC link - two-level three-phase voltage inverter - induction motor - load”. In this study the power losses in a system “induction motor - inverter” are computed, as well as losses caused by higher harmonics of PWM supply voltage, followed by definition of active power consumed by the DC link for a specified value mechanical power on the induction motor shaft. Mechanical power was determined by the rotation speed and the torque on the motor shaft in various quasi-sinusoidal supply voltage PWM modes. These calculations reveal the best coefficient of performance (COP) in a system of a variable frequency drive (VFD) with independent voltage inverter controlled by induction motor PWM.
NASA Astrophysics Data System (ADS)
Sigman, John Brevard
Buried explosive hazards present a pressing problem worldwide. Millions of acres and thousands of sites are contaminated in the United States alone [1, 2]. There are three categories of explosive hazards: metallic, intermediate-electrical conducting (IEC), and non-conducting targets. Metallic target detection and classification by electromagnetic (EM) signature has been the subject of research for many years. Key to the success of this research is modern multi-static Electromagnetic Induction (EMI) sensors, which are able to measure the wideband EMI response from metallic buried targets. However, no hardware solutions exist which can characterize IEC and non-conducting targets. While high-conducting metallic targets exhibit a quadrature peak response for frequencies in a traditional EMI regime under 100 kHz, the response of intermediate-conducting objects manifests at higher frequencies, between 100 kHz and 15 MHz. In addition to high-quality electromagnetic sensor data and robust electromagnetic models, a classification procedure is required to discriminate Targets of Interest (TOI) from clutter. Currently, costly human experts are used for this task. This expense and effort can be spared by using statistical signal processing and machine learning. This thesis has two main parts. In the first part, we explore using the high frequency EMI (HFEMI) band (100 kHz-15 MHz) for detection of carbon fiber UXO, voids, and of materials with characteristics that may be associated with improvised explosive devices (IED). We constructed an HFEMI sensing instrument, and apply the techniques of metal detection to sensing in a band of frequencies which are the transition between the induction and radar bands. In this transition domain, physical considerations and technological issues arise that cannot be solved via the approaches used in either of the bracketing lower and higher frequency ranges. In the second half of this thesis, we present a procedure for automatic classification of UXO. For maximum generality, our algorithm is robust and can handle sparse training examples of multi-class data. This procedure uses an unsupervised starter, semi-supervised techniques to gather training data, and concludes with supervised learning until all TOI are found. Additionally, an inference method for estimating the number of remaining true positives from a partial Receiver Operating Characteristic (ROC) curve is presented and applied to live-site dig histories.
Bodell, William J; Gaikwad, Nilesh W; Miller, Douglas; Berger, Mitchel S
2003-06-01
Temozolomide (TMZ) is a chemotherapeutic agent used in the treatment of high-grade brain tumors. Treatment of patients with alkylating chemotherapeutic agents has been established to increase their risk for acute myelogenous leukemia. The formation of DNA adducts and induction of mutations are likely to play a role in the etiology of therapy-related acute myeloid leukemia. To evaluate this issue for TMZ, we have measured the formation of DNA adducts and induction of lacI mutations in Big Blue Rat-2 cells treated with TMZ. Treatment of Big Blue Rat-2 cells with either 0, 0.5, or 1 mM TMZ resulted in lacI mutant frequencies of 9.1 +/- 2.9 x 10(-5), 48.9 +/- 12 x 10(-5), and 89.7 +/- 40.3 x 10(-5), respectively. Comparison of the mutant frequencies demonstrated that 0.5 and 1 mM TMZ treatments increased the mutant frequencies by 5.3- and 9.8-fold and that this increase was significant (P < 0.001). Sequence analysis of the lacI mutants from the TMZ treatment group demonstrated that they were GC-->AT transitions at non-CpG sites, which is significantly different from the mutation spectrum observed in the control treatment group. Treatment of Big Blue Rat-2 cells with various concentrations of TMZ produced a linear increase in the levels of N7-methylguanine and O(6)-methylguanine. The lacI mutation spectrum induced by TMZ treatment is consistent with these mutations being produced by O(6)-MeG. This study establishes TMZ has significant mutagenic potential and suggests that careful consideration in the use of TMZ for the treatment of low-grade adult and pediatric brain tumors should be given.
2013-06-01
density of the s5 and s3 metastable states for different discharge parameters. The absorption data was fit to an approximated Voigt profile from which...pressures are required in order to have enough spin-orbit relaxation to maintain CW lasing without significant bottlenecking. There are many methods to...for just that [(5),(12)]. This method allows for a wide study of energy levels since the limiting factor is the sensitivity of the detector and modern
Investigation of the martensitic transformation of (Cu-Zn-Ni) shape memory alloys
NASA Astrophysics Data System (ADS)
Naat, N. A.; Mohammed, M. A.
2017-02-01
(Cu-Zn-Ni) shape memory alloy with different percent have been prepared by using high frequency induction furnace under argon atmosphere. All of the specimens obtained from this alloys were heated in furnace for (15 minutes at 865°C) for homogenization and quenched in iced-water. Comparisons has been made with data obtained via differential scanning calorimetry (DSC) and energy-dispersive X-ray spectroscopy (EDS). The metallographic analyses were carried out by using optical microscopy (OM).
NASA Astrophysics Data System (ADS)
A, Volkov Y.
2017-01-01
The expedience of building wideband multistage amplifiers, the stages of which are connected with each other so, that the “modes of impedance mismatch” are realized, is justified. Those modes allow us to reduce considerably the sensitivity of amplifier transfer factors to the stray (constructional) capacitances and inductances of interstage circuits. The procedure of synthesizing the schematics of such amplifiers is proposed, the efficiency and clarity of which are provided by using the method of signal graphs.
Study on efficiency of different topologies of magnetic coupled resonant wireless charging system
NASA Astrophysics Data System (ADS)
Cui, S.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Liang, L. H.
2017-11-01
This paper analyses the relationship between the output power, the transmission efficiency and the frequency, load and coupling coefficient of the four kinds of magnetic coupled resonant wireless charging system topologies. Based on mutual inductance principle, four kinds of circuit models are established, and the expressions of output power and transmission efficiency of different structures are calculated. The difference between the two power characteristics and efficiency characteristics is compared by simulating the SS (series-series) and SP (series-parallel) type wireless charging systems. With the same parameters of circuit components, the SS structure is usually suitable for small load resistance. The SP structure can be applied to large load resistors, when the transmission efficiency of the system is required to keep high. If the operating frequency deviates from the system resonance frequency, the SS type system has higher transmission efficiency than the SP type system.
Different Solutions for the Generator-accelerator Module
NASA Astrophysics Data System (ADS)
Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Zavadtsev, A. A.; Zavadtsev, D. A.
The most important part of the particle accelerators [1] - is the power generator together with the whole feeding system [2]. All types of generators, such as klystrons, magnetrons, solid state generators cover their own field of power and pulse length values. For the last couple of year the Inductive Output Tubes (IOT) becomes very popular because of their comparative construction simplicity: it represents the klystron output cavity with the grid modulated electron beam injected in it. Now such IOTs are used with the superconductive particle accelerators at 700 MHz operating frequency with around 1MW output power. Higher frequencies problem - is the inability to apply high frequency modulated voltage to the grid. Thus we need to figure out some kind of RF gun. But this article is about the first steps of the geometry and beam dynamics simulation in the six beam S-band IOT, which will be used with the compact biperiodic accelerating structure.
Mazon, E E; Villa-Martínez, E; Hernández-Sámano, A; Córdova-Fraga, T; Ibarra-Sánchez, J J; Calleja, H A; Leyva Cruz, J A; Barrera, A; Estrada, J C; Paz, J A; Quintero, L H; Cano, M E
2017-08-01
A scanning system for specific absorption rate of ferrofluids with superparamagnetic nanoparticles is presented in this study. The system contains an induction heating device designed and built with a resonant inverter in order to generate magnetic field amplitudes up to 38 mT, over the frequency band 180-525 kHz. Its resonant circuit involves a variable capacitor with 1 nF of capacitance steps to easily select the desired frequency, reaching from 0.3 kHz/nF up to 5 kHz/nF of resolution. The device performance is characterized in order to compare with the theoretical predictions of frequency and amplitude, showing a good agreement with the resonant inverters theory. Additionally, the setup is tested using a synthetic iron oxide with 10 ± 1 nm diameter suspended in liquid glycerol, with concentrations at 1%. Meanwhile, the temperature rise is measured to determine the specific absorption rate and calculate the dissipated power density for each f. This device is a suitable alternative to studying ferrofluids and analyzes the dependence of the power absorption density with the magnetic field intensity and frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morawski, Ireneusz; Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław; Spiegelberg, Richard
A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. Themore » high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.« less
A New Type Hi-Speed BLDC Control System Base on Indirect Current Control Strategy
NASA Astrophysics Data System (ADS)
Wang, D. P.; Wang, Y. C.; Zhang, F. G.; Jin, S.
2017-05-01
High speed BLDC has the characteristic as larger air gap smaller armature inductance, traditional PWM modulation will produce a great number of high frequency current harmonics which led problem like large torque ripple and serious motor heat. In the meantime traditional PWM modulation use the diode rectifier which cause harmonic pollution in electric power net. To solve the problem above, proposes a new motor controller topology. Using the IGBT device to replace the diode on frequency converter rectifier side, apply the power factor correction technology, reduce the pollution on the grid. Using busbar current modulation on the inverter, driving bridge-arm use 3-phase 6-state open as driving Mode, realize the control on a 10000r/min,10kw BLDC. The results of Simulation on matlab show the topological structure as proposed can effectively improve the network side power factor and reduce the motor armature winding harmonic and motor torque ripple.
Repetitively Pulsed High Power RF Solid-State System
NASA Astrophysics Data System (ADS)
Bowman, Chris; Ziemba, Timothy; Miller, Kenneth E.; Prager, James; Quinley, Morgan
2017-10-01
Eagle Harbor Technologies, Inc. (EHT) is developing a low-cost, fully solid-state architecture for the generation of the RF frequencies and power levels necessary for plasma heating and diagnostic systems at validation platform experiments within the fusion science community. In Year 1 of this program, EHT has developed a solid-state RF system that combines an inductive adder, nonlinear transmission line (NLTL), and antenna into a single system that can be deployed at fusion science experiments. EHT has designed and optimized a lumped-element NLTL that will be suitable RF generation near the lower-hybrid frequency at the High Beta Tokamak (HBT) located at Columbia University. In Year 2, EHT will test this system at the Helicity Injected Torus at the University of Washington and HBT at Columbia. EHT will present results from Year 1 testing and optimization of the NLTL-based RF system. With support of DOE SBIR.
High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants.
Rech, Elibio L; Vianna, Giovanni R; Aragão, Francisco J L
2008-01-01
This protocol describes a method for high-frequency recovery of transgenic soybean, bean and cotton plants, by combining resistance to the herbicide imazapyr as a selectable marker, multiple shoot induction from embryonic axes of mature seeds and biolistics techniques. This protocol involves the following stages: plasmid design, preparation of soybean, common bean and cotton apical meristems for bombardment, microparticle-coated DNA bombardment of apical meristems and in vitro culture and selection of transgenic plants. The average frequencies (the total number of fertile transgenic plants divided by the total number of bombarded embryonic axes) of producing germline transgenic soybean and bean and cotton plants using this protocol are 9, 2.7 and 0.55%, respectively. This protocol is suitable for studies of gene function as well as the production of transgenic cultivars carrying different traits for breeding programs. This protocol can be completed in 7-10 months.
Svaldi, Jennifer; Bender, Caroline; Caffier, Detlef; Ivanova, Viliana; Mies, Nina; Fleischhaker, Christian; Tuschen-Caffier, Brunna
2016-01-01
Objective Previous research has yielded evidence of increased attentional processing of negatively valenced body parts in women with anorexia nervosa (AN), especially for those with high depressive symptomatology. The present study extended previous research by implementing an experimental mood manipulation. Method In a within-subjects design, female adolescents with AN (n = 12) and an age matched female control group (CG; n = 12) were given a negative and a positive mood induction at a one-week interval. After each mood induction, participants underwent a 3-min mirror exposure, while their eye movements were recorded. Results After the positive mood induction, both AN and CG participants displayed longer and more frequent gazes towards their self-defined most ugly relative to their self-defined most beautiful body part. However, after the negative mood induction, only females with AN were characterized by increased attention to their most ugly compared to their most beautiful body part, while CG participants’ attention distribution was balanced. Furthermore, in the negative (but not in the positive) mood induction condition gaze frequency and duration towards the most ugly body part was significantly stronger in the AN group relative to the CG. Discussion The results emphasize the role of negative mood in the maintenance of pathological information processing of the self-body. This increased body-related negativity-bias during negative mood may lead to the persistence and aggravation of AN patients’ body image disturbance. PMID:27123587
Thin grain oriented electrical steel for PWM voltages fed magnetic cores
NASA Astrophysics Data System (ADS)
Belgrand, Thierry; Lemaître, Régis; Benabou, Abdelkader; Blaszkowski, Jonathan; Wang, Chaoyong
2018-04-01
This paper reports on performances of high permeability grain oriented electrical steel when used in association with power electronic switching devices. Loss measurement results obtained from the Epstein test, using sinusoidal or various PWM voltages in medium frequency range, show that for both studied thicknesses (HGO 0.23mm and HGO 0.18mm), comparing performances at a fixed induction level between the various situations may not be the most convenient method. The effect of magnetic domain refinement has been investigated. After having shown the interest of lowering the thickness, an alternative way of looking at losses is proposed that may help to design the magnetic core when it comes to the matter of reducing size in considering frequency and magnetization levels.
NASA Astrophysics Data System (ADS)
Ginzburg, N. S.; Golubev, I. I.; Golubykh, S. M.; Zaslavskii, V. Yu.; Zotova, I. V.; Kaminsky, A. K.; Kozlov, A. P.; Malkin, A. M.; Peskov, N. Yu.; Perel'Shteĭn, É. A.; Sedykh, S. N.; Sergeev, A. S.
2010-10-01
A free-electron maser (FEM) with a double-mirror resonator involving a new modification of Bragg structures operating on coupled propagating and quasi-cutoff (trapped) modes has been studied. The presence of trapped waves in the feedback chain improves the selectivity of Bragg resonators and ensures stable single-mode generation regime at a considerable superdimensionality of the interaction space. The possibility of using the new feedback mechanism has been confirmed by experiments with a 30-GHz FEM pumped by the electron beam of LIU-3000 (JINR) linear induction accelerator, in which narrow-band generation was obtained at a power of ˜10 MW and a frequency close to the cutoff frequency of the trapped mode excited in the input Bragg reflector.
NASA Astrophysics Data System (ADS)
Ohchi, Masashi; Furukawa, Tatsuya
Induction heating has found a new feasibility in domestic appliances. Its application is known as an “induction range” or an “induction heating oven”. Conventional design schemes of them have depended on the experience and insight of designers. In the paper, the authors treat it as an electromagnetic device to investigate the mechanism of power dissipation using the Finite Element Method, where an impressed voltage supply is taken account of and the constant V/f condition is imposed for the constant impressed magnetic flux. Furthermore the authors will examine how to heat an aluminum pan and discuss the optimal frequency of a power supply.
Hybrid-secondary uncluttered induction machine
Hsu, John S.
2001-01-01
An uncluttered secondary induction machine (100) includes an uncluttered rotating transformer (66) which is mounted on the same shaft as the rotor (73) of the induction machine. Current in the rotor (73) is electrically connected to current in the rotor winding (67) of the transformer, which is not electrically connected to, but is magnetically coupled to, a stator secondary winding (40). The stator secondary winding (40) is alternately connected to an effective resistance (41), an AC source inverter (42) or a magnetic switch (43) to provide a cost effective slip-energy-controlled, adjustable speed, induction motor that operates over a wide speed range from below synchronous speed to above synchronous speed based on the AC line frequency fed to the stator.
Traveling-wave induction launchers
NASA Technical Reports Server (NTRS)
Elliott, David G.
1989-01-01
An analysis of traveling-wave induction launchers shows that induction is a feasible method of producing armature current and that efficient accelerators can be built without sliding contacts or arcs. In a traveling-wave induction launcher the armature current is induced by a slip speed between the armature and a traveling magnetic field. At 9 m/s slip speed a 9 kg projectile with an aluminum armature weighing 25 percent of the total mass can be accelerated to 3000 m/s in a 5 m-long barrel with a total ohmic loss in the barrel coils and armature of 4 percent of the launch kinetic energy and with an average armature temperature rise of 220 deg C, but a peak excitation frequency of 8600 Hz is required. With a 2 kg launch mass the ohmic loss is 7 percent. A launcher system optimized for rotating generators would have a peak frequency of 4850 Hz; with an aluminum armature weighing 33 percent of the launch mass and a slip speed of 30 m/s the total ohmic loss in the generators, cables, and accelerator would be 43 percent of the launch kinetic energy, and the average armature temperature rise would be 510 deg C.
NASA Astrophysics Data System (ADS)
Glenn, Jason; Fyhrie, Adalyn; Wheeler, Jordan; Day, Peter K.; Eom, Byeong H.; Leduc, Henry G.
2016-07-01
We present the design and characterization of low-volume, lumped-element aluminum kinetic inductance de- tectors for sensitive far-infrared astronomy observations. The lumped-element kinetic inductance detectors are comprised of meandered inductors that serve as radiation absorbers in parallel with interdigitated capacitors, forming high quality factor resonators. Low inductor volumes lead to low noise equivalent powers by raising quasiparticles densities, and hence responsivities, with respect to larger volumes. Low volumes are achieved with thin (20 nm), narrow (150 nm) inductors. The interdigitated capacitor architecture is designed to mitigate two-level system noise by lowering electric fields in the silicon substrate. Resonance frequencies are in the range of 190 to 500 MHz, with measured internal quality factors in excess of 1 x 105. In a prior incarnation, a titanium nitride layer on top of the aluminum served as a protective layer, but complicated the superconducting proper- ties. These results were reported previously. In the current incarnation, the aluminum layer is left bare with no titanium nitride over-layer. The results for these bare aluminum devices include a yield of 88%, frequency responsivity of 109 W-1, and noise equivalent power of 1 x 10-17 W Hz-1/2 for a 350μm array. There is no evidence for 1=f noise down to at least 200 mHz. The sensitivity is currently limited by white noise, very likely from stray light in the testbed; for this detector design, sensitivities limited by generation-recombination noise in a lower-background environment should be several orders of magnitude lower.
Hybrid Active/Passive Jet Engine Noise Suppression System
NASA Technical Reports Server (NTRS)
Parente, C. A.; Arcas, N.; Walker, B. E.; Hersh, A. S.; Rice, E. J.
1999-01-01
A novel adaptive segmented liner concept has been developed that employs active control elements to modify the in-duct sound field to enhance the tone-suppressing performance of passive liner elements. This could potentially allow engine designs that inherently produce more tone noise but less broadband noise, or could allow passive liner designs to more optimally address high frequency broadband noise. A proof-of-concept validation program was undertaken, consisting of the development of an adaptive segmented liner that would maximize attenuation of two radial modes in a circular or annular duct. The liner consisted of a leading active segment with dual annuli of axially spaced active Helmholtz resonators, followed by an optimized passive liner and then an array of sensing microphones. Three successively complex versions of the adaptive liner were constructed and their performances tested relative to the performance of optimized uniform passive and segmented passive liners. The salient results of the tests were: The adaptive segmented liner performed well in a high flow speed model fan inlet environment, was successfully scaled to a high sound frequency and successfully attenuated three radial modes using sensor and active resonator arrays that were designed for a two mode, lower frequency environment.
Minimisation des inductances propres des condensateurs à film métallisé
NASA Astrophysics Data System (ADS)
Joubert, Ch.; Rojat, G.; Béroual, A.
1995-07-01
In this article, we examine the different factors responsible for the equivalent series inductance in metallized capacitors and we propose structures for capacitors that reduce this inductance. After recalling the structure of metallized capacitors we compare, by experimental measurements, the inductance due to the winding and that one added by the connections. The latter can become preponderant. In order to explain the experimental evolution of the winding impedance vs. frequency, we describe an analytical model which gives the current density in the winding and its impedance. This model enables us to determine the self resonant frequency for different types of capacitors. From where, we can infer the influence of the height of capacitors and their internal and external radius upon performances, It appears that to reduce the equivalent series inductance, it is better to use flat windings and annular windings. Dans cet article nous examinons les différents facteurs responsables de l'inductance équivalente série dans les condensateurs à film métallisé et proposons des géométries de condensateurs qui réduisent cette inductance. Après avoir rappelé la structure des condensateurs à film métallisé, nous comparons, par des mesures expérimentales, l'inductance due au bobinage et l'inductance ajoutée par les connexions. Cette dernière peut devenir prépondérante. Afin d'expliquer l'évolution de l'impédance du bobinage en fonction de la fréquence, nous décrivons un modèle analytique qui donne la densité du courant dans le bobinage et l'impédance de ce dernier. En outre, ce modèle permet de déterminer la fréquence de résonance série de divers types de condensateurs ce qui permet de déduire l'influence de la hauteur des condensateurs et de leurs rayons interne et externe sur les performances. Il apparaît ainsi que, pour diminuer l'inductance équivalente série, il vaut mieux employer des bobinages plats et des bobinages annulaires.
Tiikkaja, Maria; Aro, Aapo L; Alanko, Tommi; Lindholm, Harri; Sistonen, Heli; Hartikainen, Juha E K; Toivonen, Lauri; Juutilainen, Jukka; Hietanen, Maila
2013-03-01
Electromagnetic interference (EMI) can pose a danger to workers with pacemakers and implantable cardioverter-defibrillators (ICDs). At some workplaces electromagnetic fields are high enough to potentially inflict EMI. The purpose of this in vivo study was to evaluate the susceptibility of pacemakers and ICDs to external electromagnetic fields. Eleven volunteers with a pacemaker and 13 with an ICD were exposed to sine, pulse, ramp, and square waveform magnetic fields with frequencies of 2-200 Hz using Helmholtz coil. The magnetic field flux densities varied to 300 µT. We also tested the occurrence of EMI from an electronic article surveillance (EAS) gate, an induction cooktop, and a metal inert gas (MIG) welding machine. All pacemakers were tested with bipolar settings and three of them also with unipolar sensing configurations. None of the bipolar pacemakers or ICDs tested experienced interference in any of the exposure situations. The three pacemakers with unipolar settings were affected by the highest fields of the Helmholtz coil, and one of them also by the EAS gate and the welding cable. The induction cooktop did not interfere with any of the unipolarly programmed pacemakers. Magnetic fields with intensities as high as those used in this study are rare even in industrial working environments. In most cases, employees can return to work after implantation of a bipolar pacemaker or an ICD, after an appropriate risk assessment. Pacemakers programmed to unipolar configurations can cause danger to their users in environments with high electromagnetic fields, and should be avoided, if possible.
Global electromagnetic induction in the moon and planets. [poloidal eddy current transient response
NASA Technical Reports Server (NTRS)
Dyal, P.; Parkin, C. W.
1973-01-01
Experiments and analyses concerning electromagnetic induction in the moon and other extraterrestrial bodies are summarized. The theory of classical electromagnetic induction in a sphere is first considered, and this treatment is extended to the case of the moon, where poloidal eddy-current response has been found experimentally to dominate other induction modes. Analysis of lunar poloidal induction yields lunar internal electrical conductivity and temperature profiles. Two poloidal-induction analytical techniques are discussed: a transient-response method applied to time-series magnetometer data, and a harmonic-analysis method applied to data numerically Fourier-transformed to the frequency domain, with emphasis on the former technique. Attention is given to complicating effects of the solar wind interaction with both induced poloidal fields and remanent steady fields. The static magnetization field induction mode is described, from which are calculated bulk magnetic permeability profiles. Magnetic field measurements obtained from the moon and from fly-bys of Venus and Mars are studied to determine the feasibility of extending theoretical and experimental induction techniques to other bodies in the solar system.
Kepler, Thomas B.; Liao, Hua-Xin; Alam, S. Munir; Bhaskarabhatla, Rekha; Zhang, Ruijun; Stewart, Shelley; Anasti, Kara; Kelsoe, Garnett; Parks, Robert; Lloyd, Krissey E.; Stolarchuk, Christina; Pritchett, Jamie; Solomon, Erika; Friberg, Emma; Morris, Lynn; Karim, Salim S. Abdool; Cohen, Myron S.; Walter, Emmanuel; Moody, M. Anthony; Wu, Xueling; Altae-Tran, Han R.; Georgiev, Ivelin S.; Kwong, Peter D.; Boyd, Scott D.; Fire, Andrew Z.; Mascola, John R.; Haynes, Barton F.
2014-01-01
Summary Induction of HIV-1 broad neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development but has remained challenging partially due to unusual traits of bnAbs, including high somatic hypermutation (SHM) frequencies and in-frame insertions and deletions (indels). Here we examined the propensity and functional requirement for indels within HIV-1 bnAbs. High-throughput sequencing of the immunoglobulin (Ig) VHDJH genes in HIV-1 infected and uninfected individuals revealed that the indel frequency was elevated among HIV-1-infected subjects, with no unique properties attributable to bnAb-producing individuals. This increased indel occurrence depended only on the frequency of SHM point-mutations. Indel-encoded regions were generally proximal to antigen binding sites. Additionally, reconstruction of a HIV-1 CD4-binding site bnAb clonal lineage revealed that a large compound VHDJH indel was required for bnAb activity. Thus, vaccine development should focus on designing regimens targeted at sustained activation of bnAb lineages to achieve the required SHM and indel events. PMID:25211073
Prospective motion correction using inductively coupled wireless RF coils.
Ooi, Melvyn B; Aksoy, Murat; Maclaren, Julian; Watkins, Ronald D; Bammer, Roland
2013-09-01
A novel prospective motion correction technique for brain MRI is presented that uses miniature wireless radio-frequency coils, or "wireless markers," for position tracking. Each marker is free of traditional cable connections to the scanner. Instead, its signal is wirelessly linked to the MR receiver via inductive coupling with the head coil. Real-time tracking of rigid head motion is performed using a pair of glasses integrated with three wireless markers. A tracking pulse-sequence, combined with knowledge of the markers' unique geometrical arrangement, is used to measure their positions. Tracking data from the glasses is then used to prospectively update the orientation and position of the image-volume so that it follows the motion of the head. Wireless-marker position measurements were comparable to measurements using traditional wired radio-frequency tracking coils, with the standard deviation of the difference < 0.01 mm over the range of positions measured inside the head coil. Wireless-marker safety was verified with B1 maps and temperature measurements. Prospective motion correction was demonstrated in a 2D spin-echo scan while the subject performed a series of deliberate head rotations. Prospective motion correction using wireless markers enables high quality images to be acquired even during bulk motions. Wireless markers are small, avoid radio-frequency safety risks from electrical cables, are not hampered by mechanical connections to the scanner, and require minimal setup times. These advantages may help to facilitate adoption in the clinic. Copyright © 2013 Wiley Periodicals, Inc.
Silva, M J; Dias, A; Barreta, A; Nogueira, P J; Castelo-Branco, N A A; Boavida, M G
2002-01-01
Chronic exposure to low frequency (LF) noise and whole-body vibration (WBV) induces both physiological and psychological alterations in man. Recently, we have shown that long-term occupational exposure to LF noise and WBV produces genotoxic effects in man expressed as an increase in sister chromatid exchange (SCE) levels in lymphocytes. The objectives of the present study were to investigate whether the observed effect could be reproduced in a murine model and, if so, which of the agents, LF noise alone or in combination with WBV, would be instrumental in the SCE induction. SCEs were analyzed in spleen lymphocytes of mice exposed to LF noise alone and in combination with WBV for 300 and 600 hr. An effect at the cell cycle kinetics level was also investigated. The results revealed significant increases in the mean SCE number per cell and in the proportion of cells with high frequency of SCEs (HFCs) in lymphocytes of mice submitted to combined noise and WBV over controls. No significant differences were found between single noise-exposed and control mice. A cell cycle delay was observed exclusively in the noise and WBV exposure groups. In conclusion, we demonstrated that, as in exposed workers, prolonged exposure to the combination of LF noise and WBV determines an increase in SCE level in mice while LF noise alone is not effective in SCE induction. Copyright 2002 Wiley-Liss, Inc.
Obeng-Adjei, N; Choo, D K; Weiner, D B
2013-10-01
Hepatotropic pathogens, such as hepatitis B (HBV) and hepatitis C (HCV), often escape cellular immune clearance resulting in chronic infection. As HBV and HCV infections are the most common causes of hepatocellular carcinoma (HCC), prevention of these infections is believed to be key to the prevention of HCC. It is believed that an effective immune therapy must induce strong cytotonic T lymphocytes (CTLs) that can migrate into the liver, where they can clear infected hepatocytes. Here, we compared the induction of CD8 T cells by two different DNA immunization methods for T-cell differentiation, function, memory programming and their distribution within relevant tissues in a highly controlled fashion. We used hydrodynamic tail vein injection of plasmid to establish liver-specific LCMV-gp antigen (Ag) transient expression, and studied CD8 T cells induced using the P14 transgenic mouse model. CD8 T cells from this group exhibited unique and limited expansion, memory differentiation, polyfunctionality and cytotoxicity compared with T cells generated in intramuscularly immunized mice. This difference in liver-generated expansion resulted in lower memory CD8 T-cell frequency, leading to reduced protection against lethal viral challenge. These data show an unusual induction of naive CD8 T cells contributed to the lower frequency of Ag-specific CTLs observed after immunization in the liver, suggesting that limited priming in liver compared with peripheral tissues is responsible for this outcome.
Geographical analysis of diapause inducibility in European Drosophila melanogaster populations.
Pegoraro, Mirko; Zonato, Valeria; Tyler, Elizabeth R; Fedele, Giorgio; Kyriacou, Charalambos P; Tauber, Eran
2017-04-01
Seasonal overwintering in insects represents an adaptation to stressful environments and in European Drosophila melanogaster females, low temperatures and short photoperiods can induce an ovarian diapause. Diapause may represent a recent (<15Ky) adaptation to the colonisation of temperate Europe by D. melanogaster from tropical sub-Saharan Africa, because African D. melanogaster and the sibling species D. simulans, have been reported to fail to undergo diapause. Over the past few centuries, D. melanogaster have also invaded North America and Australia, and eastern populations on both continents show a predictable latitudinal cline in diapause induction. In Europe however, a new diapause-enhancing timeless allele, ls-tim, is observed at high levels in southern Italy (∼80%), where it appears to have arisen and has spread throughout the continent with a frequency of ∼20% in Scandinavia. Given the phenotype of ls-tim and its geographical distribution, we might predict that it would work against any latitudinal cline in diapause induction within Europe. Indeed we reveal that any latitudinal cline for diapause in Europe is very weak, as predicted by ls-tim frequencies. In contrast, we determine ls-tim frequencies in North America and observe that they would be expected to strengthen the latitudinal pattern of diapause. Our results reveal how a newly arisen mutation, can, via the stochastic nature of where it initially arose, blur an otherwise adaptive geographical pattern. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NIMROD Simulations of the HIT-SI and HIT-SI3 Devices
NASA Astrophysics Data System (ADS)
Morgan, Kyle; Jarboe, Tom; Hossack, Aaron; Chandra, Rian; Everson, Chris
2017-10-01
The Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI) experiment uses a set of inductively driven helicity injectors to apply non-axisymmetric current drive on the edge of the plasma, driving an axisymmetric spheromak equilibrium in a central confinement volume. Significant improvements have been made to extended MHD modeling of HIT-SI, with both the resolution of disagreement at high injector frequencies in HIT-SI in addition to successes with the new upgraded HIT-SI3 device. Previous numerical studies of HIT-SI, using a zero-beta eMHD model, focused on operations with a drive frequency of 14.5 kHz, and found reduced agreement with both the magnetic profile and current amplification at higher frequencies (30-70 kHz). HIT-SI3 has three helicity injectors which are able to operate with different mode structures of perturbations through the different relative temporal phasing of the injectors. Simulations that allow for pressure gradients have been performed in the parameter regimes of both devices using the NIMROD code and show improved agreement with experimental results, most notably capturing the observed Shafranov-shift due to increased beta observed at higher finj in HIT-SI and the variety of toroidal perturbation spectra available in HIT-SI3. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02- 96ER54361.
Kim, Eun-Hee; Park, Jin-Hyoung; Lee, Sangmin M; Gwak, Mi-Sook; Kim, Gaab-Soo; Kim, Myung-Hee
2016-12-01
How perioperative heart rate variability (HRV) indices differ according to the anxiety or depressed mood of patients scheduled to undergo a major surgical procedure for cancer. Prospective observational study. Operating room. Forty-one male patients between 40 and 70 years of age with hepatocellular carcinoma were included in the final analysis. HRV was measured on the day before surgery (T1), impending anesthesia (T2), and after anesthetic induction (T3). Preoperative anxiety and depressed mood of all patients were evaluated using the State-Trait Anxiety Inventory and Self-Rating Depression Scale (SDS). HRV was significantly different among T1, T2, and T3. At T2, high frequency (HF) (normalized units of HF [nuHF]) was decreased and low frequency (LF) (normalized units of LF) and LF/HF were increased compared with those at T1 and T3. In the subgroup analysis between high and low SDS groups, high SDS group showed significantly decreased nuHF (P = .035), increased nuLF (P = .039), and increased LF/HF (P = .020) compared to low SDS group at T1. However, these values at T2 and T3 were not different between 2 groups. In analysis within the groups, low SDS group showed significant differences in nuHF, nuLF, and LF/HF among T1, T2, and T3 (P < .05, respectively), but no changes in these values were observed in high SDS group among the 3 different time points. HRV decreased significantly immediately before anesthesia and recovered to baseline with anesthetic induction. Preoperative, more depressed patients showed increased sympathetic tone at baseline and blunted response to impending anesthesia on the HRV measurements. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.
2017-12-01
It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.
Equivalent circuit parameters of nickel/metal hydride batteries from sparse impedance measurements
NASA Astrophysics Data System (ADS)
Nelatury, Sudarshan Rao; Singh, Pritpal
In a recent communication, a method for extracting the equivalent circuit parameters of a lead acid battery from sparse (only three) impedance spectroscopy observations at three different frequencies was proposed. It was based on an equivalent circuit consisting of a bulk resistance, a reaction resistance and a constant phase element (CPE). Such a circuit is a very appropriate model of a lead-acid cell at high state of charge (SOC). This paper is a sequel to it and presents an application of it in case of nickel/metal hydride (Ni/MH) batteries, which also at high SOC are represented by the same circuit configuration. But when the SOC of a Ni/MH battery under interrogation goes low, The EIS curve has a positive slope at the low frequency end and our technique yields complex values for the otherwise real circuit parameters, suggesting the need for additional elements in the equivalent circuit and a definite relationship between parameter consistency and SOC. To improvise the previous algorithm, in order that it works reasonably well at both high and low SOCs, we propose three more measurements—two at very low frequencies to include the Warburg response and one at a high frequency to model the series inductance, in addition to the three in the mid frequency band—totally six measurements. In most of the today's instrumentation, it is the user who should choose the circuit configuration and the number of frequencies where impedance should be measured and the accompanying software performs data fitting by complex nonlinear least squares. The proposed method has built into it an SOC-based decision-making capability—both to choose the circuit configuration and to estimate the values of the circuit elements.
NASA Astrophysics Data System (ADS)
Rahman, B. M. Farid
Modern communications systems are following a common trend to increase the operational frequency, level of integration and number of frequency bands. Although 90-95% components in a cell phone are passives which take 80% of the total board area. High performance RF passive components play limited role and are desired towards this technological advancement. Slow wave structure is one of the most promising candidates to design compact RF and mm-Wave passive components. Slow wave structures are the specially designed transmission line realized by placing the alternate narrow and wide signal conductors in order to reduce the physical size of the components. This dissertation reports multiband slow wave structures integrated with ferromagnetic and ferroelectric thin films and their RF applications. A comparative study on different types of coplanar wave-guide (CPW) slow wave structures (SWS) has been demonstrated for the first time. Slow wave structures with various shapes have been investigated and optimized with various signal conductor shapes, ground conductor shapes and pitch of the sections. Novel techniques i.e. the use of the defected ground structure and the different signal conductor length has been implemented to achieve higher slow wave effect with minimum loss. The measured results have shown the reduction of size over 43.47% and 37.54% in the expense of only 0.27dB and 0.102dB insertion loss respectively which can reduce the area of a designed branch line coupler by 68% and 61% accordingly. Permalloy (Py) is patterned on top of the developed SWS for the first time to further increase the slow wave effect and provide tunable inductance value. High frequency applications of Py are limited by its ferro-magnetic resonance frequency since the inductance value decreases beyond that. Sub-micrometer patterning of Py has increased FMR frequency until 6.3GHz and 3.2GHz by introducing the shape anisotropy. For the SWS with patterned Py, the size of the quarter wavelength has been reduced from 14.86mm to 4.7mm at 2GHz. DC current which is the most convenient and available tuning parameter in a practical circuit board has been used, the developed SWS can function as quarter wave transmission line from 2GHz to 1.80GHz (i.e. 10%). Lead Zirconium Titanate (PZT) is grown and patterned on top of the section with standard sol-gel method to increase capacitance value. The inter digit capacitor type structure along with PZT thin film has been adopted and results showed capacitance value increment by 36%. An electric field between signal and ground has been applied to change the polarization of the thin film which resulted in a tuning of center frequency by 15% (1.75GHz to 2GHz). In addition, a novel approach has been implemented by integrating both the ferromagnetic and the ferroelectric thin films simultaneously to achieve higher slow wave effect, wider tuning range and smaller variation in Characteristics Impedance. The size of the final structure for a quarter wavelengths has been reduced from 14.86mm to 3.98mm while the center frequency has been tuned from 2GHz to 1.5GHz (i.e. 25%). Tunable RF applications of the ferro-magnetic thin films are also demonstrated as a DC current band pass filter, tunable noise suppressor and meander line inductor. A well designed frequency tunable band pass filter (BPF) is implemented at 4GHz with patterned Permalloy. The pass band frequency of a band pass filter has been tuned from 4GHz to 4.02GHz by applying a DC current. The suppression frequency of the developed noise suppressor is tuned from 4.8GHz to 6GHz and 4GHz to 6GHz by changing the aspect ratio of the Py bars and the gap in between them. Moreover, a novel way of tuning the stop band frequency of the noise suppressor by using an external direct current changed the suppression frequency from 6GHz to 4.3GHz. A pass band loss of 1.5%, less than 2° transmitted signal phase distortion, and 3 dB extra return loss of the designed noise suppressor showed the promise the noise suppressors. The increase in the number of turns of a meander line inductor has increased the inductance density from 2565nH/m to 3396nH/m while application of the patterned Py has increased the inductance density from 2565nH/m to 3060nH/m. The tuning of the meander line inductor has been performed by applying DC current until the FMR frequency 4.51GHz.
NASA Astrophysics Data System (ADS)
Tromp-van Meerveld, H. J.; McDonnell, J. J.
2009-04-01
SummaryHillslopes are fundamental landscape units, yet represent a difficult scale for measurements as they are well-beyond our traditional point-scale techniques. Here we present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the hillslope scale. We test the new multi-frequency GEM-300 for spatially distributed soil moisture measurements at the well-instrumented Panola hillslope. EM-based apparent conductivity measurements were linearly related to soil moisture measured with the Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7.290, 9.090, 11.250, and 14.010 kHz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the soil moisture measurements.
NASA Astrophysics Data System (ADS)
Nondahl, T. A.; Richter, E.
1980-09-01
A design study of two types of single sided (with a passive rail) linear electric machine designs, namely homopolar linear synchronous machines (LSM's) and linear induction machines (LIM's), is described. It is assumed the machines provide tractive effort for several types of light rail vehicles and locomotives. These vehicles are wheel supported and require tractive powers ranging from 200 kW to 3735 kW and top speeds ranging from 112 km/hr to 400 km/hr. All designs are made according to specified magnetic and thermal criteria. The LSM advantages are a higher power factor, much greater restoring forces for track misalignments, and less track heating. The LIM advantages are no need to synchronize the excitation frequency precisely to vehicle speed, simpler machine construction, and a more easily anchored track structure. The relative weights of the two machine types vary with excitation frequency and speed; low frequencies and low speeds favor the LSM.
Rail Brake System Using a Linear Induction Motor for Dynamic Braking
NASA Astrophysics Data System (ADS)
Sakamoto, Yasuaki; Kashiwagi, Takayuki; Tanaka, Minoru; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo
One type of braking system for railway vehicles is the eddy current brake. Because this type of brake has the problem of rail heating, it has not been used for practical applications in Japan. Therefore, we proposed the use of a linear induction motor (LIM) for dynamic braking in eddy current brake systems. The LIM reduces rail heating and uses an inverter for self excitation. In this paper, we estimated the performance of an LIM from experimental results of a fundamental test machine and confirmed that the LIM generates an approximately constant braking force under constant current excitation. At relatively low frequencies, this braking force remains unaffected by frequency changes. The reduction ratio of rail heating is also approximately proportional to the frequency. We also confirmed that dynamic braking resulting in no electrical output can be used for drive control of the LIM. These characteristics are convenient for the realization of the LIM rail brake system.
Multi-Channel Capacitive Sensor Arrays
Wang, Bingnan; Long, Jiang; Teo, Koon Hoo
2016-01-01
In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved. PMID:26821023
Immune perturbations in HIV–1-infected individuals who make broadly reactive neutralizing antibodies
Moody, M. Anthony; Pedroza-Pacheco, Isabela; Vandergrift, Nathan A.; Chui, Cecilia; Lloyd, Krissey E.; Parks, Robert; Soderberg, Kelly A.; Ogbe, Ane T.; Cohen, Myron S.; Liao, Hua-Xin; Gao, Feng; McMichael, Andrew J.; Montefiori, David C.; Verkoczy, Laurent; Kelsoe, Garnett; Huang, Jinghe; Shea, Patrick R.; Connors, Mark; Borrow, Persephone; Haynes, Barton F.
2017-01-01
Induction of broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development. BnAbs occur in some HIV-1-infected individuals and frequently have characteristics of autoantibodies. Here we have studied cohorts of HIV-1-infected individuals that made bnAbs and compared them to those who did not do so, and determined immune traits associated with the ability to produce bnAbs. HIV-1-infected individuals with bnAbs had a higher frequency of blood autoantibodies, a lower frequency of regulatory CD4+ T cells, a higher frequency of circulating memory T follicular helper CD4+ cells and a higher T regulatory cell level of programmed cell death-1 expression compared to HIV-1-infected individuals without bnAbs. Thus, induction of HIV-1 bnAbs may require vaccination regimens that transiently mimic immunologic perturbations in HIV-1-infected individuals. PMID:28783677
Kinetics of mutation induction by ultraviolet light in excision-deficient yeast.
Eckardt, F; Haynes, R H
1977-02-01
We have measured the frequency of UV-induced reversions (locus plus suppressor) for the ochre alleles ade2-1 and lys2-1 and forward mutations (ade2 adex double auxotrophs) in an excision-deficient strain of Saccharomyces cerevisiae (rad2-20). For very low UV doses, both mutational systems exhibit linear induction kinetics. However, as the dose increases, a strikingly different response is observed: in the selective reversion system a transition to higher order induction kinetics occurs near 9 ergs/mm2 (25% survival), whereas in the nonselective forward system the mutation frequency passes through a maximum near 14 ergs/mm2 (4.4% survival) and then declines. This contrast in kinetics cannot be explained in any straightforward way by current models of induced mutagenesis, which have been developed primarily on the basis of bacterial data. The bacterial models are designed to accommodate the quadratic induction kinetics that are frequently observed in these systems. We have derived a mathematical expression for mutation frequency that enables us to fit both the forward and reversion data on the assumptions that mutagenesis is basically a "single event" Poisson process, and that mutation and killing are not necessarily independent of one another. In particular, the dose-response relations are consistent with the idea that the sensitivity of the revertants is about 25% less than that of the original cell population, whereas the sensitivity of the forward mutants is about 29% greater than the population average. We argue that this relatively small differential sensitivity of mutant and nonmutant cells is associated with events that take place during mutation expression and clonal growth.
NASA Technical Reports Server (NTRS)
Santiago, Walter; Birchenough, Arthur G.
2006-01-01
Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the factor close to unity, both AC to DC converters topologies will implement power factor correction. This paper discusses these power factor correction methods as well as their impact on overall mass for exploration applications. Simulation results on both AC to DC converters topologies with power factor correction as a function of output power and SE-LA line inductance impedance are presented and compared.
DIBENZO[A,L]PYRENE INDUCTION OF ERYTHROCYTE MICRONUCLEI IN A/J AND P53-DEFICIENT MICE
DIBENZO[a,l]PYRENE INDUCTION OF ERYTHROCYTE MICRONUCLEI IN AlJ AND P53-DEFICIENT MICE
Male A/J and C57Bl/6 background p53+/+, p53+/- and p53-/- mice were treated with dibenzo[a,l]pyrene (DB[a,l]P), and micronucleus (MN) frequencies were measured in erythrocytes from bone ...